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Loeffler, Kevin (B.S., Engineering Physics)

Improving Molecular Dynamics Simulations of Ion Coulomb Crystals in Linear Paul Traps

Thesis directed by Prof. Heather Lewandowski, Physics, Thesis Advisor

Molecular dynamics simulations of ion Coulomb crystals in linear Paul traps allow for the

extraction of properties such as ion temperature and ion counts enabling the investigation of ion

chemistry in the ultra-cold regime. These simulations reproduce experimental CCD images using

density plots of simulated ions allowing for comparisons to be drawn between simulated and exper-

imental results and providing information inaccessible to the researcher, such as the locations of

clouds of non-fluorescing species. In this thesis, a method for creating these simulated CCD images

is presented, as well as the demonstration of a fourth order integrator for producing more accurate

calculations of the ion energy. The simulation of a single frequency Paul trap is presented and

the ability to match simulations with experimental parameters as inputs to experimental results

is demonstrated in order to show that the simulations that have been constructed can be used to

analyze experimental data and work as a predictive lab tool for future explorations of ultra-cold

chemistry.
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Chapter 1

Introduction

The reactions of ions and molecular radicals in the interstellar medium (ISM) is of great

interest to the astrophysics and chemistry community as these reactions make up the foundations

of understanding the processes that occur in the ISM. These objects, which have been observed

using spectroscopy in the ISM, are difficult to study under conditions similar to those found in the

ISM, namely high vacuum and low temperatures, and as a result reactions between these objects

have not yet been studied in great detail [27]. This extreme environment can be reproduced in

the lab using ion traps and laser cooling techniques, and have been demonstrated previously for

reactions of ions and neutrals [14, 15]. These investigations utilized molecular dynamics simulations

as components of their studies in order to extract ion counts as well as reveal the positions of ions

that could not be directly imaged using CCD cameras. Sympathetic cooling has allowed for the

chemistry between ions and molecules to be viable as laser cooled ions can cool co-trapped species

to temperatures of a few Kelvin or lower [15].

In order to begin to study the chemistry between molecules and ions in the ISM computational

tools must be developed and improved in order to be able to characterize reaction rates and extract

useful data about trapped and reacting species in ion traps. Charged particles in ion traps form ion

Coulomb crystals, which are one component plasmas that are governed by classical electromagnetic

interactions between charged particles that are confined, for example in an ion trap or occurring

naturally in exotic objects such as neutron stars [7, 25]. These crystals are advantageous for studies

of chemistry that may occur in the ISM because they are clean sources of ions and molecules that can
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be reacted at very low temperatures. Single component ion Coulomb crystals have temperatures of

less than 10mK [7, 25]. These crystals range in shape from spherical to cigar-shaped with bcc and fcc

character appearing in their structures [7]. Experimentally crystals of a single laser cooled species,

often a species such as calcium that has advantageous electronic transitions that make them simple

to laser cool, are allowed to develop while experiencing laser induced florescence which allows them

to be observed using a CCD camera. The other reactant can then be leaked in and the reaction rate

can be characterized by watching the fluorescing species disappear, as well as through spectroscopy

of the contents of the trap. Molecular dynamics is then an important tool for producing images of

the positions of the non-fluorescing species, as well as for characterizing properties of the crystal

such as temperature and ion counts that are critical for determining reaction rates.

The study of Coulomb crystals of laser-cooled ions using molecular dynamics simulations

has been established as a powerful method for extracting properties such as ion temperatures

and counts from experimentally produced images of Coulomb crystals in linear Paul traps [15,

31, 18]. Molecular dynamics simulations designed to solve Newton’s equations of motion for both

sympathetically cooled and laser cooled ions can be used to produce simulated CCD images of ion

Coulomb crystals perpendicular to the trap axis. These images can then be compared directly to

experimental CCD images in order to extract information about the ion energies and also reveal

the probable locations of the sympathetically cooled species that are not undergoing laser induced

florescence (LIF) [31]. Further, simulations can be used as a predictive tool for experimental

conditions for special types of Coulomb crystals [16]. In previous studies, simulations have been

used to predict experimental parameters for which planar or spherical Coulomb crystals can be

produced. In this thesis, we will briefly consider predictions of experimental parameters for which

sympathetic cooling is observed between two species co-trapped in a linear Paul trap.

Ion Coulomb crystals are valuable structures for studies in a variety of research areas, such

as quantum information, geophysics, exotic stellar objects, and ultra-cold chemistry [7]. For our

purposes, we utilize ion Coulomb crystals to study ultra cold chemistry, defined as the chemistry

that occurs between 1mK to 1K [3]. Ion Coulomb crystals allow for species that are not easily cooled
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using lasers to be cooled sympathetically, which is where two species are trapped simultaneously,

one of which is laser cooled and will cool the other. From simulations and experimental observations

it is possible to extract a reaction rate between the two species [14, 7]. This is possible because

the simulations will tell you the locations and numbers of the sympathetically cooled species which

will not fluoresce (and therefore cannot be characterized directly from CCD images like the laser

cooled species can be), and experimentally you can record the reduction in size of the crystal as the

fluorescent species reacts away to characterize the reaction rate. This experimental method made

possible by ion Coulomb crystals and a robust molecular dynamics simulation enables investigations

of ion chemistry in a new regime, that of ultracold chemistry [7].

This thesis describes the enhancement to an existing molecular dynamics suite developed by

the Softley group at Oxford University called Coulomb Crystal Molecular Dynamics, or CCMD.

The work described includes the replacement of the existing second order Verlet integrator with

a fourth order Position Extended Forest-Ruth Like (PEFRL) Integrator, the development of an

imaging scheme that directly corresponds with CCD imaging, the ability to match experimental

images of crystals to simulated images, and a discussion of the implications of the data collected

from these simulations for future experiments. The remainder of Chapter 1 provides background

on the experimental apparatus used in the lab and that our version of CCMD simulates, as well

as providing an introduction to the theory behind the simulations and of ion Coulomb crystals.

Chapter 2 and Chapter 3 provide details about the new integrator and imaging algorithms added

to CCMD and characterize their benefits. Chapter 4 details changes to the existing simulation

model that enhanced the accuracy of the simulations, such as changes to the heating model and

the addition of features to improve efficiency. Chapter 5 presents conclusions that CCMD has

been improved in terms of physical accuracy as well as produces useful predictions of experimental

parameters and replicating experimental results. The latter half of Chapter 5 presents conclusions

about this work and presents a description of future work to improve the existing model and improve

the agreement between the simulations and experimental data.
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1.1 Experimental Apparatus

The experimental apparatus consists of a vacuum chamber that has been pumped down to

ultra-high vacuum pressures (about 10−9 Torr) which contains a linear Paul trap.

Figure 1.1: This SolidWorks cutout of the interior of the vacuum chamber shows the location of
the linear Paul trap CCMD models, held at about 10−9 Torr. Shown in blue is a depiction of the
beam path from which the cooling lasers propagate into the trap and interact with the ions held
in the center of the ion trap. Also depicted is a time of flight mass spectrometer (TOFMS) which
is used to determine the contents of crystals and clouds destructively.

The apparatus also contains a calcium oven, which creates a flux of calcium into the chamber

by heating solid calcium, and a leak valve for the introduction of gaseous species for reactions. In

Figure 1.1 the blue cylinder passing through the center of the trap represents the beam path for the

set of cooling lasers used to Doppler cool calcium, which is further discussed in the Laser Cooling

section. The primary cooling laser propagates through the trap in both directions, preventing the

ions from being pushed to one side of the trap due to radiation pressure. A second cooling laser

propagates in only one direction, but is of lower intensity and is there fore a more rare transition

for calcium as detailed in the laser cooling section of this chapter. There is also a third laser used

for ionizing the calcium. Shown below the trap in Figure 1.1 is a time of flight mass spectrometer

(TOFMS), which can be used to determine the contents of the trap. This is a destructive process
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that requires putting a high voltage on the top two rods of the trap, forcing the contents of the

trap down the tube and causing them to collide with and be detected by MicroChannel Plates

(MCPs).The tube entering the chamber from above represents the optics for the Charge Coupled

Device (CCD) camera that sits in a recessed glass window, allowing us to image the ions in the

center of the trap that are fluorescing due to Laser Induced Florescence.

