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Hidden Erdös-Rényi Graphs in Stochastic Block Model Networks

Wenhao Wang

Abstract

In this thesis, we use a new probabilistic and statistical methodology to estimate the fraction of
spurious edges in a Stochastic Block model (SBM). By spurious we mean unstructured connections
between nodes in the network, which we attribute as coming from an Erdös-Rényi random graph model.
We define the “hidden weight” of a SBM as the largest expected fraction of placed or missing edges that
can be attributed to an Erdös-Rényi model. We characterize explicitly and asymptotically this weight in
terms of the parameters defining the SBM, and test our results with simulations.
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1 Introduction

Detecting clusters in a graph is a fundamental problem in physics, biology and computer science because they
can reveal underlying structures in complex networks [1]. Cluster detection aims to group similar objects (in
a network) from objects (in the same network) with different characteristics. The grand challenge in cluster
detection is to infer those groups without knowing the characteristics that define them.
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Cluster detection can be used in some real networks, such as social networks [2], improving recommendation
systems [3] and biological networks [4]. It is also crucial in image analysis [5] and bioinformatics [6]. In
this thesis, we use the Erdös-Rényi model (ER) and Stochastic Block model (SBM) to better understand the
underlying structure of random networks.

The Erdös-Rényi (ER) model was first introduced by the Hungarian mathematicians Paul Erdős and Alfréd
Rényi in 1959 [7]. The ER model is a basic probability model for network analysis where all edges have the
same probability of occurrence, independently from one another [8].

Stochastic Block models were introduced by Holland et al in 1983 [9]. They are popular and effective for
modeling hidden clusters in large and complex networks. In general, a Stochastic Block model SBMp,q(n)
indicates that each vertex has probability p to be connected to any node within the same cluster, but has
probability q to be connected with any node in a different cluster. In the past few years, various works
have developed algorithms and methods to detect or recover clusters in networks under different type of
models [10]. In 2011, Karrer and Newman worked with undirected multi-graphs and first termed Degree-
corrected blockmodel [11]. In 2017, Pexioto introduced the Microcanonical stochastic block model and its
nested version [12]. In most models, each node is attributed to a single community; however, in real-world
networks, a node may belong to two or more groups. Mixed membership stochastic block models (MMSBM)
by Airoldi et al. [13] extended blockmodels to allow nodes to belong to multiple clusters.

One of the chief motivations of this thesis is to estimate the expected fraction of spurious edges in a SBM. For
this, in Section 2, we introduce the notion of “hiddenweight” of a SBMwith respect to an Erdös-Rényi model.
This notion may be regarded a specialization of the concept of latent weights [14, 15] to random graphs. In
Section 3, we discuss the approximate distribution of hidden ER-weights under different configurations of
the SBM. The key tools in this section are the Delta method [16] and order statistics [17]. Conclusions and
future work are discussed in Section 4.

2 Hidden ER-weight of a Stochastic Block Model

2.1 Basic Models

All random network models in this manuscript are undirected.

The general Stochastic Block model, SBM(n,W), is a random graph defined as follows:

• n is the number of vertices;

• W is a symmetric matrix of dimensions k × k. Here, k is the number of clusters in the model, which
we label with elements in the set C ∶= {1, . . . , k}. We denote the set of vertices in cluster i as Vi; in
particular, ∑i∈C ∣Vi∣ = n. Here and in what follows, ∣ ⋅ ∣ denotes the size (i.e. cardinality) of the set
within the parentheses.

• Each entry wij inW denotes the probability of connection between a node in cluster i and a node in
cluster j.

In some applications, only the size of each cluster is specified by a probability vector α of dimension k; in
particular, αi ≥ 0 for each i ∈ C, and ∑i∈C αi = 1. In this case, ∣Vi∣ = αi ⋅ n. Other applications, however,
interpret α as a probability distribution that assigns each node to Vi with probability αi. In this case, Vi and
its size is random. In fact, ∣Vi∣ ∼ Binomial(n,αi).

The Erdös-Rényi model, ER(n, p) is defined as follows:

• n is the number of vertices in the graph.
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• p denotes the probability of connection between each pairs of different vertices.

