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CHAPTER 1

INTRODUCTION

1.1 Motivation

Throughout history many of the most significant advancements in science led to new ways of probing smaller

and smaller into the world around us. By developing the first high magnification lenses Hooke and Leeuwen-

hoek were able to discover the nature of the microscopic world teaming with life [1], Geiger and Mardsen

discovered the structure of the atom in 1908 by scattering alpha particle off of gold plates [2], and the Stan-

dard Model was confirmed in 2013 with the detection of the Higgs Boson using the high powered scattering

experiments at the Large Hadron Collider [3].

Throughout the sciences, and especially in physics, microscopy has been a nearly universal tool for prob-

ing deeper into the systems we are interested in. Improving the resolution of these microscopes, how small

of an object we can make out, has thus been an ongoing area of research for nearly 500 years. In 1873 Ernst

Abbe placed the lower limit of the resolution of a microscope at one half the illuminating wavelength [4].

In effect, the way to probe smaller is then to reduce the wavelength of illumination. Since then significant

resources have been focused into research how develop lower and lower wavelength microscopes.

Today, the state of the art is to employ extreme ultra violet (EUV) to soft x-Ray wavelengths to obtain

nanometer scale resolution. These wavelengths have lead to a range of important scientific discoveries

including revealing the structure of DNA in 1953. However using these wavelengths poses some issues; (1)

the high photon energy of the scattered light means that conventional lenses can not be fabricated without

being damaged or distorted, (2) until recently coherent X-ray sources have been extremely difficult to come

by, requiring expensive and non-portable techniques such as free electron laser and synchrotrons [5].

First addressing (1), many alternative lenses have been developed to deal with the high photon energies

including refractive Lenses, Fresnel Zone plates, reflective optical components, and multilayer Lau lenses,

in order to refocus scattered X-rays back into an image. However, all of these techniques depend highly on

the fabrication quality and precision of the lenses involved [5].

Instead one can forgo these these physical challenges that come along with lens construction by trans-

ferring the focusing operation from a lens to a computer algorithm. This is the technique used in Coherent
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Diffractive Imaging (CDI). Instead of scattered light being refocused into an image using a lens, scattered is

light is collected on a detector, and an algorithm is used to ”virtually refocus” the scattered light.

To address (2), recent developments in intense laser generation ( 1014W/cm2) have allowed for high

harmonic generation (HHG). It is a process whereby intense infrared lasers, which are more readily acces-

sible, drive the generation of high frequency coherent light by interacting with atoms in a gas jet. These

developments have lead to an explosion in table top ready sources of EUV and soft X-ray light [6]. The ap-

plication of HHG for imaging purposes works by filtering one of the higher frequency components generated

during this process, and then refocusing this coherent light back into a beam for microscopy.

By combining HHG EUV sources with CDI techniques, researchers have developed a table top system

for performing extremely high resolution imaging. While mucgh work has already be done in using HHG

light as a source of illumination, in this thesis we instead explore extensions of these ideas by considering

the use of the high harmonic generation process itself as the platform for microscopy. In order to explore this

technique we attempt to evaluate the effectiveness of this type of imaging. More specifically we determine

how much information the interference pattern of HHG light emitted from different atoms contains about

the relative position of the atoms, i.e. does such a light pattern provide an image of the source of the emitted

light. To test this idea, we consider that the atoms, that generate the high harmonics, are distributed regularly.

Thus, instead of a gas jet with irregular distribution of atoms in typical high harmonic generation set-ups

we consider a regular pattern of atoms, which will allow us to more exactly determine the effectiveness and

precision of this technique - a potential experimental realization of such a regular pattern could be an optical

lattice.

Thus the goal of this thesis is to explore the possibility to reconstruct an image of the source, i.e. the

regular distribution of the atoms, and ways to improve the quality of the image. In order to focus on

these questions, we neglect a few aspects that would impact the experimental realization of the approach:

We assume that the conversion efficiency of HHG is 1, i.e. every atom in the lattice is producing high

harmonics. In reality the conversion efficiency would be on the order of 10−2 to 10−3. More careful thought

would need to be given to this issue to employ the method experimentally, however this is beyond the scope

of this thesis.
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1.2 Background

1.2.1 Optical Theory

In order to perform any type of analysis of the macroscopic dynamics of HHG in optical lattices, we must

first understand microscopic and macroscopic aspects of the generation of high-order harmonics in a set

of atoms. To this end, we start by considering the three components of the microscopic dynamics of the

interaction between atoms and the electric field of an intense laser field: the atomic nucleus and the electron.

We first note that because the mass of the atomic nucleus is much larger than that of the electrons, the

dynamics of the nucleus and the electrons can be evaluated separately [7]. Operationally, this means that

the electronic dynamics happen quickly enough relative to the nuclear dynamics that we can consider the

nucleus fixed at the origin of our system.

We begin by considering the wave functions of each individual electron in these systems. Each electron

experiences the Coulomb potential by the nucleus as well as by all the other electrons in the atom. This

produces the total potential seen in Equation (1.1), for the j’th electron.

VAtomic,Single =

n∑
i=1,i ̸=j

−e

|r⃗j − r⃗i|
+

Ze

|r⃗j |
(1.1)

where e is the charge of the electron, Z is the number of protons in the nucleus, n is the number of other

electrons, r⃗j is the position of the j’th electron, and r⃗i is the position of the i’th electron in the atom all

relative to the nucleus at the origin.

Considering the laser interaction potential, we note that it is given via the field E⃗(t, r) of the laser.

From classical electrodynamics we recognize that the electric potential is given via the dipole potential

Vdipole = −E⃗ · r⃗. Therefore, we find the following laser interaction potential.

