
Weisfeiler–Leman and Group Isomorphism

By Nathaniel A. Collins

Department of Mathematics

University of Colorado Boulder

United States

04/11/2023

Committee members

Thesis Advisor, Outside Reader: Joshua A. Grochow, Department of Computer Science

Honors Council Representative: Nathaniel Thiem, Department of Mathematics

Additional Committee Member: Peter Mayr, Department of Mathematics

Acknowledgements

There are many people I wish to thank for their help and support. I firstly want to

thank Michael Levet, who took every opportunity to go above and beyond in supporting me

throughout my entire undergraduate career. In addition to teaching math, he helped enable

every research opportunity I had during my undergraduate and read my writing many more

times than he needed to.

I additionally want to thank Joshua Grochow and Ryan Layer for their mentorship and

for enabling me to try research before I found out I wanted to do this long-term.

I want to thank my friends and colleagues who were a constant source of encouragement.

I finally want to thank Laura, who was with me through every up and down, encouraged

me when I needed encouragement, and made sure I didn’t procrastinate my writing, and my

cat, who attacked my toes whenever I got distracted while writing.

1

Abstract

We investigate the power of the counting and count-free variants of the Weisfeiler–

Leman (WL) Version I algorithm for groups (Brachter & Schweitzer, LICS 2020).

• We study the counting and count-free versions of the Weisfeiler–Leman algorithm

when applied to so-called CFI groups, which arise from CFI graphs (Cai, Fürer,

& Immerman, Combinatorica, 1992) via Mekler’s construction (J. Symb. Log.,

1981). We use O(log log n) rounds of WL Version I, improving upon the work of

Brachter & Schweitzer, who used O(log n) rounds of WL Version II. As a conse-

quence, we obtain improvements in both the parallel and descriptive complexities

of identifying these groups.

• We further improve the parallel complexity using count-free WL Version I, bounded

non-determinism, and limited counting. In particular, we obtain a β1MAC0(FOLL)

isomorphism test for CFI groups

2

Contents

1 Introduction 4

1.1 Background and Motivation . 4

1.2 Summary of results . 7

2 Background 9

2.1 Graphs . 9

2.2 Groups . 10

2.3 Mekler’s Construction . 11

2.4 Complexity . 14

2.5 Weisfeiler–Leman . 16

2.6 Logics . 18

2.7 Weisfeiler–Leman as a Parallel Algorithm . 19

2.8 Pebble Game . 20

2.9 CFI Graphs . 23

3 Results 24

3.1 Weisfeiler–Leman and the CFI Groups . 24

3.2 Count-Free Strategy and the CFI Groups . 29

4 Conlcusion 36

3

1 Introduction

1.1 Background and Motivation

Informally, an isomorphism problem takes as input two objects and asks if they are the

same for some appropriately defined notion of equivalence. Efficient algorithmic solutions

to isomorphism problems have applications in a number of areas such as chemistry [26],

cryptography [17, 54], error-correcting codes [24, 13], computer algebra systems [50, 22],

classifying quantum entanglement via known connections to tensors [37], and other areas in

complexity theory [33].

Key motivation for the work in this thesis arises from the Graph Isomorphism problem

(GI), which takes as input two graphs and asks if there is an isomorphism φ : V (G) → V (H).

The computational complexity of Graph Isomorphism remains an intriguing open ques-

tion. Indeed, in their seminal papers introducing the notions of NP and NP-completeness,

both Cook [27] and Levin [78] asked if Graph Isomorphism was NP-complete.

In 1975, Ladner proved that if P ̸= NP, then there exist problems in NP which are neither

in P nor NP-complete. More precisely, there exists a strict infinite hierarchy of problems

contained in NP [59]. Finding such a problem would imply that P ̸= NP. There has been

considerable effort in identifying NP-intermediate candidates. Many of these candidates,

such as Linear Programming and Primality Testing, have been placed into P. The

remaining candidates under (historical) consideration include isomorphism problems such as

GI, as well as cryptographic problems such as Integer Factorization and Discrete

Logarithm. There is a precise sense in which Integer Factorization and Discrete

Logarithm might in fact be easier than GI. These problems have an upper bound of

NP∩ coNP while Graph Isomorphism has upper bounds of NP∩ coAM. To date, the best

algorithmic upper bound is nΘ(log2 n) [8] (Babai’s analysis only provided a quasipolynomial

bound. See [47] for a more careful analysis, which yields the exponent of Θ(log2 n)).

There is considerable evidence that GI is not NP-complete. For instance, as GI ∈ coAM,

4

we have that if GI were NP-complete, then PH = ΣP
2 ∩ ΠP

2 = AM (see for instance, [2]).

Additionally, since the best upper bound is nΘ(log2 n) [8], if this problem were to be NP-

complete, then all of NP can be solved in quasipolynomial time. This would violate the

Exponential Time Hypothesis [52] and imply that EXP = NEXP [20]. It is believed that

EXP ̸= NEXP. In addition, GI is low for both PP [58] and SPP [3] and belongs in the second

level LP2 of the Low Hierarchy [75] which is contained in NP. Hence, unless PH collapses

to some level, GI is not reducible to any NP-complete problem under multiple notions of

reducibility weaker than polynomial-time reductions. Finally, the decision variant of GI is

polynomial-time equivalent to the counting variant #GI. No NP-complete problem is known

to be polynomial-time equivalent to its counting version.

At the moment, further advances in resolving the complexity of Graph Isomorphism

appear out of reach at the moment. It is thus natural to ask about special cases of GI that

might be easier than the general case. One such problem is the Group Isomorphism (GpI)

problem. GpI takes as input two finite groups and decides whether an isomorphism exists

between them. When the two groups are given by their Cayley (multplication) tables, GpI

is known to be reducible to Graph Isomorphism. Hence, GpI is also in NP ∩ coAM. In

particular, when the groups are given by their multiplication tables, GpI is AC0-reducible to

GI, and there is no AC0-reduction fromGI toGpI [23]. When the groups are given succinctly,

such as by generating sets of permutations or matrices, GI reduces to GpI [23, 66, 37].

Similarly, the current best upper bound on GpI is nΘ(logn). It can be shown that a group

of order n has a minimal generating set of size ≤ ⌈logp n⌉, where p is the smallest prime

dividing n. Tarjan [69] and Lipton, Synder, & Zalcstein [65] independently observed thatGpI

admits a brute-force generator enumeration algorithm. This algorithm works by deriving the

minimal generating set for both groups, giving each generator some index, and then testing

all ways these generators can be matched together. Tarjan [69] gave an nlogp(n)+O(1)-time

algorithm, and Lipton, Snyder & Zalcstein [65] gave a stronger bound of DSPACE(log2 n).

This bound has escaped largely unscathed for 40 years, however, Rosenbaum improved this

5

bound to n(1/4) logp(n)+O(1) [73] (see [32, Section 2.2]). Thus, in light of the nΘ(log2 n)-runtime

bound on GI, GpI serves as a key barrier to placing GI into P. There has been significant

work in the last 15 years developing efficient algorithms for special cases of GpI [36, 60, 9,

71, 80, 62, 12, 10, 72, 73, 19, 35]. These algorithms primarily leverage algebraic techniques.

As GpI is strictly easier than GI under AC0 reductions, it is natural to inquire as to whether

combinatorial techniques from GI can be fruitfully leveraged in the setting of groups. We

investigate this question in more detail using the Weisfeiler-Leman algorithm.

The k-dimensional Weisfeiler–Leman (WL) algorithm serves as the central combinatorial

technique in GI. We refer readers to Section 2 of the original CFI [21] paper for a more

detailed history of this algorithm. Published by Boris Weisfeiler and Andrei (Andrey) Leman

[81, 82], and later generalized to its k-dimensional variant independently by Babai & Mathon

[6] and Immerman & Lander [51], this algorithm colors k-tuples of vertices of both graphs in

an isomorphism-invariant manner. This algorithm has two components; an initial coloring

step that colors each k-tuple and an iterated refinement step that assigns every k-tuple a new

color based on the colors of nearby tuples. See Section 2.7 for a more detailed description of

how the algorithm works.

For fixed k, the k-dimensional Weisfeiler–Leman algorithm runs in polynomial-time [81,

82]. WL serves as a polynomial time nonisomorphism test for several families of graphs.

These include trees [30, 51], graphs of bounded treewidth [42, 45, 55, 61], graphs of bounded

rank width [43], planar graphs [41, 56], graphs of bounded genus [38, 40], interval graphs

[31], and graphs with a forbidden minor [39]. In addition, just 1-WL is powerful enough to

identify almost all graphs [74].

Despite the power and success of the Weisfeiler–Leman algorithm, it is not sufficiently

powerful to place GI into P. We will discuss this here. Already, the simplest of these

algorithms, the 1-dimensional WL algorithm, fails to identify regular graphs– for instance,

1-WL fails to distinguish C6 and 2K3. More generally, two graphs are not distinguished

by 1-WL if and only if they are fractionally isomorphic [77]. The 2-dimensional Weisfeiler-

6

Leman algorithm identifies nearly all regular graphs [14, 57], but fails to distinguish strongly

regular graphs since every pair of vertices has the same number of shared neighbors [7].

More generally, Cai, Fürer, & Immerman [21] exhibited an infinite family of graph pairs

(Gn, Hn) that require Θ(log n)-dimensional WL to distinguish Gn from Hn. As a result,

WL fails to place GI into P. Even the individualize-and-refine paradigm fails to resolve GI

in polynomial-time [70]. On the other hand, the CFI graphs have bounded degree and so

admit a polynomial-time isomorphism test using the group theoretic techniques of Babai &

Luks [67, 11, 5, 44]. As a consequence, group theory appears to be a necessary ingredient to

place GI into P

In light of the fact that GpI is strictly easier than GI under AC0 reductions, it is natural

to ask whether Weisfeiler-Leman will be more effective in the setting of groups. Previous

works [63, 18] have attempted to use WL as a subroutine for GpI by reducing to a graph

based on a group action over a vector space. Subsequently, Brachter & Schweitzer [15]

formulated three variants of the Weisfeiler–Leman algorithm in the setting of groups. They

showed that these three variants are equivalent in distinguishing power, up to a factor of 2

in the dimension. As a demonstration of the power of their model, Brachter & Schweitzer

[15] showed that WL identifies the so-called CFI groups– class 2 p-groups of exponent p > 2

arising from the CFI graphs [21] via Mekler’s construction [68]. As further evidence for the

power of their model, Brachter & Schweitzer also showed that WL can detect many common

isomorphism invariants [16], and Grochow & Levet show that WL for groups serves as a

powerful parallel algorithm for determining isomorphism for several families of groups [34].

1.2 Summary of results

In this thesis, we use the Weisfeiler–Leman Version I algorithm for groups [15] to improve

the parallel and descriptive complexities of identifying the CFI groups. This is joint work

with Michael Levet [25].

We first establish the following.

