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Abstract. Software architectures shift the focus of developers from lines-of-
code to coarser-grained components and their interconnected structure. Unlike
fine-grained objects, these components typically encompass business functional-
ity and need to be aware of the underlying business processes. Hence, the inter-
face of a component should reflect relevant parts of the business process and the
software architecture should emphasize the coordination among components. To
shed light on these issues, we provide a framework for component-based software
architectures focussing on the process perspective. The interface of a component
is described in terms of Petri nets and projection inheritance is used to determine
whether a component “fits”. Compositionality and substitutability are key issues
for component-based development. This paper provides new results to effectively
deal with these issues.

1 Introduction

Research in the domain of component-based software architectures [21,22] developed
along two lines. On the one hand, there are contributions focussing on a formal foun-
dation for the definition of software architectures. Examples are the many Architec-
ture Definition Languages (ADLs), e.g., ARMANI, Rapide, Darwin, Wright, and Ae-
sop, that have been proposed (cf. [17]). Another example is the extension of UML
based on the ROOM language [20] which allows for the specification of capsules (i.e.,
components), subcapsules, ports, connectors, and protocols. On the other hand, more
pragmatic approaches focusing on concrete infrastructures have been developed. These
approaches typically deploy middleware technology such as ActiveX/DCOM, CORBA,
and Enterprise JavaBeans or focus on proprietary architectures such as the ones used for
Enterprise Resource Planning (ERP) systems (e.g., SAP R/3 middleware). Both lines of
research are characterized by a focus on the component interface and the coordination
between components rather than the inner workings of components. The ultimate goal
is that information systems can be assembled from large-grained components based on
a thorough understanding of the business processes without detailed knowledge of the
inner workings of fine-grained components (i.e., objects) [22].



In this paper, we focus on the dynamic behavior of components rather than the pass-
ing of data, the signature of methods, and naming issues. Therefore, we use Petri nets
[19] to describe the interfaces between components. Figure 1 illustrates the notion of
component we will use throughout this paper. A component has a Name and a Compo-
nent Specification (CS). The CS gives the functionality provided by the component and
is specified in terms of a particular variant of Petri nets [2] called C-nets. The internal
structure of a component is given by a Component Architecture (CA). The CA may re-
fer to other components by using Component Placeholders (CPs). Every CP describes
the functionality of a component used in the CA in terms of a C-net. A component is
atomic if it contains no other components, i.e., there are no CPs in its architecture. A
System Architecure (SA) is a set of interconnected components, i.e., CPs are linked to
concrete components.
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Fig. 1. A component consists of a component interface, a component architecture, and component
placeholders.

The framework illustrated in Figure 1 is used to address one of the key issues of
component-based software development: consistency. A component is consistent if, as-
suming the correct operation of the components that are used, its architecture actually
provides the functionality specified in the CS. A SA is consistent if its components are
consistent and every CP is mapped onto a component which actually provides the func-
tionality specified in the CP. This paper uses the notion of projection inheritance (4,
8] to check whether a component actually provides the external behavior required. The
inheritance notion is equipped with concrete inheritance-preserving design patterns and
allows for modular conformance testing of the SA. Moreover, the replacement of one
component by another is supported in two ways: (1) projection inheritance can be used
to test locally whether the new component has the desired behavior, and (2) the trans-
fer rules defined in [5] allow for automatic on-the-fly reconfiguration (i.e., migration
while the component is active) by mapping the state of the old component onto the new
component.

The remainder of the paper is organized as follows. First, we introduce the notions
this works builds upon (i.e., Petri nets, C-nets, soundness, branching bisimulation, and



projection inheritance). Then, we introduce the framework for component-based soft-
ware architectures followed by the main result of this paper: the proof that a consistent
SA actually provides the external behavior it promises. To conclude, we point out some
related work and discuss future extensions.

2 Preliminaries

2.1 Place/Transition nets

In this section, we define a variant of the classic Petri-net model, namely labeled Place/-
Transition nets. For a more elaborate introduction to Petri nets, the reader is referred to
[10,18,19]. Let U be some universe of identifiers; let L be some set of action labels.
L, = L\{r} is the set of all visible labels. (The role of 7, the silent action, will be
explained later.)

Definition 1 (Labeled P/T-net). 4 labeled Place/Transition net is a tuple (P, T, M, F, {)
where:

. P C U is a finite set of places,

. T C U is afinite set of transitions such that PNT = {),

. M C L, is afinite set of methods such that M N (P UT) =,

. FC(PxT)U(T x P) is a set of directed arcs, called the flow relation, and
. 0:T — M U{r} is alabeling function.

A o N~

Each transition has a label which refers to the method or operation that is executed if the
transition fires. However, if the transition bears a 7 label, then no method is executed.
Note that there can be many transitions with the same label, i.e., executing the same
method.

Let (P, T, M, F, ) be a labeled P/T-net. Elements of P UT are referred to as nodes.
Anode z € P UT is called an input node of another node y € P U T if and only
if there exists a directed arc from x to y; that is, if and only if xF'y. Node z is called
an output node of y if and only if there exists a directed arc from y to z. If z is a
place in P, it is called an input place or an output place; if it is a transition, it is called
an input or an output transition. The set of all input nodes of some node z is called
the preset of z; its set of output nodes is called the postser. Two auxiliary functions
e_ o : (PUT) — P(PUT) are defined that assign to each node its preset and postset,
respectively. For any node z € PUT, ez = {y | yFz} and ze = {y | xFy}. Note
that the preset and postset functions depend on the context, i.e., the P/T-net the function
applies to. If a node is used in several nets, it is not always clear to which P/T-net the
preset/postset functions refer. Therefore, we augment the preset and postset notation

with the name of the net whenever confusion is possible: o is the preset of node z in
N . .

net NV and z e is the postset of node = in net V.

Definition 2 (Marked, labeled P/T-net). 4 marked, labeled P/T-net is a pair (N, s),

where N = (P, T, M, F,{) is a labeled P/T-net and where s is a bag over P denoting

the marking (also called state) of the net. The set of all marked, labeled P/T-nets is
denoted N.



For some bag X over alphabet A and a € A, X (a) denotes the number of occurrences
of a in X, often called the cardinality of @ in X . The set of all bags over A is denoted
B(A). The empty bag, which is the function yielding 0 for any element in A, is denoted
0. For the explicit enumeration of a bag we use square brackets and superscripts to
denote the cardinality of the elements. For example, [a?, b, ¢®] denotes the bag with two
elements a, one b, and three elements c. In this paper, we allow the use of sets as bags.

Definition 3 (Transition enabling). Let (N, s) be a marked, labeled P/T-net in N,
where N = (P,T,M, F,{). A iransition t € T is enabled, denoted (N, s)[t), if and
only if each of its input places p contains a token. That is, (N, s)[t) & et < s.

If a transition ¢ is enabled in marking s (notation: (N, s)[t}), then ¢ can fire. If, in
addition, ¢ has label a (i.e., a = {(t) is the associated method, operation, or observable
action) and firing ¢ results is marking s’, then (V, s) [a) (IV, s') is used to denote the
potential firing.

