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Abstract: Infrared scattering scanning near-field optical microscopy (IR s-SNOM) provides 
for spectroscopic imaging with nanometer spatial resolution, yet full spatio-spectral imaging 
is constrained by long measurement times. Here, we demonstrate the application of 
compressed sensing algorithms to achieve hyperspectral FTIR-based nano-imaging at an 
order of magnitude faster imaging speed to achieve the same spectral content compared to 
conventional approaches. At the example of the spectroscopy of a single vibrational 
resonance, we discuss the relationship of prior knowledge of sparseness of the employed 
Fourier base functions and sub-sampling. Compressed sensing nano-FTIR spectroscopy 
promises both rapid and sensitive chemical nano-imaging which is highly relevant in 
academic and industrial settings for fundamental and applied nano- and bio-materials 
research. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (180.4243) Near-field microscopy. 
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1. Introduction 
Optical spectroscopy, such as Fourier Transform Infrared (FTIR) spectroscopy, provides 
chemical material contrast based on molecular vibrations, lattice phonons, or charge carrier 
concentrations [1]. In particular, infrared (IR) photons in the energy range between 400 cm−1 
and 4000 cm−1 (corresponding to wavelengths from 2.5 to 25 μm) allow the investigation of 
fundamental vibrations and the associated rotational-vibrational structure. Since chemical 
bonds have unique spectral signatures, 2D chemical mapping of the dense spectral content 
allows to identify and localize unknown constituents [2], as desired in different fields of 
chemistry [3,4], biology [5,6], and medicine [7]. The achievable spatial resolution of 
conventional IR microscopy is, however, limited to several micrometers owing to diffraction 
[8]. This limitation can be overcome by applying near-field based techniques, such as 
scattering-type scanning near-field optical microscopy (s-SNOM) [9–11]. s-SNOM is based 
on the principle of an atomic force microscope (AFM) and utilizes a sharp metallic tip 
brought into close proximity to the sample surface. By simultaneously illuminating this near-
field probe with a focused light beam, the tip acts as an optical antenna which strongly 
confines the incident optical field around the tip apex, thus providing a nanoscale light source 
for high-resolution imaging and spectroscopy. A full IR spectrum at each image pixel is 
usually obtained by combining s-SNOM with FTIR spectroscopy, when using a broadband IR 
source in the form of laser, thermal, or synchrotron radiation (nano-FTIR) [12–19]. 

The acquisition of the complete spectrum has the advantage that no prior knowledge of 
the sample is needed since post-processing allows all available information from the data set 
to be mined afterward. Hyperspectral imaging can also exploit the spatial relationships among 
the different adjacent spectra, allowing more elaborate spectral-spatial models for a more 
accurate segmentation and classification of the image [20]. 

However, recording hyperspectral data sets is challenged by the often limited spectral 
irradiance of the available IR source and the long measurement time required to achieve 
adequate s/n ratio at each image pixel for the desired spatio-chemical sensitivity. 
Conventional oversampling as in FTIR microscopy, leads to prohibitively long acquisition 
times in nano-FTIR imaging as a necessarily sequential data acquisition process, especially 
when nanometer spatial resolution is desired over an appreciable field of view. The s/n ratio is 
further constrained by the still limited availability of intense broadband IR sources suitable 
for nano-FTIR s-SNOM, on top of the in general weak near-field signal intensities to be 
detected. It is therefore desirable to apply algorithms to the acquisition process to minimize 
data redundancy and acquire just the minimum amount of data necessary to derive a desired 
spectral content. 

