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ABSTRACT 

Energy foundations, or deep foundations which incorporate heat exchangers, are a novel 

approach to improve the energy efficiency of building heat pump systems. This study focuses on 

the development of a new load-transfer analysis to assess the thermo-mechanical response of 

energy foundations. This new analysis builds upon well-established soil-structure interaction 

algorithms for mechanical loading to incorporate the effects of restrained thermal expansion of 

the energy foundation during changes in temperature. Novel aspects include a method to evaluate 

the impact of increased lateral stresses on the ultimate side shear resistance due to radial 

expansion of the foundation, a method to track the direction of mobilized side shear stresses 

during thermal expansion, and a method to consider consolidation of the soil at the foundation 

toe during thermal expansion on the ultimate end bearing.   

A parametric evaluation of the new model was performed to assess the thermo-mechanical 

response of different representative boundary conditions for energy foundation, including the 

stiffness of the soil at the toe of the foundation and the stiffness response of the overlying 

structure. As expected, the results indicate that the higher the temperature change, the higher the 

magnitudes of thermally induced axial stress and strain along the length of the foundation. The 

main impacts of the boundary conditions are reflected in the nonlinearity of the distribution of 

the thermal axial stresses and strains and the location of the maximum stress and strain (the null 

point). Also, it was observed that the response of energy foundation is directly related to the soil 
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properties, primarily the friction angle (which affects the side shear resistance) and the c/p ratio 

(which affects the end bearing).  

Axial thermal stress distribution data from a centrifuge-scale model energy foundation were 

used to validate the results from the load-transfer model. In the centrifuge test, an end-bearing 

foundation restrained by a building load was heated in stages from 20 to 40 °C. The maximum 

axial thermal stress was observed in the lower half of foundation. After selecting an appropriate 

value for the stiffness of the loading system applying the prototype building load, the results of 

the load transfer analysis were found to represent the data well. The observations from the 

centrifuge model and the load transfer analysis were consistent with those obtained for full-scale 

load tests on energy foundations in the technical literature. The new load transfer analysis 

provides a useful design tool to evaluate stress and strain distributions in energy foundations.   
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CHAPTER 1: Introduction 

1.1 Concept of Energy Foundations 

Energy foundations include all types of foundations (deep, shallow, driven, drilled, 

etc.) which have been modified to exchange heat between a building and the subsurface 

using a heat pump. The heat pump is used to circulate a heat exchange fluid (i.e., 

typically water mixed with propylene glycol) through flexible high density polyethylene 

(HDPE) tubing embedded within the foundation during construction. Because the 

subsurface soil and rock have a relatively steady temperature approximately equal to the 

mean annual air temperature at a given location, the efficiency of heat exchange is higher 

than that obtained when using an air-source heat pump. The main advantage of energy 

foundations is that they provide a unique approach to reduce material and installation 

costs of ground-source heat exchangers, while still serving their original purpose of 

providing mechanical support to the building (Ooka et al. 2007). Properly designed 

energy foundations are expected to be a sustainable heat exchange technology, as heat 

extracted from the ground in the winter can be re-injected back into the ground in the 

summer (Brandl 2006). 

Although it is possible to install heat exchangers into any foundation type, most 

energy foundations are cast-in-place drilled shafts. In these energy foundations, heat 

exchange tubing can be attached to the metallic reinforcement cage inside the concrete 

before it is lowered into the hole drilled in the ground. Schematic representations of 

different aspects of energy foundations are shown in Figure 1.1.  
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Figure 1.1: Schematic representation of an energy foundation (after Laloui 2011) 

 

One of the first studies on the feasibility of energy foundations was by Ennigkeit and 

Katzenbach (2001), who summarized the heat exchange relationships required for their 

thermal design. Energy foundations have since been successfully implemented in 

buildings in Europe (Brandl 2006; Laloui et al. 2006; Adam and Markiewicz 2009), 

Japan (Ooka et al. 2007), and the UK (Bourne-Webb et al. 2009; Wood et al. 2009). 

Brandl (2006) reported that there are currently over 25,000 energy foundations in Austria 

since 1980, while Amis et al. (2009) reported that the installation of energy foundations 

has grown significantly in the UK since 2005. One of the reasons behind this rise in 

production is the passage of different regulations in these countries requiring the 

construction of zero-carbon buildings in the next 10 to 15 years.  Similar targets are being 

set across the world implying a continued increase in production of energy foundations. 

In the United States there are two operational energy foundation systems to date, at the 

Art House in Seattle, WA, designed and constructed by Kulchin Drilling (Redmond 

Reporter 2010) and at the Denver Housing Authority Senior Living Facility at 1099 

Osage St. in Denver, CO (Zitz and McCartney 2011).  
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1.2 Problem Statement 

Evaluation of the long-term mechanical performance of energy foundations requires 

consideration of the complex interaction between temperature changes during heat 

exchange and induced thermo-mechanical stresses and deformations. Although no 

undesirable mechanical performance of energy foundations has been noted in the 

technical literature, their mechanical behavior and interaction with different soil profiles 

is not well understood. Although heating and cooling of foundations and surrounding 

soils are expected to lead to thermal deformations, soil-structure interaction between the 

soil and foundation will resist these deformations and will lead to internal stresses in the 

foundation. In the best-case scenario, soil-structure interaction will prevent any thermal 

deformations from being observed at the ground surface. However, in soil deposits like 

normally consolidated clays, heating may lead to elasto-plastic deformation in the 

surrounding soil (Abuel-Naga et al. 2009). Further, even if thermal deformations are not 

noted at the ground surface, the tendency for thermal deformations may lead to 

significant changes in the stress state in the foundation if it is constrained by a building 

load or mobilized side shear stresses.  

Although some studies have developed preliminary soil-structure interaction analyses 

(Knellwolf et al. 2011) and advanced finite element models (Laloui et al. 2006), these 

studies have not incorporated constitutive models to consider changes in soil behavior 

during heating and cooling or the role of relative radial expansion of the soil and 

foundation. Further, the effects of radial expansion or contraction of the foundation on 

the ultimate side shear resistance of the foundation have not been incorporated into these 
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analyses. Investigation of these different issues is expected to lead to an improvement in 

the confidence of designers to install energy foundations in any soil profile.   

1.3 Objectives and Approach 

The main objective of this study is to understand the interaction between soils and 

energy foundations during combined mechanical and thermal loading. To reach this 

objective, a new load-transfer analysis is developed which can consider the different 

phenomena noted in the previous section. Further, this load-transfer analysis will be 

validated using data from a centrifuge test on a scale-model foundation heated to 

different temperatures.  

1.4 Scope 

Chapter 2 of this thesis includes a review of the current state of knowledge regarding 

the thermo-mechanical behavior of energy foundations. This also includes a review of 

hypothetical axial and mobilized side shear stress diagrams for simple boundary 

conditions, as well as soil-structure interaction data obtained from field installations for 

two case studies. Chapter 3 provides a detailed description of the algorithms for 

mechanical, thermal and thermo-mechanical axial load transfer (T-z) analysis. Chapter 4 

involves a detailed description of the ultimate end bearing and side shear resistance 

values used in the T-z analysis, which provide an improvement over the T-z analysis 

developed by Knellwolf et al. (2011). Chapter 5 includes a parametric study to evaluate 

the impact of different representative boundary condition cases. This chapter includes 

several simple analyses to clarify the concept of the null point (the point about which the 

foundation expands during heating), as well as an evaluation of the impact of different 

boundary conditions on the stress-strain profiles in foundations with different boundary 
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conditions. A parametric evaluation of the impact of temperature and soil friction angle 

on the thermo-mechanical response of an energy foundation is also provided. Chapter 6 

describes the validation of the load transfer analysis using thermal soil-structure 

interaction data from a small-scale centrifuge energy foundation. The complete load 

transfer analysis implemented in MATLAB is presented in Appendix A.  
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CHAPTER 2: Literature Review 

2.1 Thermo-Mechanical Response of Energy Foundations 

Deformations may occur in energy foundations during heating and cooling due to 

thermo-elastic expansion and contraction of the reinforced concrete. If the temperature 

changes in the foundation are uniform, both axial and radial thermo-elastic strains are 

expected. For afoundation which is unrestrained by the boundaries or surrounding soil, 

the thermo-elastic axial strain εa,T is linearly proportional to changes in temperature ∆T, 

with a slope equal to the coefficient of linear thermal expansion αT , as follows: 

Eq. 2.1 εa,T = αT∆T 

The coefficient of thermal expansion αT is specific to a given material. The value of 

αT for concrete can be as high as 14.5 × 10
-6 

m/m°C, while that of steel reinforcement 

members is approximately 11.9 × 10
-6 

m/m°C (Choi and Chen 2005). The coefficients of 

thermal expansion are approximately compatible, which implies that reinforced concrete 

will not be subject to significant differential internal stresses between the steel and 

concrete. The overall coefficient of thermal expansion of reinforced concrete ranges from 

8.0 × 10
-6 

m/m°C to 10.0 × 10
-6 

m/m°C (Choi and Chen 2005; Bourne-Webb et al. 2009; 

Knellwolf et al. 2011).  

Deformations are also expected in an energy foundation during initial mechanical 

loading associated with construction of the overlying building. The mechanical axial 

strain εa,M in reinforced concrete is expected to be elastic under typical building loads, 

equal to the axial stress σa divided by the elastic modulus of the foundation Ef, as follow: 

Eq. 2.2 εa,M = σa /Ef 



 7  

 

The following relationship can be used to predict the overall elastic modulus of 

reinforced concrete in an energy foundation Ef (Laloui et al. 2006): 

Eq. 2.3 	�� = ������	
	 �1 + �. ��
		�������	
	� 
The elastic modulus of the unreinforced concrete Econcrete is typically obtained using 

laboratory compression tests. Laloui et al. (2006) measured a value of Econcrete = 32 GPa 

for the concrete used in an energy foundation installed at the Ecole Polytechnique Federal 

de Lausanne (EPFL) in Switzerland. Laloui et al. (2006) this value and Equation (2.1) to 

define the elastic modulus of their energy foundation to be 29.2 GPa. 

The magnitude of thermal axial expansion or contraction of an energy foundation in 

the ground will differ from that predicted by Eq. 2.1 because of soil-structure interaction. 

Specifically, because the strains at the soil-foundation interface must be compatible, the 

side shear resistance between the foundation and surrounding soil will restrict the thermo-

elastic movement of the foundation. This interaction is complex, and depends on the soil 

type, the stress state in the soil, and any changes in the ultimate capacity of the 

foundation due to heating.  

The mechanisms of thermo-mechanical soil-structure interaction for full-scale energy 

foundations can be investigated by evaluating data presented by Bourne-Webb et al. 

(2009) and Laloui and Nuth (2006). Although this data will be presented in Section 2.2, it 

is useful to first evaluate the theoretical stress distributions in energy foundations for 

simple boundary conditions. Specifically, the case of a floating foundation (i.e., where 

the foundation has no end bearing and soil-structure interaction is due to side shear 

resistance only) provides a simple situation to evaluate soil-structure interaction effects 

on the thermo-mechanical stress distributions in a foundation. When a mechanical load is 
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applied to the top (butt) of a foundation, the highest axial stress will occur at the top of 

the foundation, as shown in the left-hand schematics of Figure 2.1(a) and 2.1(b). The 

axial stress will decrease with depth due to mobilization of side shear resistance along the 

foundation. The axial stress will decrease to zero if the side shear resistance is sufficient 

to support the building load, but it may also decrease to a non-zero value if the 

foundation had non-zero end bearing at its tip.  

 
(a)                    (b) 

 

Figure 2.1: Comparison of axial stresses induced by mechanical and thermal loading for a 

floating energy foundation (free at top and bottom) (after Bourne-Webb et al. 2009): (a) 

During heating; (b) During cooling  

 

During heating, a floating foundation will tend to expand about its midpoint. Because 

the soil side shear resistance opposes the thermal expansion of the foundation, 

compressive axial stresses will be generated in the foundation, as shown in the middle 

schematic of Figure 2.1(a). The maximum axial stress induced by heating is expected to 

occur in the middle of the foundation for these boundary conditions (the soil provides the 

most shear resistance to axial movement at this point), and will decay to zero toward the 

top and bottom of the foundation (Bourne-Webb et al. 2009). Further, due to the radial 

expansion of the foundation, the ultimate side shear which can be mobilized may increase 

if there is differential radial expansion between the foundation and surrounding soil 

leading to an increase in radial confining stress (Rosenberg 2010). When the thermally 
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induced stresses are superimposed atop the mechanically induced stresses, the foundation 

is expected to experience a net increase in compressive stress, as shown in the right-hand 

schematic in Figure 2.1(a). 

