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Abstract—In this paper, we study formal synthesis of control
policies for partially observed jump-diffusion systems against
complex logic specifications. Given a state estimator, we utilize
a discretization-free approach for formal synthesis of control
policies by using a notation of control barrier functions without
requiring any knowledge of the estimation accuracy. Our goal
is to synthesize an offline control policy providing (potentially
maximizing) a lower bound on the probability that the trajecto-
ries of the partially observed jump-diffusion system satisfy some
complex specifications expressed by deterministic finite automata.
Finally, we illustrate the effectiveness of the proposed results by
synthesizing a policy for a jet engine example.

Index Terms—Stochastic control systems, Control barrier func-
tions, Controller synthesis, Output feedback control.

I. INTRODUCTION

RECENT years have witnessed a growing interest in
formal synthesis of controllers for complex systems

against complex logic specifications [1]. These specifications
are usually expressed using temporal logic formulae or as
(in)finite strings over finite automata. Several approaches
based on finite abstraction have been widely used to solve
such synthesis problems. Existing techniques include policy
synthesis enforcing linear temporal logic specifications for
non-stochastic systems [2], [3] and for stochastic ones [4],
[5], [6]. When dealing with large systems, these approaches
suffer severely from the curse of dimensionality (i.e., compu-
tational complexity grows exponentially with the dimension
of the state set). In order to overcome the large computational
burden, a discretization-free approach, based on control barrier
functions has shown potential to solve the formal synthesis
problems (See [7], [8], [9], [10] and references therein). The
aforementioned works assume the availability of complete
state information. However, in many real applications we do
not have access to complete state information. Motivated by
this limitation, the recent result in [11] provides the synthesis
of controllers enforcing invariance properties for stochastic
control systems with incomplete information by assuming a
prior knowledge of the control barrier functions. In our recent
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result [12], we consider the problem of synthesizing controllers
for partially observed stochastic control systems. In particular,
we search for a control barrier function that provides a
controller along with a lower bound on the probability that
the system satisfies invariance specifications over a finite-time
horizon. Similar to [11], this work also assumes the existence
of an estimator with a given probabilistic accuracy. Then we
provide the overall probability threshold using the probability
bound on the estimator accuracy and that of the trajectories of
the estimator satisfying the invariance specifications, obtained
via control barrier functions.

The contributions of this paper in comparison with those of
[11], [12] are twofold. First, we provide an offline controller
synthesis approach enforcing complex logic specifications
expressed by (non)deterministic finite automata for partially
observed jump-diffusion systems. As a special case, those
properties include invariance ones. Second, we provide an
approach for computing lower bound on the probability that
the system satisfies given specifications over a finite-time
horizon without requiring any knowledge of the estimator’s
accuracy. Finally, we demonstrate the effectiveness of the
proposed results on a nonlinear jet engine example.

II. PRELIMINARIES AND PROBLEM DEFINITION

Notations: We denote the set of natural, real, and non-
negative real numbers by N, R, and R+

0 , respectively. We use
Rn to denote the n-dimensional Euclidean space and Rn×r to
denote the space of real matrices with n rows and r columns.
We denote by ei ∈ Rn the vector whose all elements are
zero, except the ith element, which is one. Given a matrix
A ∈ Rn×n, Tr(A) represents trace of A which is the sum
of all diagonal elements of A. The zero matrix in Rn×m is
denoted by 0n×m. Given sets X and Y , we donate f : X → Y
an ordinary map from X to Y and the notation |X| denotes
the cardinality of set X .

A. Partially Observed Jump-Diffusion Systems

Let the triplet (Ω,F ,P) denote a probability space with
a sample space Ω, filtration F , and the probability measure
P. The filtration F = (Fs)s≥0 satisfies the usual conditions
of right continuity and completeness [13]. Let (Wks)s≥0 be
r̄k-dimensional F-Brownian motions, k = 1, 2. Let (Pks)s≥0

be a q̄k-dimensional F-Poisson processes, with k = 1, 2.
We assume that the Poisson processes and Brownian motions
are independent of each other. The Poisson process Pks :=
[P 1
ks; · · · ;P q̄kks ] models q̄k kinds of events, k = 1, 2, whose

occurrences are assumed to be independent of each other. We



consider the partially observed jump-diffusion system (po-
JDS), denoted by S, which is described by the following
stochastic differential equations (SDE)