Definition 4 (Firing rule). The firing rule _ [} - C N X L x N is the smallest relation
satisfying for any (N, s) in N, with N = (P,T, M, F,{), andanyt € T,
(N,5)[t) = (N, 5) [£()) (N, 5 — ot + o),

Definition 5 (Firing sequence). Ler (N, s¢) with N = (P,T, M, F,{) be a marked,
labeled P/T-net in N'. A sequence o € T* is called a firing sequence of (N, so) if
and only if ¢ = € or, for some positive natural number n € IN, there exist markings
S1s...,8n € B(P) and transitions t1, ... ,t, € T such thatoc = t; ...t, and, for all i
withQ <1 < n, (N,8;)[ti41) and s;41 = 8; — et;p1 +tir18. Sequence o is said to be
enabled in marking so, denoted (N, so)[0). Firing the sequence o results in the unique
marking s, denoted (N, so) [o) (N, 3), where s = s¢ if 0 = € and s = s, otherwise.

Definition 6 (Reachable markings). The set of reachable markings of a marked, la-
beled P/T-net (N,s) € N with N = (P,T, M, F,{), denoted [N, s), is defined as the
set{s' € B(P)| (3o :0€T*:(N,s)[o) (N,s')}.

Definition 7 (Connectedness). 4 labeled P/T-net N = (P, T, M, F, {) is weakly con-
nected, or simply connected, if and only if, for every two nodes x and y in P U T,
xz(F U F~Y)*y. Net N is strongly connected if and only if, for every two nodes x and y
inPUT, xF*y.

Definition 8 (Directed path). Let (P, T, M, F, {) be a labeled P/T-net. A path C from a
node ny to a node ny, is a sequence (ny,Na, . .., ng) such thatn;Fn;q forl <i < k-
1. C is elementary if and only if for any two nodes n; andnj on C, i # j = n; # n;.
C' is non-trivial iff it contains at least two nodes.

Definition 9 (Union of labeled P/T-nets). Ler Ny = (Py, To, Mo, Fo, £o) and Ny =
(Py, Ty, My, Fi, £y) be two labeled P/T-nets such that (Py U Py) N (To UTY) = B and
such that, for all t € To N Ty, €o(t) = £1(t). The union Ng U Ny of Ng and Ny is
the labeled P/T-net (PO UP,ToUTy,Fy U Fy, 6y U €1) If two P/T-nets satisfy the
abovementioned two conditions, their union is said to be well defined.



Definition 10 (Boundedness). 4 marked, labeled P/T-net (N,s) € N is bounded if
and only if the set of reachable markings [N, s) is finite.

Definition 11 (Safeness). 4 marked, labeled P/T-net (N,s) € N with N = (P,T, M,
F,¢) is safe if and only if, for any reachable marking s' € [N, s) and any placep € P,
s'(p) < 1.

Definition 12 (Dead transition). Let (N, s) be a marked, labeled P/T-net in N'. A tran-
sition t € T is dead in (N, s) if and only if there is no reachable marking s' € [N, s)
such that (N, s')[t).

Definition 13 (Liveness). 4 marked, labeled P/T-net (N, s) € N with N = (P, T, M, F,
£) is live if and only if, for every reachable marking s' € [N, s) and transitiont € T,
there is a reachable marking 8" € [N, s') such that (N, s")[t).

2.2 Component nets

For the modeling of components we use labeled P/T-nets with a specific structure. We
will name these nets component nets (C-nets).

Definition 14 (C-net). Let N = (P, T, M, F, {) be a labeled P/T-net. Net N is a com-
ponent net (C-net) if and only if the following conditions are satisfied:

1. instance creation: P contains an input (source) place i € U such that ei = ),

2. instance completion: P contains an output (sink) place o € U such that oe = {),

3. connectedness: N = (P, T U {t}, M, F U {(0,1), (£,4)},£ U {(f,7)}) is strongly
connected, and

4. visibility: for any t € T such that t € (ie U e0). £(t) € L,,.

Note that the connectedness requirement implies that there is one unique source and
one unique sink place. For the readers familiar with the work presented in [1-3]: C-
nets are WF-nets with the additional requirement that the start transitions ¢e and end
transitions e o have a non-7 label. The structure of a C-net allows us to define the
following functions.

Definition 15 (source, sink, start, stop, strip). Let N = (P, T, M, F,£) be a C-net.

source(N) is the (unique) input place i € P such that i = ),

sink(N) is the (unique) output place o € P such that oe =,

start(N) = {t € T | i € ot} is the set of start transitions,

stop(N) = {t € T'| o € te } is the set of stop transitions, and

strip(N) = (P, T,M,FN((P' x T)U(T x P")),£) with P' = P\{source(N),
sink(N)} is the C-net without source and sink place.

SR~

Definition 14 only gives a static characterization of a C-net. Components will have a
life-cycle which satisfies the following requirements.

Definition 16 (Soundness). 4 C-net N with source(N) = i and sink(N) = o is said
to be sound if and only if the following conditions are satisfied:'

! Note that [i] and [0] are bags containing the input respectively output place of N.



safeness: (N, [i]) is safe,

proper completion: for any reachable marking s € [N, [i]), o € s implies s = [0),
completion option: for any reachable marking s € [N, [i]), [o] € [N, s), and

4. dead transitions: (N, [i]) contains no dead transitions.

W~

The set of all sound C-nets is denoted C. The first requirement states that a sound C-net
is safe. The second requirement states that the moment a token is put in place o all the
other places should be empty, which corresponds to the termination of a component
without leaving dangling references. The third requirement states that starting from the
initial marking [¢], i.e., activation of the component, it is always possible to reach the
marking with one token in place o, which means that it is always feasible to termi-
nate successfully. The last requirement, which states that there are no dead transitions,
corresponds to the requirement that for each transition there is an execution sequence
activating this transition.

Theorem 1 (Characterization of soundness). Let N = (P, T, M, F, £) be a C-net
and N = (P, TU{t}, FU{(0,1), (%,i)},LU{(t,7)}) the short-circuited version of N.
N is sound if and only if (N, [1]) is live and safe.

Proof. The proof is similar to the proof of Theorem 11 in [1]. The only difference is
that in this paper a stronger notion of soundness is used, which implies safeness rather
than boundedness of the short-circuited net. O

The fact that soundness coincides with standard properties such as liveness and safeness
allows us to use existing tools and techniques to verify soundness of a given C-net.

Lemma 1. Let N = (P, T, M, F,{) be a sound C-net, i.e., N € C. Foranyt € T,
(i) if i = source(N) and t € start(N), then ot = {i}, and (ii) if o = sink(N) and
t € stop(N), then te = {o}.

Proof. See [3]. O

The alphabet operator « is a function yielding the set of visible labels of all transitions
of the net that are not dead.

Definition 17 (Alphabet operator o). Let (N, s) be a marked, labeled P/T-net in N,
with N = (P,T,M, F,0). a : N — P(Ly,) is a function such that a(N,s) = {£(t) |
t € T AL(L) # 7 Atisnot dead}.

Since sound C-nets do not contain dead transitions, (N, [¢]) equals {£(¢) | t € T A
£(t) # T}, which is denoted by a(N).

2.3 Branching bisimilarity

To formalize projection inheritance, we need to formalize a notion of equivalence. In
this paper, we use branching bisimilarity [11] as the standard equivalence relation on
marked, labeled P/T-nets in \V.

The notion of a silent action is pivotal to the definition of branching bisimilarity.
Silent actions are actions (i.e., transition firings) that cannot be observed. Silent actions



are denoted with the label 7, i.e., only transitions in a P/T-net with a label different from
7 are observable. Note that we assume that 7 is an element of L. The 7-labeled tran-
sitions are used to distinguish between external, or observable, and internal, or silent,
behavior. A single label is sufficient, since all internal actions are equal in the sense that
they do not have any visible effects.

