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Abstract

At the moment, one of the most popular approaches to trapped-atom qubit measurement is

measurement by resonance fluorescence, which, while relatively easy to implement, is suscep-

tible to yielding noisy results because the measurement signal and the field used to initiate

the measurement have the same frequency. A proposed alternative to this measurement

scheme is that performed by a four-wave mixing (FWM) process, which would permit the

measurement signal to have a frequency distinct from those used to initiate the measure-

ment, allowing for the measurement signal to be easily filtered from other frequencies in the

system and reducing measurement noise. This thesis seeks to model FWM stimulated in

a trapped-atom system, then to derive from the model an expression for the efficiency of

the process. To do this, we solve the wave equation of the signal field generated by FWM

analytically before using Python to offer a numerical solution to the problem. The result

is a set of Python scripts which can calculate the FWM efficiency and the optical power of

the generated signal as a function of various system parameters, but making a conclusion

on the viability of a FWM-based measurement scheme would likely involve a sophisticated

optimization algorithm and knowledge of specific hardware limitations.
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more appreciative of it than you will ever know.
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Nomenclature

Γ2 Decay rate of state 2

Γ3 Decay rate of state 3

Γ4 Decay rate of state 4

Ωp Rabi frequency of the 1 > 2 transition

Ωc Rabi frequency of the 2 > 3 transition

Ωd Rabi frequency of the 4 > 3 transition

ωp Frequency of the pump beam

ωc Frequency of the coupling beam

ωd Frequency of the drive beam

∆p Detuning of the pump beam

∆c Detuning of the coupling beam

∆d Detuning of the drive beam
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Chapter 1

Introduction

Quantum computers have the potential to expand our knowledge in unimaginable ways

and to improve our daily lives by advancing fields such as drug development, cryptography,

and solving optimization problems. The development of the trapped-atom and trapped-ion

approach to quantum information systems has accelerated in recent years as many groups in

both academia and industry attempt to construct one of the first quantum computers with

either atomic or ionic qubits with the hopes of unlocking this potential. The specifics of

these systems can vary broadly, but they are fundamentally very similar. Each has a chosen

atom or ion, in which two orthogonal (often electronic) states are specified to be the |0⟩
and |1⟩ states, together called the “qubit states”. Then, computations are performed on the

qubits by a set of various frequencies which work to trap them, prepare them into their initial

states, entangle them with each other, and apply quantum logic gates, all before ending the

process by measuring the final state of the qubit. (Since this paper focuses on trapped-atom

qubits, we will stop mentioning trapped-ion qubits, although many of our comments and

results will be applicable to them.)

Unfortunately, there remain many improvements to make to any existing trapped-atom

computer before it functions entirely as desired. An area in which there is much room for

improvement in the development of these systems is that of qubit measurement. One of the

most popular approaches to measurement of trapped-atom qubits is called measurement by

resonance fluorescence.

One of the primary issues with this process is that the frequency emitted by the measured

qubit is already present in the system. In other words, when resonance fluorescence is used,

the emitted measurement photons and the light used to stimulate the measurement process

have the same frequency, which introduces a source of noise if the device used to collect the

signal were to measure additional photons that are not a product of spontaneous emission

but rather are present for other reasons.
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Figure 1.1: A graphical representation of the two measurement schemes we’ve introduced.
On the left is measurement by resonance fluorescence, where the light used to stimulate
the measurement has the same frequency as the signal, introducing a potential for noise.
On the right is the proposed FWM-based measurement scheme, which stimulates measure-
ments using three frequencies unique from the generated fourth frequency (blue), allowing
us to filter out just the signal light for a less-noisy measurement.

One proposal to make qubit measurements less noisy is to measure them using a four-

wave mixing (FWM) process, which would allow the measurement photon to have a frequency

distinct from any other in the system. With a narrow bandpass filter centered around the

measurement frequency, it would be possible to filter out all light in the system that doesn’t

include measurement results, and the only signals the camera or photodetector collects would

be from measurement, eliminating ambiguity about the source of the collected light. A simple

graphical representation of the difference between measurement by resonance fluorescence

and a hypothtical FWM-based measurement scheme is shown in Figure 1.1.

This proposal has merit, but it is untested. So, this thesis set out to determine if a FWM

scheme is a viable method for trapped-atom qubit measurement. The primary goal was to

develop a model which would calculate the efficiency of the FWM process stimulated in a

trapped atom qubit. In the future, this would help to conclude if the proposal is a viable

alternative to measurement by resonance fluorescence by indicating if the resulting signal is

sufficiently strong for given input laser powers.

To develop the model, we used a combination of analytical and numerical strategies,

first finding an analytical solution to the wave equation for the field generated by the FWM

process in terms of the system’s density matrix element. Then, we used the QuTIP Python

library to numerically determine the relevant density matrix element in the steady state. The

result is a set of Python scripts which can plot relationships between the intensity of the
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FWM signal and various system parameters, and return explicit values for the efficiency of

the FWM process and the optical power of its generated signal in the trapped-atom system.

The thesis is organized as follows: In Chapter 2, we outline some theory used to develop

the model; in Chapter 3, we discuss how we constructed the model; in Chapter 4, we present

how we tested the model and explain why we feel confident in it; in Chapter 5, we apply

the model to a hypothetical cesium system to demonstrate how it might be used to analyze

the viability of FWM-based measurement in a specific system, and in Chapter 6, we outline

some of the next steps required to make the model more robust.
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Chapter 2

Theoretical Foundation

2.1 The Structure of a Cesium-Atom Qubit

One of the most important things to understand before attempting to model FWM dynamics

in a trapped-atom qubit is how the qubit is structured. Many different atoms can be used as

qubits, but for our purposes we’ll be focusing on cesium, whose D2 line structure is commonly

exploited for many applications, including for our qubit, shown in Figure 2.2.

A qubit must have a |0⟩ and a |1⟩ state. In our cesium system, we define these states

in terms of the hyperfine splitting of the 6S1/2 level, with |0⟩ corresponding to the lower

hyperfine level F = 3 and |1⟩ corresponding to the upper hyperfine level F = 4, as shown in

Figure 2.1.

For this thesis, we’ll focus on the qubit measurement process. A very popular approach

to measurement in the cesium system is called measurement by resonance fluorescence or

Figure 2.1: The states we use to define a cesium qubit, given by the hyperfine splitting of
the ground state of the single valence electron in cesium. Adapted from [1].
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2.1. THE STRUCTURE OF A CESIUM-ATOM QUBIT

Figure 2.2: From [1], this is the D2 line of cesium, with ground state 6S1/2 and excited
state 6P3/2.
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2.2. FOUR-WAVE MIXING (FWM)

resonance fluorescence readout, which we mentioned briefly in the introduction. Resonance-

fluorescence readout is done by irradiating qubits with light that is on resonance with a

transition between either the |0⟩ or |1⟩ qubit states and some excited state. Depending on

the qubit’s state, its single valence electron will either be excited and emit a photon by

spontaneous emission, or it will remain in its initial state, where there is nowhere for it to

decay to, and stay “dark”. Then, by determining which qubits fluoresce and which don’t,

we can determine the state they were in. In the cesium system outlined above, the excited

state used for resonance fluorescence measurement is most often the 6P3/2 state, and the

cycling transition driven between this state and the 6S1/2 ground state is accomplished by

852 nm light. (The more-precise energies required are outlined in Figure 2.2.) So, when

atoms fluoresce, they emit 852 nm signal photons.

One of the most pressing issues with measurement by resonance fluorescence is that the

wavelength of the signal photons is already present elsewhere in the system. If you are using

852 nm photons to both excite your qubits and collect with a camera or photodetector to

make conclusions about their state, you run the risk of measuring 852 photons which are

not a product of spontaneous emission. In other words, there is a good chance that you

are introducing significant noise into your measurements which is a product of 852 nm light

having multiple uses in your system.

This is where the proposed FWM-based measurement scheme comes in: if we can use

FWM to produce a signal photon which is not present anywhere else in the system, we

can greatly reduce the amount of noise in our measurements with the introduction of an

extremely narrow bandpass filter in front of the device used to collect the signal.

2.2 Four-Wave Mixing (FWM)

Four-wave mixing (FWM) is a third-order nonlinear optical process which generates a fourth

frequency from three other frequencies in a nonlinear medium. FWM can be split into two

categories: degenerate and non-degenerate FWM. Degenerate FWM requires three fields

with two distinct frequencies while non-degenerate FWM requires three fields with unique

frequencies. In this paper, we will focus on treating non-degenerate FWM.

We will not give a rigorous treatment of FWM but rather provide some intuition about

the process and some conditions that must be met in experiment to stimulate it. Physically,

non-degenerate FWM occurs when three photons of different frequencies are scattered and

interact with the nonlinear medium to produce a fourth frequency. Essentially, the fourth

frequency is a product of interference between the three incident frequencies.

Stimulating FWM is quite challenging as the laws of conservation of energy and momen-
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2.3. CONSTRUCTING THE FWM SYSTEM AND NOTATION

tum lay out a strict set of requirements that must be met before it can occur. If the three

incoming fields are named 1, 2, and 3, with 1 and 2 sharing the same sign on each quantity,

and the generated field is named 4, the mathematical representation of these conditions is

as follows:

ℏω4 = ℏω1 + ℏω2 − ℏω3 (2.1)

ℏk4 = ℏk1 + ℏk2 − ℏk3 (2.2)

ϕ4 = ϕ1 + ϕ2 − ϕ3 (2.3)

where Equation 2.1 is the energy conservation equation, Equation 2.2 is the momentum

conservation equation, and Equation 2.3 is the phase-matching condition.

