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ABSTRACT

We present a simple algebraic theory which allows us to solve a variety of
combinatorial problems, inch;ding the problem of finding convex hulls in two
dimensions, the “Trip Around the Moon" problem, a version of the ballot prob-
lem, and the problem of enumerating and randomly generating ordered trees of
a given size. Individual problems are solved by applying general algorithms and
theorems developed within this algebraic theory.

INTRODUCTICN

Imagine yourself standing between a pair of adjacent elements in a
‘sequence of reals. If the sequence is monotonically increasing, then regardless
of your exact position within the sequence, every element to your left is less
than every element to your right {or vice versa). In this paper we develop the
theory of a different, but related kind of sequence. These are qmwsi—thmasiﬁg
sequences, in which the "average” of all the elements to your left is less than the
"average' of the elements to your right {or vice versa). Consider as an example
an "ideal business year”, in which the average of the monthly profits for the

remaining months of the year aiways exceeds the current average.

We develop the theory of quasi-increasing sequences (and the other forms
of quasi-monotonic sequences) using the general notion of an aueraging func-
Hon. An averaging function is a mapping w from nonempty sequences over an
arbitrary set into some linearly ordered range which satisfies one basic axiom:
for any two sequences U and V, u(UV) and wu(VU) must lie between u(U) and
u(V). (Note that we do not demand that u{UV) = u{ VU)). Many of the commonly
used measurss of central tendency satisfy this basic condition, and are thus
averaging functions in the sense that we use this term.

With respect to a given averaging function u, a sequence S is quasi-
increasing if u{U) < u(V) for every pair of nonempty sequences U and V such
that S = UV. Quasi-nondecreasing, quasi-decreasing and quasi-nonincreasing
sequences are defined analogously. Section 1 gives a brief introduction to the
theory of quasi-monotonic sequences. This theory is related to the theory of‘
Viennot factorizaticns (see [Lot 82], [Vie 78]]), but our basic approach is some-
what different. As in [We 78], we obtain interesting generalizations of earlier
work in [Spi 56}, and of the work on Lyndon words (see [ Lot 83]). However, our
primary concentration is on the applications of the theory to the solution of
various combinatorial problems. These include the problem of finding convex



hulls in the plane (see e.g. [Prep 79]), the "Trip Around the Moon" problem ([ Gra
83)), a generalized version of the ballot problem ([7ak 67]), and the problem of
enumerating and randomly generating ordered trees of a given size (see e.g.
[Der 80)). Detailed descriptions of these problems can be found in Sections 2.3,
3.2, 3.4 and 3.5 respectively. While these problems are certainly not new or
" unsolved, until this point they have not been cast and solved within a general
algebraic. framework. Sections 2 and 3 are devoted to this task Fach begins
with a general result in the theory of quasi-monotonic sequences, followed by a

development of an algorithm based on this result with explicit applications.

In Section 2, we demonstrate that for any fixed averaging function u, every
sequence can be uniguely decomposed into a series of maximal quasi-increasing
segments, called upward trends (Theorem 2.1.1). We give a general algorithm
for computing this decomposition, prove that it is correct and demonstrate that
it is optimal (linear time) for a certain class of averaging functions which we call
constant time merging. Using a suitable constant time merging averaging func-
ticn, the convex hull of a sorted sequence of points in the plane can be viewed as
a pair of decompositions of the sequence of line segments between adjacent
points, where one decomposition gives the upward trends and the other gives
the downward trends. Since we have a linear time decomposition algorithm for
this averaging function, this gives a linear time algorithm for finding the convex
hull of a set of points sorted on one coordinate, and an O(n log n) algorithm if
initial sorting is required. Both algorithms are optimal ([ Yao 79]).

In Section 3 we demonstrate that every sequence has a cyclic conjugate
that is quasi-nondecreasing (Theorem 3.1.2)., We give an algorithm for finding
this cyclic conjugate which is also optimal for constant time merging averaging
functions. This algorithm can be used to solve the "Trip Around the Moon" prob-
lem., variants of which are discussed in [Tak 87] and [Dvo 80] in the context of
queuing theory and data storage and retrieval techniques for magnetic bubble

memories.

Using a canonical mapping from ordered trees to sequences given in [Read
72], an extension of the the above result (Theorem 3.3.4) can also be used to
obtain formulas enumerating the number of various types of ordered trees by
size ([Der 80]), and the above algorithm can be used to randomly generate
ordered trees of various sizes and types. These results are given in Section 3.4.
In addition to these applications, we can also obtain solutions to some general-

ized forms of the classic ballot problem (see Section 3.5).



SECTION 1. BASICS

1.1 Notation

Throughout this paper, italicized upper-case letters denote finite
sequences, and the corresponding lower-case letters denote their elements.
Thus a typical sequence is denoted S = s, - - - 5,. The length of S is n, denoted
| S|. Sets will be denoted with upper case Greek letters. If (0 is a finite set, then
|Q| denotes the cardinality of Q. For any set I, " denotes the set of all
nonempty sequences formed from the elements of £. If U and V are sequences,
UV denotes the sequence resulting from the concatenation of U and V, and U*
denotes the sequence resulting from the concatenation of U with itself k¥ times.
If S = UWYV, then ¥ is a segment of S. If, in addition, U is the empty sequence,
then W is a prefiz of S and if V is the empty sequence, then ¥ is a suffiz of 5.
Any segment of S is proper if it is not empty and it is not all of S.

1.2 Averaging Systerns

The basic framework underiying the theory of quasi-monotonic sequences

éan be described as follows.

Definition. Let T and [" be arbitrary sets, the latter being linearly ordered
by a relation <. Let & be and arbitrary function from 2% into I which satisfies the
following, where U and V are arbitrary sequences in Z*.

Interpolation Property.
If 4(U) < u( V) then u{U) < p(UV), u(VU) < w(¥) and
if u(U) = u(¥) then w(U) = w(UV) = w(VU) = u(V).

Such a function w4 is called an averaging function and the system Z, [, <, 4 is
called an aueraging sysfem. *

This general notion of an averaging function encompasses several measures
of central tendency which are commonly used, and some not so commonly used.

The following are a few examples of averaging functions.

Definition. Given a sequence of real numbers S =8 * - Sn, the arilhmetic
1l
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of positive reals. For any real number a > 0, the a-weighted mean of S is
3y +asg+alsg+ 0 +at sy
l+a+a?+ - +a™7}

For any sequence of pairs of real numbers
) n
&
1]

2’4.

- =1

T=(zy,Yy) - (Zn. Yn) where z; >0, 1 <1 < n, the gradient mean of T is

Note that the arithmetic mean is a special case of the a-weighted mean with
a = 1, and (essentially) a special case of the gradient mean with z; = 1 for all 7,
1=1i=<n. Another useful special case of the a-weighted mean is obtained by
taking a to be an infinitesimal. For x4 defined in this manner, given nonempty
sequences of reals U and V we have u{U) < u(V) if and only if UV lexicographi-
cally precedes VU, i.e. if and only if UV = XaZ and VU = XbZ' where a and b are
reals with @ <b and X, Z, Z' are {possibly empty) sequences of reals. We will
call this the lericographic mean. This is a good example of a mean which
depends on the order of the elements in the sequence, in contrast to the other

functicns given above.

The fact that all of the above functions are averaging functions rests pri-

marily on one elementary arithmetic result.