In the literature, ER(n, p) is usually denotedG(n, p). We note that an Erdös-Rényi model is equivalent to a
Stochastic Block model with a single community.

Samples of both models are displayed in Figure 1.

(a) (b)

(c) (d)

Figure 1: Samples from an ER and SBM models. (a) Realization of ER(n = 50, p = 0.4). (b) Adjacency
matrix of the graph on the left. (c) Realization of SBM(n = 50,W ) with k = 2, w11 = 0.6, w12 = w21 = 0.1,
and w22 = 0.5. Each community, identified by node colors, has size 25. (d) Adjacency matrix of the graph
on the left.

2.2 Hidden ER-weight

As stated in the introduction, the chief motivation of this thesis is to estimate the expected fraction of spurious
edges in a Stochastic Block model. Following the recent framework in [14, 15], this requires abstracting a
Stochastic Block model as a mixture of two models as follows:

SBM(n,W ) = λ ⋅ ER(n, p) + (1 − λ) ⋅ SBM(n,W ′
), (1)

for certain 0 ≤ λ, p ≤ 1, and symmetric k × k matrix W ′ with entries between 0 and 1, associated with an
alternative Stochastic Block model.

Namely, we interpret the placed as well as missing connections in a realization of SBM(n,W ) as produced
by an Erdös-Rényi model with probability λ, and by an alternative Stochastic Block model with probability
(1 − λ). In this context, it is natural to refer to the (mixture) component ER(n, p) as the hidden ER-model
of SBM(n,W ). Edges placed by this model would be interpreted as spurious because Erdös-Rényi models
have no clusters. The expected fraction of spurious edges is therefore λ ⋅ p.
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There is however a key issue with the decomposition in (1). In order for it to be unique, the component
SBM(n,W ′) cannot contain itself a hidden-ER model. Otherwise, if say

SBM(n,W ′
) = λ′ ⋅ ER(n, p′) + (1 − λ′) ⋅ SBM(n,W ′′

),

for some λ′ > 0, then

SBM(n,W ) = λ ⋅ ER(n, p) + (1 − λ)λ′ ⋅ ER(n, p′) + (1 − λ)(1 − λ′) ⋅ SBM(n,W ′′
).

But, because a mixture of Erdös-Rényi models is another Erdös-Rényi model, and the same can be said about
a mixture of Stochastic Block models, the above identity is equivalent to

SBM(n,W ) = (λ + λ′ − λλ′) ⋅ ER(n, p′′) + (1 − λ − λ′ + λλ′) ⋅ SBM(n,W ′′′
), (2)

where—due to Bayes’ formula:

p′′ ∶=
λp + (1 − λ)λ′p′

λ + (1 − λ)λ′
;

W ′′′
∶=

(1 − λ)W ′ + (1 − λ)(1 − λ′)W ′′

(1 − λ) + (1 − λ)(1 − λ′)
.

But note that (λ + λ′ − λλ′) = λ + (1 − λ)λ′ > λ. (There can be equality only if λ = 1, but then the
original SBM would be an ER-model to start with—so the mixture decomposition would be purposeless.)
In particular, the decomposition in (2) would carry a hidden ER-model with a strictly larger weight than in
(1).

As discussed in [14, 15], the uniqueness issue can be avoided altogether if we request the weight λ in (1)
to be as large as possible. We refer to that maximal λ as the hidden ER-weight of SBM(n,W ). From the
perspective of equation (1), λ may be interpreted as the largest expected fraction of placed or missing edges
in a Stochastic Block model realization that can be attributed to an Erdös-Rényi model. Likewise, λ ⋅ p can
be interpreted as the the largest expected fraction of spurious edges in a Stochastic Block model realization.