Graphically, the conditions for energy and momentum conservation are shown in Figure

2.3. From both the mathematical and graphical representations of the conditions for FWM,

it’s clear that the two aspects of the FWM experiment that must be perfected to begin the

process are the differences between the frequencies used and the angles at which the fields

intersect.

However, just because conditions 2.1-2.3 are met does not mean that the resultant FWM

process is as efficient as possible. To most efficiently stimulate FWM in an atomic system

using lasers to produce the three incident fields, there is likely a very-specific set of detunings

and laser powers required to maximize the optical power of the generated fourth frequency.

This further complicates the task of achieving efficient FWM in an atom, as it introduces

even more conditions that must be met if the goal is to make the process efficient. The

model in described in the later chapters likely has the potential to streamline the process

of determining which combination of system parameters will maximize the FWM efficiency,

but as far as we’re concerned, there is currently no straightforward way to do this.

2.3 Constructing the FWM System and Notation

In the very early stages of developing our model, we wanted to start with choosing an energy

level structure that would permit us to stimulate FWM. Once we had the energy structure,

we were able to know which frequencies were in our system, and thus allow us to fully realize

its Hamiltonian. There are various energy level structures that allow for FWM such as the

ladder/cascade-type structure, the double-lambda structure, and the diamond structure. We

chose to use the diamond structure as it is particularly convenient in cesium, which we’ll

show briefly in the following paragraphs.
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2.3. CONSTRUCTING THE FWM SYSTEM AND NOTATION

Figure 2.3: Graphical representations of conditions for FWM with wavevectors of applied
fields k1,k2,k3 (black) and wavevector of generated field k4 (red). On the right is the en-
ergy conservation diagram, and the left is the momentum conservation diagram, adapted
from [2]. In the momentum conservation diagram, the angle between k1 and k4 is set, and
the two circles are mapped out by rotating k2 and k3 about the endpoints of the fixed vec-
tors. The intersections of the two circles are solutions to the momentum conservation (and
thus phase-matching condition.)

There are many different naming conventions used by authors of papers describing FWM

in atomic systems with a diamond-type structure, but we’ve chosen to use a set of conventions

adapted from [3] because the use of “pump” (p), “coupling” (c), “signal” (s), and “drive”

(d) terminology makes the code that comprises the model a bit easier to read and work with.

The energy level diagram demonstrating this naming convention is shown in Figure 2.4.

If you are familiar with cesium, you might notice that Figure 2.4 has a structure that

could be easily replicated in cesium. Figure 2.5 makes this similarity a bit more obvious

by arranging the energy levels in cesium in the diamond configuration. This is perhaps

the most clear explanation for why a four-wave mixing scheme would lend itself measuring

cesium qubits: FWM can be stimulated with an energy level structure that matches that

of a cesium qubit nearly exactly. In cesium, you can choose |1⟩ to be 6S1/2, |2⟩ as 6P3/2,

and |4⟩ to be 6P1/2, the transitions between which have frequencies that are easily accessible

using commercially-available semiconductor lasers, and are likely already present in a cesium

qubit-based quantum information system. Then, all that’s left is to choose is a |3⟩ state,

which is somewhat flexible, limited only by the energy level structure of cesium and possible

laser locking mechanisms. Two such choices for |3⟩ are the 6D3/2 level, used by [4] and shown

in Figure 2.5, which would yield an 876 nm FWM signal, and the 8S1/2 level, used by [5],

which would yield a 752 nm FWM signal when used in the diamond configuration.
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2.3. CONSTRUCTING THE FWM SYSTEM AND NOTATION

Figure 2.4: Energy level diagram featuring the naming conventions we’ll use in this thesis,
from [3]. Note that the p, c, s, d subscripts refer to the pump, coupling, signal, and drive
transitions, respectively. ωn refers to the transition frequency, Ωn is the Rabi frequency,
and ∆n is the detuning, all of the n-th transition. Γm refers to the decay rate of the m-th
state.

Figure 2.5: Example of a diamond energy level structure in cesium, where |1⟩ is the
ground state of cesium’s valence electron, |2⟩ is the 6P3/2 level we discussed above, |4⟩ is
the 6P1/2 level, which is the excited state in cesium’s D1 line, and |3⟩ is the 6D3/2 level.
The |1⟩ > |2⟩ and |1⟩ > |4⟩ transitions are all accessible using very-common semiconductor
lasers. From [4].
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2.4. DENSITY MATRIX FORMALISM

2.4 Density Matrix Formalism

In introductory quantum mechanics coursework, it’s very common to work with quantum

systems in pure states. When a quantum system is in a pure state, we know its state precisely.

It might be a basis state or a linear combination of basis states, but whichever it is, we know

its state well enough to prepare other systems in that exact same state. For example, a pure

state of a spin-1/2 particle could be |ψ⟩ = 1√
2
(| ↑⟩+ | ↓⟩) in the standard basis. In this case,

the state is well-known and if we wanted to, we could make lots of copies of this system. To

be more mathematically rigorous, a pure state can be represented by one vector in the state

space (the Hilbert space containing all the state vectors that the system could possibly be

described by). This is why both basis states and linear combinations of basis states are pure

states: by the definition of a basis, they are both contained within the state space.

Unfortunately, in most laboratory or ’real life’ settings, it is not so easy to write out the

state of the system. In this case, the state of the system is called a mixed state, and it is

not a single vector in the state space but rather an ensemble of pure states, or a set of pure

states the system could be in, along with their corresponding classical probabilities. This

ensemble can be denoted as {(|ψi⟩, pi)}, where pi is the probability that the system is in

pure state |ψi⟩. Griffiths and Schroeter describe the need to work with mixed states as a

product of our own ignorance about the system, which itself is often a result of interactions

with the environment [6]. (This type of system is called an open quantum system.) The

premise of this thesis is to model a quantum system (an atom) whose state is affected by

its environment (applied external electromagnetic fields), so establishing a mathematical

foundation for working with mixed states is essential to the development of our model.

It’s necessary to introduce ’new’ mathematics when working with mixed states because

the equations governing pure states and mixed states are not the same. Whereas the time

evolution of pure states is described by the Schrödinger equation, the time evolution of mixed

states of a closed system is governed by the Liouville-von Neumann equation (Equation 2.4).

ρ̇ = −i[H, ρ] (2.4)

The H in Equation 2.4 is a standard Hamiltonian, but ρ is something not present in the

Schrödinger equation: it’s called the density operator and it’s the foundation for the density

matrix formalism of quantum mechanics. It can be considered a probability distribution of

quantum states. The density operator is defined as follows:

ρ̂ =
∑
k

pk|ψk⟩⟨ψk| (2.5)
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2.5. THE LINDBLAD MASTER EQUATION

Once a basis is specified, the density operator is often called the density matrix whose

elements are given by

ρi,j =
∑
k

pk⟨ei|ψk⟩⟨ψk|ej⟩ (2.6)

where ei and ej are basis vectors for the chosen basis [6]. Then, the density matrix can

be constructed for some system in a mixed state. The diagonal elements in the density

matrix are called populations and the off-diagonal elements are called coherences or coherence

elements, which will be particularly useful to know for the later sections of this thesis [7].

Since the density matrix completely describes the system, we can use it and the Liouville-von

Neumann equation to determine how a closed system in a mixed state evolves with time.

2.5 The Lindblad Master Equation

The Lindblad Master Equation is a tool physicists can use to understand the evolution of

open quantum systems, which are quantum systems that are interacting with their environ-

ment. One of the most prominent examples of an open quantum system is that of an atom

undergoing decay [7]. The interactions that cause this decay can vary: it might be due to

an interaction between the atom and the surrounding vacuum state, or it might be due to

an interaction between the atom and nearby electromagnetic fields.

This section will not focus on the derivation of the Lindblad master equation (this is done

in multiple ways in [7]) but it will provide enough background to show more generally where

it comes from and to introduce some of the relevant approximations made. All solving of

the Lindblad master equation done for this thesis uses a Python library called QuTIP, which

has a Lindblad master equation-solving function called mesolve, which is detailed more

thoroughly in Chapter 3. mesolve makes some approximations that allow the Lindblad

master equation to be written as follows:

ρ̇(t) = −i[H(t), ρ(t)] +
1

2

∑
n

[
2Cnρ(t)C

†
n − ρ(t)C†

nCn − C†
nCnρ(t)

]
(2.7)

where H(t) is the system’s Hamiltonian, which for this thesis is not time-dependent, and ρ(t)

is the system’s density matrix. So, the Lindblad master equation gives the time evolution of

the density matrix and thus the time evolution of the system’s state.

You might notice that the first term in the Equation 2.7 is the right-hand side of the

Liouville-von Neumann equation introduced in Section 2.4. This is because the Liouville-

von Neumann equation describes the time-evolution of a closed quantum system in a mixed
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2.5. THE LINDBLAD MASTER EQUATION

state, but the Lindblad master equation has extra terms that factor in the effects of the

environment, the existence of which make the quantum system open. These extra terms are

included in the sum of Equation 2.7, and the new operator in the sum is called a collapse

operator. The collapse operators describe how the system and its surroundings interact and

have the form Cn =
√
γnAn, where An “are the operators through which the environment

couples to the system” and γn are their corresponding rates [8].