During cooling, the opposite behavior will occur. Specifically, the foundation cooled 

below ambient temperatures will tend to contract about its midpoint for these boundary 

conditions, leading to a maximum tensile axial stress in the middle of the foundation, 

decaying to zero at the top and bottom of the foundation, as shown in the center 

schematic of Figure 2.1(b). When the thermally induced stresses are superimposed atop 

the mechanically induced stresses, it is possible for tensile stresses to be observed near 

the toe of the foundation, as shown in the right-hand schematic of Figure 2.1(b). The 

thermal contraction of the foundation may result in a reduction in radial confining 

stresses and a reduction in the ultimate side shear resistance. However, heating and 

cooling back to ambient conditions indicate that heating may lead to positive effects in 

the side-shear resistance due to consolidation of the soil surrounding the foundation 

(McCartney and Rosenberg 2011).    

Under mechanical loading, the mobilized side shear resistance is considered to be 

constant along the foundation, as shown in the right hand schematics of Figures 2.2(a) 

and 2.2(b). During heating, upward side shear stresses will be mobilized in the lower half 

of the foundation while downward side shear stresses will be mobilized in the upper half 

of the foundation, as shown in the middle schematic of Figure 2.2(a). During cooling of 

the foundation, the opposite trend in mobilized side shear stresses is expected, as shown 

in the center schematic of Figure 2.2(b). This will lead to different side shear stress-strain 

paths in the upper and lower halves of the foundation.  
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                                    (a)                   (b) 

 

Figure 2.2: Schematic of shear resistance response for a floating energy foundation (free 

at top and bottom) (after Bourne-Webb et al. 2009): (a) During heating; (b) During 

cooling 

 

When these mobilized side shear stresses due to thermal expansion are superimposed 

on the side shear stresses due to mechanical loading, the upper half of the foundation will 

follow an unloading path in the side shear stress-strain curve, while the lower half of the 

foundation will continue along the loading path in the side shear stress-strain curve. If the 

mobilized side shear stresses due to mechanical loading are close to the ultimate side 

shear resistance of the soil-foundation interface, then the lower half of the foundation 

may not be able to experience the full increase in mobilized side shear resistance shown 

in the right-hand schematic of Figure 2.2(a). This phenomenon is shown schematically in 

Figure 2.3. 

 

Figure 2.3: Schematic mobilized side shear stress-strain paths during heating 
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Bourne-Webb et al. (2009) also presented similar axial strain profiles to those shown 

in Figure 2.1 by considering a direct proportionality between axial stress and strain within 

a foundation. However, this is an issue which should be investigated further as 

foundations typically experience contraction due to compressive stresses induced by 

mechanical loading. Conversely, during thermal expansion/contraction, the 

compressive/tensile stresses are typically generated through foundation. The thermal 

expansion will result in an increase in compressive stress throughout the foundation due 

to the axial expansion and an increase in side shear resistance due to the radial expansion. 

Nonetheless, axial contraction during cooling could lead to increase in tensile stress 

throughout the foundation; and a decrease in ultimate side shear stress due to possible 

reduction in radial interface stresses. 

2.2 Review of Soil-Structure Interaction Observed in Field Installations 

2.2.1 In-situ Energy Foundation at Lambeth College (UK) 

Bourne-Webb et al. (2009) performed a series of thermal and mechanical loading 

tests on a full-scale foundation in England. The foundation tested was a 0.56 m diameter 

drilled shaft with a depth of 22.5 meters, containing 3 polyethylene exchange loops. The 

lower 18.5 meters of the foundation is in London clay with the rest of the foundation in 

cohesionless fill material. They loaded their foundation under an initial loading stage 

(loading at 1200 kN), a cooling stage (with a 1200 kN mechanical load and ∆T = -19 °C 

from ambient) and a heating stage (maintaining the 1200 kN mechanical load, while 

∆T = +10 °C from ambient).The strains were measured using vibrating-wire strain 

gauges (VWSGs). The strain distributions after mechanical loading and during heating 

and cooling are shown in Figure 2.4. The initial strain value at the bottom of the 
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foundation measured by Bourne-Webb et al. (2009) indicates that there was a slight 

mobilization of end bearing when the foundation was under loading. At the end of the 

cooling stage, the strain change is small in the upper 6 m of the foundation with a rapid 

reduction between 6 and 14 m, with tensile strains in the lower third of the foundation. At 

the end of the heating phase the mobilized strains are constantly larger than those prior to 

any temperature change (Bourne-Webb et al. 2009). 

 

Figure 2.4: Strain profiles in energy foundation at Lambeth College in London (after 

Bourne-Webb et al. 2009) 

 

During a heating cycle, axial loads/stresses in the foundation shaft are expected to be 

more compressive than during mechanical loading. The load and side shear resistance 

profiles developed from the VWSG data generally support the aforementioned 

mechanism as shown in Figures 2.5(a) and 2.5(b). The loading frame at the surface 

enables the foundation head to move freely while maintaining a constant load. The results 

in Figure 2.5 imply that the Lambeth College test foundation is imperfectly restrained, as 

the maximum apparent load is 70% higher than the load applied to the top. This 

contradicts the aforementioned statement that maximum thermal load is typically twice or 

more of the head load. There is also not much of a change in the resistance mobilized at 
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the foundation toe (Bourne-Webb et al. 2009). 

  
(a) (b) 

Figure 2.5: (a) Axial load and (b) Shaft resistance in energy foundation at Lambeth 

College in London (after Bourne-Webb et al. 2009) 

 

The discussion in the previous section also suggests that during a cooling stage 

applied to a foundation under mechanical loading, a reverse effect to heating should 

occur in which forces in the foundation generally are less compressive along with 

mobilizing additional side shaft resistance in the upper part of the foundation and reduced 

shaft resistance in the lower part of the foundation. The VWSG data support the 

development of these effects as shown in Figures 2.5(a) and 2.5(b), with increasing 

mobilized shaft resistance to about 60 kPa in the upper shaft and reducing, possibly 

reversing, in the lower shaft. The fluctuations in the data in the upper part of the 

foundation in the observed response as compared to the simplified behavior described in 

the previous section is perhaps due to the fact that the soil is not uniform, that is, the soil 

in the upper 4-5 m may be providing less resistance than the underlying clay, and may be 

close to its ultimate value as well.  The dataset suggest that the foundation cooling led to 

tensile forces being developed in the lower part of the foundation, with a maximum axial 

tension load of 200 kN (Bourne-Webb et al. 2009). 

The movement of the foundation at the ground surface for the Lambeth College test 
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foundation is shown in Figure 2.6. The results in this figure indicate that the foundation 

does move during heat exchange, but the magnitude of thermally induced movement is 

less than 6 mm.  

 

Figure 2.6: Thermally induced displacements in the Lambeth College energy foundation 

(Bourne-Webb et al. 2009) 

 

 

2.2.2 In-situ Energy Foundation at EPFL (Switzerland) 

Laloui and Nuth (2006) performed a series of thermal and mechanical loading tests 

on a full-scale foundation in Switzerland. The foundation tested was a 25.8 m-long 

drilled shaft having a diameter of 0.88 m. The upper 12 m of the foundation was in 

alluvial soils; where the lower part of the foundation was in glacial moraine material and 

the foundation was bearing on impervious Molasse material.  Laloui and Nuth (2006) 

increased the temperature by 21 °C above the natural ground temperature, then cooled it 

to 3 °C above the natural ground temperature. No mechanical load was imposed at the top 

of the foundation, and the foundation was free to move (Test 1 as described by Laloui et 

al. 2006). The axial strain distributions in the foundations during heating and cooling are 

shown in Figure 2.7. The axial strain distribution with depth is not uniform during the 

heating stage and is influenced by the frictional resistance to foundation movement. The 
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fluctuation in axial strain measurement in the result is due to boundary condition as the 

foundation was installed through multiple soil layers.  

 

Figure 2.7: Measurements of strains of energy foundation (after Laloui et al. 2006): (a) 

During heating to 21 °C; (b) During cooling to 3 °C. 

 

The axial strains during heating are more than 3 times those during cooling. Laloui 

and Nuth (2006) also carried out a test to examine the effects of heating and cooling on 

the foundation, which was confined at the top by the building (Test 7 as proposed by 

Laloui and et al., 2006). The observed response at the final stage of loading, with a head 

load of about 1300 kN, is shown in Figure 2.8 (Laloui et al. 2006). The results imply that 

the axial load in the foundation approximately doubled with respect to the head load 

during the applied thermal loading (∆Τ=13.4°C). The thermal effect is more apparent at 

the toe of the foundation when compared to the results of Bourne-Webb et al. (2009). The 

overall trends in thermal axial stresses in this test are consistent with the mechanisms 

described in the previous section (Bourne-Webb et al. 2009).  
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Figure 2.8: Axial stress distribution of energy foundation at EPFL under an axial load of 

1300 kN and during heating (∆Τ=13.4°C) at EPFL (after Laloui et al. 2006) 

 

The most significant risk of energy foundations subject to thermo-mechanical loading 

is the possibility for differential movements between foundations. Asymmetric thermal 

expansion or contraction could lead to the generation of bending moments and 

differential movement (Boënnec 2009). These effects could lead to heave or settlements 

of the foundation butt, and could potentially create down-drag on the foundation 

(McCartney et al. 2010). Laloui et al. (2006) observed a butt heave of nearly 4 mm 

during an increase in temperature of 21 °C, as shown in Figure 2.9. The foundation did 

not return to its original elevation upon cooling, but maintained an upward displacement 

of approximately 1 mm. Laloui et al. (2006) indicated that the increase in temperature led 

to a plastic response in the clay. The soil was observed to partially recover deformations 

after cycles of heating and cooling, causing permanent measurable strains and settlements 

in the foundations (Laloui et al. 2006). Nonetheless, similar to the deformation results 

from Bourne-Webb et al. (2009) shown in Figure 2.6, the magnitude of thermal axial 

deformations is not significant enough to result in structural damages. 
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Figure 2.9: Thermally induced displacements in the EPFL energy foundation (after 

Laloui et al. 2006) 
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CHAPTER 3: Load Transfer Model Description 

An axial load transfer (T-z) analysis is developed in this study to predict the axial 

deformation of an energy foundation subject to mechanical and thermal loading. 

Specifically, the traditional load transfer (T-z) analysis method developed by Coyle and 

Reese (1966), used to predict the settlement and stress distribution in deep foundations 

subject to mechanical loading, is extended in this study to consider thermo-elastic 

deformation of the foundation. The analyses are based on the following assumptions: 

1. The properties of the foundation such as the Young’s modulus (E) and coefficient of 

thermal expansion (αT) remain constant along the foundation. 

2. Downward and upward movements are taken as positive and negative respectively. 

Compressional stresses are also taken to be positive. 

3. Foundation expands and contracts about a point referred to as the null point when it is 

heated or cooled (Bourne-Webb et al. 2009). The location of the null point depends 

on the upper and lower axial boundary conditions and side shear distribution, and will 

be defined later. Expansion strains are assumed to be negative. 

4. Depending on the particular details of the soil profile, the ultimate side shear 

resistance can be assumed to be constant with depth in a soil layer (i.e., the α method) 

(Tomlinson 1954) or it can be assumed to increase linearly with depth in a soil profile 

(i.e., the β method) (Coduto 1996).  Although both approaches have been 

implemented into the algorithm, the β method is used in the parametric study of the 

analysis.  

The following notations are used in the T-z analysis:  
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• Q is used to represent axial forces within the foundation, at the foundation base and 

the internal loading between the elements.  

• The letter � stands for the relative displacement between the foundation and soil.  

