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Demand management is an important component of the emerging Smart Grid, and a po-

tential solution to the supply-demand imbalance occurring increasingly as intermittent renewable

electricity is added to the generation mix. Model predictive control (MPC) has shown great promise

for controlling HVAC demand in commercial buildings, making it an ideal solution to this problem.

MPC is believed to hold similar promise for residential applications, yet very few examples exist in

the literature despite a growing interest in residential demand management. This work explores the

potential for residential buildings to shape electric demand at the distribution feeder level in order

to reduce peak demand, reduce system ramping, and increase load factor using detailed sub-hourly

simulations of thousands of buildings coupled to distribution power flow software. More gener-

ally, this work develops a methodology for the optimization of residential HVAC operation using

a distributed but directed MPC scheme that can be applied to today’s programmable thermostat

technologies to address the increasing variability in electric supply and demand. Case studies in-

corporating varying levels of renewable energy generation demonstrate the approach and highlight

important considerations for large-scale residential model predictive control.
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Chapter 1

Introduction

Despite continuous upgrades and improvements to the systems that form the nation’s elec-

tricity grids, the fundamental operation of these systems has changed relatively little over almost

one hundred years. This is to say that the systems which supply electricity to the residential,

commercial and industrial sectors do so according to demand. As the absolute magnitude and

diversity of this demand has increased, so too has the size and diversity of generation required

to meet our electricity needs. Traditionally, this has meant that generation capacity was built

to satisfy peak demand, using generation that was less efficient and expensive to operate, leaving

idle or underutilized, much of the generation capacity until needed. In practical terms, this has

created a large disparity in electricity price from hour to hour, as systems are daily brought online

to satisfy demand, and taken offline when demand has subsided. It is a well known fact that the

disparity between off-peak and on-peak spot prices may exceed several orders of magnitude, with

prices dropping below zero in some extreme cases.

With the introduction of large-scale renewable energy generation, a new conflict between

renewable sources and traditional generation operated according to demand has been created.

These new generation sources compete with the constraints of traditional generation which cannot

be easily or quickly throttled without impacts to long-term reliability. This leads to curtailment of

wind generated electricity, preventing the cleaner, renewable energy source from replacing dirtier

traditional sources. Because of this, and the inherent intermittency and variability of renewable

sources, the amount of renewable energy present on the electric system is effectively capped unless
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strategies can be employed to utilize renewable generation when it is available.

Obviously, one solution to both problems, i.e. the daily variation in demand combined with

the intermittency of renewable generation, is grid-scale storage. While there is significant interest

and promise in this solution, the cost of deploying large storage facilities is prohibitive and at

least decades away from being practical. Recent studies [32, 46, 51] on electric and plug-in hybrid

vehicles suggest that a distributed approach to grid-scale storage may provide a solution to the

problem. However, this solution too is many years in the making, and poses a different problem of

increased electricity demand [92, 88, 53] at peak periods unless managed properly.1

Assuming that neither grid-scale, nor distributed storage are deployed at scale for a decade

or more, and that renewable generation will continue to become an increasing component in the

generation mix, the problem becomes one of how best to enable demand side management of

electricity consumers given an existing mix of traditional and renewable generation.

Distilling the problem statement above yields a three-part hypothesis which informs the

direction of this research:

1. The use of model predictive control (MPC) for residential heating, ventilation and air con-

ditioning (HVAC) control may eliminate traditional, reactive, demand response by proac-

tively and predictably shaping the aggregate demand of residential building “collectives”

in anticipation of supply side constraints, allowing optimal planning of resources.

2. In systems with relatively high renewable energy penetration, or during catastrophic events,

generation capacity may suddenly disappear. Short-term, i.e. day-ahead, predictive control

of residential loads allows demand flexibility and graceful response under grid stress events.

3. Renewable energy is often available when it is not needed, resulting in low utilization. The

widespread adoption of predictive controls applied to residential buildings’ thermal mass

1 One may note that the methods employed and researched in this work could be easily extended to the control of
electric vehicle (EV) charging. As of now, application of the techniques to EVs is not within the scope of the work.
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offers the promise of deeper penetration of renewable energy without an investment in

electric storage systems and without destabilizing electric grid operations.

1.0.1 Significance of Research

Model Predictive Control (MPC) has enjoyed great popularity in the research of demand

limiting techniques for commercial buildings. The literature is full of examples in which this

approach has been successfully applied and validated [12, 55, 10, 68, 56, 57, 44, 40, 42, 41, 43],

giving rise to companies such as BuildingIQ [18] and QCoefficient, Inc. [26] seeking to capitalize

on MPC as a service for building owners and managers. Research on the application of MPC to

residential buildings is relatively sparse in the literature; a good example of which is reported by

Hubert et al. [47], who claim building-level optimization algorithms are critical to the efficient and

robust operation of the Smart Grid. Realizing the potential for application in the residential sector,

companies such as EcoFactor [34] and Nest Labs [69] who have taken very different approaches to

implementing MPC, but have not attempted to tackle the problem of optimizing building collectives

in aggregate.

By and large, the residential sector has only realized “predictive control” through residential

demand response (DR) programs implemented by utilities, whereby the utilities predict the demand

reduction available based on the aggregated response to historical event opt-ins, and issue demand

events that effectively disable HVAC systems to achieve a demand reduction. Obviously this is a

crude approach to predictive control that does not necessarily consider the impacts on a residence’s

occupants. Still, the application of residential DR deployment has only been realized at pilot scales

at best as the efficacy of this approach is unproven, perhaps because of the uncertainty of occupant

behavior and frequent opt-outs. The author believes that traditional DR is an outdated approach

to shaping residential load which is better suited to MPC. Traditional DR is a one-way reactive

technology called upon when grid demand exceeds capacity. When MPC of residential HVAC

is implemented, the traditional concept of DR will likely become obsolete: rather than issuing

demand events, MPC will allow continuous optimization of residential load that can be forecast
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with potentially greater accuracy and control, creating a two-way communication between utility

and building, i.e. supply and demand.

The importance of improved residential energy controls, resulting in electricity consumption

and demand reduction cannot be understated. According to the United States Energy Information

Administration (EIA) [1], residential electricity consumption has been on a consistently increasing

trajectory for more than sixty years at a rate of 20 TWh per year (Figure 1.1). Not surprisingly,

this corresponds to an increase in residential air conditioning, which is present in 87% of homes as

of 2009, compared with 57% in 1980. It is estimated that residential air conditioning exceeds 293

TWh annually. While projections suggest that on average, the energy use intensity of residential

buildings is on the decrease due to envelope and equipment energy efficiency improvements, the total

electricity used by the residential sector will increase over the next 25 years [2] under a “business

as usual” reference case scenario (Figure 1.2). Under this scenario, residential electricity use by air

conditioning will increase by 363 TWh annually compared to 2009 levels. The EIA projects that

with best available demand reduction technology, space cooling savings on the order of 4,400 TWh

over the next 25 years are possible. Indeed, these savings include effects from a number of energy

reduction technologies including high-efficiency equipment and better insulated building envelopes,

but some fraction will inevitably come from improved operation; after all, the most efficient air

conditioner is the one that does not run at all.

The EIA projects that over the next 25 years, the addition of roughly 48 GW in generating

capacity will be required to satisfy summer peak demand. While the exact number attributed

to residential electricity demand is harder to determine, it stands to reason that a non-trivial

percentage of this demand will come from residential cooling end-uses, considering the temporal

coincidence of residential cooling need with peak grid demand. Considered individually, residential

cooling demand reductions during peak demand events may only measure in the kilowatts, but

considered in aggregate, a large number of homes represent megawatts and potentially gigawatts

of demand that can be shifted or eliminated. Enabling residential consumers to participate in the

shaping of electric demand allows greater flexibility of grid operation that may reduce the need for
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additional peak generation.

Finally, the EIA projects that while gas displaces coal in the short-term and renewable energy

penetration increases under the reference case scenario, the overall increase in residential electricity

consumption results in a (albeit small) net increase in electricity related emissions (Figure 1.3).

Emissions reductions from this sector must still occur in order to meet existing emissions targets

proposed by the President in 2009 [72] and formalized in the President’s Climate Action Plan

[36]. The potential of MPC to reduce emissions directly through reduced residential consumption,

or through improved operation that allows increased renewable utilization, is indeed a promising

approach to achieving these targets in a cost-effective way.

Figure 1.1: Growth in electricity retail sales. Source: EIA.
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Figure 1.2: Projected electricity consumption under reference, high economic growth and high
demand reduction technology cases. Source: EIA.

Figure 1.3: Projected carbon dioxide emissions under reference, high economic growth and high
demand reduction technology cases. Source: EIA.
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1.0.2 Research Questions

The impact of large-scale MPC applied to residential HVAC is not well understood, and the

methods by which the maximum benefit to the home owner and utility is realized, are unknown.

This results in a number of interesting research questions which will be considered in this research.

These are:

1. The size of the MPC search space grows exponentially with each new decision variable.

At scales exceeding tens of homes, a “supervisory” optimization approach combining all

homes in a single optimization is intractable at a practical time-scale. This suggests that

the optimization must be distributed, if not at the premises, then across multiple processors

or computers at the least. How would distributed HVAC MPC be performed and can this

be a template for real-world implementation?

2. Real-time price, being a proxy for electric demand, is an obvious candidate for use as a

driving function in optimizing load. However, from the perspective of the utility, individual

optimizations performed by each home based on real-time pricing results in decisions that,

when aggregated across a large number of homes, has the potential to result in a less-than-

optimal load shape because system level interactions are ignored. What, then, is the signal

or driving function that must be fed to individual homes such that the aggregate response

meets the objectives of the utility?

3. Assuming that the aggregated load from a collective of homes can be molded into a pre-

dictable and desirable shape, can distributed MPC be utilized to drive particular aspects

of grid operation? That is, can distributed MPC be used to allow peaking plants to remain

off during peak periods? Put another way, can distributed MPC be used for day-ahead

resource planning, given a set of installed traditional generation?

4. Following logically from the assumptions above, what impact would distributed MPC have

on electric grid operation in the presence of distributed generation, and would distributed
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MPC allow a higher penetration of renewable energy to be utilized?

1.1 Research Objectives

In consideration of these questions, the following objectives define the major tasks undertaken

in this research:

1. Develop and validate a simplified reduced-order residential building model suitable for

large-scale HVAC MPC studies.

2. Select a power flow simulation package, obtain and modify distribution feeder models rep-

resentative of the US electric power grid.

3. Demonstrate a distributed model predictive control framework for optimizing thousands of

buildings that integrates reduced-order building models with power flow simulation.

4. Explore the impact of distributed model predictive control on electricity grid operation

under demand-shaping objectives, with cases considering high levels of renewable energy

contribution.

1.2 Survey of Literature

The following section presents a summary of literature relevant to this research, divided into

three subsections. The first, Optimal Control of Building Systems, surveys various examples of

MPC to building control with an emphasis on commercial applications. The second section enu-

merates a number of approaches to simplifying building simulation models, informs the simulation

model presented in this research and provides support for the selected methodology. The final

section surveys a number of recent studies involving demand side management in the residential

context, highlighting the areas lacking in research that this work attempts to address.
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1.2.1 Optimal Control of Building Systems

Model predictive control (MPC) of building energy systems has been studied over the pre-

vious two or more decades by combining mathematical programming techniques with a variety of

building simulation methodologies. By incorporating simplified thermal and plant models with

a direct search algorithm, [9] has shown potential for both energy cost savings and peak power

reduction through optimal thermal mass control, depending on utility rate structure and building

characteristics. Further examples by [37] and [44] have combined the Optimization Toolbox in

[87] with TRNSYS [84] to perform similar studies on passive and active thermal storage systems

in buildings, with similarly promising results. Another approach to MPC optimization has been

demonstrated by [101] by incorporating the Nelder-Mead simplex algorithm into EnergyPlus [30]

to show cooling cost savings associated with peak electric demand reductions.

Other software environments have been developed that provide additional means of investi-

gating control optimization. GenOpt [93] can iteratively execute simulation programs using plain

text input/output files until an optimal solution is found. GenOpt is designed to perform a single

optimization per execution, rather than a sequence of optimizations continuously, e.g. a month of

single day optimizations in sequence. [27] incorporated GenOpt into an MPC framework to exam-

ine zone temperature control optimization in office buildings and the subsequent effect on HVAC

demand.

The “Energy Management System” was added to EnergyPlus to allow users to implement

custom control strategies, yet this functionality is not readily extended to MPC. The Building

Control Virtual Test Bed (BCVTB) [94] allows coupling between EnergyPlus and several other

simulation environments. The BCVTB is designed to manage communication between EnergyPlus

and the stand-alone application, where the latter provides control decisions at each simulation time

step to be evaluated by EnergyPlus. This approach is best suited to the evaluation of pre-defined

control algorithms.

The MATLAB-EnergyPlus framework developed by this author prior to this work has been
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used to generate optimal window opening schedules for a small mixed-mode building. From these

optimal results, [65] created a generalized linear model to extract near-optimal heuristics that could

be implemented directly in direct digital control systems. This work was subsequently expanded in

[66] and [64], using the optimization framework to generate optimized control strategies to which

generalized linear models, classification and regression trees, and adaptive boosting techniques

were applied. In [28], this author used the framework to optimize pump schedule and supply water

temperature for a thermally activated building structure (TABS) simulation to significantly reduce

energy consumption.

1.2.2 Reduced Order Modeling

Most of the examples found in the literature rely on lower fidelity, reduced order models,

with few applications to detailed sub-hourly simulation models. Reduced order models, due to

their simplicity, low computational cost, and relative ease of automated tuning, are a promising

tool for researching MPC applications.

Using a five-parameter lumped capacitance-resistance model, [31] demonstrated that a second-

order model captures the thermal response characteristics of a building. Parameter identifica-

tion was performed using an iterative least-squares estimation technique using the Gauss-Newton

method and site measured data from unconditioned experimental test cells. Data collected included

easily measured indoor and outdoor temperature, but also heat-flux from solar radiation, wall sur-

face temperatures and interior wall temperatures. Although good agreement was found between

calibrated model prediction and measured data, the authors note several significant problems in-

cluding sensitivity to parameters’ initial guess value and large variation of parameter values that

result in equivalent model fit. The authors caution that the applicability of this approach to heated

multi-zone buildings must be questioned, and suggest that continuous re-calculation of parameters

by a building management system may overcome such limitations.

Mathews, Richards and Lombard [63] propose a 2R-1C reduced order model which lumps

all building mass into a single capacitance and all thermal resistances into interior and exterior



11

resistances. In the model, ventilation is considered to be an additional resistance. Convective and

radiative heat transfer components are combined into constant values. Rather than calculating

solar heat-flux directly, the model uses sol-air temperature as a driving function. To account for

low-mass elements not included in the lumped capacitance, the authors introduce a phase-shift

correction. Using measured indoor and outdoor temperatures, and solar insolation and wind speed

measurements from nearby weather stations, the model was validated for 32 buildings ranging

from test cells to small commercial. Lumped model parameters were calculated based on physical

characteristics and phase-correction calculated from temperatures measured during free-float. The

authors report that 80% of all temperature predictions fell within 2K of measured temperature,

and 95% within 3K.

Gouda et al. [39] develop first and second order element models to be compared with a 20

order reference model, and results measured using a room in a campus building at the University

of Northumbria. Using a nonlinear constrained optimization method, the model parameters of

the first and second order model are estimated using the output of the previously calibrated 20th

order model of the room. In each reduced order model, separate parameters were calculated for

each of the two external constructions. To simulate the capacitance of the room air, an additional

first order capacitance model was added. Results agreed well between first and second order and

20th order reference models using a step test applied to each of the three room models. The step

response revealed significant differences between first and second order models, but little difference

between second and 20th order model. Using inside and external temperature, and insolation data

at 15 minute resolution measured in the room over a 30 day free-float period, the two reduced

order models were tuned using the nonlinear optimization method. As with the simulation study,

excellent agreement between the measured temperatures and the second order model were achieved.

The second order model consistently predicted temperatures less than 0.2K lower than measured,

but the first order model fared somewhat poorer, with predicted temperatures 1-2K lower than

measured. The authors suggest that the second order element model is sufficiently accurate in

modeling the short-term thermal response required for simulation of control systems, at only 6%



12

of the computational cost of the more detailed benchmark model.

Braun and Chaturvedi [11] present a thermal network model of a multi-zone commercial

building for the purpose of online model predictive control. In the model each zone is treated

separately, having 4 wall elements composed of a 3R-2C model each. Window glazing was treated

separately as a simple massless resistance element. The solution of the heat balancing equations

describing the combined multi-zone model was expressed using a state-space formulation converted

into a transfer function. The model was then trained using a combination of direct search global

optimization and local nonlinear regression from cooling loads generated by a TRNSYS building

model. The objective function minimized in training was the sum of RMSE of cooling loads for the

entire training period. The authors found that 14 days of training data generated by the detailed

TRNSYS model was sufficient for calibration. A separate field study was conducted in Chicago

using a single zone model, calibrated using two weeks of measured temperature and calculated

cooling loads. Using a four week validation data set, the authors found that cooling loads could be

predicted within 9%.

Xu and Wang [98] develop a new hybrid model combining a conduction transfer function

(CTF) model of the external envelope with a 2R-2C thermal network model of the internal mass.

The latter has parameters tuned automatically by a genetic algorithm (GA). The authors suggest

that the new hybrid model allow more convenient construction of the CTF model based on detailed

physical properties of the building envelope. Because the estimation of the internal mass is much

more difficult due to the number and variety of elements in a physical building, the thermal network

approach allows easy parameter estimation. Model calibration and validation was performed using

two summer weeks and one winter week of temperature and solar data collected on a 50 story build-

ing on Hong Kong. Cooling load and internal temperatures from the model prediction compared

favorably with measured data cooling load and average internal temperature with approximately

ten percent relative root mean square error typical of the former and 0.58K typical of the latter.

The authors compare results from their previous studies of the same building [89, 97] using a 3R-2C

model which predicted nearly identical cooling loads and internal temperature.
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By applying an Extended Kalman Filtering technique, O’Neill et al. [74] develop a state space

representation of a reduced order model in order to estimate the internal loads of zones within a

class and office room building on the University of California at Merced. The reduced order model

adapts the 3R-2C wall model from the work of Braun et al. [13], adding a parallel resistance path for

glazing elements and an air-node mass balance. Solar distribution is applied using an area-weighted

fraction. The model is validated using a previously constructed and calibrated EnergyPlus model of

the building. Internal loads estimated by the EKF technique are within 10% of the load calculated

by EnergyPlus 93% of the time. The authors suggest the differences are caused by 3R-2C vs CTF

and absence of long-wave radiation exchange. The technique was then applied to the building

by taking supply and room air measurements, including temperature and humidity, taken at two

minute resolution in seven rooms. Real-time weather data at the same resolution from external

sensors was used for the load estimation. Unfortunately, the supply air temperature to each room

was not available, making internal load measurement difficult. No clear conclusions regarding the

accuracy of the method for estimating load of the building were presented.

It is fairly clear from the literature that significant computational expense can be avoided by

using a variety of reduced-order modeling techniques, at little loss in accuracy. A common theme

among many of these studies is the use of R-C networks, with 3R-2C envelope elements dominating

the literature. The literature demonstrates that these models are suitable for capturing the physical

processes of heating and cooling well, suggesting they are suitable for HVAC control studies. Given

the simplicity of both specifying and developing these models, this approach is adopted for this

work.

1.2.3 Residential Demand Side Management and Control Optimization

A number of studies have been recently published which combine residential demand side

management (DSM) and optimal power flow modeling, where DSM is accomplished through direct

load control or price-responsive automatic control. Several consider scenarios in which renewable

energy contributes to the generation mix. These studies provide both theoretical and practical
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foundations for the proposed research, but also highlight areas of opportunity.

In a discussion of electricity dispatch optimization, Wang et al. [90] propose a “Ramp Mar-

ket” to provide ancillary services for electric grids where significant wind generation and demand

response participation are present. The proposed market would allow both fast and slow ramping

technologies to bid individual ramping capacity in order to match supply to demand and vice-versa.

In order to accomplish this, the authors propose a multi-tiered dispatch optimization in which each

tier has different objectives that are coordinated between both parent and child tier. Examples of

tiers include: RTO/ISO tier for optimizing regional transmission objectives; a market tier which

provides portfolio optimization and aggregation; a plant tier that conducts optimal resource schedul-

ing; an aggregator tier with detailed neighborhood based load optimization; a household tier with

appliance, electric vehicle and building load optimization.

Hindi et al. [45] describe a “multi-rate” MPC methodology for reducing demand-supply

imbalance. Multi-rate MPC combines two types of load control services: regulation, which occurs

on the order of seconds and minutes, and so-called fast demand response, which is defined as

demand response that takes effect immediately such as disabling an air-conditioner compressor.

The authors suggest that the combination of these two types of services provides a new ancillary

service that can be implemented using direct demand-supply imbalance signals as well as indirect

price-based signals, e.g. real-time pricing. Simulation results show that trade-offs occur between

the two services when they are combined.

In [95], Widergren et al. consider a distributed optimization method for demand side man-

agement where residential HVAC systems and water heaters are supplied real-time pricing signals.

These systems participate autonomously in a five minute market at the feeder level, by bidding

capacity in real-time. Because decisions are made autonomously, market bidding results in dis-

tributed optimization without centralized control. Using GridLAB-D, 300 building types based on

140 typical customer demand shapes were simulated both with and without the feeder-level market

using a synthetic real-time pricing signal. Simulation results show the potential for significant bill

savings by individual households. The authors do not address the issue of system stability.
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Li, Chen and Low [60] propose a method whereby households exposed to real-time pricing

optimally schedule power consumption in order to maximize individual benefit. The authors de-

scribe a distributed optimization scheme in which the utility sets the price of electricity according

to the marginal cost, each household then optimizes and the resulting load is fed back to the

utility. Together the households and the utility iteratively compute prices, operation schedules,

and consumption for the next day until converged. The advantage of this approach is that the

utility does not need to know the underlying constraints and operational details of the individual

households, just the aggregate result. Simulation studies using this approach consider eight homes

each with various appliances, air conditioning, PHEVs and storage batteries. The studies find that

households coordinated indirectly by real-time pricing to flatten total demand, reduce peak load,

and minimize variation. Simulations in which additional battery storage is present show that the

additional storage allows more flexible scheduling and increased load factor. Although the demand

leveling benefit increases with an increase in participating households, the benefit to household

and utility eventually shows diminishing returns. Perhaps the most interesting result is that the

method also results in maximum utility benefit, i.e. social welfare.

Fuller, Schneider and Chassin [38] investigate the effects of a transactive residential HVAC

controller in a centralized double-auction market. The transactive HVAC controller is allowed to

adjust cooling set point according to price determined by a market with five minute clearing interval,

and bid the price back into the market. Using 1497 single-family residences and IEEE 123-node

test feeder modeled in GridLAB-D, a simulation study is performed for the month of August in

Seattle, WA. In the study, transactive controllers are limited to 381 of the residences. Results are

compared to simulations in which the controllers are allowed to adjust set points in response to

price, but are not allowed to bid; this is known as an “active” market. In the active market, price

encourages the controllers to delay cooling until price decreases in the afternoon, creating a peak

demand that is higher than the peak seen in flat rate simulations. Transactive control simulations

reduce peak demand, but do not result in reduced energy consumption and increase cost to the

consumer. Although not intended to be an optimal control scheme, the simulation suggests that
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detailed simulation studies such as these must be performed to understand the potential impacts

of smart grid operation.

Oveido et al. [77] investigate a decision tree-based approach using heuristic rules for managing

the demand in residences with plug-in hybrid electric vehicles (PHEV), local renewable electricity

generation (both wind and solar) and time-of-use (TOU) pricing. The rules govern what source

of energy is used, with priority given first to renewable generation if available, then to PHEV

battery storage, and finally electricity supplied by the grid. The simulation study suggested that

these simple rules when paired with a TOU pricing program could reduce grid-supplied electricity

consumption by 14.8%, resulting in cost savings of up to 22.6%. A second study investigated the

robustness of grid stability under two conditions, and showed that the heuristics reduced the po-

tential for overloading the local feeder, provided that a communication network between PHEVs

on the same feeder prevented concurrent charging. When communication did not occur, the prob-

ability for destabilizing the feeder increased. Although PHEV controls are not considered in the

research presented here, this study provides an interesting future topic for exploration using the

techniques developed in this work.

Zhang et al. [100] propose a simplified 2R-2C building model to understand the aggregate

behavior of a mixed population of buildings under demand response events. A detailed simulation

model was created in GridLAB-D from two thousand detailed building models whose physical

parameters were drawn randomly from normal distributions. K-means cluster analysis was then

used to generate five clusters representing the states and properties of the aggregate model. Both

models were subjected to a simulated thermostat set-up demand response event and the aggregate

model correctly captured the behavior of the detailed model both during the event, and in the

rebound immediately following. The authors also show that the aggregate model is able to capture

the effects of the detailed model under a series of set point changes.

Cecati et al. [23] evaluate an Energy Management System (EMS) that combines optimal

power flow simulation, demand side management and active management schemes (via real-time

pricing) to incorporate different types of renewable resources, improve elasticity, and reduce con-
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sumer energy costs. The EMS operates at two time-scales: day-ahead scheduling subject to an-

ticipated market prices; real-time optimization that modifies the schedule according to current

demand. The proposed system evaluated a 19-bus radial distribution system (incorporating two

wind turbines) simulated with the MATLAB SimPowerSystems toolbox. Simulation results suggest

the system is able to increase utilization of wind generation through active distribution.

Despite the interest in residential demand side management, very few residential MPC ap-

plications appear in the literature. As noted above, studies focus either on direct load control,

i.e. demand response, or on indirect market-based control mechanisms. While a number of these

studies do consider the large-scale impacts of both centralized and distributed control mechanisms,

the MPC studies that do appear tend to favor price-based optimization. It is far from clear that

price-based optimization is the ideal solution to managing demand, illustrating the need for studies

exploring alternative methods. Further, the interaction of large-scale DSM with renewable energy

sources is not well represented in the literature, suggesting an additional area of fertile research.

It is the objective of this work to address these needs by investigating the opportunities

afforded by large-scale distributed residential HVAC MPC for shaping electric demand, as an alter-

native to those already presented in the literature. Coupling distributed HVAC MPC with power

flow simulation at the distribution feeder level will illustrate the potential for minimizing aggre-

gate peak demand, and highlight important considerations for DSM, regardless of approach. This

work will also consider scenarios in which rooftop solar and utility scale wind is present, where the

variability in generation can result in feeder demand characteristics undesirable to the utility.

1.3 Organization of Document

The organization of this work is as follows: First, a methodology is described outlining

the various aspects of the research, including an overview of the simulation environment, and

an experimental plan enumerating the cases considered. Next, a description of the optimization

framework and the models developed for the research are presented. A chapter investigating a

simple demand response scenario motivates the need for model predictive control. Four chapters
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describing the optimization cases and their results are then presented in detail. Two chapters

follow investigating the potential for the methodology developed in this work to address high and

low levels of renewable energy penetration. The work concludes with a high-level summary of

findings, conclusions and suggestions for future work.



Chapter 2

Methodology

This chapter presents an overview of the methodology developed for this work. A research

methodology describing the general approach is presented first, followed by a description of key

metrics used to evaluate results throughout. The simulation environment developed during this

research is then described in detail. The chapter concludes with a description of the experimental

cases considered.

2.1 Research Methodology

This research considers the potential for a large number of residential buildings to shape

electrical demand according to arbitrary global objectives through model predictive control. Here,

“arbitrary” is intended to mean an objective which can vary from day to day depending on operat-

ing conditions, but which has a very specific goal of manipulating demand to alleviate the pressures

placed on electric generation assets. “Global” in this context is defined as an objective consider-

ing a representative portion of the United States electric grid, specifically, a set of prototypical

distribution feeders developed for such investigations. These objectives are designed to result in a

paradigm shift: from generation that follows load to load that follows supply.

As there are a lack of tools that are capable of performing these investigations in toto, a

significant portion of this work was devoted to developing the framework with which the research is

performed. This research has required the development of new software coupling the simulation and

optimization of many thousands of residential buildings with an open-source distribution system



20

simulation package. The requirement for optimizing many thousands of buildings concurrently

has necessitated that a distributed optimization approach be adopted, and that a reduced-order

building model be developed that is relatively simple and fast, yet realistic in its behavior. The

latter concern is addressed through model cross-validation against several well-validated simulation

software packages. To capture the cycling behavior of conditioning equipment, this work requires

the simulation of HVAC control at sub-hourly time steps. Minimum compressor run-time, cooling

coil and fan staging, and thermostat hysteresis have been modeled to better simulate HVAC electric

demand.

Electric distribution feeder models utilized in this work are selected based primarily on cli-

mate, and secondarily on their residential load characteristics. This work is concerned principally

with the control of residential air-conditioning loads, therefor, the set of feeders selected are domi-

nated by residential load, and are physically located in areas of the country where air-conditioning

load is a major contributor to peak demand. Additional consideration is given to areas in which

there exist relatively large renewable energy penetration or potential. Out of the twenty-four feeder

models made available by PNNL [82], three are studied here.

The selected feeder models are stripped of all residential loads and modified such that res-

idential loads calculated by the reduced-order building model can be injected as loads from an

equivalent electrical circuit. Home characteristics, originally selected by random sampling of US

Census data, are maintained in the process. This model, which combines the original feeder with

the injected residential loads, is referred to as the “hybrid model”. Following validation of the

hybrid model against the original, the hybrid model can then be simulated in distribution power

flow software to study the aggregated system behavior under different optimal control scenarios.

This work first briefly investigates the impact of a demand response event during a peak

demand day on the distribution feeder(s). The demand response study is intended to illustrate a

worst case control scenario and motivates the need for improved control and system-level coordina-

tion. The distributed optimization framework is then used to minimize peak demand at each home,

resulting in a feeder-wide reduction in peak demand. An investigation into the demand shifting
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potential assists in explaining the result.

Electricity cost minimization under dynamic pricing structures is then studied to determine

the impact on feeder demand. Using historical price and weather data, day-ahead electricity price is

modeled with classification and regression trees (CARTs) for use with TMY weather data. Based

on the observed behavior, experiments are conducted using a synthetic price signal intended to

prevent the undesirable characteristics that emerge with day-ahead price optimization. A further

experiment using synthetic prices illustrates problems associated with electricity price optimization.

A novel new approach to optimizing the aggregate response of buildings is developed and

studied. This approach relies upon a reference signal, containing demand forecast information at

the feeder level, to shape the demand at each individual residence. This method is then used

to show how demand can be manipulated at the residences to alleviate problems associated with

distributed generation, namely rooftop solar electric and utility scale wind.

2.2 Metrics for Evaluating Optimization Performance

Many of the results presented in this work are time series graphs. A few key performance

metrics are proposed to assist in summarizing and interpreting the findings. These metrics, which

are all reported at the feeder distribution transformer, are described below.

2.2.1 Total Electricity Consumption

Total electricity consumption is simply the sum of daily (or monthly) demand in megawatts

divided by the time step in seconds. Total energy consumption difference between base case and

optimized case gives an indication of the “efficiency” of the optimization. None of the optimization

objectives studied in this research explicitly consider net energy consumption, so this metric serves

to show how optimization changes total energy consumption.
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2.2.2 Peak Demand

Peak demand is the maximum electricity demand in megawatts, measured from simulation

time series results. The metric is calculated for each 15-minute period of the simulation time frame

using a simple moving average. Peak demand determines the maximum generation requirements

of the feeder. Values presented in this work are assumed to be 15-minute peak demand unless

otherwise specified.