S :

{
d ξ = f(ξ, υ) d t+ g1(ξ) dW1t + r1(ξ) dP1t,

d y = h(ξ) d t+ g2(ξ) dW2t + r2(ξ) dP2t,
(II.1)

where ξ(t) ∈ X ⊆ Rn is the value of solution process ξ of
S, υ(t) ∈ U ⊆ Rm is the input vector, and y(t) ∈ Rp is the
output vector representing the noisy partial observation at time
t ∈ R+

0 P-almost surely (P-a.s.). Functions f : X ×U → Rn,
g1 : X → Rn×r̄1 , g2 : X → Rp×r̄2 , r1 : X → Rn×q̄1 , r2 :
X → Rp×q̄2 , and h : X → Rp are assumed to be Lipschitz
continuous to ensure existence and uniqueness of the solution
of S [13]. Throughout the paper, we use the notation ξaυ(t) to
denote the value of the solution process of S at time t ∈ R+

0

under the input signal υ starting from the initial state ξaυ(0) =
a P-a.s., in which a is a random variable that is measurable
in F0. Here, we assume that the Poisson processes P iks for
any i ∈ {1, . . . , q̄k}, k = 1, 2, have the rates of λki. In order
to provide the results in this paper, we raise the following
assumption on the existence of the estimator that estimates
the state of the po-JDS (II.1).

Assumption 2.1: The states of the po-JDS S in (II.1) can be
estimated by a proper estimator Ŝ represented in the form of
an SDE as:

Ŝ : d ξ̂ = f(ξ̂, υ) d t+K
(

d y − h(ξ̂) d t
)
, (II.2)

where K ∈ Rn×p is the estimator gain.
There are plenty of results in the literature on the computation
of estimator gain K for various classes of stochastic systems;
see the results in [14], [11], [15], and [16]. We define the
augmented process [ξ, ξ̂]T , where ξ and ξ̂ are the solution pro-
cesses of S and Ŝ, respectively. The corresponding augmented
jump-diffusion system S̃ can be defined as:[
d ξ

d ξ̂

]
=
([f(ξ, υ)

f(ξ̂, υ)

]
+

[
0n×p 0n×p
K −K

] [
h(ξ)

h(ξ̂)

])
d t

+

[
g1(ξ) 0n×r̄2
0n×r̄1 Kg2(ξ)

][
dW1t

dW2t

]
+

[
r1(ξ)
0n×q̄1

]
dP1t+

[
0n×q̄2
Kr2(ξ)

]
dP2t.

(II.3)

For later use, we provide the definition of the infinitesimal
generator (denoted by operator D) for S̃ using Ito’s differen-
tiation [13]. Let B : X × X → R be a twice differentiable
function. The infinitesimal generator of B associated with the
system S̃ for all (x, x̂) ∈ X ×X and for all u ∈ U is given
by

DB(x,x̂,u)=
[
∂xB ∂x̂B

]
(

[
f(x, u)
f(x̂, u)

]
+

[
0n×p 0n×p
K −K

][
h(x)
h(x̂)

]
)

+
1

2
Tr(
[
g1(x) 0n×r̄2
0n×r̄1 Kg2(x)

][
g1(x) 0n×r̄2
0n×r̄1 Kg2(x)

]T[
∂xxB ∂xx̂B
∂x̂xB ∂x̂x̂B

]
)

+

q̄1∑
i=1

λ1i(B(x+ r1(x)ei, x̂)−B(x, x̂))

+

q̄2∑
i=1

λ2i(B(x+Kr2(x)ei, x̂)−B(x, x̂)). (II.4)

The symbols ∂x and ∂x,x̂ in (II.4) represent first and second-
order partial derivatives with respect to x (1st argument) and
x̂ (2nd argument), respectively. Note that we dropped the
arguments of ∂xB, ∂x̂B, ∂x,xB, ∂x,x̂B, ∂x̂,xB, and ∂x̂,x̂B
in (II.4) for the sake of simplicity.