The QuTIP guide ([8]) notes that there are four primary approximations that must hold

for a system if it’s to be well-modeled by mesolve. The first is separability, or that the initial

state has no correlation to its surroundings. The second is the Born approximation which

requires that this separability remains throughout the entire period of evolution and that

the state of the environment does not significantly change as a result of the interaction with

the system. This second condition can be thought to be met if the environment is much

larger than the system and the interaction is weak. The third approximation is the Markov

approximation, which requires that the time scale of the environment’s decay is much shorter

than that of the system dynamics, and the fourth approximation is the secular approximation,

which requires that the fast-rotating terms in the Hamiltonian can be neglected. Each of

these approximations is appropriate to make in a trapped-atom system interacting with

external fields, so we can use QuTIP to solve the Lindblad master equation for our system.
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Chapter 3

Constructing the Model

Recall that the goal of this project is to create a model for FWM efficiency when FWM is

stimulated in a trapped-atom system. There are two approaches to modeling FWM dynam-

ics in a trapped atom that we considered throughout the development of this project, which

we’ll call the “proportionality approach” and the “explicit approach”. The proportionality

approach contains the basic relationships between FWM efficiency and system parameters,

and the explicit approach is an extension of it in the sense that it allows us to turn these

qualitative relationships into quantitative ones. Both approaches are relevant to understand-

ing how we tested our model, so it is important to understand the details and development

of each, which is what the first part of this chapter will focus on. The second half of the

chapter will go into more detail about how we developed the model in accordance with these

approaches and the tools we used to produce our results.

3.1 The Proportionality Approach

The development of our model began with this approach, inspired by [3] and [9], which

we’ve called the Proportionality Approach because it’s based on the fact that the FWM

signal intensity, IFWM , obeys the following proportionality relation:

IFWM ∝ |ρ43|2 (3.1)

where ρ43 is the 43-th element of the density matrix that describes our system in the steady

state. Conceptually, you can think of this element as telling us how ’coherent’ the FWM

process is along the |3⟩ to |4⟩ transition. If ρ43 is larger, the process is more coherent so it

will yield a greater number of photons and thus a more intense signal. If ρ43 is smaller, the

process is less coherent and cannot produce signal photons as effectively, meaning we get a
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3.2. THE EXPLICIT APPROACH

weaker signal.

Because Expression 3.1 tells us about what the signal intensity is proportional to rather

than its magnitude, it only makes sense to use it in a context where we are comparing signal

intensities from systems with different parameters. Although this is not clearly aligned

with our goal of calculating FWM efficiency, it is a useful relationship to model to provide

an educated guess about which parameters might maximize the intensity of the generated

signal, and as we’ll see later, it was a convenient starting point for testing our model.

For now, we will choose to take this proportionality relationship as a true without proving

it; we’ll show that it’s true later in Section 3.4. This organizational choice might seem

counterintuitive but I’d argue that describing the approaches in this order makes sense

because this is the point from which we started the development of the model, and it was

also the first result we tested the model against, which is detailed in Section 4.1.

3.2 The Explicit Approach

Unlike the proportionality approach, what we’ve called the ’explicit approach’ allowed us to

calculate an explicit expression for the FWM efficiency rather than some relationship in ar-

bitrary units. This approach is considerably more mathematically involved and is something

we quasi-derived rather than finding in a few papers. For now, we’ll present the expression

we derived and the derivation will be presented in Section 3.4. As such, the expression for

the FWM signal intensity we found via the Explicit Approach is as follows:

IFWM = 2π2cnϵ0 · P 2
s (3.2)

where Ps is the atomic polarization density resulting from the generation of the signal light, n

is the refractive index of the surroundings (set to 1) and k is the wavenumber. The derivation

of this will be given in Section 3.4.

Of course, Equation 3.2 is not an efficiency. To get an expression for the FWM efficiency

as desired, we defined it as

ϵFWM =
IFWM

Id
(3.3)

where IFWM is the FWM signal intensity and Id is the intensity of the drive beam, which is

most commonly used in the definition of FWM efficiency in published literature, although

one could define the efficiency using the intensity of the pump or coupling beams if that is

more convenient.

Then, Equation 3.2 substituted into Equation 3.3 yields the efficiency expression we set
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3.3. CONSTRUCTING THE PROPORTIONALITY MODEL

out to find at the beginning of the project. This model was tested against experimental

data, and the results can be found in Section 4.2.

3.3 Constructing the Proportionality Model

Up to this point, I’ve presented the approaches we used to model the FWM dynamics without

explanation or proof. In the next two sections, I’ll talk about the theoretical process used

to get our results before commenting on the tools used to perform the model’s calculations.

In this section, I’ll describe how we constructed our initial model, which was based on the

proportionality approach. Recalling Equation 3.1, it’s clear that to model the proportionality

relationship, it suffices to solve for ρ43, the 4,3-th element of the system’s density matrix when

the system is in the steady state.

The first step in developing this model was to notice that the quantum system consisting

of the trapped atom is an open system: it is very much interacting with its environment,

which we can consider to be the incident laser beams and the surrounding vacuum. Given

this, we decided to approach solving for ρ43 by solving the Lindblad master equation for the

system, setting ρ̇ = 0 to get the steady state solution, and solving for the coherence element

we’re interested in from there.

However, as we hinted in Section 2.4, finding analytical solutions to the dynamics of

mixed-state systems (and thus open systems) is extremely challenging even for two-level

systems, let alone four-level systems. So, we sought to find a method that would offer a

numerical solution to the Lindblad master equation and settled on using a Python library

called QuTIP to perform this calculation.

3.3.1 QuTIP’s mesolve Function

The QuTIP function that was essential to the development of both of our models is called

mesolve. Normally, it’s unnecessary to describe code in so much detail, but it’s useful to

understand the parameters that mesolve requires to incorporate the correct physics into the

model.

mesolve offers a numerical solution to the Lindblad master equation. For our model, we

needed to provide the function with four parameters:

1. the system’s “total” Hamiltonian, Htot

2. the initial state of the system |ψ0⟩, provided as a density matrix

3. a list of times (after t = 0) at which we want to know the state of the system
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3.3. CONSTRUCTING THE PROPORTIONALITY MODEL

4. a list of collapse operators

After calling mesolve with this set of input parameters, the program evolves the initial state

in agreement with the Lindblad master equation and the given parameters until each time

in the provided list. Once the system has evolved for some time included in parameter (3),

the program saves the state of the system at that time (its density matrix) to an array and

returns the array after the system has evolved for the longest time included in parameter

(3). So, the output of mesolve is an array of density matrices that describe the state of the

system at the times we are interested in.

Then, all that is left to do to find ρ43 is to ’take out’ that element from one of the

density matrices returned once the system is in the steady state. Next, I’ll briefly outline

how we constructed the parameters to ensure that mesolve was modeling the physics we

were interested in.

Constructing the Hamiltonian

The QuTIP guide explains that the Hamiltonian passed to mesolve should be a “total”

Hamiltonian, defined by

Htot = Hsys +Henv +Hint (3.4)

where Hsys is the Hamiltonian we would use if our atom was completely isolated (i.e. a

closed system), Henv is the Hamiltonian of the surrounding environment, and Hint is the

Hamiltonian representing the interactions between the atom and the environment [8]. So, to

construct the relevant Hamiltonian, it’s easiest to do it in parts, with each part corresponding

to a term in the sum.

Before constructing the total Hamiltonian in three parts, we first need to choose a basis

for our system, which is as follows:

|1⟩ =


1

0

0

0

 , |2⟩ =


0

1

0

0

 , |3⟩ =


0

0

1

0

 , |4⟩ =


0

0

0

1

 (3.5)

Now that the basis of the system has been established, we can continue to solve for Htot.

As we derive expressions for the various Hamiltonians, we will be treating our system as a

semiclassical one: that is, that our atom, which is a quantum system, is interacting with a

classical field. Note that none of the Hamiltonians in the following sections will include a

factor of ℏ, as these are omitted in parameters passed to QuTIP functions.
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First, solve for Hsys, which have the energy of each level along the diagonal and zeroes

everywhere else. (Refer to Figure 2.4 to recall the naming conventions used.) Then, calling

the frequency of the ground state ω1, and omitting the factor of ℏ that would be included

in ’normal’ contexts, we have

Hsys =


ω1 0 0 0

0 ω1 + ωp −∆p 0 0

0 0 ω1 + ωp − ω21 + ωc − ω23 0

0 0 0 ω1 + ωd − ω14

 (3.6)

We can choose to set ω1 to zero since it is a common offset shared by each level, and we can

simplify Equation 3.6 by substituting the definitions of the various detunings as follows:

Hsys =


0 0 0 0

0 ∆p 0 0

0 0 ∆p +∆c 0

0 0 0 ∆d

 (3.7)

Take Equation 3.7 to be the Hsys we use in the Htot expression.