2.2.3 Peak to Valley Ratio

Peak to valley ratio is simply the ratio of the peak demand to the minimum demand calculated

over a given simulation time frame. This metric is calculated for each 15-minute period of the

simulation time frame. Peak to valley ratio gives a measure for the amount of generation that must

be brought online to satisfy demand. A value of one indicates a constant load. This metric gives a

sense for the magnitude of the dispatchable generation required to meet demand.

2.2.4 Load Factor

Load factor is a ratio of the average demand over the peak demand calculated over a given

simulation time frame. Load factor indicates how well the generation assets in the system are

utilized. Load factors approaching unity indicate a nearly constant use of the assets. The metric

is calculated using the 15-minute moving average of demand consistent with other metrics.

2.2.5 System Ramping

System ramping is a measure of the total absolute change in electricity demand from one

measurement to another over a given simulation time frame. This metric is calculated on a 15-

minute basis by smoothing the five-minute simulation result using a simple moving average. This

metric, presented in megawatts, indicates how much demand changes in total over the course of a

day or month. High values indicate large time step to time step variations, but do not quantify

how quickly demand may change.
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2.2.6 Feeder Demand Spectral Density

This metric quantifies the temporal effects of optimization on feeder demand using an ap-

proach adopted from signal analysis. Whereas the system ramping metric previously described

quantifies the absolute demand change over given simulation time frame, this metric helps explain

how that demand is distributed over the time frame in the frequency domain. That is, it illustrates

how much of the demand change occurs at frequencies ranging from minutes to hours. A large

value of signal power at a one hour frequency would indicate significant demand fluctuations each

hour.

To calculate this metric, the total optimized feeder demand time series is first converted

into the frequency domain using a discrete-time Fourier transform (DTFT). The transformed time

series coefficients are used to develop the power spectral density (PSD) of the original feeder demand

curve. This spectral density is then normalized so that the percentage of power present in the signal

between any two frequencies can be calculated and compared to the base case result.

2.3 Simulation Environment

As the tools required for the simulation studies in this research only partially existed, a simula-

tion environment capable of combining model predictive control, reduced-order building simulation,

and distribution feeder simulation was developed. The following section describes the overall struc-

ture of this environment, followed by a description of the power flow simulation software and its

selection. This section covers the environment at a high-level; specific details related to the building

and distribution feeder model development, and optimization scheme are presented in Chapters 3

and 4.

2.3.1 Background

In previous work [28], the author describes an MPC framework which relied upon MATLAB

as the platform linking optimization to modeling engine. This approach was used with great success



24

for QCoefficient, Inc. (formerly Clean Urban Energy, Inc.), for investigating optimal TABS control

strategies, and for the research by group members, most notably in [65, 66, 64, 28, 86, 73].

While successfully used for more than three years, this framework was not well suited for the

studies undertaken in this work for a number of reasons:

1. The framework was intended for single building optimizations; introducing thousands of

buildings into the simulation would result in a major re-write of the code.

2. Although extensions to MATLAB have been added that make it a much more object

oriented language, other more mature languages exist that would simplify the code signifi-

cantly.

3. From a practical standpoint, MATLAB is expensive, and free alternatives to many of the

algorithms and toolboxes are available.

4. Related to the previous point, parallelization in MATLAB is limited to a fixed number of

cores; for fast computation, many more would be required.

Weighting potential time-savings against the added effort required to write new code, the

decision was made to develop a new framework in Java.

2.3.2 Simulation Framework

The simulation framework, termed “GridMPC”, developed for this research is loosely modeled

after the environment described in [28], but differs in implementation details. GridMPC includes

utilities for parsing simulation input file and weather files (TMY2 or EPW), and for writing files

required by the power flow simulation software.

The simulation input file contains the characteristics of each individual residential building,

the optimization objective and parameters, and the distribution feeder used by the power flow

software. Depending on the size of the distribution feeder studied, this file measures between
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45,000 and 65,000 lines of text. Additional tools and scripts written in various languages have been

developed to programmatically generate the input file, as editing each by hand is not tenable.

The output of GridMPC consists of: the optimized simulation results for each home, with

a value at each time step (row), for each end-use (column); the input “player” file required by

the power flow simulation, containing the sum of all electricity demand at each time step; a CSV

file containing the daylight-time-corrected weather interpolated to each time step; a power flow

simulation input file linking the distribution feeder templates with the building simulation and

weather files.

GridMPC is initiated from a shell script at the command line. The simulation follows a

process somewhat different from its predecessor:

1. Read simulation and weather files.

2. Generate a unique building model for each home described by the input file.

3. Create a pool of simulation threads to execute the following steps in parallel for each

building:

3.1. Auto-size HVAC equipment if size is not specified in input file.

3.2. Warm-up building to initial state unless continuing from previous simulation.

3.3. Generate candidate decision vector, a time series of control decisions.

3.4. Simulate planning horizon using candidate vector

3.5. Evaluate fitness and exit criteria. If exit criteria are satisfied, continue to step 3.6,

otherwise return to step 3.3.

3.6. Write simulation result and “player” files.

3.7. Advance one execution horizon. If no more planning horizons are defined by input,

continue to step 4, otherwise, return to step 3.3.

4. Write CSV weather and power flow files.
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5. Initiate the power flow simulation.

In the predecessor framework, an initialization horizon was required to set the thermal state

of the modeling engine (EnergyPlus). With a reduced-order model now in Java, state can be set

explicitly. Furthermore, when evaluating a new candidate vector, the software need only rewind

the simulation clock; the previous building state is maintained. Since the initialization horizon is

no longer required, considerable computation is avoided.

2.3.3 Electric Grid Simulation Software

Software capable of accurately simulating the electric distribution system is required for

understanding the aggregate effects of optimal control strategies. Both free and commercial software

packages are available depending on the type of studies required. Given limited funding, free and

open-source software (FOSS) was a gating requirement. Luckily, a number of relatively mature

FOSS options exist. A report authored by CanmetENERGY [67] evaluates several open-source

options including GridLAB-D [24], OpenDSS [75], and APREM [76]. While all three would be

suitable for the needs of this research, GridLAB-D was selected for a number of reasons, including:

1. Active online help forums and code development

2. Ability to run on common cluster computer platforms (Linux)

3. Relatively fast simulation time

4. Use of common weather file formats

5. Extensive online documentation and training materials

6. Distributed generation models

7. Availability of prototypical distribution feeder models

GridLAB-D is a time series power system simulation tool developed by PNNL for the purpose

of evaluating Smart Grid technologies. The project is funded by the Department of Energy Office
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of Electricity Delivery and Energy Reliability. The software models all components of the distribu-

tion system in detail, from switches, to distribution lines, transformers, and residential end-uses.

Validation of GridLAB-D has been performed at the aggregate level using measured data from the

Olympic Peninsula Demonstration Project [16]. Version 3.01 was used for this research.

Although the software contains a well validated residential building model derived from Son-

deregger’s Ph.D. research [85], the decision was made to perform the simulation of building load

and optimization outside of GridLAB-D. Utilities in the software for injecting external loads, and

the modular agent-based structure make this task relatively easy. Details regarding the method for

injecting loads into the power flow simulation are provided in Section 3.2.3.

The selection of GridLAB-D as the grid simulation framework necessitates the simulation of

thousands of residential buildings. This level of detail is necessary in the power flow simulation

to accurately simulate the distribution system.2 Admittedly, this research does not leverage the

capabilities of GridLAB-D to the fullest extent. For example, the second order effects of control

optimization on transformer and line losses can be easily quantified by GridLAB-D. This could be

an interesting area of research made capable by the simulation environment created for this work,

and is suggested for future consideration.

2.4 Simulation Hardware

A dedicated computer cluster was constructed to perform the simulation experiments outlined

below. The cluster is composed of four nodes, having 8 virtual cores (4 hyper-threading physical

cores) running at 3.4GHz with 8GB of RAM each. The nodes are connected via gigabit ethernet

to 180GB of shared solid-state storage.

The mini-ITX form-factor of each node allows all four nodes to be housed in a 3U rack-mount

1 When this research began, version 2.3 was the latest stable release. Version 3.0 was released as a candidate late
in 2013 and the current stable version released at the beginning of 2014.

2 Whether or not this requires unique building models is a matter of debate. Section 11.2 identifies this as an area
of future research.
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server chassis. Final cost of the cluster, including chassis, cables and router, totaled slightly under

two thousand dollars. The purchase of the hardware was enabled by a grant-in-aid from ASHRAE.

The topology of the cluster is modeled after that described in [17]. The names of the four

nodes are, appropriately, Kennedy, Bellman, Glover and Holland. When fully utilized, the cluster

is capable of running 32 simultaneous optimizations. Optimizations are coordinated by TORQUE

Resource Manager [4]. A one month long optimization of a feeder model containing 1500 homes

completes in roughly one hour.

2.5 Experimental Plan

This work considers a large number of experimental simulation cases for three climate and

distribution feeder pairs (see Section 3.2.1 for description). Each simulation case considers two

levels of participation measuring 30% and 70% of the feeder residential population. Participants

optimize HVAC operation according to the specified objective. Non-participants simulate HVAC

operation according to the default cooling schedule. With the exception of the first set of demand

response experiments, all experiments consider the entire month of July, a sufficiently hot month

in each of the three climates.

The following subsections summarize the experiments conducted and describes each exper-

iment at a high level. Each experiment is presented in a separate chapter, with its own section

describing the methodology in more detail.

2.5.1 Demand Response

The first experiments consider the annual peak demand day under two and six hour demand

response event durations. This experiment is intended to illustrate an extreme case of the current

practice, and provide motivation for improved HVAC control and system-level coordination.
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2.5.2 Demand Limiting Optimization

These experiments apply a simple peak demand minimizing objective function to each home

in order to reduce overall feed peak demand. Because demand at the individual home level is not

smooth due to the cycling behavior of the HVAC, experiments considering various time-averaging

windows are performed. These experiments are intended to examine a completely decentralized and

uncoordinated optimization approach in contrast to the previous demand response experiments.

2.5.3 Dynamic Price Optimization

Dynamic price optimization might also be described as day-ahead market price (DAM) op-

timization. These experiments utilize hourly electricity price forecasts in order to indirectly co-

ordinate HVAC operation. Each building seeks to minimize daily electricity costs, leading to

unintended consequences under certain conditions. Additional experiments are conducted using a

smooth synthetic price signal in an attempt to remove the undesirable system-level features. These

experiments are intended to show how coordination can be achieved in a decentralized optimization,

and illustrate the potential problems with such an approach.

2.5.4 Load Shape Optimization

These experiments examine a novel new method of decentralized optimization which improves

upon the former dynamic price optimization results. The experiments employ a “reference signal”

to coordinate HVAC operation in order to achieve a desired aggregate feeder demand profile. Mul-

tiple iterations of the concept are explored, resulting in various levels of performance. The best

performing case is adopted as the optimization method for the remaining experiments.

2.5.5 Rooftop Solar

In the previous experiments, the general objective was to shape feeder demand in a way that

minimizes demand, increases load factor, or otherwise improves the metrics described previously. In

this set of experiments, generation in the form of rooftop solar electric is introduced at two levels of
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penetration to show the effectiveness of the reference signal approach to: 1) shaping feeder demand

under these conditions, and 2) alleviating the problems associated with intermittent generation

within the distribution feeder.

2.5.6 Utility Scale Wind

These experiments show the effectiveness of the reference signal method to shaping feeder

demand in the presence of utility scale wind generation. In these experiments, the reference signal

contains information about the system load outside of the distribution feeder, providing an example

load shaping to satisfy needs at a higher level. Two levels of penetration corresponding to 9.4%

and 25% of annual feeder electricity consumption are examined.



Chapter 3

Model Selection and Development

This chapter details the development and selection of the simulation models used throughout

the research. Those models created for this research are cross-validated using accepted validation

procedures; models adopted from previous research which have been modified for this research are

cross-validated against the original. In some cases, models are assumed to be well validated and

simply adopted outright. HVAC models adopted from existing building energy simulation packages

fall into this category.

3.1 Building Model

The building model developed for this research combines a number of elements to estimate

the electric demand of the residence. These elements include: an envelope model for estimating

heating and cooling requirements; HVAC equipment models to calculate electric demand associated

with heating and cooling; a thermostat model to control the heating and cooling operation of the

HVAC equipment; simplified end-use models for the calculation of electric demand (and the heat

gains they produce) from miscellaneous electric loads, lights, appliances and electric hot water

heaters. Each of the elements are described in the following section.

3.1.1 Envelope Model

Using an electrical circuit analogy, a building envelope may be expressed as a thermal network

of resistive and capacitive elements. The model chosen for this work consists of six components
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that represent roof, walls, glazing, floor, air and internal mass as illustrated in Figure 3.1.1 below.

1/hwo

Cwo

Two
Rw

Cwi

Twi
1/hwi 1/hfi

Cfi

Tfi
Rf

Cfo

Tfo
Rs

Ts

1/hro

Cro

Tro
Rr

Cri

Tro
1/hri 1/hi

Cm

Tm

To

1/hgo Rg 1/hgi
Ti

Ci

Figure 3.1: Building envelope model expressed as a thermal network.

Energy balances may be formulated around individual elements to create a system of ordinary

differential equations, which can be discretized in time and solved analytically. For the exterior

wall node, the energy balance can be expressed as:

∑
Qwo = Qsolwall + hwoAw(To − Two) +

Aw
Rw

(Twi − Two) + Cwo
dTwo
dt

(3.1)

where:

ΣQwo is the energy balance at the outside wall node

Qsolwall is the energy gain due to insolation

hwo is the exterior film coefficient

Aw is the wall area

To is the exterior dry-bulb temperature

Two is the exterior wall temperature

Rw is the wall thermal resistance

Twi is the interior wall temperature

Cwo is the exterior wall thermal capacitance
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dTwo
dt is change in exterior wall temperature with respect to time

Similarly, an energy balance around the wall interior node can be formulated. Here, the

assumption is that solar gains through the windows are equally distributed to the envelope and

interior mass nodes according to the respective areas of the elements.

∑
Qwi =

QsolwinAw
At

+ hwiAw(Ti − Twi) +
Aw
Rw

(Two − Twi) + Cwi
dTwi
dt

(3.2)

where:

ΣQwi is the energy balance at the inside wall node

Qsolwin is the total insolation passing through all windows

hwi is the interior film coefficient

Aw is the interior wall area

At is the total interior wall, roof, floor and mass area

Ti is the interior dry-bulb temperature

Cwi is the interior wall thermal capacitance

dTwi
dt is change in interior wall temperature with respect to time

It follows that the same equations can be formulated for the interior and exterior ceiling

and floor nodes. The exterior floor node is an exception if in contact with the ground, (i.e. no

crawlspace). In this case, the energy balance can be expressed as:

∑
Qfo =

Af
Rs

(Ts − Tfo) +
Af
Rf

(Tfi − Tfo) + Cfo
dTfo
dt

(3.3)

where:

ΣQfo is the energy balance at the outside floor node

Af is the floor area

Tfi is the interior floor temperature

Rf is the floor thermal resistance
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Tfo is the exterior floor temperature

Rs is the soil thermal resistance

Ts is the deep ground temperature

Cfo is the exterior wall thermal capacitance

dTfo
dt is change in exterior floor temperature with respect to time

The energy balance formulated from the perspective of the mass node is:

∑
Qm =

QsolwinAm
At

+ hsiAm(Ti − Tm) + Cm
dTm
dt

(3.4)

where:

ΣQm is the energy balance at the mass node

Am is the mass area

Tm is the mass temperature

Cm is the mass thermal capacitance

dTm
dt is change in mass temperature with respect to time

And finally, the energy balance formulated from the perspective of the air node is:

∑
Qi = Qinf +Qint +Qhvac + hwiAm(Tm − Ti) + hriAri(Tri − Ti)+

hfiAfi(Tfi − Ti) + hwiAwi(Twi − Ti) +
Ag

1
hgi

+Rg + 1
hgo

(To − Ti) + Ci
dTi
dt

(3.5)

where:

ΣQi is the energy balance at the air node

Qinf is the energy gain/loss due to infiltration

Qint is the energy gain due to internal sources

Qhvac is the energy gain/loss due to HVAC

Ag is the area of windows

hgi is the interior window film coefficient
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Rg is the thermal resistance of the windows

hgo is the exterior window film coefficient

Ci is the air thermal capacitance

dTi
dt is change in air temperature with respect to time

3.1.2 Solar Gains

Surfaces in the model may be designated as solar exposed. For each of the solar exposed

surfaces, total solar insolation is calculated from the beam, diffuse, and horizontal components

using the model proposed by Liu and Jordan for an isotropic clear sky[61].

It =

[
Ib cos(i)αFSL + Id cos2

(
β

2

)
+ Ihρ sin2

(
β

2

)]
Asurface (3.6)

where:

It is the total insolation on the surface

Ib is the beam component of the solar radiation

cos(i) is the angle of incidence of beam radiation

FSL is the sunlit fraction

α is the absorptance of the surface

Id is the diffuse component of the solar radiation

β is the tilt angle of the surface

Ih is the total horizontal solar radiation

ρ is the ground albedo

Asurface is the area of the surface
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3.1.3 Glazing Model

The glazing model is a very simple extension of the opaque surface model. For each solar

exposed glazing, total solar insolation passing through the glazing is calculated from:

It =

[
Ib cos(i)FSL + Id cos2

(
β

2

)
+ Ihρ sin2

(
β

2

)]
AglazingSHGC (3.7)

where:

SHGC is the solar heat gain coefficient

Aglazing is the area of the glazing

Strictly speaking, SHGC varies with with incidence angle, and is different for direct and

diffuse components of insolation. The simplification made here in order to reduce simulation time,

will tend to overestimate solar gains at high incidence angles.

3.1.4 Shading Model

Shading by overhangs and fins is calculated for all solar exposed surfaces following the pro-

cedure outlined in [6]. The sunlit area of a surface can be calculated by first finding the length and

height of the shade-line projection from adjacent fins and overhangs on the surface in question:

SW = PV |tan∆| (3.8)

SH = PH |tanΩ| (3.9)

where:

SW is the length of the shadow from the vertical fin

PV depth of the fin

∆ is the fin projection profile angle

SH is the length of the shadow from the horizontal overhang

PH depth of the overhang
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Ω is the overhang projection profile angle

and then applying the following equation that relates surface, fin and overhang geometry:

ASL = [W − (SW −RW )] [H − (SH −RH)] (3.10)

where:

ASL is the sunlit area of the surface

W is the surface width

H is the surface height

RW is the distance between surface and fin measured horizontally

RH is the distance between surface and overhang measured vertically

The sunlit fraction, FSL, is calculated as simply the ratio of sunlit area to total surface area,

and then used to multiply the beam solar radiation component of Equations 3.6 and 3.7. Shading

fractions are pre-calculated in the model for each surface and hour in the simulation time frame,

avoiding re-calculation during optimization.

3.1.5 HVAC Models

Definitions for the HVAC component models summarized below are described in detail in

the EnergyPlus Engineering Reference [3] and will not be reproduced here. These models are

largely derived from the ASHRAE HVAC 2 Toolkit [8]. HVAC components implemented in the

reduced-order model include:

1. Simple Hot Water Boiler. A constant efficiency boiler with configurable nominal capacity

and efficiency that can use electricity, natural gas, propane or oil as heating sources.

2. Single-Speed Electric DX Air Cooling Coil. A single speed direct expansion air cooling coil

with configurable nominal capacity and coefficient of performance (COP). Energy input

ratio (EIR), part-load ratio (PLR) and capacity correction coefficients are configurable.
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3. Electric Air Heating Coil. A constant efficiency electric heating coil with configurable

nominal capacity and efficiency.

4. Gas Air Heating Coil. A constant efficiency gas heating coil with with configurable nominal

capacity and efficiency. The model has been extended to simulate propane as well.

5. Single-Speed Electric Heat Pump DX Air Heating Coil. A single speed direct expansion

air heating coil with configurable nominal capacity and COP. EIR, PLR and capacity

correction coefficients are configurable.

6. Water Source Electric DX Air Cooling Coil. A single speed direct expansion air cooling

coil with nominal capacity and COP. EIR, PLR and capacity correction coefficients are

configurable.

7. Water Source Electric Heat Pump DX Air Heating Coil. A single speed direct expansion air

heating coil with nominal capacity and COP. EIR, PLR and capacity correction coefficients

are configurable.

8. Hot Water Baseboard Heater with Only Convection. A hot water baseboard with config-

urable overall heat transfer coefficient (UA) and flow rate.

9. Electric Baseboard Heater with Only Convection. A constant efficiency electric baseboard

with nominal capacity and efficiency.

10. Direct Evaporative Cooler. A simple evaporative cooler model with configurable nominal

saturation efficiency.

11. Constant Volume Fan. A simple fan model with configurable nominal flow rate, pressure

rise, fan efficiency and motor efficiency.

12. Constant Speed Pump. A simple pump model with configurable nominal pressure rise, flow

rate, motor efficiency and total efficiency.
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13. Dual-Mode Single Set Point Thermostat. A thermostat model allowing separate heating

and cooling schedules.

From the individual components, HVAC system models are constructed. These systems include:

1. Forced air furnace. Combines constant volume fan with electric, natural gas, propane or

oil air heating coil, and dual set point thermostat.

2. Baseboard heating system. Uses electric baseboard heater (convection only) which has

been extended to natural gas and propane sources as well. The latter are assumed to vent

exhaust gas to the outside.

3. Boiler with hot water radiator. Combines boiler and constant speed pump with hot water

baseboard heater, and dual set point thermostat.

4. Air-source heat pump with electric backup. Combines single-speed air source heat pump

DX heating and cooling coils with constant volume fan, electric resistance heating coil, and

dual set point thermostat.

5. Water-source heat pump. Combines single-speed water-source heat pump DX heating and

cooling coils with constant volume fan, constant speed pump, and dual set point thermostat.

6. Central air conditioner. Combines single-speed DX air cooling coil with constant volume

fan and dual set point thermostat.

7. Window/wall air conditioner. Combines single-speed DX air cooling coil with constant

volume fan and dual set point thermostat.

3.1.6 Schedules

Individual component models rely on schedules to determine operation (thermostat set point),

usage (washer, dryer, etc) or occupancy. Because schedules can vary from hour to hour, each hour of
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the year, a flexible scheduling model was created that relies on a compact serialized representation

as input. The format borrows from the EnergyPlus input format. For example:

06/30:Mondays Tuesdays Wednesdays Thursdays Fridays:6@0|18@1|24@0;

06/30:Saturdays AllOtherDays:10@0|16@1|24@0;

12/31:AllDays:24@1

defines the following schedule:

1. From January 1 Through June 30:

For Mondays, Tuesdays, Wednesdays, Thursdays, and Fridays:

Scheduled value is 0 from midnight until 6am, 1 from 6am until 6pm, and 0 from 6pm until

midnight.

2. From January 1 Through June 30:

For Saturdays and all other days that have not yet been specified:

Scheduled value is 0 from midnight until 10am, 1 from 10am until 4pm, 0 from 4pm until

midnight.

3. From July 1 Through December 31:

For all days:

Scheduled value is 1 from midnight until midnight.

When a value is specified “at” an hour, it is assumed that the value applies for all hours since

the previously specified hour, “until” the specified hour. The same applies for dates except that

instead of “until” the specified date, the schedule is read as “through” the specified date. Hours

are indexed starting with 1; literally, 4 means the “fourth hour of the day”, not 4am as implied by

the interpretation.

Supported day types include: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,

Sunday, Weekdays, Weekends, AllDays and AllOtherDays. AllOtherDays is a catch-all for any day
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type that has not been specified. In the example above, AllOtherDays ensures that a schedule is

defined for Sunday.

A schedule is agnostic to its ultimate usage. A schedule may contain binary values (0,1),

temperature values (32-100), or fractional values (0.0-1.0). The interpretation of the schedule

is left to the model using the schedule. For example, many equipment schedules are expressed

as probability density functions (PDFs) represented as discreet hourly probabilities whose values

when summed equal 1.01 for a 24-hour period. In the case of lights, consumption is determined

by schedule, wattage, and the number of hours used during a day. Expressing the schedule as a

PDF means that the number of hours and wattage to be simply multiplied and distributed across

the day according to the density function, allowing the same schedule to be used regardless of the

number of hours of usage per day.

3.1.7 Internal Gains

Energy consumption and internal gains from equipment such as appliances and lights can be

modeled using nominal energy demand (in watts), schedule, fuel type, and sensible heat fraction.

As noted above, the schedule value may also be a fraction representing the probability that the

equipment is on during a given hour. The energy consumption of equipment is calculated as:

Ei = EnomSi (3.11)

where:

Ei is the energy consumed at time step i

Enom is the nominal energy demand

Si is the schedule value (fractional) at time step i

1 There are of course special cases where one may require that the sum is more or less than 1.0. Weekends are
such a case where usage is typically a factor more than weekday usage.
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and the heat gain from the equipment is simply:

Gi = EiFsensible (3.12)

where:

Gi is the heat gain at time step i

Fsensible is the fraction of energy converted to heat

Heat gains from occupants are also modeled using Equations 3.11 and 3.12, assuming Enom is

the heat produced by one relaxed seated person (MET). Fuel type has little meaning in this context

and is therefor not defined for occupants. Note that latent gains from equipment and occupants

are not modeled.

3.1.8 Thermostat Model

The thermostat modeled in this work represents a simple dual-mode programmable single set

point thermostat. The term “single” indicates that only one set point, either heating or cooling,

may be active at any given time. As implemented, the thermostat may be “programmed” to have

a different set point value at each hour of the year using a set point schedule.

The thermostat has a single hysteresis (set point deadband) value, defaulted to 0.5K, which

is configurable. This results in the on/off cycling common in residential systems. Additionally, it

implements minimum run time and coil/fan staging logic, both of which are obviously important to

the sub-hourly electricity demand of the system. Minimum compressor run time forces the system

to run for a minimum fixed time even if the target temperature has been achieved. In practice, this

prevents short-cycling of the equipment in order to reduce wear and tear. The value is defaulted

to 10 minutes.

Staging logic allows the heating and cooling equipment to be simulated as having multiple

stages. The logic implemented is fairly simple. For a two stage cooling system, the thermostat
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compares the current indoor temperature2 to the target temperature (the set point temperature

plus hysteresis). If the absolute difference is greater than a pre-defined threshold, both stages of

cooling are engaged, otherwise, only one stage is engaged. This results in single-stage operation

when the system is maintaining a fixed set point, and two-stage operation when the set point is

changed. This threshold value is defaulted to 2K.

Two examples of cooling operation are shown in Figures 3.2 and 3.3, illustrating the three

features of the thermostat. The thermostat deadband can be clearly seen in the upper panel as it

oscillates around the cooling set point. Minimum run time can be observed in the early morning

hours of the lower panels. Both continuous one-stage and intermittent two-stage operation can be

observed in early afternoon in Figure 3.2; Figure 3.3 shows two-stage operation only when the set

point is stepped down in the late afternoon.
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Figure 3.2: Example output from reduced order model showing HVAC cycling, thermostat hystere-
sis, staging and minimum run time. Low cooling set point results in cycling early in the morning
and frequent second cooling stage operation in the afternoon.

The thermostat parameter values cited above are derived from a limited survey of HVAC

2 This is actually the anticipated indoor temperature for the current time step after the free float calculations are
performed. Residential thermostats capable of controlling multistage systems use an anticipated internal temperature
concept as well. This results in two-stage operation when loads are high, i.e. during the peak afternoon hours.
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teresis, staging and minimum run time. High cooling set point delays cooling operation until
mid-morning and avoids second cooling stage operation in the afternoon.
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equipment specifications [22, 48], and from the author’s professional experience reviewing embedded

thermostat code.

3.1.9 Simulation Flow

The simulation process is similar in many ways to that of whole-building simulation packages

used throughout industry. A small number of code optimizations (not to be confused with math-

ematical optimization) have been made which improve performance within the model predictive

control environment described previously. The general simulation process and optimizations are as

follows:

1. Building geometry is constructed from input parameters that define the aspect ratio of the

building, total floor area, number of levels, size and distribution of glazing, and overhangs.

2. Solar angles, incident solar radiation and sunlit fractions are pre-calculated from hourly

weather data. Once initialized, the model does not re-calculate these values during simu-

lation. For a single annual run, this step does not introduce any computational efficiency

gains, however, when the model is re-simulated during optimization, significant computa-

tional expense is avoided.

3. Internal gains from equipment, lights and occupants are pre-calculated. As with solar

angles and sunlit fractions, these values are not re-calculated during simulation unless they

are changed via the simulation process.

4. The building is warmed-up by repeatedly simulating the first day until the mass and air

temperatures converge. The model assumes infinite equipment capacity during this step.

5. The HVAC equipment is auto-sized. The model is simulated for an entire year assuming

infinite equipment capacity, the largest heating and cooling loads are determined and scaled

by a configurable fraction, and the sizing of individual components performed. For heating

and cooling coils, boilers and baseboards, these scaled values become the nominal capacity.
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For fans and pumps, air and water flow are calculated assuming nominal temperature

differentials across down-stream components. Auto-sizing is optional.

6. For each time step of the simulation, building state is determined. First, the zone free-float

temperature is found by simulating without HVAC equipment. If the zone temperature

exceeds the cooling set point or drops below the heating set point, the energy required

to bring the zone back to temperature is calculated. Because the capacity of the HVAC

equipment may vary depending on ambient conditions, the total available heating and

cooling capacity is determined for the current time step. If this capacity is less than

required to achieve or maintain the set point temperature, new mass and zone temperatures

are calculated.

7. Fuel consumption by the HVAC equipment is calculated given the delivered heating and

cooling energy from each time step.

8. At the end of the simulation, the building model can be written to file in a serialized format,

i.e. a format that allows the model to be reconstructed with exactly the same state. This

allows the model to be loaded and re-run without any of the overhead of initialization,

auto-sizing or warm-up. Because the state of the building is saved for each time step, a

subsequent simulation may start at any arbitrary time in the correct state.

Note that the simulation of zone and HVAC are tightly coupled, reflecting the available heat-

ing and cooling capacity at each time step. This is particularly important when control strategies

are employed that exercise the limits of the heating and cooling system as is common during op-

timization. Also note that the model is capable of sub-hourly simulation time steps down to one

second.

3.1.10 Annual Validation of Building Model

BESTEST-EX [50] is a simulation model testing standard derived from ASHRAE/ANSI

140 (BESTEST) [49], specifically created for testing the accuracy of residential building modeling
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software for existing buildings. The testing procedure consists of two parts. The first includes a

suite of building physics test cases meant to validate the candidate software’s ability to correctly

capture building heating and cooling load calculations on an annual basis for a variety of different

building configurations. The second includes a suite of tests meant to validate automatic building

calibration methods. In these tests, a number of building envelope characteristics are allowed to

vary within a given range. Calibration software should be able to match the results from a set of

annual simulations in which the actual envelope characteristics are not disclosed. It can be argued

that the second part of the procedure indirectly tests the ability of the candidate model to simulate

different building characteristics. Only the first part of the testing procedure, i.e. the set of physics

test cases, is performed for the reduced-order model. The procedure requires that both heating

and cooling dominated climates are simulated, represented by Boulder, CO and Las Vegas, NV.

The base case reduced order model is constructed using the geometry and material charac-

teristics documented in the testing procedure. The building is assumed to be 1,539 sq. ft with a

single conditioned zone, a raised floor exposed to air and an unconditioned attic. The building is

57 ft. wide by 27 ft deep, with the front facing due south. Walls are assumed to be uninsulated, the

raised floor is insulated with R-19 batt, and the ceiling floor is insulated with R-11 batt. Window

to wall ratio is approximately 26% and windows are assumed to be single paned with a wood frame.