Theorem 1.1. Let Γ0 be a 3-regular connected graph, and let Γ1 := CFI(Γ0) and Γ2 :=

7

C̃FI(Γ0) be the corresponding CFI graphs. For i = 1, 2, denote Gi := GΓi
be the corresponding

groups arising from Mekler’s construction. We have that the (3, O(log log n))-WL Version I

distinguishes G1 from G2. If furthermore Γ0 is identified by the graph (3, r)-WL algorithm,

then the (3,max{r, O(log log n)})-WL Version I algorithm identifies G1 as well as G2.

This improves the previous result of Brachter & Schweitzer, who established the analogous

result using O(log n) rounds of the more powerful WL Version II algorithm. Our improved

upper bound relied on two techniques. First, we observed that Brachter & Schweitzer [15]

crucially leveraged the graph structure supporting the CFI groups. In particular, they did

not rely on the full generated subgroup of a given 3-tuple. Thus, we observed that we could

instead use the Weisfeiler–Leman Version I algorithm, which has a weaker initial coloring.

Second, we demonstrate an improved pebbling strategy in the associated Ehrenfeucht–Fräıssé

game which requires O(log log n) rounds instead of O(log n). Hence, with an improvement

to both the initial coloring and iterated refinement step, we have an improved upper bound

on the complexity for 3-WL to distinguish CFI groups.

By the parallel implementation of WL by Grohe & Verbitsky [45] and the logical char-

acterization of WL [21, 51, 15], we obtain improvements in both the parallel and descriptive

complexities for identifying the CFI groups.

Corollary 1.2. Let Γ0 be a 3-regular connected graph, and let Γ1 := CFI(Γ0) and Γ2 :=

C̃FI(Γ0) be the corresponding CFI graphs. For i = 1, 2, denote Gi := GΓi
be the corre-

sponding groups arising from Mekler’s construction. G1 can be distinguished from G2 in

using a logspace uniform TC circuit of depth O(log log n). Furthermore, if the base graph

Γ0 is identifiable by 3-WL for graphs in r rounds, then we can decide isomorphism between

Gi (i = 1, 2) and an arbitrary group H using a logspace (uniform) TC circuit of depth

max{r, O(log log n)}.

Corollary 1.3. Let CI
k,r be the Version I fragment of first order logic with counting quanti-

fiers, where formulas are permitted at most k variables and quantifier depth at most r. Then

8

there exists a formula φ in CI
3,O(log logn) such that G1 |= φ and G2 ̸|= φ. Furthermore, if the

base graph Γ0 is identifiable by 3-WL for graphs in r rounds, then for any group H ̸∼= G,

there is a formula in φi in CI
3,O(log logn) such that Gi |= φi and H ̸|= φi for i ∈ 1, 2.

Additionally, we utilize the weaker count-free variant of WL Version I in tandem with

bounded non-determinism and limited counting to further improve the parallel complexity

for isomorphism testing of the CFI groups. This technique was previously introduced by

Grochow & Levet [34] in the setting of Abelian groups. We show:

Theorem 1.4. Let Γ0 be a 3-regular connected graph, and let Γ1 := CFI(Γ0) and Γ2 :=

C̃FI(Γ0) be the corresponding CFI graphs. For i = 1, 2, denote Gi := GΓi
to be the corre-

sponding groups arising from Mekler’s construction.

(a) The multiset of colors computed by the count-free (O(1), O(log log n))-WL Version I dis-

tinguishes G1 from G2. In particular, we can decide whether G1
∼= G2 in β1MAC0(FOLL).

(b) If furthermore Γ0 is identified by the graph count-free (3, r)-WL algorithm, then the

multiset of colors computed by the count-free (O(1),max{r, O(log log n)})-WL Version

I will distinguish Gi (i = 1, 2) from an arbitrary graph H. In particular, we can decide

whether Gi
∼= H in β1MAC0(FOLL).

2 Background

We begin by recalling preliminary notions from graph theory and group theory.

2.1 Graphs

A simple, undirected graph G = (V,E) consists of a set V of vertices and a set E of

edges {u, v} for vertices u, v ∈ V . In this thesis, we restrict our attention to finite, simple,

undirected graphs. For a vertex v ∈ V (G), the neighborhood of a vertex v is N(v) := {u ∈

V (G) : {u, v} ∈ E(G)}. The degree of a vertex is deg(v) := |N(v)|. Additionally, a graph

is k-regular if each vertex has degree k. For two graphs G,H, we say that G and H are

9

isomorphic, denoted G ∼= H if there exists a bijection φ : V (G) → V (H) such that

{u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(H)

For example, consider the two graphs below:

Example 2.1. Let G and H be the graphs below.

a b

c d

a b

c d

Observe that the bijection a 7→ b, b 7→ a, c 7→ d, d 7→ c is an isomorphism of the two graphs.

However, not all pairs of graphs have such an isomorphism.

Example 2.2. Let G and H be the graphs below.

a b

c d

a b

c d

In this example, there is no isomorphism φ : V (G) → V (H) since G has eight edges while

H only has six.

2.2 Groups

We assume familiarity with group theory at the level of an undergraduate Abstract Algebra

course. We refer readers to a standard text for more information (see e.g., [28]).

Groups are considered by their Cayley (multiplication) tables. For a group of order n,

its Cayley table has n2 entries where each entry is represented by a binary string of size

⌈log2 n⌉. A p-group is a group of order pk for some prime p and positive integer k ≥ 1. We

say that a p-group has nilpotency class 2 if G/Z(G) is abelian. In this thesis, we will be

particularly interested in class 2 p-groups with exponent p > 2.

10

Remark 2.1. Class 2 p-groups of exponent p for p > 2 are considered to be the hard

cases for Group Isomorphism. When p-groups are given by generating sets of matrices

over Fp, isomorphism for p-groups of class c > 2, c < p and exponent p reduces to an

isomorphism test for p-group of class 2 and exponent p. Additionally, every finite group

has a maximal solvable normal subgroup denoted Rad(G)). G/Rad(G) contains no abelian

normal subgroups and an efficient isomorphism test is known to exist for these groups [10].

This indicates that solvable groups are the bottleneck case for GpI. In a different direction,

Dietrich & Wilson exhibited a nearly-linear time isomorphism test for groups of almost all

orders. Their algorithm notably did not handle groups of large prime power order, which

suggests that groups whose orders are not large prime powers are not hard instances of GpI.

Definition 2.2. LetG be a group. For a, b ∈ G, define the commutator [a, b] := aba−1b−1.The

commutator subgroup of G is the subgroup G′ = [G,G] = ⟨{[a, b] | a, b ∈ G}⟩.

Definition 2.3. Let G be a group. The Frattini subgroup Φ(G) is the intersection of all

maximal subgroups of G.

Theorem 2.4 (Burnside, see, e.g., [28]). Let G be a finite p-group. We have that Φ(G) =

Gp[G,G].

Remark 2.5. In the case of class-2 p-groups, we have that [G,G] ≤ Z(G). If furthermore,

G has exponent p, then Φ(G) = [G,G] ≤ Z(G).

2.3 Mekler’s Construction

We recall Mekler’s construction [68] (recently improved by He & Qiao [46]), which allows us

to encode a graph into a class 2 p-group (p > 2) of exponent p.

Definition 2.6. For n ∈ N and a prime p > 2, the relatively free class 2 p-group of exponent

p is given by the presentation

Fn,p = ⟨x1, . . . , xn|R(p, n)⟩,

11

where R(p, n) consists of the following relations:

• For all i ∈ [n], xpi = 1, and

• For all i, j, k ∈ [n], [[xi, xj], xk] = 1.

Thus, Fn,p is generated by x1, . . . , xn, each of these generators has order p, and the commu-

tator of any two generators commutes with every generator (and thus, every group element).

It follows that each element of Fn,p can be written uniquely in the following normal form:

xd11 · · ·xdnn [x1, x2]
d1,2 · · · [x1, xn]d1,n [x2, x3]d2,3 · · · [xn−1, xn]

dn−1,n.

Here the exponents take on values in {0, . . . , p− 1}. In particular, |Fn,p| = pn+n(n−1)/2.

Mekler’s construction [68, 46] allows us to encode a graph as a class 2 p-group of exponent

p as follows.

Definition 2.7 (Mekler’s Construction). Let Γ(V,E) be a simple, undirected graph with

V = {v1, . . . , vn}, and let p > 2 be prime. We construct a class 2 p-group of exponent p as

follows:

GΓ = ⟨x1, . . . , xn
∣∣R(p, n), [xi, xj] = 1 : vivj ∈ E⟩.

So two generators of GΓ commute precisely if the corresponding vertices form an edge of Γ.

We identify xi with the vertex vi.

Remark 2.8. Mekler’s construction provides a many-to-one reduction from GI to GpI (or

in the language of category theory, an isomorphism-preserving functor from the category of

graphs to the category of groups). In his original construction, Mekler first reduced arbitrary

graphs to “nice” graphs via the use of gadgets. He & Qiao [46] subsequently showed that this

gadgetry was unnecessary. In both Mekler’s original construction [68] and the improvement

due to He & Qiao [46], this reduction is polynomial-time computable when the inputs for

12

the groups are given in the generator-relation model (c.f., [68, 46] and [15, Theorem 4.13]).

While we will be given such groups by their Cayley (multiplication) tables, we are still able

to reason about the groups using the underlying graph-theoretic structure.

We now recall some key properties about the groups arising via Mekler’s construction.

Lemma 2.9 ([15, Lemma 4.3]). We have that Φ(GΓ) = G′
Γ, and the vertices of Γ form a

minimum-cardinality generating set of GΓ.

Lemma 2.10 ([15, Corollary 4.5]). Let Γ be a simple, undirected graph. Then we have that

|GΓ| = p|V (Γ)|+|(V2)−E(Γ)|. In particular, every element of GΓ can be written in the form:

vd11 · · · vdnn c
dn+1

1 · · · cdn+k

k ,

where {c1, . . . , ck} is the set of non-trivial commutators between generators (i.e., the non-

edges of Γ) and each di is uniquely determined modulo p.

Lemma 2.11 ([15, Lemma 4.7]). Let Γ be a simple, undirected graph. We have Z(GΓ) =

G′
Γ × ⟨v : N [v] = V (Γ)⟩. In particular, if no vertex of Γ is adjacent to every other vertex,

then Z(GΓ) = G′
Γ.

Definition 2.12 ([15, Definition 4.8]). Let x ∈ GΓ be an element with normal form:

x := vd11 · · · vdnn c
e1
1 · · · cemm .

The support of x is {vi : di ̸≡ 0 (mod p)}. For a subset S = {vi1 , . . . , vis} ⊆ V (Γ), let xS be

the subword v
di1
i1

· · · vdisis
, with i1 < · · · < is.

Lemma 2.13 ([15, Corollary 4.11]). Let Γ be a simple, undirected graph. Let x := vd1i1 · · · vdrir c,

with i1 < i2 < · · · < ir, c central in GΓ, and each di ̸≡ 0 (mod p). Let C1, . . . , Cs be the

connected components of the complement graph co(Γ[supp(x)]). Then:

CGΓ
(x) = ⟨xC1⟩ · · · ⟨xCs⟩⟨{vm : [vm, vij] = 1 for all j}⟩G′

Γ.