Lemma 1.2.1. For any real numbersa, b, ¢, d with &, d > 0,

@ [+ a a+cC c
(l)lfr< Ithenb—< b+d<-&—and
if &= L 2 . akc . ¢

() if Pl then &= == =

Proof. This follows easily from well-known arithmetic rules for manipulating

fractions. =
Lemma 1.2.2. The Interpolation Property holds for all of the above means.

Proof. That the arithmetic, harmonic and gradient means satisfy the Inter-
polation Property (under the restrictions given in their definitions) follows
directly from the above lemma. In the case of the a-weighted mean, we notice
that if X =z, - -z, and Y =%, Ym, then u(XY) is

(_-,1 + e +an-—1;\) +an(yl RS am-&ym)
1+ +a™ D +at(1+ 0 +a™})
Hence again we can use the above lemma.

That the geometric mean satisfles the Interpolation Property actually fol-
lows from the fact that the arithmetic mean satisfles this property. This is
because the logarithm of the geometric mean of a sequence of positive reals is

the arithmetic mean of their logarithms, and the logarithm is monotonic. «



Since it is our intention to proceed as rapidly as possible to the theory of
quasi-monotonic sequences and its applications, we will not give an extensive
axiomatic treatment of the theory of averaging systems here. However we will
pause to note a few general properties of averaging systems which will be useful
in what follows. From this point on, u will denote an arbitrary averaging function,
and all sequences will be assumed to be sequences over the domain of u (Le.
nonempty sequences) unless otherwise noted.

Cne property of averaging systems which agrees well with cur intuitive
notion of an "average” is the following.

Lamma 1.2.3. (Balancing [emma) let Uy, Us ..., U, V1. Vo ..., Vi be
sequences, wherek, {1 > 0. If u(l;) s u(¥;) foralliandj, lsiskand 1sj </,
then u(U, - -+ Up)<u(V, - ¥). If in addition u(0;) < u(V;) for some i and j,
1<i<skand1<j<!l thenu(U; - U)<{Vy-- - V).

Proof. lLet a= zgl*.afz“( U;) and let 8= Tin [;;(VJ) By the Interpolation
Property (repeatedly), it follows that u(U, - Up)<sa and u(Vy - W) =4

Since by our basic assumption above, a=g, it follows that
WUy Ue) < (V- - ). If the additional assumption above is also valid, then
a similar argument shows that (U, - - - Ug) <u(V,- - V). =

Another useful property of averaging systems can be derived from the fact
that [', the range of 4, is linearly ordered. While we will occasionally make tacit
use of this fact, for the most of our resuits we need only refer to the following.

Lamma 1.2.4. (Strong /nterpelation Property)
For any sequences U and ¥, the following are equivalent:
(1. s U) < (W),
(2. (V) <w(UV),
(3). w(U) < u(VU7),
(4). p(UV) < (V) and
(8). w(VU) < V),
and the following are equivalent:
(a). w(U) = w(V),
(b). u{U) = p(UV) and
(e) i(U) = u(VU).

Proof. That (1) implies (2)-(5) and (a) implies (b) and (c) is precisely the
content of our basic axicm, the Interpolation Property. For the reverse implica-
tions, e.g. (2) -> (1), (3) -> (1), etc., we note that since the range of u is linearly
ordered, we must have either w(U) < u(V), u(U) = u(V) or u(U) > u(V). Yet



these latter two relationships violate conditions (2)-(5), by the Interpolation Pro-
* perty, and the first and third relations violate conditions (b) and (c) by the same
property. =

1.3 Quasi-Monotonic Sequences

In this general framework we have outlined, the notion of a quasi-monotonic

sequence can be given as follows.

Definition. A sequence S is quasi-increasing (quasi-nondecreasing) if
w(U) < {V) ((U) = u(V)) for all nonempty sequences U, V such that S = UV.
Quasi-decreasing and gquasi-nonincreasing sequences are defined analogously.

- S is quasi-monotonic if it is a sequence of any of these four types. ®

Frample., If pis the arithmetic mean, then
2 1 3 4 is quasi-increasing,
34 2 11is quasi-decreasing,
14 2 3 is quasi-non-decreasing,
3 2 4 | is quasi-non-increasing and
14 3 2is none of the above. *

When u is the lexicographic mean, the set of quasi-increasing sequences is
the set of Iyndon words over the reals (see e.g. [ Lot 83]).

Two useful variants of the definition of a quasi-monotonic sequence are
given in the following lemma. Here, and in several subsequent lemmmas, we give
only the quasi-increasing and/or quasi-nondecreasing versions, since the other

cases follow by a similar argument, by simply reversing the sense of the inequal-
ities.

Lemma 1.3.1. (Prefiz/Suffiz Lemma) Let S be a seguence. The following
are equivalent.

(i). S is quasi-increasing (quasi-nondecreasing).
(ii). w(U) < u(S) (u{U) = u{S)) for every proper prefix U of S.
(iii). w(S) < (V) (u(S) = u(V)) for every proper suflix V of S.
Proof. This follows directly from the definition of a quasi-increasing (quasi-

nondecreasing) sequence, using the Strong Interpolation Property. =

It follows that for a quasi-increasing sequence S, u(U) <u(V) for any
proper prefix U and proper suflix ¥V of S, even if they overlap or are separated
by some nonempty middle segment of S.



The four classes of quasi monotonic sequences have intersection properties
similar to those of normal monotonic sequences, as is demonstrated in the fol-
lowing lemma.

Definition. A sequence S = s, ' - Sy, is constant if u(s;) = p(s;) for all i and
j.1si,jsn. =

Lemma 1.3.2. (Constant Sequence Lemma)

(1). A sequence is both quasi-nondecreasing and quasi-nonincreasing if and only
if it is constant.
(2). A sequence is both quasi-increasing and quasi-decreasing if and only if it has

only one element.

Proof. 1f S is both quasi-nondecreasing and gquasi-nonincreasing, then by
the Prefix/Suffix Lemma above, for any proper prefix U of S, u(U) = u(S) and
w(0) = u(S), ie. u{U)=p(S). Hence by the Strong Interpolation Property
(repeatedly),it follows that u(s;) = u(S) for all i, 1 <1 <n, and thus S is con-
stant. For the second part, if S is both quasi-decreasing and quasi-increasing
then for any proper prefix U of S, u{U) < u{S) and u{U) > u(S), hence S has no
proper prefixes, Le. S has only one element. ®

We close this introductory section by briefly examining the conditions
under which quasi-monotonic sequences can be combined to form larger quasi-
monotonic sequences. As above, we will restrict cur attention to quasi-increasing
and quasi-nondecreasing sequences. Our first lemma deals with sequences
formed by concatenating quasi-nondecreasing sequences.

Lemma 1.3.3. (Construction Lemma) Let S,, ..., Sp be quasi-nondecreasing
sequences, where k > 1, and let S =S5, - S,. S is quasi-increasing (quasi-
nondecreasing) if and only if (S, - Si) <u{S) (WS, - S;) s uS)) for all 1,
1<1i<k.

Proaf. We will prove only the "quasi-increasing part” of this result, since
the other part is analogous. Further, since the "only if" implication of this part

follows directly from the Prefix/Suffix Lemma, we need only verify the "if" impli-
cation.

