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Abstract 

The goal of our actions should be to maximize reward while minimizing effort and 
time. An individual’s movements in response to changing costs and rewards can reveal 
how they value these contributing variables.  

The motivation of this dissertation is to better understand how reward, effort, and 
time interact to determine an individual’s movement preferences. The first study used 
an objective measure of effort, metabolic cost, to quantify subjective effort valuation in 
healthy young adults in a low-effort reaching task. Participants were idiosyncratic in how 
they valued effort with the group as a whole representing effort objectively. The second 
study investigated the costs of effort and time in gait choice by probing preferences to 
walk or run across changing relative distances. I found that effort alone could not 
explain choices. Participants also considered time, with their tendency to discount time 
predicting running velocity. These first two studies demonstrate that effort is essential in 
explaining movement behaviors with its exact contribution varying across individuals.  

In the third and fourth studies I investigated the role of reward in discounting 
effort costs in movements within individuals. The third study consisted of young adults 
reaching towards alternating quadrants where some quadrants were paired with reward. 
Expectation of reward led participants to react earlier and move faster, discounting the 
cost of effort to arrive at the reward sooner. Movements toward reward were also less 
variable, violating the traditional speed-accuracy trade-off. For the final study, I probed 
whether aging would influence an individual’s willingness to alter reaching behavior in 
response to reward. Older adults exhibited a reduced response to reward. While reward 
led to faster reaction times, I did not observe an increase in movement speed. I found 
that metabolic cost of reaching was not elevated in older adults compared to young, 
suggesting that the reduced response in older adults could not be explained by an 
increased effort cost, but rather a reduced sensitivity to reward. 
 Collectively, these studies advance our understanding of how reward, time, and 
effort interact in explaining movement preferences in changing cost and reward 
landscapes both within and across human populations. 
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CHAPTER 1  

INTRODUCTION 
Our lives are full of situations where we pit time and effort against reward. Imagine you 

open the refrigerator only to find that it is empty. You are hungry and need to eat before 

continuing with your day. There are several solutions to this problem that require 

differing levels of effort for differing amounts of reward. You could walk to the restaurant 

down the block for a quick sandwich, or perhaps walk to the market a little further away 

and get groceries for the entire week. Each alternative varies both in costs, and the 

rewards obtained from those costs. Subsequently, once you decide on the solution to 

your hunger, you now need to execute the action in an optimal manner that enables you 

to realize the predicted outcome of your initial decision. In the case of choosing where 

to go, you now need to establish an appropriate speed at which to walk to your 

destination or, if you are really hungry, the speed at which you run. 

The initial process of deciding which action to take and the subsequent process 

of performing that preferred action can both be fundamentally framed by pitting reward 

against time and effort. Traditionally, these two phenomena were probed by completely 

different fields with the field of economics focusing on the first process and the field of 

motor control focusing on the later process, with little interaction or collaboration 

between the two despite the shared latent variables contributing to their observations. 

More recently, the fields have begun to converge and new models exploiting theories 

from both lines of research have been proposed to probe how a single utility formed by 

the interactions of reward, time, and effort can be used to explain behaviors across 

different levels of movement and decision making. 
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1.1 Reward, time and effort in decision making and movement 

A successful model used to explain decision making and movement should include an 

accurate and universal quantification of reward, time, and effort. In this section, I 

summarize methods used in measuring these parameters as well as how changes in 

these parameters alter decision making and movement preferences in humans and 

other animals. 

 

Reward as an incentive  

Animals move to place themselves in a more rewarding state. Because 

movement is a costly behavior, it is necessary to have an understanding of how reward 

is valued to predict decision making as well as how changes in reward can lead to 

changes in movement preferences. In the following paragraphs I review the different 

reward modalities used across a range of decision making paradigms as well as how 

they contribute to establishing a universal currency for movement utility. 

 

Reward in decision making  

The quality or availability of reward affects an animal’s preference towards that 

reward. When given the option between a large or small reward, animals will choose the 

large reward (Walton et al. 2002; Levy and Glimcher 2011). Including reward into a 

model of utility requires that the reward be quantifiable, with changes in this quantity 

predicting changes in decision-making preferences. Certain rewards such as food and 

water are commonly quantified based on their physiological impact on an animal. For 

example, food can be quantified in terms of calories, water in terms of volume, 
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cigarettes in terms of nicotine content, etc. In the laboratory, animals adjust their 

decision making towards liquids with higher quantities of sucrose (Smith and Duffy 

1955; Conrad and Sidman 1956) or greater numbers of food pellets (Walton et al. 

2002). Smokers are able to detect differences in cigarettes, making choices that 

maximize nicotine content (Venugopalan et al. 2011). These results show the basic 

principle that the quality of a reward can be quantified based on altering characteristics 

of the reward that directly affect the physiology of the animal, moreover increasing these 

aspects of the reward, leads to an increased probability of choosing that reward.  

Quantifying reward according to its physiological impact can accurately predict 

decision making within a single reward modality (Bautista et al. 2001), however, this 

method fails to predict value across modalities. For example, water could never be 

valued in terms of its caloric content, however that doesn’t mean that quantities of water 

cannot be exchanged for quantities of food. Green and Rachlin (1991) trained rats to 

distribute a limited number of lever presses for combinations of food and water, where 

food was given after x presses and water after y presses. When the prices of each were 

altered, so too was the rat’s relative spending. These results show that food and water 

can be valued and exchanged under a common currency. Measuring this common 

currency is difficult in both humans and other animals. In humans, money can be used 

as a good proxy, which may explain why it is the predominant reward used in human 

decision-making research. Money itself has no immediate effect on the physiological 

fitness of an individual, however it can be exchanged to acquire a large spectrum of 

resources and services, making it an ideal reward for human research. Levy and 

Glimcher (2011) had human participants choose between different amounts of money 
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and either food or water rewards. They found that changes in the value of monetary 

rewards correlated with changes in the value of both food and water rewards. More 

abstract measures of a common reward currency have been recorded using 

neuroimaging techniques with evidence suggesting that activity in regions of the 

ventromedial prefrontal cortex can predict decision making across consumable and non-

consumable rewards (Chib et al. 2009).  

 

Reward in movement  

Reward not only affects decision making, but it also influences the vigor in which 

movement decisions are executed. Vigor is commonly referred to as the peak velocity, 

reaction time, and duration of a movement over a fixed distance (Opris et al. 2011; Choi 

et al. 2014). For example, non-human primates make saccadic eye movements with 

shorter latencies and faster peak velocities to targets when that target is paired with a 

juice reward (Takikawa et al. 2002). Similar findings occur in humans when they 

saccade towards information rich targets (faces compared to static images) (Xu-Wilson 

et al. 2009). Reward dependent changes in vigor are not just constrained to saccades, 

but are also evident in reaching movements. In non-human animals, reward increased 

vigor in both simple wrist flexion/extension movements as well as reaching movements 

(Opris et al. 2011; Mosberger et al. 2016). It has also been proposed that reward 

decreases the variability in our movement. Manohar et al. (2015) reported an increase 

of accuracy when making saccades in the presence of distractors if the target was 

paired with a reward. Trommershauser et al. (2006) had individuals make rapid pointing 

movements to a rewarded target. When a penalty target was overlaid with the rewarded 



	 5	

target, individuals adjusted their preferred pointing location away from the penalty, 

however when the reward was increased, they moved their preferred pointing location 

closer to the penalty, suggesting that they were willing to accept a new trade-off 

between an increased risk of penalty for an increased chance of successfully hitting the 

more rewarding target. These results were extended by O’Brien and Ahmed [2013] to 

include whole body movements. They had participants both reach and make whole 

body postural movements towards the edge of a cliff. They were rewarded based on 

how close to the virtual cliff they moved. When the consequences of the cliff were 

increased, participants did not move as close in either movement type. Interestingly, the 

effects of increasing cliff consequence was greater in postural movements compared to 

reaching, suggesting that the influence of reward may differ across movement types. 

In this section I have presented a brief overview of how humans and other 

animals prefer decisions and movements that are tied with greater reward. Increasing 

reward also affects motor control strategies, specifically by increasing vigor. For a 

model of utility to function in environments that require complex decisions and/or 

movements, it is important that reward be represented in a common currency that can 

be easily quantified across a range of reward modalities. 

 

1.2 Temporal discounting of reward 

In the next several paragraphs, I introduce how time acts as a cost that interacts with 

the value of reward. A useful model of utility requires that the cost of time is accurately 

considered when predicting utility in both decision making and movement. 
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Cost of time in decision making 

Adding a delay to a reward causes the preference towards choosing that reward 

to decrease (Mazur 1987). An animal’s tendency for immediate rather than delayed 

rewards is measured in their level of temporal discounting (impulsivity). For example, 

both pigeons and rats consistently prefer smaller food rewards with small delays when 

compared to larger food rewards with a slightly longer delay. Temporal discounting 

varied across animals with pigeons being more impulsive than rats, willing to accept 

even smaller rewards to shorten the delivery of that reward (Green et al. 2004).  In 

humans, temporal discounting of monetary reward can be observed across several 

timescales from (milli)seconds (McClure et al. 2007; Gregorios-Pippas et al. 2009; Haith 

et al. 2012) to years (Myerson and Green 1995), however, the rate at which time 

discounts reward depends on the scale of the delay. For example, delaying a $15 

reward three months came at a much higher discount rate (277%) compared to when 

the delay was extended to a year (139%) (Thaler 1981).  

Temporal discounting rates can also be affected by the reward modality. 

Differences in rates have been recorded between juice and water (McClure et al. 2007) 

as well as between hypothetical health outcomes and money (Chapman 1996). These 

results further argue the importance of a universal model of utility that can be used to 

explain decisions across a range of reward modalities that are delivered across a range 

of temporal delays.  
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Cost of time in movement 

No movement is ever completed instantaneously. Execution requires muscles to 

create torques that accelerate and decelerate segments, all occurring over time. The 

rate of temporal discounting between movement initiation and completion can have an 

effect of establishing natural levels of vigor when moving. A reward takes longer to 

acquire the further away it is. The longer that a movement takes, the lesser the value of 

that reward as a result of temporal discounting (Shadmehr 2010). To minimize the loss 

of value due to temporal discounting, vigor is increased in the presence of higher initial 

reward. As previously mentioned, this interaction of time and reward has previously 

been recorded in saccades for both humans and other animals (Takikawa et al. 2002; 

Xu-Wilson et al. 2009), as well as in reaching with non-human animals (Opris et al. 

2011; Mosberger et al. 2016). 

There is evidence that the phenomena of temporal discounting in decision 

making and movement are linked (Shadmehr 2010). Choi et al. (2014) measured 

saccade vigor in healthy humans and found tremendous variability in their levels of vigor 

(up to 50% differences). They also used a temporal decision making task to measure 

each participant’s rate of temporal discounting. They found that the more impulsive an 

individual was (higher temporal discounting), the quicker they executed their saccades.  

Temporal discounting influences decision making as well as the vigor at which an 

animal executes movements. Increased impulsivity causes greater rate of loss in value 

over time, which promotes preferences towards earlier rewards in decision making. 

Assuming that the reward is only obtained upon movement completion, there will always 

be a loss between the instantaneous value of an outcome and the temporally 
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discounted value obtained upon movement completion. Increased impulsivity causes 

greater rate of loss in value over time, which promotes increased movement vigor. The 

basic framework of temporal discounting allows us to explain how time and impulsivity 

can explain differences in decision making brought on by delay as well as why certain 

individuals move with greater vigor than others when controlling for reward.     

 

1.3 Effort discounting of reward 

The classical economist David Ricardo defined price as “the value of a commodity, or 

the quantity of any other commodity for which it will exchange, depends on the relative 

quantity of labor which is necessary for its production” (Ricardo 1817). Every movement 

comes at a price. Very little is known about how the brain quantifies the price of effort in 

decision making. This is in contrast to the locomotion literature, where metabolic costs 

are systematically measured and thought to be one of the predominant variables 

determining movement (Ralston 1958; Hoyt and Taylor 1981; Diedrich and Warren 

1995). Here, I present an overview of how metabolic cost is measured in animal 

movement, how that cost influences the way we make decisions, as well as how it 

affects our movements.  

 

Quantifying effort  

When an organism is stimulated to move, chemical potential energy is converted 

into mechanical energy that generates forces necessary to perform work on the 

environment. In the case of humans and other animals, this is done by breaking down 

fats, carbohydrates, and at some level proteins, to power the actions of skeletal muscles 
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found crossing the multiple joints of the skeleton. Across several fields of study, it is 

commonly agreed that the gold standard in quantifying the effort involved in movement 

behavior is through the magnitude of the metabolic energy required to perform the task 

(Margaria et al. 1963; Charnov 1976; Lemon 1991; Bautista et al. 2001). Metabolic rate 

has been measured for decades in locomotion using indirect calorimetry (Ralston 1958; 

Hoyt and Taylor 1981) however it has only recently been implemented to quantify effort 

in other movements like reaching (Huang et al. 2012; Huang and Ahmed 2013, 2014).  

To calculate the amount of metabolic energy released by an organism, a bomb-

calorimeter is used to measure the changes in heat released as a result of the 

catabolism of fuel (Lighton 2008). While this method is very precise, it is financially 

extremely expensive and sensitive to environmental changes inflicted by sources other 

than the organism of interest. Indirect calorimetry is a more preferred method when 

measuring metabolic costs in movement. This technique calculates metabolic rate 

(Watts) using an equation developed by Brockway (1987) where the rates that gases 

are absorbed (oxygen) and expired (carbon dioxide) during activity are combined to 

calculate the metabolic power generated from the physiological processes of the animal 

[eq 1.1].  

Metabolic Power (Watts) = 16.58 VO2 +4.51 VCO2  [ 1.1 ] 

For the power obtained from indirect calorimetry to accurately reflect metabolic events 

at the muscle, the movement task must meet two primary assumptions. First, the task 

must be aerobic (Lighton 2008). Anaerobic tasks that rely on non-oxidative mechanisms 

cannot by detected in the analyzed expired gases. Second, the task must occur at a 

constant workload (speed or power) because values are obtained by averaging noisy 

samples over a time period of ~2-3 minutes (Donelan et al. 2001; Gottschall and Kram 
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2003; Grabowski et al. 2005; Huang et al. 2012). Under these methodological 

constraints, quantifying effort in terms of exact metabolic rate has predominantly been 

recorded in a select category of movements, primarily behaviors that include walking, 

running, and cycling.  

The speed at which a movement occurs has an immediate effect on the 

metabolic rate of the animal. As locomotion speed increases, so to does the metabolic 

rate of the organism, however, the function describing that increase depends on how 

fast the individual is moving. In walking, metabolic rate increases with velocity squared, 

while in running, it increases linearly with velocity (Ralston 1958; Margaria et al. 1963). 

In higher speed activities such as in cycling, metabolic rate increases with cubed 

velocity due to interactions with drag forces, however, when this cost is described as a 

function of mechanical power, the response becomes linear (Gaesser and Brooks 1975; 

Davies 1980). Metabolic rate also increases with the mass of an organism (Nagy 1987). 

When external loads are added to humans, the metabolic rate of walking increases 

linearly with the slope depending on the location of the added mass (more distal=more 

costly) (Browning et al. 2006). There is new evidence that increasing reaching distance 

and decreasing reaching time (increasing velocity) also lead to increases in the 

metabolic rate of reaching (Shadmehr et al. 2016), however compared to walking, 

further work needs to be done to understand how the relative components of a reaching 

movement (acceleration, braking, weight support, etc.) each contribute to the metabolic 

rate of reaching.  
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Effort in decision making  

Effortful tasks are commonly used as independent variables in decision-making 

research (Mitchell 1999; Goble et al. 2007; Floresco et al. 2008; Prévost et al. 2010). 

These tasks tend to be shorter in duration and/or demand extreme (both low and high) 

levels of exertion meaning indirect calorimetry is not an option for measuring effort. 

Several proxies for effort have been proposed that when manipulated, result in changes 

in decision making behaviors. They include movement repetition, grip force, and mass.  

Movement repetition, most commonly quantified by button or lever presses is one 

rudimentary proxy for effort that can easily be applied to both human and non-human 

paradigms. When controlling for reward, increasing the number of repetitions required in 

a decision leads to an increased frequency of switching to the alternative, less effortful 

option (Floresco et al. 2008; Croxson et al. 2009). A concern with this proxy is that there 

is also an uncontrolled temporal cost that interacts with effort where higher effort tasks 

(more repetition) also require more time to complete (Croxson et al. 2009).  

An alternative proxy of effort can be quantified by altering the amount of force 

involved in a motor task. Studies that use isometric handgrip tasks quantify effort by 

measuring the amount of force an individual can generate during a maximum voluntary 

contraction (MVC). In these studies, participants make effortful decisions according to a 

percentage of MVC generated for a discrete period of time, with individuals preferring 

low versus high levels of contraction (Mitchell 1999; Prévost et al. 2010; Hartmann et al. 

2013). Kording et al. (2004) measured how force represented effort using a decision 

making task where participants held the handle of a robot as it generated force pulses 

of differing magnitudes and durations. They then reported preferences between pairs of 
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effortful bouts varying in force magnitude and duration. They found that effortful 

decisions could be consistently predicted across individuals as the integral of force with 

respect to time. This trend similarly represents how metabolic cost rises with force in 

single muscle isometric force generation (Kushmerick M J and Paul R J 1976). 

Unfortunately, the forces generated by muscles during these force tasks do not allow for 

the disentangling of co-activation between agonist and antagonist muscles and 

therefore do not allow for a direct translation between force and metabolic cost.  

Effort can also be modulated by changing the direction of a reach. The direction 

of the reach and the relative contributions of the joints to displace the hand result in 

different levels of inertia, or effective mass. The inertia of the arm is such that reaching 

in certain directions feels like moving a heavy mass, while reaching in other directions 

feels like moving a mass that is only half as heavy. In other words, the effective mass of 

the arm varies as a function of movement direction. For reaches of the right hand, 

effective mass is minimized along movements towards the upper right (45 degrees from 

horizontal) and lower left (225 degrees) planes. Goble et al. (2007) instructed 

individuals to distribute strokes in as many different directions as possible around a 

center target. They found that there was a large bias in strokes towards paths that 

minimized effective mass. Adding a load to the arm further increased the bias (Wang 

and Dounskaia 2012). Cos et al. (2014) had individuals make decisions to reach 

towards one of two different targets of equal distance. Again, different locations of the 

targets meant there were different effective masses of the arm, with participants 

preferring target directions that minimized this mass.  
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Proxies for effort such as movement repetition, grip force and mass are simple, 

easily controlled movements with a large range of effort levels that allow us to 

thoroughly probe how decision-making behavior responds to varying levels of 

movement exertion.  

 

Effort in movement  

Effort plays a role not just in decision making, but also in how we generate 

movement. An extensive body of work on the energetics of walking has allowed us to 

probe how preferred walking kinematics correlate directly with objectively measured 

metabolic minimums. At a walking speed of 1.45 meters per second, the legs move at a 

step width of ~0.12 times the length of the leg (Bauby and Kuo 2000) as well as a stride 

length of ~1.3 meters (Danion et al. 2003). Donelan et al. (Donelan et al. 2001) 

measured the metabolic rate for walking at a natural step width, then constrained 

participants to walk with both narrower (up to 0.1 times leg length narrower than 

preferred) and wider (up to 0.45 time leg length longer than preferred) step widths. They 

found that narrowing and widening step width increased net metabolic rate by up to 

45%. Gordon et al. (2009) performed a similar experiment, but instead constrained 

stride length between 0.6 and 1.2 of preferred stride length. As with step width, they 

found metabolic cost of transport to be minimized at preferred length with increased net 

metabolic rate (up to 114%) at both shorter and longer stride lengths. When locomotion 

kinematics are perturbed from their preferred level, metabolic rate increases, supporting 

the hypothesis that minimizing effort is important in explaining preferred movement 

behaviors.  
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In reaching movements, effort is commonly approximated as the sum of squared 

forces (Todorov and Jordan 2002; Izawa et al. 2008). The sum of forces is not directly 

measured, but is instead calculated using inverse dynamics. This approximation is 

largely due to mathematical convenience, as well as the fact that metabolic costs 

associated with reaching movements had not been measured until recently (Shadmehr 

et al. 2016). When these costs were measured, the data revealed that metabolic rate 

decreased with increasing movement duration and increased with mass, indicating that 

for a movement of a given distance, faster movements generally cost more than slower 

movements and moving greater mass costs more than moving less mass. Thus by 

reducing the speed of the movement, the cost of moving a given mass can be reduced. 

There is experimental data supporting such an effect of mass on preferred reach speed. 

Gordon et al., (1994) asked subjects to make 10cm reaching movements to targets 

placed on the perimeter of a circle. They found that reach vigor varied as a function of 

reach direction with faster reaches occurring in directions that involved moving less 

effective mass, and slower reaches occurring in directions that involved moving more 

effective mass.  

In this section I have provided a wide, but not all encompassing review of how 

effort is quantified across decision making and movement. Quantifying effort as 

metabolic cost can explain natural walking preferences such as stride length and step 

width, however, directly measuring metabolic cost is not conducive for most movements 

used in decision making tasks. Proxies developed in place of metabolic cost allow for 

investigations into how effort drives decision making. Recent developments in the 

methodology of indirect calorimetry have allowed us to measure metabolic rate in 
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reaching. With a metabolic quantification of effort in reaching I have been able to test 

the validity of several proxies, supporting the use of some (force) and questioning the 

assumptions of others (squared force). 

 

1.4 A utility for decision making and movement 

In the following paragraphs I present evidence that individuals subjectively distort the 

value of rewards and costs and that these distortions, when properly quantified, can 

explain changes in both decision making and movement behavior. The extent of 

distortion in these parameters can be used to help explain variability in behavior in 

animals spanning different species, age, and health. 

 

Models of reward  

Economists have long observed that the value of reward does not increase 

linearly with a discrete change across different baseline magnitudes (Bernoulli 1954). 

For example, the difference between receiving a single additional liter of water when 

you previously only had two carries a much more noticeable change in utility compared 

to the exact change of one liter when you already have ten (Figure 1.1).  
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Figure 1.1 Diminishing marginal utility. A discrete increase in the quantity of a reward 
results in non-linear changes in utility (value) depending on your state preceding the 
change. Adapted from Glimcher and Fehr (2014). 

   

This observation is referred to as the law of diminishing marginal utility and has 

consistently been observed in both humans and other animals for centuries (Menger 

1871). Explaining how the value of a reward changes with magnitude can be described 

by fitting an exponent to a power function:  

      [ 1.2 ] 

Here the subjective value of reward SV(r) is represented by a fitted exponent (α) to an 

objective measure of the reward. If a fitted α is less than one (predicted by diminishing 

utility), a discrete change in reward at higher magnitudes has a lesser effect on utility 

than a similar change at lower magnitude. Alternatively, an exponent greater than one 

suggests the opposite with discrete changes at higher magnitudes having greater 

effects on utility compared to at low magnitudes. Lastly, an exponent around 1 suggests 

that changes in reward are valued equally across magnitudes. Fitting the exponent that 

SV (R) =Rα
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describes the subjective value of reward is achieved through the use of lotteries where 

participants record their preferences between certain smaller rewards and larger 

rewards that are associated with a probability of receiving that reward or an alternatively 

less desirable outcome.  

 

Models of reward to predict decision making:  

Imagine someone approaches you and presents an offer. They will either give 

you a dollar on the spot, or at the flip of a coin, give you two dollars if you win and zero if 

you lose. Statistically, these two prospects are of equal value, however you preference 

towards one outcome says something about the manner in which you subjectively value 

increasing reward.  

Levy and Glimcher (2011) used a design similar to this example to measure how 

the subjective value of different rewards (food, water, money) changed across different 

magnitudes. They found that participants generally exhibited diminishing marginal utility 

across all rewards (exponents less than one). Furthermore, they reported that the extent 

that these rewards were subjectively valued was very similar across all modalities. 

Subjective valuation of reward has been measured in other animals as well. Yamada et 

al. (Yamada et al. 2013) compared the level of subjective valuation between humans 

and monkeys and found that monkeys subjectively discount rewards in a manner similar 

to humans.  
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Models of reward to predict movement:  

The subjective valuation of reward can also be measured in movement. This can 

be done using similar methods as in decision making, but instead of lotteries being 

presented explicitly as percentages, they are manipulated by having the chance of 

success modulated normalized to the implicit movement variability of the performer.  

Wu et al. (2009, 2011) measured the subjective valuation of reward in a 

movement based pointing task and also found that the subjective value function during 

these tasks were similar to those traditionally reported in financial decision making. 

O’Brien and Ahmed (2014) compared how subjective valuation of reward differed within 

an individual when they had to make reaching movements towards rewarded targets ($) 

while sitting and standing. Their results suggest that the subjective valuation of money 

in movement based decision making is similar to values commonly reported in 

economic tasks (αsit=0.52, αstand=0.68). In a follow-up study, they tested the 

generalizability of subjective valuation across movement types, specifically between 

standing, reaching and postural adjustments of the body center of mass (COM). The 

valuation parameter fits for reaching were α=0.68 and for posture were α=0.72 (O’Brien 

and Ahmed 2015). These results provide additional evidence that subjective valuation of 

reward is consistent between movement and traditional financial decisions.  

 

Models of temporal discounting:  

The value of a reward decreases the longer you have to wait. The rate at which 

time discounts reward (impulsivity) has been quantified predominantly through two 



	 19	

types of discounting functions, exponential (Hull 1943) and hyperbolic (Mazur 1987) 

(Figure 1.2). An exponential discounting function takes the form of: 

V (t) =R ⋅exp(−k ⋅ t)                   [ 1.3 ] 

Where the value of the discounted reward, V(t), is based on the initial reward (r) being 

multiplied by the exponential where t represents the delay and k represents a rate of 

discounting with higher numbers signifying greater impulsivity. Identical parameters are 

involved in a hyperbolic function, however, this function makes slightly different 

predictions: 

    V (t) = R
1+ k ⋅ t

      [ 1.4 ] 

Again, in this function, a higher value for k represents greater impulsivity. As predicted 

by both equations, an individual with a k of 0 has no temporal discounting and is 

indifferent to when they receive a reward.  

 

 

Figure 1.2 Temporal discounting of reward as predicted by hyperbolic (solid curve) and 
exponential (dashed curve) functions. Each curve predicts V(t) using an immediate 
value, R, of 1 and a discounting  parameter, k, of 1.  



	 20	

 

The following paragraphs compare how exponential and hyperbolic discounting 

functions can describe the level of impulsivity of an individual, and that this 

measurement can lead to predictions in both decision making and movement.  

 

Models of temporal discounting to predict decision making:  

As an individual becomes more impulsive, they are more likely to subjectively 

value immediate rewards much greater to similar rewards delivered later. By measuring 

an individual’s level of impulsivity (k) we can make predictions for how long of a delay 

animals are willing to accept for a later reward. The justification of an exponential 

compared to hyperbolic discounting function to predict inter-temporal choice has been 

debated for decades (Mazur 1987; Green and Myerson 1996). In the next few 

paragraphs I will explain why hyperbolic over exponential models have been the 

preferred method of quantifying impulsivity in decision making.  