• Kf, Ks and Kbase are the stiffnesses of the foundation, side shear and base spring, 

respectively.  

• The indices “b”, “t” and “s” represent the bottom, top and side of an element.  

• The indices M and T stand for mechanical and thermal loading, respectively.  

• The index “i” represents the element number within the foundation.  

• The variable “l” represents the length of each element along the foundation. 

3.1 Mechanical Load-Transfer (T-z) Analysis 

The traditional load transfer analysis, as proposed by Coyle and Reese (1966) is used 

to calculate the deformation distribution within a foundation under application of a 

mechanical load to the foundation butt. The approach involves discretizing the foundation 

into a series of elements. The behavior of each foundation element can be represented by 

a spring with stiffness of Ki. The spring stiffness Ki is defined by the following equation: 

Eq. 3.1 Ki = 
AiEi

Li
  

where Ai is the cross section area of element i, Ei is the Young’s modulus of the 

reinforced concrete in element i, and Li is the length of the element. A schematic of the 

discretized foundation and a typical element i is shown in Figure 3.1, and the typical 

geometric variables are shown in Figure 3.2.  
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Figure 3.1: Discretized foundation used in the load transfer analysis 

 

 

Figure 3.2: Typical element i  with load variables 

 

The displacement of the end of the foundation into the underlying soil is also 

represented using a nonlinear spring stiffness function referred to as a Q-z curve. 

Similarly, the mobilization of side shear resistance with displacement is typically 
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described using a nonlinear spring stiffness function referred to as a T-z curve. An 

example of Q-z and T-z curves for a drilled shaft foundation developed by O’Neill and 

Reese (1998) are shown in Figure 3.3. The ordinate of the Q-z curve is the dimensionless 

end bearing, which is the ratio of the actual end bearing to the ultimate end bearing, while 

the abscissa is the relative displacement of the foundation toe. The ordinate of the T-z 

curve is the dimensionless side shear, equal to the ratio of the actual shearing stress to the 

shearing stress at failure (ultimate side shear resistance), while the abscissa is the relative 

displacement between the shaft element and surrounding soil.  

 

  
(a) (b) 

 

Figure 3.3: Typical nonlinear spring inputs for the load transfer analysis: (a) Q-z curve; 

(b) T-z curve (Reese and O’Neill 1988) 

 

The schematics in Figure 3.4 show the discretization of the foundation for mechanical 

soil-structure interaction used in this study, in terms of stresses and relative 

displacements. The value of the displacement at the bottom of the foundation zbase is used 

to initiate the T-z analysis. The value of Qbase can be defined as a function of the base 

displacement (ρbase) using the Q-z curve. Then, the axial forces acting at the top and 

bottom of the elements along with their displacements at the top, bottom and middle can 

be calculated respectively. For a foundation discretized into n elements, the axial force 
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acting at the bottom of element n can be defined using the Q-z curve. Specifically, the 

value of Qbase can be defined from the base displacement, which is used as an input to 

start the analysis. In this study, a base displacement corresponding which leads to a 

surface load representative of a building load was used to start the analysis. 

 
 

 

Figure 3.4: Components of the mechanical load-transfer analysis 
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The mechanical T-z analysis starts from element n (the element at the tip). 

Specifically, the reaction force Qbase can be calculated using an imposed value of ρbase, as 

follows: 

Eq. 3.2 ����	 = �(����	) 
The average axial force in the element can be calculated by averaging the axial force at 

the top �
 (initially zero) and bottom �� = 	����	for element n. ����	  is the axial force 

acting at the bottom of element n, as follows: 

Eq. 3.3 ���	 = (��,� +�
,�2 ) 
Next, the elastic compression of element n (∆) can be calculated by multiplying the 

average force ���	  by the stiffness of the K of the element, as follows: 

Eq. 3.4 Δ = ���	 ×   

Next, the displacement at the side of the element ρs,M is defined by adding the settlement 

at the bottom of the element plus one half the elastic compression (!"# ) of the element, as 

follows: 

Eq. 

3.5 
��,� = �� + 12Δ� 

Next, the side force on the element Qs,M is then defined using the T-z curve and the 

displacement at the side ρs,M. calculated using Eq. 3.5, as follows: 

Eq. 3.6 ��,� = �(��,�) 
Finally, a new force at the top of the element �
,�,�	$ is defined by adding the force at 

the base of the element and the force on the side of the element to establish equilibrium, 

as follows: 



 24  

 

Eq.3.7 �
,�,�	$ = ��,� +��,� 

If the difference between the new and old forces on the top of the element is not less 

than a user-defined tolerance (a value of 10
-6

was used in this study) then the new axial at 

the top of the foundation is used to calculate a new average axial stress (Equation 3.3) 

and the process is repeated iteratively until convergence. The starting force for the top of 

the element for the each successive iteration is set equal to that of the previous iteration. 

If the difference is less than 10
-6

 then the processes is repeated for the next element until 

the top of the foundation is reached.  

The force on the bottom of a subsequent element ��,�%&' is equal to the new force on 

the top of the next element �
,�%  and the settlement on the bottom of subsequent element 

��,�%&' is equal to the settlement of the next element ��,�%  plus the elastic compression of 

the foundation element (Δ() ), as follows: 

Eq. 

3.8 

��,�%&' = �
,�%  

Eq. 

3.9 

�*,+,−1 = �*,+, + ΔMi  

Where the value of ��,� is equal to the value of �
,� defined for the lower element. The 

final load on the top of the foundation �
,� will cause the corresponding displacement at 

the top of the foundation �
,� . 

3.2 Thermal T-z Analysis 

The load transfer (T-z) analysis method can also be used to predict the settlement and 

stress distribution in energy foundations subject to thermal loading (i.e., without 

mechanical loading). In this regard, a spring should be added to the top of the foundation, 
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which represents the foundation head-structure stiffness (Knellwolf et al. 2011). The 

“null point” location is an important variable to define in this process needed to define 

the thermal response of the energy foundation during heating/cooling.  

3.2.1 The Null Point Criterion 

 

 Once a foundation is heated or cooled, it begins to expand or contract about its null 

point (Bourne-Webb et al. 2009). The null point is the location in the foundation where 

there is no thermal expansion or contraction, assuming that the temperature change 

occurs uniformly throughout the foundation. A schematic of a typical foundation divided 

into n equal elements, along with the location of the null point, is shown in Figure 3.5. 
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Figure 3.5: Typical foundation schematic of n elements highlighting the location of the 

null point (after Knellwolf et al. 2011) 

 

In order for the displacement at the null point (denoted as NP) to be zero, the sum of 

the mobilized shear resistance and the structure reaction for the upper section of the null 

point should be equal to the sum of the mobilized shear resistance and the base reaction 

in the lower one (Knellwolf et al. 2011).  Eq. 3.10 through Eq. 3.13 can be used to define 

the null point location along the foundation.  

Eq. 3.10 0Q2,3)45
%6' + Q7,3 = 0 Q2,3)�

%6458' + Q9:2;,3 

Eq. 3.11 Q7,3 = f(ρ7, K7) 
Eq. 3.12 Q9:2;,3 = f(ρ9:2;, K9:2;) 
Eq. 3.13 Q2,3) = f?�@, , K2A 

In these equations, Qbase,T represents the base response to the thermal expansion and 

contraction is defined using Q-z curve. Qh,T signifies the structure response is linearly 

proportional to the relative displacement of the head (butt) of the foundation. ��,B%  is the 

shear resistance of the foundation and can be determined according to the T-z curve. Ks is 

the stiffness of the material surrounded energy foundation that can be constant for a 

single soil layer or varied in multiple soil layers. Kh represents the foundation head-

structure stiffness, which depends on several factors including the rigidity of the 

supported structure, the type of contact between the foundation and the mat or raft, and 

the position and the number of energy foundations (Knellwolf et al. 2011). Kbase is the 

base material stiffness and depends on the initial slope of the Q-z curve. For the case of 

linear elastic material at the base of foundation, Kbase is constant. The values of ρ7and 
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ρ9:2; represent the relative displacements at the head and the base of the foundation. ��%  is 

the relative displacement at the side of the element i. The null point location for 

hypothetical foundations with different boundary conditions will be discussed in Sections 

5.1 and 5.2. 

3.2.2 Algorithm 

 

During heating or cooling, the foundation will expand or contract  about the null 

point.  The compressional/tensile forces acting on each element restrict the movements. 

These induced forces initiate from the base reaction, the structure reaction and the 

mobilized friction forces of the adjacent elements in the foundation. The relevant 

variables in the thermal load transfer analysis are defined in Figures 3.6 and 3.7 for 

heating and cooling, respectively. 
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Figure 3.6: Thermal load model analysis for heating 
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Figure 3.7: Thermal load model analysis for cooling 

 

To compute the first set of mobilized shear resistance and the base reaction, the 

foundation is assumed to be totally free to move (Knellwolf et al. 2011). Therefore the 
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first set of displacements can be derived using following expression which C is the length 

of the element and i represents the element number along the foundation (i  = 1 to n).  

Eq. 3.14 ∆B% = CEΔF 

These displacements are restricted by the surrounding soil which applies additional 

forces tending to compress/expand the element during heating/cooling process. The null 

point can be located in any element along the foundation where the null point criterion is 

satisfied. The first element below the null point (noted as NP+1) has no displacement at 

its top and it expands/contracts from the bottom during heating/cooling.  

Eq. 3.15 �
,B458' = 0 

The thermal settlement at the side and the bottom of this element can be defined using 

the following two equations.  

Eq. 3.16 ��,B458' = ±∆B458'2  

Eq. 3.17 ��,B458' = ±∆B458' 

In Eq. 3.16 and 3.17, the upper sign is used when a foundation is heated, and the lower 

sign is used when a foundation is cooled. The relative displacements for the rest of the 

elements below the null point (i = NP+2 to n) following equation can be calculated using 

the following equations: 

Eq. 3.18 �
,B% = ��,B%&' 

Eq. 3.19 ��,B% = �
,B% ± ∆B%2  

Eq. 3.20 ��,B% = �
,B% ± ∆B%  



 31  

 

When the base of the foundation is reached, the first set of base reaction force along 

with the compressional/tensile stress acting on each element during heating/cooling can 

be calculated using the Eq. 3.21 through Eq. 3.24 (i = NP+1 to n): 

Eq. 3.21 ����	,B = �(��,B,�) 
Eq. 3.22 �
,B% = ����	,B +0��,BI%

I6�  

Eq. 3.23 ��,B% = �
,B%8' 

Eq. 3.24 

 

J% = ���	K = (�
,B% +��,B% )2K  

After the forces acting on each element are defined, the next step is to define the 

actual displacement of each element using the following equation: 

Eq. 3.25 ∆B��
L��% = ∆B% − J%. C�  

The actual displacement in each element will be lower than that present when the 

foundation is free to move from the bottom. This actual displacement should be replaced 

with the initial displacements (free boundary) in the Eq. 3.16 through Eq. 3.20 in order to 

get a new actual displacement from Eq. 3.25 and this process should be repeated until the 

values of actual displacements reasonably converge (the difference between the  new and 

old actual displacement is less than 10
-6

). 

For the elements above the null point (noted as NP-1, NP-2, etc.), Eqs. 3.26 

through3.36 are used in the analysis. To compute the first set of mobilized friction and 

the structure reaction, the foundation is assumed to be totally free to move and therefore 

the first set of displacements can be derived using Eq. 3.26: 
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Eq. 3.26 ∆B% = CEΔF 

The first element above the null point has no displacement at the bottom and it 

expands/contracts from the top during heating/cooling (Eq. 3.27).  

Eq. 3.27 ��,B45&' = 0 

The thermal settlement at the side and the bottom of this element can be defined using 

Eq. 3.28 and Eq. 3.29 respectively.  

Eq. 3.28 ��,B45&' = ±ΔB45&'2  

Eq. 3.29 ��,B45&' = ±ΔB45&' 

Relative displacement for the rest of elements above the null point (i = NP-2 to 1) can be 

defined using Eq. 3.30 through Eq. 3.32. 