Using the Prefix/Suffix Lemma, it suffices to show that
w(S, - SU) <u(S) for any i, 0=<1i <k, and any proper prefix U of S;,,. If
1 =0, then u{Si+1) = u(S,) < u(S) since k& > 1. Furthermore, since 5, is quasi-

- nondecreasing, u(U) < u{S,). Hence u(S, - S;U) = u{U) < u(S), establishing
the result. Thus we may assume that i > 0. Now if u{(U) < u(S) then since
w{S, - S) <uS) as well, we have u(S, -  5;{U) < u(S) by the Baiancing



Lemma. Hence we may also assume that p(S) < u{U). Let V be the sequence
such that Sj,; = UV. Since Si;, is quasi-nondecreasing, u(U) =< u(V). Hence
w(S) < u(V). Now since either Siiz - - Sk is empty or u(S) < u(Sisz- - - Se) (by
the Strong Interpolation Property), we have u(S) < u(VSisz' - Se) by the
Balancing Lemma. Thus since S =S, S;UVS;4a - - Se, by the Strong Inter-
polation Property, u(S; -+ S;U) < u(S). »

A useful special case of the above result is the following.

Corollary 1.3.4. (Construction Corollary) I1f Sy ..., S are quasi-
nondecreasing sequences, where k >1, and u{S;) <u(Sz) < -+ <uSe)
(u(S) < u(S)< -+ - =u(Sk)) then S, :-S, is quasi-increasing (quasi-
nondecreasing). '

Proof. This follows directly from the above lemma using the Balancing
Lemma. =

We also consider sequences obtained by overlapping quasi-nondecreasing

sequences.

Lemma 1.3.5. (Overlap Lamma) Let T,U, and V be sequences with U non-
empty If TU and UV are quasi-increasing (quasi- nondecreasmg) then S = TUV

is quasi-increasing {(quasi-nondecreasing).

Proof. Again we prove only the result for the quasi-increasing case, the

other case being entirely analogous.

Let S = XY, where X and Y are nonempty sequences. We show that
(X)) < w(Y). Consider three cases.
(3) X = TL and Y = RY for some nonempty L and R, (thus U = LR).
Since TU is quasi-increasing, by the Prefix/Suffix lemma, u(TL) < u(TU) < u(U).
Similarly, u(U) < p(UV) < w(RV). Thus, i(X) = u(TL) < w(RV) = u(Y).
(b) X = L and Y = RUV for some nonempty L, (thus T = LR).
Following the reasoning used in (a), w(L) <u(TU) <u(U), w(RU). Also
w(U) < w(UV) < (V). Thus, since pu{L) < w(RU) and u(L) < u{V), by the Balanc-
ing Lemma w(X) = w(L) < W(RUV) = u(Y).
(¢) X = TUL and Y = R for some nonempty R, {thus V = LR).

This case is a mirror image of case (b), and has a parallel proof. =

SECTION 2. TRENDS

2.1 The Decomposition Theorem



In Lemma 1.3.3 (the Construction Lemma) we have considered the condi-
tions under which quasi-increasing sequences can be concatenated to form
larger quasi-increasing sequences. In this section, we consider the related prob-
lem of how we can decompose an arbitrary sequence into guasi-increasing seg-

ments. A related approach to decompositions of this type is given in [ Vie 78].

. Since each sequence element is itself a quasi-increasing segment, we res-
trict our atiention to segments which are quasi-increasing and of maximal
length.

Definition. Given a sequence S =s,'''s,, a segment U =s; "5y,
1<1 < j <n,is mazrimal quasi-increasing if U is quasi-increasing and no exten-
sion S, '+ - S, of U, where 1sA<i<j<ks<=n and h <i or j <k, is quasi-
increasing. A maximal quasi-increasing segment is called an upward trend.
Downward trends are defined analogously. A sequence of sequences S;, ..., Sg is
a dacomposition of S into upward (downward) trends if S = .5, -+ S, and S; is
an upward (downward) trend of S for eachi, 1si<k. ®

Fzample. If uis the arithmetic mean, then the sequence 121543120
can be decomposed into.upward trends as 12154 3, 1 2, 0 and into downward
‘trendsas 1,2 1,543 120 .»

As in the previous section, we will state many of cur results only in their
quasi-increasing and/or quasi-nondecreasing versions. Unless otherwise indi-
cated, the word frend indicates an upward trend and a decomposifion of S indi-
cates a decomposition of S into upward trends. Cur main result is the following.

Theorem 2.1.1. (Decomposition Theorem) Any sequence S can be uniquely
decomposed into upward trends, and every upward trend of § is a member of

this decomposition.

Proof. lLet S =58, 5s,. For each element s; of S, find the maximal
quasi-increasing segment of S which contains s;. This segment is unique by the
Overlap Lemma. Let S, ..., Sp be the list of distinct segments found by succes-
sively considering elements sy, ..., S,. Again by the Overlap Lemma, these must
form a decomposition of S into upward trends, and every trend of S must

appear in this decompesition. *

When u is the lexicographic mean, the decomposition into upward trends is
known as the Lyndon factorization. When u is the arithmetic mean, this decom-
position has been called Spitzer’s factorization (see [Lot 83], [ Spi 56]).

The general relationship among the segments in the decomposition of S is
outlined in the next lemma.



© Lemma 2.1.2. (Trend Mean Lemma)

(1) Sy, .... Sg is the decomposition of S into upward trends if and only if
S=8,---S,, S; is quasi-increasing for all 1, 1=<i=<k, and
w(S1) = pu(Se) = -+ = plSk)-

(2) Let S,, .... S; be the decomposition of S into upward trends. If S is
quasi-nondecreasing, then u(S;) = w(Sz) = - = u(S,) = u(S), other-
wise u(S1) > u(S) > p(Sk).

Proof. ad (1). If S, ..., Si is the decomposition of S, then by definition we
must have S = S, -+ S; and S; quasi-increasing, 1 =<1 < k. Further, we cannot
have u(S;) < u(S;4,) for any i, 1 <14 <k, for by the Construction Corollary, this
would imply that S;S;i+; is quasi-increasing, contradicting the maximality of the
trends. Hence u(S;)= u(Sg)= -+ =pu(S;). For the other direction, assume
that these three conditions hold. Suppose that S; is not maximal for some 1,
1<i<k. Thus S = ULS;RV where U,L,R,V are sequences (either L or R may
be empty, but not both) and LS;R is meximal quasi-increasing. From the Over-
lap Lemma, it follows that LS;R =S, -+ - S, for some 1 <h <i=<!l <k, where
h <i or i <l. However, then by the Prefix/Suffix Lemma, we must have
w{Sn) < u{S)), a contradiction to the third condition of {1). Hence each .5; must
be maximal, and thus §;, ..., S; is the decompesition of S.

ad (2). If S is quasi-nondecreasing, then by the Prefix/Suffix Lemma,

w(S)) = u(S) = u(Se). Hence from part (1),
u(S1) = u(Sz) = -+ = u(Se) = u(S). On the other hand, if S is not quasi-
nondecreasing, then it cannot be the case that u{S;) = u(Sg) = - -+ = u{S,) (by

the Construction Corollary), hence we must have u(S;) > u(S,) by part (1).
Again from part (1), using the Balancing Lemma, it follows further that
(S1) > p(S) > Sk =

2.2 The Collect-and-Merge Algorithm

We now turn our attention to the problem of computing the decomposition
of a given sequence. We will present an algorithm which produces the decompeo-
sition of a given sequence on-line in linear time, under certain general assump-
tions concerning the computation of . We will use a model of computation in
which all integers and real numbers to arbitrary precision occupy constant
space, and all normal arithmetic operations, including addition, subtraction,
multiplication and division, on these numbers take constant time. This is known
as the uniform cost RAM model (see e.g. [Aho 74]). The key element in our algo-
rithm is the following abstract data type.