The general procedure for using this apparatus is to load a cloud of calcium into the cham-

ber, ionize them with the ionizing laser, and then cool them using the set of laser cooling lasers.

Reactants can be bled in via the leak valve and the resulting crystal and reaction can be imaged in

real time by the CCD. The resulting object can be dumped into the TOFMS for analysis. Images

from the CCD can be analyzed using comparisons to molecular dynamics simulations, as described

in this thesis, allowing for more information to be collected such as the ion temperatures.

In figure 1.2 we can see the actual beampaths through the chamber for the three lasers we

utilize. In order to laser cool calcium two lasers are utilized- 866nm and 397nm- that correspond

to transition wavelengths for Calcium 40. These lasers propagate along the trap axis while the

powerful ionization laser crosses through the trap center to ionize calcium that has entered the trap

from the attached calcium oven.
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Figure 1.2: Topdown view of the apparatus, showing the path of the ionization laser, cooling
lasers, and the placement of optics on the optical table.
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1.2 Theory

1.2.1 Ion Coulomb Crystals

Ion Coulomb crystals are spatially-ordered structures that trapped ions form when cooled

sufficiently [2].

Figure 1.3: Experimental CCD image of a large calcium ion Coulomb crystal.

These structures are not limited to trapped ions however. They were first discussed by

Wigner in the 1930s, who considered the formation of regularly ordered structures of electrons in

a theoretical experiment where the density of the electrons became so low that their individual

wavefunctions did not overlap [7, 28]. Ion Coulomb crystals are thought to make up parts of exotic

stellar objects, such as White Dwarfs and Neutron Stars. One such idea of how they may be present

in these objects is in the crusts of neutron stars, which are thought to be made of fully stripped

iron ions, or Fe26+, the last product from which the neutron star will release energy through fusion

[7, 10]. In the laboratory they can be created in Penning or Paul traps. This limits the highest

practical ion density to where the ions are separated by 10 microns. The condition for Coulomb
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crystallization is given by the plasma coupling parameter, Γ.

Γ =
ECoulomb
kBT

(1.1)

Here kB is Boltzmann’s constant and T is temperature. The Coulomb energy is defined as it

is typically for classical systems:

ECoulomb =
Q2

4πε0a
(1.2)

Here Q is the charge of your particle and a is defined as the Wigner-Seitz radius. The Wigner-Seitz

radius corresponds with the radius of the largest sphere containing a single ion [5]. Thus, the plasma

coupling parameter can be thought of as the ratio between the Coulomb and kinetic energies of

your particle [7]. This ratio determines whether or not your particles will form a Coulomb crystal,

and it has been proven through extensive Monte-Carlo investigations of one-component plasmas

like Coulomb crystals that the boundary between melting and crystallization is set at Γ ≥ 170 [20].

Because the density is fixed by the use of ion traps in laboratory experiments, a minimum

temperature is required to satisfy this criterion for Coulomb crystallization:

T ≤∼ 10mK (1.3)

This condition comes directly from solving for temperature with the 10 micron spacing limit

imposed by the trap using equation 1.1. This requires laser cooling to achieve, which is why

ion Coulomb crystals in the laboratory were realized only after the development of laser cooling

techniques. These crystals were first demonstrated by Dr. Wineland, NIST, Boulder, USA and by

Walther at the Max-Planck Institute for Quantum Optics, Germany [10, 6, 7]. For standard laser

Doppler cooling the minimum temperature is given by a range between 0.1 and 1 mK, much lower

than could be achieved previously by other techniques such as using liquid helium [7].

Ion Coulomb crystals have been shown via numerical simulations to form BCC structures

in their lowest possible energy states. This requires an infinite ion Coulomb crystal however, so
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realistically in the laboratory they form spherical and cylindrical shells as can be observed in 3.2.2

[25]. In the lab it is also possible for crystallization to occur at smaller values of Γ, where central

parts of the crystal will crystallize but not the outer parts [25].

1.2.1.1 Laser Cooling

Laser cooling is the method by which the ions in the trap are brought to low enough tem-

perature such that the thermalize and form ion Coulomb crystals. It was originally proposed by

David Wineland and simultaneously by Hans Dehmelt in 1975, and utilizes photons from lasers to

excite electrons and decrease the momentum of atoms [5]. In our experiment calcium is utilized,

however laser cooling is a common laboratory technique for cooling any system of two or more

levels, such as barium ions [5, 23]. These systems are typically chosen because of the simple laser

cooling scheme they make possible, for example with calcium just two cooling lasers are needed in

order to cool the ions in the trap to millikelvin temperatures. The three energy levels utilized are

shown in Figure 1.4.

Figure 1.4: Shown are the Doppler cooling transitions for the Calcium 40 ion. Lasers corresponding
with these wavelengths are used to cool the calcium ions in our Paul trap.

The idea behind Doppler laser cooling is to use light slightly detuned to the red, or lower

energy, side of the electronic transition of the atom. For calcium the laser wavelengths that work

best for the energy levels shown in Figure 1.4 are a 397nm laser which brings the electrons to the
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P state, and an 866nm laser which is used to bring electrons back to the P state if they fall into

the D state, which they will 7.5% of the time [23, 24]. While this probability is small, it is required

because if the electrons fall into the D state and there is no 866nm laser present, cooling will cease

for all ions for which the electrons fall into the D state, and since the idea is to excite the atoms

often this eventually would prevent you from laser cooling your cloud. Another consequence of the

small probability of the electron falling into the D state is that we only need to pass the 866nm

laser through the apparatus in one direction, since it will have a very small effect on the atoms

in comparison to the 397nm cooling laser. With the laser detuned to the red the ions in the trap

will absorb more photons as they move towards the source, and since the laser propagates in both

directions this means they will absorb more photons from the beam counter to the direction they

are moving. Thus, with the counterpropagating lasers the ions in the center of the trap will absorb

photons and then spontaneously emit a photon in a random direction, decreasing their momentum

by h
λ . This photon recoil is modeled in our simulations as small kick in a random direction. As this

absorption and recoil process will be repeated many times, the ion will eventually decrease in kinetic

energy and therefore cool. This allows a temperature sufficient for ion Coulomb crystallization to

be met [5, 23, 24].

1.2.1.2 Sympathetic Cooling

For species that do not have a simple level structure that can be exploited easily for laser

cooling, or to decrease the complexity of the experiment, molecules and atoms that are not laser

cooled can be cooled by a laser cooled species sympathetically. This is achieved through their

mutual Coulomb interactions [31, 5, 11]. The linear Paul trap will separate species based on their

charge to mass ratios, confining more massive particles to the outside of the clouds of smaller

particles on the interior of the trap. Thus, species of similar charge to mass ratio have better

energy transfer than those of highly disparate charge to mass ratios as they will interact more

inside the trap and their clouds will overlap [31]. Eventually, after equilibrating, the ions will

reach a stable species-dependent temperature [11]. In CCMD, the ions initially reach the same
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temperature before being heated to their equilibration temperature since at the beginning of the

simulation their are forced into their lowest-energy configuration for stating positions [8, 22].

1.2.2 Linear Paul Trap

A linear Paul trap generates an oscillating electric field to trap and confine charged particles

[21]. It was originally developed by Wolfgang Paul, who won the Nobel Prize in 1989 for his work

on RF ion traps [19]. The frequency of the oscillations is at radio frequencies, hence the alternate

name for these traps being RF ion traps. The average force on a charged particle, such as an ion,

in these oscillating fields will either be convergent, bringing the particle into the area of lowest

potential at the center of the trap, or divergent causing the particle to leave the trap [21]. A DC

potential from a pair of endcaps, situated on the ends of the trap, allow for a third dimension of

trapping. The potential inside the trap can be thought of as a saddle, where the edges of the saddle

are constantly rotating. If the frequency of these oscillations is tuned properly for the object sitting

in the middle of the saddle, it will essentially see four walls around it, confining it inside the trap

[19]. A cartoon of this potential is shown in Figure 1.5.