In the context of components, we want to distinguish successfuul termination from
deadlock. A termination predicate defines in what states a marked P/T-net can terminate
successfully. If a marked, labeled P/T-net is in a state where it cannot perform any
actions or terminate successfully, then it is said to be in a deadlock. Based on the notion
of soundness, successful termination corresponds to the state with one token in the sink
place.

Definition 18. The class of marked, labeled P/T-nets N is equipped with the following
termination predicate: | = {(N,[0]) | N is a C-net A o = sink(N)}.

To define branching bisimilarity, two auxiliary definitions are needed: (1) a relation
expressing that a marked, labeled P/T-net can evolve into another marked, labeled P/T-
net by executing a sequence of zero or more 7 actions; (2) a predicate expressing that a
marked, labeled P/T-net can terminate by performing zero or more 7 actions.

Definition 19. The relation . —> _ C N x N is defined as the smallest relation
satisfying, for any p,p’,p" € N,p=pand (p = p' Ap' [1)D") = p=p".

Definition 20. The predicate || - C N is defined as the smallest set of marked, labeled
P/T-nets satisfying, for any p,p' € N, Lp = Uypand UpAp' [7)p) = Ip.

Let, for any two marked, labeled P/T-nets p,p’ € N and action @ € L, p [(«)) p’ be an
abbreviation of the predicate (& = 7Ap = p') Vp[a) p'. Thus, p[(7)) p’ means that zero
7 actions are performed, when the first disjunct of the predicate is satisfied, or that one
T action is performed, when the second disjunct is satisfied. For any observable action
a € L\{r}, the first disjunct of the predicate can never be satisfied. Hence, p [(a)) p’ is
simply equal to p [a) p', meaning that a single a action is performed.

Definition 21 (Branching bisimilarity). 4 binary relation R C N x N is called a
branching bisimulation if and only if, for any p,p',q,q' € N and o € L,

1. pRgApla)yp' =

(3d,¢": ¢.¢" e N: q=¢"N¢"[(@)) ¢ ANPRG" AP'Rq"),
2. pRgAqlayq =

@, 00 eN:p=p"AD [(a) P ANP"RgADP'RY'), and
3 pRe=> {Up=>Ugnlg={p).

Two marked, labeled P/T-nets are called branching bisimilar, denoted p ~y g, if and
only if there exists a branching bisimulation R such that pRRq.

Figure 2 shows the essence of a branching bisimulation. The firing rule is depicted by
arrows. The dashed lines represent a branching bisimulation. A marked, labeled P/T-
net must be able to simulate any action of an equivalent marked, labeled P/T-net after
performing any number of silent actions, except for a silent action which it may or may



Fig. 2. The essence of a branching bisimulation.

not simulate. The third property in Definition 21 guarantees that related marked, labeled
P/T-nets always have the same termination options.

Branching bisimilarity is an equivalence relation on AV, i.e., ~y is reflexive, sym-
metric, and transitive. See [8] for more details and pointers to other notions of branching
bisimilarity.

2.4 Inheritance

In [4, 5, 8] four notions of inheritance have been identified. Unlike most other notions
of inheritance, these notions focus on the dynamics rather than data and/or signatures of
methods. These inheritance notions address the usual aspects: (1) substitutability (Can
the superclass be replaced by the subclass without breaking the system?), (2) subclass-
ing (implementation inheritance: Can the subclass use the implementation of the super-
class?), and (3) subtyping (interface inheritance: Can the subclass use or conform to the
interface of the superclass?). The four inheritance notions are inspired by a mixture of
these three aspects.

In this paper, we restrict ourselves to one of the four inheritance notions: projec-
tion inheritance. In the future we hope to extend our component framework with other
notions of inheritance (cf. Section 5). The basic idea of projection inheritance can be
characterized as follows.

If it is not possible to distinguish the behaviors of x and y when arbitrary meth-
ods of z are executed, but when only the effects of methods that are also present
iny are considered, then x is a subclass of y.

For projection inheritance, all new methods (i.e., methods added in the subclass) are
hidden. Therefore, we introduce the abstraction operator 7; that can be used to hide
methods.

Definition 22 (Abstraction). Let N = (P, T, M, F, {y) be a labeled P/T-net. For any
I C L, the abstraction operator Ty is a function that renames all transition labels in
I to the silent action T. Formally, 71(N) = (P,T, M, F, {y) such that, for any t € T,
Lo(t) € I implies £1(t) = T and Ly(t) & I implies £1(t) = Lo(t).

The definition of projection inheritance is straightforward, given the abstraction opera-
tor and branching bisimilarity as an equivalence notion.



Definition 23 (Inheritance). For any two sound C-nets Ny and Ny in C, Ny is a sub-

class of No under projection inheritance, denoted N1 <p; No, if and only if there is an
I C Ly such that (t1(Ny), [i]) ~b (No, [1]).

Based on this notion of inheritance we have defined three inheritance-preserving trans-
formation rules. These rules correspond to design patterns when extending a superclass
to incorporate new behavior: (1) adding a loop, (2) inserting methods in-between exist-
ing methods, and (3) putting new methods in parallel with existing methods. Without
proof we summarize some of the results given in [4, 5, 8].

Theorem 2 (Projection-inheritance-preserving transformation rule PPS).
Let Ng = (Py, Ty, Mo, Fo, o) be a sound C-net in C. If N = (P,T,M,F, () is a
labeled P/T-net with place p € P such that

1. pg {i,o}, RLNP={p}, ToNT =1,
2. (Vt:teT:Lt) ¢ a(Ng)),

3. (Vt:teTApe ot L(t) #T),

4. (N,[p)) is live and safe, and

5. N1 = Ny U N is well defined,

then N1 is a sound C-net in C such that N1 <pp No.

Theorem 3 (Projection-inheritance-preserving transformation rule PJS).
Let Ng = (Py,To, My, Fy, o) be a sound C-net in C. f N = (P,T,M,F,{) is a
labeled P/T-net with place p € P and transition t, € T such that

1. p&{i,o}, NP ={p}, ToNT = {t,}, (tp,p) € Fo, and Iftp = {p},

2. (Vt:teT\Tp: £(t) & a(No)),

3. (N,[p)) is live and safe, and

4. N1 = (P, To, Mo, Fo\{(tp,p)},%o) U (P, T, M, F\{(p, tp)}, ) is well defined,

then N1 is a sound C-net in C such that N1 <p; Ng.

Theorem 4 (Projection-inheritance-preserving transformation rule PJ35).

Let Ng = (Py, Ty, Mo, Fo, o) be a sound C-net in C. Let N = (P,T, M, F,l) be a
labeled P/T-net. Assume that q € U is a fresh identifier not appearing in Po UToUPUT.
If N contains a place p € P and transitions t;,t, € T such that

1 sp={t},p% = {t},

2. PBoNP=0TonT = {tz',to},

3. (Vt:teT\Tp: £(t) & a(Ny)),

4. (N,[p)) is live and safe,

5. Np = NoU (P\{p}aT7 F\{(pa ti)7 (to,p)}vg) is Welldeﬁned’

6. q is implicit in (Ng, [i]) with N§ = (Py U {q}, To, Fo U {(t:,9), (g, t0)}, Lo), and
7. N§ is a sound C-net,

then N1 is a sound C-net in C such that Ny <p; No.