Compressed sensing (CS) [21–27] is a recent approach that can enable hyperspectral data 
acquisition in realistic measurement times, since it allows the complete reconstruction of a 
function from a reduced number of measurements provided that the unknown function has a 
sparse representation in a suitably chosen basis or dictionary. CS has already been 
successfully applied in different fields of physics, chemistry, or engineering [27]. For 
instance, the high potential of CS was predicted for computational imaging [28–33], FTIR 
spectroscopy [39], and in multidimensional nonlinear IR [34,35] and NMR spectroscopy 
[36,37], where the technique is already established and in part commercialized [38]. 
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The goal of this work is to extend the application of CS to nano-FTIR spectroscopy and -
imaging as an enabling tool for spatio-spectral imaging using weak broadband IR sources. 
Building on the conceptual demonstration of CS for FTIR spectroscopy [39], we adapt CS-
FTIR to hyperspectral infrared nano-imaging based on nano-FTIR s-SNOM and 
corresponding complex valued spectra. In addition, the CS approach is augmented by spatial 
regularization. We demonstrate the performance gain in spatio-spectral imaging of the 6H-
SiC phonon band as probe of local mechanical strain in the vicinity of a mechanically induced 
indent, resolving the associated local spectral shifts of the resonance frequency. 

We use broadband synchrotron radiation IR s-SNOM (SINS) [14,15] over a spectral range 
of  1 1740 3200 cm cmν − −= − . We are able to reduce the number of interferometer 
sampling points to 1/9th random samples compared to the original data set, while retaining 
the spectral content over the full spectral range, specifically the characteristic SiC phonon 
resonance of interest including its strain induced variation in peak position and linewidth. In 
contrast, equidistant sampling at 1/9th of the original samples leads to a Nyquist limit < 360 
cm−1, well below the spectral range covered. This approach paves the way for both rapid 
spatio-spectral nano-imaging as well as enhanced sensitivity nano-FTIR spectroscopy 
allowing an order of magnitude longer integration time per image pixel for a gain in spectral 
content or improvement in detection limit. 

2. Methods 
2.1 Nano-FTIR spectroscopy 

The hyperspectral nano-FTIR measurements were performed on an s-SNOM system 
(Neaspec GmbH, Germany) consisting of an AFM operated in tapping mode and an 
asymmetric Michelson interferometer, as shown schematically in Fig. 1. The measurements 
were performed at the electron storage ring Metrology Light Source (MLS) [40], providing 
ultra-broadband synchrotron IR radiation. The spectral irradiance of the IR radiation emitted 
by the bending magnet and entering the beamline at a ring current of 200 mA is shown in Fig. 
1(a). The radiation is coupled into the s-SNOM instrument [14], illuminating Au coated Si 
cantilevers (NanosensorsTM PPP-NCSTAu, resonance frequency Ω between 120 and 150 
kHz), using an off-axis parabolic mirror (f = 11 mm, NA = 0.46, focus diameter ≈80 μm). The 
tip-scattered IR radiation is recombined with the reference field in a Michelson interferometer 
with motorized reference arm mirror travelling a distance of 800 μm in this experiment 
(equivalent to 6.25 cm−1 spectral resolution). The interferogram as a function of the optical 
path difference x is recorded by a liquid nitrogen cooled Mercury-Cadmium-Telluride (MCT) 
detector (model J15D12M204-S050U-60, Teledyne Judson Technologies, sensitivity 2 – 13.5 
µm, i.e., 5000 - 740 cm−1). 
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Fig. 1. Experimental setup. The spectral irradiance, 
, eE ν

, of the IR radiation emitted by the 

electron storage ring MLS is shown in (a). The features around 2000 cm−1 originate from the 
diamond window separating the beamline from the storage ring. The radiation is coupled into 
an AFM based s-SNOM with a Michelson interferometer (b). The AFM is operated in tapping 
mode. The detector signal is demodulated at the nth harmonic of the fundamental cantilever 
frequency Ω to extract the near-field signal, and an interferogram is recorded (c). Fourier 
transform (FT) yields the spectrum (d), which is spatially mapped using 41 x 44 pixels over an 
8 μm by 8 μm scan area of a nanostructured SiC surface. The topography of the indent is 
shown in the inset. 

The detector signal is analyzed by lock-in amplification at the 2nd harmonic 2Ω of the 
mechanical AFM cantilever resonance frequency Ω as found adequate for s-SNOM near-field 
extraction from the far-field background [41]. 