Figure 1.5: Cartoon of the trapping potential inside the trap at a single instant in time, demon-
strating how there is a saddle point in the trap center where the ions sit. The radio frequency
voltage applied to the trap rods causes this saddle potential to rotate, such that on average the
ions are surrounded by a trapping potential that keeps them confined.
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For our specific trap, we have a quadrupole potential formed by four trapping rods. At the

end of these rods we have two endcaps which apply the DC field. This design allows for us to

understand the potential inside the trap analytically. The rods are multi-segmented, and each will

carry a given potential that will change in time such that on average the ions inside are confined.

A diagram of how these potentials are distributed at a given point in time is shown in Figure 1.6.

Figure 1.6: Diagram of a linear Paul trap displaying the voltages applied to each segment of the
trap rods, as well as the endcaps. Also displayed is the coordinate system for which the equations
describing the potential created by the trap is displayed.

Also shown in 1.6 is the coordinate system chosen for analyzing the potential inside this trap.

We define two geometric quantities that describe the spacings of the rods which we will use in our
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mathematical model of the trapping potential and later in the equations of motion for the ions

inside this trap. These quantities are R0 and Z0, which tell us about the spacing between the rods

and the depth of the rods in the trap center where the ions will be confined. These quantities are

defined as shown in Figure 1.7.

Figure 1.7: Diagram displaying just the trap rods in the linear Paul trap, displaying how the
segments are connected as well as how the dimensions of the trap rods are defined.

For our linear Paul trap, R0 = 3.92mm and Z0 = 3.5mm. With these quantities defined we

can give an analytic description of the potential in the center of the trap as a function of position

and time. With an RF voltage applied to the rods V0 cos(Ωt) we have the potential shown in
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Equation 1.4 which is a superposition of the potential from both the rods and the endcaps, which

are set at a DC voltage VEndcaps [21, 31]. The RF frequency is defined as Ω and a geometric

constant determined by the arrangements of the trap electrodes is given as η.

V (x, y, z, t) =
2V0
r20

(x2 − y2) cos(Ωt) +
ηVEndcaps

2z20
(2z2 − x2 − y2) (1.4)

From this superposition of potentials we can define our equations of motion in terms of the

trap quantities as well as the properties of the charged particles. The RF fields provide only radial

confinement, so for the equation of motion along the z-axis we have only the effects of the DC

fields from the endcaps, as shown in Equation 1.5. In this equation, we define m as the mass of the

particle and Q as that particle’s charge [21, 5].

d2z

dt2
m = −2QVEnd

z20
z (1.5)

In the x and y directions, we have the contribution from the RF fields as well as that from

the DC fields. The result of this superposition is shown in the equation for the x direction shown

in equation 1.6.

d2x

dt2
m = −Q

(
V0
r20

cos(Ωt)− VEnd
z20

)
x (1.6)

In the next section these equations of motion will be rearranged such that they can be utilized

directly in the simulations to evaluate Newton’s laws of motion for each ion in the trap.

1.2.3 Coulomb Crystal Molecular Dynamics (CCMD) Overview

In Figure 1.8 a flowchart of how input data is taken into the simulations and turned into an

output image and collection of data files is presented. CCMD was originally developed by the Softley

Group at Oxford University for the purposes of creating simulated CCD images of ion Coulomb

crystals and modeling various types of traps, primarily linear Paul traps and digital ion traps [4].

CCMD considers ion positions and velocities in response to various forces, such as the trapping
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Figure 1.8: Flowchart of how CCMD is used in a laboratory setting, showing what inputs it takes
in, operations it takes, and data outputs.
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force and the Coulomb interaction with neighboring ions, and originally evolved the simulation

using a second order Velocity Verlet integrator. The input parameters used in the experiment, such

as voltages on the endcaps, amplitudes for the RF voltage on the trap, the speculated number of

ions, depth of field of the camera, and others are input into the program and the effects of all forces

on the ions are applied and integrated in time. At the end of the simulation a simulated CCD

image is provided along with data files containing ion positions, energies, and velocities in SI units.

The forces applied to the ions are as follows:

Mir̈i = Fi, T otal(r1, ..., rN ) = FTrap + FCoulomb + FPR + FLaser + FRP (1.7)

In Equation 1.7 Mi is the mass of the i-th ion and ri is that ion’s position. N is the total

number of ions or molecules in the simulation. The force applied to each ion consists of that of the

force applied by the trap FTrap, the Coulomb interaction with the other ions FCoulomb, the photon

recoil if the species is laser cooled FPR, the laser cooling force FLaser, and a radiation pressure from

the lasers propagating through the trap FRP .

For the trapping force, a set of equations of motion are solved to apply the contribution

from the radial trapping and the force from the DC potential of the endcaps. By rearranging

the equations of motion from the previous section, Equations 1.5 and 1.6, we can extract two

dimensionless parameters that are used to determine the stability of the parameters for the particles

in the trap. We also define a new timing constant, τ , to turn the equations into the canonical forms

of the Mathieu equations [9, 21].

τ =
Ωt

2
, a = −4QVEnd

Ω2mz20
, q = − 2QV0

Ω2mr20
(1.8)

The rearranged equations of motion are as follows, with an equation for the y direction found

using symmetry arguments from the equation for the x direction.

d2x

dτ2
= (2q cos(2τ)− a)x (1.9)
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For the y direction, by symmetry we have ax = ay, qx = −qy such that the sign changes.

Since the a term is associated with the end caps which act axially, the sign stays the same for both

equations of motion [21, 15].

d2y

dτ2
= (−2q cos(2τ)− a)y (1.10)

d2z

dτ2
= 2az (1.11)

The z equation of motion is the simplest and is nearly identical to its previous form before

parameterization.

There are a number of standard solutions to the Mathieu equations, and only certain pairings

of a and q provide stable trapping. The stable regions can be found using Floquet’s theorem,

however in general in the experimental case the idea is to keep the parameters such that a2 < q <

1� 1 in order to provide stable trapping along the x and y directions for the charged particles in

the center of the trap [21, 12].

The Coulomb force is calculated with regard to each other charged particle in the simulation.

It is of the classical vector form of Coulomb’s law:

FCoulomb =
Qi

4πε0

N∑
j=1,j 6=i

Qjrij
rij

(1.12)

The laser cooling force is modeled as a resistive force as an approximation for calculating

the Einstein A and B coefficients and the resultant cooling using quantum mechanics. It is only

applied to the laser cooled species in the simulation. This saves computation time and provides an

excellent approximation for this process [15, 31].

FLaser = −βvz (1.13)

Here, β is set to match the experiment and has units of kg/s. This force is applied only along

the z direction to match the configuration of the lasers in the experiment. Cooling lasers along
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only one direction provide sufficient cooling due to the mutual Coulomb interaction between all of

the ions, leading to a fast thermalization for the ensemble of ions in the simulation [31]. In order

to avoid the ions ending in local minima of energy rather than the lowest energy configuration as

they do experimentally the simulation is setup to initially cool all of the ions without any heating

due to the photon recoil in order to force the ions into initial positions that correspond closely with

the minimal energy configuration [8, 22]. For calcium a β = 0.8 was typically used as it allowed the

ions to thermalize quickly. In figure 1.9 the minimization of a 100 Ca ion crystal is demonstrated.

Figure 1.9: Energy minimization for a 100 Ca ion crystal using a laser cooling parameter of
β = 0.8.

The photon recoil force is a random kick that corresponds with the ejection of a photon by the

laser cooled species due to Doppler cooling. A small kick of a size set by the user in order to match

the temperatures of the ions in the simulation to that of the experimental images is applied to each

laser cooled ion each integration step. The kick is given a random direction mapped onto a unit

sphere, ensuring that the direction is truly random and corresponding with the actual probability

for a photon to be ejected in a given direction by an ion in the experiment. This force effectively

raises the temperature and gives a way to increase or decrease the temperature of the observed ions

until the images and therefore energies of the simulated ions match those of the experiment [15].

The laser pressure force is also experimentally set and is a small force applied along the z

axis to model the radiation pressure on each ion due to the photons from the cooling lasers. This



19

force is applied in both directions both in the experiment and in the simulation as to not push the

ions to the side of the trap [23, 5].