13

2.4 Complexity

We first recall definitions for some standard circuit complexity classes. We assume familiarity

with Turing machines, asymptotic complexity, and complexity classes P and NP.

We touch briefly on circuits as a computational model. For more information, we refer

readers to some of the standard resources on circuit complexity [2, 1, 79]

We are interested in circuits consisting of only AND, OR, and NOT gates. In this

thesis, we will consider polynomial-sized circuits of polylogarithmic depth. We will introduce

several families of circuits we get various types of circuits. NC circuits are defined as those

with fan-in 2. AC circuits generalize NC circuits, in that the AND and OR gates have

unbounded fan-in. Finally, TC circuits in turn generalize AC circuits by allowing for the use

of MAJORITY gates– which return true if > n
2
inputs are true.

We additionally want to understand the power of these circuits as computational models.

This is done by defining a complexity class for languages computable by a circuit of each

type.

Definition 2.14. For a fixed natural number k, A language L belongs to NCk if there exists

a (uniform) family of NC circuits (Cn)n∈N such that Cn has depth O(logk n) and polynomial-

size, and for all strings x, we have that x ∈ L if and only if C|x|(x) = 1.

Definition 2.15. For a fixed natural number k, A language L belongs to ACk if there exists

a (uniform) family of AC circuits (Cn)n∈N such that Cn has depth O(logk n) and polynomial-

size, and for all strings x, we have that x ∈ L if and only if C|x|(x) = 1.

Definition 2.16. For a fixed natural number k, A language L belongs to TCk if there exists

a (uniform) family of TC circuits (Cn)n∈N such that Cn has depth O(logk n) and polynomial-

size, and for all strings x, we have that x ∈ L if and only if C|x|(x) = 1.

Each of the above series of classes is in fact a chain of containments. For example,

NC0 ⊆ NC1 ⊆ NC2 ⊆ · · ·

14

Since an NC circuit is a special case of an AC circuit and an AC circuit is a special case of a

TC circuit, for any k, we have that

NCk ⊆ ACk ⊆ TCk ⊆ NCk+1

, where the last inclusion holds with an NC1 simulation of a MAJORITY gate [79]. The

complexity class FOLL is the set of languages decidable by (uniform) AC circuits with depth

O(log log n) and polynomial size.

We define complexity classes by the languages reducible to another complexity class using

some particular circuit class. For complexity classes C1, C2, we define C1(C2) to be the class

of languages that are C1 Turing-reducible to languages in C2.

The above circuit complexity classes are closely related to small-space bounded classes

such as logarithmic space. In order to formalize the notion of logspace computation, we

introduce the notion of a logspace transducer.

Definition 2.17. A logspace transducer is a Turing machineM with three tapes. It contains

a read-only input tape, a read/write work tape for which at most O(log n) symbols can be

used, and a write-only output tape.

Then this definition leads to two very natural complexity classes. L is the complexity class

of languages decidable by deterministic logspace transducers, and NL is the complexity class

of languages decidable by a non-deterministic logspace transducer. These are the logspace

analogs of P and NP. Containments for all of the complexity classes covered thus far are

shown below.

NC0 ⊊ AC0 ⊊ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ TC1 ⊆ · · · ⊆ NC ⊆ P ⊆ NP

For a complexity class C, we define βiC to be the set of languages L such that there exists

an L′ ∈ C such that x ∈ L if and only if there exists y of length at most O(logi|x|) such that

15

(x, y) ∈ L′.

Definition 2.18. An MAC0 circuit is an AC0 circuit with at most one MAJORITY gate.

Remark 2.19. The class MAC0 was introduced in [4] and given its name in [53].

In this paper, to prove that an isomorphism test is in β1MAC0(FOLL), we run count-free

WL Version I for O(log log n) rounds, which is FOLL-computable [45]. Then we build a

distinguisher to analyze the resulting coloring. The distinguisher works as follows.

1. Using O(log n) nondeterministic bits, guess a color class C where the multiplicity of C

in G is more abundant than that in H.

2. With a single AC0 circuit, identify all k-tuples with color C. This is possible using the

parallel WL implementation of Grohe & Verbitsky [45], which records this information

at each round using indicator variables.

3. Using a single MAJORITY gate, input a 1 into the gate for every k-tuple in G with

color C. Input a 0 into the MAJORITY gate for each k-tuple in H with color C.

The MAJORITY gate will return true if more than half the inputs are true.

Then since count-free WL Version I runs in FOLL then running count-free WL in conjunction

with this distinguisher yields a β1MAC0(FOLL) isomorphism test.

2.5 Weisfeiler–Leman

The main algorithm of study in this thesis is the Weisfeiler–Leman algorithm for graphs,

which computes an isomorphism-invariant coloring. Let Γ be a graph, and let k ≥ 2 be

an integer. The k-dimension Weisfeiler–Leman, or k-WL, algorithm begins by constructing

an initial coloring χ0 : V (Γ)k → K, where K is our set of colors, by assigning each k-tuple

a color based on its isomorphism type. That is, two k-tuples (v1, . . . , vk) and (u1, . . . , uk)

receive the same color under χ0 iff the map vi 7→ ui (for all i ∈ [k]) is an isomorphism of the

induced subgraphs Γ[{v1, . . . , vk}] and Γ[{u1, . . . , uk}] and for all i, j, vi = vj ⇔ ui = uj.

16

For r ≥ 0, the coloring computed at the rth iteration of Weisfeiler–Leman is refined as

follows. For a k-tuple v = (v1, . . . , vk) and a vertex x ∈ V (Γ), define

v(vi/x) = (v1, . . . , vi−1, x, vi+1, . . . , vk).

The coloring computed at the (r+1)st iteration, denoted χr+1, stores the color of the given

k-tuple v at the rth iteration, as well as the colors under χr of the k-tuples obtained by

substituting a single vertex in v for another vertex x. We examine this multiset of colors

over all such vertices x. This is formalized as follows:

χr+1(v) =(χr(v), {{(χr(v(v1/x)), . . . , χr(v(vk/x))
∣∣x ∈ V (Γ)}}),

where {{·}} denotes a multiset.

The count-free variant of WL considers the set rather than the multiset of colors at each

round. Precisely:

χr+1(v) =(χr(v), {(χr(v(v1/x)), . . . , χr(v(vk/x))
∣∣x ∈ V (Γ)}).

Note that the coloring χr computed at iteration r induces a partition of V (Γ)k into color

classes. The Weisfeiler–Leman algorithm terminates when this partition is not refined, that

is, when the partition induced by χr+1 is identical to that induced by χr. The final coloring

is referred to as the stable coloring, which we denote χ∞ := χr.

Brachter & Schweitzer introduced three variants of WL for groups [15]. WL Versions

I and II are both executed directly on the groups, where k-tuples of group elements are

initially colored. For WL Version I, two k-tuples (g1, . . . , gk) and (h1, . . . , hk) receive the

same initial color iff (a) for all i, j, ℓ ∈ [k], gigj = gℓ ⇐⇒ hihj = hℓ, and (b) for all

i, j ∈ [k], gi = gj ⇐⇒ hi = hj. For WL Version II, (g1, . . . , gk) and (h1, . . . , hk) receive

the same initial color iff the map gi 7→ hi for all i ∈ [k] extends to an isomorphism of the

17

generated subgroups ⟨g1, . . . , gk⟩ and ⟨h1, . . . , hk⟩. For both WL Versions I and II, refinement

is performed in the classical manner as for graphs. Namely, for a given k-tuple g of group

elements,

χr+1(g) =(χr(g), {{(χr(g(g1/x)), . . . , χr(g(gk/x))
∣∣x ∈ G}}).

We will not use WL Version III, and so we refer the reader to [15] for details.

2.6 Logics

We recall the central aspects of first-order logic. We have a countable set of variables

{x1, x2, . . . , }. Formulas are defined inductively. As our basis, xi = xj is a formula for all

pairs of variables. Now if φ, ψ are formulas, then so are the following: φ∧ψ, φ∨ψ,¬φ,∃xi φ,

and ∀xi φ. In order to define logics on groups, it is necessary to define a relation that

relates the group multiplication. We recall the two different logics introduced by Brachter

& Schweitzer [15].

• Version I: We add a ternary relation R where R(xi, xj, xℓ) = 1 if and only if xixj = xℓ

in the group. In keeping with the conventions of [21], we refer to the first-order logic

with relation R as LI and its k-variable fragment as LI
k. We refer to the logic CI as the

logic obtained by adding counting quantifiers ∃≥nxi φ (there exist at least n distinct

xi that satisfy φ) and ∃!nφ (there exist exactly n distinct xi that satisfy φ) and its

k-variable fragment as CI
k . If furthermore we restrict the formulas to have quantifier

depth at most r, we denote this fragment as CI
k,r.

• Version II: We add a relation R, defined as follows. Let w ∈ ({xi1 , . . . , xit} ∪

{x−1
i1
, . . . , x−1

it
})∗. We have that R(xi1 , . . . , xit ;w) = 1 if and only if multiplying the

group elements according to w yields the identity. For instance, R(a, b; [a, b]) holds

precisely if a, b commute. Again, in keeping with the conventions of [21], we refer to

the first-order logic with relation R as LII and its k-variable fragment as LII
k . We refer

to the logic CII as the logic obtained by adding counting quantifiers ∃≥nxi φ and ∃!nφ

18

and its k-variable fragment as CII
k . If furthermore we restrict the formulas to have

quantifier depth at most r, we denote this fragment as CII
k,r.

Remark 2.20. Brachter & Schweitzer [15] refer to the logics with counting quantifiers as

LI and LII . We instead adhere to the conventions in [21].

Let J ∈ {I, II}. Brachter & Schweitzer [15] established that two groups G,H are distin-

guished by (k, r)-WL Version J if and only if there exists a formula φ ∈ CJ
k+1,r such that

G |= φ and H ̸|= φ. Following the techniques of Brachter & Schweitzer, Grochow & Levet

[34] established the analogous result for count-free WL Version J and the logic LJ . In

the setting of graphs, the equivalence between Weisfeiler–Leman and first-order logic with

counting quantifiers is well known [51, 21].

2.7 Weisfeiler–Leman as a Parallel Algorithm

Grohe & Verbitsky [45] previously showed that for fixed k, the classical k-dimensional

Weisfeiler–Leman algorithm for graphs can be effectively parallelized. Precisely, each it-

eration of the classical counting WL algorithm (including the initial coloring) can be im-

plemented using a logspace uniform TC0 circuit, and each iteration of the count-free WL

algorithm can be implemented using a logspace uniform AC0 circuit. As they mention ([45,

Remark 3.4]), their implementation works for any first-order structure, including groups.

However, because here we have three different versions of WL, we explicitly list out the

resulting parallel complexities, which differ slightly between the versions.

• WL Version I: Let (g1, . . . , gk) and (h1, . . . , hk) be two k-tuples of group elements.