Next, solve for Hint, which is considerably more involved. It’s likely easiest to think about

the construction of this operator from a more conceptual perspective. We know that Hint

describes the interaction between the environment (the incident laser beams) and the system

(the atom). For the purposes of Hamiltonian construction, we can think of the interaction

as a mechanism that drives Rabi oscillations between pairs of adjacent states. Essentially,

this is ’taking care’ of two process occurring simultaneously in the system: excitations and

decay by stimulated emission. Then, Hint only needs to describe the Rabi oscillations, which

is well-documented for two- and three-level systems in [10].

We can use the procedure for constructing Hamiltonians describing Rabi oscillations in

two- and three-level systems for constructing that of our four-level system. If we only had a

two-level system with |1⟩ and |2⟩, ignoring the phase of the laser beam and using the rotating

wave approximation (RWA), we have from [10] that

(Hsys)2 =

(
0 Ωp/2

Ω∗
p/2 ∆p

)
(3.8)

This is indicative of a pattern that holds for systems of greater size: essentially, for a Rabi

oscillation stimulated from state m to state n with m < n, the m,n-th element of Hint is

given by Ωmn/2 and the n,m-th element is Ω∗
mn/2. To construct Hint in its entirety, consider

where the Rabi oscillations can be stimulated:
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• from |1⟩ to |2⟩ and vice versa

• from |2⟩ to |3⟩ and vice versa

• from |1⟩ to |4⟩ and vice versa

So, there will be six nonzero elements in Hint. Notice that there are no Rabi oscillations

between states |3⟩ and |4⟩ because there is no incident laser whose frequency is on resonance

with the |3⟩ > |4⟩ transition. Then, for example, the 1, 4-th element of Hint must be Ωd/2

and the 4, 1-th element must be Ω∗
d/2. Putting together what we know, we have

Hint =


0 Ωp/2 0 Ωd/2

Ω∗
p/2 0 Ωc/2 0

0 Ω∗
c/2 0 0

Ω∗
d/2 0 0 0

 (3.9)

Then, the last step in forming Htot is to find Henv. If you list the processes happening in the

atomic system while we attempt to stimulate FWM, you’ll find that the atom’s valence elec-

tron is either being excited, emitting a photon by stimulated emission, or emitting a photon

by spontaneous emission. The first two processes are described by Hint, but spontaneous

emission remains to be included in the modeling. To do this, we use collapse operators,

which are described by QuTIP to be the product
√
γnAn, where An is the operator through

which the system couples to the environment and γn is the rate at which the operator ’works’

[8]. In our system, the collapse operators are responsible for unwanted decay, which is that

done via spontaneous emission.

This is just to say that the only dynamics that remain to be modeled are taken care of

by the collapse operators, which are constructed later. So, the Henv is zero because there’s

nothing ’going on’ in the environment that needs to be included in Htot, because all of the

relevant details pertaining to the environment are included in the collapse operators.

So, Htot for the trapped-atom system is simply the sum of Hint and Hsys:

Htot =


0 Ωp/2 0 Ωd/2

Ω∗
p/2 ∆p Ωc/2 0

0 Ω∗
c/2 ∆p +∆c 0

Ω∗
d/2 0 0 ∆d

 (3.10)

which is consistent with that presented by Nguyen and Tsai.
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The Initial State of the System

Since we want to model the efficiency of a FWM process that begins with an atom in the

|1⟩ state, it’s the obvious choice for the initial state parameter. Since QuTIP requires the

initial state to be a density matrix, the actual parameter passed is

|ψ0⟩ =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (3.11)

Evaluation Times

The main thing that we need to determine when constructing a list of evaluation times to

send to mesolve is when the steady state begins. There are more mathematically rigorous

ways to do this, but for the sake of time, we did this by running mesolve with parameter (3)

being a long interval containing approximately 100 evenly-spaced times. Then, we used the

results to plot ρ43 as a function of time and noted when the curve flattened out, indicating

that the system was in the steady state. Then, when we ran mesolve with the intention of

using the results for the model, we made parameter (3) a 50-item list of evaluation times,

the final of which was a time safely in the steady state. For example, if we found that the

steady state began after six seconds of evolution in my test run, we would ask mesolve to

evolve the system for ten seconds. Then we would take ρ43 from the 50th density matrix

that the function returned to ensure that the coherence element reflected the system when

it was in the steady state.

Constructing the Collapse Operators

To construct the collapse operators, note the possible spontaneous emission pathways:

• |2⟩ to |1⟩

• |3⟩ to |2⟩ OR |4⟩

• |4⟩ to |1⟩

Then, we should have four collapse operators:
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C21 =


0

√
Γ2 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , C32 =


0 0 0 0

0 0
√
Γ3 0

0 0 0 0

0 0 0 0

 ,

C34 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0
√
Γ3 0

 , C41 =


0 0 0

√
Γ4

0 0 0 0

0 0 0 0

0 0 0 0


Notice that for each collapse operator Cnm representing the decay by spontaneous emission

from the n-th level to the m-th, the only nonzero element is the mn-th. This means that

if you apply Cnm to |n⟩, the result will be |m⟩, which is consistent with what we would

expect for a spontaneous emission process. Since this mechanism is only concerned with the

populations (diagonal elements) of the density matrix, it suffices to use ket notation for the

basis elements to explain the action of the collapse operators.

As it is quite challenging to find data for decay rates along specific pathways in cesium, we

chose to define γn as Γn = 1/τn, where τn is the lifetime of the state in seconds. In addition,

it’s important to note that the Lindblad master equation is not linear in collapse operators,

which means that each operator must be considered and sent to mesolve separately rather

than in a sum similar to that of Htot.

Now that we’ve outlined how to define each mesolve parameter, modeling Expression

3.1 is extremely straightforward. To get ρ43, one needs to run mesolve with the above

parameters, then extract the 4, 3-th element from the very last density matrix produced by

the function to ensure that it’s taken from a steady-state solution. From there, it is easy to

square ρ43, and to investigate various relationships between the system parameters such as

detunings and Rabi frequencies (effectively, laser intensities) and the relative FWM signal

intensities.

This was the first model we constructed, but it was not the last– rather, we built on this

framework to construct the explicit model, which is detailed in the following section.
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3.4 Constructing the Explicit Model

As previously mentioned, the proportionality approach was insufficient for meeting our goal

of deriving an explicit expression for the FWM efficiency. So, in this section I’ll outline my

derivation of this explicit expression for FWM efficiency in a trapped atom, up to the density

matrix element, which is still solved for numerically using QuTIP.

The first step in the derivation is to derive an expression for the electric field of the

generated FWM signal, which can then by converted to an intensity to be used in an efficiency

expression. My derivation for the electric field is very similar to that done in [11], with some

adjustments made since the trapped atom system does not have a thermal distribution or a

meaningful length scale like a vapor cell.

Willis, et al. give the wave equation for an electromagnetic field propagating in an atomic

medium in the z-direction under the slowly-varying amplitude approximation as

∂zEi = 2π|k|ie−ikizPi(z) (3.12)

where Pi(z) is the polarization density in the atom generated by the i-th frequency and |ks|
is the magnitude of the electric field’s wavenumber ks, defined as 2π/λs [11]. Given that

each light source in the system that we might want to model with Equation 3.12 is either

a laser or an atom, the slowly-varying amplitude approximation is appropriate as each of

these sources have small linewidths (narrow spectra).

We want to solve for Es, the electric field of the generated signal, so the specific equation

we want to solve is

∂zEs = 2π|ks|ie−ikszPs(z). (3.13)

Before integrating to solve for Es, we should find an expression for Ps(z), the polarization

density in the atom coming from its interaction with the signal photons. [Willis] notes that

the polarization and the density matrix are related by P = N Tr(ρµ) where N is the atomic

number density and µ is the atom’s dipole moment. As we’re only interested in Ps(z), this

becomes

Ps(z) = Nµ34ρ43 (3.14)

Defining N to be the reciprocal of the atomic volume and r to be the orbital radius of the

valence electron, we have
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Ps =
3

4πr3
· µ34ρ43 (3.15)

Notice that Ps actually has no z dependence unlike in [11] where it does have z-dependence

to account for the attenuation that occurs as the beams travel through a vapor and are

absorbed by many atoms rather than just one in the trapped-atom case. The z-dependence

in the exponential is also easy to ignore once you use the electric field to calculate the

corresponding intensity, so we will not describe that in any more detail for the trapped-atom

system. Then the differential equation we want to solve becomes

∂zEs = 2π|ks|ie−ikszPs

=
3

2r3
· µ34ρ43 · |ks|ie−iksz (3.16)

Before integrating, notice that the derivative of e−iksz is included in the wave equation. Since

the exponential is the only term with z-dependence, the integral is quite nice to evaluate,

yielding

Es = − 3

2r3
· µ34ρ43 · e−iksz (3.17)

Or, in terms of the atomic polarization density:

Es = −2πe−iksz · Ps (3.18)

Of course, this result only really holds because we care more about the magnitude of the

electric field than we do about maintaining an expression for the field that reflects its ’true’

structure as a wave. If this wasn’t the case, we would have had to be more careful with

equating ks and |ks|. As a result, we have an expression for the electric field of the generated

FWM signal.