Early experimental evidence pointing to a hyperbolic discounting function was 

presented by Mazur (1987). In his experiment, pigeons chose between receiving two 

seconds of access to food (r2) or six seconds of access to food (R6). The delay tied with 

R2, (d2), was fixed within a session and the delay with R6 (d6) was adjusted until pigeons 

were indifferent between the two rewards. This was repeated across session with 

different fixed delays, resulting in several indifference points between delays for R2 and 

R6. Throughout the experiment the reward magnitudes were held constant. As the delay 

for r2 increased, the delay for r6 increased linearly. The line from these observations was 

compared to the lines that were predicted by each candidate functions. These were 
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obtained by setting the discount function at each reward equal to each other and solving 

for d6. Doing so for the exponential function resulted in the line:  

d6 =
ln(R6)− ln(R2)

k
+d2     [ 1.5 ] 

This equation predicts that the slope of the line should be 1, with an intercept that 

depends on the difference between the two rewards. For hyperbolic, the line was: 

d6 =
R6 −R2
R2 ⋅k

+
R6
R2

⋅d2
    

[ 1.6 ] 

This equation makes a prediction that distinguishes it from exponential in that as long as 

the rewards are not equal, the slope of the indifference line will be different from 1 (>1 if 

later reward is larger). Observed indifference slopes from the pigeons ranged from 2-3. 

When setting the discounting factor to 1, the hyperbolic function was able to account for 

> 90% of the variance in the choice data.  

A hyperbolic discounting function can further be justified over an exponential 

function through its ability to predict a phenomenon referred to as reversals of 

preference (Rachlin and Green 1972). Reversal of preference describes an observation 

where preferences of inter-temporal-choice at one time point do not predict preferences 

when the same time differences between choices are framed at a later time point. For 

example, imagine you are given the option between receiving four dollars now or five 

dollars in a week. Lets assume that most people would choose the immediate four 

dollars. Now let us view these same choices, but with a further six-month delay added 

to both options. Any individual that would now prefer the five dollars delivered in 25 

weeks over the alternative four dollars in 24 weeks have exhibited reversal of 
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preference. A function that can describe this reversal of preference must predict an 

intersection in value between delayed rewards at different global delays (Figure 1.3). 

 

 

Figure 1.3 Reversal of preference is observed between larger and smaller rewards 
depending on at which point in time the decision is made. A hyperbolic model (A) shows 
a preference for the smaller reward at time t1, but a preference for the larger reward at a 
later time t2. An exponential function (B) predicts the smaller reward when asked at 
either time t1 or t2. Adapted from Green and Myerson (1996). 

 

Rachlin and Green (1972) tested for the reversal of preference by having pigeons first 

make decisions which was followed by a delay (t). After the time t, the pigeon either 

immediately received 2 seconds of reward followed by a subsequent 6-second delay, or 

a 4-second delay followed by a subsequent 4 seconds of reward. With low t, pigeons 

preferred the smaller, earlier reward. As t increased, preferences switched to the higher, 

later reward, as predicted by a hyperbolic model. Similar switching behavior has been 

recorded in humans as well when making inter-temporal choices between different 

monetary rewards delivered over different universal delays (Kirby and Herrnstein 2016).  



	 23	

Adding time to a reward discounts the value of that reward with the rate of 

discounting depending on the level of impulsivity from the decider. There are several 

functions that can be used to describe this decay function, most commonly, exponential 

and hyperbolic (Hull 1943; Mazur 1987). The above examples suggest that hyperbolic 

discounting functions are best suited for measuring the effect of time on reward across 

a range of different decision making situations (Mazur 1987; Haith et al. 2012).  

 

Models of temporal discounting to predict movement  

Let us say that in the example at the beginning of this review you chose to go to 

the grocery store for dinner. At the store there are a pile of apples. Some apples are 

fresh and some are rather old and bruised. When you reach to inspect these apples, 

you will do so with a preferred speed and duration that is based on the expected utility 

of the movement. A model of utility that includes temporal discounting would predict that 

the optimal movement duration to reach for the more rewarding fresh apples would be 

faster than the less rewarding bruised apples because of their greater devaluation over 

time (Shadmehr 2010).  This prediction has been tested experimentally to explain 

variation across movement preferences in humans and other animals.  

Using a discount function to quantify temporal discounting of reward should allow 

us to make two predictions. First, increasing time will result in greater loss of value for 

an initial r. Second, increasing impulsivity will result in greater loss of value for a given r 

and t. Both humans and other animals make saccades faster to targets when that target 

is more rewarding (Takikawa et al. 2002; Xu-Wilson et al. 2009). In human children, 

naturalistic saccade velocity is much faster than mature adults (Fioravanti et al. 1995). 
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They also show much greater levels of impulsivity in temporal discounting paradigms 

(Green et al. 1999).  

Models that have attempted to explain movement vigor have used both 

exponential (Rigoux and Guigon 2012) and hyperbolic (Shadmehr et al. 2010, 2016) 

functions of temporal discounting. To test the relative predictive power of the two 

functions, Haith et al. (2012) designed an experiment where participants made 

saccades of a fixed amplitude without changing reward. Their only manipulation was 

that they varied inter-trial-intervals (ITI), resulting in a drifting rate of reward. A 

hyperbolic function would predict that altering ITIs would alter the shape of the curve, 

while in an exponential would only alter the scaling (Figure 1.4).  

 

Figure 1.4 Model predictions for optimal saccade durations across different ITIs. 
Hyperbolic discounting predicts change in vigor observed when ITIs are changed. 
Adapted from Haith et al. (2012). 

 

As ITI was shifted over the course of the experiment, saccade vigor responded as well, 

decreasing when ITI was lengthened and increasing when ITI was shortened. These 
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results strengthen the argument that time influences movement vigor by discounting 

reward. Modeling this discounting is most accurately captured by a hyperbolic function. 

These observations provide evidence to suggest that time discounts reward 

hyperbolically. The ability for a single function to quantify temporal discounting in both 

decision making and movement preferences across species, age, and disease suggests 

the cost of time plays an important role in shaping utility.   

 

Models of effort  

Effort, like time, is a cost that discounts the value of a reward. As more effort is 

required before acquisition of a reward, the less valuable the reward becomes. There 

are several mathematical functions that have been proposed to describe the rate of 

discounting as effort costs increase. These models have been investigated almost 

exclusively in the realm of decision making. How effort is modeled in movement has 

mainly come from the field of optimal control. As this modeling was previously 

discussed in section 2, I will focus here on presenting evidence that effort discounting 

can be modeled either multiplicatively or additively in decision making. 

  

Hyperbolic models in decision making:  

It has been proposed that effort, like time, discounts reward hyperbolically where 

an initial reward (R) is divided by a denominator that is influenced by discounting 

parameter (β) [eq 1.3, k replaced with β when referencing effort]. This model predicts 

that as the magnitude of effort increases, changes in valuation decrease (same 

predictions as in temporal discounting discussed in previous section). It also suggests 
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that higher rewards will be discounted at a faster rate than smaller rewards. Early 

studies investigating hyperbolic effort discounting were conducted by Mitchell (1999), 

where individuals exerted a full range of isometric grip force (10%-100% MVC) using a 

hand dynamometer. Participants then made decisions between generating MVC% for 

$10 or forgoing the effort for a smaller monetary reward. Fitting their discounting 

function using a hyperbolic model resulted in a discounting parameter of nearly zero 

(0.003). In a similar study by Prevost et al. (2010), participants (straight adult males) 

made decisions between exerting grip forces (15%-90% MVC) to view sexually explicit 

images for 3 seconds, or forgo the effort and view the same image for a shorter 1-

second period. They also reported smaller changes in subjective value as effort 

increased, however exact parameter values were not reported. The limited results 

proposing that effort is discounted hyperbolically, provide surprisingly differing levels of 

discounting rates considering they were fitted using the same effortful task. Some 

studies that suggest hyperbolic discounting (Mitchell 1999) are justified on relatively 

weak evidence. They also fail to compare their results against linear and hyperbolic 

functions. While it appears that effort discounts reward, it is not justified to assume that 

it does so hyperbolically without modeling results with other potential models.  

 

Parabolic models 

Effort discounting using a parabolic function results in much different predictions 

from hyperbolic. In parabolic functions, effort is discounted additively rather than 

multiplicatively. These models make the prediction that as effort costs increase, their 

rate of reward discounts concavely, with greater changes in value occurring at higher 
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levels of effort. This hypothesis was motivated by the observation that the perception of 

force increases exponentially approximately to the power of 2 (Stevens and Mack 

1959). Hartmann et al. (2013) were the first to probe a parametric discounting function 

such that effort discounted reward based on the function: 

SV (effort) =R − k ⋅effort 2      [ 1.7 ] 

Here the subjective value (SV) of the reward (r) is based on the level of effort squared 

which is further weighted by the discounting parameter k. Studies conducted by both 

Hartmann et al. (2013) and Klein-fugge et al. (2015, 2016) had participants choose 

between making isometric handgrip forces for higher monetary rewards or no forces for 

lower rewards. In both studies, the amount of effort tied to the reward influenced how 

participants made their decisions. Participants’ choices were best explained by a 

parabolic model of effort where discrete changes in lower magnitudes of effort had little 

effect on reward, while changes at greater magnitudes resulted in steeper discounting 

of reward.  

Compared to the exhaustive literature in modeling the subjective value of reward 

and temporal discounting of reward, relatively little research has been published on how 

effort discounts reward in the absence of a time interaction. Before a specific model of 

effort discounting is agreed upon, effort discounting of reward should be investigated 

using other effortful tasks such as reaching to probe whether other implicit costs such 

as accuracy or discomfort (especially at higher MVCs) could be influencing utility in this 

specific effortful task.  
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Modeling interactions of reward, time, and effort  

Throughout this document I have presented how animals independently value 

different forms of reward as well as different forms of costs that are often required to 

acquire rewards. However, when behaving in a complex environment, these costs and 

rewards interact. In the following paragraphs I present models that describe how 

reward, time and effort interact to generate a utility that attempt to explain decision 

making and/or naturalistic movement preferences.  

One of the most influential studies tying reward, effort, and time was conducted 

by Bautista et al. (2001). They trained starlings to either walk (low effort) or fly (high 

effort) a range of distances to obtain different quantities of food. They then measured 

the metabolic cost (effort x time) of the actions involved in obtaining the food (walking or 

flying) against the metabolic gain from the food reward to predict how starlings establish 

movement utility. They proposed three utility functions to predict preferences: 

maximizing gross rate of reward, minimizing gross metabolic cost of effort, and 

maximizing net metabolic rate (Figure 1.5). Their results found that starlings chose to 

walk or fly by optimizing the net metabolic rate over time (total calories gained minus 

total calories used moving divided by total time).   

 

 



	 29	

 

Figure 1.5 Results from Bautista et al. [2001]. Points represent preferred number of 
walks based on number of flights per reward. Upper line represents minimizing gross 
metabolic cost, middle line represents maximizing net metabolic rate, bottom line 
represents maximizing gross rate of reward. Net rate was the model that best fit 
observations. Adapted from Bautista et al. (2001). 

 

The net energetic gain hypothesis has been supported in several other animal foraging 

studies as well. Shorebirds often have to choose between two types of major foraging 

methods. They can either peck for food at the surface (low effort, low reward), or probe 

for food by striking into the sediment (high effort, high return).  As the penetrability of the 

sediment layer changes, so does the cost of probing. Kuwae et al. (2010) were able to 

measure metabolic intake rate for pecking and probing in environments with varying 

sediment penetrability and found that the preferred foraging method corresponded to 

maximizing net energy intake rate. When the sediment was easily penetrable, probing 

was preferred. As the penetrability became more difficult, net metabolic rate for probing 

decreased resulting in the birds switching to pecking. In another example, Dumont et al. 
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(1998) had sheep choose between immediate low calorie feed or an alternative high 

calorie feed that varied in quantity and distance from the animal. By calculating the 

energy gained from the high quality feed and the time spent walking to the good quality 

hay, they were able to predict at which combinations of quantity and distance the sheep 

would travel for the high quality food. Interestingly, a utility based on net energetic rate 

is based entirely on objective measurements of time, energy, and reward. While this is 

advantageous in that it is based on objective measures, they fail to consider the 

subjective valuations of such costs. This is especially surprising, given that starlings 

exhibit hyperbolic temporal discounting (Shapiro et al. 2008).  

As we improve our understanding of how animals subjectively value reward, 

time, and effort, new models of utility have begun to emerge that are able to make 

accurate predictions both in movement and decision making by considering subjective 

valuations of rewards and costs.  

Rigoux and Guigon (2012) were the first to propose a universal model of utility 

that can explain decision making and movement. They developed an optimal control 

model based on a cost function including reward, time and effort. Parameters included a 

reward value for arriving at the end state, scaling factors for reward and effort (free 

parameters fit to capture vigor), and a temporal discounting factor that exponentially 

discounted both reward and effort. They used a data set by Stevens et al. (2005) where 

two species of monkeys exhibited different decision making preferences between 

walking a short distance to small rewards and a longer distance to large rewards. Using 

movement durations measured during forced trials for each distance, they fit the ‘vigor’ 

parameter and found that a difference in vigor parameter values could explain the 
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difference in choice between species for the near/small reward vs the far/large reward. 

These results provided the first evidence that information from naturalistic movement 

behavior could be used to explain decision making preferences. However, effort was not 

measured, but rather represented abstractly as the sum of squared estimated forces. 

A more recent model proposed by Shadmehr et al. (2016) goes a step further by 

representing effort based on the changes in metabolic cost of a movement (an 

empirically based function of time, distance and mass). This model uses a hyperbolic 

discounting function rather than exponential because of its improved performance in 

explaining discounting in the presence of altering inter-trial-intervals, something an 

exponential model fails to capture (2012). Additively combining discounted reward and 

effort results in a utility function with a peak utility corresponding to optimal duration 

(Figure 1.6).  

 

Figure 1.6 Utility function establishing optimal movement duration (x axis) based on 
reward and effort, both discounted by time. Adapted from Shadmehr et al. (2016). 
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 The model’s ability to explain decision and movement utility across a range behaviors 

in different animals provides support for the idea that the brain represents effort as 

metabolic cost. It can successfully explain preferences for reach direction (Wang and 

Dounskaia 2012) as well as differences in vigor due to effective mass (Gordon et al. 

1994), recreate foraging strategies in starlings (Bautista et al. 2001), and preferences in 

producing forces of differing magnitude and time (Kording et al. 2004). This framework 

suggests that a utility in which effort is represented objectively as metabolic cost, and 

both effort and reward are discounted hyperbolically by time, can explain both decisions 

and movements across a range of animals and behaviors. However, work still remains 

to test performance across populations that differ in their subjective valuation of reward, 

effort and time. 

In this last section, I have presented an overview of how reward, time, and effort 

can be combined to explain preferences in both decision making and movement. For a 

model of utility to have power across different species, ages, and disease, it is important 

to consider how these variables can be subjectively valued. Observations of the 

subjective valuation in reward, time and effort have been well recorded independently, 

but they are only now beginning to be combined to model behavior in a range of 

complex environments. 
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CHAPTER 2  

THESIS OBJECTIVES 

2.1 Motivation 

The value of our environment is constantly changing, with these changes being 

reflected in how an animal adapts its behavior. While environmental costs and rewards 

have been used to explain a range of movement behaviors in many animal species, 

there is surprisingly little data in regards to whether these same variables can explain 

movement preferences in humans. This current collection of work aims to explore how 

effort, time, and reward contribute towards establishing a utility for each prospective 

movement and how differences in the valuation of these variables may explain 

movement preferences both within and across healthy human populations. By 

combining value functions developed in economics with an ecological based currency, I 

attempt to explain an individual’s preferences across decision making and movement. A 

better understanding of these behavioral interactions between reward, time, and effort 

can hopefully lead to improvements in methods used for explaining and improving 

movement preferences observed across humans of different age and disease. 

2.2 Specific Aims 

In this dissertation I explore how interactions of effort, time, and reward interact to 

collectively explain preferences when selecting both between alternative movements 

and when establishing the vigor within individual movements. The specifics of this 

endeavor are addressed in the following aims: 
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AIM 1: Determine how effort, quantified as a physiologically based metabolic currency, 

is valued when choosing between different risky movements decisions. 

 

AIM 2: Establish how individuals consider conflicting effort and temporal costs when 

selecting between walking and running gaits of varying distances. 

 

AIM 3: Examine how reward discounts the cost of effort when selecting vigor in 

unconstrained reaching movements. 

  

AIM 4: Examine whether healthy aging alters the interactions between costs and 

benefits when selecting vigor in unconstrained reaching movements. 

 

2.3 Outline 

For the remainder of this thesis (chapters 3-7) I present a collection of four experiments 

and conclude with a short description of their collective implications. 

 
Chapter 3 presents an experiment adapted from a classic decision-making paradigm 

based on cumulative prospect theory. In this experiment I explored whether individuals 

subjectively value increasing effort in a simple reaching task and if this subjective 

distortion was consistent across the group.  

 
Chapter 4 presents an experiment probing how participant-specific weightings of effort 

and time explain gait decisions between walking and running. I then attempt to explain 
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how representations of these competing costs explain differences in self-selected gait 

speeds both within and across subjects. 

 
Chapter 5 presents an experiment exploring how young adults adjust the vigor of their 

movements in response to a changing reward landscape. In this specific environment, 

neither the quality nor quantity of reward was contingent on any aspect of vigor.  

 
Chapter 6 consists of two experiments. In the first experiment, I measured how older 

adults adjusted vigor in response to changing reward. In the second experiment I 

measured the metabolic cost of reaching in older and young adults to probe whether 

reward sensitivity between age groups could be explained as a results of changes in the 

representation of effort, reward or both.  

 
Chapter 7, the final chapter of this thesis, summarizes the main findings of the 

presented work and discusses their broader implications. 

 

2.4 Significance 

The following series of projects introduce a diverse range of datasets with the results 

from these datasets collectively describing how costs and benefits interact to establish a 

utility for each of our actions. These experiments were developed to help advance our 

understanding of the exciting relationship between movement and decision making. The 

specific advancements of this dissertation include the first example of how humans 

value increasing effort in reaching when quantified in a physiological framework, how 

this same cost of effort interacts with time to explain variability in a different set of 

movements: gait, how increased reward discounts effort when selecting movement 
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vigor in reaching, and how the representation of these reward and effort variables 

change with healthy aging. These experiments provide a range of examples where 

representing the cost of effort as a metabolic cost can accurately capture how humans 

establish preferences both between movements and within movements. Movement is a 

fundamental component essential for a healthy life. These results have implications for 

improving our understanding of why certain neurological diseases cause individuals to 

adapt pathological movement patterns and how different incentive structures may 

potentially be used to reinforce healthy movement patterns and improve an individual’s 

overall quality of life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 37	

CHAPTER 3  

USING METABOLIC COST TO QUANTIFY THE 
SUBJECTIVE VALUE OF PHYSICAL EFFORT  

 
3.1 Abstract 

Economists have known for centuries that to understand an individual’s decisions, we 

must consider not only the objective value of the goal at stake, but its subjective value 

as well. However, achieving that goal requires expenditure of effort. Surprisingly, 

despite the ubiquitous role of effort in decision making, we currently do not understand 

how an individual subjectively values effort in daily movements. Part of the difficulty 

arises from the lack of an objective measure of effort. Here I used a physiological 

approach to address this gap in our knowledge. I quantified objective effort costs by 

measuring metabolic cost via expired gas analysis as participants performed a reaching 

task against increasing amounts of resistance. I then used neuroeconomic methods to 

quantify each individual’s subjective valuation of effort. Rather than the diminishing 

sensitivity observed in reward valuation, effort distortions were idiosyncratic. An equal 

number of participants exhibited increased sensitivity and decreased sensitivity to effort, 

leading to an objective valuation of effort on average. This is significantly less than the 

increasing, near-quadratic sensitivity to effort observed previously in force-based motor 

tasks. Moreover, I found that a utility in which effort discounting was additive, rather 

than hyperbolic, explained participant’s effort based decisions. Together, these findings 

demonstrate that in contrast to monetary decisions in which subjective value exhibits 

diminishing marginal returns, effort costs are valued more objectively in low effort, 

reaching movements that are common in daily life. 
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3.2 Introduction 

Economists have known for centuries that to understand an individual’s decisions, we 

must consider not only the objective value of the rewards at stake, but their subjective 

value as well (Bernoulli 1954; Tversky and Kahneman 1992). There exists a nonlinear 

relationship between objective rewards and their subjective value whereby individuals 

often value each additional increment of objective reward with diminishing subjective 

value (i.e. diminishing sensitivity). Understanding such nonlinearities has proven critical 

to our ability to explain decision making across a range of economic environments and 

domains. However, every reward ultimately requires an action to obtain it, and that 

action inevitably requires effort. Effort is an inherent cost to many, if not all decisions, 

but we have yet to understand its role in decision making. This is surprising given that 

many neural disorders involve a form of movement deficiency. In Parkinson’s Disease, 

for example, the cardinal symptom is bradykinesia, or slowness of movements. The 

disease arises from a loss of dopaminergic neurons in the substantia nigra. While 

dopamine is generally thought to modulate reward signals, there is increasing evidence 

for its role in determining how hard humans and other animals will work for a given 

reward (Salamone et al. 1991a, 1994a; Phillips et al. 2007; Treadway et al. 2012). This 

implicates an exaggerated sensitivity in valuation of effort as one of the possible 

underlying mechanisms of movement slowing in Parkinson’s Disease (Mazzoni et al. 

2007). 

  One of the main obstacles to this line of research is the lack of an objective 

measure of effort costs. Psychophysical measurements demonstrate that the perception 

of effort increases nearly quadratically with increases in effort (Stevens and Mack 
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1959), suggesting that effort is valued in a similar manner. However, these studies, as 

well as previous attempts to understand how effort discounts reward in decision making, 

have used proxies for effort such as isometric force production (Kording et al. 2004; 

Schmidt et al. 2008a, 2012; Prévost et al. 2010; Hartmann et al. 2013; Kurniawan et al. 

2013; Klein-Flügge et al. 2015), estimated force production (Morel et al. 2017), number 

of targets acquired (Croxson et al. 2009) and button presses (Venugopalan et al. 2011; 

Treadway et al. 2012). So we do not know if the objective effort costs were accurately 

represented by these experimental manipulations of effort. Some also required near 

maximum levels of exertion which may have led to additional costs such as pain, 

discomfort or fatigue. Others have provided choices coupled with monetary rewards 

without accounting for the accompanying nonlinearity in that reward’s subjective value 

function (Schmidt et al. 2008a, 2012; Croxson et al. 2009; Treadway et al. 2012; 

Hartmann et al. 2013; Kurniawan et al. 2013). I present a paradigm to circumvent these 

issues by examining low-effort movements that are representative of the everyday 

movements we make, controlling for reward, and critically, measuring objective effort 

directly in the form of metabolic cost. 

Our understanding of movement control has a long history of implicating effort as 

an underlying determinant of preferred movement characteristics. In locomotion, effort 

costs, represented objectively as metabolic costs, have been used to predict preferred 

walking speed, step length, step width, and arm swing in healthy individuals (Ralston 

1958; Zarrugh et al. 1974; Arellano and Kram 2011; Selinger et al. 2015). When 

represented as metabolic cost, effort-informed decision-making in reaching can account 

for both the choice of action as well as the kinematics of the ensuing movements 
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(Shadmehr et al. 2016). Metabolic costs are also used to explain foraging decisions in a 

range of animals (Charnov 1976; Richardson and Verbeek 1986; Bautista et al. 2001; 

Stevens et al. 2005). Both the breadth and history of this literature provide a strong 

rationale to propose metabolic cost as an objective measure of effort. 

Effort costs are also a cornerstone of optimal control models of movement 

control, which are capable of explaining observed movement trajectories across a range 

of conditions (Todorov and Jordan 2002; Izawa et al. 2008; Qian et al. 2012). Such 

models invariably assume that the objective cost and the subjective valuation of the cost 

are one and the same. However, there is strong evidence that the subjective valuation 

of movement-related costs such as time and probability differ from their objective values 

(Mazur 1987; Tversky and Kahneman 1992). When considering the subjective value of 

these costs, models of movement control can better predict movement-related 

behaviors (Wu et al. 2009; Shadmehr 2010; O’Brien and Ahmed 2015).  

Here I will address two main questions regarding how physical effort costs are 

considered for effort-based decisions in healthy adults. First, is there a nonlinear 

relationship between the objective physical effort cost, quantified as metabolic cost, and 

its subjective value? Second, how does effort discount decisions? Together, these 

findings will help advance our understanding of the role of effort in both decision making 

and movement. 

3.3 Methods 

Participants  

Twenty participants were enrolled in this experiment (25±4 years, 72.90±9.21 kg, 

7F, 13M). Each participant gave written informed consent as approved by the University 
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of Colorado Institutional Review Board and received $10/hour for participating. All 

participants completed a training session, metabolic session, and one choice behavior 

session. Thirteen repeated a second choice behavior session. Each session took place 

on different days. 

 

Training session   

The purpose of the initial session was to familiarize participants with reaching 

against a resistive force as well as to train them to reach under a constrained time limit. 

The task consisted of making 20cm out-then-back reaching movements between a 

home circle and a rectangular target (15cm wide) (Figure 3.1A, without gauge). Visual 

feedback was provided at the end of each movement to ensure that movement duration 

fell between 550ms and 650ms. If the cursor arrived within the desired duration, the 

target flashed yellow and made a pleasant beep. If the cursor arrived too early, the 

target turned green with no audio stimulus and if the cursor arrived too late, the target 

turned gray with no audio stimulus. This feedback was necessary to promote a 

consistent velocity profile. Consistent reaching kinematics were necessary because 

throughout the reach, participants experienced resistive forces that depended on the 

velocity of the cursor. Velocity dependent forces were generated according to the 

following equation: [Fx Fy] = -b[Vx Vy], where Fx and Fy represent horizontal and vertical 

forces, Vx and Vy the corresponding handle velocities, and b is a constant describing the 

gain on the resistance. There were five conditions: b= 0 (no forces), 30, 45, 60 and 70 

Ns/m, each presented in blocks of 50 trials in randomized order.  

Immediately following each block, participants reported a modified Rating of 

Perceived Exertion (RPE, (Borg 1970) where they were asked to rate the physical effort 
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required to complete the task at each resistance gain. The possible scores ranged 

between 6 (low effort) and 20 (high effort). The first block tested was 0 N�s/m followed 

by the second block tested at 70 N�s/m. For these first two blocks, participants were 

directly informed that they were the easiest and hardest conditions. By providing these 

two blocks early, participants were able to set a floor and ceiling score to base the 

remaining three conditions within. RPE scores did not represent absolute levels of 

exertion, but instead levels of exertion relative to an already experienced maximum 

(70N�s/m) and minimum (0Ns/m) resistance. After each block participants completed 20 

washout trials against no resistance (0 N�s/m). Each resistance condition (sin null 

resistance) was repeated three times for a total of 13 blocks. The last block of each 

condition was inspected to confirm that the increase in resistance gain reflected a 

relative increase in RPE score.  

