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ABSTRACT

The general theory of coordinated table selective substitution systems
(cts systems for short), see [Ro], provides a unifying framework for a
considerable number of grammar and automaton models considered in the Titera-
ture. This paper is mainly devoted to the investigation of a natural sub-
c]gss of cts systems (which uses the "context-free grammar selector" for
its memory access) and it turns out that this subclass closely corresponds

to the Petri net model of concurrent processes.



INTRODUCTION

Selective substitution grammars (s grammars for short), see, e.g.,
K] and [KR11,provide a quite natural and useful framework for a general
theory of rewriting systems (grammars).Roughly speaking, two basic components
of an s grammar G are: the set of context-free productions P and the selector
K. This selector is a language over the alphabet 2 U 7, where & is the alpha-
bet of G and 2 = {alacz},2 N & = @. To rewrite directly a word x over Z,
one has to find a word y ¢ K which differs from x only by the fact that
some occurrences of letters from £ in x are replaced by their barred ("acti-
vated") counterparts from 5. Then @l occurrences of letters in x that corres-
pond to activated occurrences in y are rewritten in the usual fashion using
productions from P. The derivation process consists of a finite number of
iterations of the direct rewriting process and the Zanguage of G is defined
in the usual fashion (using the intersection with 2*, where p is the terminal
alphabet of G). If K ¢ z¥7z*, then K (and, consequént]y, G) is called sequen-
t7al. Perhaps the two most "famous" sequential selectors are 5¥3 and £¥1z%;
the first one is called right-ilinear (i? underlies right-linear grammars) and
the second one is called p-sequential (it underlies context-free grammars).

The framework of s gfammars was extended in [Ro] to the so-called Coor—
dinated table selective substitution systems (cts systems for short) - in
this framework both grammars and automata caneasily be modeled and investi-
gated. Roughly speaking, a cts system G (and, in the terminoliogy of [Ro],
we will consider mainly sequential versions of them with one table on each
coordinate) consists of n sequential s grammars Gl""’Gn’ n=1, and a set
R of rewrites, where R c P1 X ... X Pn and each Pi is the set of productions
of Gi' In G one rewrites n-tuples of words rather than single words. Given
an n-tuple x = (xl,...,xn), where each X; is over the alphabet of Gi’ it can

be directly rewritten into an n-tuple y = (yl,...,yn) if R contains a rewrite



ro= (rl,...,rn) such that each x, can be directly rewritten (in Gi) into
Y usiﬁg r.- Then the derivatrion (corputation) process consists of an ite-
ration of the direct rewriting process.

In the modeling of automata by cts systems, it is often convenient
to assume that G1 (the grammar from the first coordinate) is a right-linear
grammar, because this essentially corresponds to the quite natural and
customary process of reading the input-tape from left to right, one-wvay only.

In this paper we continue the systematic investigation of 2-coordina-
te models (i.e., n = 2) initiatedin [EHR1? and [EHRZ]. Once, as‘discussed
above, the first coordinate (¢nmpuz) is fixed as a right-linear grammar, two
very natural choices for the selectors on the second coordinate (memory)
are: right-linear selectors and 0-sequential selectors; as pointed out al-
ready, these selector types are very well understood when used in grammars
(roughly speaking, grammars correspond to cts systems with one coordinate
only). It is easily seen that using right-linear selectors as the memory access
with erasing productions in the second grammar yields essentially pushdown
automata, see, e.g., (EHRL! and TEHRZ2.

The main purpose of this paper is to demonstrate that using 0-sequential
celectors as the memory access yields systems very closely related to Petri
nets - a basic model of concurrent processes, see, e.g., [BI, [PR] and
Re]. We indicate how this relationship can be exploited to the advantage
of both theories.