As a sample we choose 6H-SiC(0001) covered by epitaxially grown mono- and bi-layer 
graphene. The preparation procedure of the graphene growth process involved hydrogen 
etching which results in parallel terrace structures with heights of ≥ 5 nm and width of several 
micrometers, as described in [42,43]. The sample surface has been modified by a 
mechanically induced indent (AFM topography in Fig. 1(d)) causing radially propagating 
mechanical strain with a corresponding spatially smoothly varying spectral shift and strength 
of the characteristic optical SiC phonon polariton resonance around 900 cm−1 [44]. In 
addition, the graphene covering the surface leads to additional spatial heterogeneity in the SiC 
phonon resonance. 

Data acquisition was performed to obtain discrete digitized interferograms I (x) with Nx = 
1024 equidistant points (Δx = 1.56 μm) which, in standard discrete Fourier transformation 
(FT) converts to a spectrum ( )S ν  given by [45]: 

 ( ) ( ) 21

0
,

k
x Nx

inN

n
S k I n x e π

ν −

=
⋅∆ = ⋅∆∑  (1) 

where the optical path difference and the corresponding discrete wavenumber are Δxx n= ⋅  
and  Δkν ν= ⋅ , respectively, with spacings Δ 1/ ( Δ )xN xν = ⋅ . The maximum resolvable 

wavenumber due to aliasing is then given by   / 2max xNν ν= ⋅ , at which the input radiation has 
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been optically low-pass filtered. With this setup a spectral range from  1740 cmν −=  (detector 
limit) to  13200 cmν −=  (aliasing limit) can be analyzed, designed to cover spectral signatures 
from the optical phonon band at low frequencies to upper organic stretch modes (C-H, O-H) 
at high frequencies. Sequential recording of these spectra by raster scanning of the sample 
provides a nanoscale resolved hyperspectral image correlated with topography. 

 

Fig. 2. Histogram of indices of relevant basis functions obtained when subsequently applying 
compressed sensing to the measurements of each position of the considered array. 

2.2 Compressed sensing 

Compressed sensing is a new data analysis technique for the efficient recording of a signal 
that has a sparse representation with respect to some basis [21–26]. The method allows the 
complete reconstruction of a signal from a reduced number of acquisitions. Rather than 
sampling the signal at regular intervals as in conventional signal processing, compressed 
sensing typically selects the acquisitions randomly from the signal. The requirement is that 
the signal ( )y t  has a sparse representation in some basis, ( ) ( )1 2,  ,t tφ φ … , i.e., 

 ( )1
( ) ( )K

i ii
y t z tπφ=

= ∑  (2) 

where ( ) ( ) ( ) ( )1 , , Kt tπ πφ φ…  denote the K  basis functions of the signal  ( )y t  with 

corresponding weights z. Given a set of measurements, ( )1 , , ( )my t y t… , the goal is to 
determine these relevant basis functions. Assume that altogether n m  basis functions 

1, , nφ φ…  are considered, let the m times n matrix A be defined as ( )ij j iA tφ= , y as the m times 

1 vector ( )1( , , ( ))T
my t y t… , and z  as the n times 1 vector of weights, then the following 

optimization problem is to be solved, 

 
0

min  subject to ,z z y Az=  (3) 

where 0|| ||z  denotes the number of nonzero elements of vector z . The solution reveals the 
relevant basis functions and their weights in the representation (2). 

The direct solution of problem (3) is usually not possible for computational reasons. A 
computationally more feasible optimization problem results from replacing the 0 -norm with 
the 1 -norm, yielding a convex program [46,47]. Another approach is to use greedy 
algorithms that provide an approximate solution in short time. One such greedy algorithm is 
the Orthogonal Matching Pursuit (OMP) algorithm [48] which we have applied. 