Input parameters also consist of the frequency for which RF voltage applied to the ions, the

time they wish to evolve the simulation, an exposure time, an amount of time spent minimizing

the ion energy before collecting data, and information about each species in the simulation such as

mass, charge, name, and dimensionless parameters that allow the laser cooling and photon recoil

to be tuned for each species to match experimental images. These are input into JSON input

datafiles and can be collected into folders to be run in bulk to scan entire parameter spaces using

a GUI developed for the work in this thesis that allows for increased productivity in running and

scheduling multiple simulations.

In this thesis the existing CCMD simulation is extended in a number of key ways. CCMD

has been corrected in terms of its model for the photon recoil heating of the laser cooled ions,

which originally preferentially caused velocity kicks of low magnitudes that meant that the crystal

would become unevenly heated. In the original simulations the energy would not be distributed

evenly radially as would be expected; this has been corrected. The images also reflected a great

deal of displacement of ions outside where the Coulomb force could explain their positions, which

also prompted this work to produce a more robust imaging algorithm such that a single plane of

ions could be imaged to rule out displaced ions from other planes appearing in our images as well as

prompting a look at the integrator to ensure that the results of numerous force calculations on the

ions were accurate over time. The imaging algorithm has been completely rewritten such that the

bins in the imaging histogram (and therefore the pixels in the output image) now correspond exactly

in terms of size and depth to that of the actual CCD being used to image the crystals, allowing for a

higher degree of intuition when comparing simulated and physical CCD images. In order to improve

the accuracy of the energy calculation key to collecting the output temperature data of the ions,

a fourth order integrator is introduced that allows for better conservation of energy and greater

accuracy than the original second order integrator, namely a fourth-order PEFRL integrator.



Chapter 2

Position Extended Forest-Ruth Like Integration

2.1 Design

The original CCMD codebase featured a second-order Velocity Verlet integrator which was

used to evolve the simulation in time. Velocity Verlet works by taking an initial half step of Euler

integration, wherein the ions started on an initial grid and were given an initial kick, and then

were evolved in half steps in which the velocity was calculated for each ion due to the accelerations

from the various forces acting on the ion, per Equation 1.7. The position would then be updated

once per step [26]. These steps in the simulation corresponded to a fraction of a single RF cycle

for the trap, which is on the order of MHz meaning that each step was typically nanoseconds to a

few microseconds in length. The original algorithm can be summarized as follows:

vn+ 1
2

= vn +
1

2
hF (xn) (2.1)

xn+1 = xn + hvn+ 1
2

(2.2)

vn+1 = vn+ 1
2

+
1

2
hF (xn + 1) (2.3)

where h is the time interval between steps, x is position, v is velocity, F is the net force

being applied to the ion, and n is your current step [26]. Thus, at any given step we have access

to both position and velocity for all of our ions, which is what we need in order to succeed in our



21

goal of extracting useful data about ion Coulomb crystals such as temperature as having both of

these quantities makes the calculation of the total ion energy possible. The Verlet algorithms have

the advantage for molecular dynamics simulations in that they are symplectic integrators, which

means they are area-preserving, conserve angular momentum, and are time-reversal invariant. This

means that the error for our real-time simulations are slow eroding, and should oscillate around

the actual value of the ion energy due to being symplectic. Velocity Verlet is well suited for solving

the equations of motion for our ions, but it is also simple.

While the second-order Verlet algorithm is simple to implement there are more sophisticated

and accurate higher-order integrators that can be used to improve the accuracy of our simulations.

Since the crucial result we wish to retrieve from these simulations is the energy of the ions, and

because matching ion positions to actual experimental images are the method by which we plan on

determining which simulations correspond with the experimental images that were performed, it is

necessary that the results be as accurate as reasonably possible. It was observed with the Velocity

Verlet algorithm that the fluctuations in the energy around the desired value were quite large,

which means that at certain times if the simulation were to be stopped the ions would appear

noticeably warmer or colder than they should be in the experiment. This means that the ion

positions, too, were occasionally highly disordered and would fail to converge to the same positions

as the experimental image. In order to correct this, a higher-order symplectic and time reversible

integrator was designed and integrated into the CCMD simulations.

The higher order integrator that was implemented was a modification of the fourth-order

Forest-Ruth integrator, which is a symplectic integration algorithm that also allows simulations to

know simultaneously the position and velocity of the particles, but has the added benefit that it is

more accurate. The integrator’s error is proportional to h4, rather than h2 for the Velocity Verlet

algorithm [17]. However, the accuracy has been further improved by the work of Omelyan et al. who

developed a Position Extended Forest Ruth Like (PEFRL) integrator, which uses the same overall

method as the Forest Ruth integrator, but adds a fourth force evaluation to the algorithm, which

avoids a large time step present in the Forest Ruth approach that causes its error to be higher than
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it can be. By scaling from three force evaluations per time step to four to avoid a long time step as

part of the algorithm, PEFRL has been shown to be 26 times more accurate than the Forest Ruth

approach for the same time step [30]. In the PEFRL approach, the position is first calculated using

a fraction of a timestep set by a numerical constant ξ, while the velocity is then calculated with a

time step proportional to the numerical constant λ. These constants are summarized in Table 2.1.

A position is then calculated using a time step proportional to χ. Midway through the evaluation

a step is added to the Forest Ruth approach in which another force evaluation is taken and the

position is evaluated using a time step proportional to the sum of ξ and χ. The remaining steps

retrace the calculations of position and velocity using the same pattern of numerical constants such

that they sum to one full time constant h. In all, there are nine total steps that are summarized

below in equations 2.4 through 2.12. The constants in Table 2.1 were determined numerically by

Omelyan et al. who developed the PEFRL integrator for molecular dynamics simulations [17].

Table 2.1: PEFRL Constants

ξ 0.178617895844809

λ 0.212341831062605

ξ 0.6626458266981849−1

x = x+ ξhv (2.4)

v = v + (1− 2λ)
h

2
F (x) (2.5)

x = x+ χhv (2.6)

v = v + λhF (x) (2.7)

x = x+ (1− 2(χ+ ξ))hv (2.8)
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v = v + λhF (x) (2.9)

x = x+ χhv (2.10)

v = v + (1− 2λ)
h

2
F (x) (2.11)

x = x+ ξhv (2.12)

The integration method is summarized graphically in Figure 2.1. This flow chart shows how

the algorithm is implemented in CCMD and also explains in words what each step is doing.

A detailed listing of the C++ code used to implement the PEFRL integrator can be found

in the PEFRL Integrator section of the Appendix.
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Figure 2.1: Flowchart of the PEFRL integrator written for CCMD, showing the exact flow of data
through the integrator and the varying time step used for the integrations it performs.
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2.2 Methods

In order to evaluate the effectiveness of the new PEFRL integrator versus the existing Verlet

integrator as well as the non-symplectic Fourth Order Runge-Kutta integrator, an objective test

using the CCMD simulation program was devised. A Fourth-Order Runge-Kutta integrator was

written and briefly considered for use in CCMD due to its speed since it requires fewer force

evaluations, however since it is non-symplectic it is not suited to accurately letting us determine

ion energies and also has a known problem with energy drift that could cause errors for long-

duration simulations [30]. The classical test of whether or not an integrator is conserving energy

and behaving properly is to simulate a simple harmonic oscillator. The analog in the world of ion

trapping is a single ion in the center of the trap subject to no damping forces. This means that

for this test, a single calcium ion was placed in the center of the trap and allowed to evolve with

no heating or laser cooling such that energy remained constant. Under these conditions, the ion

behaves like a simple harmonic oscillator and will oscillate around the trap center at the secular

frequency of the trap, or its macromotion. This is observed in Figure 2.2 in which the ion is

oscillating back and forth on the order of nanometers.
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Figure 2.2: For a single calcium ion the simulation was evolved for 30 RF cycles with only the
forcing from the trap applied, which had a frequency of 3.14MHz. This created a situation where
the ion behaved as a simple harmonic oscillator in the trap. The oscillation frequency is that of
the secular frequency, or macromotion, of the ions [13].
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2.3 Comparisons with Other Integrators

Subject to this test, identical simulations were performed using the following parameters for

each integrator:

Table 2.2: Experimental Parameters for Characterizing Integrators

Experimental Parameters Values

Minimization RF Cycles 2000

Data Collection RF Cycles 2000

Integrations Per RF Cycle 16

RF Frequency 3.14MHz

First, the Velocity Verlet integrator and the PEFRL integrators were compared. As seen in

Figure 2.3 the energy fluctuations (taken as the standard deviation of kinetic energy for the ion

in the trap) is orders of magnitude larger than that for the PEFRL integrator, implying that the

accuracy of the PEFRL integrator has significantly improved the accuracy of the energy calculation

in CCMD by decreasing the overall fluctuations in the energy. This means that regardless of when

the simulation is to stop, it is unlikely that the simulation will be caught at a local energy minimum

or maximum that would cause significant displacement in the ions, making our ability to match

simulated ion Coulomb crystals and physical ion Coulomb crystals more accurate.