We may test in AC0 whether (a) for all i, j,m ∈ [k], gigj = gm ⇐⇒ hihj = hm, and

(b) gi = gj ⇐⇒ hi = hj. So we may decide if two k-tuples receive the same initial

color in AC0. Comparing the multiset of colors at the end of each iteration (including

after the initial coloring), as well as the refinement steps, proceed identically as in [45].

Thus, for fixed k, each iteration of k-WL Version I can be implemented using a logspace

uniform TC0 circuit. In the setting of the count-free k-WL Version I, we are comparing

19

the set rather than multiset of colors at each iteration. So each iteration (including

the initial coloring) can be implemented using a logspace uniform AC0 circuit.

• WL Version II: Let (g1, . . . , gk) and (h1, . . . , hk) be two k-tuples of group elements.

We may use the marked isomorphism test of Tang [76] to test in L whether the map

sending gi 7→ hi for all i ∈ [k] extends to an isomorphism of the generated subgroups

⟨g1, . . . , gk⟩ and ⟨h1, . . . , hk⟩. So we may decide whether two k-tuples receive the same

initial color in L. Comparing the multiset of colors at the end of each iteration (includ-

ing after the initial coloring), as well as the refinement steps, proceed identically as in

[45]. Thus, for fixed k, the initial coloring of k-WL Version II is L-computable, and each

refinement step is TC0-computable. In the case of the count-free k-WL Version II, the

initial coloring is still L-computable, while each refinement step can be implemented

can be implemented using a logspace uniform AC0 circuit.

2.8 Pebble Game

In practice, we find that multisets of colors of k-tuples can difficult to work with. We heavily

utilize the bijective pebble game introduced by [48, 49] for WL on graphs. This game is

often used to show that two graphs X and Y cannot be distinguished by k-WL. The game is

an Ehrenfeucht–Fräıssé bijective pebble game (c.f., [29, 64]), with two players: Spoiler and

Duplicator. The game begins with k+1 pairs of pebbles, which are placed beside the graph.

Each round proceeds as follows.

1. Spoiler picks up a pair of pebbles (pi, p
′
i).

2. We check the winning condition, which will be formalized below.

3. Duplicator chooses a bijection f : V (X) → V (Y).

4. Spoiler places pi on some vertex v ∈ V (X). Then p′i is placed on f(v).

Let v1, . . . , vm be the vertices of X pebbled at the end of step 1, and let v′1, . . . , v
′
m be

the corresponding pebbled vertices of Y . Spoiler wins precisely if the map vℓ 7→ v′ℓ does not

20

extend to an isomorphism of the induced subgraphs X[{v1, . . . , vm}] and Y [{v′1, . . . , v′m}].

Duplicator wins otherwise. Spoiler wins, by definition, at round 0 if X and Y do not have

the same number of vertices. X and Y are not distinguished by the first r rounds of k-WL

if and only if Duplicator wins the first r rounds of the (k + 1)-pebble game [48, 49, 21].

Versions I and II of the pebble game are defined analogously, where Spoiler pebbles group

elements. We first introduce the notion of marked equivalence. Let u := (u1, . . . , uk), v :=

(v1, . . . , vk) be k-tuples of group elements. We say that u and v are marked equivalent in

WL Version I iff (i) for all i, j ∈ [k], ui = uj ⇐⇒ vi = vj, and (II) for all i, j, ℓ ∈ [k],

uiuj = uℓ ⇐⇒ vivj = vℓ. We say that u and v are marked equivalent in WL Version II

if the map ui 7→ vi extends to an isomorphism of the generated subgroups ⟨u1, . . . , uk⟩ and

⟨v1, . . . , vk⟩.

We now turn to formalizing Versions I and II of the pebble game. Precisely, for groups

G and H, each round proceeds as follows.

1. Spoiler picks up a pair of pebbles (pi, p
′
i).

2. We check the winning condition, which will be formalized below.

3. Duplicator chooses a bijection f : G→ H.

4. Spoiler places pi on some vertex g ∈ G. Then p′i is placed on f(g).

Suppose that (g1, . . . , gℓ) 7→ (h1, . . . , hℓ) have been pebbled. Duplicator wins at the given

round if this map is a marked equivalence in the corresponding version of WL. Brachter &

Schweitzer established that for J ∈ {I, II}, (k, r)-WL Version J is equivalent to version J of

the (k + 1)-pebble, r-round pebble game [15].

Remark 2.21. In our work, we explicitly control for both pebbles and rounds. In our

theorem statements, we state explicitly the number of pebbles on the board. So if Spoiler

can win with k pebbles on the board, then we are playing in the (k + 1)-pebble game. Note

that k-WL corresponds to k-pebbles on the board.

21

Brachter & Schweitzer [15, Theorem 3.9] also previously showed that WL Version I, II,

and III are equivalent up to a factor of 2 in the dimension, though they did not control for

rounds. Following the proofs of Brachter & Schweitzer [15] for the bijective games, Grochow

& Levet [34, Appendix A] showed that only O(log n) additional rounds are necessary.

There exist analogous pebble games for count-free WL Versions I-III. The count-free

(k+1)-pebble game consists of two players: Spoiler and Duplicator, as well as (k+1) pebble

pairs (p, p′). In Versions I and II, Spoiler wishes to show that the two groups G and H are

not isomorphic; and in Version III, Spoiler wishes to show that the corresponding graphs

ΓG,ΓH are not isomorphic. Duplicator wishes to show that the two groups (Versions I and

II) or two graphs (Version III) are isomorphic. Each round of the game proceeds as follows.

1. Spoiler picks up a pebble pair (pi, p
′
i).

2. The winning condition is checked. This will be formalized later.

3. In Versions I and II, Spoiler places one of the pebbles on some group element (either

pi on some element of G or p′i on some element of H). In Version III, Spoiler places

one of the pebbles on some vertex of one of the graphs (either pi on some vertex of ΓG

or p′i on some element of ΓH).

4. Duplicator places the other pebble on some element of the other group (Versions I and

II) or some vertex of the other graph (Version III).

Let v1, . . . , vm be the pebbled elements of G (resp., ΓG) at the end of step 1, and let

v′1, . . . , v
′
m be the corresponding pebbled vertices of H (resp., ΓH). Spoiler wins precisely

if the map vℓ 7→ v′ℓ does not extend to a marked equivalence in the appropriate version of

count-free WL. Duplicator wins otherwise. Spoiler wins, by definition, at round 0 if G and

H do not have the same number of elements. We note that G and H (resp., ΓG,ΓH) are not

distinguished by the first r rounds of the count-free k-WL if and only if Duplicator wins the

first r rounds of the count-free (k + 1)-pebble game. Grochow & Levet [34] established the

22

Figure 1: The CFI gadget F3 [21, 15].

equivalence between Versions I and II of the count-free pebble game and the count-free WL

algorithm for groups.

The count-free r-round, k-WL algorithm for graphs is equivalent to the r-round, (k +

1)-pebble count-free pebble game [21]. Thus, the count-free r-round, k-WL Version III

algorithm for groups introduced in Brachter & Schweitzer [15] is equivalent to the r-round,

(k + 1)-pebble count-free pebble game on the graphs ΓG,ΓH associated to the groups G,H.

2.9 CFI Graphs

Cai, Fürer, & Immerman [21] previously established that for every k, there exist a pair of

graphs that are indistinguishable by k-WL. We recall their construction, which we denote

the CFI construction, here. We begin with a connected base graph Γ. In Γ, each vertex is

replaced by a particular gadget, and the gadgets are interconnected according to the edges

of Γ as follows. For a vertex of degree d, we define the gadget Fd to be the graph whose

vertex set consists of a set of external vertices Od = {av1, bv1, . . . , avd, bvd} and a set of internal

vertices Md which are labeled according to the strings in {0, 1}d that have an even number

of 1’s. For each i, each internal vertex u of Md is adjacent to exactly one of {avi , bvi }; namely

u is adjacent to ai if the ith bit of the string is 0 and bi otherwise. An example of F3 is

included here (see Figure 1).

We now discuss how the gadgets are interconnected. Let xy ∈ E(Γ). For each pair of

external vertices (axi , b
x
i) on the gadget corresponding to x and each pair of external vertices

23

(ayj , b
y
j) on the gadget corresponding to y, we add parallel edges axi a

y
j , b

x
i b

y
j . We refer to the

resulting graph as CFI(Γ). The twisted CFI-graph C̃FI(Γ) is obtained by taking one pair of

parallel edges axi a
y
j , b

x
i b

y
j from CFI(Γ) and replacing these edges with the twist axi b

y
j , b

x
i a

y
j . Up

to isomorphism, it does not matter which pair of parallel edges we twist [21]. For a subset

of edges E ′ ⊆ E(Γ) of the base graph, we can define the graph obtained by twisting exactly

the edges in E ′. The resulting graph is isomorphic to CFI(Γ) if |E ′| is even and isomorphic

to C̃FI(Γ) otherwise.

In the original construction [21], the base graph is generally taken to be a vertex-colored

graph where each vertex has a different color. As a result, all of the gadgets in the CFI

construction are distinguishable. The colors can be removed by instead attaching gadgets to

each vertex, and these gadgets can be attached in such that the base graph is identified by

2-WL. In particular, it is possible to choose a 3-regular base graph to have WL-dimension 2

[15, Observation 2.2].

3 Results

3.1 Weisfeiler–Leman and the CFI Groups

In this section, we establish the following.

Theorem 3.1. Let Γ0 be a 3-regular connected graph, and let Γ1 := CFI(Γ0) and Γ2 :=

C̃FI(Γ0) be the corresponding CFI graphs. For i = 1, 2, denote Gi := GΓi
be the corresponding

groups arising from Mekler’s construction. We have that the (3, O(log log n))-WL Version I

distinguishes G1 from G2. If furthermore Γ0 is identified by the graph (3, r)-WL algorithm,

then the (3,max{r, O(log log n)})-WL Version I algorithm identifies G1 as well as G2.

Remark 3.2. We compare Thm. 3.1 to [15, Theorem 6.1], where Brachter & Schweitzer

established the analogous result in WL Version II without controlling for rounds. A careful

analysis of their work shows that they only use O(log n) rounds. This yields an upper bound

of TC1. In contrast, Thm. 3.1 improves the depth of the circuit from O(log n) to O(log log n).

Additionally, the analysis of CFI groups in [15] relies almost exclusively on the underlying

24

graph structure of CFI graphs. Hence, we do not need the full power of deciding whether

two 3-tuples of group elements generate isomorphic subgroups and we can get away using

WL Version I instead of Version II. The best upper bound for the initial coloring of Version

II is L [76] while Version I’s initial coloring is known to be TC0-computable. Both refinement

steps are TC0-computable. With an improvement to the number of rounds and to the initial

coloring, these two observations give us a TCo(1) upper bound.

We begin with some preliminary lemmas.

Lemma 3.3. Let G,H be groups. Suppose Duplicator selects a bijection f : G → H such

that |CG(x)| ≠ |CH(f(x))|. Then Duplicator can win with 3 pebbles and 3 rounds.