Heating and cooling capacity is assumed to be infinite, with efficiency and COP fixed at values of

70% and 3.0, respectively. Further details regarding the modeling assumptions can be found in the

documentation.

Nine additional cases are constructed according to the specifics defined in the procedure.

These test cases include: improved air sealing; improved attic insulation; improved wall insulation;

thermostat set-back; improved windows; higher envelope solar absorptivity; lower envelope solar

absorptivity; shading from overhangs; a case combing all measures.

For validation, rough calibration of the reduced-order model is performed by hand until good

agreement between the base case annual simulation and benchmark simulation is achieved. It has

been found that only the internal mass to floor area ratio and internal to external envelope capac-
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itance ratio need be adjusted to arrive at the calibrated results presented below. Once calibrated,

the entire suite of test cases is simulated. The difference between the calibrated and original in-

ternal mass to floor area ratio (calculated from the detailed building envelope specifications in the

testing procedure) is on the order of 10%. The internal to external envelope capacitance ratio was

found to be 1:4.

Figure 3.4 shows an annual comparison of cooling loads from three benchmark software

simulations (EnergyPlus, SUNREL, DOE2.1E) and the reduced order model (3R-2C) for all test

cases. As seen in the upper panel, agreement between the reduced-order model and the benchmark

is quite good. The lower panel shows the difference in load from each test case to the base case.

A separate analysis not included here confirms that the results are within the acceptable error

proscribed by the testing procedure.

Figure 3.5 shows an annual comparison between heating loads for the same cases in the heating

climate. Again, agreement between the benchmarks and the reduced-order model is acceptable.
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Figure 3.4: Comparison of annual electricity use in cooling physics test cases for EnergyPlus,
SUNREL, DOE2.1E, and the reduced-order model.

Although not specifically required by the testing procedure, the results of the reduced-order

model can be compared with the benchmark software on a monthly basis to validate seasonal
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variations in energy consumption. Figure 3.6 demonstrates that the reduced-order model is capable

of capturing these variations as well as the benchmarks.
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Figure 3.6: Comparison of monthly electricity use in cooling and heating physics test cases for
EnergyPlus, SUNREL, DOE2.1E, and the reduced-order model.

3.1.11 Sub-Hourly Validation of Building Model

Using the hand-calibrated reduced-order model from the annual validation above, and the

BESTEST-EX supplied EnergyPlus model, a heating and cooling load comparison is performed

to validate that the sub-hourly dynamics of the two models are in agreement. The comparison is

performed for the same two locations, representing both heating and cooling dominated climates.

Time series results are shown in the figures below.

Figure 3.7 shows total heating energy for both the reduced order model (RC) and the Ener-

gyPlus model at a 5-minute time step. Only those days in which heating is required are plotted.

Consistent with the annual validation, the reduced order model tends to under-predict heating

loads compared to EnergyPlus. This is most noticeable when loads are highest. Nevertheless, the

shape closely matches, and trends are consistent. Normalized root mean square error (NRMSE)

between the two simulations for the entire time series (excluding days where heating is disabled) is



51

7.4%.

Figure 3.8 shows a similar comparison for cooling load. Here, the bias is towards over-

predicting cooling energy, but NRMSE (for all days where cooling is enabled) is smaller at 5.5%.

Where models differ, loads tend to be lower.

Despite the differences, visual comparison and NRMSE values suggest that the reduced order

model sufficiently captures the dynamics of both heating and cooling loads with a bias towards being

too ‘warm’. Further calibration would likely improve the result, but is not necessary for the purpose

of this work as the NRMSE value is already very good.

The response of the model to changes in thermostat set point is important to the investigations

studied in this work. To validate the model under these conditions, both the reduced order model

and the EnergyPlus model are subjected to a +3K cooling set point step change between 13:00 and

17:00 during each day of the cooling season. Two variations of the model are tested, representing

high and low internal mass to floor area ratios. These mass levels represent the range of values

observed in the population sampling process outlined in 3.2.2, and correspond to 2.5 and 4.0 times

building floor area.

Results from a single day, July 1, are shown in Figure 3.9. This chart shows cooling load for

both models at two mass levels at each five-minute simulation time step. In general, the reduced

order model follows the EnergyPlus model very well. The reduced order model tends to lag the

EnergyPlus model following the temperature set-up at 13:00, and shows a slightly higher peak when

the set point is returned to the previous value at 17:00.

Normalized root mean square error in cooling load for the entire cooling season is shown in

Table 3.1. Values of 5.3% and 5.1% indicate very good agreement between the models for a given

mass level. From Figure 3.9, it appears that the reduced order model shows less sensitivity to the

mass level than the EnergyPlus model. However, a comparison between high and low mass values

for a given model shows that over the cooling season, both the reduced order model and EnergyPlus

show the same sensitivity. At 3.1% and 3.5%, neither model shows much sensitivity to internal

mass level.
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Table 3.1: Normalized root mean squared error between reduced order model and EnergyPlus at
two mass levels with step change in cooling set point, May through October.

EnergyPlus Low Mass EnergyPlus High Mass RC High Mass

RC Low Mass 5.3% NA 3.1%

RC High Mass NA 5.1% NA

EnergyPlus Low Mass NA 3.5% NA
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3.2 Electric Grid Model

This work considers the electricity generation, transmission and distribution system from the

perspective of a distribution feeder serving commercial, agricultural, industrial and residential loads.

Feeder models are adapted from the PNNL Modern Grid Initiative Distribution Taxonomy Report

[82]. This report defines 24 prototypical feeders common throughout different climate regions in the

United States. The following section describes the selection and characteristics of the three feeders

considered in this research, and the modifications made to the feeders in order to integrate with

the simulation framework. The section concludes with a validation of the modified feeder models.

3.2.1 Selection of Climate and Feeder Models

The Distribution Taxonomy Report (DTR) classifies feeders according to both ASHRAE

climate region and physical characteristics, using a cluster analysis for each of the climates zones

defined by [15] and [14]. This classification corresponds with that used in the location selection

exercise documented in ASHRAE Research Project 1313-RP [41]. The research presented in the

present work relates in many ways to that undertaken in ASHRAE 1313-RP, therefor, the list of

initial candidate locations was adopted from that source. From the list of 15 cities in ASHRAE

1313-RP, three cities were identified that 1) represented three different regions according to the

feeder taxonomy report and 2) provided a wide range of cooling degree days. These cities are:

Houston, TX; Los Angeles, CA; New York, NY. A summary of relevant climate design data from

the 2009 ASHRAE Fundamentals Handbook [6] is shown in Table 3.2.

Table 3.2: Climate characteristics of cities selected for study.

City ASHRAE Climate Zone CDD50 CDD65

Houston 5 4043 1667

Los Angeles 3 2674 343

New York 2 1911 543

The 24 feeder models were then evaluated based on their physical characteristics. As this
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work is concerned primarily with residential cooling demand, feeders were evaluated first on the

number of residential buildings served by the feeder and second by the percentage of annual load

represented by the residential buildings. Consideration was also given to the topology of the feeder:

those typical of urban and suburban distribution feeders were preferred over those typical of rural

or lightly populated areas. Three feeders were selected corresponding to the three climate zone

and location pairs. The following descriptions are taken directly from the distribution taxonomy

report. The number of residences was determined by counting the number of homes defined in the

original feeder model. The annual percentage of residential electricity consumption was calculated

from a full annual feeder simulation by measuring the total number of megawatt hours reported

by the residential meters and comparing to the total number of megawatt hours reported by the

distribution transformer.

It should be noted that the description in the report does not always align exactly with the

data in the table. For example, Feeder 8 is described has having light industrial loads, however

there are no industrial transformers in the feeder model. Additionally, the nominal load for this

feeder is well below the load measured in the original feeder simulation. Communication with the

development team at PNNL confirms that the nominal feeder load should be closer to 7.4MW and

that the report is in error.

3.2.1.1 Feeder 8, New York

Feeder 8 is described as “a representation of a lightly populated suburban area . . . composed

of single family homes, light commercial loads, light industrial loads, and some agricultural loads”.

The description also notes that due to connections with adjacent feeders, loading of this feeder

should be limited to 60% or 4.4MW.
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Table 3.3: Characteristics of Feeder 8.

Nominal voltage (kV) 12.47

Nominal load (MW) 7.4

Commercial transformers 6

Industrial transformers 0

Agricultural transformers 0

Residential transformers 396

Number of residences 1506

Percent of residential consumption 86%

3.2.1.2 Feeder 13, Los Angeles

Feeder 13 is described as “a representation of a heavily populated suburban area . . . composed

mainly of single family homes with some light agricultural loads”. Feeder loading should be limited

to 75% or 5.9MW for similar reasons.

Table 3.4: Characteristics of Feeder 13.

Nominal voltage (kV) 12.47

Nominal load (MW) 7.8

Commercial transformers 0

Industrial transformers 0

Agricultural transformers 107

Residential transformers 1491

Number of residences 1326

Percent of residential consumption 78%

3.2.1.3 Feeder 22, Houston

Feeder 22 is described as “a representation of a heavily populated suburban area with a mod-

erately populated urban area . . . composed mainly of single family residences with some moderate

commercial loads”. Feeder loading in this case should be limited to 66% or 7.9MW.
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Table 3.5: Characteristics of Feeder 22.

Nominal voltage (kV) 22.9

Nominal load (MW) 12.0

Commercial transformers 14

Industrial transformers 0

Agricultural transformers 0

Residential transformers 284

Number of residences 2146

Percent of residential consumption 80%

3.2.2 Populating Feeder Model with Residences

The GridLAB-D development team provides MATLAB scripts to automatically generate a

population of residential buildings for each distribution feeder model based on feeder nominal load

characteristics and climate region. The method uses Residential Energy Consumption Survey [5]

data collected and made available by the US Energy Information Administration. The scripts

randomly sample RECS data across a number of characteristics which include floor area, dwelling

type, heating type, cooling type, heating set point, cooling set point, hot water usage, envelope

integrity, and other characteristics important to residential energy use. Distributions of several

major characteristics are shown in Figures 3.10, 3.11, and 3.12. Note that homes are grouped

according to the electrical phase to which they are attached.

After sampling, the scripts generate a file containing the residential building definitions in

GLD input format for each building. This file is then transformed into the input that GridMPC

requires using a simple search and replace script. This allows GridMPC to simulate the residential

buildings and insert the results into the power flow simulation. Section 3.2.6 describes briefly how

this is accomplished.
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Figure 3.10: Distribution of home characteristics for Houston feeder model.
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Figure 3.11: Distribution of home characteristics for Los Angeles feeder model.
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Figure 3.12: Distribution of home characteristics for New York feeder model.
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3.2.3 Modeling Home as ZIP Load

Building energy modeling from an energy engineering perspective is typically not concerned

with the behavior of individual electric devices on the electric system as a whole. Often, an electrical

load is simply modeled as a time varying demand, without regard to the nature of the load. That

is, all loads regardless of their inductive, capacitive or resistive characteristics are treated the same.

However, in electric system modeling, these are the characteristics which define the behavior of the

system. Therefor, power systems engineers will model individual devices in a way that accurately

characterizes their behavior from an electrical engineering perspective. As with energy models,

these models can range from very simple to very complex. The ZIP load model implemented in

GridLAB-D (Equations 3.13 and 3.14) is relatively simple, but sufficiently accurate to represent

the electric load from this perspective.

P =

∣∣∣∣VaVn
∣∣∣∣2|Sn|Z% cos(Zθ) +

∣∣∣∣VaVn
∣∣∣∣ |Sn|I% cos(Iθ) + |Sn|P% cos(Pθ) (3.13)

Q =

∣∣∣∣VaVn
∣∣∣∣2|Sn|Z% sin(Zθ) +

∣∣∣∣VaVn
∣∣∣∣ |Sn|I% sin(Iθ) + |Sn|P% sin(Pθ) (3.14)

where:

P is the real power

Q is the reactive power

Va is actual voltage

Vn is nominal voltage

Sn is apparent power at the nominal voltage

Z% is the percent of the load that is constant impedance

Zθ is the phase angle of the constant impedance fraction

I% is the percent of the load that is constant current

Iθ is the phase angle of the constant current fraction

P% is the percent of the load that is constant power

Pθ is the phase angle of the constant power fraction
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A ZIP load model is defined by constant impedance (Z%), current (I%) and power (P%)

fractions. The values of these fractions are specific to the type of load being simulated. In a ZIP

model, one would specify electric baseboard heat (high constant impedance fraction) differently

from compact fluorescent lights (high constant power fraction). Thus, for every electric device in

the home, a different ZIP model would be specified.

While it is possible to simulate all devices separately in this research, and indeed possible

within the GridLAB-D framework, it is unwieldy in the context of the optimization framework

developed for this work. Instead, one seeks to reduce the complexity of the electric model while

still maintaining the overall characteristics of the electric load, aggregated at the whole-home level.

In this work, each whole home is modeled as a single ZIP load with representative (average) time-

invariant ZIP fractions. This approach requires several simplifying assumptions to be adopted:

1. ZIP fractions are fixed for the home. At the whole home level, ZIP fractions vary from

one instant to another as various electric devices turn on and off. Modeling the home as a

single ZIP load with fixed fractions neglects the effects on the system caused by the mix of

loads present at any instant.

2. ZIP fractions are representative of the average home. Across the population homes, the

presence (or absence) of hot water heaters, air conditioners, heat pumps, and the specific

mix of electric devices result in different whole-home ZIP characteristics. Deriving a set of

average ZIP fractions for all homes neglects these effects.

3. Voltage dependence can be ignored. The ZIP load model does not exhibit any voltage

dependence. That is, as the voltage on the distribution system changes over time (as a

result of the load on the distribution feeder), the load behavior does not. For example, in

a voltage-dependent model a hot water heater cycles more quickly at higher voltage, and

less quickly at lower voltage. In a model without voltage dependence, the cycling behavior

is unaffected.
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Regarding assumptions 1 and 2 above, while these simplifications affect the absolute value of

real power demand on the distribution feeder from one time step to the next, the observed variation

measured at the feeder transformer is within a relatively small range of absolute values. Section

3.2.4 addresses this aspect in more detail.

Assumption 3 is somewhat more difficult to justify considering that the voltage supplied to

the homes can affect the cycling behavior of the HVAC equipment. However, the sensitivity of

HVAC cycling to this variation would be relatively small compared with the sensitivity to building

envelope characteristics and operational constraints enforced by the thermostat, i.e. minimum cycle

time and set point hysteresis. Further, because the effect of voltage variation on feeder demand

is much smaller than the expected magnitude of change induced by load manipulation, e.g. under

optimal control, voltage dependence can be safely neglected.

This research investigates the manipulation of HVAC electric demand which is principally

dominated by AC electric motors. It should be noted that a more appropriate motor model for use

in power system simulation, such as the WECC composite model [54], is available in GridLAB-D

version 3.0. Future investigations in which short term dynamics of the system are of interest may

benefit from improved motor modeling.

3.2.4 Selection of ZIP Fractions

To arrive at a representative set of average ZIP fractions, each of the three feeder models

is simulated for an entire year in GridLAB-D, using the TMY2 weather selected for the feeder.

Simulations are configured to output the sum of real and reactive power for the constant impedance,

current and power portions of the load at each time step. Note that these values are not the ZIP

fractions, rather, these correspond to each of the six terms added together to equal the real and

reactive components of the ZIP model. These six terms are shown in Equations 3.15 through 3.20

below.

PP = |Sn|P% cos(Pθ) (3.15)
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PI =

∣∣∣∣VaVn
∣∣∣∣ |Sn|I% cos(Iθ) (3.16)

PZ =

∣∣∣∣VaVn
∣∣∣∣2|Sn|Z% cos(Zθ) (3.17)

QP = |Sn|P% sin(Pθ) (3.18)

QI =

∣∣∣∣VaVn
∣∣∣∣ |Sn|I% sin(Iθ) (3.19)

QZ =

∣∣∣∣VaVn
∣∣∣∣2|Sn|Z% sin(Zθ) (3.20)

The values obtained from the simulations are then averaged over the year, yielding a single number

for PP , PI , PZ , QP , QI and QZ . From the averaged values, the impedance, current and power

phase angles are calculated simply with trigonometry. In the ZIP model, the three ZIP fractions

must sum to one (Equation 3.21).

Z% + I% + P% = 1 (3.21)

Introducing this relationship allows the equations to be rearranged to eliminate the unknown

Va, Vn and Sn terms. The resulting Equations, 3.22 and 3.23, can then be solved iteratively to

arrive at values for Z%, I% and P%, representing the time and population averaged ZIP fractions

specific to the feeder.

F =
PPQP sin(Iθ) cos(Iθ)

PIQI sin(Pθ) cos(Pθ)
(3.22)

P 2
% − P% + P%I% + FI2% = 0 (3.23)

ZIP fractions calculated for the three feeders are shown in Table 3.6 below. From the per-

spective of the feeder, homes appear on average as having 2/3 constant power and 1/3 constant

impedance behavior. The absence of constant current behavior is interesting given the presence of

a constant current component in the fractions specified in the underlying GridLAB-D load models.
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Table 3.6: ZIP fractions for three feeder models.

Location Z% I% P%

Houston 0.35 0.04 0.61

Los Angeles 0.25 0.05 0.70

New York 0.29 0.10 0.61

3.2.5 Feeder Sensitivity to ZIP Fractions

As alluded to previously, the simplification introduced by time and population averaging ZIP

fractions is expected to affect the overall real power demand on the distribution feeder, but the

extent of the error introduced by this simplification is unknown. A set of simple experiments is

devised to test the sensitivity of real power demand to the ZIP fractions, and estimate the size of

the error. To accomplish this, each home within the feeder is replaced with an equivalent ZIP load

whose electricity demand at each time step matches the electricity demand of the home it replaces.

Three simulations are performed in which the entire population of homes is given the same set of

ZIP fractions. The upper panel of Figure 3.13 shows the real demand on the Houston feeder for a

single week in July for each of the three cases. The three cases are given by the ZIP combinations

in Table 3.7. A fourth case labeled ‘Average’ is the result of a simulation using the average ZIP

fractions found previously for the Houston feeder; this series completely obscures the I% = 0 series.

The lower panel of the figure shows the demand percentage error relative to the average demand

of the Z = 1, I = 1, and P = 1 cases.

Table 3.7: ZIP fractions and case names for sensitivity test.

Case Name Z% I% P%

Z=1 1 0 0

I=1 0 1 0

P=1 0 0 1

While error can be as large as ±4%, error at high demand is roughly half this value. The

constant current case demand is centered around the average of the three cases and shows behavior

very similar to the averaged ZIP fraction simulation. This suggests that this case could instead
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Figure 3.13: Sensitivity of Feeder Demand to ZIP Fractions.
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be simulated as a combination of only Z and P fractions. The bias of the averaged ZIP fraction

simulation towards the constant power simulation is consistent with the larger P% value found.

From these observations, the following conclusions can be drawn:

1. The Z% = 1 and P% = 1 simulations represent the upper and lower boundaries of real

power demand for any arbitrary combinations of ZIP fractions. Were the fractions varied

each time step for each home, the result would fall between these boundaries.

2. The feeder exhibits relatively little sensitivity to the ZIP fractions in terms of real power

demand. The error introduced by population averaged time-invariant ZIP fractions is

relatively small and is acceptable for the purposes of this work.

3.2.6 Development of Hybrid Model

Having simplified each home in GridLAB-D into an equivalent ZIP load model, the homes

within the feeder can be simulated simply as an electric demand calculated outside of GridLAB-D

by the reduced order building model. This is accomplished by first writing the electric demand

of each home at each time step of the simulation into a separate file, then linking these files to

the power flow simulation using the ZIPload and player objects. The new model that results,

which combines the loads calculated by GridMPC with the GridLAB-D feeder model, is termed

the ‘hybrid model’.

This process is performed programmatically when GridMPC executes as it involves thousands

of files. It should be noted that the use of ZIPload incurs some unnecessary overhead because it is a

child of the house object which is not needed in the hybrid model. Alternatively, the triplex_load

object could be used for this purpose, but would necessitate a significant change to the structure of

the original GridLAB-D input file to remove all house and triplex_meter objects to which they

attach.
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3.2.7 Validation of Hybrid Model

The hybrid feeder models are validated against the reference feeder models to ensure that

the aggregate load characteristics are maintained. Validation is performed at two time-scales:

monthly validation of cumulative energy consumption ensures seasonal effects on feeder demand

are correctly captured; daily validation of instantaneous feeder demand for a peak week ensures

that the nominal design load is not exceeded. The latter is particularly important as exceedance

of the system limits can result in an overloading of the feeder and subsequent voltage collapse.

The hybrid model must also exhibit a demand shape similar to the reference to ensure that the

aggregate behavior correctly reflects daily temperature and solar related effects. Too high or low a

demand would suggest significant differences in the two building models, possibly requiring homes

to be removed from the feeder, or additional reduced-order models to be added.

Figure 3.14 shows cumulative monthly electricity consumption for reference and hybrid ver-

sions of the three feeder models. All three hybrid models show reasonable agreement3 with the

reference versions. Seasonal trends in the hybrid model are consistent with the reference in all

cases.

Table 3.8 summarizes the percentage error between reference and hybrid models. The Hous-

ton models appear to be much less consistent than the others, but annual error is only -5.0%.

Errors for Los Angeles and New York are 0.2% and 0.1%, respectively. On a monthly basis, the

largest error observed is -9.5% for the Houston feeder, and lower for the others.

Cooling loads in Houston are relatively large compared to the other locations so discrepancies

between models will be magnified. Recall that the error observed in the reduced order model

validation suggests that cooling error increases as absolute cooling load decreases, so it does not

appear that the discrepancy between the original and hybrid model is a manifestation of this.

3 Discrepancies between the residential loads calculated by GridLAB-D and GridMPC were identified early in the
testing stage that uncovered two rather significant bugs in GridLAB-D. The bugs relate to handling of daylight saving
time and interpolation of weather data. This resulted in a two hour shift in the expected results. A work-around for
both issues exists by providing the weather data to GridLAB-D as a CSV file that has been correctly shifted for DST
and interpolated.
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Figure 3.14: Monthly validation of hybrid GridMPC model.

Table 3.8: Percentage error in total electricity consumption for three feeders.

Feeder Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Houston -9.0 -8.3 -2.0 9.1 -2.4 -6.7 -9.1 -8.1 -3.6 -4.2 -1.8 -9.5 -5.0

Los Angeles -3.2 -2.6 -1.0 4.7 3.8 3.7 2.5 2.1 2.7 -0.8 -0.8 -2.1 0.2

New York -6.3 -6.0 -4.2 6.9 7.5 5.6 1.7 4.3 6.5 0.0 -4.8 -5.6 0.1
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Rather, it appears that the reduced order building model tends to underpredict cooling electricity

compared to the GridLAB-D building model. As the two are quite different in their assumptions

regarding the distribution of solar gains and complexity of envelope elements, this is not terribly

surprising.

Figure 3.15 illustrates the difference for a single week in July, one of the hottest weeks of

the year. Again, the hybrid model underpredicts electricity consumption relative to the original.

Despite what appears to be a significant difference the error is acceptable. This validation is meant

to show that the hybrid model does not significantly exceed the nominal feeder load. In fact, it

tends to be much more conservative than the original in this regard. Recall that the nominal design

load of the Houston feeder is 12.0MW and that it is designed to operate at roughly 66% of this

value. While both hybrid and original models exceed 7.9MW during this week, the original exceeds

12.5MW on several occasions, while the hybrid never exceeds 10.1MW.
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Figure 3.15: Feeder demand validation for Houston feeder model.
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Figure 3.16 shows a similar comparison for the Los Angeles feeder. Here, agreement is much

better than in the Houston case. This is not unexpected since the ratio of residential cooling electric

demand to total feeder electric demand is lower for this location. With respect to feeder loading,

neither the original or hybrid model exceed the nominal feeder load of 7.8MW, nor do they exceed

the 75% limit of 5.9MW. Although none of these days show the annual peak feeder demand, it will

be shown in Chapter 5 that during normal operation these values are not exceeded.

20

40

60

20

25

30

35

P
rice [$/M

W
h]

Tem
perature [°C

]

07/01 07/03 07/05 07/07 07/09 07/11 07/13 07/15 07/17 07/19 07/21 07/23 07/25 07/27 07/29 07/31 08/02
Date

V
al

ue

series

Model

TMY2

2

4

6

8

0

250

500

750

1000

20

25

30

35

2

4

6

8

D
em

and [M
W

]
S

olar [W
/m

2]
Tem

perature [°C
]

W
ind [m

/s]

07/14 07/15 07/16 07/17 07/18 07/19 07/20 07/21 07/22
Date

V
al

ue

Series

Diffuse

Direct

Drybulb

Global

GridLAB−D, CSV

GridMPC

Windspeed

2.5

5.0

7.5

10.0

12.5

0

250

500

750

1000

25

30

35

0.0

2.5

5.0

7.5

D
em

and [M
W

]
S

olar [W
/m

2]
Tem

perature [°C
]

W
ind [m

/s]

07/14 07/15 07/16 07/17 07/18 07/19 07/20 07/21 07/22
Date

V
al

ue

Series

Diffuse

Direct

Drybulb

Global

GridLAB−D, CSV

GridMPC

Windspeed

2

3

0

250

500

750

1000

17.5

20.0

22.5

2

4

6

D
em

and [M
W

]
S

olar [W
/m

2]
Tem

perature [°C
]

W
ind [m

/s]

07/14 07/15 07/16 07/17 07/18 07/19 07/20 07/21 07/22
Date

V
al

ue

Series

Diffuse

Direct

Drybulb

Global

GridLAB−D, CSV

GridMPC

Windspeed

Figure 3.16: Feeder demand validation for Los Angeles feeder model.

Similar to the Los Angeles observations, New York hybrid feeder demand shown in Figure 3.17

closely matches that of the original. Both models far exceed the nominal value documented in the

Distribution Taxonomy Report, even in the middle of the night when cooling loads are lowest.

While it is fairly clear that the hybrid model does a very good job approximating the original, it is

hard to make any claims about feeder loading.

Agreement between the original and hybrid feeder models could be improved through the
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addition of residences. Certainly, the hybrid model should not produce electric demands exceeding

the original. Similarly, the hybrid model should not underpredict load by a large percentage.

Although it is difficult to put an exact number on a lower threshold, this analysis confirms that

the former criterion is satisfied. The determination of the latter is somewhat more subjective, but

deemed satisfactory for this research.
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Figure 3.17: Feeder demand validation for New York feeder model.



Chapter 4

Model Predictive Control and Optimization

The following chapter describes the model predictive control methodology and optimization

algorithm used throughout this research. This process is informed in part by the author’s pre-

vious work which has been published in [28]. As noted earlier, the software implementing this

approach has been written anew, but shares some common features with the predecessor. Those

features common to both receive little additional treatment here, and the reader is referred to the

aforementioned publication for full details.

4.1 Methodology

This work implements the classic receding horizon model predictive control scheme to min-

imize an objective which is a function of building electricity demand. This is accomplished by

manipulating the cooling set point schedules of thousands of simulated residential buildings in par-

allel. The size of the decision space makes a supervisory control optimization intractable, requiring

that a decentralized, distributed approach be adopted. Therefor, each residential building is subject

to a separate receding horizon control optimization independent of the others. The formulation

of the objective function becomes critical to the aggregate response as will be illustrated in the

experiments.

For all cases studied here, the prediction horizon chosen is twenty-four hours following the

findings of [42] for processes with diurnal cycles. The execution horizon has no meaning in these

studies as each day is considered in isolation. However, the software is configurable to arbitrary
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planning and execution horizon lengths.

In contrast to earlier studies using EnergyPlus as the function evaluator, no initialization

or termination horizons are required. The former is not necessary as state is maintained by the

software automatically and does not need to be reinitialized. The exclusion of a termination horizon

is justified by the relatively small thermal storage capacity of a residential building compared to

cases studied previously.

As with previous work, the function evaluator appears as a black-box from the perspective

of the optimization algorithm. This requires a metaheuristic approach. The algorithm selected,

described in further detail in Section 4.3, is appropriate for implementations of this type.

4.2 Optimization Process

The general process of optimization is very similar to the offline process documented in [28].

In summary, for each building and each planning horizon, a separate optimization is performed

according to the following steps:

1. Generate candidate control vector.

2. Simulate building with candidate control vector.

3. Evaluate fitness and exit criteria; return to step 1 or exit.

The first iteration of this process is performed with a simulation “seed” which is unique to

each building. The seed corresponds to the upper boundary of the cooling set point schedule.

Recall that the cooling set point for a given home is drawn from a distribution according to US

Census data. The cooling set point schedule is assumed to be constant for the base case, as previous

studies suggest that many homes do not have a programmable thermostat or do not program their

thermostat with set-backs [79].

In the optimization case, the upper boundary varies by time of day. Specifically, the set point

is raised relative to the normal cooling set point when the home is unoccupied. Homes are assumed
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to be unoccupied between the hours of 8am and 6pm.1 The upper boundary may be specified as

an absolute value, e.g. 28◦C, or as an offset, e.g. 3K. Throughout this research, the upper boundary

is specified as an offset. The lower boundary is specified in a similar manner. The offset values are

specified in subsequent chapters.

In previous research, decision variables were divided into “modes” to limit the decision space

to a reasonable size. This was a necessary side-effect of the choice to use a relatively slow, but

very detailed, building simulation engine. In this research, the simulation is greatly simplified due

to model reduction, allowing an increased decision space granularity and number of modes. This

allows the optimizer to consider forty-eight decision variables corresponding to each thirty minute

period of the day.

The decision to use thirty minute modes is not arbitrary, rather it is a balance between

competing needs. The ability of the system (the distribution feeder in this case) to quickly change

demand is a function of the mode length. Shorter mode lengths allow for faster response. Ideally,

modes would be as short as possible. However, changing thermostat set points more frequently is

not practical. First, the minimum run time requirement enforced by the thermostat makes shorter

modes pointless. Second, because of thermal storage effects, changes in set point faster than the

system time constant will have little effect when cooling equipment capacity is discrete, i.e. in a

two-stage air conditioning system. Although the time constants have not been explicitly calculated,

Figures 3.2 and 3.3 suggest a value less than an hour, but greater than the ten minute minimum

compressor run time. Thirty minutes is a logical compromise.

Mode boundaries for all buildings are aligned on the half-hour beginning at midnight. As

will be discussed in Chapter 7, this can have interesting and unexpected implications.

1 These are nominal values. The unoccupied hours vary up to ±1 hour for each building
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4.3 Optimization Algorithm

The Particle Swarm Optimization (PSO) algorithm has been selected based on promising

results from previous work [28, 64]. PSO is a metaheuristic algorithm that behaves in a way that is

analogous to the flocking behavior of social organisms. In PSO, a “swarm” of particles searches the

decision space according to a combination of randomized and simple rule-based decisions, sharing

information about the best solution found along the way.

Because PSO follows fairly simple rules, independent of the underlying objective function or

its derivative, it is able to operate on black-box simulation models with decision spaces that contain

discontinuities, making it particularly well suited for use with whole-building energy simulation.