 

Figure 3.1 Experimental Design. (A) Objective Cost. Participants moved a cursor out 
and back against a resistive force field. While reaching they wore a nose clip and 
breathed through a mouthpiece that measured rates of oxygen consumption and carbon 
dioxide production. The gain of the force field was disclosed to the participant through 
the use of a resistance gauge that ranged from 1-5 dots with increasing red dots 
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corresponding to increasing resistances. (B) Subjective Value. Subjective valuation was 
calculated based on decision making behavior in this session. Participants made 
decisions between reference and lottery options based on which option required the 
least amount of effort. The reference remained constant throughout all trials and 
represented a sure bet (100%) of reaching against the lowest resistance (1 dot). The 
lottery option was a combination of different resistance and probability pairs. The 
consequence of each decision was the risk of performing 5 minutes of reaching at the 
displayed resistance with the alternative outcome being to sit quietly. (C) Protocol. In 
the training/RPE participants made velocity constrained reaches against undisclosed 
resistance between a home circle (green) and a target (red) and reported the relative 
exertion on a scale from 6 (low) to 20 (high). In the metabolic session, participants 
reached against known resistances and learned to associate the resistance gauge with 
the experienced resistance. In behavior sessions 1 and 2, participants were instructed 
to decide which option (reference or lottery) required the least amount of effort.  

 

Metabolic session  

In the metabolic session, the objective effort cost (i.e. metabolic cost) of reaching 

against resistance was measured using methods previously developed by others in my 

laboratory (Huang et al. 2012; Huang and Ahmed 2013, 2014; Shadmehr et al. 2016). 

Upon arrival at the laboratory, participants completed three 6-minute baseline blocks 

where they sat quietly and I measured their metabolic rate. This was followed by trial 

blocks of reaching against resistances of 0, 30, 45, 60, and 70 Ns/m. The resistance in 

each block was fixed, but the order of blocks was randomized. Each reaching block 

consisted of 300 trials lasting ~7 minutes. During each block, a number of dots were 

displayed on the side of the monitor corresponding to the magnitude of the force field 

gain (Figure 3.1C, 1 dot=lowest gain, 5 dots=highest). Participants were instructed to 

associate the dots with the force field they were experiencing. These dots were used in 

the upcoming behavior session to represent effort levels. Between each reaching block 

the participant rested for 5 minutes.  



	 44	

Expired gas analysis was used to calculate the net normalized metabolic cost 

(J/kg) of seated resting and of seated reaching against resistance. Participants wore a 

nose-clip and breathed into a mouthpiece during all baseline and reaching blocks. A 

metabolic cart (ParvoMedics, TrueMax2400) was used to sample the amount of 

consumed oxygen (O2, l/min) and expired carbon dioxide (CO2, l/min) over 5 second 

intervals. At the beginning of each metabolic session, gas fractions were calibrated 

using a certified standard gas mixture and flow rate was calibrated using a 3-liter 

syringe under various flow rates. Respiratory exchange ratio (RER) (CO2/O2) was 

monitored to confirm that each subject was within physiological ranges of aerobic 

respiration (0.7-1.0). Using the average O2 and CO2 for the last 3 minutes of each 

reaching condition, gross metabolic power (J/s) was calculated using the Brockway 

equation (Brockway 1987). Net metabolic power for each condition was calculated by 

subtracting the lowest average gross power of the three baseline blocks from the 

average gross metabolic power of that condition. Net metabolic power measured for 

each resistance was multiplied by the duration of the activity to represent the net 

metabolic cost of reaching against that resistance (J). I refer to the net metabolic cost of 

reaching as the objective effort cost.  

 

Behavior Session 1 & 2 

 In the behavior sessions, participants made choices between risky effort 

lotteries. Each choice consisted of a reference option and a lottery option (Figure 3.1B). 

The reference option represented a sure bet (100% chance) of having to reach for five 

minutes at the lowest resistance. The reference option was unchanged across all trials 



	 45	

and always available as an option. The alternative option was the lottery. The 

consequences of the lottery option consisted of either a displayed probability of 

performing a high-effort reach versus the alternative outcome of sitting quietly for five 

minutes. I varied the value of the lottery using combinations of one of the five 

resistances alongside one of five probabilities (53%, 63%, 72%, 84%, 95%), for a total 

of 25 lottery combinations, which were repeated 6 times for a total of 150 trials. At the 

end of the behavior session, the participants’ choices were realized by performing the 

results of three randomly chosen choice trials. If the subject chose the reference option, 

then they performed five minutes of reaching against zero resistance. If the participant 

chose the lottery option, they rolled two 10-sided dice where one die represented the 

10s placeholder and the other the 1s placeholder. A pair of 10s represented rolling a 

100%. If the number rolled was higher than the percentage of the chosen lottery, the 

participant would sit in the chair for five minutes and not have to perform the reaching 

task. Otherwise, they performed five minutes of reaching against the resistance 

assigned to the lottery. 

 Thirteen participants returned for a second behavioral session to test for 

consistency in decision-making strategies across days. Procedures during the second 

behavior session were nearly identical to the first with the only differences being that the 

order of the 150 choices were re-randomized and the locations of the reference and 

lottery options were switched on the screen. To compare parameter fits across days I 

plotted an individual’s day 1 fits against their day 2 fits. I then fit a simple linear 

regression across participants and compared that slope to unity. 
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Quantifying Subjective Valuation and Probability Weighting:  

The metabolic cost (objective effort cost) measured across participants in the metabolic 

session was combined with individual choice behavior in the behavior session to 

calculate each participant’s specific utility function for effort. Their choices were used to 

fit decision making parameters found in utility functions derived from Cumulative 

Prospect Theory (Tversky and Kahneman 1992) using maximum likelihood estimation. I 

describe the expected utility of each decision according to the interactions of effort and 

probability. I represent the subjective value of effort according to the function: 

SV (x) =R − xε      [ 3.1 ] 

where R is the pre-discounted reward value of the option which is assumed to be 

constant between lottery and reference options. The cost of effort is represented as x 

and is the net metabolic cost of reaching for 5 minutes (the duration of the choice 

realization) when compared to sitting quietly. This cost is subjectively valued as 

described by ε, with values of ε >1 meaning that sensitivity to effort grows with 

increasing objective effort.  

 I represent the effects of probability for each decision according to the probability 

weighting function: 

ω(p(x)) = exp[−(−ln(p(x))γ ]               [ 3.2 ] 

Here, p(x) represents the probability of accruing the effort cost, x, and the weighting of 

this probability is defined by the variable γ. When γ < 1, low probabilities are 

overweighted and high probabilities are underweighted. The opposite is true when γ >1, 

low probabilities are underweighted and high probabilities are overweighted. In the 

current protocol, I only tested probabilities above the inflection point of the curve. 



	 47	

 I described the overall expected utility (E[U]) of each reference and lottery option 

based on the contributions of their subjective value and weighted probability, defined as: 

E[U] =SV (x) ⋅ω(p(x))     [ 3.3 ] 

The values for ε and γ were both fit according to the observed probability of choosing 

the lottery (PL) as described by the logistic function:  

PL =
1

1+ek (E [UL ]−E [UR ])      
[ 3.4 ] 

In this equation the variable k is another free parameter used to describe the slope of 

the logistic curve. All three free parameters ε, γ, and k, were fit using maximum 

likelihood estimation.    

 

Alternative models 

In addition to the full three-parameter model described above, Mfull, I also tested 

three additional models of decision-making. First I compared the performance of the full 

model to a two-parameter model where effort was valued objectively, i.e. it increased 

linearly with metabolic cost (Mlin, ε=1) with γ and k being free parameters. The second 

alternative model was two-parameter model where effort was subjectively valued 

quadratically, (Mquad, ε=2). This function implies that effort is consistently subjectively 

valued quadratically, meaning that small increases in effort are valued as less costly 

compared to larger increases in effort. This model also included γ and k as free 

parameters. Lastly, I considered a hyperbolic effort discount function in which reward 

was discounted hyperbolically by effort, Mhb. Here the subjective value of the option is 

represented as: 
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SV (x) = R
1+ xε

     [ 3.5 ] 

In a hyperbolic function, we include R as an additional free parameter because it does 

not cancel when comparing utilities of options with reward of equal magnitude, as in 

equation 3.1. 

 

Statistics: 

The effect of resistance on metabolic cost, RPE, and frequency of choosing the 

lottery (both observed and model) were quantified using a simple linear regression 

model. The parameters ε and γ were compared to unity using independent t-tests. 

Comparing the observed frequency of choosing the lottery to the model frequency of 

choosing the lottery was performed with a linear mixed effects model in both effort and 

probability comparisons. In these comparisons, a dummy variable was used to indicate 

whether behavior was observed or modeled. The analysis of the effect of resistance on 

reaching velocity and target deviation was performed with a repeated measures 

analysis of variance. All statistical analyses were conducted using a significance level of 

α=0.05. Unless otherwise noted, descriptive statistics are explained as mean [95% 

confidence interval]. 

Goodness of fit of the full additive model which considered subjective value, Msv, 

was compared to the alternative models, Mx, using Bayes factors (BF): 

		
BF =

P Msv|D( )
P M*|D( ) =

P D|Msv( )P Msv( )
P D|M*( )P M*( )     

[ 3.6 ]
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Bayes factors were approximated with the Bayesian Information Criterion (BIC, Schwarz 

1978), calculated as the log likelihood of the model with the best fit parameters, minus a 

penalty for the number of parameters, n, and datapoints, m: 

		
BIC = log P D|M,θ̂M( )( )− n

2
logm≈ log P D|M( )( )

  
[ 3.7 ] 

BICs and Bayes factors were calculated for each subject, each model, and each model 

comparison. Aggregate BICs are presented as well as population-based Bayes factors, 

which were interpreted as p-values with the following adjustment: p=1/BF (Kass and 

Raftery 1995). Finally, I also present the protected exceedence probabilities (pxp) 

(CITE) using the spm_BMS function available in SPM12 software (Wellcome Trust 

Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). 

 

3.4 Results 

I measured how metabolic cost changed as participants performed out-then-back 

reaching movements against a range of submaximal resistive forces. Participants then 

made a series of decisions between a sure-bet of having to perform low effort reaches 

(reference option) or risk performing higher effort reaches (lottery option). Using the 

metabolic cost of reaching as a physiologically based representation of objective effort, I 

then used cumulative prospect theory to quantify each individual’s subjective valuation 

of effort. Most participants demonstrated a significant distortion between objective and 

subjective effort. In contrast to the diminishing sensitivity observed in financial reward 

valuation (Kahneman and Tversky 1979; Tversky and Kahneman 1992), effort 

distortions were idiosyncratic. An equal number of participants exhibited increased 
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sensitivity and decreased sensitivity to effort, leading to an objective valuation of effort 

on average across the group. 

 

Metabolic cost of reaching increases as a result of changing resistance 

Participants made 20cm reaching movements against 5 different velocity 

dependent force fields ranging in resistance between 0 and 70 N�s/m. As resistance 

increased, metabolic cost exhibited a significant, linear increase (Figure 3.2A, β= 98.54, 

R=0.70, p<0.001). To confirm that individuals perceived the differences in effort across 

conditions, I measured reported RPE for each resistance. The range of this scale was 

modified to reflect solely reaching behavior. There was a significant increase in RPE 

that correlated with an increase in resistance (Figure 3.2B, β=0.109, R2=0.59, p<0.001). 

These results indicate that my measurement of effort was sensitive enough to quantify 

differences in effort conditions and also that these changes were perceivable by each 

participant.  
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Figure 3.2 Effects of resistive force field on objective effort and rating of perceived 
exertion. A) Metabolic cost (objective effort cost) increases with increasing resistance. 
Metabolic costs were measured at resistances of 0, 30, 45, 60, and 70 Ns/m. Data 
points shown are the average across participants at each resistance. B) Rating of 
perceived exertion increases with increasing resistance. Scores based on relative 
exertion to other experienced resistances. Black bars represent 95% CI. 

 

Decision-making preferences were influenced by changing effort and probability 

Participants made choices between performing one of two reaching movements: 

a reference option and a lottery option. The reference option consisted of a 100% 

probability of performing a low-effort reach for five minutes. The lottery option consisted 

of either a known probability of performing five minutes of a high- effort reach versus the 

alternative outcome of sitting quietly for five minutes. I varied the value of the lottery’s 

probability and effort levels using combinations of one of the five resistances and one of 

five probabilities. As the level of effort and/or probability increased in the lottery option, 

participants were more likely to choose the reference option (Effort: Figure 3.3C solid 
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lines, β=0.00013, Probability: Figure 3.3D solid lines, β=1.19, p’s<0.001). These results 

provide evidence that participants were considering both the effort associated with the 

lottery option and the probability of performing the effortful reach when establishing 

preferences between the reference and lottery options.  

 

Figure 3.3 Observed choice behavior and full model predictions. A) Observed frequency 
of choosing lottery (solid lines) and full CPT model predictions (dashed lines) of a 
representative participant as a result of increasing objective effort cost across each 
tested probability. B) Observed frequency of choosing lottery and full CPT model 
predictions of same participant as a result of increasing probability across each effort 
level. C) Observed choice behavior and CPT model predictions of all participants as a 
result of increasing effort across all probabilities. Each thin colored line represents a 
different participant. Thick black lines represent average of whole group. D) Observed 
choice behavior and CPT model predictions of all participants as a result of increasing 
probability across all effort levels. 
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Effort subjectively valued when making movement-based decisions  

I fit the free parameter ε, to explain how the frequency of choosing the lottery 

option was explained as a result of increasing effort. Values of ε >1 represent a 

subjective overvaluation of effort where each additional increment of effort is valued with 

increasing sensitivity. Accordingly, ε <1 represent a subjective undervaluation of effort 

where each additional increment is valued with decreasing sensitivity. An ε =1 indicates 

an objective valuation of effort. Fitting a separate ε for each individual, I found that 

participants exhibited idiosyncratic distortions in effort with approximately an equal 

number either over-valuing or under-valuing effort. Notably, there was no correlation 

between an individual’s effort sensitivity and their specific net metabolic cost of 

performing the task (R=-0.0017, p=0.995). Across all participants the mean ε was 1.04 

[0.87 1.2] (mean [95% CI]) and was no different than 1 (p=0.650). This suggests that as 

a group there was no consistent bias in the subjective valuation of effort costs required 

to complete the reaching task. On an individual basis, I found that 10 out of the 20 

subjects overvalued effort (Figure 3.4A, red lines) and the remaining 10 undervalued 

effort (Figure 3.4A, green lines).  
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Figure 3.4 Full CPT model parameter fits. A) Subjective value (ε) for each participant 
(thin lines) and group (thick black line). B) Probability weighting (γ) of each participant 
and the whole group. Red lines represent parameters values >1 and green lines for 
values <1. Solid black line and gray shade represents mean and SEM across all 
participants. Dashed black lines represent lines of unity (ε, γ=1). 

 

Model including a subjective value of effort outperforms alternative value functions 

To determine the significance of the subjective value of effort, I compared the full 

three-parameter CPT model that considered each participant’s fitted ε and γ parameters 

to a two-parameter model that exhibited no effort distortion (Mlin, ε = 1), a two-parameter 

model that exhibited a fixed quadratic distortion (Mquad, ε = 2), and a hyperbolic 

discounting function. I found that the full three-parameter model considering variation in 

subjective valuation and probability weighting performed significantly better than a 

model considering solely distortions in probability and an objective valuation of effort 

(BICsv=-632, BIClin=-365; p<0.001, Bayes Factor; pxpfull = 0.985, pxplin = 0.015). On an 

individual basis, I found that 13 of the 20 subjects exhibited distortions in that a full 
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model performed better than a reduced model without distortions (BICsv>BIClin). Of 

these 13, 8 overvalued effort and the remaining 5 undervalued effort. 

I next compared the full model to a model considering a quadratic subjective 

valuation of effort. In contrast to Msv and Mlin, squaring the effort cost represents an 

overvaluation of effort that is consistent across individuals. I found that the model 

considering subjective valuation and probability weighting performed significantly better 

than a model considering solely distortions in probability (BIC2=-1311; p<0.001, Bayes 

Factor; pxp2=0.0001). On an individual basis, 15 of the 20 subjects exhibited distortions 

in that a full model performed better than a reduced model without distortions 

(BICsv>BIC2). 

Lastly, I compared the full model which considers reward and effort additively, to 

a hyperbolic discounting model. However, the hyperbolic model significantly 

underperformed the model in which utility is the sum of reward and effort costs (BIChb=     

-1583; p<0.001, Bayes factor; pxphb=0.0001). The additive model performed better for 

all of the 20 participants. 

Model performance in fitting participant choices was also compared to 

performance when fitting choices made by a random decision maker. Comparison of the 

negative log-likelihood values confirmed that fits based on the participant choices were 

significantly better than fits to choices made by a random decision maker (nLLparticipant = 

24.08 [19.07 29.09], nLLrandom =102.45 [101.89 103.02], paired t-test, p<0.001). 

Individually, fits to each of the twenty participants outperformed fits to a random 

decision maker. 
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Individuals tended to under-weight tested probabilities 

The second free parameter analyzed was γ , which is a measure of how an 

individual weighted the probability of the risky decision. Eighteen of the twenty 

participants exhibited a γ < 1 (Figure 3.4B, green lines). The average γ across 

participants was 0.61 [0.42 0.80], which was significantly less than 1 (independent t-test, 

p < 0.001, Figure 3.4B). Thus most participants over-weighted small probabilities and 

under-weighted large probabilities. This observation matches previous findings in similar 

tasks involving risky decisions (Tversky and Kahneman 1992; Abdellaoui 2000; Vrecko 

and Langer 2013).  

 

Full model matches decision-making tendencies across changing effort and probability  

 Parameter fits to individual participants were validated by comparing the winning 

three-parameter model’s predicted choices to each participant’s choices. Similar to the 

behavioral data, as the effort cost of the lottery increased, the frequency of the model 

choosing the lottery decreased (Figure 3.3C, dashed lines, β=0.85, p < 0.001). Also, as 

the probability of having to perform the lottery increased, the frequency of the model 

choosing the lottery decreased (Figure 3.3D, dashed lines, β=1.15, p < 0.001). Model-

predicted choices were indistinguishable from actual choice data (Linear mixed effects 

model, Effort: p = 0.845, Probability: p = 0.667). 

 

Decision-making tendencies were consistent across multiple days 

All individuals that returned for a second round of decision making (n=13) 

exhibited choice behavior that was consistent with the first visit. No differences were 
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observed between parameter fits across days (Figure 3.5, mean±95CI, εday1 = 0.95 

[0.76 1.14], εday2 =1.11 [0.64 1.58], p = 0.49; γday1= 0.62 [0.41 0.83] , γday2 = 0.80 [0.45 

1.15], p = 0.23). A linear regression was performed to determine the slope between ε on 

day 1 and day 2. The slope was 1.13 [0.64 1.63], and could not be distinguished from 

unity (β=1). Similar findings were observed with γ . The slope of the relation between 

γ on day 1 and day 2 was not significantly different from unity (slope = 1.22 [0.78 1.66]). 

Therefore decision-making strategies executed on the initial day of testing were similarly 

enacted on subsequent days. 

 

Figure 3.5 Parameter stability of thirteen participants measured between behavior 
sessions 1 and 2 describing A) the subjective value of effort and B) probability 
weighting. Horizontal values represent parameter values measured on first behavioral 
session and vertical values represent parameter value on second behavioral session. 
Values along the dashed unity line represent identical values between sessions. Green 
markers indicate individuals with parameter values below 1 in both days. Red markers 
indicate values greater than 1 for both days. Red/Green markers indicate parameters 
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greater than 1 on one day and less than one on the other. Slopes for both ε and γ were 
statistically indistinguishable from unity, suggesting decision-making strategies of the 
group were conserved across days. 

 

Cost of time and accuracy were unaffected by changing effort 

Increasing resistance introduces potential costs in addition to effort that may 

affect decision-making behavior. Two costs that may change with resistance are time 

and accuracy. The experimental protocol controlled strictly for time, which was 

confirmed by the lack of any difference in average reaching velocity across conditions 

(Vave= 0.34m/s [0.33 0.36], F(4,76)=1.81, p=0.136). 

To minimize the effect of accuracy requirements on decision making, I created a 

large target (15cm wide) so that across all resistances, the probability of missing the 

target was extremely low. In all conditions, participants tended to reach to the center of 

the target with a small absolute horizontal deviation of 5.93 [4.95 6.91] mm. There was 

an effect of condition on absolute deviation (F(4,76)=30.6, p<0.001). When uncorrected, 

post-hoc analysis revealed the null resistance (0 Ns/m) to have a larger absolute 

deviation (8.33 [7.30 9.36] mm) compared to the other four conditions (5.33 [4.37 6.29] 

mm) (p’s=0.041, 0.045, 0.025, 0.016). These differences were lost when a Bonferroni 

correction was implemented. Since all of these deviations still led to on-target 

movements, no corrective feedback was provided to the participants that would compel 

them to alter their behavior. 
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3.5 Discussion 

In this first chapter, I quantified subjective valuation of effort in a moderately effortful 

movement task. Using a novel approach, I considered effort to be represented by the 

metabolic cost required to perform the movement, and explicitly measured that 

metabolic cost via expired gas analysis. My protocol used a risky decision-making task 

that allowed us to map utility directly onto effort in the appropriate units of energy 

(Joules) without the confound of intermediate conversions such as money, force, 

number of movement repetitions, and time. As such, my approach provided new 

insights into how effort is truly represented in movement tasks, and avoided the inherent 

inaccuracies and approximations in other approaches that are less naturalistic and 

never truly measure effort. Therefore, these results provide a unique window into how 

physical effort is considered when choosing between effortful movements. 

  With increasing effort costs, are additional increments in objective effort 

overvalued or undervalued? I found that there was a significant nonlinearity in the 

relationship between effort and its subjective value. The shape of this nonlinearity varied 

idiosyncratically across subjects, with no consistent distortion observed. Approximately 

an equal number of participants overvalued and undervalued effort, with the group 

average indicating an objective valuation of effort. Despite the large variability across 

individuals, this function remained fairly robust within an individual across testing days.  

Only recently have scientists begun to probe the effects of effort costs on 

decision making. Previous work delving into physical effort has tended to focus on how 

effort costs discount reward, producing an overall utility for each prospect (Phillips et al. 

2007; Schmidt et al. 2008a; Prévost et al. 2010; Klein-Flügge et al. 2015; Morel et al. 
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2017). Candidate utility functions have been proposed that take either a hyperbolic or 

quadratic shape. The use of a hyperbolic function stems from the idea that effort 

discounts reward in the same manner that time discounts reward. However, there is no 

conclusive evidence supporting such a function. Moreover, we find that a model of utility 

in which reward is discounted hyperbolically by time, performs significantly worse in 

explaining subject choices. The quadratic shape is equivalent to setting the parameter 

ε=2 in our analysis. This shape was derived on the premise that the subjective value of 

effort costs increases supralinearly, drawing from findings in the perception literature 

(Stevens and Cain 1970; Borg 1982). My results demonstrate that in the case of 

moderately effortful tasks, effort sensitivity does not consistently increase supralinearly 

across participants. 

There are a few possible explanations for the apparent discrepancy between my 

findings and those recent studies (Hartmann et al. 2013; Klein-Flügge et al. 2015). First, 

I probed a lower range of effort requirements. Both Hartmann et al. and Klein-Flugge et 

al. probed effort levels up to approximately maximum effort. My goal was to identify 

effort valuation in moderately effortful tasks similar to those experienced in common 

daily activities. It is possible that the nonlinearities previous studies observe in effort 

valuation may only begin to emerge only at near-maximal effort levels as a result of 

pain, discomfort, or force saturation effects.  

Another difference between my study and previous ones on effort-based decision 

making is the influence of subjective valuation of reward. Many studies make the 

assumption that the subjective valuation of the reward increases linearly with an 

increase in reward magnitude. Levy et al. (2011) found that different rewards including 
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money, food, and water are all valued nonlinearly. To minimize the possible confound of 

subjective reward values, my paradigm was designed in a manner void of explicit 

rewards. Participants were instructed to make decisions based solely on effort 

expenditure. While monetary compensation was provided to all participants for 

completing the experiment, it was distributed equally and independently of choice 

behavior. 

A recent study by Morel and colleagues (2017) examined the role of physical 

effort in reaching movements, without the confound of monetary rewards. Notably, they 

observed a near quadratic sensitivity to effort, when effort was quantified as the 

resistive force. A possible reason for the apparent contradiction with my results is that 

effortful movements were compared in the same currency by presenting participants 

with a choice between one movement against a given resistance versus two 

movements at a different resistance. The assumption was made that the effort of two 

movements was double the effort of one movement. However, it is not known whether 

this assumption holds for metabolic cost. Rather than identifying doubling points, here I 

used probabilities to modulate the value of the options while maintaining the same 

currency (Joules), and also measured metabolic cost.   

Prior investigations have also used proxies for effort modulation rather than 

directly measure metabolic cost. Common proxies have included grip-force, number of 

buttons pressed, and sizes of obstacles scaled (Stevens and Cain 1970; Hartmann et 

al. 2013; Klein-Flügge et al. 2015). While metabolic cost is likely to increase in all these 

cases, the shape of the relationships have not been identified. As such, any 

nonlinearities observed may be a result of a nonlinear mapping between metabolic cost 
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and the proxy employed. A novel method introduced in my study is that I measured 

changes in effort based on the amount of metabolic energy used to perform each task, 

allowing me to directly quantify the relationship between the objective and subjective 

costs of effort.  

Similar to other effort paradigms, I added a probability cost. Probability was 

necessary to make lottery combinations that were similar in subjective value to the 

reference option. To account for known distortions in probability weighting, I used a 

single parameter Prelec function (Prelec 1998). Little is understood about how this 

parameter behaves in losses, but when comparing our results to a similar function 

originally proposed by Tversky and Kahneman (1992), I found qualitatively similar and 

statistically indistinguishable results (Tversky and Kahneman 1992; Abdellaoui 2000; 

Vrecko and Langer 2013)[2,36,37]. This consistency strengthens my conclusion on 

effort valuation by considering the effects caused by distortions in probability weighting. 

  The theoretical framework of optimal feedback control has significantly advanced 

our understanding of movement control (Todorov 2004). A key component of such 

models is the incorporation of a cost function that includes an effort cost. The effort cost 

has historically been represented as the sum of the squared forces or motor commands 

required to generate the movement. The quadratic term is largely due to mathematical 

convenience, since experimental results in both humans and other animals performing 

isometric force tasks have shown that effort costs, measured as metabolic cost, 

increase with the integral of absolute force, not squared force, over time. One possible 

justification for the quadratic term is that while effort costs increase linearly with force, 

the subjective value of effort may increase supralinearly with force. However, my results 
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demonstrate that on average, effort costs are valued objectively, and suggest that these 

cost functions should consider this in order to more accurately represent objective effort 

costs.  

Recent models of decision making and movement control predict that as the 

effort requirements of a movement of a given distance increase, the speed with which 

that movement is executed should decrease (Mazzoni et al. 2007; Qian et al. 2012; 

Rigoux and Guigon 2012; Shadmehr et al. 2016). Indeed, behavioral findings have 

confirmed this prediction in reaching tasks (Gordon et al. 1994). Work by Mazzoni et al. 