Definition. A block is a data type which represents specific information
about an arbitrary segment of a sequence S =5; - 5,. This data type supports
‘the following functions, where b, b,, b, are arbitrary blocks representing seg-
ments T, U, V respectively.

(1). location (b) returns the index in S of the first letter in the segment T.

(2). length (b) returns the length of T.

(3). u(b) returns u(T).

(4). merge (b,, b3) returns a block b representing the segment UV if the seg-
ment V occurs immediately following U in S, otherwise it returns some special
error value.

(5). makeblock (T) returns a block representing the segment T.

An averaging system and its associated averaging function are constant
time merging if for any sequence S, there is an implementation of the data type
"block” for segments of S in which each block occupies constant space, each of
the functions (1)-(4) defined above take constant time, and for any segment T of
Ierxgth 1, makeblock T takes constant time. =

Lemma 2.2 1. Using the uniform cost RAM mcdel the arithmetic and gra-
dient means are ccnstant.time merging.

Proof. If g is the arithmetic mean, then a block representing a segment T
can be implemented as a record which consists of the index in § of the first ele-
ment of T, the length of T, and the real number which gives the sum of the ele-
ments of T. It is clear that under the model of computaticn we are using, this
data structure occupies constant space, and all of functions associated with a
block can be computed from it in the required time. For the gradient mean, we
can use a similar data structure which includes both the numerator and the

denominator of the fraction that defines u{.S).

Qur algerithm to find the decomposition of a sequence S =3, s, wil
create a stack of blocks b,, ..., by representing the trends Sy, ..., S¢ of this
decomposition. This will be accomplished by successively computing the stacks
representing the decomposition of s, - - s for 1 =1 to n. Thus we will need a
procedure to update an existing stack of trends when a new element is added on

the end of the sequence. We give this procedure in the following general format.

Tha Procedwu.re‘ Coalesce (@,5)

input: a sequence SB with 5 quasi-increasing, a stack of blocks
@ =05y .., b, (with b; at the top) representing the decomposition
Sy ... Se of S into upward trends and a block & representing the



segment B. (We allow the possibility that & is the empty stack and S
is the empty sequence).

output: a stack of blocks @ =£;, ..., § {(with £, at the top) representing the
decomposition Ty, ..., T} of SB into upward trends.
~ begin

while @ is not empty and w{top(@)) < u(b) do
begin ] '
pop the top block biop from &;
let b = merge (byp, b);
end
push b onto &;

end.

Lemma 2.2.2. The procedure coalesce is correct.

Praof. 1If & is empty then the while loop of coalesce is not executed, and it
is obvious that the procedure is correct. Otherwise, we claim the while loop has

the following invariant.

(1) @ =20y .., by, for some j, 0 < j <k, where the segment represented by by

is quasi-increasing, 1 <~ <7, and w(b) = u(bz) = - -+ = u(b;),

(2) the segment represented by & is quasi-increasing and
(3) SF isrepresented by b, - &;b.

It is easily verified that this invariant holds before the first execution of the
loop. In this case b represents 5, which is quasi-increasing by assumption, and
by, ..., bj represents the decomposition of S. Thus the segment represented by
by is quasi-increasing for all h, 1<h <7, b, - b;b represents S5 and by the
Trend Mean Lemma, u(b,) = pu(bg) = - = u(b;). That it is preserved by the
execution of the loop body follows directly from the Construction Corollary,
since b; and b are merged only when ulb;) < u(b), and in this case the segment
represented by b;b must be quasi-increasing. Since each time the loop is exe-
cuted, the size of @ is reduced by one, the loop will terminate. Upon termina-
tion, in addition to conditions (1)-(3) we will have either

(4) @ is empty (i.e. 7=0) or
(5) 7 >0 andu(bs) = u(d).

In either case, by, ..., bj, b represents the correct decomposition for S8
by the Trend Mean Lemma, and hence & is correct following the last statement



of the procedure, =

The algorithm to compute the decomposition of a sequence can now be

given.

The Collect-and-Merge Algorithm.

input: a nonempty seqﬁence S =5, Sp.

output: a decomposition S, ..., S of S into upward trends.
data structures: a stack & of blocks.

begin
let & be empty;
fori =1ton do
begin
let bpew = mokeblock (s;);
coalesce (@, Bpew )i
end; )
return a list of segments represented by the elements of &
ordered from bottom to top;
end. »

Given the correctness of coalesce, it is obvious that the Collect-and-Merge
algorithm is correct. We briefly analyze the time and space requirements of this
algorithm.

Thaoram 2.2.3. Using the uniform cost RAM model, for any averaging sys-
tem which is constant time merging, the space and time requirements of the
Collect-and-Merge algorithm are O{n), where m is the length of the input

seguence.

Proof. It is clear that the space requirements are 0(n). To analyze the
time requirements, let us for the moment discount the while locop in coalesce.
What remains are the first and last statements of the algorithm (which take time
O(n)), and a group of middle statements which constitute a loop which is exe-
cuted n times and takes constant time for each execution. Hence the total time
used is O(n). In the course of all executions of the middle loop, n blocks are
created by calling the function makeblock. Now consider the while loop we omit-
ted. One execution of this loop also takes constant time. Furthermore, every
time it is executed, the number of blocks in use is reduced by one. Since n
blocks are introduced during the course of execution of the entire algorithrﬁ. at

least one remains when the algorithm terminates, and there are no other means



of reducing the number of blocks, this implies that the while loop is executed at

most n — 1 times. Thus the total running time of the algorithm is o(n). =

Before continuing to the applications of the Collect-and-Merge algorithm,
we pause to consider another use of the procedure coalesce. let us assume that
we have already computed the decompositions for two sequences S, and Sz We
can combine these decompositions into a single decomposition for the sequence

S1S2 by the following procedure.

The Procedure Combine (T1. T2)

input:  two stacks of blocks U and V representing the decompositions of S
and S, into upward trends, where U is ordered from bottom to top and
Vis ordered from top to bottom. '

output: a sequence of blocks @ representing the decomposition of S1Ss.

begin

while ¥ is not empty and u{top(U)) < u(tep(V)) do

begin
pop the block b from the top of V;
coalesce (U, b);

end;

return U {ordered from bottom to top) concatenated with ¥
(ordered from top to bottom);

end.

By arguments similar to those given above, it is clear that this procedure is
correct, and that in the worst case it takes time and space proportional to the
total number of blocks in the decompositions of S; and S; for an averaging sys-
tem which is constant time merging. The procedure com&ine might be used ina
divide-and-conquer approach to finding decompositions. However, it is clear
that since the Collect-and-Merge algorithm is already optimal for averaging sys-
tems which are constant time merging, this approach will not be useful in this
case. It may be the case though, that this procedure can be used to at least
improve the expected time in certain cases when the averaging system is not
constant time merging. In other cases, it appears that a more direct approach,
taking advantage of special features of the averaging function u, will yield the
most efficient decomposition algorithm. An example of this is Duval’'s decompo-

sition algorithm for the lexicographic mean ([ Duv 83]).



2.3 Finding Convex Hulls

As an example of the application of the Collect-and-Merge Algorithm, con-
sider the problem of finding the convex hull of a set of points on the z —y plane.