The mathematical formulation of the optimization algorithm was first proposed and studied

by [33] and subsequently refined for discrete and binary variables by [52]. The formulation used in

this research can be expressed as:

vi,t = ωvi,t−1 + γ1φ1(pi,t−1 − xi,t−1) + γ2φ2(gi,t−1 − xi,t−1) (4.1)

xi,t = xi,t−1 + vi,t (4.2)

where:

i is the particle index

v is the velocity of the ith particle

x is the position of the ith particle

t is the current iteration

t− 1 is the previous iteration

ω is the inertial weighting term associated with velocity

φ1 and φ2 are the ‘learning’ terms that weight personal and global best positions

γ1 and γ2 are uniformly distributed random numbers in the range of 0 to 1

p is the personal best position

g is the global best position
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Like the predecessor used in previous work, the variant used here contains a number of

enhancements to the canonical formulation. Following the previous work, this variant allows the

mixed use of discretized, continuous and binary decision variables via inputs defining the increment

allowed for each dimension. It should be noted that the implementation has been subsequently

revised following the findings of [64]; a description of the revision follows in Section 4.4.

Although this variant does not implement a neighborhood concept, it does allow for multiple

seeds to be specified in contrast to the single seed per neighborhood of the predecessor. A taboo

list feature is also implemented, as well as the familiar box constraints common to this type of

MPC. The use of equation constraints has been eliminated simply because they are not utilized in

this research.

4.4 Refinement of Search Space Mapping

The original implementation of the discretized PSO algorithm contained two very significant

flaws. The first impacted the optimizer’s ability to handle binary decision variables. In that version,

the position of the particle was calculated, rounded to the closest increment, and the particle was

moved to the new location which must be an integer multiple of the discretization increment. For

example, a particle given an upper boundary of ten, and a lower boundary of one with a increment

of one, would only be allowed to move to the positions one, two. . . ten. For the binary case, the

particle could only occupy the locations zero or one.

This is problematic because the velocities of particles may often not be large enough to allow

the particle to escape its current position, as it will always be rounded back to the closest increment.

Thus, particles become easily stuck and may not explore additional values. This is most obvious in

the binary case where velocities would rarely exceed 0.5, but applies more generally to all discretized

decision variables as the optimizer converges on a solution and velocities decrease. May-Ostendorp

[64] solved this problem by employing a technique specifically for the binary case which uses a

probabilistic approach according to [52] to determine the location of the particle position. While

this approach solves the binary case, it does not address the more general case.
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The second flaw involved the behavior of particles close to the boundaries of their box con-

straints. As particles approached the boundaries, their position would be fixed to the boundary

value, and the velocity reversed. However, the change in direction occurred after the particle was

fixed to the boundary and had no effect on position, meaning that particles that would have moved

to or beyond the next discretized value would not do so in the current iteration. In combina-

tion with the rounding flaw described above, particles would tend to stick to boundaries for many

iterations.

These two flaws have been subsequently addressed by two new features. First, the optimizer

has been modified such that the underlying decision space remains continuous, i.e. all particle

positions and velocities continue to have full double floating-point precision. Discretization, i.e.

rounding to the nearest increment, now occurs during the objective function evaluation. This

means that for any discretized decision variable, small velocities may continue to move the particle

across increment boundaries. For example, a particle in a binary decision space has a velocity of

0.4 and a position of 0.2. In the previous version of the algorithm, 0.2 can not exist, so the particle

would start in a location of 0.0, be given a new location of 0.4, but would be placed back at 0.0. In

the new algorithm, the particle would start at 0.2 and move to a new position of 0.6, which would

be evaluated by the objective function as 1.0. By treating the discretized space as continuous,

particles no longer become stuck and unable to escape when velocities are small.

Second, the now continuous decision space has been mapped to an arbitrary range, say zero

to 360, which loops back upon itself for values greater than 180 or less than zero. Effectively, the

particles now travel along the edge of a circle, where the position represents an angle, with zero

equal to the lower boundary of the box constraint, and 180 equal to the upper boundary of the

box constraint. Values greater than 180, are evaluated as 360 minus 180, and values less than

zero evaluated as their absolute value. By wrapping the decision space, large discontinuities in the

objective function can be avoided, and velocities may remain undisturbed. An illustration of this

concept is shown in the Figure 4.1.
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Figure 4.1: Illustration of search space mapping between angle (inner) and decision variable (outer)
values.



Chapter 5

Demand Response

Demand response (DR) in the residential context is very much still in its infancy, with

deployments limited primarily to smart grid demonstration projects [78] and voluntary utility

programs [7, 71]. While some examples [96] utilize remote on/off switches connected directly

to air conditioner compressors at the home, current ‘state of the art’ residential peak demand

limiting technologies use programmable communicating thermostats (PCTs). With PCTs, the

utility may broadcast a message to a selected group of homes, resulting in the automatic adjustment

of thermostat set points. In industry parlance, these are termed “demand response events”. This

method of demand limiting results in a much more user-friendly experience compared to direct load

control, as the thermostat still enforces that some degree of comfort be maintained.

DR events may be either absolute temperature events, i.e. all thermostats have their cooling

set point reset to 28◦C, or temperature delta events in which all thermostats have their cooling set

point reset to the current schedule value +2K. Operation of residential DR programs is typically

regulated by the public utilities commission (PUC) in the regulated markets or similar governing

body in the deregulated, municipal and cooperative markets. Fewer than fifteen events per year

are typically allowed, all corresponding roughly with days when the ratio of demand to generation

capacity is at its highest. These may or may not be the days of the year that have the highest

demand, as other factors such as scheduled maintenance of generation assets may affect this ratio.

The purpose of simulating a demand response event in this study is to establish a baseline

for the maximum achievable reduction available using current practice. This baseline will then be



82

compared to subsequent cases in order to highlight the advantages and disadvantages afforded by

adopting an MPC approach.

5.1 Methodology

Demand reduction potential is a function of both event duration and participation level. In

practice, the effective duration and participation can vary from event to event due to participant

opt-outs both before and during the event. This implies that a stochastic approach be adopted

that requires a distribution of both parameters. The problem is simplified into four cases for each

distribution feeder where both parameters are simulated at both high and low levels. This approach

gives a sense of the range of possible responses without the overhead of a full stochastic simulation.

Rates of 70% and 30% are selected as the high and low levels of participation; two and six hours

provide a reasonable range for event durations.

Selection of the participants for a given rate still requires a stochastic process. Recall that the

population characteristics vary according to the distributions shown in 3.2.2, therefor the aggregate

response is expected to change depending on the participants. This is accomplished by simply

sampling the population to create the group of participants for the specified participation rate.

Two questions that arise with this approach are: 1) What effect does the population sample have

on the expected savings? 2) How many times should the population be sampled to arrive at the

true mean response? Both will be addressed in Section 5.3.

Obviously, the choice of day has a large impact on demand reduction potential. Here too, a

large number of simulations is implied to test a range of conditions. As demand response events

are concerned principally with peak demand days, the investigation is limited to a single day for

each feeder. Event start and end times for the two durations are determined simply by identifying

the range of hours with the largest average demand. The selection of the demand days and their

characteristics follows.



83

5.2 Selection of Demand Day

Demand response events will typically be called on a day with high peak demand. Accord-

ingly, a day for study is selected that contains the annual 15-minute peak demand, determined from

an annual simulation of the modified feeder model using TMY weather. This is easily accomplished

by taking a 15-minute simple moving average of simulated feeder demand and selecting the day

with the largest value. Normalized annual feeder demand for each feeder can be seen in Figures

A.1, A.2 and A.3.

5.2.1 Houston

For the Houston feeder, peak demand occurs on July 29 and has a 15-minute peak demand

of 11.4MW, occurring between 15:35 and 15:50 CDT. The day is characterized by an average tem-

perature of 29.5◦C, and peak temperature of 35.6◦C at 15:00 CDT. Feeder demand and coincident

environmental conditions are shown in Figure 5.1 below.
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Figure 5.1: Houston feeder peak demand day, July 29.
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5.2.2 Los Angeles

For the Los Angeles feeder, peak demand occurs much later in the year on September 24.

This day has a 15-minute peak demand of 4.1MW, occurring between 13:50 and 14:05 PDT. Av-

erage and peak temperatures for September 24 are 24.8◦C, and 35.0◦C, respectively. Similar to

Houston, peak temperature leads peak demand at 14:00 PDT. Figure 5.2 shows the peak demand

day characteristics.
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Figure 5.2: Los Angeles feeder peak demand day, September 24.

5.2.3 New York

For the New York feeder, peak demand occurs on July 16. The feeder peak demand of 6.9MW

occurs between 14:40 and 14:55 EDT, following the daily peak temperature of 34.5◦C at 14:00 EDT.

Average temperature for the day measures 29.6◦C. July 16 is shown in Figure 5.3 below.
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Figure 5.3: New York feeder peak demand day, July 16.
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5.3 Participant Sampling and Number of Simulations

To arrive at the 30% and 70% participation levels, random sampling of the total residential

building population is performed for each of the three feeders. The process itself is quite simple: 1)

assign a random number between zero and one to each building in the feeder and 2) compare to the

participation percentage. Those buildings whose number is less than or equal to the percentage, are

participants. Participants are then assigned a new temperature schedule containing the temperature

adjustment requested in the demand response event.

Because physical characteristics vary from home to home, the magnitude of demand reduction

will vary based on the population sample. To arrive at the expected mean demand reduction (and

a distribution thereof), a Monte Carlo method must be employed. The number of samples required

is not known a priori, therefor an experiment to establish the minimum number of samples required

for convergence of the expected mean response is performed.

One hundred samples are drawn randomly from the feeder residential building population.

Each population is then simulated for each of the four combinations of event durations and par-

ticipation rates. To check convergence, normalized root mean square error (NRMSE) between the

average demand profile after simulation N and the previous average demand profile after simulation

N − 1 is then calculated for all 1 < N ≤ 100. This results in a NRMSE value at each iteration of

the Monte Carlo experiment. Figure 5.4 shows the results of this process for the Houston feeder.

For all event durations and participation rates, convergence is reached rather quickly, implying

that the population response is not as diverse as expected. There are likely several reasons for this

observation. This may be a result of the method used to populate the feeder originally. It may also

be that, regardless of characteristics, the response of individual homes does not vary much from

one to another. Or it may simply mean that the size of the sample is so large that most samples

characterize the population very well.

Regardless of the reason, this is good news, as it implies that once a minimum number of

samples is determined, the number can be used for all experiments in subsequent MPC studies.
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Taking the value at approximately 95% convergence, or roughly 0.021 on the chart, gives a rea-

sonable approximation of the number of simulations required. Therefor, throughout the remaining

work, 50 samples will be used.

5.4 Interpretation of Metrics Tables

The performance metrics described in Chapter 2 are presented in tables like that shown

in Table 5.1. With one exception, all values reported in these tables are simply the arithmetic

difference between the case being evaluated and the base case. Positive values indicate an increase

over the base case, negative values the opposite. Values shown are the average of daily values

computed for all days of the month.2 Rows labeled “Peak to Valley” are the exception. These

show the ratio (expressed as a percentage) of the optimized to the base case peak to valley ratios.

Thus, a value of 90% indicates that the optimized peak to valley ratio is 90% of the base case peak

to valley ratio. Absolute differences are not shown.

The values for the Load Factor row require special explanation. Load factor is expressed

as a percentage of average demand to peak demand. The values reported in the tables are the

difference in percentages, not the percentage differences. For example, if the optimized case has a

load factor of 55% and the base case a load factor of 50%, 5% would be reported in the table. The

interpretation is that the load factor increased by a value of 5% of the peak demand.

5.5 Houston

Figures 5.5, 5.6, 5.7 and 5.8 show the results from a +2K offset demand response event for

both participation levels and event durations. The value reported on the ordinate is the total

real feeder demand across the three phases, measured at the distribution transformer. The DR

case is plotted as a ribbon, representing the upper and lower extents of the demand across the 50

1 The 95% represents a confidence interval of two standard deviations.

2 In the DR cases, only one day is simulated, therefor the values are simply computed for one day.
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simulations, and a line representing the average.

The most striking feature of all four charts is the spike in demand that occurs immediately

following the event when thermostats return to their pre-event set points. In industry this is

known as ‘rebound’ or ‘snap-back’ and is a phenomenon known to occur frequently unless mitigated

through a randomized delay in set point return, duty cycling or a ramped return to set point. The

maximum five-minute demand seen in the rebound exceeds the nominal feeder design load of 12MW

by almost 3MW, and exceeds the base case by approximately 4MW. Maximum five-minute demand

reduction is approximately 4MW.

The second obvious feature is the rapid deterioration in demand reduction. This occurs as

the internal temperatures in the homes rise to, and then exceed the new cooling set points. The

time it takes any given home to float to the new temperature varies, which is reflected in the

gradual return to the pre-event demand. In the six hour event, there is virtually no demand relief

after a little more than two hours. In the two hour event, some relief remains, but the savings are

marginal.

It is worth noting that the amount of electricity saved during the event is almost entirely

offset by the electricity required to bring the homes back to set point after the event ends. For

example, in the two hour 70% case, savings measure 0.4% of total electricity consumption. In the

six hour 70% case, however, the additional savings are incremental at 0.9% total. For long events,

some electricity can potentially be saved if the homes return to set point when cooling loads are

lower. That said, long events that push into the occupied hours would likely result in increased

opt-outs from unhappy residents.

Finally, performance metrics for the demand response event generally show performance

worse than the base case. The six hour 30% participation case does show a slight peak demand

reduction when averaged over a fifteen-minute window.3 This is consistent with the observations

3 Recall that the values presented in the table are fifteen-minute average values, not the five-minute values shown
in the charts.
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Figure 5.5: Houston feeder demand curves for 2hr, 30% DR event.
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Figure 5.6: Houston feeder demand curves for 2hr, 70% DR event.
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Figure 5.7: Houston feeder demand curves for 6hr, 30% DR event.
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Figure 5.8: Houston feeder demand curves for 6hr, 70% DR event.
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made regarding the charts. Peak demand, peak to valley, load factor and ramping all show values

opposite of the desired behavior. Some very small reductions in electricity consumption can be

seen, with the greatest reduction in the longer six hour event.

Table 5.1: Performance metrics for Houston feeder demand response events.

6 Hour 2 Hour

70% 30% 70% 30%

Electric Consumption [MWh] -1.38 -0.64 -0.65 -0.29

Peak Demand [MW] 1.80 -0.05 2.54 0.75

Peak to Valley [%] 116.11 99.55 122.68 106.72

Load Factor [%] -8.60 0.03 -11.07 -3.80

Ramp [MW] 12.14 4.67 12.09 4.55

5.6 Los Angeles

The Los Angeles feeder simulations show similar characteristics, but smaller demand reduc-

tion potential in both magnitude and percentage of peak. In absolute terms, five-minute demand

reduction potential measures only about 0.8MW. The obvious reason for this is the relatively small

penetration of cooling equipment in this region. Referring back to Figures 3.10 and 3.11, one can

see that only slightly more than half of the homes in Los Angeles are equipped with cooling; in

Houston, nearly all homes are. This fact has important implications in later studies since the

amount of electric demand associated with cooling — the “flexible cooling demand” — limits the

potential of all demand reduction measures.

Similar to the Houston feeder, metrics for the Los Angeles feeder generally show an increase

in fifteen minute peak demand, and worse performance in the remaining categories. Again, a very

slight reduction in the six hour 30% participation case can be seen. Very slight reductions in

electricity consumption can also be observed.
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Figure 5.9: Los Angeles feeder demand curves for 2hr, 30% DR event.
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Figure 5.10: Los Angeles feeder demand curves for 2hr, 70% DR event.
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Figure 5.11: Los Angeles feeder demand curves for 6hr, 30% DR event.
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Figure 5.12: Los Angeles feeder demand curves for 6hr, 70% DR event.
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Table 5.2: Performance metrics for Los Angeles feeder demand response events.

6 Hour 2 Hour

70% 30% 70% 30%

Electric Consumption [MWh] -0.40 -0.19 -0.19 -0.08

Peak Demand [MW] 0.34 -0.03 0.61 0.20

Peak to Valley [%] 108.37 99.34 115.13 105.03

Load Factor [%] -5.28 0.22 -8.50 -3.11

Ramp [MW] 1.81 0.62 2.47 0.85

5.7 New York

New York feeder simulations show the same behavior as both Houston and Los Angeles,

and fall somewhere between the demand reduction potential they exhibit. Maximum five-minute

demand reduction potential is slightly more than 2MW in the two hour 70% case. Again, this

is due to the penetration of residential cooling equipment. Similar to the Houston case, demand

rebound sets a new peak demand. Here, the effect is somewhat less dramatic with a five-minute

peak just slightly more than 8.5MW in the two hour 70% case, compared to the base case value of

6.9MW. Again, metrics for the New York feeder show trends similar to those seen in the previous

cases.

Table 5.3: Performance metrics for New York feeder demand response events.

6 Hour 2 Hour

70% 30% 70% 30%

Electric Consumption [MWh] -0.84 -0.34 -0.41 -0.17

Peak Demand [MW] 0.71 -0.04 1.44 0.50

Peak to Valley [%] 110.54 99.41 121.41 107.46

Load Factor [%] -6.46 0.16 -11.28 -4.46

Ramp [MW] 5.96 2.14 6.44 2.47

The cases here are obviously extreme examples in which there is no mitigation of the rebound

effect. That said, mitigation can only temper the magnitude of the rebound, not eliminate it

entirely. DR events can set new demand peaks if participation is large relative to the total demand

on the system (the portion of the distribution grid outside of the feeder). To prevent this from
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Figure 5.13: New York feeder demand curves for 2hr, 30% DR event.
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Figure 5.14: New York feeder demand curves for 2hr, 70% DR event.
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Figure 5.15: New York feeder demand curves for 6hr, 30% DR event.
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Figure 5.16: New York feeder demand curves for 6hr, 70% DR event.
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occurring, events must be carefully crafted and participation limited. Metrics calculated for each

feeder suggest that traditional DR can result in increased demand, peak to valley ratio and ramping,

and degraded load factor at the feeder level.

Suggestions for improving traditional DR are not within the scope of this work. Rather,

these investigations (extreme as they are) provide context for a discussion regarding the alternative

approach proposed in this work. The remainder of the work will evaluate several methods for shap-

ing electric demand using model predictive control which could potentially replace or supplement

traditional DR.



Chapter 6

Demand Limiting Optimization

The previous chapter highlighted the potential problems associated with traditional demand

response implemented across large percentages of the building population. In this chapter, a simple

alternative is proposed which seeks to minimize feeder demand without introducing a new peak

unintentionally. This method, referred to as ‘demand limiting optimization’, will use a decentralized

MPC approach to achieving demand reductions at the distribution feeder level. The approach is

first described, followed by results from each of the three distribution feeders. A follow-on study is

presented which assists in explaining the results.

6.1 Methodology

Achieving reductions in feeder demand with a decentralized MPC approach may be accom-

plished in a number of ways. The method utilized here relies on the observation that peak feeder

demand is coincident with peak demand at each home. Assuming no interaction exists between

homes leading to nonlinear aggregate load behavior, i.e. adopting the principle of superposition,

results in a very simple control strategy implemented in the controller: minimize peak demand

at each home. In principle, minimization of peak demand at the home level should result in a

reduction in peak demand at the feeder level.

To reduce demand at each home, cooling set points can be adjusted up to provide relief to

the cooling system. This is not unlike the set point adjustments utilized in the demand response

study. However, a return to the desired cooling set point results in a demand spike as cooling
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equipment is asked to lower the air temperature within the home. The controller can anticipate

these demand spikes, and can therefor make incremental adjustments up and down to the cooling

set point to prevent the spikes from occurring. This can be accomplished through precooling, via

cooling set point reductions in periods of low demand, to offset the need for cooling in periods of

high demand.

In order to allow both cooling relief from set point adjustments up, and demand reduction

planning through set point adjustments down, the controller is allowed to make adjustments to the

cooling set point within pre-defined boundaries relative to the nominal cooling set point. Recall

from Section 4.2, that these boundaries are subject to assumptions regarding occupancy. In this

study and those that follow in subsequent chapters, each home is assumed to be unoccupied for ten

hours during the day, with occupants departing at 8:00 ±1 hour. The departure time is randomized

(but fixed for all simulations thereafter) for each home, leading to a shift in the 48 optimization

modes. Randomization is necessary to capture the diversity of schedules, but also to prevent

unintended synchronization as shown later in Chapter 7.

The upper and lower boundaries used in this study, specified as deltas from the base case

cooling set point, are shown in Table 6.1. The controller may make adjustments in increments

of 0.25K, corresponding with the precision of a typical residential thermostat. The -2K lower

boundary assumption recognizes that large temperature swings during the occupied period may

not be tolerated by occupants.

Table 6.1: Cooling set point boundaries for demand limiting optimizations.

Occupied Unoccupied

Upper Boundary +0K +3K

Lower Boundary -2K -5K
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6.1.1 Objective Function Definition

For each home, the objective function to be minimized by the controller is the maximum

value of the series found by taking a simple moving average of house electric demand over the

planning horizon. This can be expressed as:

min
[
max

(
{pj}N−n+1

j=1

)]
(6.1)

pj =
1

n

j+n−1∑
i=j

pi (6.2)

where:

pj is the simple moving average of p at index j

j is the moving average index

N is the length of the time series p

n is the period of the moving average

pi is the electricity demand of the house at time step i

i is the time step index

House demand contains peaks due to HVAC cycling as seen in Figures 3.2 and Figures 3.3.

The length of the moving average period will determine the degree of smoothing, and will therefor

have an impact on the optimization. A set of experiments were performed to find the value of the

moving average period that resulted in the greatest feeder demand reduction while still yielding

a smooth aggregate demand curve. Periods of 15, 30, 60, 90 and 120 minutes were tested, with

a period of 60 minutes providing the best balance of demand reduction without introducing the

oscillations seen in the 90 and 120 minute cases. Figures B.2, B.3, B.4 and B.5 in Appendix B

show the results of the experiments for the Houston Feeder.
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6.2 Houston

Figure 6.1 shows the results of the demand limiting optimization for each day1 in the month

of July. Each panel in the grid of results represents a single day of optimization under the demand

limiting objective. Visual inspection of the results shows three key characteristics of the optimized

feeder demand that is consistent from day to day:

1. Precooling activity can be seen in many of the early morning hours as the controller de-

presses the cooling set point. This can be confirmed by inspecting the results from indi-

vidual homes which are not presented here. Depressing the set point allows the controller

a greater range of freedom when adjusting the set point up to avoid demand later in the

day.

2. Peak demand is reduced in all days of the month. On some days, July 21 for example, the

amount of reduction is relatively large compared to others. This is suspected to be related

to the amount of flexible cooling load available, and the efficiency of precooling.

3. Troughs in demand are filled-in by the controller actions. Although this was not explicitly

coded into the objective function, it is a convenient side-effect. This behavior makes sense

intuitively: as the controller seeks to minimize demand, it will tend to spread that demand

to adjacent hours in an effort to make demand consistent across the moving average window.

Table 6.2 lists the values of the performance metrics. The optimization shows improvements

over the base case across the board, with the exception of total electric consumption. Peak demand

is reduced by some 590kW on average, peak to valley ratio is reduced by over 80%, load factor

is increased 5% and total system ramping is reduced by 610kW. The increase in total electric

consumption can be explained by imperfect thermal storage efficiency of the envelope. That is,

the energy invested in precooling the building does not result in an equivalent reduction in cooling

1 One might notice that July has been conveniently truncated to 30 days for purely aesthetic reasons. The metrics
tables are computed using all 31 days in the month.
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Figure 6.1: Feeder demand profiles for Houston demand limiting optimization, 70% participation.
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energy later in the day. This is an expected result as the objective is peak demand minimization, not

total energy minimization, and the controller is allowed to use as much or as little energy to reduce

demand as possible. A quantification of thermal storage efficiency is presented in Appendix G.

Table 6.2: Performance metrics for Houston feeder demand limiting optimization, 70% participa-
tion.

Mean Min Max

Electric Consumption [MWh] 3.76 3.02 4.53

Peak Demand [MW] -0.59 -1.26 -0.22

Peak to Valley [%] 81.59 72.35 92.26

Load Factor [%] 5.47 3.18 8.85

Ramp [MW] -0.61 -3.77 1.60

A plot showing the spectral power distribution of the feeder demand time series shows a

different view of system ramping. In Figure 6.2, box plots show the percentage of total spectral

power associated with different frequency ranges. Boxes represent 31 daily values, corresponding

to the 31 days in July. This analysis shows an increase in the DC portion of the power spectrum

for the optimized case. The DC portion is defined here as the range of periods greater than 24

hours. This implies that feeder demand has been slightly flattened with less power associated with

periodic trends. In general, a plot showing increased DC power and reduced power in every other

frequency bin (compared to the base case) is desirable; a plot like this would indicate an increase

in load factor and reduced ramping. This is almost the case here, with only marginal increases in

spectral power in the range between twelve and four hours.

Plots of individual days such as those shown in Figures 6.3 and 6.4 give an indication of the

variability in the results due to differences in the population of participants. The small amount of

variation reflects observations made in the demand response cases. That is, with a relatively large

sample each time, the results do not change significantly.2 These two days are exemplary in the

degree of demand reduction and leveling achieved.

2 This is in part related to the sensitivity of the reduced order model to internal mass level. Subsection B.1.1
discusses this in more detail.
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Figure 6.2: Total spectral power as a function of frequency bin for Houston feeder demand limiting
optimization, 70% participation.
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Figure 6.3: Feeder demand profiles for Houston, July 2 demand limiting optimization, 70% partic-
ipation.
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Figure 6.4: Feeder demand profiles for Houston, July 21 demand limiting optimization, 70% par-
ticipation.
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The results are quite amazing considering that there is no coordination between buildings.

Instead, each is acting according to its own simple objective. The reason this uncoordinated

optimization results in reduce feeder demand is two-fold.

First, the objective of the homes is well aligned with the global feeder objective because home

and feeder demand tend to be coincident. Were this not the case, the homes’ objective may subvert

the feeder’s. This has implications for large deployments where the feeder peak demand may not

necessary be coincident with the peak of its parent system.

Second, the diversity of buildings and therefor the decisions made by the controller tend

to average out any individual home’s actions. Recall that cooling demand appears as a square

wave with at most two non-zero demand values. Given the formulation of the objective function,

specifically that it is a moving average of demand, the controller will seek to flatten the moving

average. When the moving average is perfectly flat, the underlying house demand will tend to be a

square wave with regular periodicity. Small differences in the set points, building characteristics, etc.

will result in offsets between these square waves across the building population. In a large enough

population, the result is a peak in demand in one house coincident with a trough in another. On

average this results in an overall demand reduction.

It should also be noted that although the controller may only affect the cooling related portion

of a home’s demand, it sees the whole home demand. This is particularly relevant for homes with

electric hot water heaters. In these homes, hot water demand may occur during the middle of the

feeder peak demand period. The controller may shift cooling operation away from these times to

avoid any coincident cooling and hot water demand, thus helping to reduce feeder peak.

Results for the 30% participation simulations show similar, but smaller reductions in demand.

Observations made regarding the 70% simulations apply equally in this case. Results for the 30%

participation case can be seen in Appendix B, Figures B.6 and B.1, and Table B.1.
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6.3 Los Angeles

Results for the Los Angeles feeder are plotted in Figure 6.5 and summarized in Table 6.3.

Demand reduction is very modest for all days in the month of July, with a daily average of only

70kW. Despite the rather small reductions, all performance metrics show some improvement. Very

little additional electric consumption results from the optimization, likely due to a lack of precooling

by the controller. The small reductions in demand appear to be related to the size of the flexible

cooling demand seen in Chapter 5. This issue is further addressed in Section 6.5. It is somewhat

surprising that, despite the small reductions in demand, the load factor increases as much as it

does. This can be attributed to both the small reduction and peak demand, and the small increase

in demand in the hours preceding the peak, thus increasing the average.

Table 6.3: Performance metrics for Los Angeles feeder demand limiting optimization, 70% partici-
pation.

Mean Min Max

Electric Consumption [MWh] 0.62 0.46 0.74

Peak Demand [MW] -0.07 -0.14 -0.04

Peak to Valley [%] 97.30 93.60 98.70

Load Factor [%] 2.27 1.67 3.68

Ramp [MW] -0.04 -0.27 0.18

The spectral power analysis shows a much more positive result. With the exception of a

minuscule increase in spectral power in the four to six hour frequency range, the plot shows almost

ideal behavior. This suggests that the demand limiting optimization, although not suited for large

decreases in peak demand in this case, provides benefits in terms of reduced ramping requirements.

It is an interesting result considering that the optimization is not incentivized to reduce ramping.

Figures 6.7 and 6.8 serve to illustrate the possible range of results from any given population.

Despite the variation in results, both days exhibit modest demand leveling as small amounts of

demand are shifted from the peak hours to hours both before and after. On July 29, the precooling

activity extends into the early hours of the day, which is uncommon among the days in the month.
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Figure 6.5: Feeder demand profiles for Los Angeles demand limiting optimization, 70% participa-
tion.
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Figure 6.6: Total spectral power as a function of frequency bin for Los Angeles feeder demand
limiting optimization, 70% participation.
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Figure 6.7: Feeder demand profiles for Los Angeles, July 10 demand limiting optimization, 70%
participation.
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Figure 6.8: Feeder demand profiles for Los Angeles, July 29 demand limiting optimization, 70%
participation.
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Results for the 30% participation case can be seen in Appendix B, Figures B.11 and B.10,

and Table B.2. Not surprisingly, improvements over the base case are very small compared to

previous cases.

6.4 New York

Performance metrics in Table 6.4 and daily plots of demand in Figure 6.9 indicate demand

reduction potential between that of the Houston and Los Angeles cases. This observation is con-

sistent with the findings in Chapter 5. Similar to both Houston and Los Angeles, all performance

metrics show improvement, with some penalty in electric consumption. Power spectrum character-

istics lie between results from the previous feeders, with only very small increases in power in the

twelve to four hour frequency range; much smaller than either the increase in the DC component

or the decrease in the twenty-four to twelve hour frequency range.

Table 6.4: Performance metrics for New York feeder demand limiting optimization, 70% participa-
tion.

Mean Min Max

Electric Consumption [MWh] 1.84 1.51 2.56

Peak Demand [MW] -0.22 -0.39 -0.09

Peak to Valley [%] 87.39 76.18 96.90

Load Factor [%] 3.93 2.46 5.98

Ramp [MW] -0.14 -0.70 0.47

Plots showing individual days in more detail highlight the smoothing effect that the controller

has on small irregularities in feeder demand. Disregarding the first hour in both days, this can be

seen in Figure 6.11 around 4:00 in the morning, and in Figure 6.12 around 17:00 at night. Small

adjustments in feeder demand such as these likely contribute to the improved ramping metrics.

Results for the 30% participation case can be seen in Appendix B, Figures B.14 and B.13,

and Table B.3.
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Figure 6.9: Feeder demand profiles for New York demand limiting optimization, 70% participation.
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Figure 6.10: Total spectral power as a function of frequency bin for New York feeder demand
limiting optimization, 70% participation.
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Figure 6.11: Feeder demand profiles for New York, July 16 demand limiting optimization, 70%
participation.
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Figure 6.12: Feeder demand profiles for New York, July 17 demand limiting optimization, 70%
participation.
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6.5 Precooling Investment

To better understand the difference in results across the three feeders, an experiment is

constructed to measure the amount of precooling the controller may employ to reduce peak demand.

Indirectly, the experiment estimates the amount of flexible cooling load available. The experiment

works by forcing HVAC systems off during a specified window of time. This methodology is similar

to the demand response case, except that the controller has advance knowledge of the event by way

of an artificially high demand multiplier during the two-hour window. The experiment is expected

to show that both the total amount of precooling invested, and the magnitude cooling demand

shifted, is dependent on the feeder, explaining why one feeder performs differently than another.