Given a po-JDS S in (II.1), we aim at synthesizing a control
policy that guarantees a potentially tight lower bound on the
probability that system S satisfies a complex specification over
a finite time horizon. The class of specifications considered in
this paper are provided in the next subsection.

Remark 2.2: The use of the augmented system S̃ will
allow us to provide the main result of the paper without
any correctness requirement on the observer. In particualr, our
augmented system formulation provides the user the flexibility
to design any observer by means of any technique. The
probabilistic distance between the values of state and their
estimator is natively considered in our formulation and one
does not need to quantify this distance a-priori which is needed
in the results proposed in [12], [11].

B. Specifications
In this subsection, we consider the class of specifications

expressed by nondeterministic finite automata (NFA) as de-
fined below.

Definition 2.3: [17] A nondeterministic finite automaton
(NFA) is a tuple A = (Q,Q0,Σ, δ, F ), where Q is a finite
set of states, Q0 ⊆ Q is a set of initial states, Σ is a finite set
(a.k.a. alphabet), δ : Q× Σ→ P (Q) is a transition function,
where P (Q) denotes the power set of Q, and F ⊆ Q is a set
of accepting (or final) states.

NFA A is called deterministic if the transition function is
defined as δ : Q×Σ→ Q, and we refer to it as deterministic
finite automata (DFA). Since every NFA can be converted to
its equivalent DFA using the powerset construction [18], in
the rest of the paper, we only deal with DFA. Moreover, it
is well known that the complement of a DFA A, denoted
by Ac, is again a DFA [19]. We use the notation q

σ−→ q′

to denote transition relation (q, σ, q′) ∈ δ. A finite word
σ = (σ0, σ1, . . . , σk−1) ∈ Σk is accepted by DFA A if there
exists a finite state run q = (q0, q1, . . . , qk) ∈ Qk+1 such that
q0 ∈ Q0, qi

σi−→ qi+1 for all 0 ≤ i < k and qk ∈ F . The
accepted language of A, denoted by L(A), is the set of all
words accepted by A.

In this work, we consider those specifications given by the
accepting languages of DFA A defined over a set of atomic
propositions Π, i.e., the alphabet Σ = Π. We should highlight
that all linear temporal logic specifications defined over finite
traces, referred to as LTLF , are recognized by DFA [20].

C. Satisfaction of Specification by po-JDS
A given po-JDS S in (II.1) is connected to the specification

given by the accepting language of a DFA A defined over a
set of atomic propositions Π, with the help of a measurable
labeling function L : X → Π as described in the next
definition which is similar to [21, Definition 2].

Definition 2.4: For a po-JDS S as in (II.1) and the la-
beling function L : X → Π, a finite sequence σ(ξaυ) =
(σ0, σ1, . . . , σk−1) ∈ Πk, k ∈ N, is a finite trace of the



solution process ξaυ over a finite time horizon [0, T ) ⊂ R+
0 if

there exists an associated time sequence t0, t1, . . . , tk−1 such
that t0 = 0, tk = T , and for all j ∈ {0, 1, . . . , k−1}, tj ∈ R+

0

following conditions hold
• tj < tj+1;
• ξaυ(tj) ∈ L−1(σj);
• If σj 6= σj+1, then for some t′j ∈ [tj , tj+1], ξaυ(t) ∈
L−1(σj) for all t ∈ (tj , t

′
j); ξaυ(t) ∈ L−1(σj+1) for all

t ∈ (t′j , tj+1); and either ξaυ(t′j) ∈ L−1(σj) or ξaυ(t′j) ∈
L−1(σj+1).

Next, we define the probability that the solution process ξaυ of
the po-JDS S starting from some initial state ξaυ(0) = a ∈ X0

under control policy υ satisfies the specification given by DFA
A.

Definition 2.5: The finite trace corresponding to the solution
process of a po-JDS S starting from a ∈ X and under the
control policy υ over a finite-time horizon [0, T ) ⊂ R+

0 , i.e.
σ(ξaυ) = (σ0, σ1, . . . , σj , . . . , σk−1) ∈ Πk as in Definition
2.4, satisfies a specification given by the language of a DFA A,
denoted by σ(ξaυ) |= A, if there exists j ∈ {0, . . . , k−1} such
that (σ0, σ1, . . . , σj) ∈ L(A). The probability of satisfaction
of the specification given by A is denoted by P{σ(ξaυ) |= A}.