To put the results indicated above in a better perspective we also in-
vestigate (in Section 4) o_coordinate cts systems where the first coordinate
is a right-linear grammar and the second coordinate is a 0s° grammar , 1.e. a
grammar based on context-free productions but using the selector of the type
I¥LIL®, where 3 is the total alphabet involved. These systems are of >
independent interest since the used selector (called a 0-bisequential selector)
can be seen as forming the basis of the selector used in context-sensitive

grammars.



0. PRELIMINARIES

We assume the reader to be familiar with basic formal language theory,
in particu??r basic grammar models, (see, e.g.,[S]) and with basic Petri net
theory (see, e.g., [B], [(PR] and [Re]).

We use mostly standard notation and terminology; perhaps only the fol-
Towing points require some additional attention.

For a set A, #A denotes its cardinality. For sets A,B, A-B denotes
their difference. If Kl""’Kn’ n=1, is a sequence of sets, then 1§1 K
denotes their cartesian product. For a set A and a positive integer H, A n)

denotes the cartesian power.

Unless stated otherwise, we consider only finite nonempty alphabets.
For a word x, #a(x) denotes the number of occurrences of a in x and qiph(x)
denotes the set of letters occurring in x. X denotes the empty word.

Throughout this paper barred versions of symbols are used with a
"special" reserved meaning. All symbols to be usedAare elements of an arbi-
trary but fixed infinite alphabet A U A, where A = {a|a ¢ A} and A and A
are disjoint. Whenever we consider an alphabet 3 and the alphabet
£ ={ala €3} it is assumed that v < A. Moreover, iden, denotes the homomor-
phism from (z U 5)” into z* defined by : ﬁdenz(é) = a and iden,(a) = a for
all a € 3.

A labeled marked Petri net, abbreviated 1mPN, will be specified as a
6-tuple P = (P,T,F,z,l,MO),where P is the set of places, T is the set of
transitions, F is the flowrelation, £ is the alphabet, 1 is the Tabeling
function(from T into Z ) and MO is the initial marking such that there exists
apé€Pwith Mo(p) # 0. For an TmPN P = (P,T,F,z,],MO),P,T,F,Z,I, and MO will be
denoted by pZ(P), tr(P), fL(P), al(P}, LakP) and ima(P), respectively. The language
of an ImPN P, denoted by L(P), is then the set of all "labeled" firing-sequences
of P from Zmm(P) to the final zero-marking of P(denoted by fzm(P))s L(P) is refer-
red to as an ImPNfz language and the class of all ImPNfz languages is denoted

by L(1mPNfz).



1. BASIC DEFINITIONS

In this section we introduce the class of (RL, 0S)systems, which forms

a subclass of the (sequential) cts systems considered in [Ro].

Definition 1.1. (1) Let = be an alphabet. R selector

- %

(over 2) is a subset of (z U 2)*3(z U Z)

(2) A table is a triple T = (2,h,K), where 2 is an alpha-
bet, hc3z x ¥ is a finite nonempty set and K is a selector over 2. The
alphabet 3 is referred to as the alphabet of T (denoted by al(T)), h is
called the set of productions of T (denoted by prod(T)) and K is called
the selector of T (denoted by seZ(T)).

(3) Let T = (z,h,K) be a table. For X,y ¢ 7% we say that x directly
derives Y in T, denoted by X ? y, if x = bl"'bn’ n=1, bl""’bn €7,
Y = ByeeeBy ByoceoBy € z¥ and if there exists a z € K, z = ay..-2,5
CERRRREL € 7 U3z, such that idenz(z) = x and, for 1 =14 <n, if a; €3
then b, = g, and if a; ¢ Z then (b,,8.) € h. Furthermore, if
S = {(bi’gi) € h531 €3 and 1 <1 = n}, then we also say that x directly

S
derives y in T using S, denoted by x =Y.
T

Note that if T is a table such that sel(T) < (al(T)) al(T) (al(T))

S &

and if x = y for some x,y € (al(T)) , then S = {s} for some s ¢ prod(T);
T S {s}

we will write x = y rather than X =Yy .