Proof. Without loss of generality, suppose that |CG(x)| > |CH(f(x))|. Spoiler begins by

pebbling x 7→ f(x). Let f ′ : G→ H be the bijection that Duplicator selects the next round.

As |CG(x)| > |CH(f(x))|, there exists y ∈ CG(x) such that f ′(y) ̸∈ CH(f(x)). At the next

two rounds, Spoiler pebbles y, xy and wins.

Remark 3.4. Brachter & Schweitzer [15] established that for the CFI groups G1, G2, group

elements with single-vertex support have centralizers of size p4 · |Z(G)|, while all other group

elements have centralizers of size at most p3 · |Z(G)|. So by Lem. 3.3, if Duplicator does

not preserve single-support vertices, then Spoiler can win with 2 additional pebbles and 2

additional rounds.

Lemma 3.5 (Compare rounds c.f. [15, Lemma 6.3]). Let G1, G2 be the CFI groups. Let

f : G1 → G2 be the bijection that Duplicator selects. If there exists x ∈ G1 such that

| supp(x)| ≠ | supp(f(x))|, then Spoiler can win with 3 pebbles and O(log log |G1|) rounds.

Proof. Without loss of generality, suppose that | supp(x)| < | supp(f(x))|. Spoiler begins by

pebbling x 7→ f(x). Write x = xd1i1 · · ·x
dr
ir

· c, where the xi1 , . . . , xir correspond to vertices

vi1 , . . . , vir ∈ V (Γ1) as per Mekler’s construction, and c ∈ Z(G1). Let m := ⌈r/2⌉. At the

next two rounds, Spoiler pebbles xd1i1 · · · x
dm
im

7→ u and x
dim+1

im+1
· · · xdrir ·c 7→ v. Now if f(x) ̸= uv,

25

then Spoiler wins. So suppose f(x) = uv. As | supp(x)| ≠ | supp(f(x))|, we have that either:

| supp(xd1i1 · · · x
dm
im
)| < | supp(u)| or,

| supp(xdim+1

im+1
· · ·xdrir · c)| < | supp(v)|.

Without loss of generality, suppose that: | supp(xd1i1 · · ·x
dm
im
)| < | supp(u)|. Spoiler iter-

ates on the above argument starting from xd1i1 · · · x
dm
im

7→ u and reusing the pebbles on

x, x
dim+1

im+1
· · ·xdrir · c. Now as | supp(xd1i1 · · ·x

dm
im
)| ≤ | supp(x)/2|, we iterate on this argument

at most log2(| supp(x)|) + 1 ≤ log |V (Γ1)| ≤ log log |G1| + O(1) times until we reach a base

case where our pebbled element x′ ∈ G1 has support size 1, but the corresponding pebbled

element y′ ∈ H has support size > 1. In this case, Spoiler at the next round reuses one of

the other two pebbles on the board to pebble some element in CG1(x
′) whose image does not

belong to CG2(y
′). The result now follows.

Lemma 3.6 (Compare rounds c.f. [15, Lemma 6.4]). Let u ∈ V (Γ1), and let gu ∈ G1 be a

single-support element that is supported by u.

(a) Suppose v ∈ V (Γ1) belongs to the same gadget as u, and let gv ∈ G1 be a single-support

element that is supported by v. Let f : G1 → G2 be the bijection that Duplicator selects.

If f(gugv) is not supported by exactly two vertices x, y on the same gadget of V (Γ2),

then Spoiler can win with 3 pebbles and O(1) rounds.

(b) Suppose that gu 7→ x has been pebbled. Let f : G1 → G2 be the bijection that Duplicator

selects at the next round. Let v ∈ V (Γ1) be a vertex on the same gadget as u, and

suppose that for some single-support element gv ∈ G1 that is supported by v, that f(gv)

belongs to a different gadget than f(gu) = x. Then Spoiler can win with 3 pebbles and

O(1) rounds.

(c) Suppose that u ∈ V (Γ1) is an internal vertex on some gadget, and let gu ∈ G1 be a

single-support element that is supported by u. Suppose that Duplicator selects a bijection

26

f : G1 → G2 where f(gu) is a single-support vertex is supported by an external vertex

of some gadget. Then Spoiler can win with 3 pebbles and O(1) rounds.

Proof. We proceed as follows.

(a) Spoiler begins by pebbling gugv 7→ f(gugv). Now if | supp(f(gugv))| > 2, Spoiler pebbles

gu 7→ x, gv 7→ y at the next two rounds. If f(gugv) ̸= xy, then Spoiler immediately

wins. So suppose f(gugv) = xy. As | supp(f(gugv))| > 2, either | supp(x)| > 1 or

| supp(y)| > 1. Without loss of generality, suppose | supp(x)| > 1. In this case, Spoiler

wins by the argument in the proof of Lem. 3.3, reusing the pebbles on gv, gugv.

So suppose now that | supp(f(gugv))| = 2. At the next two rounds, Spoiler pebbles

gu 7→ x, gv 7→ y. Now by the CFI construction [21], the graphs Γ1,Γ2 have the property

that for every 6-cycle and every 8-cycle, there exists a single gadget that contains said

cycle. That is, no 6-cycle and no 8-cycle span two gadgets. Moreover, every pair of

vertices lying on the same gadget lie on some common 6-cycle or same 8-cycle. Thus,

Spoiler may reuse the pebble on gugv and trace along the cycle containing gu, gv starting

from gu. Within at most 4 additional rounds, Spoiler will have moved this third pebble

to a neighbor of gv, while the corresponding pebble will not be along a neighbor of y.

Spoiler now wins.

(b) Spoiler begins by pebbling gv 7→ f(gv). Using a third pebble, we now proceed identi-

cally as in the second paragraph of part (a). The result follows.

(c) Spoiler begins by pebbling gu 7→ f(gu). We note that if f(gu) is not supported by

a single vertex, then by Lem. 3.3, Spoiler can win with 2 additional pebbles and 2

additional rounds. So suppose f(gu) is supported by the vertex x ∈ V (Γ2). Let

f ′ : G1 → G2 be the bijection that Duplicator selects at the next round. Let y ∈ V (Γ2)

be an external vertex adjacent to x, and let hy ∈ G2 be a single-support group element

that is supported by y. Let g ∈ G1 such that f ′(g) = hy. Spoiler pebbles g 7→ hy.

27

We may again assume that g has single support, or Spoiler wins in one additional

pebble (beyond reusing the pebble on gu) and two additionals rounds. By part (b), we

may assume that gu, g belong to different gadgets, or Spoiler wins with 1 additional

pebble and O(1) additional rounds. But as gu is supported by an internal vertex, so

the vertices supporting gu, g are not adjacent in Γ1. By Mekler’s construction, this

implies that gu, g do not commute. However, f(gu), hy are adjacent and do commute.

So Spoiler pebbles gug and wins.

For convenience, we pull out the following construction.

Definition 3.7. Let Gi (i = 1, 2) be a CFI group. We first define a set V of vertices in Γ1

as follows. For each gadget, we include a single, arbitrary internal vertex and all adjacent

external vertices. Let v ∈ G1 denote the ordered product of all the vertices in V .

We now prove Thm. 3.1.

Proof of Thm. 3.1 . We follow the strategy of [15, Theorem 6.1], carefully analyzing the

number of rounds. We first define a set V of vertices in Γ1 according to Def. 3.7. Let v ∈ G1

denote the ordered product of all the vertices in V . By Lem. 3.5, Duplicator must choose a

bijection f : G1 → G2 in which f(v) has the same support size as v. Otherwise, Spoiler can

win with 3 pebbles and O(log log n) rounds.

Spoiler begins by pebbling v 7→ f(v). Now by Lem. 3.5, Duplicator must select bijections

that map (setwise) supp(v) 7→ supp(f(v)); otherwise, Spoiler can win with 2 additional

pebbles and O(log log n) rounds. By Lem. 3.6, supp(f(v)) must be composed exactly as

supp(v); otherwise, Spoiler wins with 2 additional pebbles and O(1) rounds. That is, V ′ :=

supp(f(v)) must contain exactly one internal vertex and all adjacent external vertices from

each gadget of Γ2 (i.e., V ′ must also satisfy Def. 3.7).

28

Now in the proof of [15, Theorem 6.1], Brachter & Schweitzer showed that the induced

subgraphs Γ1[V] and Γ2[V ′] have a different number of edges modulo 2. In particular, Γ1[V]

and Γ2[V ′] disagree in exactly one edge: the twisted link.

Let f ′ : G1 → G2 be the bijection that Duplicator selects at the next round. As the

number of edges in Γ1[V] and Γ2[V ′] disagree, there exists a single-support vertex g ∈ G1

such that the vertex supporting g has degree in Γ1[V] that is different than the degree of the

vertex supporting f ′(g) in Γ2[V ′]. Spoiler pebbles g 7→ f ′(g). At the next round, Duplicator

must select a bijection f ′′ : G1 → G2 that maps some element u of V that commutes with

g to some element f ′′(u) of V ′ that does not commute with f ′(g) (or vice-versa). Spoiler

pebbles u 7→ f ′′(u). Then at the next round, moves the pebble on v to gu and wins. In

total, Spoiler used at most 3 pebbles on the board and O(log log n) rounds.

Furthermore, suppose that Γ0 is identified by the graph (3, r)-WL. Brachter & Schweitzer

[15] previously established that all single-support group elements of G1, G2 have centralizers

of size p4 · |Z(G1)|, and all other group elements have centralizers of size at most p3 · |Z(G1)|.

Now letH be an arbitrary group, and suppose 3-WL Version I fails to distinguishGi (i = 1, 2)

from H in max{r, O(log log n)} rounds. Then H has the same number of group elements

with centralizers of size p4 · |Z(G1)|. Furthermore, as 3-WL Version I fails to distinguish Gi

(i = 1, 2) from H in max{r, O(log log n)} rounds, the induced commutation graph on these

elements in H/Z(H) is indistinguishable from Γi. Furthermore, by Lem. 3.6, (3, O(1))-WL

Version I identifies internal vertices. So given Gi (i = 1, 2), we can recover the base graph Γ0.

Furthermore, we can reconstruct the base graph Γ underlying H. Precisely, any bijection

f : Gi → H induces a bijection f̃ : V (Γ0) → V (Γ), and so we may simulate the 4-pebble, r-

round strategy to identify Γ0 in the graph pebble game, by pebbling the appropriate elements

of Gi (i = 1, 2). But since Γ0 is identified by the graph (3, r)-WL, we have that Γ0
∼= Γ. So

H is isomorphic to either G1 or G2. The result now follows.

3.2 Count-Free Strategy and the CFI Groups

In this section, we establish the following theorem.

29

Theorem 3.8. Let Γ0 be a 3-regular connected graph, and let Γ1 := CFI(Γ0) and Γ2 :=

C̃FI(Γ0) by the corresponding CFI graphs. For i = 1, 2, denote Gi := GΓi
to be the corre-

sponding groups arising from Mekler’s construction.