Remark 2.6: The set of atomic propositions Π =
{p0, p1, . . . , pM} and the labeling function L : X → Π
provide a measurable partition of the state set X = ∪Ni=1Xi

as Xi := L−1(pi). Without loss of generality, we assume that
Xi 6= ∅ for any i.

D. Problem Definition

Now, we formally define the main synthesis problem con-
sidered in this work.

Problem 2.7: Given a po-JDS S as in (II.1), a specification
given by the accepting language of DFA A = (Q,Q0,Π, δ, F )
over a set of atomic propositions Π = {p0, p1, . . . , pM}, a
labeling function L : X → Π, and a real value ϑ ∈ (0, 1),
compute an offline control policy υ (if existing) such that
P{σ(ξaυ) |= A} ≥ ϑ, for all a ∈ L−1(pi) and some i ∈
{0, 1, . . . ,M}.

Finding a solution to Problem 2.7 (if existing) is difficult
in general. We should highlight that the proposed approach
here is sound in solving the considered synthesis problem.
This means that if the proposed method provides a solution to
a synthesis problem, then we can formally conclude that the
proposed controller renders the given specification with the
corresponding lower bound on the probability of satisfaction.
However, if the method fails to provide any solution, then
there may or may not exist a solution to the original synthesis
problem). Our approach is to compute a policy υ together
with a lower bound ϑ. Our aim is to find the potentially
largest lower bound, which can be compared with ϑ and gives
policy, i.e., a solution for Problem 2.7 if ϑ≥ ϑ. Instead of
computing a control policy that guarantees the lower bound ϑ,
we compute a policy that guarantees P{σ(ξaυ) |= Ac} ≤ ϑ̄,
for any a ∈ L−1(pi) and some i ∈ {0, 1, . . . ,M}. Then
for the same control policy the lower bound can be easily
obtained as ϑ= 1− ϑ̄. This is done by constructing a DFA Ac
whose language is the complement of the language of DFA
A. To synthesize a controller, we utilize the notion of control

barrier functions defined for augmented jump-diffusion system
S̃ introduced in the next section.

III. CONTROL BARRIER FUNCTIONS

In this section, we provide sufficient conditions using so-
called control barrier functions under which we can provide
the upper bound on the probability that the trajectories of
system S starting from any initial state in X0 ⊆ X reach
X1 ⊆ X . To provide a result giving an upper bound on the
reachability probability for the trajectory of S , we provide
conditions on barrier functions constructed over the augmented
system S̃.

Theorem 3.1: Consider a po-JDS S as in (II.1), its estimator
Ŝ as in (II.2), the resulting augmented system S̃ as in (II.3) and
sets X0, X1 ⊆ X . Suppose there exists a twice differentiable
function B : X × X → R+

0 , constants c ≥ 0 and γ ∈ [0, 1)
such that

∀(x, x̂) ∈ X0 ×X0, B(x, x̂) ≤ γ, (III.1)
∀(x, x̂) ∈ X1 ×X, B(x, x̂) ≥ 1, (III.2)
∀x̂ ∈ X,∃u ∈ U,∀x ∈ X, DB(x, x̂, u) ≤ c. (III.3)

Then the probability that the solution process ξaυ of the system
S starts from any initial state a ∈ X0 and reaches region X1

under the control policy υ within time horizon [0, T ) ⊂ R+
0

is upper bounded by γ + cT .
Proof: By using (III.1) and the fact that X1 ×

X ⊆
{

(x, x̂) ∈ X × X | B(x, x̂) ≥ 1
}

, we have
P
{
ξaυ(t) ∈ X1 ∧ ξ̂âυ(t) ∈ X ∃t ∈ [0, T ) | a, â

}
≤

P
{

sup0≤t≤TB(ξaυ(t), ξ̂âυ(t)) ≥ 1 | a, â
}
≤ B(a, â) + cT ≤

γ+cT . The second inequality is obtained by utilizing the result
of [22, Theorem 1]. This implies that the probability of the
augmented trajectory of S̃ staring from any (a, â) ∈ X0×X0