Rule PPS can be used to insert a loop or iteration at any point in the process, provided
that the added part always returns to the initial state. Rule PJS can be used to insert new
methods by replacing a connection between a transition and a place by an arbitrary com-
plex subnet. Rule PJ3S can be used to add parallel behavior, i.e., new methods which
are exectuted in parallel with existing methods. The inheritance-preserving transforma-
tion rules distinguish the work presented in [4, 5, 8] from earlier work on inheritance.
The rules correspond to design constructs that are often used in practice, namely it-
eration, sequential composition, and parallel composition. If a designer sticks to these
rules, inheritance is guaranteed!

3 Framework

In this section we formalize the concepts introduced in Section 1. As illustrated by
Figure 1, a component consists of a component specification (CS) and a component
architecture (CA), and the component architecture may contain a number of component
placeholders (CPs).

Definition 24 (Component). 4 component ¢ is a tuple (C'S, C A) where:

1. CS = (P%,T% M?3,F%, (%) is a sound C-net called the component specification
of ¢, and
2. CA = (PA, T4, CA FA, (4) is the component architecture of ¢ such that:
(a) P4 C U are the places in the component architecture,
(b) TA C U are the transitions in the component architecture,
(c) C* is aset of component placeholders such that every cp € C* is a component
specification, i.e., cp = (P, T, MEA, FSA, L34) is a sound C-net,
(d) B ={(cp,1) € C* x Ly |1 € M52} is the set of bindings,
(e) FA C (PAx (TAUB))U((TAU B) x P4) is called the component flow
relation, and
¢ A :TAUB 4 MSU{r} is the component labeling function.

The component specification defines the interface of a component in terms of a C-net.
The purpose of the component architecture is to actually realize/implement this spec-
ification, i.e., the architecture is typically much more detailed and may contain other
components. For atomic components C4 = {}. For non-atomic components the archi-
tecture contains a set of placeholders C4. The placeholders are used for plugging in
other components. Therefore, each placeholder specifies the required interface of the
component to be plugged in. There are two types of arcs in the architecture: (1) normal
arcs (i.e., arcs between places and transitions) and (2) subcomponent arcs which connect
places in the architecture to methods inside the components plugged into the compo-
nent placeholders. To address methods inside subcomponents, a set of bindings B is
introduced. Note that 4 can be used to map methods inside the components plugged
into the component placeholders onto methods used in the component specification.
Figure 3 shows an example of a component which represents a very simple coffee
machine which accepts coins and either returns coins or serves coffee. The compo-
nent specification (CS coffee_machine) shows that after activating the machine (method
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switch_on) a coin can be inserted (method insert_coin). After an internal choice (i.e.,
two 7-labeled transitions sharing one input place) either method reject_coin or method
serve_coffee is enabled. After executing one of these two methods the machine returns
to a state where it accepts a new coin. In parallel the machine can be deactivated using
the method switch_off. Since the machine can be busy serving coffee, there is another
method (switched_off) which corresponds to the actual switch-off operation.

The architecture of the component coffee_machine is described by the remaining
three diagrams in Figure 3. The two smaller diagrams correspond to component place-
holders. The larger diagram in the middle describes the overall architecture of the
component and refers to the two component placeholders. The component placeholder
coin_handler takes care of accepting and rejecting coins. The component placeholder
brewing_facility takes care of the actual brewing and serving of coffee. Note that at the
architectural level one can see the interaction between components inside the machine.
Both subcomponents are activated/deactivated when the machine is switched on/off.
After a coin is inserted the coin_handler sends a request to the brewing_facility. The
brewing facility either acknowledges the request (OK) and serves coffee or sends a
notification to the coin_handler (NOK) resulting in the returning of the coin inserted.
Note that external methods (i.e., the methods offered in the component specification)
are linked to concrete transitions in the architectural model or are mapped onto internal
methods provided by component placeholders.

Assumption In the remainder we assume that there are no name clashes, i.e., all com-
ponent specifications, placeholders, and component architectures use different identi-
fiers for places and transitions. The only identifiers shared among component specifi-
cations, placeholders, and component architectures are the action labels.

The architecture of a component should provide the functionality promised in its spec-
ification. Therefore, we define the function cflat which allows us to define component
consistency.

Definition 25 (Flattened component). Let CA = (PA,T4,C4, FA (4) be a compo-
nent architecture such that for any cp € C4: strip(cp) = (Pg)A, TC%A, M 3;4, FC%A, £ pr)
is the stripped component specification. The corresponding flattened architecture is the

labeled P/T net cflat(CA) = (P, T, M, F, £) with:

1. P =PAU (Ugpecs P37V

2. T=T*U (U,peca TS,

3.F = (FAN((PA X TA U (TA x PY) U (Ugpeca Fot U {(p,t) € P4 x
T2 | (p, (cp, £51())) € FAYU{(t,p) € T5A x PA | ((cp, £31A(t)),p) € FA}),

4. dom(é) = T,fOI’ any t € TA.' Z(t) = KA(t), al’ldfOF any ¢p € CA andt € Tcsg;A
£(t) = £4(cp, Kf;‘(t)), and

5. M =rng(O\{7}.

Definition 26 (Consistent). Let (C'S, CA) be a component with CS = (PS,TS, M5,
FS,05), CA = (PA,TA,CA, FA 14, and for any cp € C*: cp = (P, TSA,
MSA FSA Zf{‘), and let N = cflat(C A). (CS,CA) is consistent if and only if

cp *tep

12



1. M3 = rg(£5\{7},

2. forevery cp € CA: Mcb;,A = rng(@pr)\{T},

3. M3 = ({£4(1) [t € T} UUgpeoa{tH(ep, 1) |1 € Mg H\{7),

4. N is a sound C-net, i.e., N € C,

5. foranycp € C4, t,t' € start(cp): lrt = Igt’,

6. forany cp € C4, t,t' € stop(cp): te =t's,

7. foranycp € CA, t € TSA, and t' € start(cp): all non-trivial directed paths from

cp !
tto t' in N contain at least one occurrence of a transition in stop(cp), and

8. N <, CS.

Definition 26 gives the minimal set of requirements any component should satisfy. The
first three requirements state that the methods offered at the various levels should actu-
ally be present. The flattened architecture, i.e., the functionality guaranteed by the ar-
chitecture provided the correct operation of subcomponents, is sound. Subcomponents
are started and stopped correctly. A subcomponent is not allowed to be able to activate
itself. Therefore, paths from inside a component to the start transitions of the compo-
nent are excluded. Note that after terminating the subcomponent it may be activated
again. Finally, we require that the flattened architecture is a subclass of the component
specification with respect to projection inheritance.

The component shown in Figure 3 is not consistent for the following two reasons.
First of all, the flattened architecture is not sound. Suppose that the method switch_off is
initiated directly after inserting a coin. The subcomponent brewing facility can be deac-
tivated immediately. However, the coin_handler cannot be deactivated and will send a
request to the brewing facility, the brewing facility will not respond to the request, and
the machine will deadlock. Another reason for inconsistency is the fact that the brew-
ing facility sends an OK to the coin_handler before actually serving coffee. Therefore,
one can insert a new coin before completely handling the previous request. This be-
havior does not invalidate the soundness requirement but yields a flattened architecture
which is not a subclass of the original architecture.

The alternative component shown in Figure 4 does not have these deficiencies and is
consistent. This component deactivates the coin_handler before deactivating the brew-
ing_facility. Moreover, the coffee is served before the coin_handler is notified.

From the requirements stated in Definition 26 we can derive the following proper-
ties.