This result corresponds well with the findings of other research groups that investigated

various integrators. For example the MOLDY molecular dynamics suite, used to simulate condensed

matter, likewise found that the use of the Omelyan integrator decreased the energy fluctuations

significantly resulting in more accurate simulations [1].

In order to demonstrate the need for both a higher order integrator as well as a symplectic

integrator, the non-symplectic fourth-order Runge-Kutta integrator was also tested. While this

algorithm runs faster due to not needing as many force evaluations per time step, as can be

observed from Figure 2.4 the error is still many orders of magnitude larger than that for the

PEFRL integrator. While the error in the Runge-Kutta integrator is smaller than that of the

Velocity Verlet integrator by two orders of magnitude, it is further unsuitable for use for simulating
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Figure 2.3: For a single calcium ion the simulation was evolved using both the PEFRL integrator
and the second-order Velocity-Verlet. The energy fluctuations for this ion, essentially behaving as
a simple harmonic oscillator, were measured in the form of the standard deviation in the kinetic
energy.
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ion Coulomb crystals because it is non-symplectic, and since simulations of ion Coulomb crystals

are long-duration real time simulations there would be a high risk of energy drift causing errors in

the output data, making matching crystals with this algorithm unreliable. Despite this, this result

demonstrates that going to higher-order integrators will decrease the energy fluctuations as desired,

albeit not as dramatically as with the PEFRL algorithm.

Figure 2.4: For a single calcium ion the simulation was evolved using both the PEFRL integrator
and the fourth-order Runge-Kutta integrator. The energy fluctuations for this ion, essentially
behaving as a simple harmonic oscillator, were measured in the form of the standard deviation in
the kinetic energy.



Chapter 3

Simulated CCD Imaging Algorithm

3.1 Design

In order to match the simulated CCD images of ion Coulomb crystals with their experimental

counterparts, a robust imaging scheme is needed to turn the output ion positions from the simulation

into physically realistic images. In order to do this, a new imaging algorithm was written for CCMD

that allows the imager to be tuned to the physical parameters of the experimental CCD camera.

The imaging algorithm is fundamentally a 2D histogram where each bin is a pixel and has

its brightness increased each RF cycle if an ion was in that particular bin during that time. In this

way, there is an initial blurring of pixels because the ions will move around — small distances if

cold, and large distances if warm. The bin size is set by the pixel size of the CCD. For our camera,

we have 16 micron pixels behind a 10x objective lens, meaning that we input into the simulator to

have bins that correspond with 1.6 micron pixels. The bins have a “depth” for which the program

will screen out any ions that fall in the bin but outside the depth of field of the camera specified

by the user. In reality the CCD cannot see ions that are outside its depth of field and is set to look

at the central plane of whatever ion Coulomb crystal has been produced. To match this, any ion

outside the depth of field envelope, which takes the depth of field and cuts it in half to screen for

any ions half the depth of field above and half the depth of field below the y=0-plane normal to the

camera, will not increment any bins of the image during the data collection period since they would

be effectively invisible in the experiment. For our experiment, the depth of field is 3 microns. This

means that the simulated images CCMD produces will always be of ions in the central plane of the
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crystal, just like in the experiment. This also means that the images essentially correspond with

probability density plots, rather than images of actual particles [31]. This is physically realistic,

as the ion sites observed in the experimental crystals also correspond with probability densities,

with ions swapping in and out of these ion sites constantly during the observation of the physical

crystals. A summary of this algorithm is shown graphically in Figure 3.1.

The main goal of this imaging algorithm is to allow the images taken from CCMD to be

compared to the experimental CCD images directly. Since they are the same size and the pixels

correspond with the same locations, images from CCMD can effectively be overlayed on top of

experimental images to analyze whether or not the simulation matches what was observed exper-

imentally. This makes the process more accurate and less qualitative as now individual ion sites

should correspond in simulation in position and observed “size” due to blurring due to heating,

allowing for the number of ions present in the simulation to be extracted as well as temperature.

In order to get the blur of the ions physically accurate, a Gaussian blur is applied to the

density plot of pixels. In the actual experiment we are limited by the resolution of our camera, so

the blur acts as a way to model this resolution by smearing out the ion positions in addition to

the natural blurring that occurs because of their motion in the trap. This ensures the images are

realistic, and objects are the same size in the simulated image as they would be in reality. The

imager features a Gaussian blur which has a width set by the resolution of the CCD camera which

is input by the user. This repurposes an existing Gaussian blur function from the original imaging

algorithm, which was supplanted by the imaging algorithm used in this thesis in order to provide

a better procedure for matching experimental and simulated images. For our particular setup, the

resolution is given by 4.5 ± 0.5µm. A 1D unnormalized Gaussian function is convolved with each

row and column of the image to provide a realistic blurring of the images such that they match

the experimental images as much as possible. The form of this 1D Gaussian function is shown in

Equation 3.1.

f(x) = e
x2

2σ2 (3.1)
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In the imaging algorithm, x would correspond with each pixel in the row or column currently

being blurred. At the end of the convolution the blurred pixel brightness is normalized by the

kernel sum, which is collected while the Gaussian function is being applied to each pixel. This

scales the brightness such that the pixel brightness in the image corresponds well with that of the

experimental images by conserving the brightness of the ions such that pixels that would appear

bright in the experiment are also bright in the simulated images and dim pixels are also dim in

both images. This allows for the images to be interpreted in terms of estimating how long an ion

is staying in a given location, or if the ions had not yet crystallized because they were still moving

into position.

The blur of these images makes it possible to compare the simulated CCD images directly

with experimental images in terms of temperature. The initial blur due to the ion motion reflects

the ion energy, and thus by heating or cooling the ions more or less in the simulation images can

be matched to their experimental counterparts. If there is a high degree of blurring in the images,

the ions moved around more during the exposure period and as such are warmer. If we get small

dots representing the ions, they barely moved and correspond with very cold ions. The second blur

allows for the images to be compared to the experimental images directly, since they simulate the

resolution of the camera.
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Figure 3.1: Flowchart of how the algorithm written for CCMD produces simulated CCD images
that correspond with the physical parameters of the experimental CCD setup.
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3.2 Comparing Experimental and Simulated CCD Images

3.2.1 Methods

In order to demonstrate the ability to match experimental and simulated CCD images in

CCMD, experimental images were identified from tests of the experimental apparatus and the

experimental parameters that were logged for that particular crystal were input into CCMD in

order to determine if the simulation produced the same results as expected. For some crystals

time-of-flight mass spectrometer data (TOFMS) data were available, which was able to provide ion

numbers to be input into the simulation so that all quantities corresponded to their experimental

counterparts. For those that did not have TOFMS spectra, a process of refining the number of

ions was pursued where the same simulation was run multiple times and the results compared to

the experimental image until a good match was identified. For all simulations, the blur was set to

be the resolution of the CCD camera at 4.5 microns in radius, so in order to match the blur to

the experimental images the photon recoil heating was varied instead in order to warm or cool the

crystals sufficiently to the point where the amount the ions moved blurred the image similarly to

the experimental image. A demonstration of this process is shown in Figure 3.2.