VLaser = −E⃗(t) · r⃗ (1.2)

We therefore have the Hamiltonian for each individual electron as follows:

HSingle = −h̄2
p2

2m
+ VAtomic,Single + VLaser = −h̄2

∇2

2m
+

n∑
i

−e

|r⃗ − r⃗i|
+

Ze

|r⃗|
− E⃗ · r⃗ (1.3)

and the total Hamiltonian for the system, including all of the electrons, is the sum over all of these single
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electron Hamiltonians, and we find the total Hamiltonian

Htotal =

n∑
j

−h̄2
∇2

j

2m
+
∑
j ̸=i

−e

|r⃗i − r⃗j |
+

Ze

|r⃗j |
− E⃗ · r⃗j

 (1.4)

Resolving the dynamics of this system can become incredibly complicated since we must solve for the

dynamics of each electron in the electric field of an intense laser field, leading to a wave function with a large

number of dimensions corresponding to the large number of degrees of freedom of the system. Numerically

solving the Schrödinger equation for relatively simple systems can already be computationally expensive,

and so fully modeling the dynamics of a large number of electrons can become computationally intractable.

The Single Active Electron Approximation

In order to reduce the dimensionality of the problem we employ the single active electron approximation

(SAE). Under the SAE we assume that the laser field only interacts with the most weakly bound electron in

an atom, while the other electrons act as frozen spectators [8]. Under this approximation we only need to

consider the evolution of one electron wave function, and the Hamiltonian reduces to

HSAE = −h̄2
∇2

2m
+ VSAE − E⃗(t) · r⃗ (1.5)

where VSAE is some modified potential representing the contributions of both the nucleus and the spectator

electrons. Determining an approximate form of these potentials is an ongoing area of research, however

the calculations in this thesis where all carried out using the hydrogen atom. In this case there is only one

electron to consider, and VSAE reduces to a simple Coulomb potential. In principal, the procedure presented

in this thesis can be used to model systems with any type of atom provided the appropriate VSAE is used.

Solving the TDSE

We now consider the electronic wave function, Ψ(r⃗, t) which is given by the solution of the time dependent

Schrödinger equation below:

HSAE(t)Ψ(r⃗, t) = ih̄
∂

∂t
Ψ(r⃗, t) (1.6)

In general, there is no analytic solution for Ψ(r⃗, t) in a time varying electric field E⃗(t) and Coulombic
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potential and thus the TDSE must be solved numerically. A full description of these numerical methods is

beyond the scope of this thesis but a general outline is given below. We begin at t = 0 with the electron in the

ground state of the atomic potential. To find this ground state wavefunction we solve the time-independent

Schrödinger equation:

HΨ(r) = [−h̄2
∇2

2m
+ VSAE ]Ψ(r⃗) = EΨ(r⃗) (1.7)

For the hydrogen atom with VSAE = e
|r⃗| these states are known exactly. For more complex potentials

an exact solution is unlikely to be found, and instead methods such as perturbation theory or numerical

solutions are employed to determine the ground state [9].

Next, we notice that the time dependent Schrödinger equation can be rewritten as follows:

Ψ(r⃗, t) = e−
i
h̄

∫ t
0 HSAEdtΨ(r⃗, 0) (1.8)

Which transforms the differential equation into an integral equation which is more tractable for numeri-

cal computation. Taking a small interval in time ∆t we find the following equation for the evolution of the

wave function at each step in time.

Ψ(r, t+∆t) = e−
i
h̄
HSAE∆tΨ(r, t) (1.9)

and the Crank-Nicolson method can then be used to calculate Ψ(r, ti) for each time step ti with Ψ(r, 0)

taken as the ground state calculated previously.

HHG Spectra

Next we use the solution for Ψ(r, t) to analyze the light generated in these laser-atom interactions. From

classical electrodynamics we know that the field radiated in this system should be proportional to the dipole

acceleration. The dipole operator in quantum mechanics follows a similar form to classical electrodynamics

with d⃗ = er⃗. Therefore, we find the expectation value of the generated light as follows:

Erad(t) ∝
d2

dt2
⟨Ψ(r, t)| d⃗ |Ψ(r, t)⟩ ∝ d2

dt2

∫
dVΨ∗(r, t)r⃗Ψ(r, t) (1.10)

We can then compute the spectrum of the radiation as the Fourier transform of the electric field in the
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time domain

P (ω) = |F(Erad(t))| (1.11)

where P (ω) is the intensity of the emitted radiation. By carrying out the procedure outlined previously

using an intense periodic laser field E⃗(t) one calculates the spectrum, a typical result of such a calculation

is shown in Figure 1.1.

Figure 1.1: HHG spectrum generated from hydrogen atom interacting with a 20 cycle laser pulse at a
wavelength of 800 nm and a peak intensity of 1014W/cm2

High Harmomic Generation: Heuristic Description

A description of HHG that provides a good intuition for why we see observe intense harmonics during the

interaction of strong field radiation with atoms can be given based on the uncertainty relation between energy

and time. Beginning with the discrete energy levels of the electrons in an atom, we know each electron has

an ionization energy Ip. In the presence of a relatively weak field we know that the electron is likely not to

ionize unless it absorbs a photon with frequency ω such that its energy h̄ω > Ip at which point the electron
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will be emitted with kinetic energy E = Ip − h̄ω in accordance with the photoelectric effect as described

by Einstein. This is due to the fact that the electron should only be promoted to an an energy eigenstate,

which are separated into discrete bound states below the ionization energy, and then a continuum above the

ionization energy. Therefore, the electron will only be seen to be ionized into the continuum if it absorbs a

photon with energy larger than the ionization energy.

However, we know from Heisenberg’s uncertainty principle that there is an uncertainty relation between

time and energy.

∆E∆t ≥ h̄

2
(1.12)

Therefore we may be able to excite an electron with the absorption of a photon with energy ∆E < Ip above

the ground state for some amount of time ∆t into a so called a ”virtual energy state”. In general, this ∆t

will be very small; an estimate shows that for a photon of an 800nm laser ∆t will be on the order of 10−16s.