Assume that we are given a sequence of points T = (Zg Yo) v (Zn, Yn )
where n > 1, with distinct z coordinates, sorted in increasing order on the z
coordinate. The convex hull of T is the smallest (minimal area) closed convex
polygon which contains all of the points of 7. The vertices of this polygon form a
subset of T known as the set of extremal points of T. It is clear that the set of
extremal points of T must include the first and last points of 7, and these
extremal points will form a degenerate polygon only in the case that all of the
points of T lie on the line between the first and last points of 7. The edges of the
convex hull connecting the extremal points which lie on or above the line from
the first to the last point of 7 will be called the wpper part of the ccnvex hull,
and those connecting the extremal points which lie on or below this line will be
called the lower part. These sets of edges are disjoint, unless the convex hull is
degenerate, in which case they are identical (we generalize this observation
later).

The convex hull of T can be determined as follows. From the sequence T,
derive a sequence of line segments S = (s, t1) ' (Sp, tn) Where & =z —z;_,
and ¢; = y;—y;-, for L <i <sn. Since T is sorted and all points have distinct z
coordinates, 5; >0 for alli, 1si1<n. Let u be the gradient mean, as defined
above in Section 1. By Lemma 2.2.1, 4 is an averaging function which is constant
time merging.

Now consider and arbitrary segment U ={z¢, ¥p) (Tewr, Yeer) of T,
where [ > 1, and the corresponding sequence of line segments
V= {(Se+1, ter1)  * (Sess, tesy). By the Prefix/Suffix Lemma, Vis quasi-increasing

if and only if

{

Ees o
pl(Se+rts teedd 7 (Spei tewi)) = S < (V) foralld, 151 < L.

jgx’kﬁ

This is obviously equivalent to the condition that the slope of the line from
(Ze. Yr) to (Zesi. Yesq) is less than the sicpe from (zy, Yi) to (ZTe s, Ye ) for all i,
1 =<1 <!, ie. that all of the points between (z,, Vi) and (Tg4, Ye+) lie below the
line between these two points. Similarly, ¥ is quasi-decreasing if and only if all
intermediate points lie above the line determined by the endpoints of U. It fol-

lows easily that the decomposition of § into upward trends defines the upper



part of the convex hull of 7, and that the decomposition into downward trends
defines the lower part. Thus using the Collect-and-Merge algorithm, the convex
hull of T can be computed cn-line in linear time.

This algorithm is clearly optimal in situations where the points are given in
sorted order with distinct coordinates in one dimension, e.g. in applications
where the points are evaluations of a function f (z) for successive values of z
taken at discrete intervals. Even if two points can have the same z coordinate,
we can usually get around this by perturbing the points slightly within their
error range. Here, as in general, care must be taken when applying this algo-

rithm to avoid the accumulation of round-off errors.

If the points of T are not originally given sor:ted on their z coordinates,
then to use the Collect-and-Merge algorithm, it requires O(nlogn) time to sort
them, giving a total running time O(nlogn). This the best possible time bound
that can be achieved in this situation [ Yao 79], and there are several algorithms
which achieve it, either by sorting first and then applying a hull finding pro-
cedure {which in some cases appears to be a special.case of the Collect-and-
Merge algorithm, e.g. [And 79]), or by using divide-and-conquer technigues (e.g.
[Ben 78]). Many of these latter algorithms are appealing because they run in
O{n) expected time for a variety of point distributions. Here it should be noted
that the algorithm above, and some of the other techniques based on sorting will
also run in O(n) expected time if an O{n) expected time sort can be used (see
[Mei 80] for an example of a sort which achieves this expected time for a wide
class of distributions).

2.4 The Trend Boundary Theorem

The relationship between the convex hull and the corresponding decomposi-
tions given above suggests other properties of decompositions which have not
yet been explored. For example, as we mentioned above, it is intuitively obvious
that the set of extremal points of T = (Zg, Yo), -+ (Zn. Yn) between (zg, y¥g) and
(zn, Yn) on which the upper part of the convex hull of 7 is defined is always dis-
joint from the set on which the lower part is defined, unless the convex hull is
degenerate. This is a general phenomenon that occurs when decompositions
into upward trends are compared with decompositions into downward trends.
Loosely stated, our result is that internal boundaries are never shared between

elements of these decompositions, unless the sequence is constant.



Theorem 2.4.1. (Trend Boundary Theorem) Let S be a sequence decom-
posed into upward trends by [y, ..., [z and into downward trends by D4, ..., D.
¥/, =Dy Dyforanyr,s,1<7 <k and 1 =5 <{, then S is constant.

Proof. Let U=1I, - [.=D, Dy and V=/Lrsy + L =Dss1- - D, By
the Trend Mean Lemma,

(DI zu(lz)= - =p(l)and

Ry (D)< w(Dy) = - -+ = pu(D). A '

Using the Balancing Lemma, from (1) we have u(U) = (V) and from (2) we have
w(U) < u(V). Thus u(U) = u(V). However, now again using the Balancing Lemma,
this implies that none of the inequalities in (1) or (2) above can be strict. Hence

B pully) = uDp) =pu(S)foralisn <k andlsm =l |
Now since [, is quasi-increasing and u{D,) = u(/,). D; cannot be a proper prefix
of /. Similarly, /, cannot be a proper prefix of [, hence [, = 0,. Continuing in
this manner, it follows that ¥ =! and [, = 0, for all 1< n <k, Le. the upward
and downward decompositions of § must be identical. Finally, since only a single

element sequence can be both quasi-increasing and quasi-decreasing (Lemma
1.3.2), by (8), § must be constant. *

SECTION 3. CYCLIC CONJUGATES

3.1 The Retate-and-Merge Algorithm

Many more applications of the theory of quasi-monotonic sequences can be
obtained by considering the families of sequences obtained by taking all cyclic
conjugates of a seguence.

Definition. Given a sequence S = sy - - ' §,, the set of cyclic conjugates of

Sis{SlUls:  SpSs; sl <isni .

We will show that every sequence has a cyclic conjugate which is quasi-
- nondecreasing, and a cyclic conjugate which is quasi- nonincreasing. The key
idea is given in the foilowing.

Lemma 3.1.1. {Trend Rotation Lemma) Let S be decomposed into upward

trends by Si, ..., Se. If w{Sy) > u(Se), then T =Sz - - 55, has fewer trends
than S.
FProof. Since S, ..., S is a decomposition of S into upward trends, each

S;, 1s1<k, is a quasi-increasing sequence. Since u(Sy) < u(S,), by the Con-



struction Corcllary, S, S, is'also quasi-increasing. Hence Sy, ..., Sg—y, SpS,isa
decomposition of T into k-1 quasi-increasing segments. Thus by the Overlap
Lemma, the decomposition of T into upward trends cannot have more than £ -1

members. ¥

Theorem 3.1.2. (Cyclic Conjugate Theorem) Every nonempty sequence S
has a quasi-nondecreasing cyclic conjugate and a quasi-nonincreasing cyclic

conjugate.