For hyperspectral imaging, a set of interferograms is recorded for an array of sample 
positions. Each interferogram is recorded at randomly selected positions of optical path 
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difference. It can be assumed (see [44]) that each of these spectra is sparse in the Fourier 
domain (see discussion below). Under this assumption, we apply the OMP algorithm to 
retrieve a sparse representation in Fourier domain of each recorded spectrum. We then first 
process the histogram of obtained nonzero coefficients z for all spectra, cf. Figure 2. The 
figure shows that only a small number of coefficients is relevant for all spectra. We have 
identified the relevant basis functions as those whose coefficients are nonzero for at least 50% 
of the spectra. Only these basis functions are then considered. Note that in this way the same 
basis functions are used at each recording position. Furthermore, the spectra are expected to 
vary smoothly with respect to the recording position. 

 

Fig. 3. Example interferogram (a) of measured (blue line), randomly sampled (black dots) and 
reconstructed (red) data from the randomly sampled points. The inset shows a zoom into a 100 
μm long stretch (highlighted in gray) of the optical path difference within the center burst. The 
corresponding amplitude of the Fourier transform (FT) is shown in (b), comparing the FT 
based on measured (blue) and reconstructed (red) interferogram data. The black curve shows 
the FT from the sub-sampled and interpolated data points. The inset plots both amplitude (solid 
line) and phase (dashed line) of the FT within the spectral region of the phonon peak, showing 
excellent agreement in both variables between the measured data (blue) and those 
reconstructed from the subsampled data (red). 

The final solution is then obtained by simultaneously fitting the (same) subset of basis 
functions to all measured spectra, augmented by a regularization functional using the 
structure matrix of an intrinsic Gauss Markov random field prior [49], which favors similar 
values for the coefficients of neighboring pixels; 8 neighbors were assigned for interior 
pixels. The final regularization functional is then taken as the sum of the functionals obtained 
for each coefficient. The regularization parameter has been determined by the L-curve 
principle [50]. 

3. Results and discussion 
In order to validate the CS approach using real FTIR nano-spectroscopy and -imaging 
measurements, the following proceeding was applied. FTIR nano-spectroscopy and -imaging 
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measurements were conducted using dense, equidistant sampling. The results obtained from 
these data served as a reference. Subsequently, the complete measured interferogram data 
were randomly sub-sampled, and these sub-sampled data were taken as input for the CS 
approach. The results achieved by CS for these sub-sampled data were then compared with 
the results obtained by a conventional analysis from the complete set of measured data. The 
evaluation of this approach assumes that the transit time between interferogram positions is 
small compared to the integration time at each point. 

Specifically, a near-field IR interferogram after demodulation and subtraction of a 
constant offset I0, with corresponding FT spectrum, are shown in Figs. 3(a) and 3(b) (blue). 
Usually, the spectra will be referenced to a well characterized reference sample to compensate 
for instrument response functions or radiation source characteristics. Here, for better clarity, 
yet without loss of generality, we show the un-referenced spectra. The following three cases 
are plotted on top of each other: (1) the unmodified measured interferogram (blue line), (2) 
the Nsub = 114 points which have been randomly selected (black dots), and (3) the 
reconstructed interferogram (red line) by the compressed sensing algorithm using the 
subsampled data. The reduction to Nsub = 114 of randomly selected sampling points 
corresponds to about 1/9th of the number of originally recorded interferogram points. As seen 
in the inset of Fig. 3(a) the sampling interval may be as long as several periods of 
interferogram fringes, implying a substantial loss of spectral information in the conventional 
interpretation of interferograms. Nevertheless, compressed sensing (red) reconstructs the 
original spectral content in excellent agreement in amplitude, peak position, and linewidth 
with the spectrum obtained from FT of the full data set (blue). We expect the level of 
reduction of 1/9th we obtain to be irrespective of the frequency of the peak position within the 
considered range of 740 – 3200 cm−1. 