2.3 Hidden ER-weight Calculation

Following the methodology in [14], to find the largest weight λ for which the decomposition in (1) is possible,
we need to maximize the λ for which there is some 0 ≤ p ≤ 1 such that, for each possible edge e:

P(e ∈ SBM(n,W )) ≥ λ ⋅ P(e ∈ ER(n, p)) = λ ⋅ p
P(e ∉ SBM(n,W )) ≥ λ ⋅ P(e ∉ ER(n, p)) = λ ⋅ (1 − p)

Equivalently, since the probabilities on the left hand-side above depend only on the communities of the
vertices that each edge e connects, we need:

(∀i, j ∈ C) (∃p ∈ [0,1]) ∶ 0 ≤ λ ≤
wij

p
and 0 ≤ λ ≤

1 −wij

1 − p
.

In other words, if min(W ) denotes the minimum entry inW , and max(W ) denotes the maximum entry in
W , the above is equivalent to requiring that

∃p ∈ [0,1] ∶ 0 ≤ λ ≤
min(W )

p
and 0 ≤ λ ≤

1 −max(W )

1 − p
.
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But note that the function pÐ→ min(W )
p ismonotone decreasing, and pÐ→ 1−max(W )

1−p ismonotone increasing
when p ∈ [0,1]. In particular, the maximum value of λ is associated with the intersection of the graphs of
these functions—if it exists at all. By solving the equation:

min(W )

p
=

1 −max(W )

1 − p
,

we find that

p =
min(W )

1 −max(W ) +min(W )
.

Since 0 ≤ p ≤ 1, it follows that the hidden-ER weight of SBM(n,W ) is given by the formula:

λ = 1 −max(W ) +min(W ). (3)

Since 0 ≤ min(W ) ≤ max(W ) ≤ 1, we find that 0 ≤ λ = 1 − (max(W ) −min(W )) ≤ 1; which is required
for a probabilistic interpretation of this weight.

Observe that λ ⋅ p = min(W ). In particular, min(W ) is the largest expected fraction of spurious edges in a
realization of SBM(n,W ).

2.3.1 2-Clusters Example

Consider the Stochastic Block model with k = 2 clusters and connection probability matrix:

W = [
0.5 0.3
0.3 0.1

] .

For this model, max(W ) = 1/2 and min(W ) = 1/10. In particular, λ = 3/5 and the hidden-ER model has
parameter p = 1/6. In fact, in accordance with the identity in equation (1), we can rewrite the connection
probability as

W =
3

5
⋅ [

1/6 1/6
1/6 1/6

] +
2

5
⋅ [

1 1/2
1/2 0

] .

Thus, we expect the majority of the edges (3/5 of them) to be placed or missing with no relation whatsoever
to its clusters because they are governed by an Erdös-Rényi model. The remaining placed or missing edges
are instead governed by the model:

SBM(n, [
1 1/2

1/2 0
]) .

Remarkably, this model allows all connections between nodes in the first cluster, but none in the second one.
Instead, connections between the two clusters are totally random.

2.3.2 3-Clusters Example

Consider now the Stochastic Block model with k = 3 clusters and connection probability matrix:

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.5 0.8 0.2
0.8 0.3 0.7
0.2 0.7 0.1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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In this example, max(W ) = 0.8 and min(W ) = 0.1. Hence the hidden-ER weight is λ = 3/10, which is
associated to a hidden-ER model with p = 1/3. In fact:

W =
3

10
⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+
7

10
⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4/7 1 1/7
1 2/7 6/7

1/6 6/7 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Unlike the previous example, in this case we expect the majority of the placed or missing edges (7/10 of
them) to be attributed to the Stochastic Block model with connection probabilities matrix:

W ′
∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4/7 1 1/7
1 2/7 6/7

1/7 6/7 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

3 Asymptotic Distribution of Hidden ER-weights

In what remains of this thesis we focus on the problem of estimating hidden-ER weights in Stochastic Block
models.

In most practical situations the number k of clusters in a Stochastic Block model is assumed known, but the
remaining parameters, i.e, cluster membership and matrixW , are estimated from a single realization of the
model. The basic idea behind the estimation methods is to group vertices with similar degrees into the same
cluster; which then can be used to estimate the entries in the matrixW .