T T

Definition 1.2. (1) A right-linear grammar, abbreviated EL grammar,

is a 5-tuple G = (2,h,S,5,K), where:

(a) (z,h,K) is a table, called the table of G and denoted by tab(G),

(b) & ¢ 2 is the terminal alphabetcf G, denoted by term(G); z-a is called
the non—terminal alphabet of G and is denoted by nterm (G),

(c) S € nterm(G) is the aziom of G, denoted by ax(G),



(d) (X,a) €h implies:

1) X € nterm(G), and

2) @ €3 U {n U zerm(G) - nterm (G), and
(e) K = (term(6))* - (#Eerm(G)).

(2) A J-sequential grammar, abbreviated 0S grammar,is a 4-tuple

G = (2,h,5,K), where:
(2,h,K) is a table, called the tabie of G and denoted by tab(G),
(b) S € % is the axiom of G, denoted by az(G), and

(C) K - Z-.:-Z—Z::.

A1l the terminology and notations concerning tables carry over to RL
and 0S grammars (through their tables) in the obvious way.

Furthermore, we will use the following notations. If G is an RL or
an 0S grammar, then aZX(G) denotes the set aZ(G) U {n}. If G is an RL
grammar, then termx(G) denotes the set term(G) U (A} and ntermx(G)

denotes the set nterm(G) U {\}.

Definition 1.3. (1) A right-linear O-sequential system, abbreviated

(RL;08) systems is @ triple G = (Gl,GZ,R), where:
(a) G is an RL grammar;

(b) 62 is an 0S grammar, and

(

c) R¢ Prod(Gl)xprod(q2)1s referred to as the set of rewrites of G,

denoted by rew(G).
(2) Let G = <Gl’G ,R) be an (RL;0S) system.

(2.1) Let x = (X{s%p)s ¥ = (y1:Yg) € (az(el))' X (aZ(GZ))'. We say that

x directly derives y in G, denoted by x =y, if there exists an

r] G ro
r = (ry,r,) € R, such that x, = y,; and X, = Yo We say then that
172 1 1 2 2
G G
1 2 r
X directly derives Yy in G using r and write X Z y. As usual,
N , ok
o is the reflexive transitive closure of if> 5 1fxi§> y, then we
G G

say that x derives Y in G.



(2.2) The language generated by G, denoted by L(G), is defined by

*

L(G) = {w € (term(Gy)) | (az(Gy)»ax(G,)) (wy\)}3 L(G) is referred to

G
as an (RL3;0S) Zanguage.

The class of all (RL;0S) languages is denoted by L(RL30S).

Since one may view the effects of aderivationprocess in an (RL;0S)
system on the second coordinate as (a special sort of) counting (of occur-
rences of symbols), one can establish a relationship between (RL;0S)
systems and multicounter automata (satisfying particular restrictions).
In the last section we say more about this relationship.

Furthermore, the following notafions turn out to be very useful.

If G = (Gl,GZ,R) is an (RL;0S) system, and r = ((X,0Y),(A,a)) € R, where
X € nterm(Gl), Y # utermX(Gl), o € termx(Gl), A € aZ(GZ) and a € (aZ(GZ))*,
then

Zhsl(r) = X,

rhsl(r) = oY,

gtq (r) = o (g¢ abbreviates generated terminal),
gnt](r) = Y (gnt abbreviates generated nonterminal),
Zhsz(r) = A, and

Phsz(r) = q.
Clearly, without loss of generality (as far as the class of generated
languages is concerned) we may and will assume that whenever we consider

an (RL;0S) system G = (Gl,Gz,R), al(Gl) and aZ(GZ) are disjoint.



2. MAIN THEOREM

In the previous sections we defined two classes of Tanguages, namely
L(RL;0S) and L(1mPNfz). As the following theorem shows, these classes are

equal.

Theorem 2.1. L(RL;0S) = L(1mPNfz).

Proof. The proof consists of two steps, each taken care of by a lTemma.