This means there is a time window of about 10−16s for meaningful interactions with the electron in this

state to occur. A weak field has a relatively low photon density and it is unlikely another photon will interact

with the electron during this window. However for a strong field and high photon density it is much more

likely another photon will be absorbed by the electron within this time window. At this point the electron

will be further excited into a virtual energy state with ∆E = 2h̄ω. This can occur N times with the electron

absorbing N photons in a process called multi photon ionization which is sketched in Figure 1.2 .

The electron now has absorbed an energy Nh̄ω and is in some continuum state. It then can transition

with some probability back into the ground state. If the electron should recollide with its parent nucleus

(recombination with the ground state) the atom will photo-emit a single photon of the kinetic energy Nh̄ω.

Therefore we should expect the radiation spectrum emitted from the atom to feature more intense peaks at

integer multiples of the laser frequency, which explains the peak structure in the spectra calculated from the

TDSE in Figure 1.1. However an important feature of HHG is the fact that these harmonics are generated

coherently with the driving laser, which is not as easily explained in the picture described above. To explain

this we instead turn to what is called the semiclassical model.

In the semiclassical model we consider a bound electron in the ground state of its parent nucleus. A

classical laser field is then turned on, ”tipping” the Coulomb potential of the nucleus and allowing the

electron to tunnel ionize out of the bound state. After which we then consider the classical motion of the

electron in the continuum only under the influence of the laser field. The electron is first accelerated by

7



Figure 1.2: Diagram of Multiphoton Ionization. Many photons with h̄ω < Ip are absorbed both above and
below the ionization threshold
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the laser field away from the nucleus before the laser field drives the electron back down to the parent

nucleus. Upon return to the parent nucleus, with a certain probability the electron recombines with the

nucleus under the emission of a single photon (see Figure 1.3). This gives a justification for why HHG

spectra are generated coherently with the driving laser, since the electron dynamics including ionization,

propagation, and recollision are all driven coherently with the laser. We will return to this model later in this

thesis when considering calculating HHG spectra in macroscopic samples.

Figure 1.3: Diagram of semiclassical HHG including tunnel ionization from the ground state, propagation
in the continuum and recollision and photoemission, (taken from Popmintchev et. al. [10])

1.2.2 Macroscopic Considerations

We are now ready to begin considering the HHG spectra produced by an arrangement of many atoms, such

as those in an optical lattice. In general optical lattices will feature arrays of laser trapped atoms with lattice

spacing on the order of hundreds of nanometers of separation [11]. Because the interatomic distance is large

we approximate that there are no atom-atom interactions and the atomic dynamics within the lattice are

determined solely by interactions with the fundamental laser field [12]. This means that we may consider the

dynamics of each atom individually without considering perturbations to the Hamiltonian in Equation (1.5)

[13]. The arrangements we consider in this thesis will have on the order of 100 atoms. Therefore although

full single-atom TDSE calculations can be computationally expensive, the relatively small number of atoms

means that carrying out these full TDSE calculations is still practical. To carry out these calculations we

define some space and time dependent laser field E⃗(r⃗, t). Then for the interaction with an individual atom

9



we reduce this laser field to its time dependent component at the atom’s position which gives a purely time

dependent field E⃗r(t). In general, the beam width of the lasers used in HHG experiments will be on the order

of tens of microns [12], much larger than the spatial range of the electron dynamics we are concerned with.

Therefore, the spatial dependence of the laser experienced by each individual electron will be approximately

constant. This allows us to use the spatially independent E⃗r(t) when calculating the spectra for each atom

by performing TDSE calculations as discussed above.

In order to generate an image, we will need to find the field generated from these radiating atoms at

some far field detector. This can be calculated as the superposition of the fields generated from each atom

individually. Therefore, we need to propagate the radiation from each atom to some far field point and then

add all these fields together. For each atom this can be calculated as follows:

E(rd, ω) =
1

c2|rd|
e−iw

c
|rd|a(ω)e−iw

c
rj ·(r̂d−ŝL)p̂L (1.13)

where r⃗d is the location of the detector, r⃗j is the location of the atom, a(ω), is the dipole acceleration

in the frequency domain as discussed previously, ŝL is the laser propagation direction, and p̂L is the laser

polarization direction. Noticing that the first phase factor in the equation above depends only on the distance

to the detector we can factor it out to arrive at the equation for the macroscopic spectrum at a far field point

[13, 12]:

E(rd, ω) ∝
∑
j

aj(ω)e
−iw

c
rj ·(r̂d−ŝL)p̂L (1.14)

where j is the index of each atom. We note that factoring out the phase associated with the detector distance

forces all the points on the detector to have the same distance from the origin, which will allows us to further

simplify the expression. By using that |rd| is equal for all detector points we can pull out the complex factor

in front of the sum in Equation (1.14) so that we only need to consider the relative positions of the atoms to

each other, and their relative angle to the detector. This corresponds to sampling a hemispherical detector

around the sample. We can now characterize the coordinates of the detector points entirely by the polar angle

θ and the radial angle ϕ relative to the z axis. Furthermore, we arbitrarily choose the laser to be propagating

in the z direction and polarized in the y direction to get

rd(θ, ϕ) = sin(θ) cos(ϕ)x̂+ sin(θ) sin(ϕ)ŷ + cos(θ)ẑ (1.15)

10



Inserting into Equation (1.14) we get

E(θ, ϕ, ω) ∝
∑
j

aj(ω)e
−iw

c
(rdx sin(θ) cos(ϕ)+rdy sin(θ) sin(ϕ))r̂d (1.16)

By sampling over θ and ϕ we generate the far field angle-resolved diffraction pattern. In order to transform

the angle resolved data to Cartesian resolved data we recognize that in the far field the macroscopic radiation

from the sample is approximately normal to the surface of the hemispherical detector. Therefore, we can

take the x and y components of the radiation field at each detector point:

Ex(θ, ϕ, ω) = sin(θ) cos(ϕ)E(θ, ϕ, ω) (1.17)

Ey(θ, ϕ, ω) = sin(θ) sin(ϕ)E(θ, ϕ, ω) (1.18)

This corresponds to projecting the diffraction data over a unit sphere onto the unit disk. However, in a

real experiment the detector loses all access to the phase information contained in this data and sees only

the modulus of Ex and Ey. This produces a diffraction image such as the one shown in Figure 1.4.