With an estimate of W , formula (3) provides a natural point estimate for the hidden-ER weight λ of the
SBM. Associated with any estimate, however, one would like to quantify the uncertainty associated with
it. This motivates to study the asymptotic distribution of the hidden ER-weight when the network size n is
large; in particular, we assume in what follows that the clusters and connection probability matrix have been
estimated accurately.

To accomplish the above, let Vi denote a set of vertices in the cluster i ∈ C. Define ∣Vi∣ = ai ⋅n. Namely, ai is
the overall fraction of nodes in cluster i in the network. Accordingly, ai ≥ 0, for each i ∈ C, and∑i∈C ai = 1.

Let Nij denote the number of edges between clusters Vi and Vj . This is a random quantity that depends on
the realization of the Stochastic Block model. In fact, from the definition of the model, we have that

Nij ∼ Binomial(wij , nij)

where

nij ∼

⎧⎪⎪
⎨
⎪⎪⎩

(
ain
2
), i = j;

aiajn
2, i ≠ j.

The expected value and variance of the random variable Nij are given by E(Nij) = nijwij and V(Nij) =

nijwij(1 −wij), respectively. The natural estimator of wij is

ŵij ∶=
Nij

nij
.

As n→∞, the Central Limit Theorem asserts the following convergence in distribution:

ŵij −wij
√

wij(1−wij)
nij

d
Ð→ Normal(0,1).
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Since nii ∼
a2in

2

2 , the above is equivalent to:

n(ŵij −wij)
d
Ð→ Normal(0,

ρij ⋅wij ⋅ (1 −wii)

ai ⋅ aj
) , (4)

where

ρij ∶=

⎧⎪⎪
⎨
⎪⎪⎩

2, i = j;

1, i ≠ j.

3.1 No-Ties Asymptotics

In what follows, since the matrixW is symmetric of dimensions k × k, we think of it as a (column) vector
of dimension k(k + 1)/2. This is because we may arrange the entries along and above the diagonal of W
along a vector without loosing any information about this matrix. With this convention, the above findings
imply thatW has an asymptotic multivariate normal distribution of the form:

n(Ŵ −W )
d
Ð→ Normal k(k+1)

2

(0,Σ),

where the variance-covariance matrix Σ is diagonal.

If g ∶ R
k(k+1)

2 Ð→ R is differentiable at the parameter W of the Stochastic Block model then the so-called
multivariate Delta method [16] implies that

n (g(Ŵ ) − g(W ))
d
Ð→ Normal (0,∇g′(W ) ⋅Σ ⋅ ∇g(W )) , (5)

as n→∞. Above, ∇ denotes the gradient operator, and the prime the transpose operator.

Due to formula (3), the natural choice for the function g to determine the asymptotic distribution of the
hidden-ER weight is

g(x) ∶= 1 −max(x) +min(x), for all x ∈ R
k(k+1)

2 .

In this case, the natural estimator of the hidden-weight is

λ̂ ∶= g(Ŵ ) = 1 −max(Ŵ ) +min(Ŵ ).

The above function g is differentiable only at those vectors x ∈ R
k(k+1)

2 such that the max(x) and min(x)
are achieved at a single entry of x. So, if max(W ) and min(W ) are attained at a single entry of (the vector)
W then the asymptotic formula in (5) holds. In this case—so long n is large enough—we may replace g(x)
by an affine linear transformation of x involving only two of its entries; in particular, ∇g(x) is constant. In
fact:

∇g(x) = (τ1, τ2, ..., τ k(k+1
2

)
′
, for all x ∈ R

k(k+1)
2 ,

where

τi ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1, Wi = min(W );

1, Wi = max(W );

0, otherwise.

Taking this into account, equation (5) may be rewritten as

n(λ̂ − λ)
d
Ð→ Normal

⎛
⎜
⎝

0,

k(k+1)
2

∑
i=1

τ2i ⋅Σii

⎞
⎟
⎠
.
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In other words, when n is large and there are no ties for the maximum and minimum of the entries inW :

λ̂
d
≈ Normal

⎛
⎜
⎝
λ,

1

n2

k(k+1)
2

∑
i=1

τ2i ⋅Σii

⎞
⎟
⎠
. (6)

As seen in Figure 2, the above approximation performs well on numerical experiments associated with the
2- and 3-clusters examples in Section 2.3.1 and 2.3.2, respectively. The simulations were carried out mostly
using Python 3.