Lemma 2.1. L(RL;08) c L(TmPNfz).

Proof idea. For an arbitrary (RL;0S) system G we can conétruct an
ImPN P with L(G) = L(P) as follows. If G = (GI’GZ’R)’
then each letter of nterm(Gl) U aZ(GZ) corresponds uniquely to a place of
P. Furthermore, each rewrite of R corresponds uniquely to a transition of
P. More specifically, R contains a rewrite r if’and only if P contains a
transition t, labeled bygni(r)with inputs Zhsl(r)and Lh%(r) and out-
puts gntl(r)(if gnt{(r) # ) and alph(rhs,(r)). Hence, the use of a rewrite

((X,0Y),(Z,v)) in G, where o € term Gl) and Y ¢ ntermx(Gl) corresponds

X
uniquely to the firing of a transition in P, which is labeled by o, con-
sumes one token from the place in P corresponding to X and one token from
the place in P corresponding to Z and produces one token in the place in
P corresponding to Y (if Y # ) and, for all A ¢ al(G,), #A(Y) tokens in
the place in P corresponding to A. In this way the correspondence between

letters of nterm(Gl) U aZ(GZ) and tokens in appropriate places in P be-

comes obvious. This may be graphically represented as follows:

if and only if



Y (if Y # &)

is a transition (with its input and output places, where output places
appearingmore than once mean multiple arcs) in P.
We leave to the reader the easy but tedious formal details concerning

the above construction and the proof of the lemma.

Lemma 2.2. (ImPNfz) ¢ (RL;0S).
Proof idea. For an arbitrary ImPN P we can construct an (RL;0S) system

G = (Gl,G Rwith L(P) = L(G) as follows. Each place of P corresponds uniquely

23
to an element of aZ(GZ) - {S,}, where S, is a distinguished element of aZ(GZ),
and the number of tokens in each place (at a step in the firing process) equals
the number of occurences of the corresponding symbol on the second coordinate
(from the corresponding step in the derivation process). Furthermore, each
transition corresponds uniquely to a subset of rewrites of R - {rb,re}, where
"y and ro are two different distinguished elements of R, which take care of an
appropriate beginning and ending in G, respectively. More specifically, the
firing of a transition t ¢ ¢r(P) corresponds unquely to the use of a sequence
of rewrites, which generate Iab(P)(t) on the first coordinate, consume, for

every place p € pl(P), FfL(P)(p,t) occurences of the‘1etter from aZ(GZ) - {52}

corresponding to p on the second coordinate and generate, for every place



p € pl(P), fL(P)(t,p) occurrences of the letter from aZ(GE) - {Sé} corres-

ponding to p on the second coordinate. This may be graphically represented

as follows:

is a transition (with its inputs and outputs, where input places or output

places appearing more than once mean multiple arcs) in P,

if and only if

((515T5,0)5(52552)),
“Ti,O’Ti,l)’k pj sA)) s

(T3 pot=Ti ) (P50,
((T,l ,m3081)3<52a52 le PP pJ ))
is a sequence of elements of R for some pairwise distinct elements

S15T T. o in nterm{Gy).

1,077 i m
We leave to the reader the easy but tedious formal details concerning

the above construction and the proof of the lemma. o

The theorem follows from Lemma 2.1 and Lemma 2.2. a

Since it is well-known that L(ImPNfz) equals the class of languages
generated by labeled marked Petri nets with an arbitrary final marking
different from the initial marking, denoted by Lé; and since it is proved
in [J2] (see also {J3]1) that LS equals the class of languages generated by zero-

testing-bounded multicounter machines, denoted Zx, we get the following result.

Corollary 2.1. L{(RL3;0S) = z* o



3. SUBCLASSES

In this section we demonstrate that the relationship between (RL;0S)
systems and Petri nets is even deeper than indicated by Theorem 2.1. It
turns out that a natural subclass of the class of (RL;0S) systems corres-
ponds to a natural subclass of the class of 1mPil's.