Eq. 3.30 ��,B% = �
,B%8' 

Eq. 3.31 ��,B% = ��,B% ± ∆B%2  

Eq. 3.32 �
,B% = ��,B% ± ∆B%  

While the top of the foundation is reached, the first set of structure reaction force and 

also the compressional/tensile stress acting on each element above the null point (i=NP-1 

to 1) during heating/cooling can be calculated using the Eq. 3.33 through Eq. 3.36: 

Eq. 3.33 ��
�L�
L�	,B = �(�
,B,') 
Eq. 3.34 ��,B% = �M,B +0��,BI%

I6'  

Eq. 3.35 �
,B% = ��,B%&' 
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Eq. 3.36 

 

J% = ���	K = (�
,B% +��,B% )2K  

After the stress acting on each element is defined, the next step is to define the actual 

displacement of each element using Eq. 3.37. 

Eq. 3.37 ∆B��
L��% = ∆B% − J%. C�  

Again, these actual displacements for the top section should be replaced with the 

initial displacements (free boundary) in the equations Eq. 3.28 through Eq. 3.32 and the 

whole process should be repeated until the values of actual displacements reasonably 

converge (the difference between the new and old actual displacement is less than 10-6).  

 

3.3 Thermo-Mechanical T-z Analysis 

The most accurate representation of energy foundations can be obtained using a 

thermo-mechanical analysis, in which the thermal loading is applied to a foundation 

under an initial mechanical load. To calculate the thermo-mechanical response of the 

energy foundation, the first step is to calculate the distribution in axial and interface 

displacements and forces along the foundation for a given initial mechanical loading. 

Then the foundation response due to thermal loading (heating/cooling) will be applied 

subsequently to define the overall response of a foundation subject to thermo-mechanical 

loading. The thermo-mechanical process should be started from the “null point”.  

Opposite to the thermal algorithm, this algorithm starts from non-zero relative 

displacement about the null point. Similar to thermal algorithm, the initial displacements 

are considered to be the same as free boundary condition (ΔB% = CEΔF). Eqs. 3.38 through 

3.40 are used for the first element below the null point (the upper and the lower sign in 

following equations is used for a foundation which is heated or cooled respectively): 
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Eq. 3.38 �
,�,B458' = �
,�458' 

Eq. 3.39 ��,�,B458' = ��,�458' ± ∆B458'2  

Eq. 3.40 ��,�,B458' = ��,�458' ± ∆B458'2  

The relative displacements for the rest of elements below the null point (i=NP+2 to n), 

can be defined using Eqs. 3.41 through3.43. 

Eq. 3.41 �
,�,B% = ��,�,B,%&' 

Eq. 3.42 
��,�,B% = �
,�,B% ± ΔF,2  

Eq. 3.43 ��,�,B% = �
,�,B% ± ΔF,  
While the base of the foundation is reached, the first set of base reaction force and 

also the compressive/tensile forces acting on each element during heating/cooling can be 

calculated. Before calculating these stresses the process should continue to define the 

relative displacements for the elements above the null points by using following 

equations. Specifically, Eqs. 3.44 through 3.46 are used for the first element above the 

null point (the top/bottom sign in following equations is used for a foundation which is 

heated/cooled, respectively):  

Eq. 3.44 ��,�,B45&' = ��,�45&' 

Eq. 3.45 ��,�,B45&' = ��,�,B45&' ∓ ∆B458'2  

Eq. 3.46 �
,�,B45&' = ��,�,B45&' ∓ ∆B458' 
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For the rest of elements above the null point (i = NP-2 to 1), Eq. 3.47 through 3.49 can be 

used: 

Eq. 3.47 ��,�,B% = �
,�,B%8'  

Eq. 3.48 ��,�,B% = ��,�,B% ∓ ΔB,%2  

Eq. 3.49 �
,�,B% = ��,�,B% ∓ ΔB,% 
To calculate the actual displacement of each element, the compressive/tensile forces 

acting on each element can be defined using Eqs. 3.50 through 3.54.  

Eq. 3.50 ����	,�,B = �(��,B,�) 
Eq. 3.51 �
.�,B% = ����	,B +0��.�,BI%

I6�  

Eq. 3.52 ��.�,B% = �
.�,B%8'  

Eq. 3.53 J% = ���	K = (�
.�,B%8' + ��.�,B% )2K  

Eq. 3.54 Δ�,B��
L��	 = ΔB,% − J% . C�  

The axial force calculations should start from the base, up to the element of interest 

(j= n to i, where i is the element number). The mobilized side shear forces due to thermal 

expansion ( ��.�,BI
) for the elements above the null point of the foundation will follow an 

unloading path in the T-z curve, while that for the elements below the null point will 

continue along the loading path. To determine for the elements above the null point the 

unloading path of the T-z curve should be used. The value of ��.�,BI
 for the elements 

below the null point can be defined using the loading path of the T-z curve. The actual 
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displacement calculated using Eq. 3.54 should be replaced with the initial displacements 

(free boundary) in Eqs. 3.39 through 3.49 in order to get a new actual displacement and 

this process should be repeated until the values of actual displacements reasonably 

converge (the difference between the new and old actual displacement is less than 10
-6

). 

The MATLAB code in Appendix A has been thoroughly annotated to provide further 

information on the aspects of the different load transfer analyses.  
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CHAPTER 4: Definition of Thermo-Mechanical Effects on Foundation Capacity 

4.1 Ultimate End Bearing Capacity 

When a foundation is heated under a mechanical load (e.g., a building load), it is able 

to react against the building load causing the soil at the toe to consolidate. This leads to a 

higher end bearing capacity than a foundation which is heated to a similar temperature 

without a building load (Coccia et al. 2011). This idea should be incorporated in the 

thermo-mechanical analysis of a foundation after the first cycle of heating and cooling. In 

such cases, the soil at the toe of the foundation will consolidate, leading to a higher 

undrained shear strength (cu ) of the soil beneath the toe, which will result in a higher end 

bearing capacity of the foundation.  

The ultimate end bearing Qb,max for the foundation can be defined as follows:  

Eq. 4.1 ��,O�P = Q�RLK�						 
where Nc is the untrained bearing capacity factor for deep foundations (i.e., equal to 9 for 

a foundation with a circular or square cross-section and a tip depth greater than 2 

foundation diameters), cu is the undrained shear strength of the soil at the foundation tip, 

and Ab is the cross sectional area of the shaft toe.  

The main input of the mechanical T-z analysis is the settlement of the toe of the 

foundation. Although the Q-z curve indicates that the mobilized end bearing will increase 

during mechanical loading, it is expected that the foundation will be maintained at this 

displacement. Although the ultimate end bearing in Eq. 4.1 represents the case of 

undrained loading, it is assumed that the soil at the toe of the foundation will eventually 

drain and undergo compression leading to a corresponding increase in undrained shear 

strength and ultimate end bearing capacity. Further, if the foundation is heated, one of the 
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outputs of the thermo-mechanical T-z analysis is the additional settlement of the toe of 

the foundation.  An example of this phenomenon is shown in the data from McCartney et 

al. (2010) in Figure 4.1. For Test 2, it is clear that the foundation experienced thermo-

mechanical settlement under application of an axial load of 800 kN, which contributed to 

the increase in foundation capacity when it was loaded to failure after heating. For Test 3, 

which was heated then cooled, the compression of the soil at the toe during mechanical 

loading and heating led to a higher foundation capacity even though it had been cooled 

back to the same temperature as Test 1.  

 

Figure 4.1: Load-settlement curves for three scale-model foundations in prototype scale 

(McCartney et al. 2010) NOTE: Test 1: Baseline loading at 15 °C; Test 2: Heating to 50 

°C then loading; Test 3: Heating to 50 C°, Cooling to 20 °C then loading 

 

  The settlement of the foundation after the first thermo-mechanical loading calculated 

with the load transfer analysis can be used to estimate the change in void ratio of the soil 

under the toe of the foundation, as follows: 

Eq. 4.2 ∆S = T(1 + SU)VU  

where H0 is the thickness of the soil layer beneath the foundation in which there is a 

change in stress during heating (1 to 2 foundation diameters), e0 is the initial void ratio,  S 
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is the settlement of the toe of the foundation, and  ∆e is the change in void ratio.  

The data from Bonny silt can be used as an example of how the change in void ratio 

can be used to estimate the increase in end bearing of the foundation.  The compression 

curve (i.e., the relationship between e and log σ'3,c) can be used to estimate the 

corresponding change in effective consolidation stress σ'3,c. The e - log σ'3,c curve shown 

in Figure 4.2 was obtained from an oedometer test on Bonny silt. 

 

Figure 4.2: Compression curve for Bonny silt at ambient temperature 

The change in effective consolidation stress can be used to estimate the change in the 

undrained strength of the soil using data from a consolidated undrained test. Specifically, 

the R-envelope, or a plot of the principal stress difference at failure (σ1-σ3)f vs. the 

effective consolidation stress (σ'3,c) can be used to estimate the change in undrained shear 

strength of the soil. The R-envelope from a CU triaxial test on Bonny silt is shown in 

Figure 4.3. The change in (σ1-σ3)f can be predicted from the change in effective 

consolidation stress (∆σ'3,c) defined from Figure 4.2 for the given change in void ratio 

calculated using Eq. 4.2.    
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Figure 4.3: The “R” envelope (i.e., (σ1-σ3)f vs. σ'3,c) for Bonny silt, used to define the 

change in cu or the c/p ratio for undrained shear loading 

 

The value of ∆(σ1-σ3)f defined from Figure 4.2 corresponds to the change in 

undrained shear strength of the soil ( ∆RL) as follows: 

Eq. 4.3 ∆RL = ∆(J' − JX)�2  

The change in undrained shear strength of the soil can then be used to calculate the 

increase in ultimate end bearing resistance of the foundation. This feature of the model 

can be used to estimate the    

4.2 Ultimate Side Shear Resistance 

The ultimate side shear resistance at ambient temperature conditions at a given depth 

can be calculated using the following equation: 

Eq. 4.4 ��,O�P =0YK�J�′([(\)) U]^_`′I
%6'  

where j represents the element of interest within the foundation, β is an empirical 

reduction factor representing soil-interface behavior, As is the surface area of the 
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foundation sides, σv'(z) is the effective overburden pressure at a given depth z, Ko is the 

coefficient of lateral earth pressure at rest and can be defined using following equation:  

Eq. 4.5  U = 1 − @,_∅b 
where φ' is the drained friction angle.  This empirical approach to define the ultimate side 

shear resistance of the foundation is referred to as the β method (Coduto 1996), and the 

value of β must be defined using proof tests. Rosenberg (2011) found that a value of β = 

0.55 was suitable to represent the behavior of a scale-model drilled shaft in a soil having 

φ = 32°. The β method was selected for this analysis because it is an effective stress-

based approach to define the side shear resistance, and heating is assumed to occur 

slowly leading to drained conditions in the soil. Specifically, as the foundation expands 

into the soil during heating, the soil will consolidate and lead to an increase in ultimate 

side shear resistance of the foundation. The impact of temperature on Qs,max due to the 

thermally induced radial expansion of the foundation can be determined as follows 

(McCartney and Rosenberg 2011): 

Eq. 4.6 ��,O�P =0YK�J�′([(\))I
%6' c U + ? d −  UA Be]^_`′ 

where Kp is the coefficient of passive earth pressure and can be defined as follows: 

Eq. 4.7  d = 1 + @,_∅b1 − @,_∅b 
KT is a reduction factor representing the mobilization of passive earth pressure with 

thermal-induced strain, equal to: 

Eq. 4.8 	 B = fEBΔF g h 2⁄0.02jk 
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where κ is an empirical coefficient representing the soil resistance to expansion of the 

foundation and maybe a stress-dependent variables, but it was assumed to be constant and 

equal to 65 for this parametric analysis. αT is the coefficient of thermal expansion of 

reinforced concrete (9.7 × 10
-6

 m/m °C). The geometric normalizing factor [(D/2)/0.02L] 

was proposed by Reese et al. (2006).  

The Q-z and T-z curves used in this study are shown in Figure 4.4(a) and 4.4(b), 

respectively. Although the shear strength data of Uchaipichat and Khalili (2009) indicates 

that the shear stress-strain curves of soil are affected by temperature, it is assumed in this 

study that the Q-z and T-z curves do not depend on temperature. The curves shown in 

Figure 4.4 are the same curves used by McCartney and Rosenberg (2011) in their load 

transfer analysis involving energy foundations in Bonny silt.  