Froof. From the Trend Mean Lemma, if a sequence S is not quasi-
nondecreasing, the decomposition of S has more than one trend and u of the
final trend is less than w of the first trend. Hence the Trend Rotation Lemma
implies that whenever S is not quasi-nondecreasing, a cyclic conjugate T of S
with fewer trends in its decomposition can be found by rotating the first trend in
the decomposition of S to the back of S. By iterating this procedure, we must
eventually reach a cyclic conjugate of S which has only one trend, or one with
two or more trends, such that p of the first trend is equal to x4 of the last trend.
In either case, this cyclic conjugate of S will be quasi-nondecreasing. A similar

argument holds for quasi-nonincreasing cyclic conjugates. =

The proof of this theorem also provides us with a simple algorithm for
finding a quasi-nondecreasing cyclic conjugate of an arbitrary sequence S. This
algorithm is presented below. We will use the abstract data type block intro-
duced in the previous section and the procedures and terminology asscciated
with it, under the assumption that these definitions have been extended to allow
us treat a sequence S as if it was circular, so that we can merge segments at the
end of the sequence with segments at the front. We also assume that the pro-
cedure coalesce has been extended from a stack of blocks to a queue of blocks

in a natural manner, taking the end of this queue as the top of the stack.

The Rotate-and-Merge Algorithm.

input: a nonempty sequence S =85, " - sp.

output: an index j such that sjs7,, - * - sps; ' §;_ i3 quasi-nondecreasing.
data structures: a queue @ of blocks.

begin ‘
apply the Collect-andFMerge algorithm to S to obtain a decompeosition
Sy ..o S of S into upward trends;
‘let @ = b,, ..., by be a queue of blocks representing these trends with
Jront(Q) = b, and back(Q) = by;
while u(back(Q)) < u(front(@)) do



begin
remove the block at the front of @ and call it &;
coalesce (@, b); ‘
end;
return location (front (Q));
end

The correctness of this algorithm is easily established, as described above.
Under the assumption that 4 is constant time merging, and using a uniform cost
RAM model as described in the previous section, the timing analysis is also easy.
It is simply an extension of the analysis of the Collect-and-Merge algorithm given
in Theorem 2.2.4. Again the critical factor is the total number of merges exe-
cuted in during course of the computation. The same reasoning of Theorem
2.2.4 applied to the Rotate-and-Merge algorithm shows that the total number of
merges executed during the first step, where the Collect-and-Merge algorithm is
called, combined with those in the remaining steps is exactly n—1. Hence the
Rotate-and-Merge algorithm is O{n). |

3.2 Trip Around the Moon .

As an application of these resuits, consider the following problem, known as
"Trip Around the Moon” ([ Gra 83]).

You are to make one trip around the Moon in a circular path. At various
points along this path, there are n fueling stations f,;, ..., {;, with fuel amounts
f1. ... /n, such that the total amount of fuel available is sufficient to make one
circular trip. You are not guaranteed however, that the amount of fuel available
in each staticn is sufficient to cover the distance to the next station. You begin
at the station of your choice with an empty fuel tank. By choosing the right

starting station, can you make the entire trip without running out of fuel?

The answer to this question is always yes, independently of the given

configuration of fueling stations. We can demonstrate this as follows.

Let d,, ..., d, be the distances between stations, where d; is the distance
between ¢; and £;.;, 1 =1 <m and d, is the distance betweent t, and f,. Assume
that the units chosen are such that we can travel distance d with fuel amount f
if and only if f >d. Let S =(fy, d;) - (fa, dy) and let u be the gradient
mean, defined in Section 1. Let T=(f, &) - (fn. dn)(F 1 dy) - - - (Fi-1, diey)

be a guasi-nonincreasing cyclic conjugate of S, as guaranteed by the Cyclic Con-



b

‘ ZJ}
jugate Theorem. By the basic assumption of the problem, u( Ty =& > 1. Let -

&
U be any proper prefix of 7. Since T is quasi-nonincreasing, u(U)= u(T)= 1.
Hence the sum of the fuel available in the stations of U is greater than or equal
to the total distance spanned by U. Since this holds for every proper prefix U of
T, the trip can be made starting at station £;.

Furthermore, since the gradient mean is constant time merging (Lemma
© 2.2.1), we can apply the Rotate-and-Merge algorithm to find station {; in time
proportional to the number of fuel stations. Thus we can solve the Trip Around
the Moon problem in optimal time.

Notice that in our argument, we have implicitly used the fact that the dis-
tances d; are positive, but not the fact that the fuel amounts f; are (presum-
ably) positive. In fact the problem has a solution even when the f; are allowed to
be negative, since the gradient mean is still an averaging function in this case

{Lemma 1.2.2). Our results may be summarized as follows.
Theorem 3.2.1. For any nonempty sequence S ={(f;, d1) " (fr dn):

where f;, d; are real numbers, & >0, 1<i<n, and ifi = 2@-, there is a
i i=1

i=1

cyclic conjugate T = {(f';, d")) - - - (f'n. d'2) of S such that }ﬁf’i > E{Zd'i for all
=1 i=1

j. 1= j=<n. Such a cyclic conjugate T ean be found in time proportional to n,

using a uniform cost RAM model of computaticn. =

A related result appears in a recent article by Dvornicich ([Dvo 80]) which
presents some results used to derive eflicient algorithms for handling data in

magnetic bubble memories.
Theorem 3.2.2. (Dvornicich) Let S =s, -'s, be a sequence of real

n
numbers such that 25‘1 = 0. Then there is a cyclic conjugate T =&, - i, of S
i=1

such that étizOforallj, l<j=n.

=]
Froof. Let T be a quasi-nonincreasing cyclic conjugate of S using the arith-

metic mean. Thus u{t, - - - tj) =2 u(T) =0 for all j, 1 £j <n, and the result fol-

lows, »

The Dvornicich result can also be derived as a corollary to Theorem 3.2.1, or
from the more general results presented in [Gra 63] and [Tak 67] (Theorem 2,
pg.1). We have not determined if these later results can also be derived within



the framework we have presented.

3.3 Unbalanced Sequences and the Counting Theorem

We can obtain stronger results along the lines of the Cyclic Conjugate
Theorem by undertaking a more detailed analysis of the structure of the set of
cyclic conjugates of an arbitrary sequence with respect to u. We take up this

task presently.

Definition. Each of the cyclic conjugates of S =5 s, defines the same
circular sequence S', derived by forming the letters of S into a clockwise circu-
lar arrangement with s, following s,. Segments of S’ will be dencted by ranges
8 - -s;. When 1 <7, this corresponds to the standard notation. When i > j,
S¢S =5 SaSyc S50

Given a circular sequence S, the set of cyclic conjugates that form it can be
obtained from the set of possible cuts of S.

Definition. Given a circular seguence S formed from s, - 5,,
Cs = {cy, ..., Cn} is the set of cufs of S, where ¢; is the cut between s; and s¢4;

for 1 <1 < n and ¢, is the cut between s, and s,. *

Two distinct cuts ¢; and ¢; in the circular sequence S formed from
Sy ' 5, define a pair of opposing segments s;;; - - - §; and Sy - 0§ Inour '
basic structural result below, we express the relationship between cpposing seg-

ments (with respect to u) as a relationship between their corresponding cuts.

Definition.  Given a circular sequence S =s§; ' 'S, with cuts
Cs ={cy, ... Cyn}, the relation = on Cs is defined as follows. ¢; <c¢; if and only
j.f'i’—'j,(}["i/fj a.nd/.l.(s,;ﬂ'-~sj)5,u(sj+1~'-s‘i}. ®

We explore the properties of the relation = on Cs.

Definition. Given a set 4 and a binary relation = on A4, < is a preorderifit
is reflexive and transitive. < is a linear preorder if in addition, a = b or 6 <a
foranya, b in 4. »

Qur basic structural resuit is the following.