First we recall (see, €.9., [Hcl) the definition of an often consi-

dered subclass of TmPN 's.

Definition 3.1. Let P be an 1mPN. P is a \~free lmPN if lab(P)(t) # N

for every t € tr(P). o

Next we define a natural subclass of the class of (RL;0S) systems.

Definition 3.2. (1) Let G be an RL grammar. G is real-time if

(X,w) € prod(G) implies w ¢ term(G)-ntermx(G).

(2) Let G = (Gl’GZ’R) be an (RL;0S) system. G is real-time 1f G1 is

real-time. o
Analyzing the proof of Lemma 2.1 one easily gets the following
result.
Lemma 3.1. Let K be a language. If K is generated by a real-time
(RL;0S) system, then K is also generated by a \-free TmPN . o

The proof of the nconverse" of the above lemma is somewhat more in-

volved.

Lemma 3.2. Let K be a language. If K is generated by a A-free TmPN,

then K is generated by a real-time (RL;0S) system.



Proof. For an arbitrary x-free 1mPN, P we will construct a real-time

(RL;0S) system G such that L(P) = L(G).

The idea behind the construction is as follows. Let P be a n-free TmPN,
let n = #p7(P) and let G = (GI’GZ’R) be the constructed real-time (RL;0S)
system. Every nonterminal of Gy is an (n+l)-dimensional vector over
N(n) x {1,...,n} - such a nonterminal represents a marking of P together with
a distinguished place of P (by suitably alternating the distinguished last
field one assures that each place becomes "pointed out" once during n conse-
cutive steps of a derivation process). However, if P has an infinite number of
different reachable markings, then not every reachable marking can be represen-
ted by a nonterminal of Gy, since nterm(Gl) has to be finite. This represen-
tation problem (as far as G1 is concerned) is taken care of by GZ’ which
arranges the second coordinate to be an infinite store of ("packages" of)
tokens (each "package" consisting of tokens from the same place). At each
step of a derivation process, only the place "pointed out" by the (last field
of the) nonterminal from the first coordinate is abie to get from or to deposit
on the second coordinate (a "package" of) tokens. Getting tokens is allowed only
if there is a possibility that these tokens are needed on the first coordinate
during the next n steps of the derivation process; depositing tokens is
allowed only if it is certain that these tokens will not be needed on the
first coordinate during the next n steps of the derivation process. Consequently,
getting tokens is allowed only 1if the current nonterminal on the first
coordinate represents less than a certain fixed amount of tokens in the
distinguished place and depositing  tokens is allowed only if the current

nonterminal on the first coordinate represents more than a (possibly different)

fixed certain amount of tokens in the distinguished place.



Formally the construction is as follows.

Let P = (P,T,F,F,],MO) be a »~free TmPN , where P = {pl,.;.,pn}, n=z1l

(the case n = 0 is {mpossible). Define for all 1 =1 =n:
ing=n - max{F(t,p;) it € T} (hence in, is greater or equal to the maximal in-

crease of the number of tokens in place P; resulting from a firing sequence
of length n),

outi =n - max{F(pi,t)Lt ¢ T} (hence outi is greater or equal to the maximal
decrease of the number of tokens in place P; resulting from a firing sequence
of Tength n),

max, = max {ini,outj} (hence max is greater or equal to the maximal change
of the number of tokens in place Ps resulting from a firing sequence of
length n).

Note that if M1 and M2 are markings of P, s is a firing sequence of
length n from Ml to M2 and, for some 1 =i =n, pi ¢ P is such that

IA

out, = M (p;)

if 0 = Mz(p

out, + max;, then 0 = MZ(pi) = out, + max; + ini. Moreover,

1.) < out,, then out, = MZ(pi) +omax, = out. + max, and if

outi +omax, < M2<pj)5 out, + max; + 1ni, then outi = MZ(pi)- max, = out, + max;.