and reaching X1 ×X is upper bounded by γ + cT .
Now we get P

{
ξaυ(t) ∈ X1 ∧ ξ̂âυ(t) ∈ X ∃t ∈ [0, T ) |

a, â
}
≤ P

{
ξaυ(t) ∈ X1 ∃t ∈ [0, T ) | a

}
+P
{
ξ̂âυ(t) ∈ X ∃t ∈

[0, T ) | â
}
−P
{
ξaυ(t) ∈ X1 ∨ ξ̂âυ(t) ∈ X ∃t ∈ [0, T ) | a, â

}
.

Since, the second and last terms trivially hold with probability
1, one has P

{
ξaυ(t) ∈ X1 ∧ ξ̂âυ(t) ∈ X ∃t ∈ [0, T ) | a, â

}
≤

P
{
ξaυ(t) ∈ X1 ∃t ∈ [0, T ) | a

}
. Now, since the right term

of the and (i.e. ∧) is held for all time, the inequality above
becomes an equality and one gets P

{
ξaυ(t) ∈ X1 ∃t ∈ [0, T ) |

a
}
≤ γ + Tc which concludes the proof.

The function B in Theorem 3.1 satisfying (III.1)-(III.3) is
usually referred to as the control barrier function.

Remark 3.2: Condition (III.3) implicitly associates a sta-
tionary controller u : X → U according to the existential
quantifier on u for any x̂ ∈ X and is independent of choice of
x ∈ X . The stationary control policy υ driving the system is
readily given by υ(t) = u(ξ̂aυ(t)), where ξ̂aυ is the solution
process of the estimator.

IV. FORMAL SYNTHESIS OF CONTROLLERS

To synthesize control policies using control barrier functions
enforcing specifications expressed by DFA A, we first provide
the decomposition of specifications into sequential reachability
tasks which will later be solved using control barrier functions.



A. Decomposition into Sequential Reachability

Consider a DFA A expressing the properties of interest for
the system S. Consider DFA Ac = (Q,Q0,Π, δ, F ) whose
language is the complement of the language of DFA A. The
sequence q = (q0, q1, . . . , qk) ∈ Qk+1, k ∈ N is called an
accepting state run if q0 ∈ Q0, qk ∈ F , and there exists a finite
word σ = (σ0, σ1, . . . , σk−1) ∈ Πk such that qi

σi−→ qi+1

for all i ∈ {0, 1, . . . , k − 1}. We denote the finite word
corresponding to accepting state run q by σ(q). We also
indicate the length of q ∈ Qk+1 by |q|, which is k + 1. Let
R be the set of all finite accepting state runs starting from
q0 ∈ Q0 excluding self-loops, where

R:={q=(q0, q1, . . . , qk)∈Qk+1 | qk∈F, qi 6=qi+1,∀i<k}.

Computation of R can be done algorithmically by viewing
Ac as a directed graph G = (V, E) with vertices V = Q and
edges E ⊆ V × V such that (q, q′) ∈ E if and only if q′ 6= q

and there exist p ∈ Π such that q
p−→ q′. For any (q, q′) ∈ E ,

we donate the atomic proposition associated with the edge
(q, q′) by σ(q, q′). From the construction of the graph, it is
obvious that the finite path in the graph starting from vertices
q0 ∈ Q0 and ending at qF ∈ F is an accepting state run q
of Ac without any self-loop and therefore belongs to R. One
can easily compute R using depth first search algorithm [23].
For each p ∈ Π, we define a set Rp as

Rp := {q = (q0, q1, . . . , qk) ∈ R | σ(q0, q1) = p}. (IV.1)

Decomposition into sequential reachability is performed as
follows. For any q = (q0, q1, . . . , qk) ∈ Rp ∀p ∈ Π, we
define Pp(q) as a set of all state runs of length 3,

Pp(q) := {(qi, qi+1, qi+2) | 0 ≤ i ≤ k − 2}. (IV.2)

Now, we define P(Ac) :=
⋃
p∈Π

⋃
q∈Rp Pp(q).