Lemma 2. For any consistent component (CS,CA) with CS = (P, T, M~ F¥,
03 and cflat(CA) = (P,T,C,F,0): {£5(t) | t € start(CS)} = {£(t) | t € start(
cflat(CA)} and {£5(2) | € stop(CS)} = {£(t) | ¢ € stop(cflat(CA))

Proof. The construction of ¢flat(C A) guarantees that no new labels are introduced.
Combining this with ¢flat(C' A) <,; C'S implies that the behavior of C'S and cflat(C A)
should match with respect to the visible steps. Since both C'S and ¢flat(C' A) are C-nets,

they always start (end) with a visible step. Hence the lemma holds. O

Lemma 3. Let (C'S, C' A) be a consistent component with CA = (PA, T4, CA, FA 14).
There is precisely one i € P4 such that {t € T4 | (t,i) € FA} U {(ep,1) €

13
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CAXLy | ((ep,1),1) € FA} = B and precisely one o € P4 suchthat {t € T | (o,t) €
FAYU {(ep,1) € C4 x Ly | (0, (cp, 1)) € FA} = 0.

Proof. Since cflat(CA) is a C-net there is a place i = source(cflat(C'A)). Clearly,
{t € TA| (t,i) € FAYU{(cp,1) € CA x Ly | ((ep,1),i) € FA} = . For any other
place, it is easy to show that ¢flat(C A) adds at least one input arc. Similarly, it can be
shown that there is precisely one source place. O

Since there is one source/sink place in the architecture of a component, we can define
the functions source, sink, and strip in a straightforward manner for the architecture
of a consistent component.

A system architecture consists of a set of components where components are plugged
into placeholders of other components.

Definition 27 '(System architecture). Let C be set of components with for any ¢ € C,
¢ = (CS.,CA.), CS, = (PS, TS, M5, F5 (%), CA. = (PA,TA,CA FA,¢4), and

LC = {(c,ep) | ¢ € C Acp € CA}. A4 system architecture (C, cmap) is a set of
components C and a mapping cmap : LC — C.

A component can not be plugged into more than one placeholder, i.e., it is not possi-
ble to have two separate components sharing a third component. In addition, recursive
structures are not allowed. Moreover, there should be one top-level component which
contains all other components. The latter requirement has been added for presentation
purposes and does not limit the application of the framework: Any set of components
can be embedded into one component. A system architecture satisfying these require-
ments is called well-formed.

Definition 28 (Well-formed). Let (C, cmap) be a system architecture such that for any
c€ C:c=(CS.,CA,), CS. = (P3,T5, M5 F5,£5), and CA, = (PA, T4, C4,
FA ). C is well-formed if and only if the relation R = {(c,c') € C x C'| (c,cp) €
LC A cmap(c,cp) = c'} describes a rooted directed acyclic graph,*

Let us consider the system architecture for a coffee machine. The component shown in
Figure 4 is the top-level component. The architecture of the top-level component has
two component placeholders. The placeholder brewing facility is mapped onto the com-
ponent brewing_facility shown in Figure 5 and the placeholder coin_handler is mapped
onto a component with a component specification and architecture identical to the C-net
describing the placeholder (see Figure 6). Note that both subcomponents are atomic,
i.e., the system architecture for a coffee machine has two levels and comprises three
components. Clearly, this simple system architecture is well-formed.

Similar to consistency at a component level, we can define consistency at the level
of a system architecture.

Definition 29 (Consistent). Let (C, cmap) be a well-formed system architecture such
that for any ¢ € C: ¢ = (CS.,CA.), CS. = (P2, TS, M3 F5,¢9), and CA. =
(PA,TA,CA FA L), (C, emap) is consistent if and only if
2 A directed acyclic graph is rooted if there is a node r such that every node of the graph can be
reached by a directed path from r.
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1. each component c € C is consistent, and

2. forallc € C,c € C, and cp € C2 such that cmap(c,cp) = ¢ and cp =
(P3A, T4, MCS;)A, F3A L54):
(a) C(‘SC' Spj Cp,
(b) {£3(t) |t € start(CSy)} = {Epr(t) | t € start{cp)}, and

(c) {€5(t) |t € stop(CSe)} = {€32(t) | t € stop(cp)}.

A well-formed system architecture is consistent if the individual components are consis-
tent and appropriate components are plugged into the placeholders, i.e., if a component
is plugged into the placeholder, then its specification should be a subclass of the C-net
specifying the placeholder and there should be a match between the methods used for
activating and deactivating components. The latter requirement has been added to avoid
the activation/deactivation of a component by methods not present in the C-net spec-
ifying the placeholder, i.e., without this requirement the subcomponents could easily
deadlock or lead to unbounded behavior.

Consider the system architecture for the coffee machine composed of the top-level
component shown in Figure 4, the component brewing facility shown in Figure 5, and
the component coin_handler shown in Figure 6. Each of the three components is con-
sistent. Note that the component brewing_facility offers the method ready_signal to its
environment, i.e., the component generates a signal every time a cup of coffee has been
served and thus offers more functionality than needed. Also note that the architecture
of the component brewing_facility shows details not present in the component specifi-
cation, e.g., the internal steps brew, dispense_cup, and heat_-water. The steps brew and
dispense_cup are executed after the request for a coffee is received. In-between these
steps the brewing facility can produce an error which is reported via method NOK!. The
internal step heat_water is executed periodically (e.g., driven by a thermostat) and in
parallel with the handling of requests. The component specification of brewing_facility
is a subclass of the component placeholder in Figure 4. The component specification of
coin_handler coincides with the corresponding placeholder and, consequently, is also a
subclass. Therefore, the system architecture for the coffee machine is consistent.

A consistent system architecture satisfies a number of requirements. In the remain-
der of this paper, we will concentrate on the question whether these requirements imply
the correct operation of the entire system, i.e., Is it guaranteed that the system actually
realizes the functionality suggested by the specification of the top-level component?

4 Compositionality results

Based on the framework introduced in the previous section, we focus on the question
whether consistency guarantees the correct operation of the whole system architecture.
For this purpose we first formulate and prove a rather general theorem which addresses
the notion of compositionality in the context of projection inheritance.

Theorem 5 (Compositionality of projection inheritance). Let Ng = (P, Ty, Mo,
F07€0)» Nl = (P17T1) M17F17€1): NA = (PA7TA7MA>FA7£A)’ NB = (PBaTBa
Mg, Fg,{B), No = (Pc,Tc,Mc, Fo,lc), N§ = (P}, TY MY ,F ,{}), and
NY = (PY¥ ., 1Y , MY ,F¥ £¥) be labeled P/T-nets. If

18



NS A W

10.

11.
12.
13.

14.

15.

Ny is a sound C-net in C with source place i = source(Ny) and sink place o =
sink(No),

No = N4 U Np is well defined,

N1 = N4 U Ng is well defined,

TaNTg =0,

TaNTe =0,

PsNPg=PsN FPg,

Ng/ is a sound C-net in C such that strip(N}éV) = (P\P4,TB,MpB,Fp N
(PY x TE)Yu (TY x PY)), L), ig = source(N}), op = sink(NY'), and
{ip,op} NPy =10,

NY is asound C-net in C such that strip(NZ') = (Pc\Pa,Tc, Mc, Fen((PY x
T YU(TY x P¥)),Lc), ic = source(NY), oc = sink(NY'), and {ic:, 0c} N
P =4,

(Vt,t' .t € start(NY) AV € start(NY) : = Azlt’), i.e., start transitions
have identical sets of input places,

(Vt,t' i t € stop(NF)A L € stop(NY) : t
have identical sets of output places,
(Vt:teTpAlp(t)=7:(CtNPA=D)A(t'S NPs=0)),
(Vt:teToAG®E) € a(NY): (OtNPy=0) A (S NPy =0))

(Yt it € Tp At € To Ap(t) = Lo(#') : (WtN Py = W¥ NP AR
NPy =t"s NPy)),

(Vt,t' 1t € Tg At' € start(NY') : all non-trivial directed paths in Ny from t to
t' contain at least one occurrence of a transition in stop(N¥') ), and

NZ*V <pj ngv,

No Nl . e
e =1t'"e ), ie, stop transitions

then Ny is a sound C-net in C such that Ny <p; No.