The quality of the match was judged qualitatively and quantitatively. Qualitatively was

the judgment of the amount of blur and therefore the temperature of the ions in the simulation

since an actual temperature for the physical crystal was not available for these comparisons due

to the experimental difficulty of obtaining this information, and since it is a goal for the CCMD

simulations to be a laboratory tool for extracting this information. Additionally, the simulations

are not perfect at placing the ions in exactly the same place as the physical crystals. Physically

patch potentials can move ions into positions the idealized simulation would not solve for the

ion to be, and the simulations further are not perfect and preventing the ions from becoming

slightly disordered due to higher order effects such as Coulomb shielding due to the shells of the

crystals. Due to this, some leeway is needed in order to match the crystals to their experimental

counterparts and physical intuition needs to be utilized. Quantitatively comparing the number
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Figure 3.2: Demonstration of the process for matching experimental and simulated ion Coulomb
crystals. If the number of ions is not known, the quantity is varied until the crystals can be matched.
In order to match the crystals in terms of temperature, the heating of the crystal due to photon
recoil is raised or lowered until the blur corresponds with the experimental image.
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of ions and the experimental parameters was used as a check in ensuring that the simulations

matched their experimental counterparts, as for the same experimental parameters and number

of ions the same structures should appear. In this way, the ability for the CCMD simulations to

match experimental parameters was demonstrated.

3.2.2 Results

The most simple ion Coulomb crystal observed is a string. A simple string was taken and

simulated with the parameters shown in Table 3.1. With the exact input parameters from the

experiment input, such as the RF frequency and the endcap voltages, the crystal was simulated.

The ion number was known due to the small number of ions in the experimental image. From

the simulation, the internal kinetic energy of the system was output and was used to extract a

temperature, as shown in Table 3.1. The internal kinetic energy of the system corresponds with

the temperature of the ion string, and since the blurring of the ions was exactly the same as the

experimental counterpart image it was possible to draw the conclusion that the observed ions were

close to the stated temperature [31].
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Figure 3.3: Direct comparison between a simulated image and an experimental image of a 9-

ion calcium string, demonstrating how for the same trap parameters the simulator will produce

accurate ion spacings and positions.
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Table 3.1: Experimental and Simulation Parameters for a 9 Ion String

Experimental Parameters Values

RF Voltage Amplitude (Peak to Peak) 250V

Endcap Voltage 1.7V

RF Frequency 6.2876 MHz

Number of Ions 9 Ca Ions

Resulting Temperature 3±1mK

Moving from a string up to a more complicated crystal is one that has a single ring of ions

in a zig-zag pattern, as the pattern in Figure 3.2.2 is typically called [7]. For this particular crystal

TOFMS spectra was not available as this was an intermediate crystal that eventually grew into a

more complicated one, so at this intermediary step the power of CCMD to identify ion numbers

was demonstrated. For the same experimental parameters as are summarized in Table ?? the

number of ions was varied until the same structure became apparent in the simulated crystal as

in the experimental one. From this experiment, it was determined that the experimental crystal

must have contained around 90 ions. Note how the same zig-zag pattern is apparent in both the

experimental and simulated crystal for the same parameters, demonstrating the ability for CCMD

to capture the various structures ion Coulomb crystals tend to take on in their interiors.



39

Figure 3.4: Direct comparison between an experimental and a simulated image of a 75 ± 5 ion

Coulomb crystal consisting of calcium ions. Ion numbers were extracted from the simulated image

to determine approximately how many ions were present in the experimental image.
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Table 3.2: Experimental Parameters for an Ion Crystal of 75 Calcium Ions

Experimental Parameters Values

RF Voltage Amplitude (Peak to Peak) 300V

Endcap Voltage 300mV

RF Frequency 6.289MHz

Number of Ions 75± 5 Ca Ions

The next most complex crystal simulated is one that is a single shell. Like the previous

crystal, this was an intermediary crystal that was imaged while producing a much larger crystal for

testing, so the number of ions had to be matched. For this particular crystal, an ion count of 81±5

calcium ions was extracted. The uncertainty in the number of ions comes from the fact that images

of around 80 ions have similar structure and determining the number of ions around the edges of the

crystals is an uncertain process. This uncertainty scales with the size of the crystal, which larger

uncertainties in larger crystals where adding or subtracting ions cause more subtle effects to the

crystal structure. Here more qualitative methods were needed to match the crystal, as to match the

blurring disorder that began to appear in the top and bottom of the crystal. Overall, despite the

disorder in these regions the crystals matched well in terms of size and brightness, demonstrating

that the blur can be matched using tuning of the photon recoil parameter. These kinds of errors

are common in these simplified simulations of ion Coulomb crystals, and it may be possible that

adding some higher order effects could resolve these defect issues in the future [15, 31].
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Figure 3.5: Direct comparison between an experimental and a simulated CCD image of an ion

Coulomb crystal consisting of 81 calcium ions. Ion numbers were extracted from the simulated

image to determine approximately how many ions were present in the experimental image.
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Table 3.3: Experimental Parameters for an Ion Coulomb Crystal of 81 Calcium Ions

Experimental Parameters Values

RF Voltage Amplitude (Peak to Peak) 300V

Endcap Voltage 780mV

RF Frequency 6.289MHz

Number of Ions 81± 5 Ca Ions

In order to determine how well CCMD handled being given an experimental quantity of ions

in addition to the experimental parameters, a crystal with a given TOFMS spectra was identified

and simulated. The TOFMS spectra for the crystal shown in 3.6 revealed that 54 Calcium ions

were present in the trap when the crystal shown was dumped into the spectrometer. For this given

input and experimental parameters, the same structure was revealed with a four ion core and an

outer concentric ring of ions, demonstrating that CCMD can take in an experimental number of

ions as well as experimental parameters and produce a simulated image that corresponds well with

its experimental counterpart. This demonstrates that the simulations are effective at modeling the

trap as it is experimentally setup.

Table 3.4: Experimental Parameters for an Ion Coulomb Crystal of 54 Calcium Ions

Experimental Parameters Values

RF Voltage Amplitude (Peak to Peak) 215V

Endcap Voltage 5.42V

RF Frequency 6.289MHz

Number of Ions 54 Ca Ions

Finally, a crystal more typical for our experiment was reproduced, consisting of 255 Ca ions

as seen in 3.7. This size of crystal and large crystals are more typical for conducting experiments

for characterizing reaction rates. Given a TOFMS spectra that revealed that 255 calcium ions

were present in the trap when this crystal was destroyed, a very similar crystal was produced for
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Figure 3.6: Direct comparison between an experimental and a simulated CCD image of an ion
Coulomb crystal consisting of 54 calcium ions. The number of ions in the simulated image match the
number extracted using a time-of-flight mass spectrometer from the experimental image, demon-
strating that CCMD can reproduce crystals with good agreement when given experimentally col-
lected data in addition to the experimental conditions.
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the same experimental parameters. Notice that the blurring was able to be matched using the

photon recoil parameter and the internal structure, such as the small internal concentric ring at the

very center of the crystal was captured by the simulations. The ability to simulate large crystals

demonstrates that CCMD can be an effective lab tool for crystals of all sizes and shapes, and is

able to reproduce fine details even in more complex simulations such as those of hundreds of ions.

It is expected that the simulation accuracy will scale to even larger crystals as demanded by future

experiments.
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Figure 3.7: Direct comparison between an experimental and a simulated CCD image of an ion

Coulomb crystal consisting of 255 calcium ions. The number of ions in the simulated image match

the number extracted using a time-of-flight mass spectrometer from the experimental image, demon-

strating that CCMD can reproduce crystals with good agreement when given experimentally col-

lected data in addition to the experimental conditions even for large crystals.
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Table 3.5: Experimental Parameters for an Ion Coulomb Crystal of 255 Calcium Ions

Experimental Parameters Values

RF Voltage Amplitude (Peak to Peak) 150V

Endcap Voltage 5.45V

RF Frequency 6.2876MHz

Number of Ions 255 Ca Ions

Resulting Temperature 8±1mK



Chapter 4

Simulation Enhancements

This chapter focuses on changes to the simulation that were added that increase efficiency

or accuracy outside of the integration algorithm as presented in Chapter 2. This section focuses

on how the photon recoil model in the simulations was changed to be more physically accurate

and quantifying its effects on the simulation, a demonstration of how updating the simulations to

comply with best practices for scientific software increased the speed of the simulations, and finally

a graphical user interface that was utilized to produce bulk simulations for matching experimental

images is described.