  
(a) (b) 

 

Figure 4.4: Load-transfer curves: (a) Q-z curve; (b) T-z curve 

 

The Q-z and T-z curves in Figure 4.4 are represented in this study using hyperbolic 

equations for simplicity. The side shear resistance (Qs) and the base reaction (Qbase) at 

any relative displacement can be obtained using following equations: 

Eq. 4.9 ����	 = ��,O�P × ����	^� + *�����	  
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Eq. 4.10 �� = ��,O�P × ��^� + *���  
where ab, bb, as and bs can be selected based on the best fit to the experimental data. 

McCartney and Rosenberg (2011) used parameters for the Q-z and T-z curves of ab = 

0.02, as = 0.0035 and bb = bs = 0.9 in a simplified thermo-mechanical load transfer 

analysis involving energy foundations in Bonny silt. These parameters were adopted for 

use in the parametric evaluation. Eq. 4.10 represents the loading path of the T-z curve 

used to define the side shear resistance within the foundation for either mechanical 

analysis or thermo-mechanical analysis below the null point. The unloading path of the 

T-z curve used for thermo-mechanical analysis for the portion of the foundation above 

the null point can be defined as follows:  

Eq. 4.11 �� = �@,l^m × n��^� + ��,%��,O�P − o 1pq,rstpq,u − *�vw 
where Qs,i represents the initial side shear resistance after the mechanical loading is 

applied. 
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CHAPTER 5: Evaluation of the Load Transfer Analysis 

 

This chapter includes an evaluation of the load transfer analysis to assess its 

capabilities. First, the definition of the null point is evaluated for several simple example 

cases. These cases provide the limits on the expected locations of the null point. Next, the 

stress and strain distributions in hypothetical energy foundations are presented to 

highlight the impact of different boundary conditions which may be encountered in 

practice. These examples highlight the importance of selecting the building-foundation 

spring stiffness Kh. Finally, a parametric evaluation of the impact of temperature and 

friction angle of surrounding soil is presented, as these are vital input parameters in the 

load transfer analysis. 

5.1 Definition of the Null Point Location for Simple Cases 

 In this section, several examples of simple foundations will be discussed in order to 

understand the impact of different parameters in defining the null point location. 

Although it is recommended to use multiple elements in an analysis of a real energy 

foundation when defining the null point location, two elements are used in the following 

three examples for transparency and simplicity of calculations. Linear elastic behavior 

was considered for the materials in the following examples. A typical schematic of an 

energy foundation with two elements is shown in Figure 5.1, along with the relevant 

geometric and soil-structure interaction variables. In this schematic, x is the location of 

the null point from the top of the foundation, which is L-x from the base. 
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Figure 5.1: Typical foundation schematic along with geometric and resistance load 

variables (for a foundation under heating)  

 
Example 1) If a foundation which is built in a single layer soil has free boundary 

condition at the top and the bottom, it represents a condition in which Kbase = Kh = 0 (or 

Qbase,T = Qh,T = 0); In this case the null point location will be in the middle of the 

foundation in such that the side shear resistance for the top section is equal to the side 

shear resistance of the bottom section as follows. 

Eq. 5.1 ��',B = ��#,B 

Considering a uniform linear elastic behavior for the soil surrounding the foundation, the 

location of the null point will deduced as follows: 

Eq. 5.2  � αxΔT2 =  � α(L − x)ΔT2  

Equation 5.2 will be satisfied when x = L/2. Theoretically, if a foundation located in 

single layer soil is at the same condition at the top and the bottom in which Kbase = Kh ≠ 0, 

this also satisfies the above equation even if two more terms indicating the extremities 

reactions should be added o the above equation. The null point will still be located at L/2. 
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Although these cases may not represent real cases but it is important to see how material 

rigidity can affect the null point location and the thermal response of the foundation. 

Example 2) If a foundation which is built in a single layer soil is free to move from 

the top but restricted from the bottom, it represents a condition in which Kh = 0 (or 

Qh = 0); In this case two conditions can be assumed specifically: (a) If Kbase is semi-rigid 

(Kbase> 0) which represents a case that the foundation sits on a soil with semi-rigid 

material; (b) If Kbase is fully rigid (Kbase ≈ ∞) which represents a case that the foundation 

lies on a stiff rock. In case (a), the location of null point can be defined as follows: 

Eq. 5.3  � αxΔT2 =  ���	α(L − x)ΔT +		 � α(L − x)ΔT2  

By rearranging the terms in Equation 5.3, x can be deduced as follows: 

Eq. 5.4 m =  ���	 − |q# ���	 +  � j 

According to Eq. 5.1, when  Kbase is assumed to be infinite in case (b), x should be equal 

to L. This implies that the null point will be located at the base of the foundation. 

 Example 3) If an energy foundation which is built in a soil restricted from both top 

and the bottom of the foundation, then the following equation can be used. This condition 

is representing a real case. 

Eq. 5.5  MEmΔF +  � αxΔT2 =  ���	α(L − x)ΔT +		 � α(L − x)ΔT2  

by rearranging the terms in Equation 5.5, x can be deduced as follows: 

Eq. 5.6 m =  ���	 − |q# ���	 +  � + M j 
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In this equation, both Kbase and kh are critical to define the null point location. As 

mentioned, these simple examples were given to describe that how boundary conditions 

can change the location of the null point.  

5.2 Impact of Axial Boundary Conditions on Thermal Load Transfer Analysis 

Three types of boundary conditions for deep foundations are studied in this section: a 

semi-floating shaft, a floating shaft and an end-bearing shaft. For all three of these 

boundary conditions, a hypothetical prototype foundation with a length of L = 10 m and a 

diameter of D = 1 m is used in the analyses. The coefficient of thermal expansion of the 

shaft is assumed to be αΤ = 10×10
-6 

m/m°C.  The unit weight and the Young’s modulus 

of the foundation are assumed to be γf  = 24 kN/m
3
 and Ef  = 20 GPa respectively. A soil 

having a drained friction angle (φs) of 30° (for the ultimate side shear resistance), unite 

weight (γs ) of 18 kN/m
3
 and an undrained shear strength of cu = 54 kPa (for the ultimate 

end bearing) are assumed for the soil surrounding the foundation. The hypothetical Q-z 

and T-z curves used in the analysis to determine the base reaction (Qbase) and the shear 

resistance (Qs) are presented separately for each boundary condition case.  

4.1.1 Case 1: Semi-Floating Shaft 

 A semi-floating shaft which supports a building load through both end bearing 

and side shear resistance is the most common type of deep foundation. In order to define 

the response of a semi-floating foundation to thermo-mechanical loading, a foundation 

having the same geometry and soil properties in Section 5.1 along with the following 

model parameters was evaluated. The building load and the foundation head-structure 

stiffness were assumed to be P = 500kN and Kh = 0.5 GPa/m respectively. 
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Table 5.1: Model parameters for Case 1: Semi-floating shaft 

P (kN) 500 

φ'(°) 30 

∆T(°C) 20 

Kh(GPa/m) 0.5 

  

 

The MATLAB code in Appendix A was written to determine the induced stress 

profiles through a foundation that is loaded mechanically (M), thermally (T), or thermo-

mechanically (M+T). The results for this foundation are shown in Figure 5.2 for heating 

to a temperature difference ∆T = 20°C. As expected, the compressive stress decreases 

along the foundation when it is loaded mechanically. The amount of imposed tip 

movement for this example lead to a small mobilization of the end bearing. When the 

foundation is heated, it expands about its null point, and the highest compressive stresses 

are noted at this point. As noted in the previous section, the boundary restraints at the top 

and bottom of the foundation dictate the location of the null point. For the conditions in 

Table 5.1, the null point was defined at a depth of 4 m from the top of foundation.  

   
Figure 5.2: Compressive stress vs. depth for a semi-floating shaft under mechanical 

loading (M), thermal loading (T), thermo-mechanical loading (M+T) 
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The thermo-mechanical strain of this foundation is shown in Figure 5.3. The results in 

this figure indicate that the compressive stress and strain are inversely related The lowest 

value of the thermo-mechanical strain in Figures 5.3 occurs at the null point. 

Accordingly, the null point has the lowest thermal strain but the highest stress. This is 

because the soil offers the most resistance to the tendency for the foundation to expand 

about the null point. 

 

Figure 5.3: Thermo-mechanical strain vs. depth for a semi-floating shaft in Case 1 

 

 

5.2.2 Case 2: Floating shaft 

 

 A floating shaft is one in which the entire building load is supported by the side 

shear resistance of the shaft and the end bearing is negligible (Kbase = 0). The T-z curve 

used in this analysis is the same as the previous case. The model parameters are tabulated 

below. The rest of the parameters are the same as in Case 1. 

Table 5.2: Model parameters for Case 2: Floating shaft 

P (kN) 500 

φ'(°) 30 

∆T(°C) 20 

Kh(GPa/m) 0.5 
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According to results, the null point is located at the same position as previous case. 

This indicates that the mobilized end bearing resistance in previous case is very small and 

almost negligible. The compressive stress profiles along the foundation are sketched in 

Figure 5.4 based on the analysis. As seen in this figure, the compressive stress at the top 

of the foundation for mechanical, thermal and thermo-mechanical analyses is slightly 

lower than their values in the previous case. The compressive stress at the base of 

foundation is clearly lower than the previous case as the mobilized end bearing resistance 

was assumed to be zero in this case. 

 
Figure 5.4: Compressive stress vs. depth for a floating shaft under mechanical loading 

(M), thermal loading (T), thermo-mechanical loading (M+T) 

 

The thermo-mechanical axial strain in the floating shaft is shown in Figure 5.5. As 

seen in this figure, the strain at the top of the foundation is lower than the bottom due to 

the confinement of the foundation at the top (ascending trend toward bottom). The 

confinement at the top of the foundation imposes a higher compressive stress at the 

foundation butt, which prevents the foundation from free expanding from the top during 

heating. On the other hand, the bottom of the foundation can expand almost freely as 

there is negligible confinement at the bottom (i.e., zero end bearing). 
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Figure 5.5: Thermo-mechanical strain vs. depth for a floating shaft 

 

5.2.3 Case 3: End-bearing Foundation 

An end-bearing foundation is assumed to have negligible side shear resistance (Qs) 

along its length, and the applied axial load is supported solely by end bearing. Since no 

side shear resistance will be mobilized due to mechanical and thermal loading, the 

compressive stress and the axial strain are constant along the foundation, as shown in 

Figures 5.6(a) and 5.6(b), respectively. The model parameters are the same as Case 1. In 

this case, in order to increase the spring stiffness at the bottom ab = 0.01 was used in the 

Q-z equation. This case is representative of the situation in which the foundation rests on 

a hard surface (e.g. rock), and the shaft side resistance is negligible.  

  
(a) (b) 

Figure 5.6: Thermo-mechanical results for an end bearing foundation: (a) Compressive 

stress (b) Thermo-mechanical strain  
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5.3. Impact of Temperature on the Thermo-Mechanical Response of an Energy 

Foundation 

A semi-floating foundation with the same parameters used in Section 5.2 is 

considered in this section to evaluate the effect of temperature on thermo-mechanical 

response of an energy foundation. The results in Figure 5.7 indicate that the axial 

compressive stress increases proportionally to the temperature. The change in the shape 

of the curves with temperature is due to the change in ultimate side shear with increasing 

temperature. For values of ∆T of 5°C and 10°C the maximum stress appears at the top of 

the foundation and decreases over the depth. It seems that additional axial stresses on the 

elements due to thermal loading are not very significant and the profile shows almost the 

same behavior as the foundation is only loaded mechanically but with higher values. As 

the temperature increases, the temperature impact on the foundation increases apparently 

such that a sharp peak can be seen in the profile at ∆T = 50°C.  

  

(a) (b) 

Figure 5.7: Change in axial stress of a semi-floating shaft in response to different 

temperatures: (a) Thermo-mechanical; (b) Thermal 
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nonlinear with increasing temperature changes. This results from the effects of side shear 

resistance on the foundation performance. The maximum strain at ∆T = 50°C is 5 times 

larger than the maximum strain at ∆T = 5°C.  