1.2.3 Image Generation

We now wish to recover information about the sample we are interested in from this diffraction image. One

may notice thatEequation (1.14) looks very similar to a discrete Fourier transform, and indeed in the field of

diffractive imaging one considers these far field diffraction patterns to be Fourier transforms of the near field

image of the object [14, 15]. In Coherent Diffractive Imaging (CDI) a beam of coherent light is scattered

off an object to produce a diffraction image like the one in Figure 1.4 using a setup shown in Figure 1.5. An

important difference between CDI and the method being explored in this thesis is that the images produced

in this thesis are generated directly from HHG radiation rather than scattering light off of atoms. While

conventional CDI will generally only use one frequency of light, HHG radiation gives us access to the entire

frequency range of an HHG spectrum. In effect this means that one experiment will generate a range of

diffraction images across the HHG spectrum. Regardless, we can pick out a diffraction image related to one

of these frequencies leaving the following process almost exactly analogous to CDI.

Knowing that the far field diffraction image should be the Fourier transform of the near field image, we

may wish to simply take the inverse Fourier transform to recover a near field image of our object. However,
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Figure 1.4: Diffraction pattern of the 7th harmonic generated by a 10x10 grid of hydrogen atoms with 300nm
interatomic spacing interacting with the field of an 800nm Gaussian beam of peak intensity 1014 W/cm2.kx
and ky are in units of inverse wavelength.

in reality a detector will only see the intensity of the diffraction data, and all the phase information will be

lost. This is problematic since there are many possible configurations of the object in the near field, ρ(r),

which we will henceforth call ”real space,” that could produce the diffraction intensities in the far field, ρ(k)

[14], which we will henceforth call ”Fourier space.”

Fortunately, the machinery for inverting diffraction images of these types has already been well devel-

oped by Gerchberg, Fienup and others [14, 15]. Phase reconstruction or phase retrieval is a method for

finding the real space signal generating a diffraction signal with a known modulus. The method operates

via iterative projections onto supports in real space and Fourier space. The support in Fourier space is given

by the diffraction data: Whatever the estimate of the real space image is, the magnitude of its Fourier trans-

form must match what is seen on the detector. To perform this projection we use the magnitude projection

operators given by

P̃m(k) =
√
I(k)eiφ(k) (1.19)
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Figure 1.5: Diagram of coherent diffraction imaging experimental setup, (taken from the UCLA Coherent
Imaging Group) [16]

Pm = F−1P̃mF (1.20)

where ρ(k) is the Fourier space estimate taken as the Fourier transform of the real space estimate ρ(r),

P̃m(k) is the magnitude projection operator in Fourier space, Pm is the magnitude projection operator in

real space, φ(k) is the phase of the Fourier space estimate, F is the Fourier transform, and I(k) is the

known diffraction intensity. In effect, this operator simply attaches the correct magnitude to the far field

phase generated by the real space object estimate.

The principle technique in phase reconstruction however is the real space constraint, often just referred to

as the ”Support.” The real space support is a region in the real space image where the signal is allowed to be

nonzero. The tighter the support is to the real space object, the smaller the space of possible configurations

of the object, and thus a quality reconstruction is more likely to be found [17]. It should be noted that

defining this support requires some apriori information about the object, which we will discuss later in this
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thesis. Taking this support for granted we can define the following support projection operator:

Ps(r) =


ρ(r) r ∈ S

0 r /∈ S

(1.21)

where Ps(r) is the support projection operator and S is the support region. In order to obtain a reconstruction

of the image, the initial image is taken randomly, and we successively apply the supports to converge on an

estimate of the real space object. This algorithm is sketched in Figure 1.6.

Figure 1.6: Diagram of phase reconstruction algorithm, (taken from the UCLA Coherent Imaging Group)
[16]
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CHAPTER 2

METHODS

2.1 Propagation of Radiation

The method for calculating the propagation of radiation results relatively directly from the simple forms

in Equations (1.16) and (1.14). To do so we establish a three dimensional array indexed by polar angle

θ, azimuthal angle ϕ, and frequency ω. We can then calculate the spectra produced at each detector point

indexed by unique set of θ and ϕ values for each atom j in parallel. These spectra are then added to find the

total macroscopic spectra. Here the linearity of electromagnetic radiation means that the entire propagation

step can be calculated in parallel in whatever data structure for organizing the values (ω, θ, ϕ) is most

computationally efficient since not only can the radiation for each atom be propagated in parallel, but it can

be done for each component of the field Eω. Furthermore each thread requires relatively little computing

power since only one value, aj(ω)e−iw
c
rj ·(r̂d−ŝL), needs to be calculated on each thread. Therefore in

general the propagation step can be easily scaled simply by employing more threads, even if used across

multiple computing nodes. For 2D diffraction patterns this type of scalability was not necessary, instead

all the propagation calculations in this thesis were performed on a single computing node with 24 threads.

However increasing the number of atoms in the lattice, or the fidelity of the images would both likely require

some more careful thought on how to best implement cross-node parallelization. We also note that all of

these calculations were performed with a detector at some arbitrary distance from the sample, therefore the

intensity values are also completely arbitrary. If one wishes to find some more physical values for the field,

one could simply scale the arbitrary values calculated by the prefactor in Equation (1.13).