Hence, if we have to our disposal an infinite store of "packages" (each one

of size maxi) of tokens, then the “working region" for place p; can stretch

from 0 to (outi +omax, + 1n1), because getting from or depositing on the

store at most one "package" of tokens every n steps can give us a value

between outi and (outi + maxi) for place P; égain.

Define for all 1 =1 = n:

ki = out, + max, + ini + M0<pi) (the size of the "working region" of p. is
enlarged with Mo(pi), because the initial marking of p; can be arbitrary
large and one wants the initial marking of P; to be in the "working region"
of py)s

wi = {0’1"“’ki} (hence wi is the set of all integers from the "working
region" of pi), and, for all t €T,

Ai(t) = F(t,pi) - F(pi,t) (hence Ai(t) denotes the change of the marking of

ok resulting from the firing of t).

let W= {1,...,n}.



In the following construction of the real-time (RL;0S) system

G = <GI’G2’R)’ G1 takes (by its nonterminals) care of the "working regions"

of the places of P and G, takes care of the infinite store of ("packages"

of) tokens.
Let G = (Gl’GZ’R) be the (RL;0S) system such that:
n n
aZ(Gl) =T U (( X w].) x W)y, where T' 0 (( 1.>:<1 wi) x W) =0,

i=1

al(Gy) = {Sp} U {Tyse.onT}, where SysTys-esT, are all different elements,

i

term(Gl) =T,

az(Gy) = Mylpy)s---sMy(py)slls

ax(GZ) = Sy and,

for all t ¢ T and w € W, R contains the following rewrites:

(1) ((Tiqseeenipawla () Hpra ()i o 2, (t),(w mod n) + 11),(S,55,))

i j €k Lty =i, =k, and 0 = 1.4, < k.,
if,for all J € W, F(pJ t) i kJ and 0 i AJ(t) ;

(rewrites of this group simulate the firing of a transition t of P without
storing a "package" of tokens on or getting a "package" of tokens from the

second coordinate),
(1) ((Ligse-eniyouls () (1 raq (E) 5o ni o, g (1), 10a, () -max,,
iw+1+Aw+l(t),...,in+An(t),(w mod n) + 11),(S555,T

if, for all j e W, F(p.,t) =i, =k, and 0 = .+ A.(t) = k., and
r J (pj-t) =1y =Xy an 0 =1y a5(t) = Xy

iW+Aw(t) > Mo(pw) + out + max,
(rewrites of this group simulate the firing of a transition t of P and

store a "package" of max, tokens from place p  on the second coordinate),

(i11) (([11,...,in,w] ,W(t)[i1+A1(t),...,iw_1+Aw_1(t),iw+Aw(t) + max,

1W+1+Aw+1(t),...,in+An(t),(W'mod n) + 11),(T,»M)

if, for all j < W, F(pj,t) < ij < kj and 0 = ij + Aj(t) < kj’ and

iw+AW(t) < MO(pw) + out
(rewrites of this group simulate the firing of a transition t of P and get

a "package" of max tokens for place p from the second coordinate), and

))



(1) (Lo (t)ensmt (8)W1,1()) 4 (Sp00)) 1 Fips,t) =-05(t) for all j €W
(rewrites of this group simulate the firing of a transition t of P resulting

in the final zero-marking; they end the simulation of the system).

R contains no rewrites other than those described under (i)-(ii), (iii)

and (iv).

It is obvious that G is real-time and it is not difficult to prove that

L(G) = L(P). Consequently the Temma holds.

Lemma 3.1 together with Lemma 3.2 yield the following characterization

theorem.

Theorem 3.1. Let K be a language. K is generated by a x-free TmPN  if

and only if K is generated by a real-time (RL;0S) system.

It turns out that the real-time restriction on (RL;0S) systems restricts
the class of languages obtained. To prove this we make use of the following

known result from the theory of Petri nets, see [J1] and [J3].