4.1 Photon Recoil Heating Model

The original CCMD model featured a system for calculating random kicks for the photon

recoil that did not correspond with the physical understanding of how photon recoil works. Initially

the model featured the use of picking values from three normal distributions at random in order

to form a 3D vector that was then applied to each ion. These vectors were scaled by the photon

recoil heating factor from the simulation input parameters. The problem with this approach is that

it was picking both a random direction and a random magnitude. When one considers a normal

distribution centered at zero, the most commonly picked value if one were to pick a random number

from this distribution would be around zero, which means that the photon recoil kicks rarely were

large and unevenly heated the crystal. When an ion absorbs a photon, it will then emit a photon in

a random direction with no real preference on which direction the photon will be emitted [23, 24].
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Picking random directions and magnitudes produces a distribution like that seen in Figure 4.1.

While spherically symmetric, the result of this distribution of kicks to the ions caused the kinetic

energy of the ions in all three directions to be uneven, contrary to how energy is distributed in

actual crystals The effect was that the kinetic energy of the system, which corresponds with the

temperature, was not symmetric radially as would be expected if a sizable non-zero kick were

given in a random direction, as they are in reality. The effects of the normal distributions favoring

low-magnitude kicks can be seen in Figure 4.2 in which histograms of the kinetic energy in the

x, y, and z directions were logged for various laser cooling parameters β. As can be observed the

trend is the same for each laser cooling parameter, and the only real effect is the expected trend

where increasing this parameter decreases the kinetic energy of the ions. Through this test it was

discovered that the photon recoil model was to blame for the asymmetry, and a new model based

on the physics of the photon recoil was devised.

A new algorithm was written for the photon recoil in which the direction was chosen at

random on a unit sphere, always giving a random direction. The algorithm is summarized here,

and the code is presented in the Appendix under the Random Kick using a Unit Sphere section.

An angle θ is chosen using a random number generator:

θ = 2πx (4.1)

where x is a random number generated using the Mersenne twister random number generator,

which provides pseudo-random numbers given a seed provided by the user in the input parameters

to the simulation or one chosen at random if no seed is provided.

Next, an angle φ is calculated using another random number:

φ = arccos(1− 2y) (4.2)

where y is another random number generated using the Mersenne twister random number

generator.



49

Figure 4.1: Results of 1000 random kicks using three random distributions to pick a value from
0 to 1 to build a 3D vector. This distribution of random kick magnitudes and directions results in
an asymmetric heating of the ion Coulomb crystal.
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Figure 4.2: Histograms of kinetic energy values for different laser cooling parameters demonstrating
that by favoring low-magnitude photon recoil kicks due to set of three normal distributions the
resulting heating of the crystal is asymmetric, contrary to expectations.
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A direction in Cartesian coordinates is then determined using the following equations:

x = sin(φ) ∗ cos(θ) (4.3)

y = sin(φ) ∗ sin(θ) (4.4)

z = cos(φ) (4.5)

These values are turned into a 3D vector in Cartesian coordinates and normalized, unlike in

the original algorithm. The direction given by this unit vector is then multiplied by the magnitude

of the photon recoil parameter from the parameters input to the simulation, allowing the users to

heat the ion Coulomb crystal symmetrically. The summary of 1000 random directions generated

using this algorithm is shown in Figure 4.3, demonstrating that the new algorithm chooses random

directions consistent with the physical understanding of how the photon recoil works.

The result for the heating of the crystals was that the kinetic energies are now symmetric as

expected, revealing that the new algorithm fixed the issue with asymmetric heating as shown in

Figure 4.4. This has the added benefit of reducing asymmetric dislocations in the ion positions due

to heating the crystal unevenly.
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Figure 4.3: Results of 1000 random kick directions chosen by taking a random value on a unit
sphere, revealing that the new algorithm for choosing directions for the random kick due to the
photon recoil fixed the issue where the directions of the random kicks was not random as expected.
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Figure 4.4: Histograms of kinetic energy values for different laser cooling parameters demonstrating
that by generating unit vectors in random directions from a unit sphere and then giving equal kicks
in those directions specified by the user the crystals are now heated symmetrically, as expected.
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4.2 Simulation Speed Enhancement

The original CCMD program as well as the updated enhancements made to the simulations

such as the new imaging algorithm and integrator were refactored and brought up to the best

practices in scientific computing in order to speed up computations and allow for more simulations

to be run in less time. This is critical to using CCMD in a laboratory setting as simulations of large

crystals can take hours to days to evaluate, and numerous incremental changes may be necessary

to bring the crystals into agreement with their physical counterparts. As a result, a number of

improvements were made to the code that resulted in gains in computational speed.

First, the code was refactored such that code was not copy and pasted for calculations and

where possible quantities were calculated only once and then retrieved from memory for use in future

calculations rather than calculating them again. Not only did this make the code more readable,

but it also allowed for the compiler to perform more complete optimizations of the simulation code,

in addition to decreasing computation time on redundant calculations [29].

Another improvement made was a restructuring of the code to better optimize for the use

of memory. The orignal version of the code had a great deal of jumps wherein small operations

were performed by outside functions forcing the computer to branch to these locations to perform

simple tasks like adding vectors or getting lengths of arrays. These branches add additional clock

cycles to each computation and can make computationally expensive operations like calculating

the Coulomb force on each ion even more expensive [29]. Thus, where possible operations were

consolidated to minimize branching. Further, copying of objects was minimized. In some cases

when a calculation or operation was being performed a copy of an object, like an ion, would be

made and then copied back or a data structure would be built and expanded dynamically. Dynamic

memory is expensive to use in terms of computation time, so where possible, pointers were utilized

and dynamic allocations were minimized such that computation times could be improved [29].

This especially decreased the time spent outputting and collecting data during the simulation. A

summary of the speed gains versus the unenhanced version of CCMD is presented in Figure 4.5.



55

This demonstrates a great deal of improvement in computation time for the simulations, saving as

much as ten hours on simulations of 300 ions and helping to prevent the computation time from

increasing too quickly for growing ion numbers in the region of reasonable ion numbers for our

experiment. The CPU wall time was chosen as the time to evaluate how quickly the simulation ran

for a certain number of ions as this is the real-world time elapsed between simulation initialization

and when the simulation terminated.

Figure 4.5: The computation speed per ion in terms of CPU Wall Time, or real world time elapsed
in seconds between when the simulation was initialized and when it ended for a enhanced version
of CCMD that ran faster due to optimized memory and refactored code and the original codebase.

The parameters utilized for each simulation in this test to ensure that each simulation was

identical except for the number of ions in the simulation is presented in Table 4.1.



56

Table 4.1: Experimental Parameters for Characterizing Simulation Speeds

Experimental Parameters Values

Minimization RF Cycles 2000

Data Collection RF Cycles 2000

Integrations Per RF Cycle 16

RF Frequency 3.14MHz

4.3 Graphical User Interface

In order to match experimental and simulated crystal images incremental changes to the

simulation parameters are required, as observed in Chapter 3. In order to facilitate these incre-

mental changes, a graphical user interface (GUI) that allows multiple simulations to be queued in

sequence on a lab computer or cluster was developed. This GUI allows the user to place a series of

simulations into a folder and specify a simulation version to have run these simulations in sequence.

The program will return the complete status of the simulation to the status bar of the GUI, as

shown in Figure 4.6. This GUI allows for scanning entire parameter spaces with minimal human

input to start the next simulation in sequence and also allows simulations to be run overnight and

over weekends to minimize the lab time spent configuring and managing simulations. This GUI

was used extensively in the collection of data for this thesis and also is used routinely in the lab to

produce large sets of simulations for analyzing the effects of different experimental parameters.
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Figure 4.6: Screenshot of the graphical user interface developed to make scheduling multiple
CCMD simulations easier, called CCMD Bot.