(2007) suggests the slower reaching speeds observed in Parkinson’s patients is a result 

of an exaggerated cost/benefit ratio. Following up on these observations, it would be 

interesting to determine whether differences in sensitivity to effort costs in a healthy 

population could explain inter-individual variability in preferred movement speeds.  

 

3.6 Conclusion 

The findings presented in this chapter demonstrate that there are idiosyncratic 

distortions in an individual’s sensitivity to effort costs in a low-effort task, with some 

individuals showing increasing sensitivity to effort and yet others exhibiting diminishing 

sensitivity. However, on average individuals valued effort objectively, in contrast to 

previous observations of a quadratic valuation. Together, these findings provide the first 

quantification of effort valuation in reference to an objective physiological effort cost, 

and reveal an objective valuation in low-effort reaching tasks representative of activities 

of daily life. 
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CHAPTER 4  

CONTRIBUTIONS OF METABOLIC AND TEMPORAL 

COSTS TO HUMAN GAIT SELECTION 
4.1 Abstract 

Humans naturally select several parameters within a gait that correspond with 

minimizing metabolic cost. Much less is understood about the role of metabolic cost in 

selecting between gaits. Here, I asked participants to decide between walking or 

running out and back to different gait specific markers. The distance of the walking 

marker was adjusted after each decision to identify relative distances where individuals 

switched gait preferences. I found that neither minimizing solely metabolic energy nor 

minimizing solely movement time could predict how the group decided between gaits. 

Of the twenty participants, six behaved in a way that tended towards minimizing 

metabolic energy, while eight favored strategies that tended more towards minimizing 

movement time. The remaining six participants could not be explained by minimizing a 

single cost. I provide evidence that humans consider not just a single movement cost, 

but instead a weighted combination of these conflicting costs with their relative 

contributions varying across participants. Individuals who placed a higher relative value 

on time ran faster than individuals who placed a higher relative value on metabolic 

energy. Sensitivity to temporal costs also explained variability in an individual’s 

preferred velocity as a function of increasing running distance. Interestingly, these 

differences in velocity both within and across participants were absent in walking, 

possibly due to a steeper metabolic cost of transport curve. I conclude that metabolic 

cost plays an essential, but not exclusive role in gait decisions. 
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4.2 Introduction 

Humans generally walk at slower speeds and run at faster speeds. In walking, 

metabolic cost when represented as a rate, increases nonlinearly as a function of 

velocity. Transforming metabolic rate to metabolic cost per distance, i.e. cost of 

transport (COT (Schmidt-Nielsen 1972)) reveals a U-shaped curve with the minimum 

roughly corresponding to the preferred walking velocity of humans (Ralston 1958; 

Browning et al. 2006) and other animals (Hoyt and Taylor 1981; O’Neill 2012) (Figure 

4.1A). In running, recent evidence suggests that the metabolic rate also increases 

nonlinearly (Steudel-Numbers and Wall-Scheffler 2009; Tam et al. 2012; Willcockson 

and Wall-Scheffler 2012; Batliner et al. 2018) and that this curved relationship, while 

much shallower than in walking, may influence how individuals select running velocity 

(Long and Srinivasan 2013; Rathkey and Wall-Scheffler 2017).   

Metabolic cost has also been shown to play an important role in establishing how 

we select between gaits. When instructed to traverse fixed distances in a constrained 

time, humans allocated the relative time walking and running and the velocities at those 

gaits in a manner that minimized total metabolic energy expenditure (Long and 

Srinivasan 2013). When moving on a treadmill with increasing velocity, transitions 

between walking and running gaits tend to occur at velocities close to where the 

respective COT curves intersect (Margaria, R 1938, 1976; Hoyt and Taylor 1981), which 

for human walking and running is found at approximately 2.25 m/s (Figure 4.1A) 

(Margaria, R 1938, 1976).     

The metabolic cost of locomotion has also been shown to play an essential part 

in explaining how animals forage for food in their environment (Pyke et al. 1977; 
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Bautista et al. 2001; Wilson et al. 2001; Shepard et al. 2013). Recent models inspired 

by optimal foraging theory quantify the utility of each movement according to the 

interactions between minimizing the costs of the movement (both time and energy 

spent) and maximizing the benefits of the movement outcome (primary and secondary 

reinforcers) (Rigoux and Guigon 2012; Shadmehr et al. 2016). An essential component 

of these models is that movements take time, which negatively influences utility (Choi et 

al. 2014). This effect of time on movement utility is subjective, with certain individuals 

exhibiting a much greater sensitivity to temporal costs than others (Choi et al. 2014).    

 We lack a clear understanding of how gait preferences are established when 

movement time is unconstrained. In the present study, I attempted to understand how 

metabolic energy and time interact when choosing between walking and running gaits. I 

hypothesized that there would be situations where running was preferred over walking, 

despite the greater COT for running. Furthermore, I expected that preferences would 

best be explained using a utility model that does not exclusively minimize either 

metabolic cost or time, but instead would be based on a participant-specific combination 

of these two costs. 

 

4.3 Methods 

Theoretical development  

I postulate that when an individual considers whether to walk or run, they behave 

in a way that maximizes movement utility (J), meaning they balance minimizing costs 

associated with each gait while maximizing reward as a result of successfully 

completing the trial. When deciding between performing different movements, the 
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observed preference is assumed to be the option that carries greater utility. In the 

current paradigm, I assumed that changing the cumulative distance covered for a 

movement affected the utility of the movement. I introduce several candidate models to 

predict relative distances where the utility of each gait is equal to the other (Jwalk=Jrun) 

and then compare each model’s predictions to observed gait preference of each 

individual. I refer to the walking and running distances where participants switch 

preferences between gaits as indifference points.  

To emphasize the differences across candidate models, I represent indifference 

point predictions according to a linear function where the walking component of the 

indifference point (Dw) is predicted as a function of the running component (Dr) with the 

unity line of this space representing walk/run combinations of equal distance (Figure 

4.1B, dashed line). I refer to the slope of this linear function as the indifference slope. 

Distance pairs falling above the indifference slope of each model predict a greater utility 

for running and combinations below the indifference slope predict greater utility for 

walking. At no time during this experiment did I introduce or manipulate any form of 

explicit reward as a result of completing a walk or run trial. Considering this, the 

proposed models assume that participants made decisions with the goal of exclusively 

minimizing costs. I present four possible models of utility, each making unique 

predictions for the slope of the walk/run indifference function. These candidate models 

are based on (1) minimizing COT, (2) minimizing cumulative total amount of metabolic 

energy, (3) minimizing cumulative total of movement time or (4) minimizing total time 

per distance (maximizing velocity). These four models each require some combination 
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of the total distance traveled for each gait, average velocity for each gait (Vw for walk, Vr 

for run), and/or average metabolic rate for each gait (Ėw for walk, Ėr for run).  

 

 

Figure 4.1 Model predictions. A) Metabolic cost of transport (COT) normalized by body 
weight for walking (black curve) and running (gray curve) using values reported in (Long 
and Srinivasan 2013). The asterisk indicates that an individual minimizing COT would 
always choose to walk. B) Model predictions for the slope of the indifference points. 
Minimizing COT predicts an individual would prefer to walk rather than run when 
allowed to choose their own velocities regardless of relative walking and running 
distances (green vertical line parallel vertical axis). The indifference boundary for 
minimizing total metabolic energy (red line) lies above unity suggesting that walking a 
greater distance carries an equal cost in terms of total metabolic energy as running a 
shorter distance. The indifference line for time (blue line) lies below unity suggesting 
that walking a shorter distance carries an equal cost in terms of time compared to 
running a longer distance. Walk/run combinations above model boundaries would 
predict a preference to run whereas combinations below the line would predict a 
preference to walk. A model based on minimizing time per distance (maximizing 
velocity) would always predict that an individual would run regardless of relative 
distances (gold horizontal line). All predictions assume walking and running at constant, 
self-selected velocities where the walking velocity is slower than the running velocity. 
The asterisk represents a theoretical indifference point for an individual who minimizes 
total metabolic energy. For this individual, running 100 meters and walking 150 meters 
have equal utility. 
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Minimizing Cost of Transport (JCOT)    

Calculating the indifference slope based on minimizing COT is dependent on 

minimizing the total metabolic energy normalized per unit distance. One way to 

calculate COT is to divide the metabolic rate by velocity:   

JCOTx = −
!Ex
Vx

     [ 4.1 ] 

Here, x denotes a placeholder for either walking (w) or running (r). A model of COT is 

exclusively determined by the velocity of the gait, which when at a constant velocity, is 

independent of changes in either total distance or total time. Self-selected walking 

velocities generally elicit lower COT than self-selected running velocities. Thus, this 

model would predict that an individual would always prefer to walk, regardless of the 

relative walking and running distances (Figure 4.1B, green line parallel vertical axis). 

The negative sign in this model and subsequent models indicates that maximum 

movement utility is achieved by minimizing these costs. 

  

Minimizing total energy (Jenergy) 

 Predicting indifference boundaries by minimizing total energy is based on both 

the COT [eq. 4.1] and total distance covered using each gait. Measuring utility as a 

minimization of total energy can be achieved by calculating the COT of moving and 

multiplying that cost by the total distance moved: 

Jenergyx = −COTx Dx      
[ 4.2 ] 

Predicting indifference according to minimizing total energy yields a linear function 

where walking distance is predicted by: 
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Dw =
COTr Dr
COTw      

[ 4.3 ] 

When predicting walking distance as a function of running distance, a utility model that 

minimizes total energy will predict a slope above the line of unity indicating that walking 

a longer distance at a lower COT will be equal to running a shorter distance at a higher 

COT (Figure 4.1B, red line). 

 

Minimizing total time (Jtime) 

A utility model that is based on minimizing movement time requires two 

measurements to predict an indifference point, the velocity and distance of each walking 

and running bout:   

Jtimex = −
Dx
Vx       

[ 4.4 ] 

Representing the minimization of movement time as a potential utility model to predict 

walking distance results in the function:  

DW =
Dr Vw
Vr       

[ 4.5 ] 

When predicting walking distance as a function of running distance, a utility model that 

minimizes total time will predict a slope for indifference below the line of unity indicating 

that walking a shorter distance at a slower velocity has equal utility as running a longer 

distance at a faster velocity (Figure 4.1B, blue line). 
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Maximizing velocity (Jvel) 

Lastly, we consider a possibility where maximizing utility would always predict a 

preference to run. A utility based on this prediction can be described by minimizing total 

time per unit distance (maximizing velocity) and can be represented simply as:  

Jvelx =Vx       
[ 4.6] 

This utility would result in a horizontal line (Figure 4.1B, gold line) and therefore would 

predict no change in equivalent walking distance as a function of increasing running 

distance. 

 

Participants  

Twenty participants (12M, 8F, 19-32 years, 73±12 kg) gave written informed 

consent approved by the University of Colorado Institutional Review Board before 

participating in the experiment. All participants reported light-intensity exercise (Riebe et 

al. 2015) at least once a week and no neurological, cardiovascular, or biomechanical 

maladies. Experimentation took place in a lighted, climate-controlled, indoor track 

facility.   

 

Task  

Upon arrival, all participants first completed two laps around a 200-meter track. 

The first lap was performed at a self-selected walking velocity and the second lap at a 

self-selected running velocity. When selecting their running velocity, participants were 

instructed to select a velocity that they felt they could comfortably maintain for over one 

mile (~1.6km). During each lap, participants were instructed to explore different 
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velocities to find what they felt was most comfortable for each gait. Participants were 

instructed to use these walking and running velocities throughout the duration of the 

experiment.  

 The remainder of the experiment was designed to identify pairs of running and 

walking distances where running a given distance, Dr, was equally preferred to walking 

a given distance, Dw. These walk/run pairs of distances defined indifference points 

(Figure 4.1B, asterisk). To measure a single indifference point, participants completed 4 

sets of trial triplets. A triplet consisted of a single walking trial, a single running trial, and 

a single choice trial (Figure 4.2A). In walking trials, participants walked out to an 

indicated walk distance and back. In running trials, they ran out to an indicated run 

distance and back. In choice trials, they were given the freedom to repeat either the 

previous walk or run trial. The first trial in a triplet was randomly assigned as either the 

run or walk trial and the last trial in a triplet was always a choice trial. Each block 

consisted of 4 triplets of trials and each participant completed 5 blocks, with every block 

representing a single indifference point. Importantly, before the start of the first block, all 

participants were explicitly informed that the remainder of the experiment would last a 

total of two hours and that their choice behaviors would not influence overall testing 

duration (i.e. choosing the shorter duration trial every time would not shorten the total 

time spent testing). 

 Figure 4.2B depicts the progression of one block of trials used to identify a single 

indifference point. The first triplet of trials in each block consisted of equal walk and run 

distances. Throughout a block, the run distance (Figure 4.2, red markers) was fixed. 

Walk distances (Figure 4.2, blue markers) were adjusted after each triplet of trials. The 
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direction of the adjustment was contingent on the participant’s choice trial (Figure 4.2, 

gray regions). If the last choice was to run, the walk distance was shortened for the next 

triplet. If the last choice was walk, the walk distance was lengthened. The magnitude of 

the adjustment was greatest in response to the first choice and decreased with each 

subsequent choice. The adjustment after the first triplet was equal to the initial walk 

distance minus 20m (minus 10m in 40-meter run block). The adjustment after the 

second triplet was one half the initial walk distance and the adjustment after the third 

triplet was one quarter of the initial walk distance. No adjustment was made after the 

fourth (last) triplet. 

I calculated a single indifference point upon completion of the fourth triplet in 

each block. The walk component of an indifference point was calculated at the end of 

each block by averaging the walk distances of the last walk choice and last run choice. 

The run component was equal to the tested running distance for that block. Five 

indifference points were calculated for each participant based on titrated walking 

distances equal to running distances of 40, 60, 80, 100, and 120m. The order of run 

distances was randomized for each participant. 
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Figure 4.2 Protocol. A) Progression of a single triplet of trials. This example triplet began 
with a walk trial, where the participant walked to the blue marker and back. The second 
trial was a run trial where the participant ran to the red marker and back. The third trial 
was a choice trial where the participant thought about which previous trial they preferred 
and then repeated that trial.  The first trial within each triplet randomly began as either a 
walk or run trial. The last trial of each triplet was always a choice trial. The decision to 
either walk or run influenced the distance of the walk cone on the subsequent triplet. B) 
Example progression of the 80-meter block. Each block consisted of completing four 
triplets of walk/run/choice trials. After each triplet, the walk distance was adjusted based 
on the previous decision.  Dashed lines indicate start of a new triplet. To calculate the 
walk component of a single indifference point (Dw), we averaged the walk distances 
between the last run choice and last walk choice. The run component of the indifference 
point (Dr) was based on the run distance, which was fixed within a block. Each new 
block used a different fixed run distance. Note that the distances on the vertical axis 
represent the distance to the marker. The actual distance covered was two times the 
distance to the marker resulting from the participant moving out and then returning back 
to the start in a single trial.   
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Model Predictions 

I measured the average walking and average running velocity at each block and 

used those values, along with the five tested running distances, to calculate walking 

distances that would result in an equal utility to running. A set of five walking distances 

were calculated for each proposed utility model. I then fit a line through each of these 

sets of walking distances using a simple linear regression. This resulted in a slope for 

each utility model that could then be compared to the observed indifference slope of 

each participant.  Note that the slope predicting walking distance based on minimizing 

COT would result in a vertical line and a slope based on maximizing velocity would 

result in a horizontal line. 

To calculate the utility of each option, I did not directly measure metabolic COT, 

but instead estimated it according to eq. 4.1. Metabolic rate (Ėx) normalized by mass 

was estimated as a function of velocity from previously published equations (Long and 

Srinivasan 2013). Metabolic rate in walking was estimated according to the function: 

!Ew = ao +a2Vw
2 ,     [ 4.7 ] 

where ao=1.91 W/kg and a2 = 1.49 W (m/s)-2. Metabolic rate for running was estimated 

according to the function: 

!Er = bo +b1Vr +b2Vr
2 ,    [ 4.8 ] 

where bo = 5.17 W/kg, b1 = 1.38 W (m/s)-1 and b2= 0.34 W (m/s)-2 .  

 

Statistical Analysis 

I used a simple linear regression based on each participant’s indifference points 

to predict the indifference slope that explains walking distance as a function of running 
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distance when fit through the origin. I performed a Hartigans’ dip test to measure 

whether the distribution of fitted indifference slopes was multimodal.  

The best performing model for each individual was decided by comparing the 

95% confidence interval of the slope fit through a participant’s indifference points 

against the slopes estimated for each of the four models. To test whether the fitted 

indifference slope indicated an individual’s desire to minimize time, I measured the 

correlation between an individual’s fitted indifference slope and preferred gait velocity 

using a simple linear regression. I also explored whether individuals adjusted their 

preferred gait velocity as a function of distance and whether this adjustment was based 

on how an individual represented each cost. Due to the different walking distances 

experienced by each participant, this was achieved using a linear mixed effects model 

rather than a simple linear model with walking and running velocities predicted as a 

function of indifference slope and distance for each walking and running trial. All 

comparisons were conducted at a statistical level of α=0.05. Descriptive statistics are 

reported as mean ± SE.  

 

4.4 Results 

Participants made decisions between walking and running different combinations of 

distances. I adjusted the relative distances of walking and running after each decision 

until individuals were indifferent between performing either gait. I refer to these final 

combinations of distances as indifference points and assume that at those combinations 

the utility of walking is equal to the utility of running. I compared the fitted slope 

describing each participant’s indifference points to slopes calculated from utility models 
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that minimize COT, minimize total metabolic energy, minimize total movement time, and 

maximize total velocity. Overall, my results suggest that the mechanisms responsible for 

how the group of individuals selected gait cannot be explained through the minimization 

of a single metabolic or temporal cost. Rather, participants minimize a weighted 

combination of these two conflicting costs, with the relative representation of each cost 

varying across participants. 

  

Cost only models fail to predict decision-making strategies across group  

Figure 4.3 illustrates how a single individual’s gait decisions were used to 

calculate indifference points as a function of increasing running distance. The goal was 

to identify which utility model best represents the indifference slope where combinations 

of distances above the line predict a running gait (Figure 4.3, ‘R’ symbols) and 

combinations below the line would predict a walking gait (Figure 4.3, ‘W’ symbols).  

I described an individual’s preference for each gait by fitting a line through the 

estimated indifference points (Figure 4.3, black line). Fitted lines with relatively steeper 

slopes are more representative of minimizing total metabolic cost (Figure 4.3, red line) 

and relatively shallower slopes are representative of minimizing total movement time 

(Figure 4.3, blue line). Minimization of total COT cannot be described according to any 

slope because it predicts a preference to walk independent of any non-zero run 

distance (Figure 4.3, green line parallel vertical axis). Maximization of velocity also 

cannot be described according to any slope because it always predicts a preference to 

run (Figure 4.3, gold line parallel horizontal axis).      
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Figure 4.3 Depiction of how each block of triplets contribute to describing gait 
preference as a function of running and walking distance (representative participant, 
P14). The horizontal axis represents the run distance (m) of each decision and the 
vertical axis represents the accompanying walk distance (m). The preferred gait at each 
pair of distances is represented either as a ‘W’ if the participant preferred to walk or an 
‘R’ if the participant preferred to run. The subscript accompanying each letter indicates 
at which triplet the choice occurred. The first decision of each block was always of equal 
walking and running distances (decisions along dashed unity line). The walk component 
of each indifference point (black markers) was calculated by averaging the walk 
distances of the last chosen run and last chosen walk trials. The run component was 
equal to the unchanged run distance within that block. Shaded bars are intended to help 
contain the groups of decisions made within each block. The black line represents the 
slope of the regression line fit through all indifference points. Model predictions for this 
slope are made by minimizing COT (green), total metabolic energy (red), total 
movement time (blue), and maximizing velocity (gold).   
 

Across all participants, the average preferred walking velocity was 1.53±0.03 m/s 

and the average running velocity was 3.32±0.12 m/s. Using these velocities, I could 

predict walking distances as a function of running distance according to each proposed 

utility model. The average slope for the utility model minimizing total metabolic energy 

was equal to 1.16±0.01 meters of walking for each meter of running. When minimizing 
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total time, I estimated a much smaller average slope of 0.46±0.01 meters of walking per 

each meter of running.  

Every participant made at least one choice to run in each block, a choice that is 

counter to the minimization of COT. The walking component of each indifference point 

increased as a linear function of the running component in all participants except for P8 

(r2=0.72±0.05, range=0.29-0.99). Indeed, not a single participant’s fit exhibited 

confidence intervals that encompassed the COT indifference slope (Figure 4.4, green 

vertical line). Six of the 20 participants had 95% CIs that encompassed minimization of 

total energy (Figure 4.4, red line; P1, 2, 4, 5, 18, 20). Eight participants had 95%CIs that 

encompassed minimization of total time (Figure 4.4, blue line; P9, 10, 11, 12, 13, 15, 16, 

17). One participant had a slope that was best predicted by maximizing total velocity  

(Figure 4.4, gold line; P8). The remaining five participants had indifference slopes that 

could not be explained by any of the proposed utility model (P3, 6, 7, 14, 19). No single 

participant had 95%CIs that encompassed more than one model. I can also apply a 

less-stringent criteria and assign a model to each participant based instead on proximity 

of the indifference slope to the nearest utility model, calculated as the absolute 

difference between the participant’s indifference slope and each utility model’s slope. In 

this case I found that eight participants were best explained by total energy, eleven 

were best explained by total movement time, and one was best explained by 

maximizing velocity.  

While it appears that no single cost was able to explain decision making across 

our entire group of participants, it is possible that clusters of participants may have 

selected a single cost (energy or time). If this was the case, I would expect there to be a 
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clear bimodal distribution in slopes between the participants that minimized energy and 

the participants that minimized time. I found that the slopes across our participants (not 

including P8) ranged from 0.3 to 1.8. When testing across this range of slopes, I found 

the distribution to be unimodal (Hartigans’ dip test, p=0.44). Based on this result, I 

cannot conclude that there were two discrete time and energy strategies.  Instead, there 

was a range of relative weightings between these costs. 
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Figure 4.4 Model predictions for walk and run combinations of equal utility. Green lines 
represent indifference slope predictions based on minimizing COT, red lines represent 
predictions for minimizing total metabolic energy, blue lines represent predictions for 
minimizing total time, and gold lines represent predictions for maximizing velocity. Black 
line and shaded gray areas represent best fit and 95% confidence intervals for the 
indifference slope according to the estimated indifference points. Six participants had 
CIs that fell within the total energy model (indicated by red indifference points), eight 
participants had CIs that fell within the time model  (blue indifference points), and five 
participants had CIs that did not fall within any of the cost minimization models (black 
indifference points). Participant eight (P8) always chose to run, independent of any 
manipulations to walk distances (maximized velocity, indicated by gold indifference 
points). Axes are equally scaled across all participants. 
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Including time for waiting does not improve performance of total energy model 

The duration of the entire experiment was constrained to 2 hours and was 

unaffected by an individual’s preferences between gaits. One consequence of preferring 

the gait with the shorter duration was that there was a subsequently longer waiting time 

before the next trial. To consider the metabolic consequences of waiting, I calculated 

the difference in movement time between the shorter and longer movement, multiplied 

that difference by a typical metabolic rate for standing at rest (Ėwait=1.22 W kg-1 (Long 

and Srinivasan 2013)), and added that cost to the total energy of the movement with the 

shorter duration. Considering the added metabolic cost of waiting, the average total 

energy slope increased to 1.24±0.13 meters of walking per meter of running. This new 

total energy model still only falls within the 95% CI of the indifference slope for four 

participants (P1, 5, 19, 20), indicating that minimizing total energy alone does not 

appear to represent the utility model used for gait decisions in this group of participants.   

 

Individuals who minimized time did not walk faster, but they did run faster 

Minimization of total energy predicts a relatively steep indifference slope, 

indicating that moving slower (walking) for longer distances is equal to moving faster 

(running) for shorter distances. Minimizing total movement time makes an opposite 

prediction, indicating that moving slower for shorter distances is equal to moving faster 

for longer distances. An individual who considers time in their decisions will have a 

shallower slope to describe their indifference points. Assuming gait velocity reflects the 

desire to minimize movement time, we tested whether there was a correlation between 

each participant’s indifference slope and their self-selected gait velocity. I found no 
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correlation between an individual’s indifference slope and their average preferred 

walking velocity (Figure 4.5A, r2=0.038, p=0.452), but I did find a moderate negative 

correlation between an individual’s indifference slope and their average preferred 

running velocity (Figure 4.5B, r2=0.325, p=0.009). 

 

 

Figure 4.5 Correlations between indifference point (IP) slope and average preferred gait 
velocity (m/s) in A) walking and B) running. Each marker indicates a single participant. 
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The distance of a running trial influenced preferred running velocity 

The range of walking distances was established according to individual gait 

preferences during choice trials. Across all participants, distances for a single walking 

trial ranged from 5 to 310 meters. The length of each running trial was the same for all 

participants and ranged from 40 to 120 meters. I would predict that individuals only 

sensitive to minimizing total metabolic energy (steeper slopes) would adapt a preferred 

gait velocity independent of total distance. For individuals willing to discount metabolic 

energy to decrease total movement time, I would expect preferred velocities to increase 

(become more metabolically costly) at greater distances to offset the added temporal 

costs of longer movements.  

I performed a linear mixed effects regression to explain average gait velocities 

using distance and indifference slope as predictors. To minimize the influence of 

acceleration on average velocity, I excluded trials that were shorter than 30 meters (15 

meters out and 15 meters back). This resulted in the removal of 88/380 trials across all 

participants, all of which were walking trials. With the remaining trials, I observed that 

walking speed was unaffected by either walking distance, indifference slope, or an 

interaction of the two predictors (ßo=1.601ms-1, p<0.001; ßdistance=0.001s-1, p=0.052, 

ßIP=-0.114, p=0.123, ßinteraction=-0.007, p=0.160). Contrary to the absent effects of 

distance on preferred walking velocity, I found a positive relationship between preferred 

running velocity and running distance (ßo=3.037ms-1, p<0.001; ßdistance=0.008s-1, 

p<0.001, ßIP=-0.264, p=0.158) meaning that preferred velocity increased when running 

over longer distances (Figure 4.6), however the extent of this increase depended on the 

indifference slope of the individual (ßinteraction=-0.004, p<0.001). Specifically, individuals 
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who placed a higher value on time (shallow slopes) chose a faster running velocity in 

response to longer distance tasks compared to individuals who placed a lesser value on 

time (steep slopes).   