This is easily accomplished using the MPC environment by defining an objective function

that minimizes the sum of demand cost over the day. This can be expresses as:

min

 k∑
i=j

pi · ci

 (6.3)

ci =


10e6, l < i <= m

1, otherwise

(6.4)

where:

i is the time step index

j is the cost horizon time step start index

k is the cost horizon time step end index

pi is the electricity demand of the house at time step i

ci is the demand multiplier at time step i

l is the demand period start index

m is the demand period end index

As with the previous optimization cases in this chapter, the controller is allowed to manipulate

the cooling set point to achieve the desired objective. However, in this case, the controller is not
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allowed to make adjustments to the set point above the base case cooling set point. Doing so

would put the controller at an advantage, as demand can be simply reduced without requiring the

controller to prepare for the window. The main goal of the experiment is to measure the amount

by which the controller will increase demand prior to the window and prepare the homes for the

increased cost. This gives a measure of the amount of precooling investment the controller will

make to avoid running the HVAC during the window.

Results of the test for the three feeders are shown in Figures 6.13, 6.14 and 6.16. In this

particular test, a two-hour window beginning at 12:00 is simulated for each day of the month.

All feeders show three similar trends: 1) demand is increased by the controller in preparation

for the window, 2) demand is significantly reduced during the window and 3) demand spikes at

the end of the window when the HVAC systems are reengaged. Where the feeders differ is in the

amount of preparation, i.e. precooling, undertaken prior to the window and the size of the demand

reduction during.

In the Houston case, nearly every day begins with increased demand over the base case. This

is the result of a set point depression below the base case set point. This depression is maintained

until occupants leave between 7:00 and 9:00. At this point, the controller tends to depress the

set point even further, maintaining an increased demand over the base case. Immediately prior to

the beginning of the window, the controller again depresses the set point, creating a large spike in

demand. During the window, all HVAC related demand is eliminated. This is followed by a spike

in demand, i.e. recovery, at the end of the window as cooling reengages to bring the homes back

to set point. It is important to note that demand has been shifted to early portions of the day,

when demand is relatively low compared to the late afternoon hours. This helps to explain how

the demand limiting optimization above was able to reduce demand during peak hours.

In the Los Angles case, very little preparation occurs for the two-hour window. Only one

day (July 29) exhibits set point depression prior to the end of occupancy. Generally, set point

depressions prior to the event result in very modest increases in demand, further suggesting limited

precooling activity. Similarly, the demand spike immediately before and after the window, and the
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Figure 6.13: Experiment to measure precooling investment and flexible demand in Houston feeder,
noon, 70% participation.
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demand reduction during, is relatively small compared to Houston. This is consistent with the

findings of the demand response cases: there is relatively little flexible cooling demand available.

These results suggest precooling is not particularly effective in this house population, perhaps due

to losses related to thermal storage efficiency. This is explored with no definite conclusions in

Appendix G. While this is indeed possible, it is more likely that precooling is not required to avoid

HVAC demand during the window due to the milder climate. This much could be surmised by a

lower penetration of air conditioning in this feeder’s house population.

Taking a more detailed look at one day in Los Angeles illustrates the precooling activity in

more detail. On this day, July 10, the two-hour window is progressed through the day to better

observe how the controller prepares for the event as a function of time of day. The result of this

experiment can be seen in Figure 6.15. Each panel in the plot is labeled with the hour of day in

which the window begins. The top row shows that flexible cooling load is close to zero until 10:00.

This is seen in the lack of precooling prior, the demand reduction during, and the demand spike

following the window. Similarly, for windows beginning at 19:00 and 20:00, almost zero precooling

and recovery action can be observed. In the remaining panels, precooling is modest. Preparation

does begin as early as 7:00, but the majority of precooling action comes immediately before the

window. Similarly, the post-window spike is limited to a very short time frame compared to other

feeders.3 The effects of the precooling and post-window recovery has all but disappeared by the

early evening hours. This result shows that very little of the demand during the peak portions of

the day can be shifted to times when demand is significantly lower. This means that demand can

not be reduced without creating new spikes in the hours immediately before or after when demand

is already high, and explains the inability of the controller to reduce peak demand in the demand

limiting optimization.

As with the demand response cases, the New York results shown in Figure 6.9 lie somewhere

between those of Houston and Los Angles. Some days show significant precooling beginning at

3 See Figures B.8 and B.16 in Appendix B for a look at individual days.
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Figure 6.14: Experiment to measure precooling investment and flexible demand in Los Angeles
feeder, noon, 70% participation.
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Figure 6.15: Experiment to measure precooling investment and flexible demand in Los Angeles,
July 10 feeder, 70% participation.
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midnight, while other days show little or no precooling before 7:00. Not surprisingly, the size of the

demand spikes and reduction are similar to those reported in the demand response case. Similar

to the Houston case, the early precooling activity on some days is present when the same day is

subjected to the demand limiting optimization. Taking July 16, for example, the early precooling

activity in the demand limiting optimization case is also present in the hourly progression of the

window. This is shown in Figure B.16. This precooling activity leads to demand reductions in the

afternoon in the demand limiting case. On July 7, however, little precooling activity occurs in both

the experiment and in the demand limiting optimization, and little demand reduction is seen in

the demand limiting optimization.

The results of this experiment show that precooling activity is specific to the feeder in ques-

tion. The result is consistent with the observations made regarding the demand limiting optimiza-

tion. That is, when significant precooling exists early in the day, demand can be shifted, resulting

in a reduced peak. By extension, this implies that the ability of the controller to shift demand,

regardless of objective function, will vary from one feeder to another.
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Figure 6.16: Experiment to measure precooling investment and flexible demand in New York feeder,
noon, 70% participation.



Chapter 7

Dynamic Price Optimization

Dynamic pricing, including time of use, real-time and day-ahead, has been proposed as a

means by which to control demand either directly thorough price-responsive grid-connected device

controllers, or indirectly through behavioral modification. In the former, controllers may be active

or passive participants in the market settling price, and demand reduction results from controllers

adjusting their consumption in accordance with market price. In the latter, demand reduction

results from consumer price awareness via day-ahead notification of high peak price events.

This chapter explores the use of dynamic pricing to shape the electric demand of buildings on

the three distribution feeders. Day-ahead pricing is used to inform the model predictive controller

so that overall cost may be minimized through price-dependent load planning. The model predictive

controller, having the ability to anticipate future demand given weather forecasts and simulated

operation, can, in theory, better take advantage of forecast prices in order to minimize operation

during the highest price — and therefore highest demand — periods of the day. This is in contrast to

auction-based controllers explored in the literature [38, 25, 95] in which the controller is only aware

of the current price and demand required by the controlled device, and is unable to consider the

impact of decisions on future operation. To give the controller the pricing information it requires,

day-ahead price predictions may be used. Historical prices and weather are used to generate a

synthetic pricing signal for evaluation.

Results indicate that dynamic-pricing may have unintended consequences that are difficult

to predict or control at the distribution feeder level. The chapter concludes with an evaluation
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of a synthetic price signal intended to resolve the undesirable traits encountered in the day-ahead

pricing cases. An experiment shows the system to be unstable when an objective function of the

form studied in this chapter is used, suggesting an alternative approach.

7.1 Methodology

The methodology adopted in this chapter utilizes a dynamic price signal to manipulate feeder

demand through daily electricity cost minimization at each home. First, historical day-ahead price

and weather are used to train a nonlinear predictive model. This model is then used to generate

day-ahead prices using typical weather year data. Next, the predicted prices are provided to the

MPC framework as a price signal. The controller in each home then attempts to minimize energy

cost using this signal and the predicted energy consumption over the planning horizon. Because

high day-ahead electricity prices are historically correlated with periods of high electricity demand,

minimization of cost is expected to achieve peak demand reductions. The subsections below describe

the price modeling and objective function in additional detail.

7.1.1 Day-Ahead Price Modeling

Hourly electricity prices are modeled using a classification and regression tree (CART) for

all three feeder locations. Modeling price is necessary because complete weather data (including

insolation) for the locations under study are not available. This requires both historical electric

price data, and historical weather on an hourly basis. Historical prices from the Independent

System Operators (ISOs) managing the electric grids in the three locations can be obtained from

the Electric Reliability Council of Texas (ERCOT) [35], New York Independent System Operator

(NYISO) [70] and California Independent System Operator (CAISO) [20] websites, while dry bulb

temperatures for these locations are easily obtained from [91].

As illustrated in Equation 7.1, the relationship chosen to model price, P is a function of dry

bulb temperature, T , deviation of dry bulb from the monthly mean, ∆T , hour of day, H, day of

week, D, and binary variable, W , which indicates if the day is a working day. This relationship
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is intended to capture both physical and temporal drivers of electricity price so that the price

modeled using TMY weather used in this study is consistent with, and representative of, the

historical relationship.

log(P ) ∼ f(T,∆T,H,D,W ) (7.1)

The statistical package R [80] is used to generate CART rules using the full 2013 year of hourly

price and dry bulb temperature history for each location. To obtain a sufficiently well fitting model,

cp (a measure of model complexity) and minsplit (the minimum number of observations in a node

before splitting is attempted) are tuned by hand. The resulting parameters are summarized in 7.1

below.

Table 7.1: Model parameters for price prediction CART.

cp minsplit

3 0.001

Plots showing historical prices and those predicted when provided the original training data

are shown in Figures 7.1, 7.2 and 7.3. While the extreme values are not captured, the trends

between the original price data and the modeled price data are consistent. That is, when ambient

temperature is high, prices tend to be high.

Next, the prices for typical weather year data are predicted using the generated CARTs.

Figures 7.4, 7.5 and 7.6 show examples of modeled prices. Consistent with the model training

results, modeled price is predicted to be low when ambient temperatures are low, and high when

ambient temperatures are high.

Price could have been easily modeled as a function of historical demand, and predicted using

simulated feeder demand. However, as the prices obtained are representative of distribution hubs

with a much larger diversity of loads, it would not be valid to predict price using the residential

feeders simulated here.

The method presented here is very simplistic in its assumption that price is determined
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Figure 7.1: Historical and modeled CAISO prices using historical weather.
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Figure 7.2: Historical and modeled ERCOT prices using historical weather.
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Figure 7.3: Historical and modeled NYISO prices using historical weather.
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Figure 7.4: Predicted CAISO prices using typical weather.
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Figure 7.5: Predicted ERCOT prices using typical weather.

30

60

90

120

20

25

30

35

P
rice [$/M

W
h]

Tem
perature [°C

]

07/01 07/03 07/05 07/07 07/09 07/11 07/13 07/15 07/17 07/19 07/21 07/23 07/25 07/27 07/29 07/31 08/02
Date

V
al

ue

series

Model

TMY2

Figure 7.6: Predicted NYISO prices using typical weather.
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solely by this small set of parameters. Indeed, hourly electricity price is a function of a great

number of parameters not considered here, including fuel price, generator availability, scheduled

and unscheduled outages, and system congestion. To be clear, the purpose of this exercise is not

to present a perfect price prediction model. This methodology is presented as a way to simply

estimate price given typical weather data, recognizing that the use of historical price without

correction ignores a primary predictor.

7.1.2 Objective Function Definition

The objective function to be minimized is simply the sum of energy cost over the planning

horizon as shown in Equation 7.2. As implemented, this objective function is minimized by the

optimal controller in every home of the participating group individually. Optimization parameters,

e.g. optimization boundaries, number of decision variables, etc., are identical to those used in

Chapter 6 unless otherwise specified.

min

 k∑
i=j

ei · ci

 (7.2)

where:

i is the time start index

j is the cost horizon time step start index

k is the cost horizon time step end index

ei is the electricity used at time step i

ci is the cost of electricity at time step i

When cost is uniform over the planning horizon, the controller seeks to minimize total energy

use. When presented with artificially large prices, e.g. a price of $1000.00/kWh during the afternoon

hours, the controller will avoid all operation during these times. In cases between, the controller

will trade-off additional energy used for precooling against higher costs hours at a subsequent time.
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7.2 Methodology Refinement

Initial optimization results using the day-ahead prices lead to three significant refinements

in the methodology. The first two described below were used in all optimizations presented in this

work. The remaining refinement is adopted for only the cases presented in this chapter. Note

that the results presented earlier in Chapter 6 incorporate the first two refinements as well; those

optimizations were re-run following the findings shown below.

The first refinement regards the alignment of occupancy and mode boundaries. Initial opti-

mizations assumed occupancy times for all homes to be identical. Aside from being totally unreal-

istic, this had the effect of aligning the mode boundaries for all homes. This resulted in some very

interesting aggregate feeder demand profiles that contained step changes in feeder demand. An

example of this can be seen in Figure 7.7. In addition to the step chart appearance, there appeared

to be synchronization behavior involving large number of homes, as evidenced by the large swings

in demand at each half hour boundary.

By applying a more realistic assumption regarding occupied hours and randomizing the de-

parture times within a±1 hour range, the step-change nature of the aggregate demand is eliminated.

By shifting the departure time of the occupants, the mode boundaries shift as well, reducing the

likelihood that the mode boundaries of one home align with the mode boundaries of another. This

change results in a more realistic simulation of aggregate demand. Figure 7.8 shows the results

from the same optimization using the randomly shifted departure times. Note that while the step

changes have been removed, the synchronization still exists.

An explanation for the synchronization is not obvious at first glance. One clue is in the period

of the oscillations created by synchronization. It turns out that the oscillations are on a perfect

one-hour frequency, suggesting a driver at this particular frequency. In fact there is: day-ahead

price is defined on an hourly basis. Weather data, schedules and all other aspects of the simulation

are interpolated to prevent discontinuities at the hour boundary, but price is not.

The explanation for why this causes the oscillations is actually quite simple. The controller,
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Figure 7.7: Feeder demand profiles for Houston day-ahead price optimization, first test, 70% par-
ticipation.
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Figure 7.8: Feeder demand profiles for Houston day-ahead price optimization, second test, 70%
participation.
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seeing a price increase or decrease on the hour boundary adjusts set points in a way that allows

it to precool the building in the hour or half hour before a price change, and float through the

higher price period. This results in a duty-cycling behavior that, in aggregate, appears to be

synchronization between homes. As an experiment, price data is interpolated to a five-minute

interval and all 288 values are provided to the objective function to test if this can be eliminated.

In fact, it is eliminated, as shown in Figure 7.9.

Interpolation of price data, and more generally the interpolation of all time series signals

provided to the controller, is the second refinement to the methodology. While this might strike

some as a false solution, it provides some very important guidance for the implementation of price-

responsive controllers. That is, large discontinuities in price can results in unintended behavior at

the aggregate level, and caution should be exercised in large deployments of price-based controllers

without first understanding the larger system-wide ramifications.

The final refinement to the methodology regards the boundaries of the optimization. Specif-

ically, the upper boundary in the hours preceding the arrival of occupants and the return to the

occupied cooling set point. Figures 7.7, 7.8 and 7.9 consistently show a large demand spike centered

around 18:00 when the upper boundary of the optimization is depressed. This spike in demand is

obviously not desirable from a peak demand limiting perspective.

In an attempt to remove the spike, the upper boundary is manipulated to give two variations.

Recall from Table 6.1 that the upper boundary is defined as a delta from the normal occupied cooling

set point. In the first variation, the upper boundary of the optimization is defined as the occupied

cooling set point. This is be referred to as the “zero-degree” case. The zero-degree case forces the

controller to precool in order to provide relief during high price periods. In the second variation,

the upper boundary steps down from the +3K offset by 0.5K per half hour in the three hours

preceding the occupants’ return. This is referred to as the “ramp-return” case. Example results

from these variations are shown in Figures 7.10 and 7.11.

Simulations using the two variations indicate that the zero-degree case generally results in

lower peak demand with a small number of exceptions. The ramp-return case, however, fails to
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Figure 7.9: Feeder demand profiles for Houston day-ahead price optimization, 70% participation.
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Figure 7.10: Feeder demand profiles for Houston day-ahead price optimization, zero-degree upper
boundary case, 70% participation.
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Figure 7.11: Feeder demand profiles for Houston day-ahead price optimization, ramp-return upper
boundary case, 70% participation.
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eliminate the demand spikes on many days, although the spikes are somewhat attenuated com-

pared to Figure 7.9. Both experiments result in feeder demand curves containing relatively large

fluctuations in demand, failing to provide demand smoothing on most days.

7.3 Day-Ahead Price Simulations

Based on the results of the preceding cases, it is not clear which of the upper boundaries

should be implemented. Accordingly, three sets of simulations have been performed using the refined

methodology: one using the familiar unoccupied cooling boundary set up, and two representing the

proposed variations. The results and analysis presented below will reference all three and cases,

but charts and tables for Los Angeles and New York reside in Appendix C.

7.3.1 Simulation Results

Referring back to Figures 7.9, 7.10 and 7.11, optimization using the dynamic price approach

tends to introduce several features to the feeder demand that are undesirable. Occurrences of

increased peak demand, reduced load factor, increased ramping, and increased peak to valley ratio

can all be observed in Tables 7.2, 7.3 and 7.4. The metrics tend to be mixed. No variation shows

improvements across all metrics, but the zero-degree variation is arguably the best performing of

the lot. This variation shows an increase in ramping, but an improved power spectrum distribution

(Figure 7.12) over the base case. Power spectrum distributions for the remaining cases (Figures 7.13

and 7.14) indicate degraded performance. At the lower level of participation, (Figure C.2) feeder

demand is much less affected and results are generally improved. This is confirmed by Table C.1

and Figure C.1.

Results from the 30% participation rate simulations are consistent with the 70% corollaries,

and show features consistent with a smaller participating population, i.e. reduced ability to shape

load. These results can be seen in Figures C.2 and C.1 and Table C.1.

Plots of individual days show heavy precooling activity throughout the morning hours. In

the zero-degree examples shown by Figures 7.15 and 7.16, optimization succeeds in reducing peak
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demand and increasing load factor at the expense of increased ramping. Both examples show a

demand spike at approximately 8:00 when the lower cooling set point boundary is reduced. This

indicates that in both cases, the controller chooses to depress the set point in preparation of the

upcoming high prices later in the afternoon.

Los Angeles and New York results shown in Figures C.8, C.10, C.9, C.27, C.25 and C.26

reflect the findings of the Houston cases. Metrics and spectral densities favor the zero-degree

variation over the other two. Consistent with observations in previous chapters, New York and Los

Angeles both show little improvement in performance metrics.

Table 7.2: Performance metrics for Houston feeder day-ahead price optimization, 70% participation.

Mean Min Max

Electric Consumption [MWh] -2.01 -2.98 -0.82

Peak Demand [MW] 0.36 -1.68 1.74

Peak to Valley [%] 92.95 77.21 116.46

Load Factor [%] -2.85 -13.32 8.89

Ramp [MW] 3.09 -2.94 8.79

Table 7.3: Performance metrics for Houston feeder day-ahead price optimization, zero-degree upper
boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 1.12 0.50 1.91

Peak Demand [MW] -0.52 -1.26 0.51

Peak to Valley [%] 82.81 75.13 94.49

Load Factor [%] 3.80 -2.32 7.78

Ramp [MW] 0.72 -2.91 4.94
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Table 7.4: Performance metrics for Houston feeder day-ahead price optimization, ramp-return
upper boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] -0.99 -1.66 0.25

Peak Demand [MW] 0.12 -1.29 1.06

Peak to Valley [%] 88.85 76.81 100.62

Load Factor [%] -1.05 -6.70 8.25

Ramp [MW] 1.93 -2.89 7.22
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Figure 7.12: Total spectral power as a function of frequency bin for Houston feeder day-ahead price
optimization, zero-degree upper boundary case, 70% participation.
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Figure 7.13: Total spectral power as a function of frequency bin for Houston feeder day-ahead price
optimization, 70% participation.
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Figure 7.14: Total spectral power as a function of frequency bin for Houston feeder day-ahead price
optimization, ramp-return upper boundary case, 70% participation.
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Figure 7.15: Feeder demand profiles for Houston, July 1 day-ahead price optimization, zero-degree
upper boundary case, 70% participation.
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Figure 7.16: Feeder demand profiles for Houston, July 26 day-ahead price optimization, zero-degree
upper boundary case, 70% participation.



143

7.3.2 Summary and Conclusions

Feeder demand plots and metrics vary widely across the three upper boundaries investigated

in this chapter. However, one common theme does emerge consistently for many of the days

investigated, which can be explained by the shape of the day-ahead price curves shown earlier.

Specifically, the relationship between price and demand is highly nonlinear. Day-ahead price curves

tend to show very high peak prices in late afternoon that are many times greater than prices earlier

in the day. Typically, there is one single hour, and at most two, that is extremely high, surrounded

by relatively low prices. By contrast, the shape of the feeder demand more closely approximates

a smooth bell curve on most days. When subjected to the extreme prices in the early afternoon,

the controller shifts a large portion of demand to the hours immediately before and after the price

spike, resulting in a large dip in demand. Across thousands of homes, all responding to the same

extreme price during one or two hours, this results in a dip in the feeder demand during the high

priced hour(s) and demand spikes on either sides. Despite a relatively extensive set of results and

several refinements to methodology, the efficacy of adopting a price responsive control strategy is

questionable.

7.4 Synthetic Price Simulations

Introducing a penalty term into the objective function or adopting a multi-objective approach

may avoid the spikes observed previously. However, the observation that the controller responds

principally to one or two hours of high price suggests a different solution: provide the controller

with a synthetic price signal that is both smooth and linearly related to demand. The rationale is

that a smooth price reflecting the actual feeder demand will result in an optimized feeder demand

that tends to flatten demand without spikes or oscillations.

The next issue to be resolved is the generation of a synthetic price signal. An obvious

candidate is the base case feeder demand itself. To test the proposed hypothesis, a price curve is

constructed by simply taking the feeder demand (measured in megawatts) and applying a two-sided
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moving average to smooth the high frequency oscillations. A 30-minute moving average provides

a good degree of smoothing without removing the important features of the demand curve; this is

the value used to generate the synthetic price curves used in this experiment.

The following results were generated using the synthetic price signal and the two upper

boundary assumptions described in the previous section. Because of the large number of plots and

tables, only a handful are presented here. The remaining results are included in Appendix C.

7.4.1 Simulation Results

Like the previous day-ahead results, the synthetic price optimizations show significant fluc-

tuations in demand as the controller avoids high prices. This is particularly evident in the Houston

case due to the number of spikes and troughs present in the base case demand curve used to gen-

erate the synthetic price curve. These fluctuations can be seen in Figures 7.20 and 7.21. While the

zero-degree variation outperforms the ramp-return variation, neither show particularly desirable

performance metrics in Tables 7.5 and 7.7. The distribution of spectral power in Figure 7.17 shows

the zero-degree variant able to increase the DC power component while the ramp-return variant

shows the opposite in Figure 7.18. The zero-degree variant at 30% participation shows the greatest

consistency in metrics, with improvements in nearly all areas. Results for this case can been seen

in Figures 7.22 and 7.19 and Table 7.7.

Similar to the day-ahead scenarios, observations made regarding the Houston simulations

apply to both the Los Angeles and New York simulations, with the zero-degree variant showing

the best performance. In the Los Angeles zero-degree case, the size of the fluctuations are much

smaller, consistent with the amount of flexible cooling demand available. In the ramp-return cases,

controller decisions tend to result in a delay of cooling demand until after the high price periods

rather than precooling.
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Table 7.5: Performance metrics for Houston feeder synthetic price optimization, zero-degree upper
boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 0.23 -0.26 0.86

Peak Demand [MW] -0.39 -1.03 0.20

Peak to Valley [%] 83.77 75.66 93.36

Load Factor [%] 2.57 -1.62 7.93

Ramp [MW] 1.25 -1.99 2.95

Table 7.6: Performance metrics for Houston feeder synthetic price optimization, ramp-return upper
boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] -2.08 -3.17 -0.82

Peak Demand [MW] 0.36 -1.10 1.21

Peak to Valley [%] 91.17 81.85 105.89

Load Factor [%] -2.94 -8.19 6.81

Ramp [MW] 2.08 -1.19 4.55

Table 7.7: Performance metrics for Houston feeder synthetic price optimization, zero-degree case,
30% participation.

Mean Min Max

Electric Consumption [MWh] 0.10 -0.10 0.38

Peak Demand [MW] -0.33 -0.69 -0.07

Peak to Valley [%] 88.00 81.50 96.62

Load Factor [%] 2.16 0.47 4.30

Ramp [MW] -0.75 -3.99 0.41
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Figure 7.17: Total spectral power as a function of frequency bin for Houston feeder synthetic price
optimization, zero-degree upper boundary case, 70% participation.
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Figure 7.18: Total spectral power as a function of frequency bin for Houston feeder synthetic price
optimization, ramp-return upper boundary case, 70% participation.
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Figure 7.19: Total spectral power as a function of frequency bin for Houston feeder synthetic price
optimization, zero-degree upper boundary case, 30% participation.
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Figure 7.20: Feeder demand profiles for Houston synthetic price optimization, zero-degree upper
boundary case, 70% participation.
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Figure 7.21: Feeder demand profiles for Houston synthetic price optimization, ramp-return upper
boundary case, 70% participation.
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Figure 7.22: Feeder demand profiles for Houston synthetic price optimization, zero-degree upper
boundary case, 30% participation.



151

7.4.2 Summary and Conclusions

Two key observations can be made regarding the results of this experiment. First, despite

being provided a smooth price curve, the synthetic price optimization does not necessarily result

in a smooth response. Those cases in which the controller is allowed to raise the cooling set point

during the unoccupied period above the occupied set point force a return to the occupied set point

resulting in a spike; this can not be easily avoided by the method used to formulate the price curve.

Those cases in which the upper boundary is the occupied set point for all hours of the day still

exhibit demand spikes at the controller attempts to avoid higher price periods.

Second, in those days that contain price spikes not removed by the moving average smoothing,

the resulting demand curve contains new spikes preceding or following the original as the controller

avoids the high price. This sometimes results in a disproportionate response, i.e. a demand spike

larger than the spike being avoided. These days tend to have multiple sequential demand spikes

that give the appearance of oscillations. Although it is not clear why these features form in the

optimized feeder demand curve, a more controlled experiment can be conducted to observe this

phenomenon.

7.5 Demand Oscillations

The appearance of demand spikes in optimized results, even when provided a smooth price

curve is problematic. This result has important implications for large scale deployment, as these

features would almost certainly result in instabilities in the electric grid. The following experiment

examines the formation of these features by iteratively optimizing a single day, July 1, using the

base case feeder demand curve from New York. The optimization parameters are the same as in

previous cases, using the upper bound defined in Table 6.1.

The experiment begins by performing the same energy cost minimization, using the base

case feeder demand as the price curve. The return of the cooling set point upper boundary to the

occupied temperature results in a demand spike centered around 18:00 as expected. In the next
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iteration, this optimized feeder demand curve is fed back into the optimization as a new synthetic

price signal. The result is then fed back into the optimization in the next iteration. This process

is repeated several more times. Results of this experiment are shown in Figure 7.23

The demand spike created by the first iteration results in a controller adjustment that avoids

it. In iteration two, this appears as a demand spike preceding the spike from iteration one. It is

also worth noting that small oscillations form in the beginning of the day as well; their origin can

be seen in a small demand bump at 8:00 in iteration one. By iteration three, the original demand

spike has returned, but is larger than the spike in iteration one. Also interesting is the series of

oscillations seen after 20:00. Features become magnified in each iteration, resulting in very large

oscillations after five iterations.

One cause for this behavior is likely related to the thermal efficiency of the building envelope.

When the controller shifts cooling to an earlier time, it must generally provide more cooling in

total due to gains from the environment. If the price at the earlier time is lower, the controller will

be able to provide the additional cooling required without an increase in cost. This can result in

demand spikes larger than the spikes being avoided. Similarly, when the controller shifts cooling

to a later, less expensive time, it generally results in a larger cooling demand as the cooling system

has to provide cooling to cover the cooling avoided previously, the cooling required at the new time,

and the losses incurred along the way. Over time, this results in the increasing magnitude of the

oscillations seen in the experiment.

Another cause for this behavior is due to the formulation of the objective. The overarching

goal of this work is show how MPC can be used to shape load in a beneficial way, e.g. to reduce

peak demand, reduce ramping (oscillations), increase load factor, etc. A price-based optimization

that only considers energy cost does not consider any of these objectives. The controller is blind to

these metrics, and if lowest-cost strategy results in the formation of new demand spikes, it will be

adopted regardless of problems this introduces. The original hypothesis set forth in this chapter is

that dynamic price can be used to reduce peak demand. Although this particular set of simulations

do not prove the hypothesis, they fail to reject it. That said, providing a dynamic price signal,
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optimizing for lowest cost and hoping for a predictable response that satisfies these goals is most

likely the wrong approach.

This last observation suggests that perhaps a more fruitful approach would be to attack the

problem from the opposite direction. That is, instead of trying to illicit the desired feeder demand

shape from an arbitrary signal and objective function combination, why not specify the desired

feeder demand as the objective explicitly. This worked relatively well for the demand limiting

optimization: the goal was to reduce peak demand and the objective function was formulated to do

so. Recognizing the potential need to increase demand in a predictable way at certain times requires

a more generic methodology than that used previously. The development and demonstration of

this new methodology is the subject of the next chapter.



Chapter 8

Load Shape Optimization

Previous chapters introduced several approaches to shaping the demand of a distribution

feeder using a decentralized model predictive control methodology. Demand limiting optimization

resulted in improvements to key performance metrics, reduced peak demand, reduced ramping, and

increased load factor in a consistent and predictable way. In contrast, dynamic pricing optimizations

resulted in mixed results and unpredictable demand shapes. The success of the demand limiting

optimization is in part due to the objective function, which minimized demand directly at the home

level to achieve similar results at the feeder level. This chapter introduces a novel new demand

shaping methodology for reducing peak demand and intra-day variability using a similar approach

in which the objective of the optimization is to drive demand at each home towards a desired feeder

demand shape.

This chapter first describes the general approach, followed by the development of the signal

that is provided to the controller during optimization. The chapter then shows an application of

the new methodology to the three feeder models to demonstrate its effectiveness. A brief discussion

of the methodology’s advantages and the applications it enables concludes the chapter and points

the way towards the final investigations in Chapters 9 and 10.

8.1 Methodology

The idea behind the methodology proposed in this chapter is very simple: tell the homes how

to increase or decrease demand in order to shape the feeder demand curve. As with the demand
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limiting optimization, this approach relies on each home making incremental adjustments to their

demand to achieve a common goal. The goal, i.e. the specific shape of the feeder demand curve

desired, is termed the feeder “reference demand curve”. This curve contains features telling homes

where additional demand is needed or where demand should be reduced relative to the base case

feeder demand.

This is somewhat different from the previous optimizations methods in concept, as it may be

used to create additional demand where needed, rather than simply reduce demand where it is not.

Whereas the previous methods simply reduced demand at specific time of day — either by limiting

demand, or by using a price-based proxy — this method allows more control over the specific shape

of the demand by defining the desired demand curve explicitly. The proposed method follows three

steps described in the subsections below. These are:

1. Generate a reference demand curve that represents the desired aggregate feeder demand

2. Transform the feeder reference demand curve into a reference demand curve for each house

3. Minimize the difference between the house demand curve and house reference demand curve

8.1.1 Generation of Feeder Reference Demand Curve

To illicit a predictable response, the author proposes that the feeder reference demand curve

should reflect the limitations of the underlying physical processes in the system. That is, a reference

curve should not contain features that are unachievable by the system. For example, with 2MW of

flexible demand at any given moment, the optimization, no matter how effective, may not be able

to eliminate all demand on the feeder if the demand is greater than 2MW. Nor may it eliminate

all 2MW for an extended period of time because of comfort requirements. Therefor, the feeder

reference demand curve must reflect two important constraints of the system.