(a) The multiset of colors computed by the count-free (O(1), O(log log n))-WL Version I dis-

tinguishes G1 from G2. In particular, we can decide whether G1
∼= G2 in β1MAC0(FOLL).

(b) If furthermore Γ0 is identified by the graph count-free (3, r)-WL algorithm, then the

multiset of colors computed by the count-free (O(1),max{r, O(log log n)})-WL Version

I will distinguish Gi (i = 1, 2) from an arbitrary graph H. In particular, we can decide

whether Gi
∼= H in β1MAC0(FOLL).

We proceed similarly as in the case of counting WL. We begin with the following lemma.

Lemma 3.9. Let Gi be a (twisted) CFI group (i = 1, 2). Let u, v ∈ Gi where | supp(u)| = 1

and | supp(v)| > 1. Suppose that u 7→ v has been pebbled. Spoiler can win with O(1)

additional pebbles and O(log log n) additional rounds.

Proof. Brachter & Schweitzer [15] previously established that |CGi
(u)| = p4 · |Z(Gi)| and

|CGi
(v)| ≤ p3 · |Z(G)|. Now by [15, Lemma 4.7] (recalled as Lem. 2.11), we have that

Z(Gi) = Φ(Gi) = [Gi, Gi]. In particular, as Gi is a class 2 p-group of exponent p > 2, we

have that Gi/Z(Gi) is elementary Abelian. So CGi
(u)/Z(Gi) ∼= (Z/pZ)4 and CGi

(v)/Z(Gi) ∼=

(Z/pZ)d for some d ≤ 3. Spoiler now pebbles a representative g1, g2, g3, g4 of each coset for

CGi
(u)/Z(Gi). Let h1, h2, h3, h4 be the corresponding elements Duplicator pebbles. Neces-

sarily, one such element either does not belong to CGi
(v) or belongs to ⟨h1, h2, h3⟩ · Z(Gi).

Without loss of generality, suppose this element is h4. If h4 ̸∈ CGi
(v), Spoiler wins by

pebbling h4, h4v at the next two rounds.

So suppose that h4 ∈ CGi
(v). Now each element of ⟨h1, h2, h3⟩ · Z(Gi) can be written

as he11 h
e2
2 h

e3
3 · z for some z ∈ Z(Gi). Using 3 additional pebbles, Spoiler can pebble g

ej
j

(j = 1, 2, 3). If Duplicator does not respond by pebbling h
ej
j , then by [34, Lemma 3.12],

30

Spoiler can win with O(1) additional pebbles in O(log log n) rounds. Spoiler now pebbles

z ∈ Z(Gi) such that h4 = he11 h
e2
2 h

e3
3 · z and wins. The result now follows.

We now show that the count-free WL algorithm will distinguish group elements with

different support sizes.

Lemma 3.10. Let Gi be a (twisted) CFI group (i = 1, 2). Let u, v ∈ Gi where | supp(u)| ≠

| supp(v)| > 1. Suppose that u 7→ v has been pebbled. Spoiler can win with 4 additional

pebbles and O(log log n) additional rounds.

Proof. Aside from Spoiler selecting an element x to pebble, the proof of Lem. 3.5 did not

rely on Duplicator selecting a bijection at each round. Thus, as u 7→ v has been pebbled, we

may proceed identically as in Lem. 3.5. The result now follows.

Our next goal is to show that count-free WL can detect the gadget structure of the

underlying CFI graphs.

Lemma 3.11. Let u ∈ V (Γi) (i = 1, 2), and let gu ∈ Gi be a single-support element that is

supported by u.

(a) Let v ∈ V (Gi) be on the same gadget as u, and let gv ∈ Gi be a single-support element

that is supported by v. Suppose that (gu, gv) 7→ (hu, hv) have been pebbled, and that

huhv is not supported by exactly two vertices on the same gadget. Then Spoiler can

win with O(1) additional pebbles and O(1) rounds.

(b) Suppose now that u is an internal vertex. Suppose that gu 7→ hu has been pebbled,

and that hu is a single-support element supported by some x that is an external vertex.

Then Spoiler can win with O(1) additional pebbles and O(1) rounds.

Proof. We proceed as follows.

(a) We note that if | supp(huhv)| ≠ 2, then either hu or hv are not single-support elements.

In this case, Spoiler can win with O(1) additional pebbles and O(1) additional rounds

31

by Lem. 3.9. So suppose | supp(huhv)| = 2. Let supp(hu) = {x} and supp(hv) = {y}.

Suppose that x, y belong to different gadgets. Now the CFI graphs have the property

that two vertices belong to a common gadget if and only if they are on common 6-

cycle or common 8-cycle [21]. Using two additional pebbles and O(1) additional rounds,

Spoiler wins by tracing around the cycle containing u, v.

(b) As x is an external vertex, x is adjacent to some other external vertex y. Let hy be

a single-support element that is supported by y. Spoiler pebbles hy, and Duplicator

responds by pebbling some single-support element gv that is supported by the vertex

v. If uv ̸∈ E(Γi), Spoiler immediately wins, as huhy commute, and gugv do not. So

suppose uv ∈ E(Γi). But as u is internal, u, v belong to the same gadget, while x, y

do not. Spoiler now wins by part (a).

We now establish the relationship between the group elements arising from the construction

in Def. 3.7 and the induced subgraphs from V .

Lemma 3.12. Let v ∈ Gi (i = 1, 2) such that v satisfies the construction in Def. 3.7. We

have the following.

(a) Let v′ ∈ Gi′ (i
′ = 1, 2) such that v′ is not constructed according to Def. 3.7. Then the

count-free (O(1), O(log log n))-WL Version I will distinguish v from v′.

(b) Let v′ ∈ Gi′ (i′ = 1, 2) such that v′ is constructed according to Def. 3.7. Let u ∈

supp(v), and let gu ∈ Gi be a single-support element that is supported by u. Let

h ∈ Gi′. If h is not a single-support element satisfying supp(h) ⊆ supp(v′), then the

count-free (O(1), O(log log n))-WL Version I will distinguish (v, gu) from (v′, h).

(c) Let v′, gu, h be as defined in part (b). Let supp(h) = {u′}, and relabel hu′ := h.

Suppose that |N(u)∩ supp(v)| ≠ |N(u′)∩ supp(v′)|. That is, suppose that the degree of

32

u in Γi[supp(v)] is different than the degree of u′ in Γi′ [supp(v
′)]. Then the count-free

(O(1), O(log log n))-WL Version I will distinguish (v, gu) from (v′, hu′).

Proof. We proceed as follows.

(a) By Lem. 3.10, if v′ ∈ Gi (i = 1, 2) satisfies | supp(v′)| ≠ | supp(v)|, then the (O(1), O(log log n))-

WL Version I algorithm will distinguish v and v′.

Now suppose supp(v′) contains two vertices a, b on the same gadget. We claim that

the count-free (O(1), O(log log n))-WL Version I will distinguish v from v′. Consider

the pebble game, starting from the configuration v 7→ v′. Spoiler pebbles group ele-

ments ha, hb supported by a, b respectively. Duplicator responds by pebbling gx, gy. By

Lem. 3.10, we may assume that gx, gy are single-support elements; otherwise, Spoiler

wins with O(1) pebbles and O(1) rounds. Let x, y be the vertices of Γi supporting gx, gy

respectively. We may assume that x, y ∈ supp(v). Otherwise, by Lem. 3.10, Spoiler

wins with O(1) pebbles and O(log log n) rounds. By construction of v, x, y lie on differ-

ent gadgets. Thus, by Lem. 3.11, Spoiler can win withO(1) additional pebbles andO(1)

additional rounds. It now follows that any group element v′ whose support does not

consist of a single arbitrary internal vertex from each gadget and all external vertices

adjacent to the internal vertices selected, that the count-free (O(1), O(log log n))-WL

Version I will distinguish v and v′.

(b) If h is not single support or supp(h) ̸⊆ supp(v′), then by Lem. 3.10, the count-free

(O(1), O(log log n))-WL Version I algorithm will distinguish (v, gu) from (v′, h).

(c) By Lem. 3.10, if supp(hu) ̸⊆ supp(v′), then the count-free (O(1), O(log log n))-WL

Version I will distinguish (v, gu) and (v′, hu′). Now by the CFI construction [21],

both Γi,Γi′ have maximum degree at most 4. So with O(1) pebbles, Spoiler can

pebble the neighbors of u in Γi. By construction, the adjacency relation in Γi,Γi′

determines the commutation relation in Gi, Gi′ . Thus, only O(1) additional pebbles

33

and O(1) additional rounds are needed to determine commutation. Thus, the count-

free (O(1), O(log log n))-WL Version I will distinguish (v, gu) and (v′, hu′).

We now prove Thm. 3.8.

Proof of Thm. 3.8 . We proceed similarly as in the proof of Thm. 3.1.

(a) Let v ∈ G1 be defined as in Def. 3.7. Now suppose that G1 ̸∼= G2. Now take an

arbitrary v′ ∈ G2 such that v′ is defined according to Def. 3.7. Again take V = supp(v)

and V ′ = supp(v′). Brachter & Schweitzer [15, Proof of Theorem 6.1] argued that the

induced subgraphs Γ1[V] and Γ2[V ′] have different degree sequences.

Now suppose that u ∈ V and u′ ∈ V ′ have different degrees. Let gu ∈ G1 be a single-

support element supported by u, and let hu′ ∈ G2 be a single-support element sup-

ported by u′. As u, u′ have different degrees, we have by Lem. 3.12 (c) that the count-

free (O(1), O(log log n))-WL Version I will distinguish (v, gu) from (v′, hu′). In particu-

lar, it follows that the multiset of colors produced by the count-free (O(1), O(log log n))-

WL Version I algorithm will be different for G1 than for G2.

By Grohe & Verbitsky, we have that the count-free (O(1), O(log log n))-WL Version

I can be implemented using an FOLL circuit. We will now use a β1MAC0 circuit to

distinguish G1 from G2. Using O(log n) non-deterministic bits, we guess a color class C

where the multiplicity differs. At each iteration, the parallel WL implementation due

to Grohe & Verbitsky records indicators as to whether two k-tuples receive the same

color. As we have already run the count-free WL algorithm, we may in AC0 decide

whether two k-tuples have the same color. For each k-tuple in Gk
1 having color C, we

feed a 1 to the MAJORITY gate. For each k-tuple in Gk
2 having color C, we feed a

0 to the MAJORITY gate. The result now follows.