Lemmma 3.3.1. (Cut Order Lemma) For any circular sequence S, < is a
linear preorder on Cs.

Proof. Obviously < is reflexive and since the range of u is linearly ordered,
for any i,j, 1<1,j =n, either ¢; £¢; or ¢; =¢; (or both). Now assume that
c; €¢5 and ¢; < c,. 1, j and &k are not pairwise distinct, then it is obvious that

¢ < Ci. Otherwise, we may assume without loss of generality that i <7 <k. Let



X =58, Y=5j4 5 and Z = s, 8. Since ¢ < ¢, u{X) < u(YZ).
Since ¢; = ¢, u{¥) < u(ZX). Thus by the Interpolation Property (twice) we have
w(X) = w(¥ZX) < u(ZX). Hence u(X)<u(Z) by Strong Interpolation. Thus
w{(ZX) < u(Z), which implies that u(Y) < u(Z). Hence by the Balancing Lemma,
wWXY) < w(Z), i.e. ¢y < cg. It follows that < is transitive, and thus < is a linear
preorder. ®

A stronger Cyclic Conjugate Theorem will be obtained for sequences in
which < is a linear ordering on the set of cuts. By the above Lemma, these are
sequences for which < is antisymmetric (Le. ¢; < c; and ¢; < ¢; implies that

i = j). This class of sequences can be easily characterized.

Definition. A nonempty Sequence S is unbalanced if u{U) # u(S) for any
proper prefix U of S. S is cyclically unbalanced if every cyclic conjugate of S
is unbalanced. »

Lamma 3,.8.2. For any nonempty sequence S, < is a linear ordering on Cs
if and only if S is cyclically unbalanced.

Praaf. This follows easily from the Cut Order Theorem, using the Strong
Interpolation Property. ® )

To state the stronger version of the Cyclic Conjugate Theorem that holds for

cyclically unbalanced sequences, we introduce the following notation.

Definition. Given a nonempty sequence S = §; ' * §q,
¥(S) = the number of indices i, 1 <1 <m, such that u{s, - - - 8) = u(S) and
¥*(S) = the number of indices i, 1 <1 <n, such that u(s, - - - 5;) > u(S). =

This notation actually provides a slightly more general framework for the

theory of quasi-monctonic sequences.
Lemma 3. 3.3. For any nonempty sequence S,
S is quasi-increasing «> ¥(S) = 0,
S is quasi-nondecreasing < ¥*(S) = 0,
S is quasi-decreasing <> ¥*(S) =n -1 and
S is quasi-nonincreasing <> ¥(S) = n-1.
Proof. This is obvious. ®
Theorem 3.8.4. (Strong Cyclic Conjugate Theorem)1f S =s; - ' s, 18 cycli-
cally unbalanced then
(1) Y(T) = ¥*(T) for every cyclic conjugate T of S and

) for every value of k, 0 < k <n—1, there is a unique cyclic conjugate T of
S such that Y(T) = k.



Proof. The first part is obvious. For the second part, since S is cyclically
' unbalanced, < is a linear order on Cs by Lemma 3.3.2. Let C}l, C“ be the

cuts of S listed in increasing order. For any j, 1<j =n, C,_, < G, for exactly
n—j cuts (_ distinct from C\f Thus if 7; is the cyclic conjugate of S formed by
the cut C,7 1<j=n, then Y(T}) =¥XT;) =(n-1)-(n—j)=j-1, 1sj<n.
The result follows. *

The following corollary of this result will be useful.

Theorem 3.8.5. (Counting Theorem) If (1 is a set of unbalanced sequences of .
length » which is closed under cyclic conjugation, then for each k, 0k sn -1,
~ there are exactly -LS'— sequences S in ( such that ¥(S) =k (equivalently,

Y*(S) = k).
Proof. Obviously, by these assumptions the sequences of (2 must be cycli-

cally unbalanced. Further, by the above result, every sequence in ( has n dis-

tinct cyclic conjugates, all of which are in Q. It follows that (0 can be partitioned

ol
n

intom = classes of n sequences each, where each class is the set of all

cyclic conjugates of a given sequence S. Additionaily from the above result, for
each possible value of ¥ there is one element of each class on which ¥ has this
value. Thus for any particular value of ¥, ¥ has this value on exactly m
sequences of (2. *

When u is the lexicographic mean, it is clear that u(X) = w(Y) if and only if
XY = YX, i.e. if and only if there exists a nonempty sequence Z and 1, j > 0 such
that X = Z* and ¥ = 27 (see e.g. (Lot 83]). 1t follows that a sequence S is unbal-
anced with respect to the lexicographic mean if and only if it is primitive, Le. if
and only if there exists no nonempty sequence Z and 1 > 1 such that S = Z'. In
this case S will be cyclically unbalanced as well, since every cyclic conjugate of
a primitive sequence is primitive. Thus when u is the lexicographic mean,
Theorem 3.3.4 holds for every primitive sequence and Theorem 3.3.5 holds for
every set of primitive sequences closed under cyclic conjugation. In fact this is
true of any 4 which has the property that u(X) = u(Y) if and only if XY = 7X.

3.4 Counting and Randomly Generating Ordered Trees

The Counting Theorem can be applied to many types of enumeration prob-

lems, in particular, to many of those involving objects enumerated by the well-

known Catalan numbers, G, = ni—l 27:‘] (see e.g. [Gar 76], [Sing 78|, [Der 80)).



As an example, consider the following list of objects given in [Der 80).
Definition.
T, is the set of rooted ordered trees with n edges (i.e. n +1 nodes).

P, is the set of legal sequences of n open and m closed parentheses. A
parenthetic expression is called "legal" if each open parenthesis has a

matching close parenthesis.
I, is the set dominating sequences S = 8, " Spyy Of 2 +1 no_nneg'ative integers

which sum to n, such that és,- =1 for alli, 1<1i=<mn. (Because of a mis-
=

print in [Der 80], we follow the definition given in [Read 72] here (see also
(Zak 79))).

L, is the set of admissible paths from the point {0,0) to (n,n) in an nxn lattice.
All steps in a lattice path are either up or to the right; a path is "admissible”
if it does not pass below the the diagonal ¥y = z.

B, is the set of full binary trees with n internal nodes. A rocted ordered tree is
“full binary” if all nodes are either of degree O (leaves) or of degree 2 (have

exactly two successors). *

Using one-to-one correspondences between these objects, by showing that
the dominating sequences are enumerated by the Catalan numbers, Dershowitz
and Zaks show that all of the above objects are enumerated by the Catalan
numbers. We demonstrate briefly how the Counting Theorem can be applied to
achieve this result. We will use the following general property of the arithmetic

mean for sequences of integers.

Lemma 3.4.1. Let u be the arithmetic mean and S be a sequence of
integers of length n which sums to ¢ £ 0. If n and { are relatively prime then S

is unbalanced.

Proof. Let U be any proper prefix of S and let ¢’ be the sum of U. If
w(U) = pu(S) then T%,——-‘- 1—i— which is impossible because n and ¢ are relatively
prime and | U] < n. Thus S is unbalanced. =

Lemma 3.4.2. Let u be the arithmetic mean and let S =s; " 554+ be a
sequence of n+1 nonnegative integers which sums to n. Then S is a dominating
sequence if and only if S is quasi-decreasing.