 

  

 

Figure 4.6 Relationship between preferred gait velocities (m/s) and total distance (m). 
Walking velocity was modeled as a function of distance using data points that were 
measured at or above a distance of 30 meters (filled circles). Any walking trials below 
30 meters were not included in the fit (open circles). Across fitted trials, walking velocity 
was on average 1.57±0.03m/s and did not change as a result of increasing distance. 
Running velocity was also modeled as a function of distance and included all 380 
running trials (gray filled circles). The black line is the model prediction for the median 
fitted indifference slope indicating that running velocity generally increased when trials 
required moving further distances. Graphically, all running and walking points were 
given a small amount of artificial noise along the horizontal axis to indicate regions 
where multiple trials were completed at identical velocities. 
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Preferred gait velocity and decision-making tendencies were unaffected by the 2-hour 

duration of the experiment 

Within the two-hour duration of the current experiment, participants completed 60 

combined trials of walking and running. This amount of locomotion introduces the 

possibility that individuals may have become fatigued, changing how movement costs 

were relatively weighted throughout the course of the experiment. To detect potential 

effects of fatigue, I measured changes in velocity for each gait as a function of block 

and observed that changes in both walking and running velocities were on average 

consistent throughout the entire experiment (Figure 4.7, rmANOVA, main effect of 

block, walking, F(4,72)=0.789, p=0.536; running, F(4,72)=0.01, p=0.99). This result 

suggests that if preferred velocity reflects how an individual weighs movement costs, 

the weighting of these costs was consistent throughout the experiment. 

I also tested whether the frequency of choosing either gait changed across 

blocks.  Independent of relative walk and run distances, the probability that a participant 

chose to walk was 45.53±0.51% and this frequency was consistent throughout the 

duration of the experiment, (rmANOVA, main effect of block, F(1,360)=0.420, p=0.518). 

These results further provide evidence that the duration of the experiment did not affect 

how an individual considered metabolic energy and movement time when selecting 

between gaits.   
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Figure 4.7 Effect of block on preferred walking velocity (solid line) and running velocity 
(dashed lines). A) Colored lines represent walking and running velocities for individual 
participants. Across the group, there was a much larger spread of preferred running 
velocities when compared to the spread of walking velocities. B) Average change in 
walking and running velocities across blocks represented as difference from the 
average velocity of the first block. 
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4.5 Discussion 

The primary goal of the present study was to explore how humans weighed changing 

metabolic and temporal costs when deciding between walking and running gaits. The 

protocol consisted of individuals making gait decisions across numerous combinations 

of walking and running distances. Their gait preferences allowed me to estimate 

indifference points, defined as walk and run distance combinations where the 

preference of performing a walking gait was equal to the preference of performing a 

running gait. I quantified the metabolic and temporal consequences of each gait at each 

distance to explore whether minimizing either cost explained gait preference. For each 

individual, walking distance was accurately described as a linear function of running 

distance, however the slope of this function varied widely between participants. When 

modeling each individual’s set of indifference points, roughly a third of our participants 

had indifference slopes that corresponded with minimizing total energy, another third 

appeared to minimize total movement time, and the remaining third could not be 

explained by minimization of either cost. The diversity of gait preferences across the 

group meant that decision-making strategies were likely not a result of minimizing a 

single movement cost, but rather a participant-specific weighting of the two.  

I used the slope of the regression line fit through each participant’s observed 

indifference points to explain how each cost contributes to the total movement utility of 

each gait. A relatively steep slope predicted a strong weighting on metabolic energy 

with little cost for time. A relatively shallow slope predicted the opposite, a strong 

weighting on time with less cost for metabolic energy. I found an average slope across 
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participants of 0.83, falling below the slope predicted by the minimization of metabolic 

energy (1.16) and above the slope predicted by the minimization of time (0.46).   

Several participants (n=8) had indifference slopes that indicated their decisions 

were influenced by movement time, despite being informed that their decisions would 

not impact the total duration of the experiment. One explanation for this behavior is that 

completing each trial had an arbitrary utility that decreased over time, a phenomenon 

classically referred to as temporal discounting (Mazur 1987; Myerson and Green 1995). 

Recent results have demonstrated a role for temporal discounting in selection of reach 

velocity (Shadmehr et al. 2016; Summerside et al. 2018), building upon a growing body 

of research in movement decision-making (O’Brien and Ahmed 2015, 2016). The 

magnitude of temporal discounting has been reported to vary substantially between 

humans, with this variability accurately predicting how quickly an individual will generate 

movements toward a reward (Choi et al. 2014). If temporal discounting influenced how 

my participants decided between gaits, I would expect their sensitivity to temporal costs 

to manifest in how they selected velocity for each gait. I found that the running velocity 

of each participant was moderately explained by their indifference slope. Specifically, 

individuals who had a greater tendency to minimize time (shallower slopes) also 

selected faster running velocities. I did not find any correlations between indifference 

slope and walking velocity.  

For movements of a set distance, individuals may have chosen to move faster to 

minimize the loss in utility due to temporal discounting. However, increasing velocity 

also influences the total metabolic energy required for the movement and implies that 

increasing velocity above what is metabolically optimal only improves total utility if the 
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benefits of arriving earlier are greater than the penalty of moving at a higher metabolic 

cost of transport. The COT curve as a function of velocity is relatively steep in walking 

when compared to running  (Figure 4.1A). These differences predict that decreasing 

movement time in walking would come with a greater increase in metabolic energy 

compared to a similar change in movement time when running. This may explain why I 

found that indifference slope predicted running velocity, but not walking velocity.  

Temporal discounting can also explain variability in running velocities observed 

within each participant. Participants adjusted their preferred running velocity, but not 

their preferred walking velocity as a result of increasing distance. If I assume that 

individuals were exclusively minimizing metabolic energy, they would move at a velocity 

corresponding to the minimum COT independent of total distance. However, as 

previously highlighted, temporal discounting will lead to greater losses in utility for 

longer duration movements.  Decreasing total movement time over a shorter distance 

requires a greater change in gait velocity when compared to the same decrease in time 

over a longer distance. However, this explanation fails to account for the shape of the 

temporal discounting function, which commonly predicts that a discrete change in 

duration has greater effects when applied at earlier time-points when compared to those 

same changes at later time points (Mazur 1987).        

Another explanation for why individuals discount the metabolic cost of running 

may be because the activity of running itself may carry an implicit reward through 

improving mood or affect (Farrell et al. 1987; Ogles and Masters 2003). When a group 

of regular runners were prevented from exercising for a two-week period, they reported 

symptoms similar to what is observed in individuals who are suffering from the 
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withdrawal of addictive drugs (Morris et al. 1990). The neurological basis of this 

exercise influenced reward may be explained through the release of endocannabinoids, 

(eCB), neurotransmitters that are known to influence the release of dopamine in the 

reward pathways of the brain (Garland et al. 2011; Gillman et al. 2015). Within an 

individual, the level of eCB released increases with exercise intensity, however, when 

comparing across individuals, these responses appear independent of fitness level 

(Brellenthin et al. 2017).    

My protocol involved all participants running between 40 and 120 meters per trial. 

In walking, depending on the decisions of each participant, distances ranged between 5 

and 310 meters per trial. Orendurff et al. (Orendurff et al. 2008) reported that in healthy 

adults, over 90% of recorded movement bouts throughout the day involved taking fewer 

than 100 consecutive steps. Del Din et al. (Del Din et al. 2016) similarly reported that 

only 3% of movement bouts in healthy older adults had a duration of greater than 60 

seconds. While my tested distances are within the range of what would be considered a 

representative movement bout, the actual limits of what a healthy adult human can 

cover are obviously much greater. Obtaining indifference points over a larger range of 

walking and running distances would allow for a better understand as to whether my 

assumption that utility increases linearly as a function of distance, or rather if distance 

interacts with the weighting between metabolic and temporal costs.  

In each trial, participants had to ambulate to the indicated marker turn around 

and return. This exchange required 4 different moments of significant acceleration; an 

initial acceleration to preferred velocity, deceleration when approaching the marker, re-

acceleration when leaving the marker, and a final deceleration at the end of the trial. In 
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longer movements, these accelerations likely had minimal impact on average velocity.  

However, when the movements were short, calculating average velocity as total 

distance over total time may not accurately represent the constant velocity exhibited in 

the absence of acceleration. The equation I chose for calculating metabolic rate was 

collected while individuals walked and ran at constant velocities. Using these equations 

for movements with accelerations underestimates metabolic rate (Seethapathi and 

Srinivasan 2015). By not considering how accelerations influence the total metabolic 

cost of a movement, these model predictions may slightly underestimate the actual 

metabolic cost of moving, especially when over shorter distances. 

I estimated the metabolic cost of walking and running using previously published 

functions (Long and Srinivasan 2013). By estimating rather than directly measuring 

metabolic rate, I may have failed to capture differences due to the stature (Steudel-

Numbers et al. 2007; Barnes et al. 2014) and/or body mass index (Browning et al. 2006; 

Peyrot et al. 2009) of the participants. However, if I assume that any error in metabolic 

cost is equal in direction between gaits (overestimation for both gaits or underestimation 

for both gaits), deviations in these estimations would likely have minimal consequences 

on the slope of how total metabolic energy predicts indifference. 

If an individual did not have extensive experience with running, than it is possible 

that their ability to accurately represent the consequences of running is different when 

compared to an individual that regularly runs. I required participants to experience both 

walk and run options before making a decision with the intention that they would use 

this recent experience, rather than their past experiences prior to the experiment, when 

considering between each gait. 
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One final consideration is that participants always started and ended each trial at 

the same position. Because a common purpose of walking and running is to change the 

location of the animal, it is possible that the current protocol is not capturing an 

additional contributor towards the utility of a movement, net displacement. By having all 

trials result in a net displacement, I may see a change in how the relative influence of 

time and energy contribute to gait selection. A potential follow-up where trials do not 

start and end at the same position might help elucidate how net distance influences 

utility in gait selection. 

 

4.6 Conclusion 

These results provide evidence that when deciding between walking and running, 

humans make decisions according to a utility model that is more complex than solely 

minimizing metabolic energy or time. In response to different relative walking and 

running distances, participants made decisions that could be described according to a 

weighted combination of the metabolic and temporal costs tied to each gait, with an 

individual’s tendency to minimize time influencing both how they established 

preferences between movements and subsequently, how those movements were 

executed. 
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CHAPTER 5  

VIGOR OF REACHING MOVEMENTS: REWARD 
DISCOUNTS THE COST OF EFFORT 

 

5.1 Abstract 

Making a movement may be thought of as an economic decision in which one spends 

effort in order to acquire reward. Time discounts reward, which predicts that the 

magnitude of reward should affect movement vigor: we should move faster, spending 

greater effort, when there is greater reward at stake. Indeed, saccade peak velocities 

are greater and reaction-times are shorter when a target is paired with reward. Here, I 

focused on human reaching and asked whether movement kinematics were affected by 

expectation of reward. Participants made out-and-back reaching movements to one of 

four quadrants of a 14cm circle. During various periods of the experiment only one of 

the four quadrants was paired with reward, and the transition from reward to non-reward 

status of a quadrant occurred randomly. My experimental design minimized 

dependence of reward on accuracy, granting the participants wide latitude in self-

selecting their movement speed, amplitude, and variability. When a quadrant was 

paired with reward, reaching movements had a shorter reaction-time, higher peak 

velocity, and greater amplitude. Despite this greater vigor, movements toward the 

rewarded quadrant suffered from less variability: both reaction-times and reach 

kinematics were less variable when there was expectation of reward. My results 

suggest that expectation of reward not only increases vigor of human reaching, but also 

decreases its variability. 
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5.2 Introduction  

Imagine that you are sitting at your desk and the phone rings, but you don’t recognize 

the number. You reach for the phone and answer to find it is an old friend. A few weeks 

later, they call again, but this time you recognize their number. Again you reach for the 

phone, excited to hear how they have been. Both scenarios require executing a 

reaching movement. Assuming the physical constraints of reaching (i.e., initial arm 

configuration, and end point goal) are identical; will the reaching movements be the 

same?  

Early motor control models suggested that the kinematics of reaching 

movements may be described through minimizing costs such as endpoint variability 

(Harris and Wolpert 1998; van Beers et al. 2004) and energy consumption (Alexander 

1997), but they commonly relied on simplifications that included fixed movement 

duration. Using this framework, movement kinematics were dictated by minimizing the 

combined weight of these costs (Burdet et al. 2001; Wang et al. 2016). If we apply these 

models to the example of answering the phone, they predict invariant kinematics in the 

two situations.  

However, if we assume that the purpose of a movement is to acquire a more 

rewarding state, and that time discounts the value of reward, then movements carry a 

cost of time (Shadmehr et al. 2010). In this framework, slower movements diminish 

reward. As a result, reward justifies expenditure of effort to arrive at the goal earlier. 

Recent contributions have considered this idea by assigning a utility to each action that 

combines measures of weighted effort and reward (Niv et al. 2007; Haith et al. 2012; 

Rigoux and Guigon 2012; Berret and Jean 2016; Shadmehr et al. 2016). As a result, the 
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optimal level of vigor (defined as movement speed as a function of distance) is an 

interaction between optimizing two competing factors: the desire to get reward sooner, 

balanced via payment of higher effort. According to these models, when you recognize 

the phone number and expect a pleasant conversation, you might reach with greater 

vigor, spending more effort to answer the phone sooner. 

Experimental evidence has demonstrated that animals produce faster 

movements when they expect reward. Non-human primates make faster saccadic eye 

movements toward targets paired with juice when compared to those same targets 

without juice (Takikawa et al. 2002). Similarly, humans make faster saccades when 

those movements are paired with explicit monetary rewards (Manohar et al. 2015, 2017) 

and also implicit reward, such as when the movement is directed towards a more 

informative target (Xu-Wilson et al. 2009). As humans deliberate between two rewarding 

stimuli, saccade velocity is faster when the eyes gaze at the preferred stimulus (Reppert 

et al. 2015). Furthermore, there is evidence that people who exhibit high temporal 

discounting in decision making also make more vigorous saccades, suggesting that 

even in the absence of explicit reward, the cost of time is greater in people who move 

more vigorously (Choi et al. 2014). Taken together, these experiments demonstrate that 

in the saccadic system, reward modulates vigor of movements. 

The effect of reward on arm movements is less understood. In non-human 

animals, two reports have found that reward (juice/food) encouraged faster movements 

(Opris et al. 2011; Mosberger et al. 2016), while one report found no effect (Pasquereau 

et al. 2007). In humans, one report found that reaching was faster when the goal object 

had higher emotional valence (Esteves et al. 2016).  
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In the current study, I considered a reaching task to test whether reward 

discounted effort expenditure. Reward may modulate movement vigor, but increased 

vigor often coincides with reduced accuracy, which can reduce probability of reward. To 

address this potential confound, the task minimized dependence of reward on accuracy: 

rather than reaching to a point, participants reached to one of four quadrants. As a 

result, they had wide latitude in selecting movement velocity, trajectory, and amplitude. 

When the quadrant was paired with reward, the participants responded by increasing 

vigor: they reached sooner, with higher velocity, shorter duration, and greater amplitude. 

Interestingly, I also observed that increased vigor coincided with reduced variability, 

demonstrating that expectation of reward not only increased vigor, but also promoted 

consistency.  

 

5.3 Methods 

Participants:  

Right-handed participants (n=20), naïve to the experiment (age=26 ± 4 years, 

mean ± SD, including 10 males and 10 females) gave written informed consent 

approved by the University of Colorado Institutional Review Board before participating in 

the experiment.  

 

Task:  

Participants were seated in a chair that limited trunk movement and held the 

handle of a robotic arm with their right hand (Interactive Motion Technologies Shoulder 

Elbow Robot). Using the handle, they controlled the location of a cursor that was 
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projected on an LCD monitor mounted in front of them at eye level (Figure 5.1A). The 

task began by placing the cursor (diameter=0.6cm) in the center of a home circle 

(diameter=0.9cm). After maintaining the cursor in the home circle for 150ms, the visual 

feedback of the home circle was extinguished and the computer simultaneously 

delivered an audiovisual cue to begin the trial. The auditory component of the cue was a 

short beep (50ms @110hz followed by 50ms @ 220hz) and the visual component was 

the illumination of a large red ring (radius=14cm) that was displayed with its center at 

the home circle. The ring included a marker that indicated the quadrant that served as 

the goal of the movement. The marker was placed in one of four possible locations (45o, 

135o, 225o or 315o from right horizontal) to specify the intended quadrant (Figure 

5.1B,C). The sole criterion for success was that the cursor crossed the ring within a 

100o arc centered on the marker. As the reach began, visual feedback of the cursor was 

blanked. Once the invisible cursor crossed the outer ring within the quadrant, the outer 

ring changed color from red to gray indicating that the trial was completed and that the 

invisible cursor should be brought back to center. I refer to the location where the 

invisible cursor crossed the ring as crossing-point. There was no time limit to complete 

the trial, and no instructions were provided regarding a desired reach velocity. The 

cursor remained invisible until the return aspect of the movement when it entered a 

region within 9cm of the center of the home circle. At this point, the cursor and home 

circle were again made visible and a new trial could begin.  
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Figure 5.1 Experimental design. A) Set-up: Participants sat in a chair while grasping the 
handle of a robotic arm that controlled a cursor on a monitor located at eye level.  A 
shoulder harness was used to prevent movement of the trunk during the reaching task. 
B) Movement metrics: For each trial, participants completed out-and-back reaches to 
one of four alternating targets located 14cm from the home circle. Reaction-time, peak 
outward velocity, crossing point, maximum excursion, duration, and peak return velocity 
were recorded for each movement. C) Experimental protocol: The experiment consisted 
of a baseline period of 40 trials with no visual feedback or reward followed by four 
blocks of 100 trials. Each block had one target paired with a reward (RWD, indicated by 
quadrant with shaded gray region). The reward consisted of an exploding target, 
auditory stimulus, and four points. The order of rewarded blocks was randomized for 
each participant. D) Position data to each target for single participant (S3). 
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If the quadrant was associated with reward, and the invisible cursor crossed 

within the 100o reward region centered on the marker, the subjects experienced a 

pleasing sound (50ms @ 880hz followed by 50ms @ 3520hz) and a visual animation of 

the ring at the moment the invisible cursor passed the outer ring. The visual animation 

paired with reward consisted of the entire outer ring rapidly flashing yellow and then 

disappearing completely (transition from red to yellow to extinguished=50ms). The 

cursor remained invisible throughout the initial aspects of the return movement, after the 

reward was delivered, to guarantee that the visual qualities of reward were not 

obstructed by the visual feedback of the cursor. At completion of the trial, they also 

received 4 ‘points.’ The cumulative points were displayed in the upper right corner of the 

monitor. Participants were not informed of the number of trials they would be 

performing, only that the experiment would take roughly one hour. Furthermore, each 

participant was informed that the compensation for participating in the study session 

($15) was fixed and not contingent on the amount of points received from rewarded 

trials or any other measure of task performance.  

I assumed that participants planned their reaching movements with the goal of 

wanting to maximize the chance of successfully completing the task and even in the 

absence of penalty, would reach towards the center of the cued quadrant 

(Trommershäuser et al. 2003). Previous research has demonstrated that on average, 

healthy people exhibited regular errors of up to 9±3o (mean ± SD) while holding a 

robotic arm and aiming to targets at 10cm (Smith and Shadmehr 2005). Based on this 

finding, the rewarded region was more than 5 times the expected error of reaching, 
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making it so that even in the presence of a persistent error, nearly all attempts should 

fall within the intended zone. Therefore, an important factor in the experiment design 

was an attempt to remove accuracy as one of the constraints typically associated with 

reward. 

Upon arrival to the laboratory, all participants were seated and allowed ~40 trials 

to familiarize themselves with the robotic manipulandum. All familiarization trials 

occurred in the absence of reward and with full visual feedback of the cursor during both 

outward and return components of the movement. Upon conclusion of the familiarization 

phase, the experimental protocol consisted of a further 440 reaching trials. At the 

beginning of the protocol, the participants were informed they would no longer receive 

visual feedback of the cursor during their reach for the remainder of the experiment. 

They were also instructed that some trials would now be paired with a reward and that 

as long as they reached towards the indicated quadrant, they would receive the full 

reward. Importantly, participants were not told that a direction would be consistently 

rewarded in a block, nor were they made aware of the underlying block structure.  

The first 40 experimental trials occurred in the absence of reward (baseline, 

Figure 5.1C). Following baseline, reward was introduced in one of the four directions 

(Block 1-4, Figure 5.1C). A reach was rewarded if it was within a 100o arc centered on 

the marker and the direction was paired with reward. There was no feedback of any 

kind regarding accuracy of the movement: the only feedback was reward, and its only 

criterion was whether the reach was within the 100o arc centered on the marker. The 

location of the reward zone was constant within each block of 100 consecutive trials (25 

toward the rewarded location) and then changed to a new location for the next 100 
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trials. There was a short 30-second break between blocks 2 and 3. The order of 

rewarded quadrants was randomized for each participant. For 16 participants, trial-by-

trial marker presentation within each block was randomized meaning that in blocks 1-4, 

there was on average a 25% chance that the next trial would be in the rewarded 

quadrant, even if the previous trial was also rewarded. The remaining 4 participants had 

a pseudo-randomized presentation of trials such that no rewards were presented 

consecutively. Participants never received instruction regarding the location of future 

reward trials, how reward location was distributed across blocks or when a new block 

with a new rewarded quadrant began.    

 

Data Analysis:  

Handle position and velocity were recorded at 200 Hz. Reaction-time was 

quantified as the time from the audiovisual start stimulus to movement onset. Movement 

onset was established via radial acceleration (0.0001 m/s2) and radial velocity 

thresholds (0.05 m/s). Distance of the crossing-point referred to its distance relative to 

the marker, which was reported as the signed difference in degrees measured from the 

right horizontal, between the center of the quadrant and where the hand crossed the 

outer ring. Maximum excursion was calculated as the maximum Euclidean distance 

between the start marker and the cursor, measured over the course of the entire trial. 

Peak outward velocity was calculated as the maximum instantaneous radial velocity 

measured between movement onset and instant of maximum excursion. Movement 

duration was calculated as the elapsed time between when the cursor crossed a 

position threshold of 0.3cm and the crossing-point. Peak return velocity was calculated 
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as the maximum instantaneous radial velocity measured after the instant of maximum 

excursion.  

Trials were removed from analysis if reaction-times was greater than 700ms. 

Across all participants, this accounted for exclusion of 0.43% of trials (43/8000 trials). In 

addition, I found that in only 0.03% of trials (2/8000 trials) the absolute value of the 

crossing-point distance of the reaching movement was off by more than 50o, signifying it 

fell outside the potential reward zone. Therefore, the large size of the reward region 

allowed for more than 99% of the trials to be potentially rewarding. Errant movements 

(absolute crossing-point distance of more than 50o) were excluded from analysis. 

  

Experimental design and statistical analysis:  

The location of the reward zone was reassigned after every 100 trials. In each 

period of 100 trials there were 25 movements towards each quadrant. To determine the 

effect of reward on the current movement, I measured how reaching was altered in the 

block when that movement was rewarded compared to blocks when that same action 

was not rewarded. Peak outward velocity, reaction-time, maximum excursion, duration, 

crossing-point, and peak return velocity were compared between the rewarded period 

(100 trials) and non-rewarded periods (300 trials) for each participant. To measure the 

effects of reward on movement variability, I calculated the variance of peak velocity, 

reaction-time, maximum excursion, duration and crossing-point for each quadrant when 

that quadrant was rewarded and compared it to the mean variance across the 

remaining three blocks when that same quadrant was not rewarded. I measured the 

effect of reward using a two-way repeated-measures analysis of variance (ANOVA) 
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based on block number (discrete), whether the target was rewarded (binary), and a 

reward by block interaction. Differences in movements toward each quadrant were 

compared using a two-way repeated-measures ANOVA based on quadrant location, 

reward, and a reward by quadrant interaction. I used two-sided paired t-tests to 

compare movements towards rewarded quadrants and movement to non-rewarded 

quadrants in the trials immediately before and after a rewarded trial. Effects of repeating 

movements to the same quadrant were probed using a repeated-measures ANOVA 

based on whether the quadrant of the current movement was the same as the previous 

trial as well as whether the current quadrant was rewarded.  

All statistical thresholds were conducted at a power of α=0.05. All uncorrected p-

values reaching statistical power were corrected for multiple comparisons using the 

Holm-Bonferroni method. ANOVAs and paired t-tests were corrected for a total of five 

comparisons, established based on the number of measured behavioral responses 

(peak velocity, reaction-time, crossing point, maximum excursion, and duration). Post-

hoc comparisons on the effect of blocks and quadrants were corrected for a total of six 

comparisons. Descriptive statistics are reported as mean ± standard error. 

 

5.4 Results 

Participants (n=20) made a self-paced out-and-back reaching movement without visual 

feedback toward a marker that was positioned at 14cm, in one of four quadrants (Figure 

5.1B). On each block of trials, only one of the quadrants (Figure 5.1C) was associated 

with reward (a pleasing sound and animation, as well as 4 points). Figure 5.1D 

illustrates reach trajectories for a single participant in various blocks. At the moment that 
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the unseen cursor crossed the 14cm ring, the mean absolute distance (for each 

participant) of the crossing point from the marker was 9.3±1.4 degrees. The sole 

criterion for success was that, on the outward component of the movement, the unseen 

cursor crossed within a 100o arc centered on the marker. As a result, more than 99.9% 

of the movements across subjects crossed the outer ring within the potential reward 

zone. I asked whether expectation of reward altered movement preparation (reaction-

time) and movement execution (velocity, extent, and variability). 

 

Effect of reward on reach kinematics 

I began my analysis by considering how the subjects reacted to presentation of 

the marker, which acted as the cue to reach to the quadrant. To quantify the effects of 

the marker appearing in a rewarded quadrant vs. non-reward quadrants, I computed the 

reaction-time distribution in each condition, and then computed a within-subject 

difference measure (Figure 5.2A). This difference measure was calculated for each 

individual as the probability density of reaction-time for all rewarded trials (bins=5ms) 

minus the probability density of all non-rewarded trials, with the difference measure then 

averaged across participants. It appeared that reward shifted the mode of the 

distribution earlier, and also reduced the variance of reaction-time distribution. 

To quantify the within-subject change in the distribution of reaction-times, I 

constructed a delta-plot (Ridderinkhof et al. 2005), as shown in Figure 5.2D. For each 

participant and each condition (reward and non-reward trials), I ordered the reaction-

times from shortest to longest and divided them into 20% quantiles. I computed the 

mean of each quantile, and then measured the within-subject change in the quantile 
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mean due to condition (reward minus non-reward trials). I found that for all quantiles, 

the change was negative, suggesting that reward reduced reaction-times in all range of 

responses. Furthermore, the negative slope indicated that the reaction-time distribution 

for reward was steeper (less variable) than the non-rewarded distribution, implying a 

reduced variance. In summary, reward appeared to have two effects on the reaction-

time distribution: it shifted the mode of the distribution earlier, and it reduced the 

variance of the distribution.  
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Figure 5.2 Movement characteristics. A) Probability distribution of reaction-time was 
estimated for each subject in each condition using a non-parametric approach (bin size 
is 5ms). The change in reaction-time is a within-subject measure. Mode of the reaction-
time appeared to shift earlier and the variance appeared to decrease. B) Radial position 
trajectory and the change in radial position as a function of time. The hand appeared to 
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reach farther in the rewarded condition. C) Radial velocity and the change in radial 
velocity as a function of time. The hand appeared to reach faster in the rewarded 
condition. Due to the range of movement durations selected across participants, group 
averages are displayed up to the point of the shortest individual curve. Shaded regions 
represent ± SEM. D) Delta plot of reaction-time across 20% quantiles. For each subject, 
reaction-times in each condition were rank ordered and sorted into 20% quantiles. 
Values along the x-axis represent mean reaction time for NRWD at each quantile. 
Values along y-axis represent the change in the mean from RWD to NRWD condition. 
Negative values indicate that reward decreased reaction-times, and the negative slope 
suggests that reward reduced variance of reaction-times. Error bars represent ±SEM. 