 
Figure 5.8: Change in axial strain of a semi- floating shaft in response to different 

temperatures 
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Figure 5.9: Maximum values of stress and strain in a semi-floating foundation at 

different temperatures  
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Figure 5.10: Impact of the soil friction angle on the thermo-mechanical behavior of a 

floating foundation: (a) Axial thermal stress (b) Axial thermal strain 
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of thermal and mechanical loading, while the thermal stresses and strains in Figures 

5.11(c) and 5.11(d) reflect the isolated effect of thermal loading. The null point can be 

seen more obviously when examining the thermal stresses alone.  

  
(a) (b) 

  
(c) (d) 

  

  

Figure 5.11: Impact of the head-structure stiffness (Kh) on the thermo-mechanical 

behavior of a floating foundation: (a) Thermo-mechanical stress (b) Thermo-mechanical 

strain (c) Thermal stress (d) Thermal strain 
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CHAPTER 6: Validation of the Load Transfer Analysis 

 

The results of a centrifuge-scale model energy foundation test are used in this chapter 

for the purpose of validating the load-transfer analysis developed in this study. The 

details of the centrifuge testing setup and procedures are presented in detail by Stewart 

and McCartney (2012), and the results are presented in Stewart (2012).  

6.1 Model Foundation Description 

A small-scale model foundation with dimensions of 50.8 mm in diameter and 533.4 

mm in length was tested in the centrifuge at a g-level of 24.6. This model foundation 

indicates that the stresses and strains induced in the foundation are representative of a 

prototype foundation which has a diameter of 1.25 m and a length of 13.12 m. These 

dimensions are typical for drilled shafts used in building support applications for 2-3 

story buildings. Pictures of the completed scale model foundation and a schematic 

showing the dimensions of the instrumentation locations are shown in Figures 6.1(a) and 

6.1(b). 
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(a) (b) 

Figure 6.1: (a) Scale model foundation; (b) Schematic with instrumentation layout 

(Stewart and McCartney 2012) 

 

Before centrifuge testing, a comprehensive set of characterization tests were 

performed on the pre-cast foundation outside of the soil in a load frame at 1-gravity to 

determine its mechanical and thermal properties. The coefficient of thermal expansion (α) 

was estimated 9.69×10
-6 

m/m°C. Also, the secant elastic modulus of foundation (E) was 

estimated 7.17 GPa based on the tests. The value of E is smaller than that of the 

reinforced concrete in energy foundations because the amount of coarse aggregate was 

lower in the reinforced concrete of the model foundation.  

5.2 Centrifuge Test Description 

A cylindrical container with 13 mm-thick insulation sheet wrapped around the 

container used in this test along with its dimensions is shown in Figure 6.2. The 
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foundation evaluated in this study is an end-bearing foundation, with the tip resting on 

the rigid steel base plate of the container.  

 

 

Figure 6.2: Schematic of the model, container and load frame used in centrifuge testing 

(Stewart and McCartney 2012) 

 

The instrumentation incorporated into the centrifuge container is shown in Figure 6.3. 

Four linear variable differential transformers (LVDT’s) were placed on top of the 

foundation and on the soil surface at three different radial distances from the foundation. 

These LVDT’s were used to profile the settlement basin created by movement of the 

foundation in the soil. Four thermocouple profile probes were inserted into the soil at 

different radial locations from the foundation. Each of the profile probes was equipped 

with 6 thermocouples at varying depths along the probe. These probes were used to 

measure the transient temperature in the soil surrounding the foundation to assess heat 

transfer outward from the foundation. Water content sensors were placed in the soil 

around the foundation during the compaction phase of sample preparation at different 

depths. These sensors were used to track changes in moisture content corresponding with 

heat flow through the soil specimen. Five universal linear-pattern strain gauges were 

attached to the metal reinforcement cage embedded in concrete at different depths in the 
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foundation. At each of these strain gauges locations, a thermocouple was placed as well 

to track the foundation temperature corresponding to the strain gauge measurements.  

 

Figure 6.3: Section of instrumentation layout (Stewart and McCartney 2012) 

A heat pump was used to control the temperature within the scale-model foundations. 

The heat pump was connected to the foundation via the hydraulic slip ring stack as shown 

in Figure 6.4 (Stewart and McCartney 2012). 

 

Figure 6.4: Heat pump and control system (Stewart and McCartney 2012) 

6.3 Soil Description 

Soil obtained from the Bonny dam near the Colorado-Kansas border was used in the 

energy foundation modeling tests in this study. The liquid and plastic limits of the soil 

measured according to ASTM D4318 were found to be 26 and 24. As the fines content of 
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this soil is 84%, this soil classifies as ML (inorganic silt) according to the Unified Soil 

Classification System (USCS). The silt has a specific gravity Gs of 2.6. The soil is 

unsaturated and compacted with the dry density of 1451 kg/m
3
. The c/p ratio of the soil 

was estimated equal to 0.45 according to a CU triaxial test on Bonny silt for this dry 

density. The drained friction angle was also estimated equal to 29° based on the same 

test.  

6.4 Centrifuge Testing Results 

The centrifuge tests on the small-scale foundation were performed to investigate the 

effect of temperature on the strain distribution in the energy foundation during heating. 

The centrifuge results from heating of the foundation to different temperatures re shown 

in Figure 6.5. An axial stress of 440 kPa was applied before heating. These results 

indicate that the maximum thermal axial stress in the foundation was at the center of the 

foundation. The results indicate that heating led to an increase in axial thermal stress of 

more than 30 times the mechanical axial stress. The increase in axial stress greater than 

the applied mechanical stress is possible because of the restraint of the foundation. At 

∆Τ=19 °C the maximum compressive stress is almost 7 times larger than the maximum 

axial stress at ∆Τ=5 °C. This indicates that the temperature change during the application 

of energy foundation may have a significant effect on the thermal response of an energy 

foundation that needs to be investigated further. The overall trend of the axial 

compressive stress profiles is consistent with the results observed in semi-floating 

foundation in Section 5.3. 
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Figure 6.5: Axial compressive stress profiles in different temperature changes for the 

centrifuge model foundation  

 

6.5 Load-Transfer Model Analysis 

The centrifuge small-scale foundation data was used to validate the load-transfer 

model presented in this research. The model parameters from Stewart and McCartney 

(2012) are summarized in Table 6.1 

Table 6.1: Model parameters  

Foundation Geometry 

L (m) 13.1 

D (m) 1.2 

Soil Properties 

φ'(°) 29 

c/p ratio 0.435 

γ (kN/m3) 15.7 

Foundation Parameters 

α (m/m°C) 9.69 × 10-6 

E (GPa) 7.17 

γ (kN/m3) 24 

  

The shape of the Q-z and T-z curves used in this model are represented by the 

hyperbolic model used by McCartney and Rosenberg (2011). The fitting parameters for 

the Q-z curve of ab = 0.002 and bb = 0.9 were used in this analysis to represent the stiff 
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end restraint at the tip of the foundation, which is the same as that used by McCartney 

and Rosenberg (2011). The parameters of the T-z curve were as = 0.0035 and bs= 0.9,   

The axial thermal expansion of the foundation outside of the soil measured under 

application of different temperatures was used to define the value of the stiffness of head-

structure stiffness (Kh). The value of Kh that provided the best fit to the data was 0.1 

GPa/m (Stewart 2012).  

The predicted axial compressive stress profiles using load-transfer model analysis 

along with the centrifuge data for each temperature change condition are shown in 

Figures 6.6(a) through 6.6(d). The results in these figures indicate that the new thermo-

mechanical load transfer analysis provided good estimate of axial compressive stress 

induced by the thermal loading in the energy foundation studied in this research. The 

overall trend from the model is the same as the centrifuge data. However, the peak value 

of the axial stress profile for the centrifuge data is higher than the model. 

Overall, the results of the load-transfer model shows promise as an approach to 

provide an estimate for the thermal analysis of an energy foundation. However, in order 

to completely validate this model, more experiments at model or prototype-scale with 

different boundary conditions and soil conditions (i.e., different degrees of saturation, 

densities, etc.) are needed for comparison purposes. This will also help refine the 

relationships for the end bearing and side shear presented in Chapter 4.  
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(a) (b) 

  

 

(c) 

  

(d) 

Figure 6.6: The comparison between the model prediction and the experimental data 

at (a) ∆T = 5°C; (b) ∆T = 10°C; (c) ∆T = 15°C; (d) ∆T = 19°C 
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CHAPTER 7: Conclusion 

 

This study involved the development of a new load-transfer analysis that accounts for 

the complex interaction between soils and foundations during mechanical and thermal 

loading. The analysis of some representative cases (floating, semi-floating and end 

bearing shaft) indicated that during heating, the foundation tended to expand about the 

null point. Because the soil side shear resistance opposed the thermal expansion of the 

foundation, compressive axial stresses were generated in the foundation which had the 

maximum magnitude in the null point. The null point location was defined for some 

simple cases to investigate that effect of boundary conditions on the location of the null 

point. The impact of the temperature changes and also the friction angle of the 

surrounding soil were studied in this research. The results implied that the higher the 

temperature changes, the higher the axial stresses and strains are expected to be generated 

in the energy foundation. The increase of ultimate side shear resistance due to the radial 

expansion of the foundation during heating was implemented in the analysis. A method 

was suggested in this research that accounts for the effect of mechanical loading on the 

increase of end bearing resistance for a foundation which is heated. The model analysis 

was validated based on a centrifuge test on a scale-model foundation. The T-z model 

analysis provided good estimate of axial compressive stress induced by the different 

thermal loadings in the foundation studied in this research. Overall, the application of the 

load-transfer analysis to evaluate the impacts of heating shows promise, but needs to be 

investigated further. 
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%                            APPENDIX A: 
%     THERMO-MECHANICAL LOAD-TRANSFER ANALYSIS FOR ENERGY FOUNDATIONS 
% 
% This program performs T-z analyses for an energy foundation 
% under "Thermo-mechanical loading" based on the Beta method. 
clear all 
format long e 
%%----------------------------------------------------------------------
-% 
%%---------------------------------INPUT PARAMETERS 
%%----------------------------------------------------------------------
-% 
%% SOIL DESCRIPTION %% 
cop = 0.3; %c/p ratio 
gamsoil = 18;%KN/M3 
Phi = 30; %Drained friction angle 
%% FOUNDATION DESCRIPTION %% 
L = 10;%m 
D = 1; %m 
E = 20000;%MPa 
gampile =  24;%KN/m3 
alphat = 10e-6; %Coeffcient of thermal expansion for R 
%% MECHANICAL LOADING%% 
P = 500;%KN 
%% TEMPERATURE CHANGE %% 
deltat = 20; 
%-----------------------------------------------------------------------
-% 
%% BETA METHOD PARAMETERS %% 
beta =0.55; %Emperical reduction factor 
k = 65; %emperical coefficient representing the soil resistance to 
expansion of the foundation 
%% END BEARING FITTING PARAMETERS 
ab = 0.02; 
bb = 0.9; 
%% SHEAR RESISTANCE FITTING PARAMETERS 
as = 0.0035; 
bs = 0.9; 
%% HEAD-STRUCTURE STIFFNESS 
Kh=300000;%KN/m (0.5 GPa/m for this case) 
%% NUMBER OF ELEMENTS %% 
N = 30;  
%-----------------------------------------------------------------------
-% 
%% 
Ab = pi*D^2/4; % m2 - Cross-sectional area 
Cs = pi*D; %m - Circumference of pile 
Wpile = gampile*Ab*L; %KN - Weight of pile 
Wdisp = gamsoil*Ab*L; %kN - Weight of soil displaced 
Wp = Wpile - Wdisp; %kN - Buoyant unit weight of pile 
%-----------------------------------------------------------------------
-% 
%-----------------------------------------------------------------------
-% 
%% MECHANICAL TZ ANALYIS BASED ON "P" %% 
  