Now, we can use the expression for the resultant electric field to find an expression for

the FWM intensity that we dealt with in the proportionality approach. Recall that

I =
cnϵ0
2

· |E|2 (3.19)

where n is the index of refraction of the material [12]. Then,
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IFWM =
cnϵ0
2

· | − 2πe−iksz · Ps|2

=
cnϵ0
2

· 4π2 · P 2
s

IFWM = 2π2cnϵ0 · P 2
s (3.20)

If you substitute the expression for Ps into Equation 3.20, it is obvious that the proportion-

ality approach is a product of this derivation, rather than a completely distinct result:

IFWM = 2π2cnϵ0 ·
(

9

16π2r6
· µ2

34 · |ρ43|2
)

(3.21)

IFWM =

(
9cnϵ0
8r6

· µ2
34

)
|ρ43|2 (3.22)

Then, by Equation 3.22, the proportionality constant α for which IFWM = α · |ρ43|2 is

α =
9cnϵ0
8r6

· µ2
34 (3.23)

Now, using Equations 3.3 and 3.22, we have an expression for the FWM intensity for the

trapped-atom system:

ϵFWM =
2π2cnϵ0 · P 2

s

Id
(3.24)

Finding Equation 3.24 was the goal of the thesis, but it will also be helpful to use these

results to calculate an expression for the optical power of the FWM signal.

We have an expression for the FWM signal intensity, and we know that intensity is power

per unit area A such that

PFWM = IFWM · A (3.25)

It remains to determine A, which we’ll take to be the cross-sectional area of the generated

beam. Since there’s not a very nice way to predict what this might be, assume that the

generated beam has a waist similar to the waists of the incident beams. In this thesis, we’ll

primarily assume that each beam has the same waist of 1 mm; in other situations a more

complex approach to this problem might be required.
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Then, A = πw2
0 where w0 is the beam waist, and

PFWM = IFWM · πw2
0

(3.26)

=

(
9cnϵ0
8r6

· µ2
34

)
|ρ43|2 · πw2

0

(3.27)

PFWM =

(
9cnπϵ0
8r6

· µ2
34 · w2

0

)
|ρ43|2 (3.28)

Now, we have an expression for the intensity and the optical power of the generated FWM

signal.
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Chapter 4

Verifying the Model

After developing the model, we wanted to verify that it produced results we would expect.

This proved quite challenging as we don’t have experimental results of our own to use for

verification, and I don’t have the intuition necessary to predict the exact dynamics I would

expect to see given a set of input parameters. So, we verified the model by comparing it to

results from Nguyen and Tsai ([3]) and Willis et al. ([11]), which we’ll call verification by

qualitative methods and verification by quantitative methods, respectively.

4.1 Verification with Qualitative Methods

The most logical place to begin to verify the model seemed to be with the results from

Nguyen and Tsai, who sought to model FWM dynamics for single, stationary atoms using

what I’ve called the proportionality approach. I chose to start here because Nguyen and

Tsai’s paper included a wide selection of plots to recreate and their system was very similar

to the one we want to model. It was also convenient to test the qualitative model first as it

was less-rigourous and would more easily give us an idea of whether our approach was worth

continuing to use.

There were three sets of plots from [3] that we wanted to replicate to verify our model: (1)

FWM intensity as a function of pump or coupling detuning, (2) FWM intensity as a function

of coupling and driving Rabi frequencies and pump detuning, and (3) FWM intensity as a

function of pump detuning and equal coupling and driving Rabi frequencies, which we will

call Sets 1, 2, and 3 moving forward.
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4.1.1 Verification of Set 1

Set 1 consists of two plots, the first of which is a plot of FWM signal intensity as a function

of the detuning of the coupling beam (∆c), and the second of which is a plot of the signal

intensity as a function of the pump beam’s detuning (∆p). Recall that in this model, the

FWM intensity is proportional to the square of the 4, 3-th coherence element, ρ43, in the

steady state.

I figure that it will be easiest to show that our model’s results are consistent with Nguyen

and Tsai’s by first presenting the published plots, then showing our own. So, Figure 4.1

shows Nguyen and Tsai’s plots from Set 1, using the system parameters outlined in Table

4.1. Notice that when the coupling frequency is scanned, two peaks form at ±14 · 2π MHz,

and when the pump frequency is scanned, four peaks form at approximately ±14 · 2π MHz

and ±26 · 2π MHz, with dips at ±20 · 2π MHz.

Parameter Value of Parameter for (a),
in 2π MHz

Value of Parameter for (b),
in 2π MHz

∆p 0 varied
∆c varied 0
∆d 0 0
Ωp 20 0.01
Ωc 0.01 15
Ωd 20 40
Γ2 6.1 6.1
Γ3 0.66 0.66
Γ4 5.7 5.7

Table 4.1: System parameters used by [3] to plot Figure 4.1, which we used to verify our
model.

Figures 4.2 and 4.3 show the plots our model produced using the same parameters as [3]

shown in Table 4.1.
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Figure 4.1: As Figures 2(a) and 2(b) from [3], these are the published plots of FWM signal
intensity as a function of (a) coupling frequency detuning and (b) pump frequency detun-
ing that we used to compare our model to. To see the relevant system parameters, see Ta-
ble 4.1.

Figure 4.2: FWM signal intensity as a function of coupling beam detuning ∆c produced by

our model when given the system parameters shown in Table 4.1.
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Figure 4.3: FWM signal intensity as a function of pump beam detuning ∆p produced by

our model when given the system parameters shown in Table 4.1.

It is clear that the plots from both Nguyen and Tsai (Figure 4.1) and our model (Figures

4.2, 4.3) have the same general shapes, but upon further inspection, it is also evident that the

prominent peaks and dips occur at the same values of ∆c and ∆p. In addition, the relative

amplitudes of the features are consistent between the results from our model and those from

Nguyen and Tsai. This was the first published result we replicated with our model, which

gave us hope that the model was demonstrating the dynamics we’d expect.

4.1.2 Verification of Set 2

Set 2 consists of four plots, each of which plot the FWM signal intensity against ∆p/Γ2,

the ratio between the pump beam detuning and the decay rate of |2⟩. For each plot, the

Rabi frequency of the coupling beam Ωc is fixed at a given value that differs between plots,

and the Rabi frequency of the driving beam Ωd is set to various half-integer multiples of

Γ2, producing the results shown in Figure 4.4, which use the system parameters outlined in

Table 4.2.

For comparison, the results our model produced using the same system parameters (Table

4.2) are shown in Figures 4.5, 4.6, 4.7, and 4.8, which correspond to (a), (b), (c), and (d) in

Figure 4.4, respectively.

Oncemore, there is good agreement between the published results (Figure 4.4) and the
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Figure 4.4: As Figures 4(a) through 4(d) from [3], these are the published plots of FWM
signal intensity as a function of ∆p/Γ2. For each plot (a)-(d), Ωc is fixed and noted in the
upper right of the frame, and each curve corresponds to that generated by the system with
a given Ωd, given in the legend on the right of the frame. To see the relevant system pa-
rameters, see Table 4.2.
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Figure 4.5: Plot of FWM signal intensity against ∆p/Γ2 with Ωc = 0.5Γ2 and Ωd shown in
the legend on the right, produced by our model. This corresponds to (a) in Figure 4.4. To
see all relevant system parameters, see Table 4.2.

Figure 4.6: Plot of FWM signal intensity against ∆p/Γ2 with Ωc = Γ2 and Ωd shown in the
legend on the right, produced by our model. This corresponds to (b) in Figure 4.4. To see
all relevant system parameters, see Table 4.2.
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Figure 4.7: Plot of FWM signal intensity against ∆p/Γ2 with Ωc = 4Γ2 and Ωd shown in
the legend on the right, produced by our model. This corresponds to (c) in Figure 4.4. To
see all relevant system parameters, see Table 4.2.

Figure 4.8: Plot of FWM signal intensity against ∆p/Γ2 with Ωc = 6Γ2 and Ωd shown in
the legend on the right, produced by our model. This corresponds to (d) in Figure 4.4. To
see all relevant system parameters, see Table 4.2.
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Parameter Value of Param-
eter for (a), in
2π MHz

Value of Param-
eter for (b), in
2π MHz

Value of Param-
eter for (c), in
2π MHz

Value of Param-
eter for (d), in
2π MHz

∆p varied varied varied varied
∆c 0 0 0 0
∆d 0 0 0 0
Ωp 0.01Γ2 0.01Γ2 0.01Γ2 0.01Γ2

Ωc 0.5Γ2 Γ2 4Γ2 6Γ2

Ωd see legends see legends see legends see legends
Γ2 6.1 6.1 6.1 6.1
Γ3 0.61 0.61 0.61 0.61
Γ4 6.1 6.1 6.1 6.1

Table 4.2: System parameters used by [3] to plot Figure 4.4, which we used to verify our
model.

results produced by our model (Figures 4.5-4.8) for the same system parameters. Most

notably, the relative amplitudes of the peaks in each plot are consistent between the published

plots and those produced by our model. Additionally, the peaks appear at the same values

of ∆p/Γ2 in the published plots and our model’s plots.

This test was particularly important for understanding our model because of how the

features look at ∆p/Γ2 = 0: it’s easy to notice that the nice, sharp peaks seen at this

location in Figure 4.4 are not present in any of the plots generated by the model. There’s a

simple explanation for this. Since ∆c = ∆d = 0, the addition of the ∆p = 0 condition that’s

implied by ∆p/Γ2 = 0 sets each detuning in the system to 0. When this is the case, the

mesolve function in QuTIP that serves as the foundation of our model struggles to perform

the required numerical integration. When the detunings are all zero, the compiler will time

out even when we maximize the “options”, which is how we can communicate to mesolve

how to most efficiently perform its numerical integration.