Proof. The proof consists of three parts. First, we provide some useful observations.
Then, we show that there is a branching bisimulation between (N, [i]) and 77(N1, [4])
(I = a{Ny)\a(Np)). Finally, we show that N; is a sound C-net and conclude that
N; <p; Ny using the branching bisimulation.

Part 4
The following observations are crucial to the proof:

1.

Since N <,; N¥, a(N}J) C a(NY') and there is a branching bisimulation
Rpec such that (N};V, [zB]) RBcTI(NgV, [ic]) with I = a(N(‘;V)\a(N};V) =
a(N1)\a(No). ‘

o This follows directly from the definition of projection inheritance.

(Vt,t' :t € Tg ANt € Tg Alp(t) = Lp(t’) : ( ]\zotﬂ Py = ]\zot/ N Pa)A(
NPy =1t ga N Py)), i.e., transitions in 7'z with identical labels have identical
effects on the interface P4 N Pg.

o If both transitions have a 7 label, then there are no connections to the interface
P4 N Pg. If the transitions have a visible label, then there is a corresponding tran-
sition in N¢. Since the connections of this transition in N¢ to places in P4 N Pg
are identical to those of ¢ and ¢, the external connections of ¢ and ¢’ have to match.

e
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10.

LVt it € To At € T AMo(t) = lo(t) : (9N Py = ¢ NPYA (t'e

NPy =t gt N Py)), i.e., transitions in T with identical labels have identical
effects on the interface P4 N Po.

o If both transitions have a 7 label or a label not used in Np, then there are no
connections to the interface P4 N Pg. If the transitions have a visible label used in
Np, then there is a corresponding transition in Ng. Since the connections of this
transition in Np to places in P4 N Py are identical to those of ¢ and ¢/, the external
connections of ¢ and ¢/ have to match.

C(VEE : t € start(NW) A € start(NY) : &t = &), Vit it €
B B

stop(NYV) A t' € stop(NY) £ =), (Vi it e start(NY)Y At €
start(NY) : "ot = &), (vt t € stop(NF) At € stop(N) : t'e' =
#73).

o This follows directly from the requirement that start/stop transitions in different
nets have identical sets of input/output places.

. No, N1, N, and N¥ completely determine N4, Np, and Nc.

o N4 =NoNNy, Np = (T uTW & TV MY, Fon((Ps x Tp) U (Tp x
Pg)), %), and No = (T UTY & 7%, MY, Fi 0 (Pe x Te) U (Te %
Pc)), t).

. Forany sg € [Ny, [i]), t € start(N} ), and p € Pg\Pa: if (No, so)[t), then place

p is empty in sgq.

© This property is crucial and depends heavily on the safeness of the input places
of start(NZ') in (N, [i]) and the requirement that all non-trivial directed paths in
Ny from a transition inside N g to one of the start transitions in Np contain at least
one of the stop transitions in Np. More details are given below.

. Any marking sg € [Ny, [¢]) can be partitioned into s4 and sp such that s¢ =

SA+ 8B, sS4 € B(P4),sp € B(Po\P4),andsp =0orsp € [NEV, lig]).

o Initially, sp is empty. (Note that i € P4.) The only way to mark places in Py\ P4
is to fire a transition in start(NY'). However, the previous property clearly shows
that this is only possible if each place in Pg\P4 = Py\ P4 is empty.

(Vi t t € Te At € start(NY) : all non-trivial directed paths in Ny from ¢ to ¢/
SUATEA N & p

contain at least one occurrence of a transition in stop(NY') ). :
& The connections of transitions in N are identical to the connections of the tran-
sitions in Np with respect to the interface P4 U Pg. Therefore, similar to Ny, there
are no such paths.

. Forany s1 € [Ny, [i]), t € start(NY'), and p € Po\Pa: if (N1, 51)[t), then place

p is empty.

o Similar arguments apply. Again the safeness of the input places of start(NZ)
and the requirement that all non-trivial directed paths in N from a transition inside
N¢ to one of the start transitions in N¢ contain at least one of the stop transitions
in N¢ are crucial.

Any marking s; € [Ny, [i]) can be partitioned into s4 and sc¢ such that s; =
s4+ 80,84 € B(Pa), sc € B(P{\Pa),and s¢ = 0 or s¢ € [NY, [ic]).

¢ Since P4 N Pg = P4 N P the same arguments apply.
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The first five observations are straightforward. The other observations are more in-
volved. Therefore, we show in more detail that for any so € [Ny, [i]),t € start(NV EV ),
and p € Pp\Pj4: if (N, so)[t), then place p is empty. For this purpose, we use proof
by contradiction, i.e., we assume that there is a firing sequence o such that (N, [7]) [o)
(No,s0), t € start(NY'), (No, s0)[t), and p € Pp\P4 is marked in sg. Without loss
of generality, we further assume that sg was the first state in the sequence having these
properties (i.e., a start transition is enabled while a place in Pg\ P4 is marked). Par-
tition the sequence ¢ in two subsequences o1 and o9 such that oo contains all firings
since the last firing of a transition in stop(N W), ie., o1 is either empty or ends with
the last firing of a transition in stop(N}). The first sequence ends in state s’ (i.e.,
(No, [i]) [01) (No, 5')). Note that in s’ all places in P\ P4 are empty. (Otherwise there
would have been a prefix of o containing the anomaly.) Now we concentrate on the sec-
ond subsequence: (No, s') [02) (No, so). In this sequence no transition in stop(NY')
fires. Therefore, we remove all transitions stop(NZ') from Ny and name the new net
N. Note that (N, s') [72) (IV, so). The requirement that all non-trivial directed paths in
Ny from a transition inside Npg to one of the start transitions in Ng contain at least one
of the stop transitions in Ng implies that we can partition the transitions of NV in two

subsets T'x and Ty such that {t € T4 | te N jzstart(N};V) #0} C Tx, T C Ty,

and ]XTX NTy . = () because all stop transitions have been removed. Now we apply
the well-known exchange lemma (see for example page 23 in [10]) which allows us to

project oo onto the transitions in T’y and Ty: o2 x and o2y . Since ];]TX NTy JX =0,
the exchange lemma shows that we can first execute o2 x followed by o2y . Let state s”
be the state after executing o2, i.e., (N, s') [oax) (N, s”). It is easy to see that in s
each of the input places of the start transitions of Np contains multiple tokens. (Note
that ooy marks a place in Pg\ Py, i.e., fires at least one start transition of N, and also
enables a start transition of Np without adding any new tokens to the input places.)
Therefore the safeness property is violated. The sequence composed of o; followed by
oax is also possible in (Ng, [i]). Therefore, (Ny, [i]) cannot be a sound C-net and we
find a contradiction.