% ULTIMATE SIDE SHEAR RESISTANCE % 
K0=1-sin(Phi*pi/180); %Coefficient of lateral earth pressure at rest 
dL =L/N; %m - Length of each soil sublayer 
h = 0:dL:L; %m - Depth vector, z=0 at ground surface 
zmid = h(1:length(h)-1)+dL/2; %m - Depth of each soil sublayer 
sigv = gamsoil*zmid; %m - Effecive vertical stress 
fsM = beta*sigv*K0*tan(Phi*pi/180); %KN/m2 
As = Cs*dL*ones(length(zmid),1);%m2 
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QsM = fsM.*As'; %kN 
QstotM = sum(QsM); %kN 
  
% ULTIMATE END BEARING% 
sc = 1.2; 
dc = 1.5; 
Nc = 5; 
cub = L*gamsoil*cop; %KN/m2 
Qp = cub*Ab*sc*dc*Nc; %kN 
  
% ULTIMATE CAPACITY 
QuM = Qp + QstotM - Wp; %kN 
  
n = 1:1:N; 
Li = L/N; %m 
z = Li*(n-.5); %m 
Ki = Ab*E*1000/Li; %KN/m 
QbM = zeros(N,1); 
QtM = zeros(N,1); 
FsM = zeros(N,1); 
FsmaxM = zeros(N,1); 
pbM = zeros(N,1); 
ptM = zeros(N,1); 
psM = zeros(N,1); 
QaveM = zeros(N,1); 
deltaM = zeros(N,1); 
sM = zeros(N,1); 
sigmaM = zeros(N,1); 
pb = 0; 
Dtot = 100; 
tol = 1e-6; 
PDif = 500; % Previous Difference 
CDif = 500; % Current Difference 
FsmaxM(1)=QsM(1); 
for k=2:1:N 
    FsmaxM(k)=FsmaxM(k-1)+QsM(k); 
end 
wxyz = 0; 
while abs(CDif)<= abs(PDif) 
    wxyz = wxyz + 1; 
for i = N:-1:1 
    if i == N 
        deltaQt = 10; %Initialize while loop 
        QtM(i) = 0; 
        pbM(i) = pb; 
        QbM(i)=Qp*pbM(i)/(ab+pbM(i)*bb); 
        %QbM(i)=0; 
        while deltaQt > tol 
            QaveM(i) = (QtM(i)+QbM(i))/2; 
            deltaM(i) = QaveM(i)/Ki; 
            ptM(i) = pbM(i) + deltaM(i); 
            psM(i) = pbM(i) + deltaM(i)/2; % pt +(pt-pb)/2; 
            FsM(i) = FsmaxM(i)*psM(i)/(as+psM(i)*bs); 
            QtnewM(i) = FsM(i) + QbM(i); 
            deltaQt = QtnewM(i) - QtM(i); 
            QtM(i) = QtnewM(i); 
            sM(i) = deltaM(i)*1e6/Li;% micro starin 
            sigmaM(i) = QaveM(i)/Ab; 
        end 
         
    else 
        deltaQt = 10; %Initialize while loop 
        pbM(i) = ptM(i+1); 
        QbM(i) = QtM(i+1); 
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        QtM(i) = 0; 
        while deltaQt > tol 
            QaveM(i) = (QtM(i)+QbM(i))/2; 
            deltaM(i) = QaveM(i)/Ki; 
            ptM(i) = pbM(i) + deltaM(i); 
            psM(i) = pbM(i) + deltaM(i)/2; 
            FsM(i)=FsmaxM(i)*psM(i)/(as+psM(i)*bs); 
            QtnewM(i) = FsM(i) + QbM(i); 
            deltaQt = QtnewM(i) - QtM(i); 
            QtM(i) = QtnewM(i); 
            sM(i) = deltaM(i)*1e6/Li; 
            sigmaM(i) = QaveM(i)/Ab; 
        end 
         
    end 
     
end 
i=1:1:N; 
FsMtot = sum(FsM(i)); 
PDif = CDif; 
CDif = P-FsMtot-QbM(N); 
disp('CDif'); 
disp(CDif); 
disp('PDif'); 
disp(PDif); 
pb=pb+1e-6; 
end 
  
pb=pb-1e-6; 
disp('pb'); 
disp(pb);  
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % --------------------------------------------------------------------
----% 
%% NULL POINT LOCATION %% 
Kp = (1+sin(Phi*pi/180))/(1-sin(Phi*pi/180)); %Coefficient of passive 
earth pressure 
KT = k*alphat*deltat*(D/2)/(0.02*L); % 
fsT = beta*sigv*(K0+(Kp-K0)*KT)*tan(Phi*pi/180); %KN/m2 
As = Cs*dL*ones(length(zmid),1); %m2 
QsT = fsT.*As'; %kN 
QstotT = sum(QsT); %kN 
% ULTIMATE CAPACITY % 
QuT = Qp + QstotT - Wp; %kN 
fmaxT = fsT; %kN 
DdeltaTb = 1; 
DdeltaTt = 1; 
tol = 1e-5; 
QtT = zeros(N,1); 
QbT = zeros(N,1); 
FsT = zeros(N,1); 
FsmaxT = zeros(N,1); 
psT = zeros(N,1); 
pbT = zeros(N,1); 
ptT = zeros(N,1); 
QaveT = zeros(N,1); 
deltaT = zeros(N,1); 
sigmaT = zeros(N,1); 
sT = zeros(N,1); 
  
FsmaxT(1)=QsT(1); 
for k=2:1:N 
    FsmaxT(k)=FsmaxT(k-1)+QsT(k); 
end 
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% BOTTOM SECTION 
for m = 1:1:N-1 
disp(m) 
    DdeltaTb = 100; 
    DdeltaTt = 100; 
    for k = 1:1:N 
        deltaT(k) = Li*alphat*deltat; 
    end 
    while abs(DdeltaTb)>tol  
        for i = N:-1:m 
            for j = m:1:N 
                if j == m 
                    ptT(j) = 0; 
                    psT(j) = deltaT(j)/2; 
                    pbT(j) = deltaT(j); 
                    FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                    if i==j 
                        QbT(j) = QtT(j+1); 
                        QtT(j) = QbT(j)+FsT(j); 
                        QaveT(j) = (QbT(j)+QtT(j))/2; 
                        SigmaT(j,m) = QaveT(j)/Ab; 
                        sigmaT(j) = QaveT(j)/Ab; 
                        deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                        DdeltaTb = deltaT(j)-deltanewT(j); 
                        deltaT(j) = deltanewT(j); 
                        sT(j) = deltaT(j)*1e6/Li;%micro strain 
                        ST(j,m) = deltaT(j)*1e6/Li; 
                    end 
                     
                elseif j<N 
                    ptT(j) = pbT(j-1); 
                    psT(j) = ptT(j)+deltaT(j)/2; 
                    pbT(j) =  ptT(j)+deltaT(j); 
                    FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                     
                    if i==j 
                        QbT(j) = QtT(j+1); 
                        QtT(j) = QbT(j)+FsT(j); 
                        QaveT(j) = (QbT(j)+QtT(j))/2; 
                        SigmaT(j,m) = QaveT(j)/Ab; 
                        sigmaT(j) = QaveT(j)/Ab; 
                        deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                        deltaT(j) = deltanewT(j); 
                        sT(j) = deltaT(j)*1e6/Li; 
                        ST(j,m) = deltaT(j)*1e6/Li; 
                    end 
                     
                else 
                    if i==j 
                        ptT(j) = pbT(j-1); 
                        psT(j) = ptT(j)+deltaT(j)/2; 
                        pbT(j) = ptT(j)+deltaT(j); 
                        FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                        QbT(j) = Qp*pbT(j)/(ab+pbT(j)*bb); 
                        %QbT(j) = 0; 
                        QtT(j) = QbT(j)+FsT(j); 
                        QaveT(j) = (QbT(j)+QtT(j))/2; 
                        SigmaT(j,m) = QaveT(j)/Ab; 
                        sigmaT(j) = QaveT(j)/Ab; 
                        deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
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                        deltaT(j) = deltanewT(j); 
                        sT(j) = deltaT(j)*1e6/Li; 
                        ST(j,m) = deltaT(j)*1e6/Li; 
                    end 
                end 
            end 
        end     
    end 
     
    
    n = m:1:N; 
    FsTb = sum(FsT(n));     
    % TOP SECTION 
    if m == 2 
       while abs(DdeltaTt)>tol 
        j = m-1; 
        pbT(j) = 0; 
        psT(j) = deltaT(j)/2; 
        ptT(j) = deltaT(j); 
        FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
        QtT(j) = Qp*ptT(j)/(ab+ptT(j)*bb); 
        QbT(j) = QtT(j)+FsT(j); 
        QaveT(j) =( QbT(j)+QtT(j))/2; 
        SigmaT(j,m) = QaveT(j)/Ab; 
        sigmaT(j) = QaveT(j)/Ab; 
        deltanewT(j) = Li*alphat*deltat-sigmaT(j)*Li/(E*1000); 
        DdeltaTt = deltaT(j)-deltanewT(j); 
        deltaT(j) = deltanewT(j); 
        sT(j) = deltaT(j)*1e6/Li; 
        ST(j,m) = deltaT(j)*1e6/Li; 
       end 
         
    end 
    if m>2 
         
        while abs(DdeltaTt)>tol 
             
            for i = 1:1:m-1 
                for j = m-1:-1:1 
                    if j == m-1 
                        pbT(j) = 0; 
                        psT(j) = deltaT(j)/2; 
                        ptT(j) = deltaT(j); 
                        FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                        if i==j 
                            QtT(j) = QbT(j-1); 
                            QbT(j) = QtT(j)+FsT(j); 
                            QaveT(j) = (QbT(j)+QtT(j))/2; 
                            SigmaT(j,m) = QaveT(j)/Ab; 
                            sigmaT(j) = QaveT(j)/Ab; 
                            deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                            DdeltaTt = deltaT(j)-deltanewT(j); 
                            deltaT(j) = deltanewT(j); 
                            sT(j) = deltaT(j)*1e6/Li;%micro strain 
                            ST(j,m) = deltaT(j)*1e6/Li; 
                        end 
                         
                    elseif j>1 
                        pbT(j) = ptT(j+1); 
                        psT(j) = pbT(j)+deltaT(j)/2; 
                        ptT(j) = pbT(j)+deltaT(j); 
                        FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
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                        if i==j 
                            QtT(j) = QbT(j-1); 
                            QbT(j) = QtT(j)+FsT(j); 
                            QaveT(j) =( QbT(j)+QtT(j))/2; 
                            SigmaT(j,m) = QaveT(j)/Ab; 
                            sigmaT(j) = QaveT(j)/Ab; 
                            deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                            deltaT(j) = deltanewT(j); 
                            sT(j) = deltaT(j)*1e6/Li; 
                            ST(j,m) = deltaT(j)*1e6/Li; 
                        end 
                         
                    else 
                        if i==j 
                             
                             pbT(j) = ptT(j+1); 
                             psT(j) = pbT(j)+deltaT(j)/2; 
                             ptT(j) = pbT(j)+deltaT(j); 
                             FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                            QtT(j) = Kh*ptT(j);  
                            QbT(j) = QtT(j)+FsT(j); 
                            QaveT(j) = (QbT(j)+QtT(j))/2; 
                            SigmaT(j,m) = QaveT(j)/Ab; 
                            sigmaT(j) = QaveT(j)/Ab; 
                            deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                            deltaT(j) = deltanewT(j); 
                            sT(j) = deltaT(j)*1e6/Li; 
                            ST(j,m) = deltaT(j)*1e6/Li; 
                        end 
                    end 
                end  
            end  
        end  
    end 
    p = m-1:-1:1; 
        FsTt=sum(FsT(p)); 
        Difnull(m) = FsTt+QtT(1)-FsTb-QbT(N); 
        disp(Difnull(m)) 
        
end 
  
x = min (abs(Difnull)); 
  
m = 1; 
 for i = 1:1:N-1 ; 
 if x == abs (Difnull(i)); 
     m = i; 
 end 
 end 
 disp NULL 
 disp(m) 
  