Although the model struggles when all detunings are zero, we decided not to be too

concerned about this for two reasons: first, there will almost never be a scenario in which we

want to model the system dynamics when all detunings are zero and second, the rest of the

model-generated plots are in very strong agreement with the published plots from Nguyen

and Tsai in both location and relative amplitudes of the peaks. So, we considered our results

from this section to be a second verification of our model.
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4.1.3 Verification of Set 3

Set 3 consists of two plots which are very similar to those in Set 2, except the pump and

coupling Rabi frequencies are set equal to each other. In other words, the plots in Set 3

illustrate the relationship between the FWM signal intensity and ∆p/Γ2 for various values

of Ωp and Ωc. The results published by [Nguyen and Tsai] demonstrating this relationship

are in Figure 4.9, with relevant system parameters listed in Table 4.3.

Parameter Value of Parameter for (a),
in 2π MHz

Value of Parameter for (b),
in 2π MHz

∆p varied varied
∆c 0 0
∆d 0 0
Ωp 0.01Γ2 0.01Γ2

Ωc Ωd Ωd

Ωd see legends see legends
Γ2 6.1 6.1
Γ3 0.61 4.9
Γ4 6.1 6.1

Table 4.3: System parameters used by [3] to plot Figure 4.9, which we used to verify our
model.

Figure 4.9: As Figures 5(a) and 5(b) from [3], these are the published plots of FWM signal

intensity as a function of ∆p/Γ2. For each plot, Ωc = Ωd, and each curve corresponds to

that generated by the system with a given value of these detunings, shown in the legend

on the right of the frame. To see the relevant system parameters, see Table 4.3.

For comparison, the plots generated by our model using the same system parameters

(Table 4.3) are shown in Figures 4.10 and 4.11. Oncemore, we see very strong agreement
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Figure 4.10: Plot of FWM signal intensity against ∆p/Γ2 with Ωc = Ωd shown in the leg-
end on the right, produced by our model. This corresponds to (a) in Figure 4.9. To see all
relevant system parameters, see Table 4.3.

between the published and model-generated results, both in terms of where the peaks are

located and their relative amplitudes. Similar to the model-generated plots in Set 2, the

peaks at ∆p/Γ2 = 0 are not nicely rounded as they are in Nguyen and Tsai’s results, but

this is not concerning and again serves as a reminder that the model works best for systems

with significant detuning of at least one frequency.

4.1.4 Comments on these Results

In general, we found the results from these tests to be a meaningful first step in the verifica-

tion of our model, especially considering that the only points where there was a significant

discrepancy between the model’s results and those published by Nguyen and Tsai occurred

at ∆p/Γ2 = 0. However, because these plots can only tell us about the FWM signal intensity

in terms of arbitrary units, more testing was needed to ensure that the model produced the

quantitative results we’d expect.
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Figure 4.11: Plot of FWM signal intensity against ∆p/Γ2 with Ωc = Ωd shown in the leg-
end on the right, produced by our model. This corresponds to (a) in Figure 4.9. To see all
relevant system parameters, see Table 4.3.

4.2 Verification with Quantitative Methods

The agreement of our model and Nguyen and Tsai’s plots reassured us that the model was

at least somewhat correct, but the confidence we could have in it based on these results

alone was quite limited. This is mainly because the proportionality approach can only tell

us about the FWM process up to arbitrary units. In other words, it allows us to see the

relative magnitudes of the FWM signals as functions of different parameters, but it doesn’t

tell us anything too meaningful about the actual magnitudes that we’re dealing with, which

is not very helpful when the goal of the project was to calculate the FWM efficiency of a

hypothetical system. So, we decided that the next logical step was to verify that the model’s

explicit efficiencies were consistent with those found via experiment, focusing primarily on

confirming that the two sets of results would have the same order of magnitude.

Since we don’t have experimental data of our own, we needed to find published results to

use for our verification process. Unfortunately, there is very little data available for FWM

stimulated in stationary trapped atoms, but there is a wide variety of experimental data

available for FWM stimulated in warm atomic vapors [4, 5, 11]. Since we had used [11] to

guide the construction of the model, we used its experimental results in a Rb-85 vapor to

verify the model because we were particularly familiar with the system. We decided that
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this data would be appropriate to use for verification, so long as we could find a way to

“convert” the single-atom results to vapor cell results and vice-versa.

4.2.1 Experimental Results Used

To verify our model, we used the data from Figure 5 in [11], which plots the generated signal

power against the power of the drive beam. Defining the FWM efficiency as

ϵFWM =
Psignal

Pdrive

(4.1)

we can take the efficiency to be the slope of the plotted lines. Taking points from Willis et

al.’s Figure 5, we have the following data points we can use to compare to our model:

Pump Power (mW) Drive Power (µW) Signal Power (nW) FWM Efficiency

115 200 20 0.00010
50 1000 48 0.000048
15 1000 24 0.000024

Table 4.4: Experimental data from [Willis] used for model verification

There is a good amount of uncertainty in the Table 4.4 data because the intervals on the

x- and y-axes of Willis’ et al.’s Figure 5 are quite large with no intermediate markings to

guide my estimations. Rather, the only tool to help me with that was a ruler. Despite this,

we were content with using this data for our testing because our goal was to get the results

from the model to agree with the published results within an order of magnitude, which is

much larger than any potential uncertainty introduced by my limited estimations.

In addition to the pump and drive powers listed in Table 4.4, we used the following

additional parameters from [11]:

• coupling power: 5 mW

• pump detuning: -1.5 GHz; coupling and drive beams on resonance

• beam waists: 1 mm for all beams

• FWHM of the atoms’ velocity distribution: 2 m/s

• temperature of vapor: 100◦ C −→ T = 373 K

• beam geometry shown in Figure 4.12
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Unfortunately, Willis et al. did not specify the detunings of the coupling and drive beams, so

we set these to zero while testing our model. This is also a very likely source of uncertainty,

but since our success criteria were so generous, we decided to postpone any concerns about

this unless the results produced by the model didn’t agree with the published ones.

Figure 4.12: The beam geometry used in [11], which is relevant for calculating the volume
of beam intersection using our model. Note that θ1 = 2◦, θ2 = 0.7◦, θ3 = 2.7◦.

4.2.2 Converting Vapor Results to Single-Atom Results

As you might expect, results for FWM in a vapor cell and for trapped atoms or ions are not

immediately comparable due to their differing velocity distributions. To account for this, we

performed the following procedure.

First, we needed to determine the volume of the intersection of the beams in Willis et

al.’s setup, which is required to determine in how many atoms FWM could potentially be

stimulated, temporarily ignoring the velocity distribution. We modeled the volume enclosed

by the intersection of the 1/e2 radii of the beams with a simple numerical integration script,

which calculated the volume of intersection to be V = 88.4 · 10−9m3.

From here, it’s necessary to determine how many atoms are contained in this intersection

volume, which we’ll call ntot. Approximate the Rb-85 vapor to be an ideal gas, which is

appropriate since the vapor pressure is quite low: the vapor pressure of Rb-85 at 100◦ C is

P = 266.6 · 10−4 Pa. Then,

PV = ntotkBT

ntot =
PV

kBT

= 4.58 · 1011
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Due to Doppler shifting, only a fraction of the ntot atoms in the volume of beam intersec-

tion will be able to participate in FWM. So, the next step is to calculate what that fraction

is, which we’ll call fpart. To do this, integrate the one-dimensional velocity distribution as

we did in Equation 4.2. Notice that the limits of integration are −1 and 1, which we can

find from centering the integral at 0, where the atoms are ’seen’ as stationary by the incident

beams, and integrating over the FWHM of the velocity distribution, which is 2 m/s.

fpart =
mRb

kBT
√
2π

∫ 1 m/s

−1 m/s

exp

(
mRbv

2

2kBT

)
dv (4.2)

= 0.00002

Then, the number of atoms participating in the process npart is given by

npart = fpart · ntot

= 1.0 · 107

So, of the ntot atoms in Willis, et al.’s Rb-85 vapor, only 107 are actually contributing

to the FWM process. It follows that to convert our model’s results, which are for single

atoms, to Willis et al.’s for verification, we need to multiply the model’s efficiency by 107 to

appropriately scale to the number of participating atoms in the vapor.

4.2.3 Verifcation Using the Vapor Cell Results

Now that we know how to account for the relevant differences between the vapor cell and

single-atom systems, we are ready to compare the model’s efficiencies to Willis’ experimental

results. Table 4.5 shows the experimentally-determined FWM efficiencies from [11] juxta-

posed with the results from our calculator.

Notice that with 115 mW of pump power, the experimental and calculated FWM effi-

ciencies are in satisfactory agreement with each other. When 50 mW pump power is used,

the experimental efficiency is 3
2
times as large as the efficiency calculated by the model. The

case with least agreement between experimental and calculated FWM efficiencies is that

with 15 mW of pump power, in which the experimental FWM efficiency is 3 times larger

than the FWM efficiency calculated by the model. I can think of circumstances in which this

degree of disagreement would be concerning, however the main goal of this brief testing was

to confirm that the model could agree with experimental data within an order of magnitude.
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Pump Power (mW) Experimental FWM Effi-
ciency from [11]

FWM Efficiency from our
model

115 0.00010 0.00010
50 0.000048 0.000032
15 0.000024 0.000008

Table 4.5: Experimental FWM Efficiencies from [11] compared to the FWM Efficiencies
calculated by our model with the same parameters. Recall that to compare the efficiencies,
the single-atom result from the calculator was multiplied by npart = 107 to account for the
fact that the published results involve 107 times as many participating atoms.