Chapter 5

Conclusions and Future Work

Through the addition of a higher-order integrator the accuracy of Coulomb Crystal Molecular

Dynamics (CCMD) has been improved and previously observed issues with ions being found in

dislocated positions or at energies higher or lower than expected for given experimental parameters

have been minimized. The addition of a new imaging algorithm allows for simulated CCD images of

ion Coulomb crystals to be compared directly to experimental CCD images since the new imaging

algorithm takes in the physical properties of the CCD camera used in the experiment exactly, such

as camera resolution and pixel size. The photon recoil model has been replaced with one that more

accurately reflects the physics of photon recoil due to absorbing a photon during laser cooling. As

a result the random kicks that heat the ions now heat the crystals symmetrically, giving direct

control to users as to how the crystals are heated and making matching crystal temperatures more

accurate. The simulation performance was enhanced through code refactoring and optimization of

the memory the simulation uses, saving hours for large simulations. A graphical user interface was

developed that allows for numerous simulations with incremental changes to simulation parameters

to be run in sequence, allowing parameter spaces to be scanned automatically. These enhancements

and features were utilized to match simulated CCD images to a set of experimental crystals of

various sizes and shapes demonstrating the flexibility of the enhanced simulations. Further, it

was demonstrated that CCMD can use complete experimental data such as apparatus voltages

and frequency settings as well as ion counts to produce images with matching structures, or the

simulations can be configured to extract ion counts for intermediary images that were not destroyed
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in order to get an ion count from time of flight mass spectrometry. This was shown to be possible

even for large crystals (> 250 ions) such as those used experimentally for determining reaction

rates, demonstrating that CCMD is an effective laboratory tool for extracting the properties of ion

Coulomb crystals.

Higher order effects could be added to the CCMD simulation suite to improve the accuracy

of the positions of the ions in the simulated CCD images and to better match experimental images.

Examples of higher order effects that could be simulated include is the effect of patch potentials

on the trap rods, which are a naturally occurring phenomenon that could be diagnosed using

simulations to explain disordered patterns in experimental images. Adding a two-frequency Paul

trap model to the simulation would be a good predictive tool for future experiments and allow

for the experimental parameters for which two species of highly disparate charge to mass ratios

could be confined in the trap could be explored before building such an experiment. This would

allow CCMD to be a predictive tool for reactions and studies with sympathetically cooled species

of larger on the order of a megadalton [12]. CCMD could also be extended to produce a sequence

of images automatically for producing simulated movies of crystal evolution to correspond with

experimental movies of chemical reactions occurring in ion Coulomb crystals, which would also

require the addition of functionality to add species at a later point in time after the simulation has

initialized.
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Chapter 6

Appendix

6.1 PEFRL Integrator

/∗∗

∗ @f i l e PEFRL. cpp

∗ @br ie f Fourth−order PEFRL in t e g r a t o r

∗

∗ @author Kevin L o e f f l e r

∗ @copyright Copyright 2017 JILA

∗/

#include <vector>

#include ” inc lude / i n t e g r a t o r . h”

#include ” inc lude / ion . h”

#include ” inc lude / ionc loud . h”

#include ” inc lude / l o g g e r . h”

#include ” inc lude / vector3D . h”

#include <math . h>
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PEFRLIntegrator : : PEFRLIntegrator ( const IonTrap ptr i t , const IonCloud ptr ic ,

const Integrat ionParams& integrat ionParams ,

const SimParams& sp )

: I n t e g r a t o r ( i t , i c , integrat ionParams , sp ) {

Logger& log = Logger : : g e t In s tance ( ) ;

l og . i n f o ( ”PEFRL i n t e g r a t i o n . ” ) ;

n i t e r = 0 ;

}

void PEFRLIntegrator : : evo lve (double dt , bool c o o l i n g ) {

f loat f r C o e f f i c i e n t = 1 .0 f / ( 2 . 0 f − pow ( 2 . 0 , 1 . 0 / 3 . 0 ) ) ;

f loat frComplement = ( 1 . 0 f − 2 ∗ f r C o e f f i c i e n t ) ;

f loat x i = 0.1786178958448091 ;

f loat lambda = −0.2123418310626054;

f loat ch i = −0.6626458266981849 e−1;

f i r s t C o e f f i c i e n t ( f r C o e f f i c i e n t ∗dt , c o o l i n g ) ;

s e c o n d C o e f f i c i e n t ( frComplement∗dt , c o o l i n g ) ;

f i r s t C o e f f i c i e n t ( f r C o e f f i c i e n t ∗dt , c o o l i n g ) ;

// Te l l everyone we ’ re done

n o t i f y L i s t e n e r s ( n i t e r ++);

}

void PEFRLIntegrator : : f i r s t C o e f f i c i e n t (double dt , bool c o o l i n g ) {

double h a l f d t = dt / 2 . 0 ;

s td : : vector<Vector3D> cou lomb force = coulomb . g e t f o r c e ( ) ;

int i = 0 ;
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for (auto i on : i ons −>g e t i o n s ( ) ) {

// Ca l cu l a t e v e l o c i t y at h a l f time−s tep , uses Coulomb fo r c e from

// prev ious time s t ep .

ion−>k ick ( h a l f d t , cou lomb force [ i ++]);

i f ( c o o l i n g==fa l se ){

ion−>heat ( h a l f d t ) ; // Heating

}

ion−>k ick ( h a l f d t ) ; // Trap , p l u s hea t ing i f LaserCooled .

// Update p o s i t i o n s by f u l l t ime s t ep

ion−>d r i f t ( dt ) ;

}

// Ca l cu l a t e new ac c e l e r a t i o n

coulomb . update ( ) ;

t rap −>evo lve ( h a l f d t ) ;

cou lomb force = coulomb . g e t f o r c e ( ) ;

i = 0 ;

for (auto i on : i ons −>g e t i o n s ( ) ) {

// Update v e l o c i t y over second h a l f time−s t ep

ion−>k ick ( h a l f d t , cou lomb force [ i ++] ) ;

i f ( c o o l i n g==fa l se ){

ion−>heat ( h a l f d t ) ; // Heating

}

ion−>k ick ( h a l f d t ) ; // Trap , p l u s hea t ing i f LaserCooled .

}
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// Update t rap again .

coulomb . update ( ) ;

t rap −>evo lve ( h a l f d t ) ;

}

void PEFRLIntegrator : : s e c o n d C o e f f i c i e n t (double dt , bool c o o l i n g ) {

double h a l f d t = dt / 2 . 0 ;

s td : : vector<Vector3D> cou lomb force = coulomb . g e t f o r c e ( ) ;

int i = 0 ;

for (auto i on : i ons −>g e t i o n s ( ) ) {

// Ca l cu l a t e v e l o c i t y at h a l f time−s tep , uses Coulomb fo r c e from

// prev ious time s t ep .

ion−>k ick ( h a l f d t , cou lomb force [ i ++]);

i f ( c o o l i n g==fa l se ){

ion−>heat ( h a l f d t ) ; // Heating

}

ion−>k ick ( h a l f d t ) ; // Trap , p l u s hea t ing i f LaserCooled .

// Update p o s i t i o n s by f u l l t ime s t ep

ion−>d r i f t ( dt ) ;

}

// Ca l cu l a t e new ac c e l e r a t i o n

coulomb . update ( ) ;

t rap −>evo lve ( h a l f d t ) ;
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cou lomb force = coulomb . g e t f o r c e ( ) ;

i = 0 ;

for (auto i on : i ons −>g e t i o n s ( ) ) {

// Update v e l o c i t y over second h a l f time−s t ep

ion−>k ick ( h a l f d t , cou lomb force [ i ++] ) ;

i f ( c o o l i n g==fa l se ){

ion−>heat ( h a l f d t ) ; // Heating

}

ion−>k ick ( h a l f d t ) ; // Trap , p l u s hea t ing i f LaserCooled .

}

// Update t rap again .

coulomb . update ( ) ;

t rap −>evo lve ( h a l f d t ) ;

}

6.2 Random Kick using a Unit Sphere

Vector3D random kick ( ) {

//{ re turn Vector3D ( normal ( ) , normal ( ) , normal ( ) )∗ k i c k s i z e ; }

double pi = 3.14159265358979323846264338327950288;

double theta = 2 ∗ pi ∗ uniform01 ( generato r ) ;

double phi = acos (1 − 2 ∗ uniform01 ( generato r ) ) ;

double x = s i n ( phi ) ∗ cos ( theta ) ;

double y = s i n ( phi ) ∗ s i n ( theta ) ;

double z = cos ( phi ) ;
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return Vector3D (x , y , z ) . normal i s e ( )∗ k i c k s i z e ;

}