Proposition 3.1. There exists a language K ¢ L(1mPNfz), such that

K —{x} cannot be generated by a -free ImPN.

Thus from Theorem 2.1, Theorem 3.1 and the above result we get immediate-

ly the following result.

Theorem 3.2. There exists a language K ¢ L(RL;0S), such that K - {\}

cannot be generated by a real-time (RL;0S) system. o



4. (RL;OSZ) SYSTEMS

As we have indicated already one of the basic motivations to investigate
(RL;0S) systems was to investigate the power of a vell established selector
(0S), when it is used as a selector for memory access (that is on the
second coordinate with the first coordinate being a right-linear grammar).

Another natural selector is the selector of the form z*3zz* -
to which we refer as a O-bisequential Or 052 selector. Such a selector lies

at the very basis of context-sensitive grammars.

Consequently (following the line of investigation that compares the power

of various classes of selectors used in "grammatical® and in "storage" mood,

2

see {Ro]) it is natural to 1nvestigate the power of the 0S” selector used as

a selector for memory access. Such an investigation sets the results we have

obtained so far in a better perspective.

We start by defining formally 052 grammars and (RL;OSZ) systems.

. 2 .
Definition 4.1. A 0-bisequential grammar, abbreviated 08 grammar, 15 @

5-tuple G = (z,h,Sl,SZ,K), where:
(a) (2,h,K) 1s a table, called the tableof G and denoted by tab(G),

(b) S1 €2 (52 ¢ 5 respectively) is the left (right respectively) axtom

of G, denoted by(zr](G) (axr(G) respectively), and

(c) K = T*IZZ¥.

411 the terminology and notations concerning tables carry over to

OSZ grammars (through their tables) in the obvious way.

Definition 4.2.(1) A zignt-linear 0-bisequential system, abbreviated

@L;OSg)system, is a triple G = (Gl’GZ’R)’ where:
(a) G4 is an RL grammar,

(b) G, is a 052 grammar, and



(c) R, called the set of rewrites of G and denoted by rew(G), is a set of

pairs of the form (r,U), where r ¢ prod(Gl) and U ¢ prod(GZ) such that

1=#8U-=2. .
(2) Let G = (GI’GZ’R) be an(RL;OSZ) system.
(2.1) Let x = <X1’X2)’ y = (yl,yz) € (aﬁ(G))* x (aZ(GZ))*. We say that x
directly derives y in G, denoted x =y, if there exists anr = (rl,U) € R,
r G
1
such that XN E Yo and, for some S ¢ U, Xo @ Yo We say then that x

: 7

*
directly derivesy in G using r and write x z v As usual, => is the reflexive

- M ,
transitive closure of =3 if x 7f> y, then we say that x derives y in G

(2.2) The language generated by G, denoted by L(G), is defined by L(G) =

* -
{w € (.terrKGl))* | (cmel), a“ﬁ(ez)axr<62)) g W,%\)}; L(G) is referred to as an
(RL;OSZ) Language. ‘ a

The class of a]](RL;OSz) languages is denoted by L(RL;OSZ).

For an(RL;OSz) system G we have required that 1 = # U = 2, whenever
(r,U) € rew(G). The reason for this restriction is rather "esthetical":
in a single derivation step of a 032 grammar at most two different pro-
ductions can be applied.

In the rest of the section we demonstrate that using the 032 selec-
tor as a selector for memory access yields all (and only) recursively
enumerable languages. (The class of all recursively enumerable languages
will be denoted by LRE’) |

The following well-known result (see, e.g.,Gi]) will help us to

establish the above mentioned result.

Proposition 4.1.Let [ be a family of 1anguages,'such that:

(i) {a"" [ n=z1} €L, and
(ii)L is closed under union, concatenation , +, intersection with

regular sets, arbitrary homomorphisn, inverse homomorphism and intersection.

Then LRE c L. 0



Theorem 4.1. Lpe = L(RL;OSZ).