Since the largest factor of disagreement we found is 3, which is significantly lower than 10,

we determined that the goal of the test was met, and we believe with a good amount of

confidence that the model can accurately demonstrate both qualitative and quantitative re-

lationships between system parameters such as laser detunings and laser powers and FWM

efficiency.

4.3 Summary

We’ve verified our model using two methods, one for the proportionality approach and one

for the explicit approach. There was strong agreement between the calculator and the results

from [3] and satisfactory agreement between the model’s results and those from [11], which

we believe are sufficient to feel confident in the model’s accuracy.
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Chapter 5

Application to a Cesium System

In this section, I will present a brief application of the model to a trapped-cesium system

and comment on how we might be able to most efficiently use it to determine if FWM-based

measurement is viable.

5.1 Cesium System Modeled

The cesium system this section will model is a diamond-level structure where |1⟩, |2⟩, and
|4⟩ are chosen as described in Section 2.3 and |3⟩ is chosen to be the 8S1/2 level such that

the signal photon has a 752 nm wavelength.

Then, the laser wavelengths required are 852, 895, and 795 nm, the last of which is

somewhat challenging to lock to the |2⟩ > |3⟩ transition, but is possible using double-

resonance optical pumping spectroscopy (DROP) techniques. The generated 752 nm signal

is easily-filterable from the rest of these wavelengths, so this choice of system will work for the

FWM measurement scheme, assuming that the efficiency is satisfactory, which we’ll check

in the following sections.

5.2 System Parameters

The cesium system we’re modeling in this section is rather arbitrary in the sense that it’s

not based on a preexisting set of available hardware. As such, we don’t have any system

parameters to ’start’ with, such as maximum laser powers or beam waists, and instead we

are allowed the flexibility of choosing a setup. So, to make things a bit easier, we’ll be using

some of the system parameters from [11], such as the beam sizes and laser powers, but we’ll

apply these to a cesium atom rather than the rubidium-85 we used while verifying the model
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in Chapter 4. It’s very likely that this is not an ideal setup and that in future work with the

model, the setup should be chosen differently.

The system parameters held constant for each test are in Table 5.1.

Parameter Value of Parameter
for Test 1

Value of Parameter
for Test 2

Value of Parameter
for Test 3

∆d 0 MHz 0 MHz 0 MHz
Pump Power 115 mW 50 mW 15 mW
Coupling Power 5 mW 5 mW 5 mW
Drive Power 200 µW 1000 µW 1000 µW
Γ2 32.8 · 2π MHz 32.8 · 2π MHz 32.8 · 2π MHz
Γ3 11.1 · 2π MHz 11.1 · 2π MHz 11.1 · 2π MHz
Γ4 28.7 · 2π MHz 28.7 · 2π MHz 28.7 · 2π MHz
Beam Waists 0.001 m 0.001 m 0.001 m

Table 5.1: System parameters used to model our cesium system, with relevant laser powers
taken from [11].

5.3 Results

In this section, we’ll show the results of three tests, named Tests 1-3, mimicking the structure

from Chapter 4: first, we’ll plot the optical power of the FWM signal as a function of the

coupling detuning to see for which values the FWM signal is maximized. Then, we’ll set

the coupling detuning to one of these values and repeat the process for the pump detuning,

oncemore taking the value where the power of the FWM signal is maximized to create a

pair of coupling and pump detunings that might yield a near-maximal FWM signal. Then,

we’ll calculate the FWM signal power for these chosen parameters just to see what kinds of

generated powers are possible.

It’s important to note that this optimization strategy is not ideal for a few reasons. First,

assuming that optimal FWM results can be generated with the drive beam on-resonance

is more for convenience than rooted in physics. Second, it would be best to attempt to

optimize the output power of the FWM signal by adjusting the detunings simultaneously

rather than separately, as we’ll do in this section. Even if the detunings can be simultaneously

optimized, the laser powers also require optimization, which adds to the complexity of the

problem. Attempting to do a simultaneous parameter optimization with the current state

of the model’s code would be extremely computationally- and time-intensive. Developing an

efficient optimization algorithm is likely a necessity for this model to be as useful as possible
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but it is outside the scope of this thesis.

5.3.1 Test 1.

For this test, the pump power is 115 mW, the coupling power is 5 mW, and the drive power

is 200 µW, which are parameters from [11].

Figure 5.1 plots of the FWM signal intensity in W against the coupling detuning ∆c for

the Test 1 parameters. From this plot, we can see that when ∆p = ∆d = 0, the FWM signal

intensity is greatest when ∆c ≈ ±100 ·2π MHz. Fixing ∆c to 100 ·2π MHz, the plot of FWM

power while scanning the pump detuning ∆p is shown in Figure 5.2. Although in Figure 5.1

there are maxima at both ∆c = 100 · 2π MHz and ∆c = −100 · 2π MHz, flipping the sign on

the detuning only reflects the FWM power vs. ∆p curve across ∆p = 0, so we will focus on

making one plot with the positive ∆c fixed.

Figure 5.1: Plot of FWM signal power in W against the coupling detuning ∆c with ∆d =

∆p = 0 and other Test 1 parameters in Table 5.1.
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Figure 5.2: Plot of FWM signal power in W against the pump detuning ∆p with ∆d = 0,

∆c = 100 · 2π MHz, and other Test 1 parameters in Table 5.1.

In Figure 5.2, it’s clear that the FWM signal power is maximized when ∆p ≈ −50 · 2π
MHz, which we will fix for the next tests. We’ll calculate the FWM efficiency and signal

powers for a few sets of parameters with ∆c = 100 · 2π MHz and ∆p = −50 · 2π MHz, shown

in Table 5.2. The efficiencies and output powers are in Table 5.3.

Parameter Value of Parameter
for Test 1.1

Value of Parameter
for Test 1.2

Value of Parameter
for Test 1.3

∆p −50 · 2π MHz −50 · 2π MHz −50 · 2π MHz
∆c 100 · 2π MHz 100 · 2π MHz 100 · 2π MHz
∆d 0 MHz 0 MHz 0 MHz
Pump Power 115 mW 11.5 mW 1150 mW
Coupling Power 5 mW 0.5 mW 50 mW
Drive Power 200 µW 20 µW 2000 µW

Table 5.2: System parameters used to calculate FWM efficiencies and output powers, in-
spired by the parameters and results from Figures 5.1 and 5.2. The decay rates and beam
waists are the same as in Table 5.1.
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Result Result for Test 1.1 Result for Test 1.2 Result for Test 1.3

FWM efficiency 2.3 · 10−16 9.3 · 10−17 8.2 · 10−19

FWM signal
power

4.6 · 10−14 W 1.9 · 10−15 W 1.6 · 10−15 W

Table 5.3: FWM efficiencies and output powers, calculated using the system parameters
from Table 5.2.

5.3.2 Test 2.

For this test, the pump power is 50 mW, the coupling power is 5 mW, and the drive power

is 1000 µW, which are parameters from [11].

Figure 5.3 plots of the FWM signal intensity in W against the coupling detuning ∆c for

the Test 2 parameters. From this plot, we can see that when ∆p = ∆d = 0, the FWM signal

intensity is greatest when ∆c ≈ ±55 · 2π MHz. Fixing ∆c to 55 · 2π MHz, the plot of FWM

power while scanning the pump detuning ∆p is shown in Figure 5.4.

Figure 5.3: Plot of FWM signal power in W against the coupling detuning ∆c with ∆d =

∆p = 0 and other Test 2 parameters in Table 5.1.
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Figure 5.4: Plot of FWM signal power in W against the pump detuning ∆p with ∆d = 0,

∆c = 55 · 2π MHz, and other Test 3 parameters in Table 5.1.

In Figure 5.4, it’s clear that the FWM signal power is maximized when ∆p ≈ −50 · 2π
MHz, which we will fix for the next tests. Next, we’ll calculate the FWM efficiency and

signal powers for a few sets of parameters with ∆c = 55 · 2π MHz and ∆p = −50 · 2π MHz,

shown in Table 5.4. The efficiencies and output powers are in Table 5.5.

Parameter Value of Parameter
for Test 2.1

Value of Parameter
for Test 2.2

Value of Parameter
for Test 2.3

∆p −50 · 2π MHz −50 · 2π MHz −50 · 2π MHz
∆c 55 · 2π MHz 55 · 2π MHz 55 · 2π MHz
∆d 0 MHz 0 MHz 0 MHz
Pump Power 50 mW 5 mW 500 mW
Coupling Power 5 mW 0.5 mW 50 mW
Drive Power 1000 µW 100 µW 10000 µW

Table 5.4: System parameters used to calculate FWM efficiencies and output powers, in-
spired by the parameters and results from Figures 5.3 and 5.4. The decay rates and beam
waists are the same as in Table 5.1.
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Result Result for Test 2.1 Result for Test 2.2 Result for Test 2.3

FWM efficiency 4.1 · 10−16 8.7 · 10−16 6.7 · 10−18

FWM signal
power

4.1 · 10−13 W 8.7 · 10−14 W 6.7 · 10−14 W

Table 5.5: FWM efficiencies and output powers, calculated using the system parameters
from Table 5.4.