2.2 Diffractive Imaging

The most important aspect of further analysis of these diffractive images is to arrange them into a data struc-

ture that reduces the computational expense throughout the phase retrieval process. In phase retrieval the

dominantly used operation will be Fourier and Inverse-Fourier transforms. The complexity of these oper-

ations can be vastly reduced by using the Fast Fourier Transform (FFT) algorithm. However this requires

that the array being transformed is sampled on a regular interval. There are two possible ways to approach
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this problem. Either this regular interval can be preselected in Cartesian coordinates, and then the corre-

sponding set of θ and ϕ coordinates can be used during the propagation step. Alternatively, a regular grid

of θ and ϕ can be used during the propagation step. In this case we can use Equations (1.18) and (1.17) to

project onto Cartesian coordinates, and then interpolate the data onto a regular grid. The former offers some

advantages when generating a large number of images since few steps are required to produce a Cartesian

resolved image from the propagation step, while the latter offers some advantages in parallelization during

the propagation step.

2.3 Phase Retrieval

Once a regularly-sampled Cartesian-resolved image is produced, we are ready to begin performing phase

retrieval. The iterative projection algorithm described in section 1.2.3 was created by Gerchberg in 1972

[14]. Since then, significant improvements have been made to resolve some of the issues inherent in this

algorithm, although iterative applications of support constraints remain core to almost all modern phase

retrieval algorithms [15]. It was shown that Gerchberg’s algorithm was equivalent to gradient descent error

reduction algorithms [15]. In the broader class of error reduction algorithms, the error is always reduced at

each step. In some contexts this property is desirable since it is guaranteed that the algorithm will converge.

However this convergence is not guaranteed to be on to the global minimum of error, equivalent to the true

image. Instead the algorithm may converge on some local minima from which it cannot escape, leading to

poor quality image reconstruction. Many modern phase reconstruction algorithms address this problem by

incorporating a ”feedback” mechanism, introducing some instability, allowing the algorithm to escape these

local minima. The work done in this thesis employs two of these feedback algorithms.

2.3.1 The Hybrid Input Output Method

The Hybrid Input Output algorithm (HIO) developed by Feinup [18] is the simplest implementation of this

feedback mechanism, described below.

ρ(n+1)(r) =


Pmρ(n)(r) r ∈ S

[I − βPm]ρ(n)(r) r /∈ S

, (2.1)
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where ρn(r) is the real space estimate at the nth iteration, Pm is the magnitude projection operator given in

Equation (1.20) and I is the identity operator and β is the feedback parameter. In the HI0 algorithm instead

of zeroing out everything outside of the real space support, we instead reduce the signal from the previous

iteration outside of the support. Although the HIO algorithm is not guaranteed to converge since it does not

monotonically decrease the error, the HIO algorithm has been shown to better reduce the error when it does

converge as compared to the basic Gerchberg algorithm [17].

2.3.2 The Difference Map Method

In 2002 Elsner was able to incorporate a variety of phase retrieval methods in a single algorithm, the Differ-

ence Map [19]. The form of this algorithm is described below.

ρ(n+1)(r) =I + Ps[(1 + γs)Pm − γsI]

− Pm[(1 + γm)Ps − γmI]ρ(n)(r)

, (2.2)

where γm and γs are additional feedback parameters. In this thesis we take γm = 1
β and γs = −1

β The

analysis used to create this algorithm is beyond the scope of this thesis, however Elsner was able to show

that with a positivity constraint (ρn(r) > 0) the difference map algorithm is especially effective at resolving

structures of around 100 atoms. While the positivity constraint will not be satisfied since the microscopic

spectra are complex valued, we will see later in this thesis that the algorithm remains effective.

We can see that the difference map algorithm employs many more operations and thus is more expen-

sive than the HIO algorithm, however as previously discussed, it has some properties that makes it better

suited for reconstructing the image of a sparse arrangement of atoms. Depending on how the algorithm is

implemented it may be more advantageous to employ a Difference Map algorithm which may take fewer

more expensive iterations, or an HIO algorithm which takes a larger number of cheaper iterations.

In practice, whether using HIO or DM, a small number of iterations of error reduction steps are used ev-

ery ten to twenty iterations of HIO/DM since this tends to give better convergence properties of ”exploring”

local minima ensuring the algorithm does at least begin to descend into these saddle points [17]. Further-

more, a larger number of error reduction iterations are often used at the very end of the algorithm to ensure

the solution has fully descended into the nearest local minimum in the error landscape.
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2.3.3 Optical Lattice Supports

The last step remaining before we can perform phase reconstruction is to set a real space support for the

optical lattice. Although we may not know where the atoms in the lattice are, we do know that the optical

lattice will bind whatever atoms are present into the lattice site. Therefore a good potential estimate for

the real space support would be a tight region around each lattice site, which should be relatively precisely

known to the experimentalists. This type of support is shown in Figure 2.1.

Figure 2.1: Real space support for phase reconstruction in an optical lattice.

We note that the region of support around each lattice site can be adjusted based on the wavelength being

used for the reconstruction. The size of the image of each atom can be estimated by using the inverse Fourier

transform of Equation (1.13), and the region of support can be taken to be around this size. This means that

the support around each site can be reduced when using images generated from higher harmonics.
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CHAPTER 3

RESULTS WITH STATIC SUPPORT

Using the method described in the previous Chapter, we have solved the TDSE for a set of 100 hydrogen

atoms in an optical lattice with 300 nm interatomic spacing interacting with the field of a 20 cycle pulse

with a sine-squared envelope at a wavelength of 800 nm, having a 30µm beam waist and a peak intensity of

1014 W/cm2. The laser was centered at the center of the optical lattice, and the lattice plane was placed at

the beam focus. Therefore, the peak intensity for each atom in the lattice was calculated using

Ir = I0 exp
(
−2r2

w2
0

)
(3.1)

where I0 is the peak intensity for the beam, r is the radial distance from the center of the focus, and w0 is

the beam waist. In the present study the field at each atom was taken to be the same field as the beam center,

i.e. Ir = I0. Since the beam waist is large compared to the interatomic spacing, we also approximated

the variation in carrier envelope phase to be negligible. These microscopic spectra were then propagated

into the far field and projected onto a regular Cartesian diffraction pattern via 2D interpolation across the

irregular diffraction image. We then performed phase reconstruction using the Difference Map method using

β = 0.7, with one iteration of error reduction every 10 iterations of Difference Map iterations, and 100 error

reduction iterations at the end of reconstruction. An example can be seen in Figure 3.1.