Proof. Clearly L(RL;OSZ)IS LRE' Thus it suffices to show the "converse"
inclusion. This will be done in 2 steps, each taken care of by a lemma.

Lemma 4.1. {anbn ln=1} ¢ L(RL;OSZ) and L(RL;OSZ) is closed under
union, concatenation, intersection with regular sets, arbitrary homorphism

inverse homomorphism and intersection.

Proof. The straightforward constructions proving the lemma are left of

the reader. o

2

Lemma 4.2.L(RL;0S") is closed under +.

Proof. Let G = (Gl’GZ’R) be an arbitrary (RL;OSZ) system. The construc-
ted (RL;OSZ) system G’ = (Gl’,GZ’,R’) which generates (L(G))+ works as follows.
It "switches" in its first step from (ax(Gl’),axl(GZ’) axr(GZ’)) to

(ax(Gl),axl(Gz’)axl(Gz)ax

r(G2>axr(GZ’))’ ahd then it runs according to

rewrites of R. Then at some point of its computation G’ introduces a
special "coice" symbol Z on the first coordinate. The choice symbol gives
a possibility of:
either to end the computation by using the rewrite

((Zo3) {Laxy(65°)50)5 (ax.(6G)7)5 M 1)

or to "start all over again" by using the rewrite

((Z,ax(6;"))s { (an(6,7)5am1(6,°))s (ax.(8p7)sa.(Gy))))-

It is easily seen that a given derivation in G’ produces X on the second
coordinate if and only if each occurrence of the choice symbol Z on the first
coordinate corresponds to completing (the simulation of) a "succesfull deri-
vation" in G, where the nonterminal on the first coordinate disappears and

the corresponding word on the second coordinate equals X o



From Lemma 4.1 , Lemma 4.2 and Proposition 4.1 it follows that

2
Leg € L(RL;0S%). | , o

Directly from the above result, from Theorem 2.land from the well-known

we get the following result.

fact (see, e.g., [J3]) that L(1mPNfz) ¢ Lo.
. |

2).

Corollary 4.1. L(RL;GS) %,L(RL;OS



5. DISCUSSION

The present paper continues directly [Ro] in the sense that it elabo-
rates in depth (in more detail) on the flexibility of cts systems to mode]
various types of grammars and automata discussed in the literature.

The particular purpose of this paper was to investigate a very
specific instance of Cts systems, namely (RL;0S) systems. It turns out
that theée systems are very closely related to Petri nets which form an

established model of concurrent processes.

As indicated in (the remarks preceeding) Corollary 2.1 it is well-
known that there is close relationship between (specific kinds of) coun-
ter machines and Petri nets (sec,e.g.,(Gr], {J2] and [J3]). And, as indi-
cated in the remarks following Definition 1.3, it is also quite evident
that (RL;0S) systems are well suitable for simulating (special kinds of)
multicounter machines. So in this way there is a quite close relationship
between our Theorem 2.1 and results in {Gr], [J2] and [J3]. However we
have aimed at showing direct relationships between Petri nets and (RL;0S)
systems (rather than to use multicounter machines as a "bridge" for showing
these relationships). Also, as opposed to [Gr], we got an explicit charac-
terization for all labeled Petri net languages (and not only for A-free
labeled variants) and as opposed to (Gr], [J2] as well as to [J3] we get
a close relationship between subclasses. Although the basic idea (coun-
ting tokens) behind the main correspondence theorem is common to {Gr],
[J21,[J3] and our paper, our proof seems different from those in [(Gr],

J21 and [J31.

In Section 4 we have investigated another specific instance of cts

systems, namely (RL;OSZ) systems. It is interesting to notice that we

have been able to establish that 082 selectors on the second coordinate

(used for memory access) are more powerful that 0S selectors on the second
coordinate, because the question whether or not grammars using 052 selectors

are more powerful than grammars using 0S selectors is an intriguing open.

problem of grammatical formal language theory (see [KRoZ2]).
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