5.3.3 Test 3.

For this test, the pump power is 15 mW, the coupling power is 5 mW, and the drive power

is 1000 µW, which are parameters from [11].

Figure 5.5 plots of the FWM signal intensity in W against the coupling detuning ∆c for

the Test 3 parameters. From this plot, we can see that when ∆p = ∆d = 0, the FWM signal

intensity is greatest when ∆c ≈ ±25 MHz. Fixing ∆c to 25 MHz, the plot of FWM power

while scanning the pump detuning ∆p is shown in Figure 5.6.

Figure 5.5: Plot of FWM signal power in W against the coupling detuning ∆c with ∆d =

∆p = 0 and other Test 3 parameters in Table 5.1.
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Figure 5.6: Plot of FWM signal power in W against the pump detuning ∆p with ∆d = 0,

∆c = 25 MHz, and other Test 3 parameters in Table 5.1.

In Figure 5.6, it’s clear that the FWM signal power is maximized when ∆p ≈ −25 · 2π
MHz, which we will fix for the next tests. We’ll calculate the FWM efficiency and signal

powers for a few sets of parameters with ∆c = 25 · 2π MHz and ∆p = −25 · 2π MHz, shown

in Table 5.2. The efficiencies and output powers are in Table 5.3.

Parameter Value of Parameter
for Test 3.1

Value of Parameter
for Test 3.2

Value of Parameter
for Test 3.3

∆p −25 · 2π MHz −25 · 2π MHz −25 · 2π MHz
∆c 25 · 2π MHz 25 · 2π MHz 25 · 2π MHz
∆d 0 MHz 0 MHz 0 MHz
Pump Power 15 mW 1.5 mW 150 mW
Coupling Power 5 mW 0.5 mW 50 mW
Drive Power 1000 µW 100 µW 10000 µW

Table 5.6: System parameters used to calculate FWM efficiencies and output powers, in-
spired by the parameters and results from Figures 5.5 and 5.6. The decay rates and beam
waists are the same as in Table 5.1.
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Result Result for Test 3.1 Result for Test 3.2 Result for Test 3.3

FWM efficiency 1.2 · 10−15 8.6 · 10−16 3.5 · 10−17

FWM signal
power

1.15 · 10−12 W 8.6 · 10−14 W 3.5 · 10−13 W

Table 5.7: FWM efficiencies and output powers, calculated using the system parameters
from Table 5.6.

5.4 Comments

There are two overarching themes shared by the results of each test above that stand out

the most: the first is that the generated signal power is very low, even for somewhat-high

input laser powers such as in Tests 2.3 and 3.3. The generated signal powers the model

calculated for single-atom FWM range from picowatts to femtowatts. These are extremely-

low powers and are likely unusable with even the most cutting-edge photodetector or camera

technologies. This is not a conclusion that FWM-based measurement wouldn’t work, as the

results could be poor because the parameters used for the tests were completely different

than those that would produce a more satisfactory signal. This leads to the next stand-out

theme, which is that these tests prove that a much more sophisticated testing protocol is

required to truly optimize the FWM-based measurement scheme. It’s also possible that

the test system we made up would not produce good results even when the parameters are

optimized, but a slightly-different system would, which is another area for study that we’ll

discuss briefly later.

To summarize the tests performed above, we first optimized FWM output power as

a function of ∆c with the pump and drive beams on-resonance, then fixed ∆c where the

maximum occurred. Next, with the drive beam on resonance and the coupling beam detuned

by ∆c, we did the same optimization procedure but with the independent variable being

∆p. The ∆p at which the maximum occurred became the value ∆p was fixed at for the

“quantitative” tests, which calculated the FWM efficiency and signal power with the chosen

detunings and three sets of powers: those from the Chapter 4 testing, those larger than the

Chapter 4 values by a factor of 10, and those smaller than the Chapter 4 values by a factor

of 10.

From looking at the results shown up to this point, it’s challenging to deduce a rela-

tionship between the system parameters and the FWM signal power, which implies that

independently optimizing one parameter at a time and choosing some far-apart laser powers

is not an efficient way to make conclusions about the viability of a FWM-based measurement

scheme, as we hinted might be the case at the beginning of this chapter.
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Instead, truly optimizing the FWM signal power would require some sort of algorithm

that can systematically choose parameters and evaluate their effects quickly, which the cur-

rent model is not able to do. This is especially complicated by the fact that QuTIP cannot

produce a continuous map of ρ43, but only a discrete one. Despite this, it’s likely possible

to design some algorithm to perform this task well so we can make useful conclusions about

the viability of this measurement scheme.
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Chapter 6

Next Steps

The previous chapter effectively demonstrated the limits of our current model, so this section

will outline some next steps that can be taken to improve the model’s utility and to further

explore FWM-based measurement schemes in more depth.

Modeling a ’Real’ System

Something that made the tests in Chapter 5 significantly more challenging was that we did

them without a specific physical system in mind. In other words, we didn’t have much

knowledge about the limitations that were put on our model by the lasers we wanted to use,

etc. Instead, we just used parameters from [11], which didn’t give us enough information

about the lasers’ maximum powers or how far they could be reliably detuned, or even how

well we could manipulate the beam to improve the intensities used in the calculations. If the

tests from Chapter 5 were re-done using a specific collection of lasers, we would have some

guidance in terms of how ’far’ we can change each parameter to get a useful conclusion from

the model for a particular system.

One of the most obvious places to start with modeling a ’real system’ is to switch to mod-

eling a system with beam waists more similar to those used in true trapped-atom quantum

information systems. One of the most glaring discrepancies between the test system from

Chapter 5 and a ’real-life’ trapped-atom qubit system is that a trapped-atom quantum com-

puter will likely have beam waists on the order of a micron. Since the model relies heavily

on intensity values (which are inversely proportional to the area spanned by the beam) to

produce its results, reducing the beam waists by a factor of 103 should significantly impact

the results the model returns.
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Writing an Optimization Algorithm

As mentioned in the previous chapter, it’s extremely difficult to make conclusions about the

viability of a FWM-based measurement scheme without a systematic, efficient optimization

algorithm that can determine which system parameters, if any, can yield a workable signal.

This is likely the best place to start to improve the model but it’s also the most challenging

improvement to attempt since a poorly-written algorithm would take an exceptionally long

time to compile. Factoring the system limitations described in the first suggestion into the

algorithm would likely decrease its compile time, so these first two suggestions go hand-in-

hand if you want to pursue the algorithmic approach to making conclusions about FWM-

based readout schemes.

Making the Model More Physically Robust

This physics of this model are quite simplified. The cesium energy level diagrams shown in

Chapter 2 indicate that the four-level system we’ve chosen to model in cesium doesn’t really

exist: rather, each of the levels in the system has hyperfine splittings, which could cause

experiment to stray from the model. One of the most significant issues with this four-level

approximation is that it cannot model what might happen if the system suffers a decoherence

event where the electron doesn’t decay to the state that the model assumes it would. For

example, if we tune the lasers to address the |1⟩ qubit state and set up the model to match,

it’s possible that throughout the process the electron decays to the |0⟩ state, which is not

included in the model as it assumes that the system has only four levels. In this case, the

physical system would act entirely differently than what the model predicted: in experiment,

the electron would be “lost”, unable to be addressed by the lasers, but in the model, it would

continue to participate in the FWM process. In this scenario, the model wouldn’t give us a

very clear idea about how well a FWM-based measurement scheme would work in practice.

So, it’s likely a good idea to make the model more physically accurate by incorporating

the hyperfine sublevels and the possible decay paths associated with their inclusion in order

to better plan for and model these decoherence events and more accurately describe the

dynamics of the system.

Marissa McMaster 57



Chapter 7

Conclusion

This thesis sought to model the dynamics of a trapped atom involved in a FWM process,

which could be used to determine if a FWM-based measurement scheme for trapped-atom

qubits is viable. To work towards this goal, we derived expressions for the efficiency of the

FWM process stimulated in an atom and the optical power of the generated signal, which

were in satisfactory agreement with published results when tested against them. In addition

to the generated expressions, we produced a model of the quantum dynamics of the relevant

four-level system, which can give us even more insight into the FWM process such as how

scanning various parameters affects its efficiency. The results produced by this model also

have satisfactory agreement with published results, further increasing our confidence in our

work.

The model and derived expressions offer a place to start to work towards making a con-

clusion about the viability of a FWM-based measurement scheme for trapped-atom qubits.

It’s important to recognize that without modeling a real hardware system and without doing

more robust parameter optimization that that we are not in a good position to comment on

the viability of FWM as a measurement scheme.

To work towards a model that can help to make a real decision on the viability of a FWM-

based readout scheme, one can write the aforementioned efficient optimization algorithm,

make the model more physically accurate, and test it with respect to an actual set of hardware

components, which allows for the placement of limits on system parameters such as laser

powers. Despite these opportunities for improvement, we’re confident that this model is the

first step towards a thorough analysis of this proposal for an alternative to measurement by

resonance-fluorescence.
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