Remark 4.1: Note that Pp(q) = ∅ for |q| = 2. In fact, any
accepting state run of length 2 specifies a subset of the state
set such that the system satisfies Ac whenever it starts from
that subset. This gives trivial zero probability for satisfying
the specification, thus neglected in the sequel.

For the illustration of the above sets, we kindly refer the
interested reader to Example 1 in [8]. Having Pp(q) in (IV.2)
as the set of state runs of length 3, in this subsection, we
provide a systematic approach to compute a policy together
with a (potentially tight) lower bound on the probability that
the solution process of S satisfies the specifications given by
DFA A. Given a DFA Ac, our approach relies on performing
a reachability computation over each element of P(Ac) (i.e.,⋃
p∈Π

⋃
q∈Rp Pp(q)), where reachability probability is upper

bounded using control barrier functions along with appropri-
ate choices of control inputs as mentioned in Theorem 3.1.
However, computation of control barrier functions and the
policies for each element ν ∈ P(Ac), can cause ambiguity
while utilizing controllers in closed-loop whenever there are
more than one outgoing edges from a state of the automaton.
To resolve this ambiguity, we simply merge such reachability
problems into one reachability problem by replacing the
reachable set X1×X in Theorem 3.1 with the union of regions
corresponding to the alphabets of all outgoing edges. Thus we
get a common control barrier function and a corresponding

controller. This enables us to partition P(Ac) and put the
elements sharing a common control barrier function and a
corresponding controller in the same partition set. These sets
can be formally defined as

µ(q,q′,∆(q′)) := {(q, q′,q′′) ∈ P(Ac)
| q, q′, q′′ ∈ Q and q′′ ∈ ∆(q′)}.

The control barrier function and the controller (as discussed
in Remark 3.2) corresponding to the partition set µ(q,q′,∆(q′))

are denoted by Bµ(q,q′,∆(q′))(x, x̂) and uµ(q,q′,∆(q′))(x̂), respec-
tively. Thus, for all ν ∈ P(Ac), we have

Bν(x, x̂) = Bµ(q,q′,∆(q′))(x, x̂) and uν(x̂) = uµ(q,q′,∆(q′))(x̂),

if ν ∈ µ(q,q′,∆(q′)).
(IV.3)

B. Control Policy

From the above discussion, one can readily observe that
we have different control policies at different locations of
the automaton which can be interpreted as a switching con-
trol policy. Next, we define the automaton representing the
switching mechanism for control policies. Consider the DFA
Ac = (Q,Q0,Π, δ, F ) corresponding to the complement of
DFA A as discussed in Section IV-A, where ∆(q) denotes
the set of all successor states of q ∈ Q. Now, the switching
mechanism is given by a DFA Am = (Qm, Qm0,Πm, δm, Fm),
where Qm := Qm0 ∪ {(q, q′,∆(q′)) | q, q′ ∈ Q \ F} ∪ Fm is
the set of states, Qm0 := {(q0,∆(q0)) | q0 ∈ Q0} is the set
of initial states, Πm = Π, Fm = F , and the transition relation
(qm, σ, q

′
m) ∈ δm is defined as

• for all qm = (q0,∆(q0)) ∈ Qm0,

(q0,∆(q0))
σ(q0,q

′′)−→ (q0,q
′′,∆(q′′)), where q0

σ(q0,q
′′)−→ q′′;

• for all qm = (q, q′,∆(q′)) ∈ Qm \ (Qm0 ∪ Fm),

– (q, q′,∆(q′))
σ(q′,q′′)−→ (q′, q′′,∆(q′′)), such that

q, q′, q′′ ∈ Q, q′
σ(q′,q′′)−→ q′′, and q′′ /∈ F ; and

– (q, q′,∆(q′))
σ(q′,q′′)−→ q′′, such that q, q′, q′′ ∈ Q,

q′
σ(q′,q′′)−→ q′′, and q′′ ∈ F .