%% THERMAL TZ ANALYSIS 
Kp = (1+sin(Phi*pi/180))/(1-sin(Phi*pi/180)); %Coefficient of passive 
earth pressure 
KT = k*alphat*deltat*(D/2)/(0.02*L); % 
fsT = beta*sigv*(K0+(Kp-K0)*KT)*tan(Phi*pi/180); %KN/m2 
As = Cs*dL*ones(length(zmid),1); %m2 
QsT = fsT.*As'; %kN 
QstotT = sum(QsT); %kN 
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% ULTIMATE CAPACITY % 
QuT = Qp + QstotT - Wp; %kN 
fmaxT = fsT; %kN 
DdeltaT = 100; 
tol = 1e-6; 
QtT = zeros(N,1); 
QbT = zeros(N,1); 
FsT = zeros(N,1); 
FsmaxT = zeros(N,1); 
psT = zeros(N,1); 
pbT = zeros(N,1); 
ptT = zeros(N,1); 
QaveT = zeros(N,1); 
deltaT = zeros(N,1); 
sigmaT = zeros(N,1); 
sT = zeros(N,1); 
  
FsmaxT(1)=QsT(1); 
for k=2:1:N 
    FsmaxT(k)=FsmaxT(k-1)+QsT(k); 
end 
  
% BOTTOM SECTION 
    for k = 1:1:N 
        deltaT(k) = Li*alphat*deltat; 
    end 
    while abs(DdeltaT)>tol 
            for i = N:-1:m 
                for j = m:1:N 
                    if j == m 
                        ptT(j) = 0; 
                        psT(j) = ptT(j)+deltaT(j)/2; 
                        pbT(j) = ptT(j)+deltaT(j); 
                        FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                        if i==j 
                            QbT(j) = QtT(j+1); 
                            QtT(j) = QbT(j)+FsT(j); 
                            QaveT(j) = (QbT(j)+QtT(j))/2; 
                            sigmaT(j) = QaveT(j)/Ab; 
                            deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                            DdeltaT = deltaT(j)-deltanewT(j); 
                            deltaT(j) = deltanewT(j); 
                            sT(j) = deltaT(j)*1e6/Li;%micro strain 
                        end 
                         
                    elseif j<N 
                        ptT(j) = pbT(j-1); 
                        psT(j) = ptT(j)+deltaT(j)/2; 
                        pbT(j) = ptT(j)+deltaT(j); 
                        FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                         
                        if i==j 
                            QbT(j) = QtT(j+1); 
                            QtT(j) = QbT(j)+FsT(j); 
                            QaveT(j) = (QbT(j)+QtT(j))/2; 
                            sigmaT(j) = QaveT(j)/Ab; 
                            deltanewT(j)=Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                            deltaT(j) = deltanewT(j); 
                            sT(j) = deltaT(j)*1e6/Li; 
                        end 
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                    else 
                        if i==j 
                            ptT(j) = pbT(j-1); 
                            psT(j) = ptT(j)+deltaT(j)/2; 
                            pbT(j) = ptT(j)+deltaT(j); 
                            FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                            QbT(j) = Qp*pbT(j)/(ab+pbT(j)*bb); 
                            %QbT(j) = 0;  
                            QtT(j) = QbT(j)+FsT(j); 
                            QaveT(j) = (QbT(j)+QtT(j))/2; 
                            sigmaT(j) = QaveT(j)/Ab; 
                            deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                            deltaT(j) = deltanewT(j); 
                            sT(j) = deltaT(j)*1e6/Li; 
                        end 
                    end 
                end 
                 
            end 
             
%% top section 
            for j = m-1:-1:1 
                if j == m-1 
                    pbT(j) = 0; 
                    psT(j) = pbT(j)-deltaT(j)/2; 
                    ptT(j) = pbT(j)-deltaT(j); 
                    FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                    QbT(j) = QtT(j+1); 
                    QtT(j) = QbT(j)+FsT(j); 
                    QaveT(j) = (QbT(j)+QtT(j))/2; 
                    sigmaT(j) = QaveT(j)/Ab; 
                    deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                    deltaT(j) = deltanewT(j); 
                    sT(j) = deltaT(j)*1e6/Li; 
                     
                else 
                    pbT(j) = ptT(j+1); 
                    psT(j) = pbT(j)-deltaT(j)/2; 
                    ptT(j) = pbT(j)-deltaT(j); 
                    FsT(j) = FsmaxT(j)*psT(j)/(as+psT(j)*bs); 
                    QbT(j) = QtT(j+1); 
                    QtT(j) = QbT(j)+FsT(j); 
                    QaveT(j) = (QbT(j)+QtT(j))/2; 
                    sigmaT(j) = QaveT(j)/Ab; 
                    deltanewT(j) = Li*alphat*deltat-
sigmaT(j)*Li/(E*1000); 
                    deltaT(j) = deltanewT(j); 
                    sT(j) = deltaT(j)*1e6/Li; 
                end 
                 
            end 
            
        end 
         
  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % --------------------------------------------------------------------
----% 
%% THERMO-MECHANICAL TZ ANALYSIS %% 
% bottom section 
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tol = 1e-6; 
QtMT = zeros(N,1); 
QbMT = zeros(N,1); 
FsMT = zeros(N,1); 
FsmaxMT = zeros(N,1); 
psMT = zeros(N,1); 
pbMT = zeros(N,1); 
ptMT = zeros(N,1); 
QaveMT = zeros(N,1); 
deltaMT = zeros(N,1); 
sigmaMT = zeros(N,1); 
sMT = zeros(N,1); 
    DdeltaMT = 100; 
    for k=1:1:N 
        deltaMT(k) = Li*alphat*deltat; 
    end 
     
        while abs(DdeltaMT)>tol 
            for i = N:-1:m 
                for j = m:1:N 
                    if j == m 
                        ptMT(j) = ptM(j); 
                        psMT(j) = ptMT(j)+deltaMT(j)/2; 
                        pbMT(j) = ptMT(j)+deltaMT(j); 
                        FsMT(j) = FsmaxT(j)*psMT(j)/(as+psMT(j)*bs); 
                        if i==j 
                            QbMT(j) = QtMT(j+1); 
                            QtMT(j) = QbMT(j)+FsMT(j); 
                            QaveMT(j) = (QbMT(j)+QtMT(j))/2; 
                            sigmaMT(j) = QaveMT(j)/Ab; 
                            deltanewMT(j) = Li*alphat*deltat-
sigmaMT(j)*Li/(E*1000); 
                            DdeltaMT = deltaMT(j)-deltanewMT(j); 
                            deltaMT(j) = deltanewMT(j); 
                            sMT(j) = deltaMT(j)*1e6/Li;%micro strain 
                        end 
                         
                    elseif j<N 
                        ptMT(j) = pbMT(j-1); 
                        psMT(j) = ptMT(j)+deltaMT(j)/2; 
                        pbMT(j) = ptMT(j)+deltaMT(j); 
                        FsMT(j) = FsmaxT(j)*psMT(j)/(as+psMT(j)*bs); 
                         
                        if i==j 
                            QbMT(j) = QtMT(j+1); 
                            QtMT(j) = QbMT(j)+FsMT(j); 
                            QaveMT(j) = (QbMT(j)+QtMT(j))/2; 
                            sigmaMT(j) = QaveMT(j)/Ab; 
                            deltanewMT(j)=Li*alphat*deltat-
sigmaMT(j)*Li/(E*1000); 
                            deltaMT(j) = deltanewMT(j); 
                            sMT(j) = deltaMT(j)*1e6/Li; 
                        end 
                         
                         
                    else 
                        if i==j 
                            ptMT(j) = pbMT(j-1); 
                            psMT(j) = ptMT(j)+deltaMT(j)/2; 
                            pbMT(j) = ptMT(j)+deltaMT(j); 
                            FsMT(j) = FsmaxT(j)*psMT(j)/(as+psMT(j)*bs); 
                            QbMT(j) = Qp*pbMT(j)/(ab+pbMT(j)*bb); 
                            %QbMT(j) = 0; 
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                            QtMT(j) = QbMT(j)+FsMT(j); 
                            QaveMT(j) = (QbMT(j)+QtMT(j))/2; 
                            sigmaMT(j) = QaveMT(j)/Ab; 
                            deltanewMT(j) = Li*alphat*deltat-
sigmaMT(j)*Li/(E*1000); 
                            deltaMT(j) = deltanewMT(j); 
                            sMT(j) = deltaMT(j)*1e6/Li; 
                        end 
                    end 
                end 
                 
            end 
             
%% top section 
            for j = m-1:-1:1 
                if j == m-1 
                    pbMT(j) = pbM(j); 
                    psMT(j) = pbMT(j)-deltaMT(j)/2; 
                    ptMT(j) = pbMT(j)-deltaMT(j); 
                    %FsMT(j) = FsmaxT(j)*psMT(j)/(as+psMT(j)*bs); 
                    FsMT(j)=FsmaxT(j)*((psMT(j)/as)+(FsM(j)/FsmaxT(j))-
(1/((FsmaxT(j)/FsM(j))-bs))); % Unloading path 
                    QbMT(j) = QtMT(j+1); 
                    QtMT(j) = QbMT(j)+FsMT(j); 
                    QaveMT(j) = (QbMT(j)+QtMT(j))/2; 
                    sigmaMT(j) = QaveMT(j)/Ab; 
                    deltanewMT(j) = Li*alphat*deltat-
sigmaMT(j)*Li/(E*1000); 
                    deltaMT(j) = deltanewMT(j); 
                    sMT(j) = deltaMT(j)*1e6/Li; 
                     
                else 
                    pbMT(j) = ptMT(j+1); 
                    psMT(j) = pbMT(j)-deltaMT(j)/2; 
                    ptMT(j) = pbMT(j)-deltaMT(j); 
                    %FsMT(j) = FsmaxT(j)*psMT(j)/(as+psMT(j)*bs); 
                    FsMT(j)=FsmaxT(j)*((psMT(j)/as)+(FsM(j)/FsmaxT(j))-
(1/((FsmaxT(j)/FsM(j))-bs))); % Unloading path 
                    QbMT(j) = QtMT(j+1); 
                    QtMT(j) = QbMT(j)+FsMT(j); 
                    QaveMT(j) = (QbMT(j)+QtMT(j))/2; 
                    sigmaMT(j) = QaveMT(j)/Ab; 
                    deltanewMT(j) = Li*alphat*deltat-
sigmaMT(j)*Li/(E*1000); 
                    deltaMT(j) = deltanewMT(j); 
                    sMT(j) = deltaMT(j)*1e6/Li; 
                end 
                 
            end 
            
        end 
  
  
  
%PLOT AXIAL STRESS CURVE%% 
  
figure (1) 
 plot(sigmaM,z,sigmaT,z,sigmaMT,z,'-k','linewidth',1.5,'markersize',10) 
 set(gca,'YDir','reverse') 
 set(gca,'FontName','Times','FontSize',20) 
 xlabel('Axial stress (kN)') 
 ylabel('Depth (m)') 
 hleg = legend ('M','T','M+T'); 
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 set(hleg,'Location','NorthWest') 
  
 %%%%%% 
  
 figure (2) 
 plot(sigmaM,z,'--kx','linewidth',1.5,'markersize',10) 
 set(gca,'YDir','reverse') 
 set(gca,'FontName','Times','FontSize',20) 
 xlabel('Axial stress (kN)') 
 ylabel('Depth (m)') 
 hleg = legend ('M'); 
 set(hleg,'Location','SouthEast') 
  
 %%%%%% 
  
 figure (3) 
 plot(sigmaT,z,'--kx','linewidth',1.5,'markersize',10) 
 set(gca,'YDir','reverse') 
 set(gca,'FontName','Times','FontSize',20) 
 xlabel('Axial stress (kN)') 
 ylabel('Depth (m)') 
 hleg = legend ('T'); 
 set(hleg,'Location','SouthEast') 
  
 %%%%%% 
  
 figure (4) 
 plot(sigmaMT,z,'--kx','linewidth',1.5,'markersize',10) 
 set(gca,'YDir','reverse') 
 set(gca,'FontName','Times','FontSize',20) 
 xlabel('Axial stress(kN)') 
 ylabel('Depth (m)') 
 hleg = legend ('M+T'); 
 set(hleg,'Location','SouthEast') 
  
  
 

 