34

(b) Suppose furthermore that the base graph Γ0 is identified by the count-free (O(1), r)-

WL algorithm for graphs. Brachter & Schweitzer [15] previously established that

single-support elements of G1, G2 have centralizers of size p4 · |Z(G1)|, and all other

group elements have centralizers of size at most p3 · |Z(G1)|. By Lem. 3.9, the

count-free (O(1), O(1))-WL Version I will distinguish in Gi (i = 1, 2) single-support

group elements from those group elements g with | supp(g)| > 1. Now let H be

an arbitrary group, and suppose the multiset of colors produced by the count-free

(O(1), O(log log n))-WL Version I is the same for Gi (i = 1, 2) as for H. Then Gi

(i = 1, 2) and H has the same number of elements of order p4 · |Z(G1)|. Furthermore,

as the multiset of colors arising from the count-free (O(1), O(log log n))-WL Version

I fails to distinguish Gi (i = 1, 2) and H, the induced commutation graph on these

elements in H/Z(H) is indistinguishable from Γi. Furthermore, by Lem. 3.11 (b), the

count-free (O(1), O(1))-WL Version I will distinguish internal and external vertices.

So given Gi (i = 1, 2), we can reconstruct the base graph Γ0. Furthermore, we can

reconstruct the base graph Γ underlying H. Precisely, the vertices of Γ0 correspond to

gadgets of Γi. Now the count-free WL Version I for groups can simulate the count-free

WL for graphs in the following manner. When Spoiler or Duplicator pebble a single-

support element of Gi, that induces placing a pebble on the corresponding vertex v of

Γi. In turn, this induces placing a pebble on the vertex corresponding to the gadget

of Γ0 containing v. So we may simulate the (3, r)-pebble strategy to identify Γ0 in the

graph pebble game, by pebbling the appropriate elements of Gi (i = 1, 2). But since

Γ0 is identified by the graph (3, r)-WL, we have that Γ0
∼= Γ. So H is isomorphic to

either G1 or G2. The result now follows.

35

4 Conlcusion

In this thesis, we presented an improved upper bound on the parallel and descriptive com-

plexities on the identification of CFI groups. In particular, we improved upon the TC1

upper bound presented in [15]. We demonstrated a TCo(1) bound using WL Version I and a

β1MAC0(FOLL) bound using count-free WL.

We conclude with several open problems.

Question 4.1. Can 2-WL distinguish the CFI groups?

Question 4.2. Can the 3-dimensional count-free WL algorithm distinguish CFI groups

without the postprocessing illustrated in 2.4?

The central open question remains whether Weisfeiler–Leman solves GpI in polynomial

time. Precisely:

Question 4.3. Does WL resolve Group Isomorphism in polynomial time? That is, does

there exist a fixed k such that k-WL can distinguish any two nonisomorphic finite groups?

References

[1] Complexity zoo. URL: https://complexityzoo.net.

[2] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. 01 2009. doi:

10.1017/CBO9780511804090.

[3] V. Arvind and Piyush P. Kurur. Graph isomorphism is in SPP. Information and Computation,

204(5):835–852, 2006. doi:10.1016/j.ic.2006.02.002.

[4] James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive power of voting

polynomials. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing,

STOC ’91, page 402–409, New York, NY, USA, 1991. Association for Computing Machinery. doi:

10.1145/103418.103461.

[5] L. Babai, W. M. Kantor, and E. M. Luks. Computational complexity and the classification of finite

simple groups. In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983), pages

162–171, 1983. doi:10.1109/SFCS.1983.10.

36

https://complexityzoo.net
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1016/j.ic.2006.02.002
https://doi.org/10.1145/103418.103461
https://doi.org/10.1145/103418.103461
https://doi.org/10.1109/SFCS.1983.10

[6] László Babai. Lectures on graph isomorphism. In Mimeographed lecture notes, 1979.

[7] László Babai. On the complexity of canonical labeling of strongly regular graphs. SIAM Journal on

Computing, 9(1):212–216, 1980. arXiv:10.1137/0209018, doi:10.1137/0209018.

[8] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In STOC’16—

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pages 684–697.

ACM, New York, 2016. Preprint of full version at arXiv:1512.03547v2 [cs.DS]. doi:10.1145/2897518.

2897542.

[9] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code equivalence and group iso-

morphism. In Proceedings of the Twenty-Second Annual ACM–SIAM Symposium on Discrete Algorithms

(SODA11), pages 1395–1408, Philadelphia, PA, 2011. SIAM. doi:10.1137/1.9781611973082.107.

[10] László Babai, Paolo Codenotti, and Youming Qiao. Polynomial-time isomorphism test for groups

with no abelian normal subgroups - (extended abstract). In International Colloquium on Automata,

Languages, and Programming (ICALP), pages 51–62, 2012. doi:10.1007/978-3-642-31594-7_5.

[11] László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the Fifteenth

Annual ACM Symposium on Theory of Computing, STOC ’83, page 171–183, New York, NY, USA,

1983. Association for Computing Machinery. doi:10.1145/800061.808746.

[12] László Babai and Youming Qiao. Polynomial-time isomorphism test for groups with Abelian Sylow

towers. In 29th STACS, pages 453 – 464. Springer LNCS 6651, 2012. doi:10.4230/LIPIcs.STACS.

2012.453.

[13] Anton Betten, Michael Braun, Harald Fripertinger, Adalbert Kerber, Axel Kohnert, and Alfred Wasser-

mann. Error-correcting linear codes classification by isometry and applications. Springer Berlin, 2014.

[14] Béla Bollobás. Distinguishing vertices of random graphs. In Béla Bollobás, editor, Graph Theory,

volume 62 of North-Holland Mathematics Studies, pages 33–49. North-Holland, 1982. doi:10.1016/

S0304-0208(08)73545-X.

[15] Jendrik Brachter and Pascal Schweitzer. On the Weisfeiler–Leman dimension of finite groups. In

Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual

ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages

287–300. ACM, 2020. doi:10.1145/3373718.3394786.

[16] Jendrik Brachter and Pascal Schweitzer. A Systematic Study of Isomorphism Invariants of Finite Groups

via the Weisfeiler-Leman Dimension. 244:27:1–27:14, 2022. doi:10.4230/LIPIcs.ESA.2022.27.

37

http://arxiv.org/abs/10.1137/0209018
https://doi.org/10.1137/0209018
https://arxiv.org/abs/1512.03547v2
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1137/1.9781611973082.107
https://doi.org/10.1007/978-3-642-31594-7_5
https://doi.org/10.1145/800061.808746
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.1016/S0304-0208(08)73545-X
https://doi.org/10.1016/S0304-0208(08)73545-X
https://doi.org/10.1145/3373718.3394786
https://doi.org/10.4230/LIPIcs.ESA.2022.27

[17] Gilles Brassard and Moti Yung. One-way group actions. In Alfred J. Menezes and Scott A. Vanstone,

editors, Advances in Cryptology-CRYPTO’ 90, pages 94–107, Berlin, Heidelberg, 1991. Springer Berlin

Heidelberg.

[18] Peter A. Brooksbank, Joshua A. Grochow, Yinan Li, Youming Qiao, and James B. Wilson. Incorporating

Weisfeiler–Leman into algorithms for group isomorphism. arXiv:1905.02518 [cs.CC], 2019.

[19] Peter A. Brooksbank, Joshua Maglione, and James B. Wilson. A fast isomorphism test for groups whose

Lie algebra has genus 2. Journal of Algebra, 473:545–590, 2017. doi:10.1016/j.jalgebra.2016.12.

007.

[20] Harry Buhrman and Steven Homer. Superpolynomial circuits, almost sparse oracles and the exponential

hierarchy. In R. K. Shyamasundar, editor, Foundations of Software Technology and Theoretical Com-

puter Science, 12th Conference, New Delhi, India, December 18-20, 1992, Proceedings, volume 652 of

Lecture Notes in Computer Science, pages 116–127. Springer, 1992. doi:10.1007/3-540-56287-7_99.

[21] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables

for graph identification. Combinatorica, 12(4):389–410, 1992. Originally appeared in SFCS ’89. doi:

10.1007/BF01305232.

[22] John J. Cannon and Derek F. Holt. Automorphism group computation and isomorphism testing in

finite groups. Journal of Symbolic Computation, 35(3):241–267, 2003. doi:10.1016/S0747-7171(02)

00133-5.

[23] Arkadev Chattopadhyay, Jacobo Torán, and Fabian Wagner. Graph isomorphism is not AC0-reducible

to group isomorphism. ACM Trans. Comput. Theory, 5(4):Art. 13, 13, 2013. Preliminary version

appeared in FSTTCS ’10; ECCC Tech. Report TR10-117. doi:10.1145/2540088.

[24] Charles J. Colbourn and Jeffrey H. Dinitz. Handbook of Combinatorial Designs, Second Edition (Dis-

crete Mathematics and Its Applications). Chapman & Hall/CRC, 2006.

[25] Nathaniel A. Collins and Michael Levet. Count-free weisfeiler–leman and group isomorphism, 2022.

doi:10.48550/ARXIV.2212.11247.

[26] Diane J. Cook and Lawrence B. Holder. Mining Graph Data. 01 2009. doi:10.1017/CBO9780511804090.

[27] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual

ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New York, NY, USA, 1971.

Association for Computing Machinery. doi:10.1145/800157.805047.

[28] David S. Dummit and Richard M. Foote. Abstract algebra. Wiley, New York, 3rd ed edition, 2004.

38

https://arxiv.org/abs/1905.02518
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1016/S0747-7171(02)00133-5
https://doi.org/10.1016/S0747-7171(02)00133-5
https://doi.org/10.1145/2540088
https://doi.org/10.48550/ARXIV.2212.11247
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1145/800157.805047

[29] Heinz-Dieter Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, 2 edition, 1994.

doi:10.1007/978-1-4757-2355-7.

[30] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965. doi:

10.4153/CJM-1965-045-4.

[31] Sergei Evdokimov and Ilia Ponomarenko. Separability number and schurity number of coherent config-

urations. Electr. J. Comb., 7, 05 2000. doi:10.37236/1509.

[32] François Le Gall and David J. Rosenbaum. On the group and color isomorphism problems. CoRR,

abs/1609.08253, 2016. arXiv:1609.08253.

[33] Joshua A. Grochow. Matrix isomorphism of matrix lie algebras. In 2012 IEEE 27th Conference on

Computational Complexity, pages 203–213, 2012. doi:10.1109/CCC.2012.34.

[34] Joshua A. Grochow and Michael Levet. On the parallel complexity of group isomorphism via Weisfeiler–

Leman. CoRR, abs/2112.11487, 2022. arXiv:2112.11487.

[35] Joshua A. Grochow and Youming Qiao. Polynomial-time isomorphism test of groups that are tame

extensions - (extended abstract). In Algorithms and Computation - 26th International Symposium,

ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 578–589, 2015. doi:10.1007/

978-3-662-48971-0_49.

[36] Joshua A. Grochow and Youming Qiao. Algorithms for group isomorphism via group extensions and

cohomology. SIAM J. Comput., 46(4):1153–1216, 2017. Preliminary version in IEEE Conference on

Computational Complexity (CCC) 2014 (DOI:10.1109/CCC.2014.19). Also available as arXiv:1309.1776

[cs.DS] and ECCC Technical Report TR13-123. doi:10.1137/15M1009767.

[37] Joshua A. Grochow and Youming Qiao. Isomorphism problems for tensors, groups, and cubic forms:

completeness and reductions, 2019. doi:10.48550/ARXIV.1907.00309.