The hybrid controller defined over augmented state-space X×
Qm that is a candidate for solving Problem 2.7 is given by

ũ(x̂, qm) = uµ(q′m)
(x̂), ∀(qm, L(x̂), q′m) ∈ δm. (IV.4)

The corresponding hybrid control policy υ is given by υ(t) =
ũ(ξ̂(t), qm). For the illustration of the switching mechanism,
see Example 1 in [8, Section 5]. In the next subsection,
we discuss the computation of bound on the probability of
satisfying the specification under such a policy, which then
can be used for checking if this policy is indeed a solution for
Problem 2.7.

C. Computation of Probability

The next theorem provides an upper bound on the probabil-
ity that the solution process satisfies the specifications given
by A.

Theorem 4.2: For a specification given by the accepting
language of DFA A, let Ac be the DFA corresponding to the



complement of A, Rp be the set defined in (IV.1), and Pp
be the set of runs of length 3 defined in (IV.2). Then the
probability that the solution process of the system S starting
from any initial state a ∈ L−1(p) under the hybrid control
policy υ associated with the hybrid controller (IV.4) satisfies
Ac within time horizon [0, T ) is upper bounded by

P{σ(ξaυ)|=Ac}≤
∑

q∈Rp

∏
{(γν+cνT )|ν=(q,q′,q′′)∈Pp(q)},

(IV.5)

where γν + cνT is the upper bound on the probability that the
solution process of S starts from X0 := L−1(σ(q, q′)) and
reaches X1 := L−1(σ(q′, q′′)) under control policy υ within
time horizon [0, T ) which is computed via Theorem 3.1.

Proof: The proof is similar to that of [8, Theorem 5.2]
and is omitted here due to the lack of space.

Theorem 4.2 enables us to decompose the specification into
a collection of sequential reachabilities, compute bounds on
the reachability probabilities using Theorem 3.1, and then
combine the bounds in a sum-product expression.

Remark 4.3: In case we are unable to find control barrier
functions for some of the elements ν ∈ Pp(q) in (IV.5), we
replace the related term (γν + cνT ) by the pessimistic bound
1 and apply random control input. In order to get a non-trivial
bound in (IV.5), at least one control barrier function must be
found for each q ∈ Rp.

Corollary 4.4: Given the result of Theorem 4.2, the proba-
bility that the solution process of S starts from any a ∈ L−1(p)
under control policy υ and satisfies specifications given by
DFA A over time horizon [0, T ) ⊂ R+

0 is lower-bounded by

P{σ(ξaυ) |= A} ≥ 1− P{σ(ξaυ) |= Ac}.

D. Computation of Control Barrier Functions
Proving the existence of a control barrier function and find-

ing one are in general hard problems. However, if functions f ,
h, g1, g2, r1, and r2 are polynomial with respect to their argu-
ments and partition sets Xi = L−1(pi), i ∈ {0, 1, 2, . . . ,M},
are bounded semi-algebraic sets (i.e., they can be represented
by polynomial (in)equalities), one can formulate conditions
in Theorem 3.1 as a sum-of-squares (SOS) optimization
problem. See [8, Section 5.3.1.] for a detailed discussion on
a similar approach. Having an SOS optimization problem,
one can efficiently search for a polynomial control barrier
function Bν(x, x̂) and controller uν(x̂), for any ν ∈ P(A¬ϕ)
as in (IV.3) using SOSTOOLS [24] in conjunction with a
semidefinite programming solver such as SeDuMi [25] while
minimizing constants γν and cν . Having values of γν and
cν for all ν ∈ P(A¬ϕ), one can simply utilize results of
Theorem 4.2 and Corollary 4.4 to compute a lower bound on
the probability of satisfying the given specification. Note that
it may not be possible in advance to obtain a probability bound
that is meaningful, in such cases the order of a control barrier
function needs to increase to achieve the desired probability
bound.