(a) (b) (c)

(d) (e) (f)

Figure 2: Performance of the Delta method for no-ties Stochastic Block models. Vertical red lines denote
the true hidden-ER weight for each model. Blue histograms (each based on 500,000 samples) summarize
estimates of this weight based on simulations. Black curve is the asymptotic distribution approximation
of hidden-ER estimators. Top row: plots associated with the example in Section 2.3.1 with k = 2 and
α = (0.3,0.7) for (a) n =50, (b) n =500, (c) n =5,000 nodes. Bottom row: plots associated with the example
in Section 2.3.2 with k = 3 and α = (0.3,0.5,0.2) for (d) n =50, (e) n =500, (f) n =5,000 nodes.

3.1.1 Tied Case Issue with Delta Method

Consider now the Stochastic Block model with k = 2 clusters and connection probability matrix:

W = [
0.3 0.0
0.0 0.3

] .

In this case, max(W ) = 0.3 and min(W ) = 0; in particular, λ = 0.7.

In this case, the maximum entry inW is achieved with ties atw11 andw22. There are no ties for the minimum.
(BecauseW is symmetric, the determination of ties only considers entries along or above its diagonal.)
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As seen in Figure 3, the approximation given by equation (6) is not longer valid. In fact, the distribution of
the estimated hidden-ER weight looks skewed to the left—suggesting that there is no asymptotic normality
when there are ties in the maximum or maximum entry inW .

We may explain this noticing that

Ŵ = [
ŵ11 0
0 ŵ22

] .

Hence, g(Ŵ ) = 1 − ŵ11 when ŵ11 > ŵ22; however, g(Ŵ ) = 1 − ŵ22 when ŵ11 < ŵ22. In particular, the
choice of function g to apply the Delta method depends on the sample—which is troublesome. Nevertheless,
this suggests that the asymptotic distribution of λ̂ relates to the conditional distribution of 1 − ŵ11 when
ŵ11 > ŵ22, and the conditional distribution of 1 − ŵ22 when ŵ11 < ŵ22.

Figure 3: Flawed Delta method approximation for tied Stochastic Block models.
Vertical red line denotes the true hidden-ER weight of the model in Section 3.1.1.
Blue histogram (based on 500,000 samples) summarizes estimates λ̂ of λ based on
simulations. Black curve is the asymptotic distribution approximation of hidden-ER
estimators.

3.2 Tied Case Asymptotics

As discussed in Section 3.1.1, when the max(W ) or min(W ) are achieved at more than one entry along or
above the diagonal ofW , the asymptotic distribution of the estimator λ̂ of the hidden-ER weight λ associated
with a SBM(n,W ) needs not to be normally distributed.

In this section we show via examples how to determine the asymptotic distribution of λ̂ when there may be
ties in max(W ) or min(W ). In doing so, we require first some general observations about maxima and
minima of independent normal random variables.

3.2.1 Distribution of Normal Extremes

In the sections that follow, when Z is a continuous random variable, P(Z = z) denotes its p.d.f. Instead,
if Z is asymptotically continuous (w.r.t. some parameter tending to infinity) then P(Z = z) denotes its
approximate p.d.f.

In the remainder, ϕ(⋅) denotes the probability density function (p.d.f.) and Φ(⋅) the cumulative probability
function (c.d.f.) of the standard normal distribution, respectively.
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If X ∼ Normal(µ1, σ21) and Y ∼ Normal(µ2, σ22) are independent then the p.d.f. of max(X,Y ) is given by

P(max(X,Y ) = z) = P(max(X,Y ) = z,X ≥ Y ) + P(max(X,Y ) = z,X ≤ Y )

= P(X = z, Y ≤ z) + P(Y = z,X ≤ z)

= P(X = z) ⋅ P(Y ≤ z) + P(Y = z) ⋅ P(X ≤ z)

= ϕ(
z − µ1
σ1

) ⋅Φ(
z − µ2
σ2

) + ϕ(
z − µ2
σ2

) ⋅Φ(
z − µ1
σ1

), (7)

where for the last identity we have used that (X − µ1)/σ1 and (Y − µ2)/σ2 are standard normal random
variables.