 

I next considered the effects of reward on the kinematics of the reach. I 

computed radial position and velocity of the hand as a function of time (Figures 5.2B 

and 5.2C) and found that in the rewarded condition, the subjects reached farther (peak 

of the red curve vs. blue curve, right column, Figure 5.2B), and reached faster (right 

column, Figure 5.2C). 

To better characterize the effects of reward, I computed for each participant the 

change in various parameters of movement when a quadrant was paired with reward as 

compared to when the same quadrant was not paired with reward. In presence of 

reward, mean of the reaction-times decreased by 5.21±0.79% (15.20±0.10ms, p<0.001, 

Figure 5.3A), variance of the reaction-times decreased by an average of 24.0±6.32% 

(p=0.006, Figure 5.3B), outward peak velocity increased by 1.87±0.88% 

(0.78±0.01cm/s, p=0.044, Figure 5.3C), maximum excursion increased by 4.14±0.57% 

(0.73±0.01 cm, p<0.001, Figure 5.3D), and movement duration decreased by 

4.56±1.05% (26.50±8.3ms, p=0.002, Figure 5.3E, duration refers to time to the 

crossing-point) (All p-values reflect corrections for multiple comparisons using Holm-

Bonferroni method). In contrast, I found no effect of reward on mean crossing point 

(p=0.613). That is, the hand crossed the outer ring at a location (with respect to the 
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marker) that was on average unchanged with reward. In contrast, reward decreased 

crossing-point variance by an average of 10.10±4.18%. However, this effect was lost 

when corrected for multiple comparisons (uncorrected p=0.024, corrected p=0.096). I 

observed no effect of reward on the variance of peak velocity, maximum excursion, or 

duration (p’s>0.05).  

 

Figure 5.3 Within-subject measures on the effects of reward. Reward-dependent 
changes in A) mean of the reaction-times, B) variance of the reaction-times, C) peak 
velocity of the outward movement, D) maximum excursion, and E) duration of the 
outward movement. In bar plots, gray bars represent within-subject change and black 
bars represent group means ±SEM (*p<0.05, **p<0.01, ***p<0.001). Bar position 
reflects order of participant recruitment. Differences represent reward minus non-
reward. In scatter plots, black dots represent individual participants and red lines 
represent group means ±SEM. 

 

Effect of reward across blocks 

Previous studies have noted that if subjects repeatedly made saccadic eye 

movements toward the same stimulus, the movements tended to become slower (Chen-

Harris et al. 2008; Xu-Wilson et al. 2009). Here, I observed the opposite tendency: as 

the experiment progressed, participants increased the speed of their reaching 

movements (Figure 5.4A, RM-ANOVA, main effect of block, peak outward velocity 
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F(3,57)=8.748, p<0.001). Similarly, progression of the experiment coincided with a 

reduction in the mean reaction-time (Figure 5.4B, F(3,57)=10.500, p<0.001), as well as 

the variance of reaction-time (F(3,57)=4.692, p=0.005, Figure 5.4F). As the experiment 

progressed, duration of the reaching movements decreased (Figure 5.4D, 

F(3,57)=9.478, p<0.001). There were no changes across blocks for maximum excursion 

(Figure 5.4C, F(3,57)= 1.873, p=0.144); and no changes across blocks for mean 

crossing-point distance (Figure 5.4E, F(3,57)=0.662, p=0.579) or the variance in 

crossing-point distance (F(3,57)=0.356, p=0.785).  

Importantly, the effect of reward on all movement parameters was consistent 

throughout the duration of the experiment (RM-ANOVA, block by reward interaction, 

peak outward velocity F(3,57)=0.509, p=0.678; reaction-time F(3,57)=1.344, p=0.269; 

maximum excursion F(3,57)=1.484, p=0.229; duration F(3,57)=0.515, p=0.674; crossing 

point F(3,57)=0.602, p=0.616). In summary, with the progression of the experiment, 

reach velocities tended to increase, and reaction-times tended to decrease. However, 

within-subject effects of reward remained consistent, influencing peak outward velocity 

(main effect of reward on peak velocity, F(1,19)=6.273, p=0.044, Figure 5.4A), mean 

reaction-time (F(1,19)=38.47, p<0.001, Figure 5.4B), maximum excursion 

(F(1,19)=51.77, p<0.001, Figure 5.4C), movement duration (F(1,19)=15.95, p=0.002, 

Figure 5.4D) and variance of reaction-time (F(1,19)=14.5, p=0.010, Figure 5.4F). 
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Figure 5.4 Effect of block number on reaching movements. Effect of block on A) peak 
outward velocity, B) reaction-time, C) maximum excursion, D) duration, E) crossing-
point distance, F) reaction-time variance, and G) crossing-point variance. Red and black 
lines represent rewarded and non-rewarded trials, respectively. Bars denote means ± 
SEM. Graphs have been slightly offset horizontally to improve contrast. Results from 
post-hoc comparisons regarding the main effect of block are based on averages 
combining both rewarded and non-rewarded movements (* p<0.05, **p<0.01). Subset 
graphs represent within subject difference calculated as reward minus non-reward at 
each block. 
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Effect of reward across quadrants 

Movements to each of the four quadrants required a unique combination of elbow 

and shoulder torques. This difference in joint torque combinations introduced the 

possibility that the amount of effort required for reaching was dependent on quadrant 

location (Schweighofer et al. 2015), and that reward may have affected movements 

differently at each location. Indeed, movement characteristics differed depending on 

which quadrant was cued. There was a main effect of quadrant on peak velocity 

(F(3,57)=8.68, p<0.001),  maximum excursion (F(3,57)=9.43, p<0.001), and crossing 

point (F(3,57)=42.12, p<0.001). Post-hoc comparisons indicated that peak velocity was 

slowest in quadrant 1 (Q1:36.70±2.84 m/s, Q2: 40.64±3.35 m/s, Q3:38.24±2.67 m/s, 

Q4: 41.07±3.49 m/s, p1,2=0.002, p1,3=0.020,  p1,4=0.002, p2,3=0.046, p2,4=0.606, 

p3,4=0.049). Maximum excursion was shortest for movements towards quadrant 2 

(Q1:18.15±0.32cm, Q2:17.02±0.30cm, Q3:18.21±0.30cm, Q4:18.29±0.37cm, 

p1,2<0.001, p1,3=0.773, p1,4=0.640, p2,3<0.001, p2,4=0.003, p3,4=0.768). Both crossing-

point distance mean and variance were affected by quadrant location. Mean crossing-

point distance was most positive (counter clockwise from quadrant center) in quadrant 3 

and was most negative in quadrant 4 (Q1:7.66±1.46o, Q2: 2.27±1.66o, Q3:14.63±1.28o, 

Q4:-4.37±0.94o, p1,2=0.038, p1,3<0.001, p1,4<0.001, p2,3<0.001, p2,4=0.001, p3,4<0.001). 

Variance in crossing point was greater in quadrant 1 when compared to quadrants 3 

and 4, with all other pairs being indistinguishable (Q1: 33.56±3.24o, Q2:26.39±3.00o, 

Q3:24.11±2.20o, Q4:22.65±2.48o, p1,2=0.099, p1,3=0.022, p1,4=0.022, p2,3<0.532, 

p2,4<0.213, p3,4<0.565).  There was no effect of quadrant on reaction-time mean, 

reaction-time variance or duration.  
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While it was evident that the location of the quadrant affected a few of the 

movement kinematics, I found no interaction effects between reward and quadrant in 

any of the measured metrics (peak velocity F(3,37)=1.01, p=0.394; reaction-time 

F(3,37)=0.23, p=0.878; maximum excursion F(3,37)=0.77, p=0.514, duration 

F(3,37)=0.13, p=0.942; crossing point F(3,37)=1.77, p=0.163). In summary, the location 

of the quadrant influenced movement vigor, but the effect of reward was quadrant 

independent.  

 

Effect of temporal proximity to a rewarding movement  

If expectation of reward affected movement vigor, what was the temporal window 

of these effects? Did increased vigor due to reward on one trial influence vigor of the 

subsequent movements? To explore these questions, I compared movements to the 

rewarded quadrant with the movements that were made immediately before and after, 

toward other (non-rewarded) quadrants (Figure 5.5). I found that in comparison to the 

rewarded trial, the immediately preceding non-rewarded trial had reduced outward peak 

velocity (two sided paired t-test, reward trial compared to previous trial, p=0.041), 

increased reaction-time (p<0.001), reduced excursion (p<0.001), and increased 

duration (p=0.037). Similarly, the non-rewarded trial immediately following the rewarded 

trial exhibited reduced peak outward velocity (two sided paired t-test, reward trial 

compared to subsequent trial, p=0.006), increased reaction-time (p<0.001), reduced 

excursion (p<0.001), and increased duration (p<0.001). The average crossing point was 

unchanged between reward and surrounding non-rewarded trials (p’s>0.05).  
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I next considered the effects of reward on movement variance and found that 

reaction-time variance was lower in the rewarded trial when compared to the preceding 

non-rewarded trial (p=0.030). However, this same comparison in variance for crossing 

point resulted in indistinguishable differences (p=0.126). Trials immediately following 

reward exhibited increased variance in both reaction-time and crossing point 

(prxn=0.019, pcross=0.024).  

Therefore, increased vigor and reduced variability were specific to the rewarding 

target and were not shared with temporally nearby movements to non-rewarding 

quadrants.  
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Figure 5.5 Trial to trial effect of reward. Change in A) peak outward velocity, B) reaction-
time, C) maximum excursion, D) duration, E) crossing-point distance, F) variance of 
reaction-time, and G) variance of crossing-point distance as a result of reward on 
subsequent and preceding non-rewarded targets (* p<0.05, **p<0.01, ***p<0.001 
compared to RWD, n.s.=not significant). All reported values are relative to the rewarded 
trial. Bars denote means ± SEM. 
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Effect of spatial proximity to a rewarding movement  

I tested whether spatial proximity to the rewarded quadrant influenced the vigor 

of the movements towards adjacent and opposite non-rewarded quadrants. I measured 

kinematics of non-rewarded movements (reaction-time, peak velocity, maximum 

excursion, and crossing point) when a quadrant was adjacent to reward and compared 

it to the kinematics when that same quadrant was opposite the reward quadrant. I found 

no difference between any measures for movements adjacent and opposite to the 

rewarded quadrant (p’s>0.05).  

The large 100-degree arc for each quadrant meant large deviations from the 

center would still result in a successfully completed trial. When a rewarded quadrant 

was adjacent to a cued non-rewarded quadrant, it was possible that the rewarded 

quadrant could act as a distractor (or attractor) and influence the crossing point for the 

non-rewarded movement either towards or away from the direction of the rewarded 

quadrant. To test for the presence of a reward influenced bias, I measured crossing 

point distance for each target when the clockwise quadrant was rewarded and 

compared it to the crossing point distance when the counter-clockwise quadrant was 

rewarded. For example, when testing for the effect of reward proximity in quadrant 1, I 

averaged crossing point distance in non-rewarded movements to quadrant 1 when 

quadrant 3 was rewarded and compared it to crossing-point distance in non-rewarded 

movements to quadrant 1 when quadrant 4 was rewarded. Looking at movements to 

each quadrant independently, I found that there were no differences in crossing-point 

distances in quadrant 1 (reward in quadrant 3 (R3)=7.51±1.43, reward in quadrant 4 

(R4)=8.37±1.58, p=0.316), in quadrant 2 (R3=14.57±1.53, R4=14.95±1.42, p=0.714), in 
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quadrant 3 (R1=2.42±1.77, R2=1.79±1.87, p=0.367), or quadrant 4 (R1 = -4.70±0.97, 

R2=-4.58±0.98, p=0.855).  

In summary, I found that the effects of reward were both temporally and spatially 

specific to the quadrant that was rewarded.      

 

Effects of repeating movements to the same quadrant within a block 

Movement history appears to influence arm choice by discounting effort when 

movements are repeated with the same arm as in preceding trials (Schweighofer et al. 

2015). In the current paradigm, there were several instances in which subsequent 

movements were cued to the same quadrant (~25% of the time). If we assume that 

reward discounts effort, then the observed effects of reward may be enhanced by 

movements being repeated. I found that repeating consecutive trials to the same 

quadrant increased peak velocity (main effect of repetition, peak velocity 

(F(1,15)=18.47, p=0.016), increased reaction-time (F(1,15)=15.76, p=0.004), increased 

excursion (F(1,15)=25.78, p<0.001), reduced duration (F(1,15)=9.692, p=0.014), and 

increased reaction-time variance (F(1,15)=19.08, p=0.003), but not crossing point mean 

or variance.   

My main question was whether presence of reward affected these changes. 

Indeed, I found that the effects of repetition on reaction-time, maximum excursion and 

duration depended on whether the movements were rewarded or not (reward by 

repetition interaction, reaction-time F(1,15)=25.00, p=0.001; maximum excursion 

F(1,15)=10.49, p=0.010; duration F(1,15)=13.36, p=0.008; crossing point F(1,15)= 

22.05, p<0.001). In the presence of reward, repetition further increased maximum 
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excursion (0.93±0.20cm, p=0.001), and further reduced duration (56±13ms, p=0.002). 

Repetition of rewarded trials also increased crossing-point distance (1.64±0.44o, 

p=0.006). There was no effect of repetition in rewarded trials for peak velocity, reaction 

time, reaction time variance, or crossing-point variance (p’s>0.05). In the absence of 

reward, repetition led to longer reaction-times (30±6ms, p<0.001), greater maximum 

excursion (0.32±0.10cm, p=0.015), and increased reaction-time variance (2±0.5ms2, 

p=0.001). Therefore, repetition of reward led to faster and larger movements.   

 

Effect of reward across segments of a single reaching movement 

The auditory and visual cues that indicated success were delivered as the 

unseen hand crossed the outer circle. However, the movement continued to a self-

selected turnaround point, and then the subject brought their hand back to center. 

Therefore, the trial was composed of two phases of movement (out and back). During 

rewarded trials, the visual target explosion and auditory beep were delivered at the 

crossing point of the outward movement. That is, acquisition of reward was associated 

with only the outward phase, not the return phase. Did reward modulate vigor during 

both movement phases?  

I found that the outward peak velocity was on average 5.49±0.88 cm/s 

(15.59%±2.17%) faster than the peak return velocity (two-sided paired t-test, p<0.001). 

While reward produced an increase in the peak outward velocity of 0.78±0.01cm/s 

(1.87±0.88%, p=0.044, Figure 5.3A), the return velocity of the same movement was 

indistinguishable between rewarded and non-rewarded trials (rewarded=33.92±2.47 

cm/s, non-rewarded=33.60±2.39 cm/s, ANOVA, main effect of reward, F(1,19)=1.273, 
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p=0.273). In summary, the effect of reward was specific to the outward phase of the 

movement (the phase preceding acquisition of reward), and not present in the return 

phase after reward was acquired. 

 

5.5 Discussion 

Reaching movements paired with reward exhibited reduced reaction-time, higher peak 

velocity, shorter duration, and larger excursion. Despite increased vigor, movement 

variability remained largely intact, and in some cases was reduced. These changes 

were specific to the rewarded trials, with little transfer to temporally or spatially nearby 

non-rewarded movements.  

 

Reward led to higher vigor 

Increases in amplitude and speed of a reaching movement produce increases in 

the metabolic cost of that movement (Shadmehr et al. 2016). If I view metabolic cost as 

a proxy for effort, my results suggest that subjects were willing to expend more effort 

when the goal was paired with reward: reaching in rewarding quadrants not only 

produced a 4% decrease in duration, but also a 4% increase in excursion.  

 Why do subjects reach further in the rewarded trials? A potential explanation is to 

increase probability of reward. All movements were rapid, out-and-back shooting 

movements, but reward was only acquired if the invisible cursor crossed the arc. I found 

no effect of reward on the proportion of trials where the reach turned around 

prematurely (1.90±0.53% for reward compared to 3.12±0.61% for no reward, p=0.099). 
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However, it is possible that subjects reached further to minimize the possibility, albeit 

unlikely, of turning around before reaching the arc, thus missing the reward.  

My results add to the significant literature demonstrating that movements that are 

paired with reward result in reduced reaction-times (Kawagoe et al. 1998; Watanabe 

and Hikosaka 2005; Bendiksby and Platt 2006; Milstein and Dorris 2007; Opris et al. 

2011; Mosberger et al. 2016). However, I observed that in addition to reduction in the 

mean of the reaction-time, reward also decreased the variance of the distribution, a fact 

that has not been noted before. 

Reaction-time is commonly explained using drift diffusion models (Ratcliff and 

Rouder 1998) in which evidence towards a decision accumulates until it reaches a 

threshold. The rate of evidence accumulation is influenced by properties of the stimulus, 

as well as attention invested towards that stimulus (Milstein and Dorris 2007). In the 

current paradigm there were no reward specific environmental cues, suggesting that the 

strength of the stimulus that beckoned the movement did not affect the rate variable. 

However, attention may be selective towards rewarded targets (Milstein and Dorris 

2007). In my experiment, reward could lead to greater attention towards those 

quadrants and away from non-rewarded quadrants, allowing for faster accumulation of 

evidence to initiate movement toward reward.   

 The current task involved participants learning to control a robotic manipulandum 

to move an invisible cursor through alternating quadrants around a central point.  In a 

majority of the trials, the only feedback of the movement was the outer ring changing 

color from red to gray.  In a smaller fraction of trials, the movement outcome was 

increased with the outer ring flashing yellow while being paired with a short auditory 
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stimulus. By altering the feedback associated with completing each reach, I may have 

altered the relative sense of agency or contingency between rewarded and non-

rewarded movements (Elsner and Hommel 2004; Behne et al. 2008). In an effort to 

probe how contingency effects movement performance, Karsh and Eitam (2015) had 

participants press one of several keys on a keyboard in response to cues. In a 

proportion of those trials, irrespective of the button selected, an added visual stimulus 

was displayed indicating that the trial was successfully completed. The researchers then 

estimated each participant’s agency as a function of the number of trials paired with the 

stimulus and found that an increased sense of agency correlated with decreased 

reaction-times. Manohar et al. (2017) report that the presence of reward increases peak 

velocity for saccades, with the greatest effects observed when reward was highly 

contingent on saccade velocity (higher velocity=greater reward) rather than when 

reward was not contingent on velocity (reward delivered independent of velocity). The 

reward in the current study had minimal contingency with the reaching movement. 

Participants only needed to reach to the correct quadrant to receive reward. However, 

the additional audio-visual stimuli in movements paired with reward may have indirectly 

influenced the participants’ sense of contingency, contributing to the observation that 

reward decreased reaction-time.  

 

A computational model of reaction-time and vigor 

A single computational framework may account for the observation that reward 

produced both a reduction in reaction-time, and an increase in movement vigor. Let us 

express utility of a reaching movement as reward minus effort, divided by duration of 
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that movement. This utility is the net rate of reward, where metabolic cost serves as a 

proxy for effort (Shadmehr et al. 2016):  

 J = α −aT −bd /T
2

T
           [ 5.1 ] 

In this expression,  represents the reward associated with the outcome of a 

successful movement. In the above model,  is represented in units of energy, 

specifically joules. Movement duration is represented as T, and movement distance as 

d. The remaining variables are constants that reflect the metabolic cost of reaching 

across a range of movement speeds and distances. Given the objective of maximizing 

net rate of reward, the optimum movement vigor is defined via duration :  

       [ 5.2 ] 

The above expression implies that reward decreases the optimum movement duration, 

resulting in increased vigor. At the optimum duration, the resulting utility of the 

movement is:  

 J * = 2α3/2

3 3bd
      [ 5.3 ] 

This implies that as reward increases, the utility of that option increases. During 

reaction-time, decision-making proceeds by integrating to threshold a random variable. 

If that random variable has a mean that is proportional to the rate specified by the utility 

of that action [eq. 5.3], then the rate of rise increases as reward increases, producing an 

earlier reaction-time. As a result, a utility that is defined as the rate of net reward, where 

effort is the metabolic cost of the action, can account for both the effect of reward on 

vigor, and the effect of reward on reaction-time.  

α

α

*T

1/2
* 3bdT

α
⎛ ⎞= ⎜ ⎟
⎝ ⎠
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Increase in vigor does not increase variability 

In general, found that reward reduced the variability of reaction-time.  Works by 

Takikawa et al. (2002), Manohar et al. (2015), and Manohar et al. (2017) examined 

saccades and found that reward led to both an increase in vigor while reducing endpoint 

variability. In reaching, Nikooyan et al. (2015) observed that, in an adaptation task, the 

addition of reward feedback led to greater reductions in reach endpoint variability 

compared with visual feedback alone. In addition, Pekny et al. (2015) found that reward 

probability altered reach variability, with movements occurring under high probability of 

reward being less variable than movements under low probability. Further, they found 

that reward-dependent control of variability was impaired in Parkinson’s disease, 

suggesting a role for the basal ganglia.  

 A central source of variability may be the neural activity during the delay period 

when the movement is being planned. Churchland et al. (2007) noted that trial-to-trial 

variability in the activity of cells in the primary motor cortex and premotor cortex during 

the delay period accounted for roughly half of the variability in reach velocity. Although 

the effect of reward on the delay period activity of reach-related neurons is not well 

understood, pairing of a stimulus with reward tends to increase the delay period activity 

of neurons that direct a saccade toward that stimulus (Ikeda and Hikosaka 2003), an 

effect that is similar to changes associated with increased spatial attention 

(Ignashchenkova et al. 2004). Based on this, it is possible that the reward related 

changes in reach variability may be associated with preferential allocation of spatial 

attention. 
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Neural correlates in reward-dependent modulation of vigor 

Natural variations in dopamine levels can predict the amount of effort an 

individual will exert for reward (Wardle et al. 2011). In Parkinson’s disease, dopamine 

levels deteriorate, slowing movement (bradykinesia) (Hallett and Khoshbin 1980). This 

symptom is traditionally believed to be due to increased signal dependent noise in the 

motor system (Montgomery and Nuessen 1990; Phillips et al. 1994). An alternative or 

perhaps complementary explanation of bradykinesia is that dopamine is essential in 

establishing vigor, with the pathology leading to a general decrease in motivation to 

move (Mazzoni et al. 2007; Kojovic et al. 2014; Salimpour et al. 2015) as well as 

decreased ability to adjust movements in response to changing reward landscapes 

(Schmidt et al. 2008b; Kojovic et al. 2014; Pekny et al. 2015). Including individuals with 

Parkinsonian symptoms in the current paradigm, with its low consequences on 

accuracy, may provide a promising platform for helping to further elucidate the role of 

dopamine in modulating both the vigor and variability of our movements.  

 

Limitations 

My protocol only considered two conditions: reward vs. no reward. As a result, I 

did not quantify or modulate the value of reward. Adding auditory and visual reward 

coincided with an increase in reaching velocity of around 2%. Xu-Wilson et al. (2009) 

reported a 1% increase in saccade velocity towards images of human faces compared 

to other images. Non-human primates exhibit much greater changes in saccade velocity 

to obtain juice rewards (~25%) (Kawagoe et al. 1998; Takikawa et al. 2002). This 

difference may be due to reward modality. In my study, as well as the study by Xu-
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Wilson et al. (2009), reward had no explicit utility when compared to the caloric rewards 

in the non-human primate studies.  

Quantifying reward based on its metabolic/energetic content predicts when 

starlings choose to walk and fly (Bautista et al. 2001). Studies on humans have used 

monetary rewards to study movement decisions under uncertainty (O’Brien and Ahmed 

2015, 2016), however, these rewards exhibit significant distortions from their actual 

value which vary across individuals (Kahneman and Tversky 1979). Other intrinsic 

reward mediums are more difficult to quantify, such as the value of different images (Xu-

Wilson et al. 2009). Furthermore, little is understood about how these intrinsic rewards 

compare to other extrinsic rewards such as food or money.  

One potential method of developing a universal currency for reward may be 

through understanding how different rewards affect neural activity, specifically between 

regions of the prefrontal cortex and dopaminergic striatum (Levy and Glimcher 2011, 

2012). This foundation has been considered in a model of motor control that predicts 

movement responses (lever presses) based on levels of dopamine (Niv et al. 2007). 

The model advances the role of environment by considering reward’s influence on 

dopamine activity on both a phasic (quality of individual rewards) and tonic level (rate of 

reward). Understanding how the dopaminergic midbrain responds to reward may prove 

essential in explaining movement preference both across and within populations. 

My experiment did not control inter-trial intervals. The only temporal constraint 

between trials was a short 150ms period of time when the cursor was held in the start 

circle. Other than this delay, the pace of the experiment was limited only by how quickly 

participants completed their trials. Research focusing on inter-trial intervals suggests 
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that it is not just reward quality, but also reward rate that alters movements (Niv et al. 

2007; Haith et al. 2012). Not controlling reward rate, in principle, may explain the 

observed increase in vigor as the experiment progressed. 

 

5.6 Conclusion  

Humans reacted with shorter latency, and produced faster and longer reaching 

movements when anticipating reward. In addition to modulating vigor, reward also led to 

more consistent movements, reducing the variance of the reaction-times, when 

compared to similar, non-rewarded movements. These results support the idea that 

vigor is not optimized solely by minimizing effort costs or error, but instead depends on 

a utility where reward discounts effort. 
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CHAPTER 6  

AGING REDUCES SENSITIVITY TO REWARD 
IN A REACHING TASK 

 
6.1 Abstract 
The vigor with which we move depends on both the opportunity for reward and the effort 

we are willing to spend to obtain that reward. In this chapter, I sought to understand how 

effort and reward influence reach vigor in older and younger adults. Aging is 

accompanied by both a decreased sensitivity to reward and potentially an increased 

expenditure of effort. These changes suggest that when making reaching movements, 

older adults will be less likely to alter vigor in response to reward. I objectively quantified 

effort expenditure during reaching in young and older adults and measured their 

willingness to adjust the amount of effort exerted in a changing reward landscape. In 

response to added reward, older adults, like young adults, initiated their movements 

earlier and more consistently. However, when executing these movements, older adults, 

unlike young, did not adjust their velocity or extent. I sought to explore whether an 

elevated cost of effort could explain why older adults did not alter movement execution. 

Effort, quantified objectively as metabolic cost, was measured as older and young 

adults reached across a range of distances and durations. I found that across the tested 

movement constraints, metabolic cost was indistinguishable between age groups. The 

results of these two experiments together suggest that the reluctance of older adults to 

adjust the execution of their reaching movements in response to increasing reward 

cannot be explained by an increase in objective effort, but rather appears more likely 

due to a decreased sensitivity to the properties of the rewarding stimulus itself. 
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6.2 Introduction 

The manner in which an individual moves about their environment can inform us about 

how they value that environment. In response to changing reward landscapes, humans 

and other animals adjust the vigor of their movements (defined as the speed as a 

function of duration), even when doing so has no impact on reward contingency 

(Manohar et al. 2017; Summerside et al. 2018).  