Here three regimes were specified: the highly filled regime where most of the lattice sites are filled

(90-100 filled sites); the half filled regime where around half of the cites are filled (45-55 filled sites), and

the sparsely filled regime (0-10 filled sites). For a specific reconstruction the number of filled sites in each

one of these regimes was chosen at random.

We see that in general the phase reconstruction will produce poor quality reconstructions in the highly

filled and sparsely filled regime, while the half-filled regime produces relatively accurate reconstructions. In

the highly filled regime this is likely because the object being reconstructed is still highly regular, which will

result in a very strong diffraction pattern. This means that the lower order features resulting from only a few

missing lattice sites will be more difficult to resolve, and the reconstruction will likely converge on an image

with all the lattice sites filled. Indeed, this is what we see in the bottom left of Figure 3.1. Interestingly, this
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Figure 3.1: Reconstructed images for optical lattices with different number of lattice cites filled using the
image generated by the seventh harmonic. From left to right; 96 filled sites, 47 filled sites, 9 filled sites

does mean that this type of static support for phase reconstruction discussed in section 2.3.3 will perform

very well if every lattice site is filled, since the only features present will be these strong high order features

produced by the completely regular object as can be seen in Figures 3.2 for a 1D regularly filled lattice and

3.3 for a 2D regularly filled lattice.

In fact, the Figures above were taken with an even looser support of a square region encompassing

the entire lattice. Even under this loose support, the strong diffraction magnitudes from the regularity of

the lattice forces the algorithm into the correct solution in very small number of iterations (less than 100).

This again shows that in the highly filled regime the algorithm will tend towards a reconstruction with all

the lattice sites filled. We note that the data in Figure 3.3 also show the behavior of the Difference Map

algorithm in avoiding local error minima, at around iteration step 20.

Conversely, for the sparsely filled regime, there will be many empty lattice sites. This means that most

of the support will be empty, and thus the support will be very loose. Essentially, we will encounter the same

issue that phase reconstruction attempts to address, there are many possible configurations of the lattice, even

within the support, that may produce the diffraction data seen, and the algorithm is likely not to converge to

20



Figure 3.2: Phase reconstruction of a 1D lattice of 10 hydrogen atoms using the 7th harmonic and a Dif-
ference Map method with static support. Shown are the diffraction data (a), he magnitudes of the true real
space data taken as the inverse Fourier transform of the diffraction data with phase (b), final reconstruction
(c) and static support of a bounding box around the optical lattice (d), and the error over iterations (e)

the true image.

For the half filled regime, there is just enough missing lattice cites to break up the regularity in the

object, but not so many that the support becomes too loose to be effective. In this case we generally see

good quality reconstructions.
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Figure 3.3: Same as Figure 3.2 but for a 2D lattice of 10× 10 hydrogen atoms.

Thus, we see that the support is largest determining factor in the quality of a reconstruction [20]. Our

initial strategy of determining a static support using only information about the lattice sites is thus not an

effective strategy for performing phase reconstruction.
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CHAPTER 4

DYNAMIC SUPPORT

We now address the issue of determining better real space supports for the phase reconstruction process.

One potential strategy could be to use results from other techniques such as fluorescence imaging of the

lattice, to determine which sites are occupied, use this to determine a support only around each one of those

sites, and then performing HHG diffractive imaging with phase reconstruction to develop a much higher

definition image. However, the topic of fluorescence imaging is outside the scope of this thesis, and we

instead focus on generating high definition images with as little a-priori information about the sample as

possible.

To do this we wish to find a method for adjusting the support to each one of these regimes in order to

more consistently generate high quality reconstruction. Again, fortunately some techniques in this regard

have already been developed to address similar support issues in other areas of coherent diffractive imaging.

4.1 Shrink Wrapping: Concept and Implementation

Shrink wrapping is a method for dynamically adjusting the support throughout the reconstruction process

so that a support can be determined without a-priori information about the sample aside from its diffraction

magnitudes [21]. The technique works as follows:

1. Blur the current real space estimate of the object.

2. Take the new support to be the pixels above some intensity cutoff.

3. Continue reconstruction with the new support.

In this way, each time shrink wrapping is applied the support should ”shrink” around the real space object

as it is exemplified in Figure 4.1.

To blur the real space image we apply a Gaussian filter to our image which can be defined as follows:

g(r) = exp(− r2

2σ2
) , (4.1)
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Figure 4.1: Phase reconstruction of gold pellets with shrink wrapping. (a) The diffraction pattern of the
object. (b,c,d) Evolution of reconstruction and support with shrink wrapping with the left inset being the re-
construction at the iteration and the right inset being the support. The quality of the reconstruction increases
substantially as the support grows tighter to the gold pellets seen in (d) (taken from Marchesini et al. [21]).

where g(r) is a Gaussian with σ being the standard deviation or ”width”. Then to blur the image with this

filter we use

ρblur(r) = (ρ ∗ g)(r) = F−1(F((r))F(g(r))) . (4.2)

More simply put, we convolute the Gaussian with the current estimate, where σ is a parameter that

characterizes how much the image is blurred. In order to produce the new support we apply

sshrink(r) =


1 |ρblur(r)|

max|(ρblur| ≤ c

0 |ρblur(r)|
max|(ρblur| > c

, (4.3)

where c is the intensity cutoff taken as some fraction of the maximum intensity of the blurred real space

estimate.