Similarly:

P(min(X,Y ) = z) = ϕ(
z − µ2
σ2

) ⋅ (1 −Φ(
z − µ1
σ1

)) + ϕ(
z − µ1
σ1

) ⋅ (1 −Φ(
z − µ2
σ2

)). (8)

Figure 4: Corrected approximation for a tied Stochastic block model. In this
model n =5,000, k = 2, and a tie occurs at the maximum of W . Vertical red line
denotes the true hidden-ER weight λ of the model in Section 3.1.1. Blue histogram
(based on 500,000 samples) summarizes estimates λ̂ of λ based on simulations. Black
curve is the asymptotic distribution approximation of the hidden-ER estimator based
on equation (7).

3.2.2 Revisiting the Model with a Flawed Delta Method Approximation

In Section 3.1.1, we saw that the delta method was not adequate to estimating the asymptotic distribution of
λ̂ when the connection probability matrix is of the form

W = [
0.3 0
0 0.3

] .

(See Figure 3.) In this case, regardless of the instance of the SBM(n,W ) model, the estimated connection
probability matrix will be of the form

Ŵ = [
ŵ11 0
0 ŵ22

] .
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In particular, min(Ŵ ) = 0, hence λ̂ = 1 − max(ŵ11, ŵ22). Note that ŵ11 and ŵ22 are independent and
asymptotically normal. In fact, due to equation (4), asymptotically:

ŵ11
d
≈ Normal(0.3,

0.42

∣V1∣2
) ; (9)

ŵ22
d
≈ Normal(0.3,

0.42

∣V2∣2
) . (10)

Hence, the asymptotic distribution of max(ŵ11, ŵ22) should be well-approximated by the p.d.f. in equation
(7) with µ1 = 0.3, σ21 = 0.42/∣V1∣

2, µ2 = 0.3, and σ22 = 0.42/∣V2∣
2. As a matter of fact, as seen in Figure 4,

this approximation works extremely well.

3.2.3 Another Single Tie Model

Consider now the Stochastic Block model with k = 2 clusters and connection probability matrix:

W = [
0.3 1
1 0.3

] .

In this case, max(Ŵ ) = 1 regardless of the realization of the Stochastic block model associated with this
matrix. In particular, λ̂ = min(ŵ11, ŵ22). In this case, the approximations in equations (9)-(10) still apply,
and the p.d.f. of λ̂ should be approximately given by equation (8) with µ1 = 0.3, σ21 = 0.42/∣V1∣

2, µ2 = 0.3,
and σ22 = 0.42/∣V2∣

2.

Figure 5: Approximation for another single tie Stochastic block model. In this
model, n =5,000, k = 2, and the tie occurs at the minimum rather than the maximum of
W . Vertical red line denotes the true hidden-ERweight λ of the model in Section 3.2.3.
Blue histogram (based on 500,000 samples) summarizes estimates λ̂ of λ based on
simulations. Black curve is the asymptotic distribution approximation of the hidden-
ER estimator based on equation (8).

3.2.4 A Heuristic for a Model with Two Ties

So far we have only analyzed examples on which there is a tie at either maximum or minimum ofW , while
the other extreme of Ŵ is constant.
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In this section, we consider models where both max(W ) and min(W ) are achieved with ties but max(Ŵ )

and min(Ŵ ) are random. In this setting, the distribution of λ̂ ∶= 1 −max(Ŵ ) +min(Ŵ ) is more difficult
to characterize because max(Ŵ ) and min(Ŵ ) are dependent random variables. In particular, the marginal
distributions of max(Ŵ ) and min(Ŵ ) are not enough to characterize their joint distribution.