When making saccadic eye movements towards targets paired with a juice 

reward, non-human primates increase the vigor of their saccades when compared to 

similar movements in the absence of reward (Kawagoe et al. 1998; Takikawa et al. 

2002). Similarly, humans saccade more vigorously towards informative images (pictures 

of faces) when compared to images of static (Xu-Wilson et al. 2009). In situations where 

individuals are asked to weigh alternative rewards, the vigor of their saccades can 

predict reward preference, with this effect growing based on the relative difference in 

value to the alternative (Reppert et al. 2015). These reward-induced adjustments in 

movement vigor have also been reported in other movements including reaching (Opris 

et al. 2011; Summerside et al. 2018) and locomotion (Dumont et al. 1998; Stevens et al. 

2005).  

The dynamics of movement vigor have previously been explained based on the 

interactions of a movement’s costs (mainly variability, effort and temporal costs) and 

benefits (Haith et al. 2012; Rigoux and Guigon 2012; Shadmehr et al. 2016). Changing 

the relative weighting of these contributing variables alters the predictions on how an 

individual establishes the vigor of their movements (Shadmehr et al. 2010).  
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The gradual decline in movement vigor is a distinctive phenomenon of healthy 

aging. Older adults walk at a slower preferred velocity (Waters et al. 1988; Laufer 2005), 

make slower saccades (Irving et al. 2006; Dowiasch et al. 2015), and reach at slower 

velocities (Ketcham et al. 2002; Kozak et al. 2003). These observations have been 

independently explained as a result of decreased reward sensitivity and increased effort 

costs. However, we lack a clear understanding of how aging influences the way these 

costs and benefits interact when establishing vigor. 

The brain’s ability to accurately predict the value of an upcoming reward depends 

on the integrity of the dopaminergic midbrain (Schultz et al. 1997). Individuals with 

deficits to this region exhibit a diminished willingness to exert effort for increasing 

reward (Schmidt et al. 2008b; Chong et al. 2015). The function of the dopaminergic 

system declines in healthy aging, showing a diminished response to changing reward 

when compared to younger adults (Dreher et al. 2008; Eppinger et al. 2011). This 

decrease in reward sensitivity is one explanation for why older adults may make slower 

saccades (Shadmehr et al. 2010). 

 An alternative, though not exclusive explanation, is that effort costs may be 

elevated in older adults; thus the cost of increased vigor may offset the reward to be 

obtained. Indeed, across a range of natural walking speeds, older adults exhibit an 

increase in metabolic rate when compared to younger adults (Waters et al. 1988; Martin 

et al. 1992; Ortega et al. 2014). Greater effort costs can be explained through a 

combined decrease in efficiency of the mitochondria and contractile elements of muscle 

(Conley Kevin E. et al. 2012) as well as increased coactivation of antagonist muscle 

groups (Ortega and Farley 2015). Less is understood about how metabolic cost 
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changes across age when executing reaching movements. One study found that when 

performing hand cycle ergometry, older and younger adults exhibited similar metabolic 

responses to increasing mechanical output when controlling for muscle mass (Aminoff 

et al. 1996). When learning high energy coordinated reaching movements, older adults 

were able to reduce metabolic cost to a level similar to younger adults, however they 

maintained an elevated heart rate (Sparrow et al. 2005). Huang and Ahmed (2013) 

compared how young and older adults decreased metabolic cost while adapting to a 

dynamic force field. They reported that older adults exhibited lower overall 

compensation for the perturbation, however, their decrease in metabolic cost was 

similar to that of the younger adult group. To my knowledge, there is yet no report 

describing how age influences the metabolic cost of reaching across increasing 

distances and durations. 

Here, I designed a pair of experiments intended to directly measure how 

increasing age affects the relative contributions of reward and effort when selecting 

movement vigor in a common task: reaching. First, I measured how older adults 

modulated vigor when making unconstrained reaching movements in a dynamic reward 

environment and compared those behaviors to the responses of younger adults in the 

same task. Next, I measured the effort, quantified objectively as metabolic cost, 

required to reach across a range of constrained distances and durations. Together 

these studies allowed me to ask whether differences in metabolic cost across velocities 

could explain an individual’s inclination to increase vigor in response to heightened 

reward, specifically when comparing young and older adults. I hypothesized that older 

individuals would exhibit weaker reward-based modulation of vigor as a combined result 
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of a decreased sensitivity to the qualities of the reward itself and an increased cost of 

effort needed to increase vigor. 

 

6.3 Methods 

Participants  

A total of 20 older adults (72±6 years, 10F, 10M) participated in experiment 1. 

Twelve older adults participated in experiment 2 (75±8 years, 6F, 6M). Participants were 

naïve to the experiment and gave written informed consent approved by the University 

of Colorado Boulder Institutional Review Board before participating in this protocol. All 

participants reported being primarily right-handed (Oldfield 1971) and reported no 

issues regarding their physical or mental health. Additionally, all older adults were 

deemed fully mobile as evident in earning the maximum score when performing a short 

physical performance battery (Guralnik et al. 1994). Young adult data for experiment 1 

(26±4 years, 10M, 10F) has been reported previously in Summerside et al. (2018) and 

for experiment 2 (27±4 years, 8F, 7M)  in Shadmehr et al. (2016). 

 

Experiment 1: Effect of reward on reaching vigor 

Participants sat in a chair designed to limit trunk movement and grasped the 

handle of a robotic arm using their right hand (Interactive Motion Technologies Shoulder 

Elbow Robot). The robotic handle operated similarly to a computer mouse, where 

movements along the horizontal plane controlled the position of a virtual cursor 

projected on a vertically positioned LCD monitor located at eye level (Figure 6.1A). A 

trial began with a small green circular home target (diameter=0.9cm) appearing in the 
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center of the screen. Participants moved the cursor (diameter=0.6cm) to overlap with 

the home target. After overlapping for a brief 150ms, the home circle vanished, a quick 

audio stimulus was delivered (50ms @110hz followed by 50ms @ 220hz), and a larger 

red outer circle appeared (diameter=14cm) with its center the same as the home target. 

The outer ring included a small indicator located at one of four alternating locations (45o, 

135o, 225o or 315o from right horizontal). The goal of the task was to move the cursor 

through the outer ring while staying within the quadrant containing the indicator (Figure 

6.1B). Once passing the outer ring, the outer ring changed color from red to gray, 

signaling to the participant that they should return the cursor to the center. When the 

cursor returned within 9cm of the center, the home target was re-illuminated to allow the 

next trial could begin.  

In a minority of the trials a quadrant would be paired with a reward. The only 

requirement for receiving the reward was that the cursor crossed the 100-degree region 

centered on the quadrant indicator. This large region was intended to remove any 

differences in movement kinematics related to movement variability. 

The qualities of the reward stimulus consisted of a pleasing sound (50ms 

@880hz followed by 50ms @ 3520hz) and a visual animation of the outer ring (ring 

flashed yellow for 50ms and disappeared), both simultaneously delivered when the 

cursor crossed the outer ring. At the end of a rewarded trial, participants received 4 

points, with the total accumulated points displayed on the upper right corner of the 

monitor.  

Importantly, participants were instructed only to reach in the direction of the 

indicated quadrant and were informed that nothing they did beyond that would change 
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the quantity or quality of the reward. As long as they completed the trial in the indicated 

quadrant and that trial was rewarded, they would receive the full reward. If participants 

inquired about whether they needed to perform under any time or kinematic constraints, 

they were told that there was no wrong way to perform the movement and to simply 

reach in a manner that felt natural for them. The participants were unaware of the 

number of trials they would be completing, only to expect the experiment to last one 

hour. Each participant was compensated $15 for their time with this amount being 

independent of any aspect of their performance in the task.   

 Experiment 1 began with a familiarization protocol consisting of a single block of 

40 trials (10 trials to each quadrant). During these trials, participants were able to 

familiarize themselves with the task as well as adjust the position of the chair to ensure 

all four quadrants could be comfortably accessed.  

The experimental protocol came after familiarization and consisted of a baseline 

block of 40 trials (Figure 6.1C, 10 trials/quadrant) followed by four experimental blocks 

of 100 trials (25 trials/quadrant). At the start of the experimental protocol, the 

participants were informed that they would no longer be receiving visual feedback of 

their cursor when reaching. They were also told that targets would now be occasionally 

rewarded and that as long as they reached in the indicated quadrant, they would 

receive the full reward.  

At the start of each trial, visual feedback of the cursor was removed. The cursor 

re-appeared during the return movement once arriving within 9cm of the home target. 

There was no reward tied to any quadrant during the baseline block. In each of the 
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experimental blocks, a single quadrant was consistently rewarded, with the location of 

the reward changing at the beginning of each new block.  

The presentation of quadrants was completely random within each experimental 

block. This means that there was a 25% probability that the next trial would be in the 

rewarded quadrant. No participants were ever explicitly informed about when a new 

block began, the location of future rewards, or how rewards were distributed within or 

across blocks. 
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Figure 6.1 Designs for experiments 1 (A-C) and 2 (D-F). A) Set-up: Older aged adults 
controlled a cursor projected on a monitor by moving a robotic manipulandum with their 
right hand along the horizontal plane. B) Participants completed out-and-back reaches 
to alternating targets projected along a ring 14cm from the home circle. C) Protocol for 
experiment 1: The protocol consisted of a baseline period with no reward followed by 
four experimental blocks. Each experimental block had one quadrant paired with a 
reward (RWD). D) Virtual environment for experiment 2. Participants moved a cursor at 
constrained velocities between a home circle and a target. E) The direction of the reach 
alternated every trial. F) Protocol for experiment 2: Metabolic rate of the participant was 
measured first during seated rest, then while completing reaching movements at five 
different prescribed speeds; very slow (VS), slow (S), medium (M), fast (F), or very fast 
(VF). There was a short break between each block to allow the metabolic rate to return 
to rest. The order of blocks in the current figure are displayed in increasing order, 
however the actual block order was randomized for each participant. 
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Experiment 2: Effects of duration and distance on the metabolic cost of reaching 

Participants were seated in a position identical to experiment 1 (Figure 6.1A). 

Using the robotic handle, they made alternating out and back movements along the 

anterior-posterior axis (Figure 6.1D). For odd numbered trials, the movement was away 

from the body and on even numbered trials, the movement was back towards the body 

(Figure 6.1E). A trial began by placing the cursor over a home circle. After a 150ms 

delay, a circular target (diameter=1.6cm) appeared and the participant was instructed to 

move the cursor to the newly projected target. Unlike in experiment 1, participants 

executed their movements in this experiment according to two prescribed distances, 

each with five prescribed durations. The distances were 10cm and 20cm. The five 

movement durations used at each distance are referred to here on as very slow (VS), 

slow (S), medium (M), fast (F), and very fast (VF) (Figure 6.1F). The exact duration and 

number of trials depended on the reaching distance as well as age group (Table 1). The 

number of trials was selected to allow for ~6 minutes of reaching for each condition, with 

faster duration conditions requiring more trials. All twelve older adults reached at both 

distances over two days, with only a single distance tested each day.    

Table 1 Constrained movement duration and trial number by age and distance. 
Duration (ms) / Trial # Very Slow  Slow Medium Fast Very Fast  
Young @10cm 1000/180 775/200 500/230 350/260 125/300 
Older @10cm 1100/180 800/210 600/230 500/245 250/260 
Young @20cm 2050/140 1150/160 800/200 500/230 250/260 
Older @20cm 2150/130 1250/170 850/210 550/230 250/250 

 

Participants learned the desired duration for each condition based on two different 

feedback sources. The first was a training bar that would accompany the cursor along 

the left side of the movement path for the first four of every twenty trials. Upon 
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movement initiation, this training bar would follow a minimum jerk trajectory towards the 

target indicating the prescribed reaching velocity (Figure 6.1D). The second source of 

feedback was a change of target color once the cursor made contact with the target. If 

the cursor arrived within 50ms of the desired duration, the target would flash yellow and 

deliver a pleasing tone similar to the reward used in experiment 1. If the movement was 

too fast, the target would turn green and if the movement was too slow, it would turn 

gray.  

Each visit in experiment 2 consisted of performing five blocks of reaching (Figure 

6.1F). Within a visit, five durations were tested at a single distance. This means the 

metabolic profiles for each older adult was collected over two separate days. Three 

young adults participated in both visit, with the remaining 12 each participating in only 

one distance (n=7 at 10cm, n=8 at 20cm). A single reaching block consisted of 20 

practice trials accompanied with the training bar, a short 1-minute break, then an 

additional ~6 minutes of reaching while wearing the nose clip and mouthpiece. Five-

minute mandatory rest periods were included between blocks of reaching to allow an 

individual’s metabolic rate to return to rest before the start of a new block. The 

constrained movement duration was consistent within each block and the block order 

was randomized for each participant.  

 

Data Analysis  

Position and velocity of the handle were recorded at 200 Hz. Reaction-time was 

calculated as the difference in time between when the audiovisual start stimulus was 

delivered and movement onset. Movement onset was identified using a threshold based 
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on radial acceleration of 0.0001 m/s2 and radial velocity of 0.05 m/s. I measured the 

signed difference in degrees from the right horizontal, between the center of the 

quadrant and where the hand crossed the outer ring and refer to this angle as the 

crossing-point distance. The maximum Euclidean displacement of the cursor from the 

center determined the maximum excursion. Peak instantaneous outward velocity was 

identified between movement onset and the timepoint of maximum excursion.  

Trials with reaction times greater than 700ms or with crossing-point distances 

outside of the 100 quadrant were removed from analysis. Across all older participants, 

this accounted for an exclusion of 4.32% of trials (332 trials for reaction time and 14 

trials for crossing the outer ring in the incorrect quadrant).   

 Reaction time and velocity in experiment 2 was calculated in the same manner 

as experiment 1. The duration of each movement was calculated as the difference in 

time between the moment the individual reacted to the start cue (movement onset) and 

the end of movement was defined as the first moment after peak velocity where the 

anterior-posterior velocity reached zero. Total distance was measured as the difference 

in displacement between the position at movement onset and the position at the end of 

the movement. Inter-trial-interval (ITI) was measured between each trial as the time 

between the end of movement for the current trial and movement onset of the 

subsequent trial. This meant that ITI represented the combined time spent repositioning 

the cursor for the next trial and the reaction time of that same trial. 
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Metabolic Cost  

In experiment 2, I quantified effort by measuring metabolic cost as a function of 

distance and duration. Metabolic cost was measured through expired gas analysis 

(ParvoMedics, TrueOne2400). Participants wore a nose clip and breathed in and out of 

a mouthpiece throughout all reaching bouts in experiment 2. This allowed me to 

measure how the rates of oxygen consumption and carbon dioxide production changed 

across conditions. To minimize the thermic effect of food on metabolic rate, all sessions 

were conducted in the morning with participants arriving having fasted overnight. The 

metabolic cart was calibrated at the start of each visit according to certified gas mixtures 

as well as a range of flow rates from a 3-litre calibration syringe. Baseline resting 

metabolic rate was measured while participants sat quietly in the chair holding the 

robotic handle. Baseline resting trials were taken at the start and end of the visit. 

 I calculated the gross metabolic rate of moving ( gross) and the gross metabolic 

rate of resting ( rest) in terms of watts (W) using the rate of oxygen consumption and 

carbon dioxide production according to the Brockway equation (Brockway 1987). I only 

included conditions where the respiratory exchange ratio was between 0.7 and 1.0, 

indicating aerobic respiration. I calculated net metabolic rate during each condition by 

measuring the gross metabolic rate ( gross) averaged over the last three minutes of 

reaching in each condition and subtracting the lower of the two metabolic rates 

measured during seated rest ( rest) at the beginning and end of the visit.  

!Enet =
!Egross −

!Erest      [ 6.1 ] 

 

!E

!E

!E

!E
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This net rate represented the combined cost of moving ( moving) and the cost of not 

moving when between each trial ( ITI): 

     [ 6.2 ] 

 If it is assumed that the net ITI is zero, then I am able to localize the net metabolic 

cost of moving the arm according to the equation:  

     [ 6.3 ] 

Here ITI represents the average length of the inter-trial-interval (ms) and d represents 

average movement duration (ms). I then fit the calculated net metabolic rate of moving 

according to the following function: 

     [ 6.4 ] 

where cost increased as a function of distance (dist) and decreased as a function of 

duration (dur). Of the four free parameters, a represents the asymptote, c represents 

the contribution of distance and d represents the contribution of duration towards the net 

metabolic cost of moving. The free parameter b describes an overall effect of changing 

velocity on the metabolic cost of moving. 

 

Statistical analysis 

Experiment 1: The effect of reward for each individual was quantified by 

comparing the average peak velocity, reaction-time, maximum excursion, and crossing-

point of each reaching movement towards a quadrant when it was rewarded minus 

when that same quadrant was not rewarded. Similarly the variance in reaction-time, 

time to circle, maximum excursion, and crossing-point were measured and compared 

!E

!E

!Enet =
!Emoving +

!EITI

!E

!Emoving =
!Enet

ITI +d
d

!Emove = a+b
dist c

dur d
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between rewarded and non-rewarded movements. The effect of reward was measured 

using a three-way repeated-measures analysis of variance (ANOVA) using age group 

(binary), block number (discrete), reward status (binary), a reward-by-age interaction, 

an-age-by block interaction, and an age by block by reward interaction as predictors. 

Rewarded movements were further compared to non-rewarded movements in the trials 

immediately before and after for both age groups using a paired t-test.  

Experiment 2: The net metabolic cost of moving, moving, was parameterized 

according to equation 6.4. The best fit model was determined according to minimization 

of the sum of squared error.  To determine the effect of age on the net metabolic cost of 

moving, responses were fit independently for each age group as a function of distance 

and duration. I then compared best parameter fits for each age based on overlapping 

95% confidence intervals. 

I estimated the masses of the upper arm, lower arm and hand of each participant 

using previously published equations according to sex, body mass, and age (de Leva 

1996; Chambers et al. 2010). The effect of age on the estimated masses of each 

segment was tested using a two-sample independent t-test. 

All statistical thresholds were conducted at a significance level of α=0.05. 

Uncorrected p-values reaching statistical power were corrected for multiple 

comparisons using the Holm-Bonferroni method. ANOVAs and paired t-tests were 

corrected for a total of 4 comparisons, established based on the number of measured 

behavioral responses (reaction-time, time to circle, crossing point, and maximum 

excursion). Descriptive statistics are reported as mean ± standard error. 

 

!E
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6.4 Results 

I sought to understand how increasing age affects the influence of reward and effort on 

reach vigor. I probed this question in a series of experiments involving groups of young 

(18-35 years) and older (66-87 years) adults.  

 

Effect of age on movement initiation towards reward 

The start of each trial was indicated simultaneously with an auditory presentation 

of a short tone and visual presentation of the outer red ring (radius=14cm). With 

increasing age, the ‘sensory fitness’ of audio and visual organs decline and the ability to 

react to stimuli of these modalities is reduced (Koga and Morant 1923). To measure the 

effects of age on movement initiation for both rewarded and non-rewarded movements, 

I calculated reaction time distributions for each condition (reward and no reward) as well 

the effect of age on the mean and variance of these distributions (Figure 6.2A). 

Independent of reward, I observed that older adults took longer to initiate their reaching 

movements. The average reaction time for a non-rewarded trial for older adults was 

417±14ms, significantly longer than the reaction times of 302±40ms observed in young 

adults (Figure 6.2B, RM-ANOVA, main effect of age, F(1,38,) p<0.001). Not only did 

older adults on average react slower than young adults, but they also exhibited higher 

reaction time variance (Figure 6.2C, main effect of age, F(1,38)= 32.27, p<0.001). 

These differences are collectively evident in the lower, wider, and later peaks for the 

probability density functions in older adults for the non-rewarded conditions (Figure 

6.2A). 



	 143	

In expectation of reward, older adults responded by reacting earlier, in a similar 

manner to the young adults (Figure 6.2B inset, Δyoung=-15±1ms, Δold=-22±4ms; main 

effect of reward F(1, 38)=65.527, p<0.001, reward*age interaction, F(1,38)=1.964, 

p=0.169,). Older adults also decreased the variance in their reaction times and did so to 

a greater extent than the young adults (Figure 6.2C inset, Δyoung=-0.9±0.3ms2, 

Δold=2.3±0.4ms2; reward*age interaction, F(1,38)=8.118, p=0.007).  

To further explore whether the magnitude of reward’s effect on variance changed 

as a function of reaction time and age, I calculated reaction-time distributions in the form 

of a delta plot (Ridderinkhof et al. 2005). I divided the density function of each condition 

into 20% quantiles and calculated the difference in means at each quantile (rewarded 

minus non-rewarded) as a function of the average non-rewarded reaction time of that 

quantile (Figure 6.2D). The difference between reward and non-rewarded conditions 

became increasingly negative with higher quantiles. A similar slope describing these 

changes both within each age group as a function of increasing reaction time as well as 

between age groups, further suggests that the magnitude of the effect of reward on 

reaction time was consistent across quantiles and was independent of age. The 

similarities in slopes also suggest that the different reward-induced changes in reaction 

time variance between groups was likely due to the older adults having a generally 

more variable reaction time distribution.  

Taken together, older adults initiated movements earlier and more consistently 

when executed in expectation of reward, similar to what has been observed in young 

adults. These findings suggest that the effect of reward on movement initiation is 

maintained with increasing age. 
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Figure 6.2 Effects of reward on movement initiation in young (black) and old (gray) 
adults. A) I used a non-parametric kernel density estimation method to calculate the 
probability distribution for each individual when making movements to rewarded (RWD, 
solid curves) and non-rewarded (NRWD, dashed curves) quadrants as well as a 
difference in these distributions at each bin (Older adults=gray, young=black, bin 
size=5ms). B) Scatter plot representing the relationship between rewarded (RWD, 
vertical axis) and non-rewarded (NRWD, horizontal axis) movements according to mean 
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reaction time. Dots represent individual participants (young=black, older=gray). The 
intersection at each cross represents the mean for each age group and the length of the 
bars represent ±SEM. The mean effect of reward for each age group is indicated with 
the inset bar graph, reported as mean ± SEM (* p<0.05, n.s. p>0.05, difference 
compared to zero; # p<0.05, difference between age groups). C) Same as B), but with 
reaction time variance being reported. D) Delta plot conveying the change in reaction 
time within each participant as a function of increasing 20% quantiles. The horizontal 
axis represents the mean NRWD reaction time at each quantile. The vertical axis 
represents the difference in reaction time (RWD-NRWD) for each age group at each 
quantile. Error bars represent ±SEM. 

 

Effect of age on movement execution towards rewarded and non-rewarded quadrants 

In experiment 1, both young and older adults were allowed to self select the 

velocity and extent of their movements (Figure 6.3). In the absence of reward, I found 

that older adults executed their movements in a manner that was similar to the younger 

adults. Specifically, I found no difference in time to circle (Figure 6.3C, main effect of 

age, F(1,38)=3.467 p=0.070) or maximum excursion (Figure 6.3D, F(1,38)=0.182, 

p=0.672).  

If expectation of reward influenced the preparation of each movement for older 

adults, would the same effects be present during movement execution? I observed a 

main effect of reward on time to circle (F(1,38)=10.038, p=0.009) that was independent 

of age (reward*age interaction, F(1,38)=4.634, p=0.465). However, post-hoc 

comparisons between rewarded and non-rewarded movements revealed an effect of 

reward on time to circle in only the younger adult group (Figure 6.3C inset, pyoung=0.002, 

polder=0.217). The effect of reward on maximum excursion followed a similar trend with a 

main effect of reward (F(1,38)=35.100, p<0.001), but also an interaction between age 

and reward (F(1,38)=12.18, p=0.005). Again, post-hoc comparisons revealed greater 

maximum excursions due to reward in young adults, but not in older adults (Figure 6.3D 
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inset, pyoung<0.001, polder=0.138). Taken together, older adults responded to reward by 

selecting a time to circle and maximum excursions that were both statistically 

indistinguishable from their non-rewarded movements. Reward had no effect for older 

adults on the observed variance of either time to circle or maximum excursion 

(p’s>0.05).   

The audiovisual reward used in the current experiment has previously been 

shown to influence the execution of reaching movements in young adults by 2-5%. 

Specifically young adults reached towards reward with a shorter time to circle and larger 

maximum excursion, both without altering crossing-point distance (Summerside et al. 

2018). These findings collectively suggest that sensitivity to reward, in regards to its 

effects on movement execution, is diminished in older adults when compared to the 

effects of an identical reward with younger adults. 
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Figure 6.3 Effects of reward on movement execution in young (black) and older (gray) 
adults. A) Mean radial velocity of hand as a function of time. B) Mean radial position as 
a function of time. C) Scatter plot representing the relationship between rewarded 
(RWD, vertical axis) and non-rewarded (NRWD, horizontal axis) movements according 
to mean time to circle (ms). Dots represent individual participants. The intersection at 
each cross represents the mean for the age group and the length of the bars represent 
±SEM. The mean effect of reward for each age group is indicated with the inset bar 
graph, reported as mean ± SEM (* p<0.05, n.s. =not significant, difference compared to 
zero). D) Same analysis as C), but with maximum excursion. 
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Age and temporal proximity to reward 

I previously reported that in young adults, the effects of reward on vigor were 

confined to the rewarded movement itself, with no interactions with the trials 

immediately preceding (R-1) or following (R+1) reward (Summerside et al. 2018). Here, 

I examined whether older adult participants would behave similarly. Older adults had 

earlier reaction times towards rewarded quadrants, when compared to non-rewarded 

trials preceding (Figure 6.4A, pR-1<0.001) and following (pR+1<0.001) reward. Rewarded 

trials were also more consistent than surrounding non-rewarded trials in respect to 

reaction time variance (Figure 6.4B, pR-1<0.001, pR+1=0.016) and crossing-point 

variance (Figure 6.4F, pR-1=0.015, pR+1=0.007). There were no differences between 

rewarded and surrounding non-rewarded trials for time to circle (Figure 6.4C, pR-

1=0.727, pR+1=0.057), maximum excursion (Figure 6.4D, pR-1=0.669, pR+1=0.321), or 

average crossing-point distance (Figure 6.4E, pR-1=0.311, pR+1=0.901).  