The first constraint that should satisfied is the first law of thermodynamics. The interpre-

tation adopted here is somewhat less formal, but guides the construction of the reference demand

curve: the assumption is that in both the base case and the optimized case, the total area under the
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demand curve should be equivalent. Obviously this can not strictly be true due to losses related

to thermal storage efficiency, part-load efficiency, and the partial deferral of load to subsequent

hours outside of the planning horizon. Nevertheless, the areas should be approximately the same,

which is a condition easily addressed by normalization. Normalization results in a reference demand

curve with approximately the same amount of cooling related demand as the base case. Note that

through normalization at the house level, the same condition can be enforced.

Second, the amount of load reduced or increased at any given time is limited by the available

flexible cooling demand. That is, cooling demand may only be reduced by the amount that is

active. Similarly, demand may only be increased as much as the amount of cooling demand not

already active. Although not designed explicitly to do so, the experiments in Chapter 6 give an

indication of the size of the flexible cooling demand. Additional experiments can be conducted

measure flexible cooling demand directly. However, because optimization enforces upper and lower

set point boundaries, the exact amount of flexible demand is much more difficult to determine, since

the flexible demand available at a given time step is a function of HVAC operation in preceding

hours. Enforcing this constraint at the feeder level does not enforce the constraint at each home.

Therefor, this constraint is treated as a soft constraint that merely guides the formation of the

feeder reference demand curve.

It is not entirely clear from the constraints what method should be chosen to generate the

feeder demand curve. The author proposes that the desired outcome should inform the choice. In

practice, the choice of technique may be specific to the needs of the utility or demand aggregator

on any given day.1 Here, the goal of the optimization is to shape the feeder demand curve to have

a lower peak and reduced variability, effectively shaving peak load in order to fill-in troughs, and

removing oscillations in demand. This implies that a smoothing algorithm applied to the base case

feeder demand curve should be used to generate the reference demand curve.

This approach is advantageous for several reasons. First, generating a reference demand

1 Exploring a set of different possible techniques is beyond the scope of this work.
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curve with a smoothing algorithm is relatively simple and easily automated. Second a smoothing

algorithm such as a simple moving average addresses both constraints automatically,2 without

requiring them to be explicitly enforced. Finally, and perhaps most importantly, the method can

be used to study a wide range of base case scenarios in which both demand and supply could be

highly variable, for example, in systems with wind and solar generation.

For the studies presented in this and following chapters, a simple moving average is used to

generate the reference feeder demand curve. The choice of period was chosen to be four hours in

order to reduce short-term variation in feeder demand, while still creating realistic demand targets.

This determination is somewhat subjective. That said, initial experiments performed with several

values suggested that this value results in an achievable demand for many of the cases considered.

The method adopted here is one of many, and likely not the ‘best’ for all scenarios. Rather, it

is simply one alternative that attempts to address the two constraints, while driving feeder demand

towards lower peaks and reduced variability. An interesting question that arises is whether or not

the shape of this curve really matters at all. An experiment, testing an alternative “zero demand”

reference demand curve intended to explore this question, is discussed in Appendix H.

8.1.2 Generation of House Reference Demand Curve

A new curve representing the deviation between base case and reference feeder demands can

be useful for guiding optimization at each home. This curve is referred to as the ‘reference signal’.

This curve is defined as the normalized feeder base case demand curve, minus the normalized feeder

reference demand curve. Curves are normalized by dividing the demand at each time step by the

sum of demand over the cost horizon. The reference signal can contain both positive and negative

values, corresponding with increased and decreased reference demands. An example of the feeder

base case demand, reference demand and reference signal curves for the Houston feeder on July

2 This is a matter of interpretation and not strictly true all of the time due to end-effects related smoothing.
However, it is fairly easy to show that 1) the area under a smoothed demand curve is very nearly that of the original,
and 2) a smoothed curve contains less variability than the original, implying that the new demand can be met if
flexible cooling load is available.
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Figure 8.1: Example of feeder reference demand and reference signal created from simple moving
average of base case feeder demand profile.

At the beginning of optimization, each home is provided the reference signal. To generate the

house reference demand curve, house demand is first smoothed using a simple moving average.3

The smoothed house demand curve is then normalized by the sum of demand over the cost horizon.

The reference signal is added to the normalized house demand to produce the normalized house

reference demand. This is the demand curve which the optimization attempts to produce.

8.1.3 Objective Function Definition

The house reference demand curve is generated once for each home at the beginning of the

optimization. At each iteration, house demand is smoothed and normalized using the same moving

average period. The optimization objective can be formulated as a minimization of deviation

3 Recall that cooling system staging results in discrete cooling capacities that are either on or off. The time-
averaging process results in a much smoother demand curve compared to the square-wave curve produced by HVAC
cycling. This allows the controller to try to match the relatively smooth reference curve.
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between candidate and house reference demand curves. Specifically, the objective function to be

minimized is the sum of squared error between the house reference and candidate demand curves:

min

 k∑
i=j

(p′i − pi)2
 (8.1)

where:

i is the time step index

j is the cost horizon time step start index

k is the cost horizon time step end index

p′i is the normalized reference demand at time step i

pi is the normalized electric demand at time step i

Similar to the experiment in Section 6, the effect of simple moving average period length is

tested to arrive at the appropriate value. In this case, only 120 minutes is tested to confirm that

oscillating behavior observed in that test is still present. Based on this result, the decision is made

to keep the 60 minute moving average period for all simulations moving forward. Results of the

120 minute moving average period are included in Appendix D, Figures D.2, D.4 and D.7.

8.2 Houston

Metrics from Houston optimizations, listed in Table 8.1, show fairly consistent improvement

across all dimensions. Compared to the results in Chapter 6, improvements over the base case are

not quite as large. It should be noted as well that in these results, peak demand does increase in a

small number of cases, e.g. July 3. The reason for this is unclear as the reference curve for this day

(not shown) is lower than the base case during the peak hours. Still, the approach shows promise

in achieving the intended result.

As with previous investigations, overall electricity consumption increases as a result of op-

timization. Although the reference demand curve in theory maintains the total area under the

original, thus enforcing the same cooling related electricity consumption, this is not necessarily
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achievable. This is consistent with findings regarding thermal storage efficiency which suggest that

precooling incurs a penalty due to losses resulting in a total cooling energy increase. Changes to

the reference demand curve may minimize the additional energy required, but are beyond the scope

of this investigation.

The power spectrum distribution (Figure 8.2) shows the greatest reduction of power at all

frequencies in all results seen thus far. This result is intuitive: given a smooth reference demand

curve, the controller will attempt to generate a smooth response. It is somewhat amazing, however,

that this emerges from the individual actions of thousands of homes which are not coordinated,

but instead directed to a common goal.

Table 8.1: Performance metrics for Houston feeder load shaping optimization, 70% participation.

Mean Min Max

Electric Consumption [MWh] 4.87 4.37 5.25

Peak Demand [MW] -0.15 -0.87 0.14

Peak to Valley [%] 84.26 75.70 95.57

Load Factor [%] 3.02 1.06 6.87

Ramp [MW] -0.23 -3.46 1.84

Table 8.2: Performance metrics for Houston feeder load shaping optimization, 30% participation.

Mean Min Max

Electric Consumption [MWh] 2.07 1.79 2.27

Peak Demand [MW] -0.09 -0.54 0.06

Peak to Valley [%] 91.47 88.07 98.16

Load Factor [%] 1.40 0.52 3.77

Ramp [MW] -0.59 -2.03 0.14

Viewed across all days in July (Figure 8.4), the optimized feeder demand appears to be

smoother and contain fewer oscillations than all previous results. The 30% participation case

(Figure 8.5) shows a limited ability to affect feeder demand as expected, but metrics and spectral

power analysis still show improvements over the base case.

Plots of individual days such as those shown in Figures 8.6 and 8.7 illustrate the smoothing
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Figure 8.2: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, 70% participation.
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Figure 8.3: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, 30% participation.
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Figure 8.4: Feeder demand profiles for Houston load shape optimization, 70% participation.
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Figure 8.5: Feeder demand profiles for Houston load shape optimization, 30% participation.
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effect of the optimization in greater detail. Both days begin with higher demand relative to the

base case as the controller depresses the cooling set point. The set point is then raised to avoid

the peak demand of the base case, then raised to fill-in the trough that follows. In both days, the

controller manipulates the cooling set point further to shave a secondary peak around 19:00.
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Figure 8.6: Feeder demand profiles for Houston, July 2 load shape optimization, 70% participation.
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Figure 8.7: Feeder demand profiles for Houston, July 7 load shape optimization, 70% participation.
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8.3 Los Angeles

As underwhelming as the Los Angeles results appear to be from a visual inspection of the

demand curves in Figure 8.9 and the metrics in Table 8.3, the power spectrum analysis in Figure 8.8

tells a slightly different story. That is, despite the controller’s inability to significantly improve these

metrics, there appears to be some benefit provided by the controller with regards to smoothing the

feeder load shape. The DC power spectrum component is increased, while all other frequency bins

are decreased. The 30% participation results included in Appendix D show improvements in this

regard as well.

Table 8.3: Performance metrics for Los Angeles feeder load shaping optimization, 70% participation.

Mean Min Max

Electric Consumption [MWh] 0.70 0.47 0.94

Peak Demand [MW] 0.00 -0.04 0.03

Peak to Valley [%] 99.38 96.77 100.60

Load Factor [%] 0.94 0.34 1.77

Ramp [MW] 0.05 -0.27 0.29

Looking at several days in closer detail helps illustrate this point. In Figures 8.9, 8.10 and

8.11, small bumps and depressions in the base case feeder demand curve are partially or fully

eliminated by the actions of the controllers. The net result is a feeder demand curve with a smaller

rate of change, and therefor a lower ramp rate required by generation to match the load. Although

the difference in this case is marginal, this can be a valuable feature to the load serving entity.
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Figure 8.8: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, 70% participation.
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Figure 8.9: Feeder demand profiles for Los Angeles load shape optimization, 70% participation.
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Figure 8.10: Feeder demand profiles for Los Angeles, July 9 load shape optimization, 70% partici-
pation.
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Figure 8.11: Feeder demand profiles for Los Angeles, July 11 load shape optimization, 70% partic-
ipation.
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Figure 8.12: Feeder demand profiles for Los Angeles, July 29 load shape optimization, 70% partic-
ipation.
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8.4 New York

Similar to the Los Angeles case, the utility of optimization in this case is measured in the

reduction of ramping requirements. While the effect is only slightly more noticeable in the monthly

plots of Figure 8.14, plots of individual days in Figures 8.15 and 8.16 show the smoothing effects

more clearly. The metrics Table 8.4 and power spectrum analysis Figure 8.13 indicate that per-

formance of most other metrics is improved over the base case with few exceptions. Again, 30%

participation results included in Appendix D show similar trends.

Table 8.4: Performance metrics for New York feeder load shaping optimization, 70% participation.

Mean Min Max

Electric Consumption [MWh] 2.38 1.91 2.92

Peak Demand [MW] -0.03 -0.15 0.09

Peak to Valley [%] 91.19 79.93 99.38

Load Factor [%] 2.13 0.87 4.24

Ramp [MW] -0.01 -0.93 0.86
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Figure 8.13: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, 70% participation.
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Figure 8.14: Feeder demand profiles for New York load shape optimization, 70% participation.
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Figure 8.15: Feeder demand profiles for New York, July 4 load shape optimization, 70% participa-
tion.
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Figure 8.16: Feeder demand profiles for New York, July 24 load shape optimization, 70% partici-
pation.
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8.5 Summary and Conclusions

The results for the three feeders show the proposed methodology to be effective in shaping

demand, resulting in a relatively smooth demand curve like that of the reference curve provided

to the controller. Although occurrences of increased peak demand are observed in a few cases,

improved demand reduction could likely be achieved through further refinements to the reference

curve, or by the introduction of a weighting term to periods of particular importance. Further

refinement is not considered in this work.

The proposed methodology is well suited to a wide range of applications because of the

generic nature of the approach. In these studies, demand shaping utilized only the HVAC systems

of the home. While these systems tend to be the largest loads in the home, other loads such as

pool pumps and electric hot water heaters could be manipulated in a similar manner, provided that

they are equipped with the appropriate controls.

The distributed and decentralized nature of the approach allows the entity directing the

load shaping effort, whether at the feeder level or higher, to be agnostic to the type of equipment

participating in load shaping. In the near future, these could include electric vehicle chargers,

building-sited battery storage and cogeneration plants. The extension of this approach to micro-

grid management is a logical next step and interesting area of future research.

The studies presented in this chapter illustrate what this methodology can do to shape

demand in response to the loads present on existing distribution networks. The next two chapters

will investigate how this methodology can be used to shape anticipated feeder load as new generation

is added to the electric system.



Chapter 9

Rooftop Solar Electric Generation

The adoption rate of residential rooftop photovoltaic (PV) systems has steadily risen over the

last decade due to strong incentives and falling prices [83]. In California, the high penetration of PV

is expected to cause conflicts with traditional generation, resulting in periods of rapid ramping and

over-generation. This phenomenon, popularized by the so-called “Duck Curve” (see Figure 9.1)

presents a real and present problem for utilities — who have little control over the production

of electricity from these distributed rooftop solar resources — where high penetration rates are

occurring.

This chapter evaluates the application of the methodology developed in Chapter 8 as a poten-

tial solution to this problem. The chapter first describes minor modifications to the methodology

necessary for this study, then introduces the solar models used to generate electricity in the distri-

bution feeder. Next, the selection of PV penetration levels is discussed, followed by a description

of the method developed for sizing and distributing the PV systems to homes in the feeder model.

The chapter then explores two levels of PV system penetration for each of the three feeders.
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Figure 9.1: Example of the Duck Curve produced in systems with high PV penetration levels leads
to times of high ramping and over generation. The moniker is derived from the area between the
two curves which resembles a duck on some days [19].
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9.1 Methodology

At a high level, the methodology employed in this chapter is identical to that described

in Chapter 8: 1) a reference demand curve is generated from the base case feeder demand, 2)

this reference demand is translated into a reference signal and provided to the controller in each

simulated home, 3) the controller optimizes house electric demand to match a house reference

demand created from the reference signal using the same objective function described previously.

Differences between the investigations in this chapter and those studied earlier lie in the

distribution feeder demand which, in these investigations, contains electric generation from rooftop

solar systems. The generation by these systems has a significant effect on the shape of the feeder

demand curve which results in the Duck Curve characteristics described above. The only adjustment

required to the methodology is simply the introduction of solar electric generation in the feeder

model. Annual electricity plots of feeder demand with solar can be seen in Appendix E, Figures

E.2, E.6 and E.12. Additional examples of the “Duck Curve” can be seen in the Houston and New

York feeders in Figures E.1 and E.13.

9.2 Model Development and Validation

Estimating the production of rooftop solar electricity in the distribution feeder requires the

addition of a solar collector model to the building model described in Chapter 3. While this

level of detail is not strictly required, the simulation of solar at the individual residence allows the

controller to see the effect of solar generation on whole house demand, thus yielding a more realistic

representation of the distributed optimization. The model is composed of two components: a solar

collector producing direct current, and an inverter which converts the direct current to alternating

current.

The direct current portion of the photovoltaic system is a simple flat-plate collector model.

Cell efficiency is assumed to vary with temperature, which is assumed to be uniform across all cells

in the collector. Temperature is calculated using the simple relationship developed by Ross [81].
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Although the collector here is assumed to be directly roof mounted rather than rack mounted, this

relationship is sufficient for the purpose of this research. The calculation of direct current collector

efficiency, ηc, and power, QDC , is shown in Equations 9.1 and 9.2. Parameter values assumed for

the model are shown in Table 9.1.

ηc = η0[1− β(Tc − T0)] (9.1)

QDC = ηcItAc (9.2)

where:

is the collector efficiency at temperature Tc

η0 is the collector efficiency at standard test conditions

β is the efficiency temperature coefficient

Tc is the collector operating temperature

T0 is the collector operating temperature at standard test conditions

It is the total collector insolation calculated by Equation 3.6

Ac is the total collector area

The amount AC power, QAC , produced by the system can be calculated using a simple

inverter model with part-load efficiency developed by Yewdall [99]:

QAC = ηiηsQDC (9.3)

where:

ηi is the inverter efficiency at specified input power

ηs is the balance of system nominal efficiency

To ensure that the model produces reasonable values, it is cross-validated against results

produced by the PVWatts Performance Calculator for Grid-Connected PV Systems [62]. For this

comparison, both PVWatts and the model above are simulated using a year of typical Houston
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Table 9.1: Default photovoltaic system parameters.

Parameter Value Units

η0 15 %

β 0.004 K−1

T0 47 ◦C

ηs 95 %

weather with the parameters in Table 9.1. Note that the default system derating factor of 0.77 was

simulated for PVWatts.

Table 9.2: Photovoltaic system parameters used for model cross-validation.

Parameter Value

Collector tilt 22.6◦

Collector azimuth 0◦

Nominal size 5kW

Agreement between the models is good, with an annual difference in AC power of -1.7%. A

normalized root mean square error of 8.6% indicates reasonable agreement at each time step. An

example of AC power time series produced by both models is shown in Figure 9.2. Visual inspection

of the time series plot also indicates that the model produces values comparable to PVWatts.
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Figure 9.2: Example of PV model output compared to PVWatts, July 14–21.
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9.3 Desired PV Penetration

Penetration levels are adopted from the National Renewable Energy Laboratory’s Western

Wind and Solar Integration Study Phase 2 report (WWSIS-2) [59]. The WWSIS-2 report outlines

several scenarios for solar penetration levels. This chapter adopts the values from the “High Solar”

and “TEPPC” scenarios, corresponding to 25% and 3.6% of annual regional electricity consumption,

respectively. Although the WWSIS-2 report is specific to the western United States, these values

are adopted for the New York feeder as well.

Following the assumptions in the WWSIS-2, 60% of the installed solar generation is assumed

to be solar electric. The WWSIS-2 report further divides this between rooftop solar and utility scale

solar at 40% and 60% distributions. Here, this research departs from the WWSIS-2 and assumes

all of the PV generation is provided by rooftop solar, distributed equally between the residential

sector and all others. That is, 50% of all solar electricity generated on an annual basis is provided

by residential rooftop solar.

The feeder models considered in this work represent feeders heavily populated with residential

buildings which dominate the annual electricity consumed. It is assumed that the distribution of

rooftop solar is consistent with a feeder having a composition matching the regional average as

measured by annual electricity consumption. The distribution of residential solar must be corrected

by the fraction of residential electricity consumption in the feeder so that the distribution reflects

the difference between region and feeder. For example, if the 50% of rooftop solar is generated by

residential buildings where residences represent 38% of the annual electricity consumed in a region,

and 80% of the electricity consumed in the feeder, then a higher percentage residential rooftop

solar would need to be modeled in the feeder to account for the larger residential consumption.

Residential consumption on an annual basis is easily calculated from the hybrid model; values for

electricity consumption by sector are available from the EIA [1], making this correction fairly easy.

The corrected rooftop solar penetration values are summarized in Table 9.3. Note that the

values reported for both sectors have been also been adjusted according to the 60% solar electric
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assumption in the WWSIS-2 report. In the section that follows, the penetration level shown in the

residential row will be the value used to distribute PV to homes in the feeder. The contribution of

solar from other sources is not modeled.

Table 9.3: PV Penetration for three feeder models.

GridMPC Load EIA Load 3.6% Penetration 25% Penetration

Houston
Residential 80% 38% 1.87% 13.01%
Other 20% 62% 0.29% 1.99%

New York
Residential 78% 35% 1.88% 13.04%
Other 22% 65% 0.28% 1.96%

Los Angeles
Residential 86% 35% 1.99% 13.81%
Other 14% 65% 0.17% 1.19%

9.4 Sizing and Distribution of PV Systems

Simulating the desired residential penetration level requires distributing the correct number

of residential PV system to homes on the distribution feeder. This is accomplished with a two stage

process that begins with the sizing of PV systems for each home on the feeder. This first stage is

as follows:

1. A prototypical photovoltaic system is simulated for the entire year using the parameters

specified in Table 9.2.

2. The ratio of electricity produced to nominal system size is calculated, giving

kWhproduced/kWnominal/year.

3. For each home, annual electricity consumption is summed, giving

kWhused/year.

4. The nominal system size for each home is calculated using the ratio found in step 2, as-

suming that each system offsets 80% of the value found in step 3.

The second stage distributes PV systems across the population of homes. This process need

only take place once for each feeder and desired level of penetration. Were every home in the
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feeder to be given a PV system, the total contribution of all distributed generation in the feeder

would equal 80% of the residential feeder electricity consumption. Therefor, to arrive at the desired

residential contribution, only a fraction of the population need be simulated with a PV system.

Choosing the population is easily accomplished by:

1. Assigning a random number to each home between zero and one.

2. Choosing an arbitrary threshold value between zero and one. If a home has a random

number less than this threshold, it is assigned a PV system.

3. Summing the total contribution of distributed generation for those homes under the thresh-

old value, and calculating the ratio of this sum to the total annual feeder consumption,

giving the penetration level.

4. Adjusting the threshold value up or down until the calculated penetration measures the

desired penetration shown in Table 9.3.

9.5 Houston

The introduction of rooftop solar creates significant variation in the feeder demand curve. In

in the monthly plots, Figures 9.3, 9.4, 9.5 and 9.6, this can be seen in the high solar penetration cases

in particular, and to a lesser extent in the low solar penetration cases. In all cases, the controller

appears to reduce demand variations by smoothing the demand curve. Plots for July 1 and July

21 in Figures 9.11 and 9.12 illustrate the smoothing effect for the high solar and penetration case

more clearly. In 30% cases the ability is limited, consistent with previous studies, but optimization

appears to be beneficial nonetheless.

Metrics shown in Tables 9.4, 9.5, 9.6 and 9.7 are generally improved across all dimensions,

with a few exceptions. As with previous studies, total energy consumption increases as a result

of the load shifting activities. Trends in the improvements can be seen across the four cases:

improvements over the base case are greatest for the high participation and high penetration,
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followed by high participation and low penetration, then low participation and high penetration

and finally low participation and low penetration.

Power spectrum analysis reveals the same trends in Figures 9.7, 9.8, 9.9 and 9.10. Plots for

the high solar case reveal a larger amount of the power spectrum concentrated in the twelve to six

hour frequency range compared to previous studies. While there appears to be a very marginal

increase in power concentrated in the twenty-four to twelve hour range in the optimized case, the

reduction in the twelve to six hour range is significant. This trend and the increase in the DC power

component show the benefits of the optimization, similar to that observed in previous chapters.

Table 9.4: Performance metrics for Houston feeder load shaping optimization, high solar penetration
case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 4.82 4.03 5.36

Peak Demand [MW] -0.48 -0.92 0.02

Peak to Valley [%] 80.04 72.91 88.88

Load Factor [%] 5.85 3.01 8.95

Ramp [MW] -0.70 -2.56 1.03

Table 9.5: Performance metrics for Houston feeder load shaping optimization, low solar penetration
case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 4.85 4.17 5.26

Peak Demand [MW] -0.16 -0.92 0.22

Peak to Valley [%] 84.01 76.39 96.20

Load Factor [%] 3.20 0.66 7.45

Ramp [MW] -0.31 -2.81 1.49
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Figure 9.3: Feeder demand profiles for Houston load shape optimization, high solar penetration
case, 70% participation.
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Figure 9.4: Feeder demand profiles for Houston load shape optimization, low solar penetration case,
70% participation.
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Figure 9.5: Feeder demand profiles for Houston load shape optimization, high solar penetration
case, 30% participation.
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Figure 9.6: Feeder demand profiles for Houston load shape optimization, low solar penetration case,
30% participation.
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Table 9.6: Performance metrics for Houston feeder load shaping optimization, high solar penetration
case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 2.07 1.73 2.35

Peak Demand [MW] -0.20 -0.41 -0.07

Peak to Valley [%] 89.86 86.36 95.39

Load Factor [%] 2.43 1.84 3.54

Ramp [MW] -0.77 -1.72 -0.09

Table 9.7: Performance metrics for Houston feeder load shaping optimization, low solar penetration
case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 2.07 1.76 2.40

Peak Demand [MW] -0.10 -0.49 0.07

Peak to Valley [%] 91.05 87.08 97.64

Load Factor [%] 1.60 0.44 3.60

Ramp [MW] -0.61 -1.72 0.22
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Figure 9.7: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, high solar penetration case, 70% participation.
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Figure 9.8: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, low solar penetration case, 70% participation.
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Figure 9.9: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, high solar penetration case, 30% participation.
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Figure 9.10: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, low solar penetration case, 30% participation.
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Figure 9.11: Feeder demand profiles for Houston, July 1 load shape optimization, high solar pene-
tration case, 70% participation.
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Figure 9.12: Feeder demand profiles for Houston, July 21 load shape optimization, high solar
penetration case, 70% participation.
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9.6 Los Angeles

High penetrations of solar in the Los Angeles feeder results in base case demand curves that

exhibit the Duck Curve characteristics very clearly. Unfortunately, the ability of homes to shift

large portions of electricity demand is limited. This affects the ability of the controller to remove

these characteristics. Figures 9.13, 9.14 illustrate this for the high and low solar cases. One may

notice that the low solar case resembles the no solar case very closely. Given the low level of

penetration, this is not terribly surprising.

Nevertheless, in both the high and low solar cases, the optimization does show improved

performance in demand reduction, peak to valley ratio, load factor, ramping and spectral power

distribution. The trends regarding participation and penetration seen in the Houston feeder can

be observed here. High participation results are shown in Tables 9.8 and 9.9, and Figures 9.15 and

9.16. Low participation metrics as well as monthly demand plots are included in Appendix E.

Similar to the Houston feeder, the Los Angeles feeder exhibits a large amount of power

concentrated in the twenty-four to twelve hour frequency; this is consistent with the shape of the

demand curve seen in the daily demand profiles. Optimization reduces the power concentration in

this frequency range only slightly; box-whisker plots for the high solar cases show a wide range of

results.

Plots of July 13 and 15 in Figures 9.17 and 9.18 show very little change in demand between

base and optimal cases during early morning hours. This has been previously observed in other

cases; the absence of flexible cooling demand during these hours is the cause.

Table 9.8: Performance metrics for Los Angeles feeder load shaping optimization, high solar pene-
tration case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 0.64 0.43 0.91

Peak Demand [MW] -0.10 -0.14 -0.03

Peak to Valley [%] 95.05 85.04 99.09

Load Factor [%] 2.82 1.54 3.43

Ramp [MW] -0.31 -0.67 0.03
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Figure 9.13: Feeder demand profiles for Los Angeles load shape optimization, high solar penetration
case, 70% participation.
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Figure 9.14: Feeder demand profiles for Los Angeles load shape optimization, low solar penetration
case, 70% participation.
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Table 9.9: Performance metrics for Los Angeles feeder load shaping optimization, low solar pene-
tration case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 0.68 0.43 0.91

Peak Demand [MW] -0.02 -0.06 0.02

Peak to Valley [%] 98.93 97.19 100.57

Load Factor [%] 1.31 0.41 2.05

Ramp [MW] -0.01 -0.25 0.24
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Figure 9.15: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, high solar penetration case, 70% participation.
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Figure 9.16: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, low solar penetration case, 70% participation.
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Figure 9.17: Feeder demand profiles for Los Angeles, July 13 load shape optimization, high solar
penetration case, 70% participation.
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Figure 9.18: Feeder demand profiles for Los Angeles, July 15 load shape optimization, high solar
penetration case, 70% participation.
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9.7 New York

The introduction of solar electric generation into the New York feeder results in demand

profiles resembling both Houston and Los Angeles profiles. For example, in the high solar case

shown in Figure 9.19, July 5, 7, 29 and others exhibit Duck Curve characteristics of Los Angeles,

while other days such as July 13, 18 and 19 contain relatively large amounts of variation from hour

to hour similar to Houston. The low solar case (Figure 9.20), similar to previous results, shows

demand profiles with much less variation.

The mix of characteristics in the same feeder results in a key observation: the controller

appear to be less able to smooth demand in days with Duck Curve characteristics, and more

effective at smoothing demand in days with high hour to hour variation in demand. This indicates

that in addition to the amount of flexible cooling demand available, the ability of the controller

to shift demand is related to the length of time it must be shifted. Specifically, the controller is

able to move demand forwards or backwards by timescales measured in one or two hours, not four,

six, or twelve. This makes sense intuitively: because of losses in the system related to building

envelope integrity and the limited amount of thermal mass present in a residence, the controller

finds no benefit to moving demands by longer timescales. Doing so would be inefficient because

the benefit of shifting diminishes with time. This has been observed by the short amount of time

it takes for the demand curve to recover in the demand response cases shown in Chapter 5 and in

the precooling experiment in Chapter 6.

Optimization results in improvements over the base case similar to those observed in the

Houston and Los Angeles feeders. High participation results are summarized in Tables 9.10 and 9.11,

and in Figures 9.21 and 9.22. Low participation results follow the same trends observed previously.

Those results can be seen in Tables E.3 and E.4 and Figures E.10 and E.11 in Appendix E, along

with plots of individual days showing the smoothing effects of optimization.
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Figure 9.19: Feeder demand profiles for New York load shape optimization, high solar penetration
case, 70% participation.
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Figure 9.20: Feeder demand profiles for New York load shape optimization, low solar penetration
case, 70% participation.
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Table 9.10: Performance metrics for New York feeder load shaping optimization, high solar pene-
tration case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 2.32 1.71 3.01

Peak Demand [MW] -0.25 -0.39 -0.04

Peak to Valley [%] 86.62 78.55 93.07

Load Factor [%] 5.00 3.23 6.04

Ramp [MW] -0.47 -1.87 0.14

Table 9.11: Performance metrics for New York feeder load shaping optimization, low solar pene-
tration case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 2.36 1.99 2.94

Peak Demand [MW] -0.03 -0.12 0.08

Peak to Valley [%] 91.11 81.61 98.68

Load Factor [%] 2.17 0.89 3.95

Ramp [MW] 0.04 -0.95 0.59
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Figure 9.21: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, high solar penetration case, 70% participation.
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Figure 9.22: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, low solar penetration case, 70% participation.
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9.8 Summary and Conclusions

The introduction of rooftop solar electric to residences at high penetration levels creates

significant variability in the feeder demand at several timescales. Short term variability — on the

order of one or two hours — creates fluctuations in demand over short periods of time, requiring

traditional generation to respond quickly and repeatedly. At longer timescales, i.e. six to twelve

hours, the contribution of solar electric generation results in large troughs and steep, sustained

increases in demand. Both conditions create potential problems for load serving entities who must

manage generation assets to follow demand.

This chapter has investigated whether or not the methodology developed in Chapter 8 can

be used to shape demand in anticipation of variations in supply, shifting control of the system from

a load-following to supply-following paradigm. Results suggest that this can in theory be realized

with high participation rates and the availability of flexible demand. In the cases studied here, the

methodology shows the greatest promise in reducing short-term demand variations by smoothing

the feeder demand profile. The ability of the approach to address longer term variations spanning

multiple hours is limited, but still provides some improvement in terms of load factor, peak demand,

peak to valley, and ramping metrics.



Chapter 10

Utility Scale Wind Generation

Previous investigations in Chapters 8 and 9 considered how load a shaping methodology could

be utilized to address the intrinsic variability of the base case feeder electric demand. This chapter

explores the ability of the methodology to shape demand based on some extrinsic variability defined

outside of the distribution feeder, by introducing wind generator output into the construction

of the feeder reference demand curve. The hypothesis tested here is: although the production

of wind generated electricity does not shape the demand characteristics of the feeder directly,

the methodology can be used to offset the feeder demand in order to absorb the variations wind

generated electricity introduces.