Nevertheless, when there is a significant gap between max(W ) and min(W ), we expect that max(Ŵ ) and
min(Ŵ ) are approximately independent. This is because—with high probability—the entries in Ŵ that
usually produce the max(Ŵ ) will be different from those that usually produce the min(Ŵ ). So, since the
entries (along or above the diagonal) of Ŵ are independent, max(Ŵ ) and min(Ŵ ) should be approximately
independent when max(W ) and min(W ) are very different. In this case, the distribution of λ̂ should be
well approximated by the (shifted) convolution of the distributions of −max(Ŵ ) and min(Ŵ ). In other
words, λ̂ should have the approximate p.d.f.:

P(λ̂ = z) ≈ ∫
∞

−∞
P(max(Ŵ ) = t) ⋅ P(min(Ŵ ) = z + t − 1)dt; (11)

= ∫

∞

−∞
P(max(Ŵ ) = 1 + t − z) ⋅ P(min(Ŵ ) = t)dt. (12)

To fix ideas consider the three-communities Stochastic block model with connection probability matrix

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.3 0.6 0.9
0.6 0.5 0.9
0.9 0.9 0.3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

In this case, max(W ) = 0.9 = w13 = w23 and min(W ) = 0.3 = w11 = w33; in particular, λ = 0.4. Since both
extremes inW are achieved with ties, the asymptotic distribution of max(Ŵ ) and min(Ŵ ) should each be
well-approximated using the methods in Sections 3.2.2-3.2.3. As seen in Figure 6, the approximation that
then follows form equation (11) or (12) agrees very well with the simulations.

Figure 6: Approximation for a Stochastic block model with ties at both extremes.
In this model n =5,000, k = 3, and both extremes of W occur with ties. Vertical red
line denotes the true hidden-ER weight of the model in Section 3.2.4. Blue histogram
(based on 500,000 samples) summarizes estimates λ̂ of λ based on simulations. Black
curve is the asymptotic distribution approximation of the hidden-ER estimator based
on the approximation in equations (11) or (12).
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3.3 Hidden-ER Weights in Connection with Order Statistics

We complete this chapter relating our previous discussion to the more general setting of order statistics [17].

To start observe that λ̂ is a function of (max(W ),min(W )); in particular, to approximate its distribution
it should suffice to approximate the joint distribution of max(Ŵ ) and min(Ŵ ). For this note that the joint
c.d.f. of these random variables is

F (x, y) ∶= P(min(Ŵ ) ≤ x,max(Ŵ ) ≤ y)

= P(max(Ŵ ) ≤ y) − P(x < min(Ŵ ),max(Ŵ ) ≤ y)

= P(∀i ≤ j ∶ ŵij ≤ y) − P(∀i ≤ j ∶ x < ŵij ≤ y)

=∏
i≤j

Φij(y) −∏
i≤j

(Φij(y) −Φij(x)), for all x ≤ y;

where Φij denotes the c.d.f. of ŵij . But, due to equation (4), when n is large enough, the entries are
independent (though not necessarily identically distributed) normal random variables. As a result

F (x, y) ≈∏
i≤j

Φ
⎛

⎝

(y −wij)
√

∣Vi∣∣Vj ∣
√
ρijwij(1 −wij)

⎞

⎠
−∏

i≤j

⎧⎪⎪
⎨
⎪⎪⎩

Φ
⎛

⎝

(y −wij)
√

∣Vi∣∣Vj ∣
√
ρijwij(1 −wij)

⎞

⎠
−Φ

⎛

⎝

(x −wij)
√

∣Vi∣∣Vj ∣
√
ρijwij(1 −wij)

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

.

The above approximation works in any case—regardless if there are or not ties in the extremes of W .
Furthermore, at least theoretically, we may approximate the joint p.d.f. f(x, y) of max(Ŵ ) and min(Ŵ )

differentiating the right hand-side above w.r.t. x and then w.r.t. y.

P(λ̂ = z) ≈ ∫
∞

−∞
∂2F

∂y∂x
(t, z + t − 1)dt.

In practice, however, the above approach is easier said than done due to the appearance of

k(k + 1)

2
⋅ (
k(k + 1)

2
− 1) ∼

k4

4

integrals, each of which has an integrand composed by k factors. This makes the numerical approximation
of the above integral impractical, even for moderately small values of k.