 To further probe the effect of age, I directly compared the relative changes in 

behavior between groups at the trial preceding reward and also at the trial following 

reward. At the trial preceding reward, there was no effect of age in response magnitude 

for reaction time (Figure 6.4A subset, p=0.182), reaction time variance (Figure 6.4B 

subset, p=0.073), time to circle (Figure 6.4C subset, puncorrected=0.037, pcorrected=0.111), 

crossing point (Figure 6.4E subset, p=0.812), or crossing point variance (Figure 6.4F 

subset, puncorrected=0.035, pcorrected=0.105). The difference in maximum excursion 

between reward and the trial preceding reward was greater in younger adults (Figure 

6.4D subset, pR-1=0.008). When comparing age groups at the trial following reward, I 

found no effect of age in response magnitudes for reaction time (Figure 6.4A subset, 
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p=0.770), reaction time variance (Figure 6.4B subset, p=0.724), time to circle (Figure 

6.4C subset, p=0.572), crossing point (Figure 6.4E subset, p=0.597), or crossing point 

variance (Figure 6.4F subset, p=0.257). The change in maximum excursion following 

reward was greater in younger adults when compared to older (Figure 6.4D subset, 

p=0.020). 
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Figure 6.4 Effect of temporal proximity to reward in young (black) and older (gray) 
adults. Change in A) mean reaction time (ms), B) variance in reaction time (ms2), C) 
mean time to circle (ms), D) mean maximum excursion (cm), E) mean crossing point 
distance (deg), and F) variance in crossing point distance (deg2) in trials immediately 
preceding (R-1) and following (R+1) reward. Values reported as relative changes from 
reward (* p<0.05, ** p<0.01, *** p<0.001, n.s.=not significant). Subset graphs represent 
relative differences (older adults minus young adults) in response magnitude between 
age groups at each trial (OA=older adults, YA=young adults, # p<0.05, c significant 
difference lost as a result of correcting for multiple comparisons). Error bars represent 
±SEM and have been slightly offset horizontally to improve contrast. 



	 151	

Age and the effect of time on vigor 

The experiment consisted of participants completing over 400 reaching 

movements. To explore whether the length of the experiment affected reaching 

movements, I performed a repeated measures ANOVA where all behavioral measures 

were predicted according to the combined effects of reward, age, and block number.  

As the experiment progressed, the mean reaction time decreased (Figure 6.5A, 

main effect of block, (F(3,144)=6.581, p<0.001) and this change was independent of 

reward or age (block-by-age, block-by-reward, block-by-reward-by-age interactions, 

p’s>0.05). Reaction time variance appeared to decrease as well, however this effect 

was lost when correcting for multiple comparisons (Figure 6.5B, F(3,144)=3.329, 

puncorrected=0.022, pcorrected=0.066). There was no effect of reaction-time variance on any 

interactions with block (block-by-age, block-by-reward, block-by-reward-by-age 

interactions, p’s>0.05). These results suggest that the duration of the experiment 

influenced movement preparation, but that this change was independent of either 

reward status or age. 

The progression of the experiment also influenced aspects of how individuals 

executed their reaching movements. Time to circle decreased throughout the 

experiment (Figure 6.5C, main effect of block, F(3,144)=15.300, p<0.001) and was also 

independent of age (block-by-age interaction, F(3,144)=0.307, p=0.821) or reward 

(block-by-reward, F(3,144)=0.481, p=0.696; block-by-reward-by-age interaction, 

F(3,144)=0.343, p=0.794). Maximum excursion, mean crossing point, and crossing-

point variance were all consistent throughout the course of the experiment (Figure 6.5D-
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F, main effect of block, block-by-age, block-by-reward, block-by-reward-by-age 

interactions, p’s>0.05). 

Overall, the length of the experiment influenced certain aspects of movement 

execution, however, this change was independent of either reward or age. Importantly, 

the observation that older adults increased the velocity of their reaching movements 

throughout the course of the experiment indicates that the reluctance to alter the 

execution of their movements towards reward was not due to a limit in the capacity of 

the older adults to increase vigor, but rather due to an age-specific effect in the value 

assigned to the reward stimulus. 
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Figure 6.5 Effect of temporal proximity to reward in young (black) and older (gray) 
adults. Change in A) mean reaction time (ms), B) variance in reaction time (ms2), C) 
mean time to circle (ms), D) mean maximum excursion (cm), E) mean crossing point 
distance (deg), and F) variance in crossing point distance (deg2) in trials immediately 
preceding (R-1) and following (R+1) reward. Values reported as relative changes from 
reward (* p<0.05, ** p<0.01, *** p<0.001, n.s.=not significant). Subset graphs represent 
relative differences (older adults minus young adults) in response magnitude between 
age groups at each trial (OA=older adults, YA=young adults, # p<0.05, c significant 
difference lost as a result of correcting for multiple comparisons). Error bars represent 
±SEM and have been slightly offset horizontally to improve contrast. 
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Effect of age on the metabolic cost of reaching 

Older adults did not adjust the velocity or extent of their reaching movements in 

response to added reward. This could be explained by a decreased sensitivity to the 

reward itself or due to an increased cost of effort when compared to younger adults. In 

the second experiment, I measured how the cost of reaching in older adults changed 

independently with increasing movement duration and distance and whether this 

response was dependent on age. I quantified the cost of effort objectively by measuring 

the metabolic rate of each reaching condition obtained via indirect calorimetry. I 

measured the metabolic rate of moving in older adults as they made alternating forward 

and return reaching movements at distances of 10 and 20cm and over durations 

ranging from 125 to 2250ms and compared their performance to previously collected 

young adult data (Table 6.2, Figure 6.6). 
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Table 6.2 Durations, inter-trial-intervals (ITI) and metabolic rates across conditions 
 

Young Adults (4F, 3M, 66±5kg) at 10cm  

Intended Durations=    1000ms  775ms  500ms  300ms  125ms 

Actual Duration (ms):                  1154±9  952±16  637±14  434±11                 369±9 

ITI (ms):                   909±43  761±26  800±22  775±10                 789±8 

Gross Rate (J/s):                          95±6      97±6                      98±5                 113±6                       128±4 

Net Rate (J/s):   16±2                     18±3                        19±2                         33±3                        48±4        

Moving Rate (J/s):      27±3                     32±5                        42±4                         93±10                      152±14          

Resting Rate (J/s): 79±5  

Young Adults (4F, 4m, 66±3kg) at 20cm  

Intended Durations=    2050ms  1150ms  800ms  500ms  250ms 

Actual Duration (ms):                  2141±15 1339±13  960±11  625±16  478±17 

ITI (ms):                     1137±44 842±20  763±12  794±6  806±9 

Gross Rate (J/s):                    94±5       97±4          100±4        114±4                       140±5 

Net Rate (J/s): 13±4  16±3 19±4  33±5   59±7 

Moving Rate (J/s):                       20±5  27±5 34±8  74±11   158±15 

Resting Rate (J/s): 81±5 

 

Older adults (6F, 6M, 71±6kg) at 10cm  

Intended Durations=    1100ms  800ms  600ms  500ms  250ms 

Actual Duration (ms):                  1129±27 924±18  728±17  657±15  522±17 

ITI (ms):                     1235±119 1094±63  1081±51  1142±73                 1289±66 

Gross Rate (J/s):                    79±5       82±5  86±5           90±5                       96±6 

Net Rate (J/s):                            8±2          11±2  15±3           19±4                       25±4 

Moving Rate (J/s): 16±5       26±7  38±11         55±16                     88±26 

Resting Rate (J/s): 71±5 

Older adults (6F, 6M, 71±6kg) at 20cm  

Intended Durations=    2150ms  1250ms  850ms  550ms  250ms 

Actual Duration (ms):                  2081±49 1347±26  990±19  707±24  635±15 

ITI (ms):                     1197±54 1056±60  1031±54  1031±48                 1153±47 

Gross Rate (J/s):                        83±5          85±5                 89±5          99±6                        109±7 

Net Rate (J/s):                            15±2          18±3                 22±3          32±5                        39±5 

Moving Rate (J/s):  24±2          33±5                 44±6          83±12                      109±14 

Resting Rate (J/s): 68±5  
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In line with previous findings (Shadmehr et al. 2016), the variance in the net metabolic 

cost of reaching was strongly explained as a function of distance and duration 

(R2=0.82). As the duration towards a set target distance increased, the net metabolic 

rate of moving decreased (c=0.68 [0.37 1.00], p<0.001). Similarly, for movements of a 

set duration, increasing distance resulted in an increase in the net metabolic cost of 

moving (d=1.61 [0.99 2.24], p<0.001). There was no significant offset (a=1.52 [-20.79 

23.83], p=0.89). The free parameter b was 129.35 [72.82 185.88] (p<0.001).  

 To test whether the metabolic response to these constrained movements was 

age-dependent, I fit the net metabolic cost of moving independently for each age group 

(Figure 6.6AB). Models for each young and older adults explained a large amount of 

variance in metabolic cost (young R2=0.88, older R2=0.78). Both age groups equally 

responded to changing distance (c, young=0.69 [0.27 1.12] p=0.002, older=0.91 [0.27 

1.55] p=0.004) and duration (d, young=1.98 [1.01 2.96] p<0.001, older=2.03 [0.57 3.48] 

p=0.007). Furthermore, there was no difference in either a (young=10.79 [-12.83 34.41], 

older= 7.39 [-22.09 36.88]) or b (young=87.10 [27.32 146.88], older=160.10 [53.29 

266.91]).  

 If I use the same model structure to explore and age dependent difference in the 

gross metabolic cost of moving ( moving+ rest), I obtain a similar outcome (Figure 

6.6DE). Models resulting from each age group adequately captured the variance in the 

gross metabolic cost of moving (young R2=0.97, older R2=0.93). Again, metabolic cost 

in both groups increased in response to increasing distance (c, young=0.80 [0.41 1.19] 

p<0.001, older=0.86 [0.22 1.51] p=0.009) and decreased in response to increasing 

duration (d, young=2.22 [1.32 3.11] p<0.001, older=2.06 [0.54 3.58] p=0.008). However, 

!E !E
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there was now a significant asymptote (representative of rest) that was similar for both 

groups (a, young=94.28 [76.15 112.41] p<0.001, older=77.48 [47.59 107.38] p<0.001). 

There was still a significant effect of parameter b (younger=87.25 [33.72 140.78] 

p=0.002, older=143.17 [41.73 244.60] p=0.006). When directly comparing the resting 

metabolic rate of each age group, I found they were at levels that were statistically 

indistinguishable, but which appeared to approach significance (young=78.83±3.50, 

older=68.83±4.56, independent t-test, p=0.068). 

The common findings of these models suggest that the metabolic cost of 

reaching (1) decreased as a function of movement duration, (2) increased as a function 

of distance, and (3) appeared to be conserved as a result of healthy aging. 

!E
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Figure 6.6 Effect of duration, distance, and age on the metabolic rate of moving. Dots 
represent individual means (black=young, gray=older). Panels A and B represent 
changes in net costs and panels C and D represent changes in gross costs. Curves 
represent model results for each age. 
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Masses of arm segments are equal between age groups 

The mass of the arm influences the metabolic cost of reaching across distance 

and duration (Shadmehr et al. 2016). To explore whether differences in segment mass 

could account for the lower metabolic cost observed at the short distance/slow duration 

condition, I estimated the segment masses of each participant’s right arm as a function 

of weight, age, and sex. Based on these estimates, there appeared to be no difference 

in segment masses between younger and older adults for the upper arm 

(myoung=1.76±0.28kg, mold=1.74±0.42, p=0.88), lower arm (myoung=1.00±0.19kg, 

mold=1.11±0.36, p=0.32) or hand (myoung=0.39±0.07kg, mold=0.41±0.12, p=0.53). These 

results suggest that the influence of mass on the measurement of metabolic cost was 

similar between the young and older age groups. 

 

Reduced sensitivity to reward in older adults is not explained by greater effort  

The results of experiment 2 allowed for further interpretation of the mechanism 

underlying the reduced effect of reward in older adults observed in experiment 1. 

Despite being aware of the presence of reward, as evident in the reward-induced 

changes in movement initiation, reward had a significantly weaker effect on how older 

adults selected the vigor of their movements. The reduced reward sensitivity could 

potentially be explained by a greater objective effort cost of movement execution. 

Across all trials in experiment 1, older adults averaged a maximum excursion of 

18.2±0.3cm with a time to circle of 672±35ms. Young adults averaged a maximum 

excursion of 17.9±0.3cm with a time to circle of 588±37ms. If I use these durations and 

the model fits from experiment 2 to estimate the net metabolic cost of reaching, I see 
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that the young and older model predictions strongly overlapped (Figure 6.6B). I used the 

parameter values obtained from each age group to predict the net metabolic cost of 

reaching in experiment 1. Based on these estimates, I found no distinguishable 

difference in the mean metabolic cost of moving between age groups 

(young=112±15J/s, older=99±13J/s, p=0.938).  Thus the older adults’ weaker 

modulation of movement velocity and extent in response to reward do not appear to be 

a result due to differences in objective effort. 

 

6.5 Discussion 

I observed that older adults, like young, decreased the mean and variance of their 

reaction times in expectation of reward. However, when executing movements towards 

increased reward, only younger adults adjusted the velocity and extent of their reaching 

movements. This reluctance for older adults to adjust movement execution could not be 

explained by an increase in the cost of objective effort. I measured the metabolic cost of 

reaching as a function of changing duration and distance and found that these 

responses were not elevated as a result of healthy aging. In the following section, I 

discuss evidence supporting the idea that the reluctance for older adults to modulate 

vigor in response to reward can be better explained by a decreased sensitivity to the 

reward itself rather than an increase in effort associated with increasing vigor.  

 

Reward alters movement preparation in both groups, but not execution 

With increasing age, the ‘sensory fitness’ of audio and visual organs decline and the 

ability to react to stimuli of these modalities is reduced (Koga and Morant 1923). One 
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explanation for why older adults did not adjust the execution of their movements in 

response to reward could be that the audiovisual qualities of the reward were not 

processed in the same manner as in younger adults, leading to a decrease in the value 

of these stimuli. Alternatively, older adults may have adequately perceived the 

rewarding stimulus, and rather the observed differences in response to reward were due 

to different added value assigned to the rewarding stimuli (Dreher et al. 2008). I found 

that older participants decreased reaction time in expectation of reward, but did not 

increase velocity or extent when executing reaching movements towards those 

quadrants. These results indicate that older individuals adequately perceived the added 

stimuli in the rewarded quadrants, supporting the hypothesis that in older adults, the 

sensitivity to the rewarding qualities of the stimuli were relatively under valued when 

compared to younger adults. Furthermore, the manifestations of this age dependent 

difference in values become apparent more so in the execution rather than preparation 

aspect of the movement.    

 

Older and young adults executed movements similarly towards non-rewarded quadrants 

I found no differences between the two age groups when selecting velocity or 

extent of their movements in the absence of reward. These findings go against 

previously reported observations showing an age dependent decrease in execution 

across a range of representative movements (Waters et al. 1988; Ketcham et al. 2002; 

Kozak et al. 2003; Laufer 2005; Irving et al. 2006; Huang and Ahmed 2013; Dowiasch et 

al. 2015). When making pointing movements, individuals adjust the velocity of their 

movements according to the size and amplitude of the endpoint (Fitts 1954). Ketcham 
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et al. (2002) reported that when reaching towards targets of decreasing size, older 

adults were slower and less accurate than young and were less willing to adjust the 

velocity of their movements in response to changing task difficulty. Kozak et al. (2003) 

measured preferred reaching velocity of older and young adults as they reached out to 

touched a button while standing on an elevated platform. In this environment, where the 

cost of stability was high, older adults preferred slower shorter reaches when compared 

to younger and were less willing to increase their reaching velocity when instructed. The 

current design minimized the cost of both accuracy and stability. First, participants 

made all movements while seated. This eliminated the consequences of increasing 

momentum as a result of more vigorous reaching. Second, the quadrants used were of 

a large size that allowed for a minimal influence of accuracy costs. As long as the 

movement was directed towards the correct quadrant, no amount of naturally occurring 

signal dependent or independent noise would cause a trial to fail. These two combined 

factors allowed me to mitigate the cost of accuracy or stability and focus instead on how 

effort and reward interact to establish vigor in older adults.  

 

Metabolic cost of reaching is conserved across age 

The metabolic cost of reaching has previously been shown to change as a 

function of distance and duration in younger adults (Shadmehr et al. 2016). However, to 

our knowledge, the results presented in the current study are the first to explore whether 

this change is age dependent. I confirm that changes in metabolic cost can be captured 

across a range of representative distances and duration, but furthermore, that this 

relationship is conserved between older and younger adults.  
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 Across the tested conditions, I was able to elicit increases in gross metabolic rate 

( gross) ranging between 18% and 75% of rest in young adults at 20cm and between 

19% and 56% above rest in older adults at 20cm. I measured the metabolic rate of 

reaching across multiple conditions for each individual with the intention of minimizing 

the possibility of sensor error (~5% (Crouter et al. 2006)) in hiding potential age 

dependent differences. While I cannot for certain, eliminate the possibility that sensor 

error is masking age effects, I can confidently say that the effect of age on reaching is 

not affected to the same magnitude as other activities such as walking, where one study 

reported metabolic cost increasing by as much as 15% as a result of old age (Ortega 

and Farley 2015). Additionally, the fact that the measured mean metabolic cost was in 

most cases lower than the mean for younger adults, makes the possibility of an age 

dependent increase in metabolic rate even more unlikely.   

My results do not exclude the possibility that there is an age dependent 

subjective inflation in the cost of effort, a possible explanation as to why older adults 

were not willing to adjust their movement velocity or extent. The dopaminergic midbrain 

has long been a target for the coding of reward value (Schultz et al. 1997; Tobler et al. 

2005), with this region having been shown to decline in activity as a function of aging 

(Dreher et al. 2008; Chowdhury et al. 2013). However, recent evidence has also 

highlighted the role of this region in the representation of effort costs (Salamone et al. 

1991b, 1994b; Phillips et al. 2007; Wardle et al. 2011; Treadway et al. 2012). Wardle et 

al. (2011) were able to identify a positive association between an individual’s level of 

activity in their dopaminergic regions with their willingness to exert effort for a given 

reward. Similarly, individuals with decreased dopaminergic tone, such as individuals 

!E !E
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with Parkinson’s Disease, show a heightened sensitivity to effort, possibly explaining 

one of their cardinal symptoms, bradykinesia (Mazzoni et al. 2007; Schmidt et al. 

2008b; Chong et al. 2015).  

An increased sensitivity to effort may explain why older adults were less willing to 

increase their vigor in response to added reward, however, both age groups exhibited a 

similar level of vigor in movements towards unrewarded quadrants. This discrepancy 

leads me to believe that the reluctance of older adults to modulate their vigor in 

response to added reward was driven more by the sensitivity to the reward itself than by 

a subjective inflation in the cost of increasing effort.    

 

Interpreting net versus gross metabolic costs 

In the current study, I reported that the net metabolic cost of moving was not 

elevated in older adults when reaching across a range of distances and durations. My 

conclusions were drawn using net rate of moving rather than gross rate for two reasons. 

First, many participants made two visits to the lab, each on different days. Using net 

rather than gross rate allowed me to focus on differences caused by the effects of 

distance and durations, independent of potential day-to-day fluctuations in resting rate 

within participants (~4% in our older adults). Second, the resting metabolic rate of older 

adults has previously been reported to be lower than in younger adults (Fukagawa et al. 

1990; Frisard et al. 2007). Though the average resting metabolic rate between age 

groups was indistinguishable in my current cohort, using net rather than gross metabolic 

rate allowed me to isolate changes in metabolic rate resulting specifically from the 

movement itself. It should be noted that whether using net or gross rate, the main 
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conclusions still hold, increasing speed increases the metabolic rate of moving and 

importantly, this cost does not appear to be elevated in older adults. 

 

Temporal discounting of reward 

Another interpretation of my results is that young and older adults similarly represented 

both the cost of effort and the value of the reward and that the observed differences in 

movement execution may be accounted for due to a difference in the cost of time 

(Shadmehr et al. 2010).  Temporal discounting is a concept where reward decreases in 

value the longer an animal must wait for it (Myerson and Green 1995). This decay has 

been modeled according to a hyperbolic discounting function (Haith et al. 2012): 

                       
[5] 

Here, the temporally discounted value of reward (Vdelay) is a function of delay (d), 

instantaneous value (α), and a weighting variable representing impulsivity (k). Small 

values for k suggest that an individual values a reward consistently across time. Other 

individuals who are more compulsive would have larger values of k, meaning they 

would be more likely to forgo a larger later reward for a smaller immediate reward. 

Furthermore, this function of temporal discounting predicts greater changes in value as 

a result of greater instantaneous value (α). If I consider movement time to represent the 

delay before acquiring reward, then moving faster may require more effort, but it also 

minimizes the potential loss of reward due to the cost of time. Impulsivity is higher in 

younger ages and gradually declines until leveling out as we reach middle-aged 

adulthood (Green et al. 1996, 1999). Even if the cost of effort and instantaneous 

sensitivity to reward were equal across the tested ages, younger adults in the current 

Vdelay (d) =
α

1+ kd
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study may have chosen to increase their velocity to minimize the reward lost to temporal 

discounting, a change in value not perceived in the older adult group.   

 

Limitations 

The use of an audiovisual stimulus as the reward likely had a different effect on 

the older and younger group due to a decline in the ability to hear and see that 

accompany healthy aging. Even with an auditory and visual system expected of young 

adults, the benefits of the reward where relatively small, resulting in only a miniscule 

response in vigor of 2-5%. Two improvements to the current protocol should be 

considered for future studies. First, the reward should take a medium that is better 

controlled across age, for example a food or monetary reward. Second, the current 

reward was binary. Because I only used a binary reward design, I was unable to 

comment on whether an effect of reward was present, but just too small to detect, or 

alternatively, the reward truly had no effect in determining how to execute the 

movement. By introducing a multitude of reward magnitudes, I would better be able to 

elucidate whether the current absence of response in older adults was due primarily to 

reasons pertaining to changing effort or reward. 

 A few studies suggest that animals change behavior not just as a result of a 

change in reward quality, but also a change in reward rate (Niv et al. 2007; Haith et al. 

2012). This means that the reward landscape can be additionally manipulated by 

changing the frequency of reward, either by changing the relative number of rewards, or 

the amount of time elapsed between trials. I did not control for inter-trial-interval in either 

experiment nor manipulate the number of rewards across blocks. Faster completion of 
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trials would result in a greater reward rate, which could explain why vigor in both age 

groups increased as experiment 1 progressed. Controlling inter-trial-interval has 

previously been shown to affect the vigor of saccades in young adults (Haith et al. 

2012). A similar constraint implemented with older adults could further explain how they 

consider changing reward when establishing movement vigor. 

 I measured how the metabolic cost of reaching responded to changing distances 

and durations. Another important cost that I ignored was to change the mass at the end 

of the arm. All reaches occurred without any added mass from the robot. The only 

possible source of differences in mass could be due to different sizes in the arm 

segments between age groups. I did not directly measure these masses, but estimated 

them based on an individual’s age sex and weight. My estimates indicated that there 

was no differences in mass between the two age groups. By adding additional mass to 

the robot, I can increase the amount of inertia required to overcome when moving the 

handle. This additional dimension would allow me to explore a larger cost landscape 

than what is possible by just changing the current kinematic constraints, further enabling 

me to probe how older adults value changing effort costs when establishing vigor.  

Lastly, it is important to consider that my comparisons between older and young 

adults have been on an absolute level. As we get older, our capacity for aerobic 

exercise (VO2max) declines (Dehn and Bruce 1972; Fleg and Lakatta 1988). Sparrow et 

al. (2005) found that young and older adults had similar reductions in absolute levels of 

metabolic rate when learning coordinated arm movements, but that the older adults 

maintained an increased heart rate. Therefore, I must consider the possibility that older 

adults did not respond to reward in the same manner as young due to a greater relative 
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change in regards to percent of their VO2max. This explanation however, seems 

somewhat unsatisfactory, especially when considering that the two groups similarly 

executed movements towards non-rewarded quadrants.   

 

Conclusion 

In the current set of experiments I sought to understand how the interactions of 

changing reward and effort compared across different ages when making basic 

reaching movements. I found that the metabolic cost of reaching as a function of 

duration and distance was indistinguishable between age groups. When introduced with 

added reward, both younger and older adults responded by decreasing reaction time. 

When executing the movement towards reward, only younger adults increased their 

velocity and extent, with all responses ranging between 2 and 5 percent. I conclude that 

when moving in a dynamic reward landscape, older adults were aware of the changes 

in reward, but were less willing to increase the cost of effort in those movements to 

obtain the rewards sooner. 
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CHAPTER 7  

THESIS CONCLUSIONS 
 

1. In my first study, I explored how individuals valued effort when deciding between 

different risky reaching movements. When representing effort as the metabolic cost 

of the movement: 

a. Individuals subjectively valued the increasing cost of effort non-linearly. 

b. The subjective value of effort was idiosyncratic. Sensitivity to effort increased 

in half of the participants and decreased in the remaining half. 

c. When considering the range of subjective distortions across participants, the 

behavior of the group was best described by an objectively valued effort cost. 

d. Traditional optimal control models represent effort as a quadratically 

increasing cost. This quadratic representation of effort, when quantified as a 

metabolic cost, failed to explain the group’s decision-making strategies.  

e. The subjective valuation of effort is not distorted to the extent previously 

estimated when represented as metabolic cost. 

2. In my second study, I developed a decision-making paradigm to measure how effort 

and time costs interacted when explaining gait selection. By observing the distances 

when individuals changed their gait preference, I found that:  

a. Neither minimizing total movement time nor total metabolic energy adequately 

captured how the group made decisions between walking and running.  

b. Gait decisions were best explained by minimizing a weighted combination of 

metabolic and temporal costs. 
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c. Individuals with a high weighting on time adjusted running speeds dependent 

on the temporal costs associated with each gait and individuals who heavily 

weighted effort selected gait speeds that were consistent across a range of 

temporal costs.  

d. Adjustments in preferred velocity were only observed in running gaits where 

decreasing total time resulted in a relatively smaller increase in effort than in 

walking.  

e. The subjective value of effort has implications for how individuals select 

movement speed. 

3. In my third study, I measured how young adults altered the vigor of unconstrained 

reaching movements in response to a changing reward landscape. I measured an 

extensive collection of behavioral responses both in regards to movement 

preparation and movement initiation.  

a. In expectation of increased reward, younger adults reacted faster and 

reached with a higher velocity and greater magnitude than similar movements 

made in the absence of reward.  

b. Reward also lead to movements that were more consistent, an observation 

counter to what is predicted by the traditional speed-accuracy trade-off.  

c. The effects of reward appeared to be localized to the rewarded movement 

itself, with no influence on subsequent movements or even return aspects of 

the same movement following reward delivery.  

d. Even when reward quality is independent of the movement behaviors, 

individuals spent greater effort to acquire that reward sooner.  
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4. In my last study, I sought to understand how the representation of cost and benefits 

changed as a result of healthy aging when selecting movement vigor in a dynamic 

reward landscape.  

a. Increased reward led older adults to decrease reaction time similarly to young 

adults.  

b. Variability in reaction time also decreased in older adults in expectation of 

reward. 

c.  When executing reaching movements towards reward, older adults had a 

diminished response when compared to young in regards to movement 

velocity and extent. 

d. Young and older adults had similar metabolic costs when reaching across a 

range of durations and distances.  

e. The diminished sensitivity to reward in older adults does not appear to be a 

result of increased objective effort costs, but instead more likely due to a 

diminished value of the reward itself.    

Collectively, the presented research has introduced a swath of examples where 

changing the effort, time, and/or reward associated with a movement alters both the 

preference for that movement and the vigor of performing that movement. These results 

provide much needed human experimental data to support the relatively novel idea in 

motor control that movement is not simply the product of minimizing a single objective 

cost, but rather is the product of a complex interaction of internal constraints of the 

animal and the ever changing reward landscape of the animal’s environment.     
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