Part B

Based on R gc and No, N1, NY', and N as defined above. We define Rg; as follows:
Ro1 = {((No,s4 +sB),71(N1,54 + 5¢)) | s4 € B(Pa) Asg € B(Po)\Pa) N sc €
B(P\P4) A sa+sp € [No,[i]) Asa+ sc € [Ni,[i{DA((sB =0Asc =0)V
(NY,sB)Reeti(NY,s¢)))}-

The remainder proof consists of two parts. In the first part, it is shown that R¢; is a
branching bisimulation and that (N, [¢])Ro177(N1, [¢]). In the second part, it is shown
that V7 is a sound C-net.

Consider two markings so € [Ny, [¢]) and s1 € [Ny, [i]) such that (N, s0)Ro1
77(N1, s1). The bags so and s; can be partitioned as in the definition of Roy, i.e.,
Sg = 84 + 8B, 81 = 84 + 8¢, S4 € B(PA), Sp € B(PO\PA), sc € B(Pl\PA).
For these two markings we will verify the three requirements stated in the definition of
branching bisimilarity.
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1. Assume that ¢ € To is such that (Ny, so) [€o(t)) (No, sp). Bag s can be parti-
tioned into s’y and s B as before. We need to prove that there exist s}, s{ such that
(N1,81) = (N1, 87) [(£o(2))) (N1, 81) A (No, s0)Ro1 (N1, 57) A (No, 55)Ros

(va 31)
— Ift € Ty, thent 1s also enabled in (Nl, 51) and firing ¢ only affects places
in P4 because ¢ t Ut g tut g4 C P4. Moreover, £5(t) =
£4(t). Therefore, si = sy and s} = s’y + s¢ are such that (Nq,s1) =

(N1, 87) [(Lo(8))) (Nla 8").A (No, s0)Ro1 (N1, 87) A (No, 85)Ro1 (N1, 87)-
— Ift &€ Ty, thent € Tp. N
e Ifsp =0andsc = 0, thent € start(NB ). Hence, each place in o
t is marked in both sg and s;. Moreover, £y(t) # 7. Clearly, there is a

t' € T¢ such that £5(t) = £1(t), Ny = C B(Pa4). Since sg
and s; are identical with respect to the places in Py, t' is also enabled in
(N1, 81). Moreover, the result of firing ¢’ is identical to ¢ with respect to
the places in Py4. Let s}, be such that (NY, [ic]) [lc(t)) (NZ, s)) and
(NY, s%5)ReoTr(NY, s). Such a s, exists because (NY, [ig])RBc
1(NY ,lic]). It is easy to see that s} = s; and s} = s'; + sl are such
that (N1, s1) = (N1,s7) [(€o(?))) (N1, 81) A (No, S0)Ro1 (N1, s7) A
(No, 80)Ro1 (N1, 87).

o Ifsg # 0orsc # 0,then (NY,s8)Rec(t1(NY , sc)). Since Rpc isa
branching bisimulation, (N}, [ig])RecT1(NY ,[ic]), sB € [NY,[iB]),
and sc € [N¥,[ic]), it is straightforward to show that a sequence con-
sisting of zero or more silent steps and a step similar to ¢ can be executed
in (N1, 51). Note that it is essential that the effects of all non-7 steps are
identical with respect to the places in Py, ie., (Vt,t' : t € Tp At €

ToNp(t) = Lo(t) : ( J\i"thA RHNPOHAES NPy =178 NPy)).
Therefore there are s{ and s} such that (Ny,s1) = (Ny,s!) [(4(t)))

Ny, 8") A (No, so R01(N1,S No, s0)Ro1 (N1, 81).
2. Assume §chat t % TE is suc)h that (Nl,ls)l) [El (tj) 0()]\71, sgl) We need to prove that

there exist s, sg such that (No, s0) = (No, s¢) [(¢1(2))) (No, 55) A (No, 8¢ ) Ro1
(N1,81) A (NO, 55)Ro1 (N1, s1). The proof is identical to the proof in the other
direction.

3. Assume | s9. We need to prove that |} s1. | so implies that s = [0], s4 = [o],
and sp = 0. If s¢ = 0, then s; = [0] and { s; (in fact | s1). It is not possible
that so # 0, because this would imply that (NY,0)Rpc7r(NY , sc) which is
not possible because from s¢ it is possible to fire a non-7-labeled transition, i.e., a
transition in stop(N}). Similarly, it can be shown that | s; implies {} so.

From the definition of Rg; it follows that ( Ny, [i])Ro1 77 (N1, [1]).

Part C

Remains to prove that NV; is a sound C-net. It is easy to see that V7 is a WF-net:
There is one source place ¢, one source place o, and every node is on a path from ¢
to o. To prove that V; is sound, consider an arbitrary marking s; € [Ny, [4]). For this
marking there is a counterpart sq in the original net (Np) such that sq € [Ny, [¢]} and
(No, 80)Ro171 (N1, 81). Using so we verify the four requirements for soundness:
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— (N1,]1]) is safe because, for any place p € P4, s1(p) = so(p) < 1, and there is a
marking sc € [NY, [ic]) such that for any place p € P1\Pa: s1(p) = sc(p) < 1.

— Suppose that 0 € s;. Since Ny is sound so = [0]. Since (Ny, so)Ro1 71(N1, 81)
the other places in P4 are empty. The places in P; \ P4 are also empty, because oth-
erwise there would be a nonempty bag s such that s¢ # [op] and (NY ,0)Rpc
1(NY, sc). Clearly this is not possible because from s¢ it would be possible to
fire a non-7-labeled transition.

— From sq it is possible to reach the marking [0] in Ny because Ny is sound. Since
(No, so) ~p 7r(IN1, s1) it is possible to do the same in /Ny starting from s;.

— To prove that there are no dead transitions in (V1 [1]), we first consider transitions
in T'4. Suppose a transition ¢ € T4 is enabled in (Ny, o), then ¢ is also enabled
in (IV1, s1). Since there are no dead transitions in (N, [¢]), it is possible to enable
any transition ¢ € T'4 starting from (INy,[¢]). Transitions in 77\T4 are not dead,
because there are no dead transitions in (NY, [i¢]).

Since N, is a sound C-net and R is a branching bisimulation, we conclude that Ny <;
Np. O

To show that a consistent well-formed system architecture actually provides the func-
tionality assured by the specification of the top-level component, we define a function
aflat to translate a system architecture into a labeled P/T net.

Definition 30 (Flattened architecture). Let (C, cmap) be a well-formed system archi-
tecture such that for any ¢ € C: ¢ = (CS,,CA.), CS. = (P3, TS, M5, F? (5), and
CA, = (PA,TA,CA,FA L2). The corresponding flattened architecture is the labeled
P/T net aflat(C, cmap) obtained by applying the following algorithm.

Step 1 ¢t is the top level component, i.e., the root of the directed acyclic graph R mentioned
in Definition 28.
CA=(PA,TA CA FA14) ;= CAu
hmap(cp) := cmap(ct,cp) forall cp € CC/}

Step 2 If CA = 0, then stop and output aflat(C, cmap) = (P4, T4, rng(¢4), F4,£4),
otherwise goto Step 3. S

Step 3 Select a cp € C4.
¢ := hmap{cp)
CA' = (P, 74 cA' FA' 14') .= strip(CA.)
pPA" .= pAy P
74" .= TAuTA
cA" = (CA\{eph) U CA
FA" .= (FA((({ep} x Ly) x PAYUPA X ({ep} x L)) UFA' U{(p,z) € PAx
%W’) | (p, (cp, £%'(2))) € FAYU{(2,p) € dom(e*)xP* | ((cp, €4 (2)),p) €
dom(£A") := (dom(£)\({cp} x L)) U dom(£4").
Forany z € dom(t2"): if z € dom(¢?), then (2" (z) = 14 (cp, 17 (x)), other-
wise 04" (z) 1= 04 (z).
CA” = (PA”’TAH’CA”,FA,/,KAH)
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hmap(cp') := cmap(c, cp') for all cp' € C4
CA .=CA"
Goto Step 2.