 

Fig. 4. Spectral mapping of the 6H-SiC surface covered by mono- and bi-layer graphene 
around a mechanically created indent, shown as a topographical image in (a). Cracks develop 
as lines from the lower-left to the upper right corner of the image. The lines going from the 
upper-left to the lower-right corner correspond to terraces on the SiC surface. Close to the 
terrace edges bi-layer graphene has formed, leading to the dark stripes in the AFM phase 
image shown in (b). A 41 x 44 array of spectra has been recorded over the area shown in (a). 
The analysis of peak heights of the SiC-phonon resonance in the spectral region around 900 
cm−1 results in a 2D map shown in (c) with excellent agreement between measured and 
reconstructed data. Similarly, the peak position has been analyzed in (d), where the 
reconstructed data reproduce the main features of the measured data. 

A naïve linear interpolation of the sub-sampled interferogram and subsequent FT leads to 
a complete loss of the spectral information (black line), illustrating the power of the applied 
compressed sensing algorithm. Note that for in case of Nsub = 114 equidistantly sampled 
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interferogram points the upper wavenumber limit is given by  

1/ 2 360 max xN cmν ν −= <∆ , 
well below the observed spectral feature in Fig. 3(b) between 900 and 1000 cm−1. 

The nano-FTIR signal S as a coherent process is characterized by both amplitude and 
phase of the optical response [51]. The inset of Fig. 3(b) shows that within the SiC phonon 
band also the near-field spectral phase (dashed blue and red lines), is reconstructed 
accurately. 

Deviations of the reconstructed data set from the measured data only lead to a suppression 
of small spectral features. To evaluate the significance of these deviations for this sample, the 
2D spatial maps of peak amplitude and spectral position of the SiC phonon resonance and 
their strain-induced variations around the mechanical indent are explored, as shown in Fig. 
4(a). Note that full sampling in space is performed. The topographical image also shows the 
typical terraces structures of the SiC surface developed during epitaxial growth of graphene 
on SiC [42]. The area captured by the image contains mono- and bi-layer graphene areas. The 
latter are visible in the AFM phase image [43] in Fig. 4(b) as dark stripes located at the 
terrace edges. 

The spatial variations of peak amplitude and spectral position of the SiC phonon 
resonance comparing the measured (left column) and reconstructed (right column) data are 
shown in Figs. 4(c) and 4(d). Peak-height features in (c) resulting from residual strain 
following the indent pattern as well as the bi-layer graphene regions (seen as red stripe 
running toward the upper left corner) due to surface conduction are well reproduced. The 
strain-related blue-shifts (d) concentrated in the center of the indent are also well reproduced. 
This analysis shows that despite the 1/9th reduction of sampling points and the slight 
deviations from the measured data the compressed sensing algorithm reveals the key 
information of the hyperspectral image. 

The presented CS-FTIR approach is based on the assumption of sparsity in the Fourier 
domain which appears to be well satisfied for the data presented here. In cases where this 
sparsity is challenged, e.g. through ultra-narrow interferograms, additional fine spectral 
features, or in cases where the height of the sparse peaks in the Fourier domain are reduced 
significantly, the approach is expected to yield reduced reconstruction accuracies. Additional 
knowledge, e.g. about the location of relevant spectral regions, might then be needed in order 
to stabilize the results. Such an investigation will be subject to future work. 

4. Conclusion 
We have demonstrated the application of compressed sensing to scattering-type near-field 
optical microscopy for hyperspectral nano-FTIR imaging. As a scanning probe technique it 
relies on sequential rastering of a sample surface, which is an inherently inefficient method 
for recording volume data. We have shown that compressed sensing is a promising route 
toward more efficient recording of volume data in nano-FTIR spectroscopy. Particular benefit 
of compressed sensing is expected for s-SNOM implementations using ultra-broadband 
synchrotron radiation. Furthermore, with compressed sensing allowing longer integration 
times per pixel one may even expect s-SNOM spatio-chemical imaging using readily 
available yet low power thermal globar or other IR continuum sources. It thus promises both 
rapid and sensitive spatio-chemical nano-imaging for widespread use in academic and 
industrial settings for fundamental and applied nano- and bio-materials research. 
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