[38] Martin Grohe. Isomorphism testing for embeddable graphs through definability. In Proceedings of the

Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ’00, page 63–72, New York,

NY, USA, 2000. Association for Computing Machinery. doi:10.1145/335305.335313.

[39] Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM,

59(5), November 2012. doi:10.1145/2371656.2371662.

[40] Martin Grohe and Sandra Kiefer. A Linear Upper Bound on the Weisfeiler-Leman Dimension of

Graphs of Bounded Genus. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano

Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP

39

https://doi.org/10.1007/978-1-4757-2355-7
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.37236/1509
http://arxiv.org/abs/1609.08253
https://doi.org/10.1109/CCC.2012.34
http://arxiv.org/abs/2112.11487
https://doi.org/10.1007/978-3-662-48971-0_49
https://doi.org/10.1007/978-3-662-48971-0_49
https://doi.org/10.1137/15M1009767
https://doi.org/10.48550/ARXIV.1907.00309
https://doi.org/10.1145/335305.335313
https://doi.org/10.1145/2371656.2371662

2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 117:1–117:15,

Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.

ICALP.2019.117.

[41] Martin Grohe and Sandra Kiefer. Logarithmic Weisfeiler-Leman Identifies All Planar Graphs. In Nikhil

Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,

Languages, and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in In-

formatics (LIPIcs), pages 134:1–134:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik. doi:10.4230/LIPIcs.ICALP.2021.134.

[42] Martin Grohe and Julian Mariño. Definability and descriptive complexity on databases of bounded

tree-width. In Catriel Beeri and Peter Buneman, editors, Database Theory — ICDT’99, pages 70–82,

Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[43] Martin Grohe and Daniel Neuen. Canonisation and definability for graphs of bounded rank width.

CoRR, abs/1901.10330, 2019. arXiv:1901.10330.

[44] Martin Grohe, Daniel Neuen, and Pascal Schweitzer. Towards faster isomorphism tests for bounded-

degree graphs. CoRR, abs/1802.04659, 2018. arXiv:1802.04659.

[45] Martin Grohe and Oleg Verbitsky. Testing graph isomorphism in parallel by playing a game. In

Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages

and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Pro-

ceedings, Part I, volume 4051 of Lecture Notes in Computer Science, pages 3–14. Springer, 2006.

doi:10.1007/11786986_2.

[46] Xiaoyu He and Youming Qiao. On the Baer–Lovász–Tutte construction of groups from graphs: Iso-

morphism types and homomorphism notions. Eur. J. Combin., 98:103404, 2021. doi:10.1016/j.ejc.

2021.103404.

[47] Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona. Graph isomorphisms in quasi-polynomial

time, 2017. doi:10.48550/ARXIV.1710.04574.

[48] Lauri Hella. Definability hierarchies of generalized quantifiers. Annals of Pure and Applied Logic,

43(3):235 – 271, 1989. doi:10.1016/0168-0072(89)90070-5.

[49] Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1–19, 1996. doi:

10.1006/inco.1996.0070.

40

https://doi.org/10.4230/LIPIcs.ICALP.2019.117
https://doi.org/10.4230/LIPIcs.ICALP.2019.117
https://doi.org/10.4230/LIPIcs.ICALP.2021.134
http://arxiv.org/abs/1901.10330
http://arxiv.org/abs/1802.04659
https://doi.org/10.1007/11786986_2
https://doi.org/10.1016/j.ejc.2021.103404
https://doi.org/10.1016/j.ejc.2021.103404
https://doi.org/10.48550/ARXIV.1710.04574
https://doi.org/10.1016/0168-0072(89)90070-5
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1006/inco.1996.0070

[50] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brian. Handbook of Computational Group theory. CRC

Press, 2020.

[51] Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canonization.

In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris Hartmanis on the

Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer New York, New York, NY, 1990.

doi:10.1007/978-1-4612-4478-3_5.

[52] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential

complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001. doi:10.1006/jcss.

2001.1774.

[53] Jeffrey C. Jackson, Adam R. Klivans, and Rocco A. Servedio. Learnability beyond AC0. In Proceedings

of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, page 776–784, New

York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/509907.510018.

[54] Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear group action on tensors:

A candidate for post-quantum cryptography. In Dennis Hofheinz and Alon Rosen, editors, The-

ory of Cryptography, pages 251–281, Cham, 2019. Springer International Publishing. doi:10.1007/

978-3-030-36030-6_11.

[55] Sandra Kiefer and Daniel Neuen. The power of the Weisfeiler–Leman algorithm to decompose graphs.

SIAM Journal on Discrete Mathematics, 36(1):252–298, 2022. arXiv:10.1137/20M1314987, doi:10.

1137/20M1314987.

[56] Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The weisfeiler-leman dimension of planar

graphs is at most 3. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS). IEEE, jun 2017. doi:10.1109/lics.2017.8005107.

[57] Ludek Kucera. Canonical labeling of regular graphs in linear average time. In 28th Annual Symposium

on Foundations of Computer Science (sfcs 1987), pages 271–279, 1987. doi:10.1109/SFCS.1987.11.

[58] Johannes Köbler, Uwe Schöning, and Jacobo Torán. Graph isomorphism is low for pp. volume 577, 02

1992. doi:10.1007/3-540-55210-3_200.

[59] Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–171, January

1975. doi:10.1145/321864.321877.

[60] François Le Gall. Efficient isomorphism testing for a class of group extensions. In Proc. 26th STACS,

pages 625–636, 2009. doi:10.4230/LIPIcs.STACS.2009.1830.

41

https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/509907.510018
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11
http://arxiv.org/abs/10.1137/20M1314987
https://doi.org/10.1137/20M1314987
https://doi.org/10.1137/20M1314987
https://doi.org/10.1109/lics.2017.8005107
https://doi.org/10.1109/SFCS.1987.11
https://doi.org/10.1007/3-540-55210-3_200
https://doi.org/10.1145/321864.321877
https://doi.org/10.4230/LIPIcs.STACS.2009.1830

[61] Michael Levet, Puck Rombach, and Nicholas Sieger. Logarithmic weisfeiler–leman and treewidth, 2023.

arXiv:2303.07985.

[62] Mark L. Lewis and James B. Wilson. Isomorphism in expanding families of indistinguishable groups.

Groups - Complexity - Cryptology, 4(1):73–110, 2012. doi:10.1515/gcc-2012-0008.

[63] Yinan Li and Youming Qiao. Linear algebraic analogues of the graph isomorphism problem and the

erdős-rényi model. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),

pages 463–474, 2017. doi:10.1109/FOCS.2017.49.

[64] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004. doi:10.1007/978-3-662-07003-1_1.

[65] R. J. Lipton, L. Snyder, and Y. Zalcstein. The complexity of word and isomorphism problems for finite

groups. Yale University Dept. of Computer Science Research Report # 91, 1977.

[66] Eugene Luks. Permutation groups and polynomial-time computation. DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, 11, 09 1993. doi:10.1090/dimacs/011/11.

[67] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal

of Computer and System Sciences, 25(1):42–65, 1982.

[68] Alan H. Mekler. Stability of nilpotent groups of class 2 and prime exponent. The Journal of Symbolic

Logic, 46(4):781–788, 1981.

[69] Gary L. Miller. On the nlogn isomorphism technique (a preliminary report). In Proceedings of the Tenth

Annual ACM Symposium on Theory of Computing, STOC ’78, pages 51–58, New York, NY, USA, 1978.

Association for Computing Machinery. doi:10.1145/800133.804331.

[70] Daniel Neuen and Pascal Schweitzer. An exponential lower bound for individualization-refinement

algorithms for graph isomorphism. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los

Angeles, CA, USA, June 25-29, 2018, pages 138–150. ACM, 2018. doi:10.1145/3188745.3188900.

[71] Youming Qiao, Jayalal M. N. Sarma, and Bangsheng Tang. On isomorphism testing of groups with

normal Hall subgroups. In Proc. 28th STACS, pages 567–578, 2011. doi:10.4230/LIPIcs.STACS.

2011.567.

[72] David J. Rosenbaum. Breaking the nlog n barrier for solvable-group isomorphism. CoRR,

abs/1205.0642, 2012. arXiv:1205.0642.

[73] David J. Rosenbaum. Bidirectional collision detection and faster deterministic isomorphism testing.

arXiv:1304.3935 [cs.DS], 2013.

42

http://arxiv.org/abs/2303.07985
https://doi.org/10.1515/gcc-2012-0008
https://doi.org/10.1109/FOCS.2017.49
https://doi.org/10.1007/978-3-662-07003-1_1
https://doi.org/10.1090/dimacs/011/11
https://doi.org/10.1145/800133.804331
https://doi.org/10.1145/3188745.3188900
https://doi.org/10.4230/LIPIcs.STACS.2011.567
https://doi.org/10.4230/LIPIcs.STACS.2011.567
http://arxiv.org/abs/1205.0642
https://arxiv.org/abs/1304.3935

[74] Benjamin Rossman. Ehrenfeucht-Fräıssé Games on Random Structures. In Hiroakira Ono, Makoto

Kanazawa, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information and Computation,

16th International Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24, 2009. Proceedings, vol-

ume 5514 of Lecture Notes in Computer Science, pages 350–364. Springer, 2009. doi:10.1007/

978-3-642-02261-6_28.

[75] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and System Sciences,

37(3):312 – 323, 1988. doi:10.1016/0022-0000(88)90010-4.

[76] Bangsheng Tang. Towards Understanding Satisfiability, Group Isomorphism and Their Connections.

PhD thesis, Tsinghua University, 2013.

[77] G Tinhofer. Graph isomorphism and theorems of birkhoff type. Computing, 36:285–300, 1986. doi:

10.1007/BF02240204.

[78] B.A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force searches) algorithms. Annals

of the History of Computing, 6(4):384–400, 1984. doi:10.1109/MAHC.1984.10036.

[79] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer Verlag, 1999.

[80] Fabian Wagner. On the complexity of group isomorphism. Electron. Colloquium Comput. Complex.,

TR11, 2011.

[81] B. Yu. Weisfeiler and A. A. Leman. Reduction of a graph to a canonical form and an algebra arising

during this reduction, 1968. English translation available at https://www.iti.zcu.cz/wl2018/pdf/

wl_paper_translation.pdf.

[82] Boris Weisfeiler. On construction and identification of graphs. 1976.

43

https://doi.org/10.1007/978-3-642-02261-6_28
https://doi.org/10.1007/978-3-642-02261-6_28
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1007/BF02240204
https://doi.org/10.1007/BF02240204
https://doi.org/10.1109/MAHC.1984.10036
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

	Introduction
	Background and Motivation
	Summary of results

	Background
	Graphs
	Groups
	Mekler's Construction
	Complexity
	Weisfeiler–Leman
	Logics
	Weisfeiler–Leman as a Parallel Algorithm
	Pebble Game
	CFI Graphs

	Results
	Weisfeiler–Leman and the CFI Groups
	Count-Free Strategy and the CFI Groups

	Conlcusion