To flatten the system architecture, the placeholders in the top-level component are re-
placed by the architectures of the corresponding components. Then the newly intro-
duced placeholders are replaced by the component architectures, etc., until there are
only atomic components. Note that the flattened architecture corresponds to the actual
behavior of the system and that there are similarities with flattening other types of hi-
erarchical Petri nets [12]. The following theorem uses the compositionality result of
Theorem 5 to show that consistency implies the proper operation of the whole system.

Theorem 6 (Consistency implies soundness and conformance). Let (C, cmap) be a
consistent well-formed system architecture with top-level component ¢t = (CS, CA).
aflat(C, cmap) is a sound C-net and aflat(C, cmap) <,; CS.

Proof. The algorithm specified in Definition 30 unfolds a component architecture CA =
(PA,TA,CA, FA,£4) in a number of steps. We will show that at any point in time
cflat(C A) <,j C'S+ using induction.

Initially, C A = C A;. Since the top-level component ¢! is consistent, cflat(C A) is
a sound C-net and cflat(C' A) <,; CS: (see Definition 26). T

Assume that cflat(CA) € C, cflat(CA) <p; CS.e, and cp € C4, ¢ = hmap(cp),
CA = strip(CA,.), and CA" as defined in Step 3 of the algorithm. We will prove
that C' A" is a sound C-net in C and cflat(C A") <, cflat(C'A) using Theorem 5. Let
No = cflat(CA), Ny = cflat(CA"), NY = cp, and N¥ = cflat(CA,). It is easy to
verify that Ny, Vq, NXV, and N l‘,f,V satisfy the requirements stated in Theorem 5:

. Np is a sound C-net because we assume cflat(C A) € C.

Ng = N4 U Npg is well defined because the subnets do not share transitions.

N1 = N4 U Ng is for the same reason well defined.

T4 NTp = {§, see assumption on name clashes.

T4 N T = B, see assumption on name clashes.

Py N Pp = P4 N P, follows directly from the construction.

NY is a sound C-net because placeholder cp € C.

NY is a sound C-net because c is consistent and therefore cflat(C A.) is sound.
Since (C, cmap) is consistent, the set of labels used by start(cp) equals the set of
labels used by start(C'S,). Moreover, since ¢ is consistent, the set of labels used by
start(cflat(C A.)) also equals the set of labels used by start(CS.). Since cp and
cflat(C'A.) use the same set of labels for start transitions, the construction in Step
3 (which is purely based on labels) guarantees that (Vt,t' : t € start(N}J ) At' €

e A e

§§gr_t(N(‘§V ) ]zot = Ailt’ ), i.e., start transitions have identical sets of input places.
10. Similarly: (V¢,#' : t € stop(N} ) At € stop(NY) : % =7 ).
11. Since only transitions with non-7 labels in ¢p are connected to places in C' A by the
cflat function, (Vt:t € Tp Alp(t) =7 : ( ]\orotﬂ Ps=0)A (tAoro NPy =0)).
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12. Consider a transition t € cflat(C'A.) with a label not used in cp. There is no way
to connect ¢ to places in C'A using c¢flat(C'A") because the label does not appear
in the flow relation F4. Hence, (V¢ :t € To A l1(t) € a(NY) : ( N Py =

N
P)A(t'e NPa=0)).

13. Similarly, one can show that (V¢,¢' : t € Tg At € Te AMp(t) = Lo(t) : ( s
tNPy= SENPOAES NPy =t NPy)).

14. (Vt,t':t € Tp At € start(NY') : all non-trivial directed paths in Ny from ¢ to ¢/
contain at least one occurrence of a transition in stop(NY') ). This follows directly
from the consistency of C'A which is invariant under the replacements.

15. Ng/ = cflat(CA.) <,; CS,, because ¢ is consistent. C'S; <pj cp = N}év, because
(C, cmap) is consistent. Hence, N¥ <, N¥.

Hence C'A" is a sound C-net in C and cflat(C'A") <,; cflat(C'A). Since <, is transi-
tive, we conclude: cflat(CA") <,; CSex. 0

Theorem 6 shows that a consistent system architecture is sound (i.e., no deadlocks, live-
locks, and other anomalies) and that the actual behavior conforms to the specification.
Moreover, the theorem also shows that it is possible to replace any consistent compo-
nent by another consistent component which has an interface which is a subclass of
the corresponding placeholder, i.e., the result can be used to effectively address substi-
tutability issues!

Consider for example the system architecture composed of the components cof-
fee_machine, brewing facility, and coin_handler presented earlier. Since the system ar-
chitecture is consistent, the actual behavior of the system conforms to the specifica-
tion, i.e., the flattened system architecture is a subclass of the component specification
shown in Figure 4. Moreover, the components brewing_facility and coin_handler can
be replaced by other components satisfying a subclass/superclass relationship without
jeopardizing the correct operation of the overall system! '

5 Related work and future extensions

The results presented in this paper build upon earlier results on WF-nets [1-3], inher-
itance [4, 5, 8], and component-based software architectures [13]. Architecture defini-
tion languages such as ARMANI, Rapide, Darwin, Wright, and Aesop typically view
software architectures statically [17], i.e., analysis primarily focuses on syntactical and
topological issues. Nevertheless, Darwin offers the possibility to execute “what if” sce-
narios and Rapide offers a constraint checker based on simulation. Another approach
is the addition of process specifications to existing middleware technology, e.g., in [9]
CORBA IDL’s are extended with Petri nets to incorporate dynamic behavior. In the
last decade several researchers [6, 14—16] explored notions of behavioral inheritance
(also named subtyping or substitutability). Researchers in the domain of formal process
models (e.g., Petri-nets and process algebras) have tackled similar questions based on
the explicit representation of a process by using various notions of (bi)simulation [8].
The inheritance notion used in this paper is characterized by the fact that it is equipped

25



with both inheritance-preserving transformation rules to construct subclasses (see Sec-
tion 2.4 and [4, 8]) and transfer rules to migrate instances from a superclass to a subclass
and vice versa [5]. These features are very relevant for a both constructive and robust
approach towards truly component-based software development.

In the future, we plan to extend our framework with other notions of inheritance.
The three other notions of inheritance presented in {4, 8] can also be used to obtain com-
plementary compositionality results. For example, the notion of protocol inheritance [4,
8], which is based on encapsulation rather than abstraction of methods, allows for very
generic components whose functionality is only partly used in a given context. An-
other extension of our framework is the dynamic replacement of components using the
transfer rules presented in [5]. The transfer rules allow for the on-the-fly migration of
execution states from one component to another as long as there is a subclass/superclass
relationship. We also plan to work on the extension with data and methods signatures.
For example, it would be interesting to extend the work presented in [9] with our notion
of inheritance. Finally, we plan to adapt our tools Woflan [23] and ExSpect [7] to serve
the framework presented in this paper. Woflan can be used to check the requirements in-
volving soundness and consistency. ExSpect can be used as a prototyping environment
for experimenting with component-based software architectures.
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