The chapter first discusses the inclusion of wind generation into the reference demand curve.

Next, the selection and sizing of wind turbines is described. Simulation results from six combina-

tions of feeders and wind penetration levels are then presented with interpretation and conclusions.

10.1 Methodology

The methodology adopted in this chapter is identical to that described in Chapter 8 with one

exception: the feeder demand profile used to generate the reference demand curve is a composite

of base case feeder demand and utility scale wind generation. Generation of electricity from wind

turbines is assumed to occur outside of the distribution feeder and is therefor not normally reflected

in base case feeder demand. To allow the controller to see and respond to the presence of wind

generation outside of the feeder, wind generated electricity is subtracted from the base case feeder
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demand forecast to create a composite reference demand curve. Models used to simulate wind

generated electricity are described in Section 10.2. Sections 10.3 and 10.4 describe the selection of

the desired wind penetration levels and how they are simulated.

With the introduction of wind generation into the reference demand curve, the curve reflects

the variability of generation outside of the distribution feeder. This curve is constructed using a

4-hour moving average window in the manner outlined in Chapter 8. The smoothed composite

demand curve is then converted into the reference signal sent to each building, and controllers

optimize house electric demand to offset the variations introduced in the composite curve. In all of

the results presented in this chapter and Appendix F, the base case and optimized curves shown

are composite curves. It is important to keep in mind that the optimized feeder demand curve

is shaped to offset the variability in generation; presenting the results as a composite allows the

smoothing effect of optimization to be observed and measured easily.

It is also important to remember that this study does not attempt to model a utility scale

wind farm as accurately as possible. Rather, the intent is to show how MPC may allow residential

buildings to smooth the demand curve when wind is present, removing the need for traditional

generation to perform this task. This study is in essence a prototype for future studies, where

generation variability can be introduced by other source.

10.2 Model Selection and Description

GridLAB-D contains models of utility scale wind turbines, making the task of modeling the

contribution from utility scale wind relatively simple. The two utility scale models available in

GridLAB-D are developed from the GE 2.5 and Vestas V82 turbines. Coefficients of performance,

cut-in and cut-out speeds vary between the two, resulting in somewhat different power output

under the same wind conditions. To illustrate the differences, the normalized power output from

both turbines during a single week in July is plotted in Figure 10.1.

Given the intent of this work, there is no turbine model better suited to this study than

another. Therefor, to roughly account for the diversity of generation that may be present in a real
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Figure 10.1: Normalized wind turbine output for two turbine models showing the difference in
output characteristics.
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system, e.g. contributions from several wind farms, a blend of output from the two turbines is used,

producing a more diverse set of conditions for optimization. The assumption made is that half of

the wind generated electricity, on an annual basis, will be provided by each of the two types of

turbines.

10.3 Desired Wind Penetration

Wind penetration levels are adopted from the National Renewable Energy Laboratory West-

ern Wind and Solar Integration Study Phase 2 report (WWSIS-2) [59]. The WWSIS-2 report

outlines several scenarios for wind penetration levels. This chapter adopts the values from the

“High Wind” and “TEPPC” scenarios, corresponding to 25% and 9.4% of annual regional elec-

tricity consumption, respectively. Although a similar study has been performed for the eastern

United States with slightly different penetration assumptions [29], values from WWSIS-2 report

are adopted for the New York feeder for convenience and ease of comparison.

10.4 Sizing Wind Systems

Because the production of wind is assumed to occur outside of the distribution feeder and

has no direct relationship to the number of homes or composition of the feeder load, the sizing of

the wind systems is rather trivial:

1. Simulate each turbine for an entire year in each feeder location.

2. Normalize the electricity production from each turbine by dividing by the sum of total

production by the turbine.

3. Add the two normalized curves for each location and divide by two (blending assumption).

4. Scale the new curve by the desired penetration level for the location.

The last step is simply a matter of multiplying the normalized curve by the number of

megawatt hours required to meet the desired penetration level. For the three feeders, this results
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in the scaling factors shown in Table 10.1 for each of the penetration levels. This process need only

take place once for each feeder and desired level of penetration.

Table 10.1: Scaling factors used for scaling wind turbine output to desired penetration levels.

Houston Los Angeles New York

High Penetration [MWh] 10,633 6,425 4,914

Low Penetration [MWh] 4,253 2,570 1,966

10.5 Houston

The most striking feature of the demand profiles shown in Figure 10.3 is the lack of variation in

the optimized result despite the hour to hour variation that wind generation introduces. The effect

is much less pronounced in the low wind scenario shown in Figure 10.4, but present nonetheless.

In both scenarios, the controller exhibits an impressive ability to smooth the composite demand

curve. It bears repeating that the optimized demand curve includes the contribution from the wind

turbines. Were the wind generated electricity removed from the optimized result presented, one

could fully appreciate the amount of demand the controllers shift in order to achieve the result

shown. This can be seen in Figure 10.2 which shows the wind turbine output plotted with the

pre-composited optimized feeder demand profile.

According to the metrics in Tables 10.2 and 10.3, the performance of the optimized results is

undoubtedly the best seen in terms of peak to valley ratio, load factor, and ramping. Peak demand

is very respectable on average, with the largest single reduction observed in the minimum column.

Total electric consumption, however, continues to show an increase as seen in the vast majority

of previous cases. Low participation cases show similar results, but are obviously limited by the

number of homes optimized and therefor limited in flexible cooling demand. Low participation

results can be seen in Appendix F.

Power spectrum analysis shown in Figures 10.5 and 10.6 is consistent with the qualitative

assessment regarding smoothing. Examples showing more detail can be seen in plots of July 6, 14
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and 20, shown in Figures 10.7, 10.8 and 10.9. In the July 6 plot, a large increase in feeder demand

resulting from a rapid decrease in wind turbine output results in a spike which is effectively removed

by optimization. In the July 14 plot, oscillations occurring roughly on a two hour frequency are

completely removed. Frequent step changes in feeder demand as a result of turbine cut-outs an

cut-ins shown in the July 20 plot are also removed by the optimization.

Table 10.2: Performance metrics for Houston feeder load shaping optimization, high wind penetra-
tion case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 4.80 4.05 5.69

Peak Demand [MW] -0.50 -1.84 0.10

Peak to Valley [%] 63.32 39.40 88.18

Load Factor [%] 5.63 1.59 13.86

Ramp [MW] -2.52 -7.10 2.38

Table 10.3: Performance metrics for Houston feeder load shaping optimization, low wind penetra-
tion case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 4.85 4.20 5.37

Peak Demand [MW] -0.25 -1.08 0.20

Peak to Valley [%] 79.75 65.78 93.54

Load Factor [%] 3.78 0.82 9.08

Ramp [MW] -0.92 -4.13 2.06
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Figure 10.2: Pre-composited optimized feeder demand and wind production profile for Houston
load shape optimization, high wind penetration case, 70% participation.
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Figure 10.3: Feeder demand profiles for Houston load shape optimization, high wind penetration
case, 70% participation.
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Figure 10.4: Feeder demand profiles for Houston load shape optimization, low wind penetration
case, 70% participation.
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Figure 10.5: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, high wind penetration case, 70% participation.
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Figure 10.6: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, low wind penetration case, 70% participation.
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Figure 10.7: Feeder demand profiles for Houston, July 6 load shape optimization, high wind pene-
tration case, 70% participation.
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Figure 10.8: Feeder demand profiles for Houston, July 14 load shape optimization, high wind
penetration case, 70% participation.
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Figure 10.9: Feeder demand profiles for Houston, July 20 load shape optimization, high wind
penetration case, 70% participation.
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10.6 Los Angeles

Los Angeles results indicate a limited ability of the controller to shape demand in any signif-

icant way. Nevertheless, the performance metrics and spectral power analysis show improvements

across all dimensions, but with an increase in total energy consumption. Results for the 70% par-

ticipation case can be seen in Table 10.4 and Figure 10.12. Power spectral analysis shows a large

portion of power concentrated in the twenty-four to six hour freqency range. Optimization reduces

this, shifting more to into the DC component, but variation across the observations is quite high.

Composite feeder demand curves, both base case and optimized, exhibit a large amount of

variation as a result of the variation in wind generation (Figure 10.10). The effect appears to

be much more marked in the Los Angeles feeder because a large percentage of the annual wind

generation happens to be coincident with the time frame studied, and generation is not consistent.

This, in combination with the lack of available flexible cooling demand presents a much higher

hurdle for the controller.

Composite feeder demand in the low wind penetration case (Figure 10.11) is much less affected

by the variability of generation. This does not change the amount of load the controller can shift,

obviously, but does result in marginally smoother optimized demand curves. Performance for this

case is relatively good. Improvements are shown in Table 10.5 and Figure 10.13).

Results for 30% particiation cases follow the same trends as their 70% correlaries. These can

be seen in Appendix F. Plots of individual days show that the controller is unable to shift demand

in the early morning and late evening hours, although the actions do result in minimal shaving

of peak demand, and filling of troughs. Figures 10.14 and 10.15 both show good examples of this

behavior.
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Figure 10.10: Feeder demand profiles for Los Angeles load shape optimization, high wind penetra-
tion case, 70% participation.



221

Jul 1 Jul 2 Jul 3 Jul 4 Jul 5

Jul 6 Jul 7 Jul 8 Jul 9 Jul 10

Jul 11 Jul 12 Jul 13 Jul 14 Jul 15

Jul 16 Jul 17 Jul 18 Jul 19 Jul 20

Jul 21 Jul 22 Jul 23 Jul 24 Jul 25

Jul 26 Jul 27 Jul 28 Jul 29 Jul 30

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00
Time

D
em

an
d 

[M
W

]

Series

Base Case

Optimized

Figure 10.11: Feeder demand profiles for Los Angeles load shape optimization, low wind penetration
case, 70% participation.
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Table 10.4: Performance metrics for Los Angeles feeder load shaping optimization, high wind
penetration case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 0.79 0.54 0.96

Peak Demand [MW] -0.11 -0.38 0.00

Peak to Valley [%] 93.09 81.38 99.65

Load Factor [%] 3.65 1.38 7.24

Ramp [MW] -0.44 -1.95 0.57

Table 10.5: Performance metrics for Los Angeles feeder load shaping optimization, low wind pene-
tration case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 0.71 0.46 0.92

Peak Demand [MW] -0.04 -0.17 0.02

Peak to Valley [%] 97.87 91.83 100.19

Load Factor [%] 1.74 0.74 4.17

Ramp [MW] -0.23 -0.79 0.10
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Figure 10.12: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, high wind penetration case, 70% participation.
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Figure 10.13: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, low wind penetration case, 70% participation.
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Figure 10.14: Feeder demand profiles for Los Angeles, July 9 load shape optimization, high wind
penetration case, 70% participation.
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Figure 10.15: Feeder demand profiles for Los Angeles, July 13 load shape optimization, high wind
penetration case, 70% participation.
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10.7 New York

In contrast to the Los Angeles feeder demand curves, New York exhibits much less variability

due to a more consistent output by the wind turbines in both high and low wind scenarios (Figures

10.16 and 10.17). During many of the days, output from the generators is nearly constant at

approximately 1MW. Bumps and dips in the base case demand curve relative to the no wind cases

considered previously are much less prevalent than in Houston or Los Angeles. Still, some variation

is introduced and the controller responds accordingly.

According to metrics in Tables 10.6 and 10.7, performance generally improves over the base

case, but shows additional ramping. In contrast, power spectrum analysis suggests the opposite,

with a shift towards greater DC power and reduced power in the twenty-four to six hour frequency

range. A very marginal increase can be seen in the six to four hour range, but much smaller

than any change in other ranges. Low participation results show the ramping metric to decrease

compared to the base case, with similar power spectrum characteristics.

Smoothing of the composite base case demand can be seen in greater detail in Figures 10.20

and 10.21. Peak demand is reduced and oscillations in demand between midnight and 10:00 are

generally eliminated in the July 3 case. The step increase and decrease seen in the July 10 plot

is the result of cut-out as wind speed exceeds the cut-out speed of one of the two turbines. The

controller is not able to remove this feature entirely, but provides some smoothing in the hours

before and after to help reduce the magnitude of the step. Similarly, the controller reduces the

steep change in demand at 19:00 by filling-in the hours between 19:00 and 23:00.

Table 10.6: Performance metrics for New York feeder load shaping optimization, high wind pene-
tration case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 2.48 2.06 2.99

Peak Demand [MW] -0.13 -0.44 0.03

Peak to Valley [%] 79.98 61.92 98.39

Load Factor [%] 3.59 1.76 6.99

Ramp [MW] 0.26 -1.27 1.77
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Figure 10.16: Feeder demand profiles for New York load shape optimization, high wind penetration
case, 70% participation.
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Figure 10.17: Feeder demand profiles for New York load shape optimization, low wind penetration
case, 70% participation.



228

Table 10.7: Performance metrics for New York feeder load shaping optimization, low wind pene-
tration case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 2.44 2.04 2.98

Peak Demand [MW] -0.06 -0.23 0.08

Peak to Valley [%] 88.74 77.50 98.83

Load Factor [%] 2.58 1.15 5.38

Ramp [MW] 0.05 -0.96 0.73
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Figure 10.18: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, high wind penetration case, 70% participation.
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Figure 10.19: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, low wind penetration case, 70% participation.
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Figure 10.20: Feeder demand profiles for New York, July 3 load shape optimization, high wind
penetration case, 70% participation.
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Figure 10.21: Feeder demand profiles for New York, July 10 load shape optimization, high wind
penetration case, 70% participation.
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10.8 Summary and Conclusions

The effectiveness of the controller in reducing wind-induced variation in the Houston case is

impressive. Previous results suggested that the methodology may be well suited to eliminating de-

mand fluctuations on the one to two hour time scale, provided that enough flexible cooling demand

is available. These results provides further confirmation of those findings. Also consistent with

previous findings, the effectiveness of the optimization varies across feeders, resulting in demand

shaping limitations in the Los Angeles1 feeder in particular.

It should be pointed out that the limitations encountered are not necessarily the fault of the

method. Rather, as discussed in previous chapters, the limitations seem to be related to the size

of the demand being shifted relative to the demand available, and the effectiveness of buildings to

store cooling investments made to shift load. This implies that with larger flexible demands and

more efficient storage, the method can be applied to demand shaping more effectively. Applications

of this method to battery storage, plug-in hybrid vehicles and electric vehicles would confirm this

hypothesis; this is a very interesting area of future research for which this methodology seems

perfectly suited.

1 That is not to say that the method would never work in Los Angeles. Rather, the effectiveness in Los Angeles
is probably quite specific to the population of houses participating. This suggests an area of future research.



Chapter 11

Conclusions and Future Work

This work evaluates the effectiveness of model predictive control as a mechanism for shaping

electric demand through residential HVAC set point manipulation. A decentralized MPC method-

ology is developed that allows the study of optimal control strategies applied to thousands of homes

simultaneously. Using distribution network power flow simulation, the results of the controllers’

actions are evaluated at the distribution feeder level to evaluate the aggregate impact on feeder

demand. Three combinations of feeders and climates, representing several typical of those found

in the United States, are studied. The work further considers the ability of the methodology to

address feeder demand variability introduced when large amounts of solar and wind generation

are present. The following chapter briefly summarizes the results and conclusions drawn from this

research, followed by a discussion of potential areas of future work.

11.1 Summary of Results & Conclusions

Residential demand management is still very much a nascent idea. Pilot projects and small-

scale demonstrations are the norm, due in part to the investment required to install the required

hardware and implement the communication framework. The recent introduction and popularity

of so-called “smart thermostats” has allowed much deeper penetration of technologies that enable

demand management on a large scale. Yet, it is not clear what impacts large-scale implementation of

demand management would yield. In this work, a very simple idealized demonstration shows that

a large scale deployment of the current demand response methodology could result in excessive
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demand spikes exceeding the capacity of the distribution network. These demand rebounds are

known to utilities as a result of pilot projects, and present a challenge to implementation.

More intelligent solutions to the residential demand management problem exist. Through

model predictive control, it is believed that demand rebounds may be mitigated or eliminated

altogether. Further, it is believed that MPC may allow large groups of buildings to shape electric

demand according the needs of the utility: to level demand, remove variability, and potentially

mitigate the issues associated with large amounts of renewable energy generation. The decentralized

MPC methodology developed in this work allows investigations into demand management strategies

to be studied at the distribution feeder level, incorporating the demand behavior of thousands of

individual buildings.

Initial experiments using a simple demand limiting objective show the approach to be effective

in reducing peak demand. Results vary according to the location, as the air conditioning load,

i.e. the flexible cooling demand, differs from one building population to another. Although peak

demand reductions are not as large as those measured in the demand response cases, the effect is

more sustained, and the rebound eliminated. The smoothing of the feeder demand curve, a side

effect of the demand limiting objective, shows the potential of the methodology for reducing demand

variability. Several metrics, including peak to valley ratio, load factor and ramping, quantify the

additional benefits to the demand limiting approach.

The work then evaluates the methodology applied to dynamic pricing scenarios. Hourly day-

ahead pricing forecasts generated from historical price and weather data provide the driving signal

for the model predictive controller, which attempts to minimize daily energy costs at each home.

Day-ahead pricing has been proposed as a solution to supply-demand imbalances by encouraging

the shift of electricity use to low priced portions of the day. The objective considered in this research

unfortunately does not consider the larger ramifications of price-based optimization, resulting in

aggregate demand behavior that introduces large fluctuations to the feeder demand. To the best of

the author’s knowledge, this is the first study of this type to be conducted using day-ahead price

optimization without a price-feedback mechanism. An experiment where feedback is introduced
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shows that oscillations in demand can be created and magnified using a price-based objective,

suggesting that alternatives be explored to address demand shaping directly, rather than through

a price-based proxy.

By directing the optimizer towards a demand shaping objective explicitly, the problems en-

countered in price-based optimization is avoided. The new approach employs a reference signal

supplied to each home telling the home when to increase or decrease electric demand relative to

normal operation. This load shaping optimization results in incremental adjustments by each home

that in aggregate create the desired demand profile at the distribution feeder level. The approach

shows an impressive ability to smooth the feeder demand profile on days containing demand vari-

ability. Peak demand is lowered in many cases, but because demand limiting is not the explicit

objective, the reductions are not as great as those seen in the demand limiting optimization. Fur-

ther refinement to the reference demand curve, i.e. the desired feeder demand shape, may result in

additional demand reduction benefits. Other metrics such as peak to valley ratio, load factor and

ramping show improvements consistent with the demand smoothing effects of the optimization.

The new optimization approach, while still decentralized is considered to be “directed”. That is,

although there is no centralized controller making control decisions for all homes, the formulation

of the objective allows indirect coordination of the building population by virtue of the reference

signal. This provides a template for real-world implementation that can be realized with today’s

smart thermostats.

This methodology extends well to removing the variations in demand created when large

amounts of rooftop solar electric generation is present. Traditionally, the effect of distributed solar

generation has not been problematic for electric utilities due to low penetration levels. In parts of

the United States, however, the rapid adoption of rooftop solar is beginning to create problems [21].

These include sustained, steep ramping and over-generation periods that are difficult for traditional

thermal generators to accommodate. Results of simulations suggest that the methodology shows the

greatest benefit in removing short term variations in demand on the order of one or two hours. The

ability to remove the six to twelve hour demand features that solar generation can often produce
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is limited, but the methodology does show some benefit. The limitations of the methodology are

related to the amount of flexible cooling demand.

The final cases considered in this work investigate the ability of the methodology to shape

demand according to needs beyond the distribution feeder. All previous investigations have con-

sidered shaping demand within the feeder assuming that the shape of demand at the distribution

transformer is a proxy for system demand. In many scenarios, this is not a valid assumption as

demand at different parts of the distribution system is a function of many factors, not all residen-

tial. The introduction of utility-scale wind generation at high penetration levels is such a case.

Over-production by wind farms can result in curtailment, and changing weather conditions can

wreak havoc [58] on traditional generation which must be rapidly ramped to adjust system output

to offset the peaks and troughs created by the variation introduced. Similar to the previous results,

the methodology demonstrates an ability to shape demand at the one and two hour time frame,

virtually removing all short term variations in wind turbine output.

The use of model predictive control as a mechanism for shaping residential HVAC electrical

demand shows promise in reducing peak demand, increasing load factor and smoothing the variabil-

ity of renewable energy output when aggregated across a large number of buildings. Furthermore,

the decentralized approach studied here provides a framework for a real-world approach which is

both computationally tractable and implementable using current technologies. The choice of opti-

mization objective is an important consideration, as unexpected consequences can result when the

objective pursued by individual homes does not align well with the needs of the distribution system.

The effectiveness of the approach is largely limited by the amount of flexible demand present in

the system, a function of building population and characteristics.

11.2 Contributions & Future Work

Chapter 1 introduced a number of research questions that have directed this research. Each

is summarized and given separate treatment below to highlight the important contributions of this

work, limitations and suggestions for future research.
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How would distributed HVAC MPC be performed and can this be a template for real-world imple-

mentation?

A significant contribution of this work has been the development and demonstration of a

methodology that can be used to study the large-scale impacts of distributed residential MPC on

the electric distribution system. The method studied in this work avoids the inherent difficulty of

performing a centralized optimization with thousands of individual HVAC controllers by distribut-

ing the details of optimization to each controller instead. The method allows for global objectives to

be realized by directing the actions of the individual controllers towards a common goal. Not only

does this allow for more realistic models of system and controller, it provides a realistic solution to

a very real problem that would be encountered in actual implementation.

It is not clear from this work that simulating and optimizing each building separately is truly

required. For example, the entire residential building stock may be easily classified by half a dozen

or so prototypical buildings. Considerable computation may be avoided by simply optimizing a few

prototypical buildings and applying the optimized result to a larger population in simulation. That

said, the diversity of responses from individual buildings may be the critical feature that yields

the results seen in this work. In practice, the diversity of response due to occupant behavior may

undermine any attempts at model reduction. Identifying how the methodology explored in this

work could be simplified is a potential avenue for future research.

The method studied here can be considered a type of agent-based approach in that the

controllers all make their own decisions about how best to operate. That is not to say that this

approach results in the global best solution; proving that is not trivial. Indeed, there are likely

opportunities to coordinate operation that this method may overlook. Studies comparing this

method to a centralized method using the same level of modeling detail may help illuminate areas

of improvement.

There are of course other alternatives using a more formal agent-based approach. These

methods represent a hybrid of the two above: not entirely centralized, but not entirely distributed

either. Comparison of classic agent-based methods with the current would illustrate the value in
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limited coordination between agents. It must noted, however, that these methods assume some

inter-agent communication that complicates implementation considerably in any real-world appli-

cation — privacy and security concerns notwithstanding. The latter are already a source of debate

in the larger smart grid discussion.

What, is the signal or driving function that must be fed to individual homes such that the aggregate

response meets the objectives of the utility?

This work investigates three driving functions that can be used by residential buildings to

shape electric demand, evaluated using a set of performance metrics assumed to represent the needs

common to load serving entities. These entities include electric utilities (regulated, deregulated,

municipal and cooperative), electricity retailers and aggregators. A contribution of this work has

been to show how these driving functions result in very different performance under a variety of

conditions.

In the case of the dynamic-price investigations, this work highlights a very important finding

which provide guidance for future work. The use of a proxy signal, price, to drive a particular

aspect of grid operation makes the formulation of an objective very difficult. Day-ahead price opti-

mization at the home level results in increased demand variability and large fluctuations, possibly

destabilizing operation. In retrospect this is an obvious result because the homes are incentivized

to adjust operation to avoid high price, regardless of the effect on absolute demand. Therefor any

future investigations need to consider how utility goals align with those of the individual homes so

that one does not subvert the other.

Demand limiting and load shaping investigations consider primarily the needs of the load

serving entities, and do not address individual homes explicitly. Although performance metrics

show a great potential for lowering peak demand, increasing load factor, and eliminating intra-day

variability, the increase in total energy consumption suggests that costs to residents may increase

under these control schemes. The increase in consumption implies a possible increase in emissions

as well. Future work should consider the economic and environmental impacts of this approach to
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provide a larger context to the results.

Can distributed MPC be used for day-ahead resource planning, given a set of installed traditional

generation?

The work here assumes perfect forecast knowledge of building loads, weather and a whole

host of other factors affecting the operation of the electrical grid. In theory, this method could be

applied to multiple feeders to allow better day-ahead planning and eliminate the need for peaking

plants on selected days. This work, however, does not provide an answer to this question. Rather,

it provides a first step towards investigations which could. Future investigations which consider the

uncertainty inherent in many of these assumptions are required before any definite conclusions can

be drawn.

What impact would distributed MPC have on electric grid operation in the presence of distributed

generation, and would distributed MPC allow a higher penetration of renewable energy to be uti-

lized?

This work is the first to consider the use of residential MPC to address the inherent vari-

ability that large scale renewable energy integration introduces. This work has contributed an

understanding of the limitations of residential HVAC demand shaping as it relates to variability

occurring on different time scales. The cases investigated here indicate that variations on shorter

time scales can be almost completely removed by the reference demand approach. Variations on

longer time scales cannot be eliminated due to physical limitations associated with shifting cooling

loads for long periods of time.

The separating line between short and long time frames is difficult to quantify in a single

value. In fact, this line likely changes from day to day as a function of the amount of flexible

cooling demand. Referring back to Chapter 5, it can be seen on the highest demand days that

the system returns back to normal demand between 1-3 hours depending on the location. The

distinction between short and long time frames has a relationship with this settling time. That
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is, the length of time the controller is able to shift demand is only as long as this settling time.

Thus, a short time frame is limited to this settling time. On mild days, this time may be longer;

on hot days, shorter. Of course, this settling time is also function of the optimization boundaries

and many other factors. Given this definition, anything greater that this settling time would be

considered a long time frame.

The investigations studied here use day-ahead information for optimization with a full 24

hour planning horizon. Because the method studied here appears to work well at short time

frames, future work should consider the use of this method as a means for short term curtailment

similar to the investigations by Olivieri et al. [73]. Beyond curtailment, additional opportunities

to accommodate much higher frequency variations in demand, both up and down, may exist using

this method. For example, this work considered solar variations on the order of hours, but higher

frequency variations are observed in practice. Shortening the planning horizon, simulation time

step and decision variable length may allow extremely quick response to rapidly changing conditions

caused by solar and wind variations, or outages. This may allow participation in ancillary electricity

markets, e.g. spinning reserve, frequency regulation and voltage control.

With improved storage efficiency and capacity, it is likely that this decentralized MPC ap-

proach could be used to smooth diurnal variations in electric system demand. In fact, the generic

nature of the method lends itself to many applications, not just HVAC. For example, the extension

of the methodology to electric vehicle (EV) charging or residential battery storage is quite obvious.

There is a large amount of research being performed on EVs as load shaping resources; to the best

of the author’s knowledge, the reference demand optimization developed here is not represented in

the literature and would provide an valuable contribution to the body of work that already exists

in that area. Similarly, the use of the technique as a micro-grid management strategy represents

another fruitful area of application.
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Figure A.1: Normalized annual Houston feeder demand profile.
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Figure A.2: Normalized annual Los Angeles feeder demand profile.
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Figure A.3: Normalized annual New York feeder demand profile.
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Supplement to Demand Limiting Optimization

B.1 Houston

Table B.1: Performance metrics for Houston feeder demand limiting optimization, 30% participa-
tion.

Mean Min Max

Electric Consumption [MWh] 1.60 1.26 1.96

Peak Demand [MW] -0.26 -0.49 -0.14

Peak to Valley [%] 88.36 79.84 95.63

Load Factor [%] 2.30 1.61 3.49

Ramp [MW] -0.53 -1.75 0.55
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Figure B.1: Total spectral power as a function of frequency bin for Houston feeder demand limiting
optimization, 30% participation.
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Figure B.2: Feeder demand profiles for Houston demand limiting optimization, 15 minute moving
average, 70% participation.
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Figure B.3: Feeder demand profiles for Houston demand limiting optimization, 30 minute moving
average, 70% participation.
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Figure B.4: Feeder demand profiles for Houston demand limiting optimization, 90 minute moving
average, 70% participation.
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Figure B.5: Feeder demand profiles for Houston demand limiting optimization, 120 minute moving
average, 70% participation.
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Figure B.6: Feeder demand profiles for Houston demand limiting optimization, 30% participation.
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Figure B.7: Feeder demand profiles for Houston, July 29 demand limiting optimization, 70% par-
ticipation.
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Figure B.8: Experiment to measure precooling investment and flexible demand in Houston, July
29 feeder, 70% participation.
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B.1.1 Demand Limiting as a Function of Mass Level

Section 3.1.11 showed the reduced order model to be somewhat insensitive to the range of

internal mass levels observed in the building population. One question that arises is whether or not

this affects the optimization results. In theory, a very massive building should be able to shift a

larger amount of the cooling load, thus reducing peak demand. Although the range of mass levels

simulated in this work is relatively small, an experiment can be conducted to show how mass level

affects demand limiting at an aggregate level.

The analysis involves performing a demand limiting optimization on a single day using the

Houston feeder model. Participants are ranked and grouped into quartiles by mass level. Mass

level is expressed as mass to floor area ratio and values range between 2.5 and 4.0. 2100 homes

in the Houston feeder have air conditioning, yielding 525 homes in each quartile. The remaining

homes are not included in the analysis. The optimization is performed four times, i.e. once per

quartile, assuming that the entire quartile group participates.

Figure B.9 shows the resulting aggregate demand profiles. The Base Case series represents the

aggregate demand of the 2100 homes before optimization. The Fourth Quartile series represents

optimized aggregate demand assuming only the highest mass level quartile participates in the

optimization. The First Quartile series assumes only the lowest mass level quartile participates.

Results of the experiment support the previous observations regarding sensitivity to internal

mass level. Whether or not the range of mass levels is truly representative of the building stock

is of some considerable debate. Further exploration of how this and other building characteristics

affect aggregate feeder demand is left for future consideration.
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Figure B.9: Feeder demand profiles by mass level for Houston, July 29 demand limiting optimiza-
tion.
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B.2 Los Angeles

Table B.2: Performance metrics for Los Angeles feeder demand limiting optimization, 30% partic-
ipation.

Mean Min Max

Electric Consumption [MWh] 0.26 0.18 0.35

Peak Demand [MW] -0.03 -0.08 -0.01

Peak to Valley [%] 98.91 97.15 99.70

Load Factor [%] 0.89 0.43 1.84

Ramp [MW] -0.02 -0.16 0.11
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Figure B.10: Total spectral power as a function of frequency bin for Los Angeles feeder demand
limiting optimization, 30% participation.
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Figure B.11: Feeder demand profiles for Los Angeles demand limiting optimization, 30% partici-
pation.
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Figure B.12: Feeder demand profiles for Los Angeles, July 24 demand limiting optimization, 70%
participation.
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B.3 New York

Table B.3: Performance metrics for New York feeder demand limiting optimization, 30% partici-
pation.

Mean Min Max

Electric Consumption [MWh] 0.80 0.64 1.22

Peak Demand [MW] -0.11 -0.19 -0.06

Peak to Valley [%] 92.33 80.91 97.96

Load Factor [%] 1.82 1.11 3.00

Ramp [MW] -0.21 -0.70 0.17
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Figure B.13: Total spectral power as a function of frequency bin for New York feeder demand
limiting optimization, 30% participation.
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Figure B.14: Feeder demand profiles for New York demand limiting optimization, 30% participation.
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Figure B.15: Feeder demand profiles for New York, July 23 demand limiting optimization, 70%
participation.
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Figure B.16: Experiment to measure precooling investment and flexible demand in New York, July
16 feeder, 70% participation.