We note with σ → 0, g(r) will begin to approach a delta function in which case ρblur(r) = ρ(r). In

this case the shrink wrapping step will adjust the support to be the pixels below some intensity cutoff of the

current image without blurring. We can see that this may be problematic since if we were to reach a true

reconstruction of the image, we would begin removing pixel below this cutoff and subsequently converge

on an incorrect reconstruction. Therefore, if σ is taken too small we are likely not get good convergence

behavior. Conversely, if the blurring is taken to be too large, then the entire image will have about the same

intensity and none of the object structure will be seen in the shrink wrapping step. Determining the σ range

in which we get good shrink behaviour will thus depend somewhat on the object being reconstructed itself.
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We also note that there must be some spacing between shrinking wrapping iterations in order to get

good convergence properties. This is because if shrink wrapping is performed at each step the algorithm

will have little time to approach the closest local minimum before the support is changed, likely displacing

the estimate from this minimum. Conversely, if shrink wrapping is performed too infrequently, then we lose

the benefits of dynamic support updating. In general, a good frequency of shrink wrapping iterations will be

around every 10-100 iterations [21].

4.2 Results with Shrink Wrapping

We applied Shrink Wrapping using a Difference map method with a Gaussian filter of 2 pixels width with

Shrink Wrapping performed every 100 iterations of Difference Map iterations for both 2D and 1D lattices

which are shown in the Figures below.

Figure 4.2: Reconstructions of a 10 × 10 lattice of hydrogen atoms in three different regimes with 300 nm
interatomic spacing using the seventh harmonic with a Difference Map method and Shrink Wrapping.

We first note that using this technique we were able to generate near perfect reconstructions up to trans-
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lation, reflection, and a global phase factor, which are considered to be equivalent images. This technique

was successful in all three regimes described previously as can be seen in Figure 4.2.

Figure 4.3: Reconstruction behaviour over time for a 1D lattice of 9 hydrogen atoms using the seventh
harmonic and a Difference Map method with Shrink Wrapping including the error over time (top row),
reconstruction over time (middle row), and support over time (bottom row)

The reconstruction behaviour for both 1D and 2D lattices are shown in Figures 4.3 and 4.4 where the

evolution of the support and corresponding reduction in error of the reconstruction are shown. One can see
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Figure 4.4: Same as Figure 4.3 for a 2D lattice of 53 hydrogen atoms.

large spikes in the error which correspond to these Shrink Wrapping steps, which are followed by steep

reductions in error. This type of behaviour again shows how the quality of support can drastically change

the convergence properties of the reconstruction. For the 1D case in Figure 4.3 one atom was removed to

ensure the algorithm could resolve lower order features even in highly regular objects, the success of which

can be seen in Figure 4.5
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Figure 4.5: Phase reconstruction of 1D lattice with one empty site.
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The number of iterations to reach convergence was significantly higher in the 2D case than in the 1D

case, which is expected since in the 2D reconstruction we must resolve N2 pixels as compared to the N

pixels of the 1D case at the same resolution. Furthermore, a Gaussian filter with a width of 2 pixels was

applied in both the 1D and 2D cases which agrees with findings by Marchesini et al. [17]. For the 1D case

a Shrink Wrapping threshold of c = 0.4 was used, while in the 2D case c = 0.2 was used. These values

were determined by scanning the quality of reconstructions over the two dimensional parameter space of

Gaussian filter width and Shrink Wrapping threshold.
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CHAPTER 5

OUTLOOK

5.1 3D Imaging

While this thesis only explored 2D images of lattices, in principle all of the techniques can be extended

to imaging of 3D lattices. To do this, one must generate a diffraction volume of the sample rather than a

diffraction image. Importantly, this can be done using a nearly identical experimental setup to the one used

in 2D imaging. However, the object of interest must be rotated in order to gain the necessary information to

perform this type of imaging. The technique works by stitching together 2D diffraction planes at a range of

angles into a diffraction volume [22] as can be seen in Figure 5.1.

5.1.1 Diffraction Volumes

To perform such calculations we would pick a set of diffraction planes which will form the diffraction

volume. The volume can then be defined uniquely as the tangent space to the unit sphere for some angles

θplane and ϕplane. One then either rotates the sample into this plane or the laser propagation direction

normal to the plane accordingly. The diffraction image can be calculated exactly as before. Each point

in the diffraction image can be matched with a point on the diffraction sphere using the equations below.

Without loss of generality the laser propagation direction is picked to be in the ẑ-direction and the rotation

direction has been chosen to be around the x-axis. In this case the coordinate transformations are relatively

simple.

Ex′ = Excos(θ)

Ey′ = Ey

Ez′ = Ezsin(θ)

, (5.1)

where the unprimed coordinates are the coordinates taken from each 2D diffraction image as before, the

primed coordinates are the coordinates of the diffraction volume, and θ is the degree of rotation around the

x-axis.
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Figure 5.1: Schematic layout of 3D X-ray diffraction (taken from H. Jiang et al. [22]).
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We also note that for the 3D lattice one must now consider the field distribution of the laser in 3D, i.e.

I(r, z, ω) = I0

(
w0

w(z)

)2

exp

(
−2r2

w(z)2

)

w(z) = w0

√
1 +

(
z

zR

)2

zR =
πw2

0n

λ

, (5.2)

where z is the distance from the focus along the beam and zR is the Rayleigh range.

5.1.2 Computational Considerations

Generating these 3D diffraction volumes inherently carries some computational hurdles not present with

2D diffraction images. First, new microscopic spectra much be calculated for each atom in the lattice for

every 2D snapshot since the laser field including polarization direction and spatial profile will change as the

beam is rotated relative to the sample. Furthermore, if one wish to maintain the same resolution in these

3D diffraction volumes as for the 2D diffraction images than the number of snapshots must be similar to the

number of desired pixels in each 2D slice of the diffraction volume.

This introduces compounding computational complexity. First, the microscopic spectra must be recal-

culated for every snapshot, and the spectra must also be propagated into the far field for each snapshot.