Remark 4.5: Under the assumption that sets X,X0, and X1

in Theorem 3.1 are compact and input set U is finite, one can
utilize counterexample guided inductive synthesis (CEGIS)

approach to search for barrier control functions for more
general nonlinear functions f, h, g1, g2, r1, and r2 in (II.1).
For more detailed discussion on CEGIS approach, we kindly
refer interested readers to the algorithm in [8, Section 5.3.2.].
Computational Complexity: The number of triplets and
hence the number of control barrier functions needed to be
computed are bounded by |Q|3, where |Q| is the number of
states in DFA A. However, this is the worst-case bound and
in practice, the number of control barrier functions is much
smaller. In the case of sum-of-squares optimization approach,
the computational complexity of finding polynomial control
barrier functions depends on both the degree of polynomials
and the number of state variables. One can easily see that
for fixed polynomial degrees, the required computations grow
polynomially with respect to the dimension of the augmented
system. For the CEGIS approach, due to its iterative nature
and lack of guarantee on termination, it is difficult to provide
any analysis on the computational complexity.

V. CASE STUDY

We consider a nonlinear Moore-Greitzer jet engine model
in no-stall mode [26] as a partially observed jump-diffusion
systems by adding noise and jump terms which is given by:

d ξ1 = (−ξ2 −
3

2
ξ2
1 −

1

2
ξ3
1) d t+ 0.2 dW11t + 0.9 dPt,

d ξ2 = (ξ1 − υ) d t+ 0.06 dW12t,

d y = ξ2 d t+ 0.06 dW2t,

where ξ = [ξ1, ξ2]T , ξ1 = Φ − 1, ξ2 = Ψ − ψ − 2, Φ is the
mass flow, Ψ is the pressure rise, and ψ is a constant. Terms
W11t,W12t, and W2t denote the standard Brownian motions
and Pt denotes the Poisson process with rate λ = 5. We
consider a compact state set X = [−1, 3]×[−4, 4] and regions
of interest X0 = [0, 1]×[−1, 1], X1 = [−1,−0.2]×[−4,−2.5],
X2 = [1, 3]× [2, 4], and X3 = X \ (X0 ∪X1 ∪X2). The set
of atomic propositions is given by Π = {p0, p1, p2, p3} with
labeling function L(xj) = pj for all xj ∈ Xj , j ∈ {0, 1, 2, 3}.
The objective here is to compute a control policy that provides
a lower bound on the probability that the trajectories of
the system satisfy the specification given by the accepting
language of the DFA A given in Figure 1 over finite time-
horizon [0, T = 10). Language of A entails that if we start in
X0 then the system will always stay away from X1 or X2.
The corresponding DFA Ac accepting complement of L(A) is
shown in Figure 1. Following Subsection IV-A, we only need
to compute a control barrier function corresponding to triplet
(q0, q1, q2).

Now with an estimator gain in (II.2) as K =
[6.1394, 7.8927]T , we use SOSTOOLS and SeDuMi to com-
pute a sum-of-squares polynomial control barrier function
B(x, x̂) of order 4, sum-of-square polynomials ψ0(x, x̂),
ψ1(x, x̂), ψ(x, x̂) of order 4, with total 1125 coefficients
resulting in a computation time of about 15 minutes. The
corresponding controller of order 2 is obtained as follows:

u(x̂) = 0.7321x̂1 − 1.8612x̂1x̂2 − 1.4356x̂2. (V.1)

The values of γ = 0.099 and c = 1 × 10−5 are obtained
using bisection method resulting in P{σ(ξaυ) |= A} ≥ 0.89



Fig. 1. The DFA A representing specification (left) and the DFA Ac

representing complement of A (right).

Fig. 2. A few closed loop trajectories starting from different initial conditions
in X0 under controller (V.1).

for all x0 ∈ L−1(p0), as discussed in Subsection IV-D. One
can see that only one controller is enough for enforcing the
specification, thus we do not need any switching mechanism.
Figure 2 shows a few trajectories starting from different initial
conditions under the control policy (V.1).

VI. CONCLUSIONS

In this paper, we proposed a discretization-free approach
for the formal controller synthesis of partially observed jump-
diffusion systems. The proposed method computes a hybrid
control policy together with a lower bound on the probability
of satisfying complex temporal logic specifications given by
the accepting language of DFA A over a finite-time horizon.
This is achieved by constructing control barrier functions over
an augmented system consisting of both the system and the es-
timator. As a result, the probability bound is computed without
requiring any prior information of estimation accuracy.
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