Appendix C

Supplement to Dynamic Price Optimization

C.1 Houston – Day-Ahead Price

Table C.1: Performance metrics for Houston feeder day-ahead price optimization, ramp-return case,
30% participation.

Mean Min Max

Electric Consumption [MWh] -0.85 -1.14 -0.30

Peak Demand [MW] -0.24 -1.08 0.36

Peak to Valley [%] 90.94 79.77 99.74

Load Factor [%] 1.11 -2.67 6.65

Ramp [MW] -0.19 -3.31 1.82
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Figure C.1: Total spectral power as a function of frequency bin for Houston feeder day-ahead price
optimization, ramp-return upper boundary case, 30% participation.
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Figure C.2: Feeder demand profiles for Houston day-ahead price optimization, ramp-return upper
boundary case, 30% participation.
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Figure C.3: Feeder demand profiles for Houston, July 29 day-ahead price optimization, zero-degree
upper boundary case, 70% participation.



276

C.2 Los Angeles – Day-Ahead Price

Table C.2: Performance metrics for Los Angeles feeder day-ahead price optimization, 70% partici-
pation.

Mean Min Max

Electric Consumption [MWh] -0.64 -0.87 -0.50

Peak Demand [MW] -0.02 -0.17 0.09

Peak to Valley [%] 99.54 95.04 102.65

Load Factor [%] -0.45 -2.81 2.86

Ramp [MW] 0.18 -0.18 0.46

Table C.3: Performance metrics for Los Angeles feeder day-ahead price optimization, zero-degree
upper boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] -0.08 -0.18 -0.03

Peak Demand [MW] 0.02 -0.06 0.13

Peak to Valley [%] 100.70 98.29 104.50

Load Factor [%] -0.58 -3.06 0.99

Ramp [MW] 0.15 -0.16 0.46
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Table C.4: Performance metrics for Los Angeles feeder day-ahead price optimization, ramp-return
upper boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] -0.48 -0.65 -0.34

Peak Demand [MW] 0.19 0.01 0.32

Peak to Valley [%] 105.58 100.31 109.44

Load Factor [%] -4.14 -6.34 -0.66

Ramp [MW] 0.29 0.04 0.56

Table C.5: Performance metrics for Los Angeles feeder day-ahead price optimization, ramp-return
case, 30% participation.

Mean Min Max

Electric Consumption [MWh] -0.21 -0.32 -0.15

Peak Demand [MW] 0.07 -0.03 0.13

Peak to Valley [%] 102.02 98.97 104.00

Load Factor [%] -1.59 -2.88 0.40

Ramp [MW] 0.10 -0.17 0.35

●

●●
●

●

●

●

0.0

0.2

0.4

0.6

0.8

>24hr 24−12hr 12−6hr 6−4hr 4−3hr 3−2hr 2−1hr <1hr
Frequency Bin

S
pe

ct
ra

l P
ow

er
 [%

]

Series

Base Case

Optimized

Figure C.4: Total spectral power as a function of frequency bin for Los Angeles feeder day-ahead
price optimization, 70% participation.



278

●

●●
●

●●●
●●●0.0

0.2

0.4

0.6

0.8

>24hr 24−12hr 12−6hr 6−4hr 4−3hr 3−2hr 2−1hr <1hr
Frequency Bin

S
pe

ct
ra

l P
ow

er
 [%

]

Series

Base Case

Optimized

Figure C.5: Total spectral power as a function of frequency bin for Los Angeles feeder day-ahead
price optimization, zero-degree upper boundary case, 70% participation.
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Figure C.6: Total spectral power as a function of frequency bin for Los Angeles feeder day-ahead
price optimization, ramp-return upper boundary case, 70% participation.
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Figure C.7: Total spectral power as a function of frequency bin for Los Angeles feeder day-ahead
price optimization, ramp-return upper boundary case, 30% participation.
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Figure C.8: Feeder demand profiles for Los Angeles day-ahead price optimization, 70% participa-
tion.
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Figure C.9: Feeder demand profiles for Los Angeles day-ahead price optimization, ramp-return
upper boundary case, 70% participation.
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Figure C.10: Feeder demand profiles for Los Angeles day-ahead price optimization, zero-degree
upper boundary case, 70% participation.
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Figure C.11: Feeder demand profiles for Los Angeles day-ahead price optimization, ramp-return
upper boundary case, 30% participation.
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Figure C.12: Feeder demand profiles for Los Angeles, July 7 day-ahead price optimization, 70%
participation.
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Figure C.13: Feeder demand profiles for Los Angeles, July 24 day-ahead price optimization, 70%
participation.
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Figure C.14: Feeder demand profiles for Los Angeles, July 28 day-ahead price optimization, 70%
participation.
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C.3 Los Angeles – Synthetic Price

Table C.6: Performance metrics for Los Angeles feeder synthetic price optimization, zero-degree
upper boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] -0.08 -0.19 -0.04

Peak Demand [MW] -0.03 -0.11 0.00

Peak to Valley [%] 98.90 96.49 100.18

Load Factor [%] 0.46 -0.14 1.82

Ramp [MW] -0.02 -0.29 0.21

Table C.7: Performance metrics for Los Angeles feeder synthetic price optimization, ramp-return
upper boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] -0.49 -0.66 -0.37

Peak Demand [MW] 0.13 0.06 0.22

Peak to Valley [%] 103.59 100.83 106.54

Load Factor [%] -3.02 -5.23 -1.61

Ramp [MW] 0.18 -0.04 0.52
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Table C.8: Performance metrics for Los Angeles feeder synthetic price optimization, zero-degree
case, 30% participation.

Mean Min Max

Electric Consumption [MWh] -0.03 -0.08 -0.01

Peak Demand [MW] -0.02 -0.06 0.03

Peak to Valley [%] 99.44 98.24 100.64

Load Factor [%] 0.28 -0.60 1.01

Ramp [MW] 0.00 -0.16 0.17
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Figure C.15: Total spectral power as a function of frequency bin for Los Angeles feeder synthetic
price optimization, zero-degree upper boundary case, 70% participation.
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Figure C.16: Total spectral power as a function of frequency bin for Los Angeles feeder synthetic
price optimization, ramp-return upper boundary case, 70% participation.
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Figure C.17: Total spectral power as a function of frequency bin for Los Angeles feeder synthetic
price optimization, zero-degree upper boundary case, 30% participation.
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Figure C.18: Feeder demand profiles for Los Angeles synthetic price optimization, zero-degree upper
boundary case, 70% participation.
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Figure C.19: Feeder demand profiles for Los Angeles synthetic price optimization, ramp-return
upper boundary case, 70% participation.
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Figure C.20: Feeder demand profiles for Los Angeles synthetic price optimization, zero-degree upper
boundary case, 30% participation.
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C.4 New York – Day-Ahead Price

Table C.9: Performance metrics for New York feeder day-ahead price optimization, zero-degree
upper boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 3.24 1.89 4.24

Peak Demand [MW] 0.14 -0.32 0.43

Peak to Valley [%] 91.81 81.30 98.67

Load Factor [%] 0.82 -2.52 4.88

Ramp [MW] 0.72 -0.45 2.82

Table C.10: Performance metrics for New York feeder day-ahead price optimization, 70% partici-
pation.

Mean Min Max

Electric Consumption [MWh] 1.54 0.20 2.90

Peak Demand [MW] 0.15 -0.46 0.52

Peak to Valley [%] 92.62 79.44 102.04

Load Factor [%] -0.53 -5.44 6.31

Ramp [MW] 1.32 -0.09 4.50
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Table C.11: Performance metrics for New York feeder day-ahead price optimization, ramp-return
upper boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] 2.11 1.14 3.29

Peak Demand [MW] 0.41 -0.09 0.79

Peak to Valley [%] 96.20 82.51 103.39

Load Factor [%] -2.81 -6.81 2.17

Ramp [MW] 1.30 -0.01 4.09

Table C.12: Performance metrics for New York feeder day-ahead price optimization, ramp-return
case, 30% participation.

Mean Min Max

Electric Consumption [MWh] -0.63 -0.93 -0.34

Peak Demand [MW] 0.02 -0.31 0.31

Peak to Valley [%] 98.37 84.92 103.87

Load Factor [%] -0.79 -3.77 2.81

Ramp [MW] 0.28 -0.28 1.02
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Figure C.21: Total spectral power as a function of frequency bin for New York feeder day-ahead
price optimization, zero-degree upper boundary case, 70% participation.
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Figure C.22: Total spectral power as a function of frequency bin for New York feeder day-ahead
price optimization, 70% participation.
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Figure C.23: Total spectral power as a function of frequency bin for New York feeder day-ahead
price optimization, ramp-return upper boundary case, 70% participation.
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Figure C.24: Total spectral power as a function of frequency bin for New York feeder day-ahead
price optimization, ramp-return upper boundary case, 30% participation.
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Figure C.25: Feeder demand profiles for New York day-ahead price optimization, zero-degree upper
boundary case, 70% participation.
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Figure C.26: Feeder demand profiles for New York day-ahead price optimization, ramp-return
upper boundary case, 70% participation.
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Figure C.27: Feeder demand profiles for New York day-ahead price optimization, 70% participation.
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Figure C.28: Feeder demand profiles for New York day-ahead price optimization, ramp-return
upper boundary case, 30% participation.
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Figure C.29: Feeder demand profiles for New York, July 14 day-ahead price optimization, 70%
participation.
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Figure C.30: Feeder demand profiles for New York, July 17 day-ahead price optimization, 70%
participation.
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Figure C.31: Feeder demand profiles for New York, July 19 day-ahead price optimization, 70%
participation.
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C.5 New York – Synthetic Price

Table C.13: Performance metrics for New York feeder synthetic price optimization, zero-degree
upper boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] -0.05 -0.22 0.19

Peak Demand [MW] -0.16 -0.29 -0.04

Peak to Valley [%] 90.32 80.17 98.19

Load Factor [%] 1.72 0.40 3.90

Ramp [MW] 0.32 -1.00 1.30

Table C.14: Performance metrics for New York feeder synthetic price optimization, ramp-return
upper boundary case, 70% participation.

Mean Min Max

Electric Consumption [MWh] -1.48 -1.97 -0.95

Peak Demand [MW] 0.21 -0.32 0.39

Peak to Valley [%] 97.15 84.77 107.00

Load Factor [%] -3.24 -5.28 2.36

Ramp [MW] 0.64 -0.77 1.41
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Table C.15: Performance metrics for New York feeder synthetic price optimization, zero-degree
case, 30% participation.

Mean Min Max

Electric Consumption [MWh] -0.02 -0.09 0.08

Peak Demand [MW] -0.08 -0.16 0.00

Peak to Valley [%] 94.69 88.11 98.69

Load Factor [%] 0.89 -0.06 2.25

Ramp [MW] -0.06 -0.78 0.41
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Figure C.32: Total spectral power as a function of frequency bin for New York feeder synthetic
price optimization, zero-degree upper boundary case, 70% participation.
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Figure C.33: Total spectral power as a function of frequency bin for New York feeder synthetic
price optimization, ramp-return upper boundary case, 70% participation.
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Figure C.34: Total spectral power as a function of frequency bin for New York feeder synthetic
price optimization, zero-degree upper boundary case, 30% participation.
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Figure C.35: Feeder demand profiles for New York synthetic price optimization, zero-degree upper
boundary case, 70% participation.
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Figure C.36: Feeder demand profiles for New York synthetic price optimization, zero-degree upper
boundary case, 30% participation.
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Figure C.37: Feeder demand profiles for New York synthetic price optimization, ramp-return upper
boundary case, 70% participation.



Appendix D

Supplement to Load Shape Optimization

D.1 Houston
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Figure D.1: Feeder demand profiles for Houston, July 21 load shape optimization, 70% participa-
tion.
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Figure D.2: Feeder demand profiles for Houston load shape optimization, 120 minute moving
average, 70% participation.
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D.2 Los Angeles

Table D.1: Performance metrics for Los Angeles feeder load shaping optimization, 30% participa-
tion.

Mean Min Max

Electric Consumption [MWh] 0.31 0.20 0.46

Peak Demand [MW] 0.00 -0.03 0.01

Peak to Valley [%] 99.62 98.15 100.43

Load Factor [%] 0.48 0.01 1.06

Ramp [MW] -0.02 -0.19 0.11
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Figure D.3: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, 30% participation.
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Figure D.4: Feeder demand profiles for Los Angeles load shape optimization, 120 minute moving
average, 70% participation.
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Figure D.5: Feeder demand profiles for Los Angeles load shape optimization, 30% participation.
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D.3 New York

Table D.2: Performance metrics for New York feeder load shaping optimization, 30% participation.

Mean Min Max

Electric Consumption [MWh] 1.03 0.86 1.25

Peak Demand [MW] -0.02 -0.08 0.03

Peak to Valley [%] 95.70 90.14 99.75

Load Factor [%] 1.00 0.39 2.01

Ramp [MW] -0.11 -0.58 0.26
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Figure D.6: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, 30% participation.
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Figure D.7: Feeder demand profiles for New York load shape optimization, 120 minute moving
average, 70% participation.



317

Jul 1 Jul 2 Jul 3 Jul 4 Jul 5

Jul 6 Jul 7 Jul 8 Jul 9 Jul 10

Jul 11 Jul 12 Jul 13 Jul 14 Jul 15

Jul 16 Jul 17 Jul 18 Jul 19 Jul 20

Jul 21 Jul 22 Jul 23 Jul 24 Jul 25

Jul 26 Jul 27 Jul 28 Jul 29 Jul 30

2

3

4

5

6

7

2

3

4

5

6

7

2

3

4

5

6

7

2

3

4

5

6

7

2

3

4

5

6

7

2

3

4

5

6

7

04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00
Time

D
em

an
d 

[M
W

]

Series

Base Case

Optimized

Figure D.8: Feeder demand profiles for New York load shape optimization, 30% participation.
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Figure D.9: Feeder demand profiles for New York, July 15 load shape optimization, 70% partici-
pation.



Appendix E

Supplement to Rooftop Solar Electric Generation

E.1 Houston
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Figure E.1: Houston feeder demand profile for the week of July 1–7 with high rooftop solar pene-
tration.
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Figure E.2: Annual Houston feeder demand profile with high rooftop solar penetration.
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Figure E.3: Feeder demand profiles for Houston, July 6 load shape optimization, high solar pene-
tration case, 70% participation.
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E.2 Los Angeles

Table E.1: Performance metrics for Los Angeles feeder load shaping optimization, high solar pen-
etration case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 0.28 0.18 0.42

Peak Demand [MW] -0.04 -0.06 -0.01

Peak to Valley [%] 97.34 93.33 99.40

Load Factor [%] 1.20 0.71 1.61

Ramp [MW] -0.14 -0.31 0.18

Table E.2: Performance metrics for Los Angeles feeder load shaping optimization, low solar pene-
tration case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 0.29 0.19 0.39

Peak Demand [MW] -0.01 -0.03 0.01

Peak to Valley [%] 99.50 98.21 100.11

Load Factor [%] 0.59 0.23 0.99

Ramp [MW] -0.02 -0.17 0.13
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Figure E.4: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, high solar penetration case, 30% participation.
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Figure E.5: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, low solar penetration case, 30% participation.
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Figure E.6: Annual Los Angeles feeder demand profile with high rooftop solar penetration.



325

Jul 1 Jul 2 Jul 3 Jul 4 Jul 5

Jul 6 Jul 7 Jul 8 Jul 9 Jul 10

Jul 11 Jul 12 Jul 13 Jul 14 Jul 15

Jul 16 Jul 17 Jul 18 Jul 19 Jul 20

Jul 21 Jul 22 Jul 23 Jul 24 Jul 25

Jul 26 Jul 27 Jul 28 Jul 29 Jul 30

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00
Time

D
em

an
d 

[M
W

]

Series

Base Case

Optimized

Figure E.7: Feeder demand profiles for Los Angeles load shape optimization, high solar penetration
case, 30% participation.
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Figure E.8: Feeder demand profiles for Los Angeles load shape optimization, low solar penetration
case, 30% participation.
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Figure E.9: Feeder demand profiles for Los Angeles, July 3 load shape optimization, high solar
penetration case, 70% participation.
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E.3 New York

Table E.3: Performance metrics for New York feeder load shaping optimization, high solar pene-
tration case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 0.98 0.72 1.25

Peak Demand [MW] -0.10 -0.20 -0.02

Peak to Valley [%] 93.61 86.46 97.91

Load Factor [%] 2.05 1.33 3.22

Ramp [MW] -0.36 -0.67 -0.03

Table E.4: Performance metrics for New York feeder load shaping optimization, low solar penetra-
tion case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 1.01 0.80 1.27

Peak Demand [MW] -0.02 -0.07 0.07

Peak to Valley [%] 95.66 89.60 99.35

Load Factor [%] 0.98 -0.01 1.97

Ramp [MW] -0.18 -0.74 0.23
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Figure E.10: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, high solar penetration case, 30% participation.
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Figure E.11: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, low solar penetration case, 30% participation.
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Figure E.12: Annual New York feeder demand profile with high rooftop solar penetration.
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Figure E.13: New York feeder demand profile for the week of July 1–7 with high rooftop solar
penetration.
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Figure E.14: Feeder demand profiles for New York load shape optimization, low solar penetration
case, 30% participation.
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Figure E.15: Feeder demand profiles for New York load shape optimization, high solar penetration
case, 30% participation.
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Figure E.16: Feeder demand profiles for New York, July 2 load shape optimization, high solar
penetration case, 70% participation.
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Figure E.17: Feeder demand profiles for New York, July 13 load shape optimization, high solar
penetration case, 70% participation.
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Figure E.18: Feeder demand profiles for New York, July 20 load shape optimization, high solar
penetration case, 70% participation.



Appendix F

Supplement to Utility Scale Wind Generation

F.1 Houston

Table F.1: Performance metrics for Houston feeder load shaping optimization, high wind penetra-
tion case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 2.07 1.77 2.44

Peak Demand [MW] -0.28 -0.80 0.05

Peak to Valley [%] 77.38 62.83 95.33

Load Factor [%] 2.72 0.68 5.27

Ramp [MW] -2.61 -4.94 -0.43

Table F.2: Performance metrics for Houston feeder load shaping optimization, low wind penetration
case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 2.09 1.84 2.37

Peak Demand [MW] -0.13 -0.53 0.07

Peak to Valley [%] 89.55 82.68 97.20

Load Factor [%] 1.75 0.50 4.08

Ramp [MW] -1.11 -2.88 0.22
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Figure F.1: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, high wind penetration case, 30% participation.
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Figure F.2: Total spectral power as a function of frequency bin for Houston feeder load shape
optimization, low wind penetration case, 30% participation.
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Figure F.3: Feeder demand profiles for Houston load shape optimization, high wind penetration
case, 30% participation.
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Figure F.4: Feeder demand profiles for Houston load shape optimization, low wind penetration
case, 30% participation.
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F.2 Los Angeles

Table F.3: Performance metrics for Los Angeles feeder load shaping optimization, high wind pen-
etration case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 0.34 0.25 0.43

Peak Demand [MW] -0.05 -0.18 -0.01

Peak to Valley [%] 96.64 90.18 99.97

Load Factor [%] 1.61 0.79 3.12

Ramp [MW] -0.33 -1.01 0.09

Table F.4: Performance metrics for Los Angeles feeder load shaping optimization, low wind pene-
tration case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 0.30 0.21 0.40

Peak Demand [MW] -0.02 -0.07 0.00

Peak to Valley [%] 99.02 96.77 100.48

Load Factor [%] 0.80 0.24 1.67

Ramp [MW] -0.13 -0.45 0.15
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Figure F.5: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, high wind penetration case, 30% participation.
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Figure F.6: Total spectral power as a function of frequency bin for Los Angeles feeder load shape
optimization, low wind penetration case, 30% participation.
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Figure F.7: Feeder demand profiles for Los Angeles load shape optimization, high wind penetration
case, 30% participation.
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Figure F.8: Feeder demand profiles for Los Angeles load shape optimization, low wind penetration
case, 30% participation.
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Figure F.9: Feeder demand profiles for Los Angeles, July 23 load shape optimization, high wind
penetration case, 70% participation.
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F.3 New York

Table F.5: Performance metrics for New York feeder load shaping optimization, high wind pene-
tration case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 1.07 0.89 1.38

Peak Demand [MW] -0.07 -0.21 0.02

Peak to Valley [%] 89.05 76.48 98.64

Load Factor [%] 1.72 0.71 3.21

Ramp [MW] -0.26 -1.13 0.38

Table F.6: Performance metrics for New York feeder load shaping optimization, low wind penetra-
tion case, 30% participation.

Mean Min Max

Electric Consumption [MWh] 1.04 0.85 1.31

Peak Demand [MW] -0.03 -0.09 0.01

Peak to Valley [%] 94.17 88.02 99.27

Load Factor [%] 1.18 0.55 2.32

Ramp [MW] -0.17 -0.75 0.31
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Figure F.10: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, high wind penetration case, 30% participation.
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Figure F.11: Total spectral power as a function of frequency bin for New York feeder load shape
optimization, low wind penetration case, 30% participation.
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Figure F.12: Feeder demand profiles for New York load shape optimization, low wind penetration
case, 30% participation.
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Figure F.13: Feeder demand profiles for New York load shape optimization, high wind penetration
case, 30% participation.
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Figure F.14: Feeder demand profiles for New York, July 24 load shape optimization, high wind
penetration case, 70% participation.



Appendix G

Assessment of Building Thermal Storage Efficiency

The ability of the controller to shift demand from one time of day to another is related to

the round-trip storage efficiency of the building envelope. Energy may be invested in the building

envelope in order to precool the building and reduce cooling energy at a later time. Some of the

precooling effect is lost to the environment and internal gains. The amount of cooling energy

avoided at some later time due to precooling is in theory the amount of precooling invested minus

the amount lost. The ratio of the amount of cooling energy avoided to the amount of precooling

invested is defined as the storage efficiency. High storage efficiency implies that precooling may

occur early in the day, and that the effects of precooling may be utilized late into the afternoon.

To test the storage efficiency of the buildings in the Los Angeles feeder, an experiment is

constructed in which the feeder is subjected to a demand limiting optimization similar to that

described in Chapter 6. In this case, however, the controller is only allowed to make set point

adjustments below the base case cooling set point. This forces the controller to use precooling to

limit peak demand, rather than a combination of precooling and cooling set point set-ups. The

controller is given the same lower boundary as the cases in Chapter 6. For this experiment, all

100% of the homes on the feeder are assumed to participate in the optimization.

Following optimization, the storage efficiency is calculated by taking the difference at each

time step between a house’s base case and optimized cooling demands. Where optimized cooling

demand is higher, the difference is considered an ‘investment’; where base case cooling demand

is higher, the difference is considered a ‘return’. The ratio of the sum of returns to the sum of
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investments in a daily basis is the daily storage efficiency. This calculation occurs for each house

and each day of the month of July, giving 41,106 observations of storage efficiency.

Storage efficiency calculated in this way is shown as a histogram in Figure G.1. It should

be noted that values greater than and equal to one were removed. The existence of these high

efficiencies is of no concern. Inspection of the data showed that many of these were the result

of rounding error. Efficiencies of unity occurred when base case and optimized case were nearly

identical except for small offsets in HVAC cycling.

The distribution mean for all observations is 0.70 or 70% storage efficiency. The distribution

shows two modes clearly, centered around 62% and 81%, although it is not obvious why. As it

relates to the optimizations presented in this work, the storage efficiency plot suggests that the

controller will be limited in the amount of precooling it will utilize. That is, precooling at times

that result in low efficiency will be avoided in favor of times that have higher efficiency, or eliminated

altogether.

This is, however, only one distribution of results. For control strategies in which the objective

function differs, the controller will make different trade-offs that result in the best objective function

value subject to the storage efficiency of the envelope. This does not necessarily mean that storage

efficiency distributions would change under different objective functions, but it stands to reason that

if the control strategy results in additional precooling, the distribution of efficiencies would reflect

that decision. Perhaps more precisely, the distribution of efficiencies would inform the decision.

The interaction between storage efficiency, objective function, and the control decisions that

result is very complex. Unfortunately, the results below do not provide enough insight to say with

confidence what effect storage efficiency has on the differences seen in precooling between Houston,

Los Angeles and New York feeders. Further investigation would be required to address this issue.

It should be noted that the quantification of a building’s thermal storage efficiency does not present

itself in the literature; this is an interesting area for recommended future research.
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Figure G.1: Histogram showing the thermal storage efficiency of the building envelope from demand
limiting optimization of the Los Angeles feeder in July with occupied cooling set point upper
boundary.



Appendix H

Assessment of Zero Demand Optimization

Chapter 8 proposes a feeder reference demand curve construction based on a simple moving

average of base case feeder demand. The construction is intended to illicit a controller response

that in aggregate leads to a smooth feeder demand curve. As seen in Chapter 6, some smoothing is

observed when the controller is asked to simply minimize demand over the entire planning horizon.

Although smoothing in that case is a side effect of demand minimization, it suggests that demand

minimization may be accomplished using the load shaping method and an alternative formulation

of reference demand curve. This observation also suggests that the shape of the reference curve

may not matter at all and that the constraints discussed in Subsection 8.1.1 may be ignored.

To test this hypothesis, a “zero demand” house reference demand curve is employed in the

load shaping method. Recall that the objective of optimization is simply the minimization of the

sum of squared error between the house demand curve and the house reference demand curve.

In this case, the house reference demand curve is flat and has a value of zero for all time steps.

Although zero demand is not physically achievable by the controller, this reference curve will

encourage the controller to flatten demand as much as possible. In theory, it should encourage the

controller to minimize energy consumption over the entire planning horizon provided that comfort

constraints. i.e. temperature boundaries, are observed. Compared to the load shaping results, this

experiment illustrates the extent of demand reductions and energy savings possible using the load

shaping methodology. In practical terms, this construction represents a default control strategy in

which there is no communication from the utility, either because of communication network failure
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or owner opt-out.

The experiment is conducted on the Houston feeder model for the month of July, using a

participation rate of 70%. It is repeated for the high wind case to provide a contrast to the results

of Chapter 10. Metrics for both cases are shown in Tables H.1 and H.2, and in Figures H.1 and

H.2. Feeder demand curves can be seen in Figures H.3 and H.4.

Generally speaking, the monthly results show a more consistent demand at the beginning of

the day compared to the demand limiting optimization. That is, instead of a high demand that

quickly diminishes, the demand stays relatively flat in the very early morning hours. Evening hours

show increased demand compared to the demand limiting optimization. It is assumed that this

increased demand is the result of demand deferral from earlier in the day. Metrics suggest that

the zero demand optimization is better able to reduce peak demand and peak to valley ratio, and

improve load factor compared with most cases investigated.

By contrast, energy consumption is increased compared to all cases investigated, presumably

due to the increased amount of demand shifting. Ramping is somewhat inconsistent, showing both

positive and negative differences from the base case; this is not terribly surprising since reduced

ramping is not an objective of the optimization. While the constant power portion of the frequency

spectrum is marginally increased, so too are the twelve to four hour ranges

Because the controller has no awareness of feeder demand, it is unable to remove any vari-

ations introduced by wind. This is most obvious in the high wind plots which show large hour to

hour variations. Although minimizing demand does not address wind produced variations directly,

some benefit can still be observed. As with the smoothing seen in previous cases, this is simply a

side effect of shifting demand. Metrics are consistent with the previous case, showing improvements

in the same areas. It is assumed that the improvements are due solely to the reduction in demand,

and not related to any synergies between wind generation and the zero demand optimization.

This result further highlights the utility of the load shaping methodology when information

about feeder demand is available to drive controller decisions. If the variations are from sources not

related to the demand being manipulated, then the demand limiting and zero demand methods will
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not be as effective as the load shaping method; neither are able to eliminate (or create) demand

during a specific time to offset demand elsewhere in the system. The high wind case illustrates this

very well. Yet the wind case is but one example. It can be argued that the purpose of the high

wind case is not to show how the method can be used to manage demand variations introduced by

wind, rather its purpose is to demonstrate how the load shaping method can be used to change the

shape of the demand in an arbitrary way.

In Section 8.1 it was stated that the desired outcome of the optimization may inform the

formation of the reference demand curve. For example, if the utility is concerned about reducing

peak demand, then this experiment shows that a zero demand reference curve can produce an

outcome similar to the demand limiting case if no wind or solar is present. However, if the utility

desires to smooth the demand curve, the load shaping optimization does produce a smoother

response compared to both demand limiting and zero demand methods under the same conditions.

July 21 and July 26 illustrate this well; peaks and troughs in the optimized results of Chapter 8

are smaller compared to those seen in Chapter 6 and those shown here. This is further supported

by the ramping metrics and frequency analysis.

This experiment suggests that the selection of reference curve is important to the objective

one is trying to achieve. Indeed, the demand limiting, zero demand and load shaping results are

all very similar when no wind is present. This result does not prove that the choice of curve is

immaterial; rather, it indicates that the load shaping method is a generalization of the demand

limiting method. That is, the load shaping method using a zero demand reference curve can produce

the demand limiting result. Based on the results of the experiment, the converse is not true.

When demand reduction is the desired objective, it appears that the constraints proposed

for the reference curve can be violated. Whether or not this is strictly true for a load shape

intended to smooth the demand curve remains an open question. However, it stands to reason

that the greater the violation of the constraint, the less certain the outcome. When constraints are

satisfied perfectly, the optimized result will match the reference curve exactly. When constraints

are violated, the optimized result will likely lie somewhere between the base case curve and the
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reference curve, but the exact result will be difficult to predict. Admittedly, knowing the limitations

a priori is not a trivial task, suggesting an area for future work.

Table H.1: Performance metrics for Houston feeder zero demand optimization, 70% participation.

Average Min Max

Electric Consumption [MWh] 5.51 4.72 6.13

Peak Demand [MW] -0.71 -1.41 -0.34

Peak to Valley [%] 76.78 69.24 86.09

Load Factor [%] 7.11 5.02 10.48

Ramp [MW] 0.24 -3.87 2.65

Table H.2: Performance metrics for Houston feeder zero demand optimization, high wind penetra-
tion case, 70% participation.

Average Min Max

Electric Consumption [MWh] 5.51 4.68 5.97

Peak Demand [MW] -0.62 -1.26 -0.11

Peak to Valley [%] 67.70 47.82 85.49

Load Factor [%] 6.86 4.53 11.33

Ramp [MW] 0.34 -4.02 2.99
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Figure H.1: Total spectral power as a function of frequency bin for Houston feeder zero demand
optimization, 70% participation.
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Figure H.2: Total spectral power as a function of frequency bin for Houston feeder zero demand
optimization, high wind penetration case, 70% participation.
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Figure H.3: Feeder demand profiles for Houston zero demand optimization, 70% participation.



359

Jul 1 Jul 2 Jul 3 Jul 4 Jul 5

Jul 6 Jul 7 Jul 8 Jul 9 Jul 10

Jul 11 Jul 12 Jul 13 Jul 14 Jul 15

Jul 16 Jul 17 Jul 18 Jul 19 Jul 20

Jul 21 Jul 22 Jul 23 Jul 24 Jul 25

Jul 26 Jul 27 Jul 28 Jul 29 Jul 30

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00
Time

D
em

an
d 

[M
W

]

Series

Base Case

Optimized

Figure H.4: Feeder demand profiles for Houston zero demand optimization, high wind penetration
case, 70% participation.