This can be an issue since even a relatively course resolution such as 300 × 300 pixels would mean that

calculating a 3D volume of 300× 300× 300 pixels, which will be 300 times as computationally expensive.

With a 10× 10× 10 lattice of atoms this quickly becomes increasingly difficult to calculate directly, since it

requires 3000 times as many computations as the 2D image of the 10× 10 lattice. Therefore, we must find

a way to reduce the computational complexity of this process. We note that the propagation step is much

faster than the TDSE step and can be more easily parallelized as discussed previously. Because of this we

focus on how to speed up the computations of the TDSE step needed for finding the microscopic spectra.

In the next subsection we outline an alternative (approximative) method to the computationally intensive

TDSE calculations.
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5.2 Strong Field Approximation

An alternative to the TDSE is called the ”Strong Field Approximation (SFA)” or ”Semiclassical Approx-

imation.” The SFA seeks to decrease the complexity of finding the dipole of the electron wave function

D⃗(t) = ⟨Ψ(r⃗, t)| d⃗
∣∣∣Ψ(⃗⃗r, t)

〉
as compared to a fully quantum-mechanical TDSE calculation by reducing

the problem to the semiclassical model discussed in the text along with Figure 1.3. To reiterate, this model

includes 3 steps:

1. Tunnel Ionization into the continuum.

2. ”Classical” propagation of the electron in continuum subject only to the laser field.

3. Recombination and photoemmision of the electron with its parent nucleus.

We represent this process via the following integral expression [23]

D⃗(t) = i

∫ t0

t
dt′

∫
dp d∗(p+A(t))e−iS(p,t,t′)E(t′)d(p+A(t′)) , (5.3)

where t0 is the ionization time of the electron, t is the recombination time, p is the momentum of the

electron, E is the electric field, A is the vector potential, S(p, t, t′) is the action of the electron, and d(p+

A(t)) is the dipole transition matrix element from the ground state to a continuum state with momentum

p+A(t). The classical action is the kinetic energy minus the potential energy of the electron which can be

written as

S(p, t, t′) =
1

2

∫ t

t′
[p+A(t)]2dτ + Ip(t− t′) , (5.4)

This is directly equivalent to the classical action picked up by a charged particle with initial momentum p

under the effects of a vector potential A from time t to t′. The dipole transition element is defined as

d(p+A(t)) = ⟨p+A(t)| d̂ |g⟩ , (5.5)

where ⟨p+A(t)| is the continuum state, d̂ is the dipole operator and |g⟩ is the ground state. For the hydrogen

atom an exact analytic form for these transition elements can be found, however for other species these

matrix elements will need to be calculated numerically. Fortunately, these elements can be precomputed

since they depend only on the ionic potential and not on the laser parameters, and therefore make negligible
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contributions to the computational cost.

The expression for the SFA in Equation (5.3) essentially states to sum over all the ways the electron can

ionize, propagate, and recombine while attaching the correct phase to each one of these processes. Although

this may seem rather ad hoc, this form for the dipole D(t) can be explicitly derived from splitting the full

electron wave function into a non-interacting component and interacting component. One can then make

the approximation that during the propagation pf the electron in the strong field, the ionic potential should

be negligible to the laser potential and can be disregarded in the interacting component [23].

While this approximation massively reduces the complexity of calculating the dipole as compared to the

full TDSE since we do not need to calculate a full wave function at each time step, it is still rather expensive

since we must integrate over all momenta and ionization times for each time step.

5.2.1 The Stationary Phase Approximation

We can further reduce the complexity of the calculation by noting that the action in Equation (5.4) will

in general vary rapidly with respect to the momentum p. This means integrating over the momenta the

phases associated with the action will tend to cancel out except when the action varies slowly with respect

to p. It can be proven rigorously in these situations, using what is called stationary phase or saddle point

approximation, that the dominant contributions to the momentum integral will arise only when the rate of

change of the phase is zero, i.e. for the saddle points of the action with respect to p [23].

Therefore, we can reduce the momentum integral to just a single momentum at each point where the

action is minimized.

∂S

∂p
= 0

=
∂

∂p

[
1

2

∫ t

t′
[p2 + 2p ·A(τ) +A(τ)2]dτ + Ip(t− t′)

]
= (t− t′)p+

∫ t

t′
A(τ)dτ

. (5.6)

Solving for p we find the saddle point momentum ps to be

ps(t, t
′) = − 1

t− t′

∫ t

t′
A(τ)dτ . (5.7)
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The form for the dipole in Equation (5.3) then becomes

D⃗(t) = i

∫ t0

t
dt′ d∗(ps(t, t

′) +A(t))e−iSs(t,t′)E(t′)d(ps(t, t
′) +A(t′)) . (5.8)

We note that if the dipole time step ∆t is taken to be the same as the integral time step ∆t′ , then one can

essentially precompute the saddle point momenta ps(t, t
′) by precomputing some array A(t) =

∫ t
0 A(τ)dτ

since there will be a large amount of redundancy from the time integral of the vector field in calculating

the saddle point momentum for each combination of ionization and recombination times. However, there

is more work to be done to show if using this time step reduction is a numerically stable and effective way

of employing the saddle point approximation. A potential source of error could be that D(t) at small t will

be calculated over relatively few integration steps, while at large t steps it will be calculated over many

integration steps, and thus may be better converged.

Regardless, this method offers some unique advantages in that it can be used with any well defined vector

potential, regardless of beam shape or laser parameters, which may make it better suited for extending these

type of calculations for exploring imaging methods such as Ptychography [24] . However, the SFA has been

shown to poorly agree with full TDSE calculations at the lowest harmonics, and thus may only be suited for

high frequency imaging calculations. We also note that these SFA calculations are well suited for other areas

of macroscopic HHG research including those with more complex fields such as cross-polarized setups or

elliptically polarized laser where large number of TDSE calculations can become intractable.
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