§
Z Iy
Proof. 1If S is a dominating sequence then 1—’51—;1——2 1> ;;—E—l—= u{(S) for every

i, 1<i <n. Hence S is quasi-decreasing. On the other hand, if § is quasi-



{

E’j

y=1 > n
i n+il

{ .
> iil for every i, 1<1i <mn. Hence }}s; 21 for
J=1

decreasing, then

any i, 1 <1 < n. Thus S is a dominating sequence. *
Theorem 3.4.8. [, = G, foralln = 1.

Proaof. Let Q be the set of all sequences of n+! nonnegative integers which
sum to n and let i be the arithmetic mean. By the Lemma 3.4.1, (2 is a set of

unbalanced sequences of length n+1 which is closed under cyclic conjugation.
Hence by the Counting Lemma, exactly 7—;—1-1—]0! sequences from this set are

quasi-decreasing. Thus we need only show that Q= E‘} and the resuit will fol-
low from Lemma 3.4.2. This latter fact is eesily established by showing that
every sequence S = §,; ' ' ' Sp4 in (2 can be uniquely represented by a sequence
S' of n O's and n 1's where S’ = 17101"20 - - - 01™*!, and vice-versa that every

such sequence represents a member of (). =

Since by the correspondence of [ Der 80}, the dorminating sequence associ-
ated with a given tree is simply the sequence of outdegree of its nodes visited in
preorder, we can also use these techniques to count trees whose nodes have any
specific spectrum of outdegrees. If t is a tree with n+1 nodes and ny is the
number of nodes with outdegree i for 1 <1 < k, where k is the maximal outde-
gree of any node, then we must have
(LHYyn+l=ng+n,+ - +n -

{ The total number of nodes isn +1. |
(2yn = n +2ng+ - - +kmy

§ The total number of edges is n. §

Theorem 3.4.4. The number of rooted criented trees with n+1 nodes and ny

nodes of outdegree 1 for 0 <1 <k, where the m; satisfy (1) and {2) above, is

1 (nent ]
nHl|ngingd gl

Proof. Consider the set ( of all sequences with nq 0's, my 1's, ..., 7 k’s. By

(1) these sequences are of length n +1 and by (2) they sum to n. Thus as in the
previous theorem, exactly ﬁ (] of these sequences are dominating
sequences, i.e. represent legitimate trees. The result follows. *

One application of these results is in the generation of random trees. Using
the technique from the proof of Theorem 3.4.3, we can obtain a randorm tree with
n+1 ncdes by generating a random binary sequence with n 0's and n 1's, view-

ing it as a sequence of n+1 numbers in unary separated by O's, obtaining the



quasi-increasing cyclic conjugate of this sequence of numbers (under the arith-
metic mean) by the Rotate-and-Merge algorithm, and finally interpreting the
resulting sequence as the preorder traversal of a tree. To generate trees whose
nodes have a specific spectrum of Outdegrvees, the initial sequence of n+1
numbers can be chosen to reflect these constraints. This general method is
well-suited for efficient implementation, and thus should prove practical in

situations where rapid generation of random trees is needed.

The techniques for counting trees and other objects given above are not
unrelated to the specific techniques given in [Der 80] and other techniques for
Catalan enumerations, for example those in [Sil 69}, [San 78] and [Sing 78]
Since the literature on Catalan numbers and their relatives is extensive (a
bibliography of 470 references is given in [Gou 76]), no attempt has been made
to cover the applications of the present theory in this area in any detail. Hence

this remains an interesting area for further research.

3.5 Ballot Problems

Our final application of the Counting Theorem involves a version of the clas-
sic ballot problem [Ber §7].

A typical bellot problem may be described as follows. Suppose that an elec-
tion is held, and candidate A receives a votes, while candidate B receives b
votes. Let S be the sequence of votes as they are received, and suppose that all
{“:b] possible arrangements of S are equally likely. For a given 7, let A(S)
denote the number of times during the election that the ratio of votes for A to
the total votes is greater than or equal to 7. For any given k, 1 £k < a+b, what
is the probability that A (S) = k?

To illustrate the application of the Counting Theorem to this type of prob-
lemn, we will derive the following result from [Sri 79], originally due to Takacs
([ Tak 62]). Our version is a minor rewording of that given in [ Sri 79)].

Theorem 3.5.1. If a and b are relatively prime and y = ;—%_—E- (i.e. when v is
the final ratio of votes for A), then the probability that 4,(S) = k is ;i—b—for all k,
1sk <a+b.

Proof. Let S be given as a sequence of integers where each vote for A is

represented by 1 and each vote for B is represented by 0. Let 4 be the arith-

a =
a+d

let o be the number of 1's in U. The ratio of votes for A in U is greater than or

metic mean. Thus u(S) = 7. Let U be a proper prefix of S of length 7 and



equal to 7 if and only wu(U) = %27 = u(S). Thus &,(S) =¥(S) + 1, since the
ratio of votes for A is always greater than or equal to 7 at the end of the election.
Furthermore, since @ and b are relatively prime, a and a+b are relatively
prime, and thus by Lemma 3.4.1, S is unbalanced. Since the set of all possible
voting records is obviously closed under cyclic conjugation, by the Counting
Theorem, all values of A, between 1 and a+& are equally likely on this set, and
the result follows. =

We can also obtain another reiated, but more general theorem of Takacs’
([ Tak 67), Theorem 1, page 162) using this method.

Theorem 3.5.2. (Takacs) Let S = s, - ' sp be a sequence of integers which
sums to 1. For each j, 1 =j <, there is exactly one cyclic conjugate of S for
which exactly j of its partial sums are positive.

Proof. Let u be the arithmetic mean. Then by Lemma 3.4.1, S is cychcally
unbalanced. Let U =s,- -5 be any proper prefix of S. If the partial sum

t = ésb is positive, then u(U) = l—:-ﬂ-must be greater than u(S) = %L— On the
E=1

other hand, if u(U) > j‘—‘-, then clearly ¢ must be positive. Tt follows that exactly j

partial sums of S are positive if and only if ¥*(S) = 7. Thus the result follows
from the Strong Cyclic Conjugate Theorem. *

Theorem 2.1 of (Spi 56] can be derived from the Strong Cyclic Conjugate
Theorem in a similar manner.

FURTHER RESEARCH

We have already alluded to a few possible dirgctions for further research,
among them being a detailed axiomatic investigation of averaging systems and
the theory of quasi-monotonic sequences, and a more extensive investigation of
the time bounds for the major algorithms used in this theory, using more gen-
eral assumptions concerning p. We bdpe to present results of the first typeina
future paper. Under the latter topic, we note that the question of parallel algo-
rithms for finding decompesitions and quasi-nondeéreasing cyclic conjugates of
sequences rexhains to be explored as well. This is an area in which we have done
almost no work at this time. If good parallel algorithms are found, further appli-
cations in the area of loop or ring-structured networks (see e.g. (Dol 82]) might
be explored.



- We also hope to use this theory to investigate certain aspects of the struc-
ture of random sequences. Using a technique similar to the one used in the
proof of Theorem 2.1 in [Spi 56], in certain cases we can find correspondences
between the trends in the decomposition of a sequence and the cycles in a per-
mutation of that sequence. This allows us to show, for example, that ti)e
expected number of trends (using the arithmetic mean) in a'sequence of n reals -
ra.ndornly chosen in the interval between 0 and 1 is the same as the expected
number of cycles in an arbitrary permutation of that sequence, which is In(n).

We hope to present this and other results in a future paper as well.
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