4 Conclusions and Future Work

In Section 2, we introduced the notion of hidden-ER weight to assess how much a given Stochastic block
model resembles an Erdös-Rényi one. For a given blockmodel SBM(n,W ), we defined its hidden-ER
weight as λ ∶= 1 − max(W ) + min(W ). This weight measures the largest expected fraction of placed or
missing edges in the blockmodel that may be attributed to an Erdös-Rényi model. Edges placed by this
later model may be interpreted as “spurious” because ER-models have no communities by definition. In
particular, min(W ) is the largest fraction of spurious edges we expect in a realization of SBM(n,W ).

In Section 3, we studied how to estimate the hidden-ER weight when the matrix W is estimated from
various realizations of the blockmodel. Given an estimate Ŵ ofW , we estimated the hidden-ER weight by
λ̂ ∶= 1 −max(Ŵ ) +min(Ŵ ). We determined or approximated the asymptotic distribution of this estimator
under different configurations of the blockmodel. Overall, the variance of λ̂ is small, seemingly O(1/n).
However, when max(W ) or min(W ) is attained at more than one entry along or above the diagonal ofW ,
λ̂ has a negative bias.
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The methods in Section 3 require various estimates ofW to approximate the distribution of λ̂. This is very
undesirable for real-world networks because, often, one counts with a single realization of the network. There
are methods to estimate k andW when there are no preconceived or natural communities in a network [10].
Nevertheless, apart from a point estimate of λ, it is not possible to weight the uncertainty associated with
the estimate with a single realization. There may be ways around this, however. Indeed, if we select nodes
at random (i.e, without reference to the communities) in a Stochastic block model, the resulting graph is a
realization of the blockmodel with the same matrixW , just with a reduced number of nodes. We may exploit
this strategy to generate various realizations of the same model from a single instance of it.

Figure 7: Testing single blockmodel realization to estimate hidden-ER weights.
Experiments associated with blockmodels of the form SBM(n = 200,W /s), with
s = 1,5,10, and W as in equation (13). Plots in the same row have the same drop
percentages (25%, 50%, or 75% from top to bottom, respectively). Each histogram is
based on 1,000 samples. The green vertical line shows the mean of green histogram,
and the red vertical line shows the mean of red histogram.

To fix ideas, consider the blockmodel with n = 200 and connection probability matrix

W = [
0.5 0.3
0.3 0.7

] . (13)

In particular, λ = 0.6. We simulated this blockmodel 1,000 times, using two communities of equal size. The
green histograms in the first column of Figure 7 display the estimated hidden-ER weights associated with
each of the 1,000 estimates ofW . In addition, for each of these realizations, we estimated the matrixW using
a random sub-graph of the original network according to different drop percentages. The red histograms in
the fist column of Figure 7 display the estimated hidden-ER weights using these sub-graphs. Each column
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in Figure 7 is associated with a different “scale” parameter that controls the sparsity of the network. Instead,
each row is associated with a different “drop percentage.” See the figure caption for details on how these
parameters vary across the columns and rows. In all the plots, the red vertical line shows the mean of red
histogram, whereas the green vertical line shows the mean of green histogram.

In Figure 7, the plots with 50% or 75% drop percentage have histograms that do not resemble well each
other. Nevertheless, regardless of the drop percentage and scale parameter, the mean of the red histogram is
always within the support green histogram—provably because of the large amount of sub-graphs generated
to recover the matrixW . Further, with a 25% drop percentage, we obtain the best and reasonably accurate
estimates of the hidden-ER weight λ.

Future work could focus on the best estimation based on a specific drop percentage or sparsity regarding the
estimation of hidden-ER weights when the communities of a blockmodel are known but the matrixW is not.
Also, regarding the use of order statistics to deal with the general case of ties in W , it would be valuable
to find a more feasible approximation of the joint p.d.f. of max(Ŵ ) and min(Ŵ ). Finally, it remains
to explore if hidden-ER weights could be helpful for blockmodel selection in real-world networks without
preconceived communities.
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