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Abstract –Space weather storms typically have solar, interplanetary, geophysical and societal-effect
components that overlap in time, making it hard for students and novices to determine cause-and-effect rela-
tionships and relative timing. To address this issue, we use timelines to provide context for space weather
storms of different intensities. First, we present a timeline and tabular description for the great auroral storms
of the last 500 years as an example for space climate. The graphical summary for these 14 events suggests
that they occur about every 40–60 years, although the distribution of such events is far from even. One
outstanding event in 1770 may qualify as a one-in-500-year auroral event, based on duration. Additionally,
we present two examples that describe space weather storms using solar, geospace and effects categories.
The first of these is for the prolonged storm sequence of late January 1938 that produced low-latitude auroras
and space weather impacts on mature technology (telegraphs) and on high frequency radio communication
for aviation, which was a developing technology. To illustrate storm effects in the space-age, we produce a
detailed timeline for the strong December 2006 geomagnetic storm that impacted numerous space-based
technologies for monitoring space weather and for communication and navigation. During this event there
were numerous navigations system disturbances and hardware disruptions. We adopt terminology
developed in many previous space weather studies and blend it with historical accounts to create graphical
timelines to help organize and disentangle the events presented herein.
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1 Introduction

Almost all space weather storms have a solar source in a
solar magnetic active region (AR) or at the interface of
closed/open magnetic regions that extend into space. Eruptions
from these regions can be electromagnetic (solar flares; radio
bursts) and/or in magnetic bursts (interplanetary coronal mass
ejections – ICMEs) or intervals of high-speed solar wind
streams preceded by stream interaction regions. Solar flares
produce immediate sudden ionospheric disturbances on Earth’s
dayside. Flares and ICMEs can create conditions for accelera-
tion of charged particles to very high energies, resulting in solar
energetic particle (SEP) events. High-speed streams and ICMEs
interact with the geomagnetic field to produce magnetic

storms, auroral storms and ionosphere-thermosphere storms.
Technology experiences the brunt of these storms in different
ways as we illustrate later in the paper. We note that terms like
ICME and SEP event were not used in early descriptions of
several events we discuss here, nonetheless the terms convey
our current understanding of historical events.

The timing, terminology, intensity and event-sequencing for
space weather can be confusing to those new to the discipline.
Descriptors like “strong,” “severe” and “super/extreme/great”
storms are often used by agencies, scientists and the media in
different ways. With reference to auroral storms, we use “great”
to mean a storm or disturbance that occurs a few times in a
century (others have used “great”more broadly to mean approx-
imately once-a-decade). There is no single scale for quantifying
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such storms. We provide: 1) ideas for envisioning and teaching
about space weather and conveying it importance to broader
society and 2) insights into space weather storm intensity. The
latter is a very fluid concept because new technologies become
susceptible to space weather in different and sometimes unantic-
ipated ways.

Section 2 of this paper tabulates great aurora of the past.
By consolidating available worldwide literature records from
the past 500 years we show that great low-latitude aurora –

those with aurora visible to the unaided-eye equatorward of
30� magnetic latitude (e.g., Cliver & Svalgaard, 2004), occur
roughly every 40–60 years during the past 500 years. We sug-
gest an event in 1770 as a candidate for a one-in-500-year
auroral storm, based on duration. Section 3 provides a visual
framework for one of these storms: The January 1938 sequence
is an exemplar of a great storm event (as reported in Hayakawa
et al., 2021a) in an era when telegraph communications were
being replaced by radio communications to support the develop-
ing aviation community. Section 4 provides details of a storm in
December 2006 that, while not a great auroral storm, offers
insight into effects that might be expected from a strong mag-
netic storm in upcoming solar cycles, given humanity’s reliance
on space. This mid-latitude auroral storm in 2006 had broad
effects on space-based technologies including global navigation
services and at the International Space Station (ISS). Section 5
provides a brief discussion and additional commentary on
educational use of timelines.

2 500 years of great auroral storms visible
at or below 30� magnetic latitude

Although a close association between auroral and magnetic
storms was reported in the 1740s (Hiorter, 1747), routine mag-
netometer measurements started only in the mid-19th century.
Thus, we have less than a 200-year record of geomagnetic storm
behavior. A much longer but intermittent record of auroras
reveals anecdotes and observations going back centuries. The
reference lists in Willis & Stephenson (2000), Stephenson
et al. (2004), Vaquero & Vázquez (2009) and Maden (2020)
provide starting points for further reading on this subject. In this
space-climatology example, we combined archival and world-
wide-web literature searches with timeline software to character-
ize the great low-latitude auroral events of the past 500 years.
Our initial search for great auroral storms focused on the
International Geophysical Year (IGY) list championed by Baron
Marcel Nicolet (Nicolet, 1959) and then on lists in Vallance
Jones (1992) and Cliver & Svalgaard (2004).

Sixty-five years ago, in preparation for the IGY, leaders of
the Scientific Committee of the IGY (CSAGI – French
acronym) at the Western Hemisphere Regional Conference in
Rio de Janeiro, issued a challenge: “. . . that in each of the
countries of the western hemisphere the records will be
searched for great auroras of the past.” (Nicolet, 1959, p.
517). The meeting document suggested that: “Information
should be available from journals and newspapers for the
following periods which cover some of the greatest magnetic
storms and auroral displays of the past 100 years: 1 September
1859, 4 February 1872, 17 and 22 November 1882, 31 October
1903, 25 September 1909, 13 May 1921, 25 January 1938, 16

April 1938, 24 March 1940, 1 March 1941 and 18 September
1941, 28 March 1946 and 21 September 1946.” Five of these
storms appear in our discussion of great low-latitude aurora.
Two storms from the Vallance Jones (1992) and Cliver &
Svalgaard (2004) lists, and seven storms from 1520–1870 have
been added as a result of literature searches. As we discuss later,
a number of the remaining storms in the CSAGI list were long-
lasting, mid-latitude auroral storms that produced very bright
auroras, strong geomagnetic perturbations, and/or had notable
technology impacts.

Figure 1 shows a timeline of 14 distinct events with auroras
visible at or equatorward of 30� magnetic latitude (MLAT) dur-
ing that last 500 years. The choice of 30� MLAT visibility is an
easily applied criterion used by Cliver & Svalgaard (2004) that
requires only archived reports from human-eye sensors. This
simple criterion allows us to capture early storms archived in
the literature. The same criterion can be applied to future events.
For context in Figure 1, we show periods of low sunspot activity
(grand/secular minima; see Usoskin et al., 2007, 2011;
Silverman & Hayakawa, 2021) when the probability of strong
Sun-geospace interactions is reduced. Figure 1 gives a represen-
tative, but probably incomplete sample of great auroral events in
the last 500 years. Some events may have been lost or not
recorded and cloudiness may have prevented observations of
some storms that should be included. Others may yet be found.
At first glance, great auroral storms seem more frequent in the
second half of the interval. This could result from a more active
Sun (Fig. 1 of Usoskin et al., 2011) and/or be an artifact of
better record preservation and communications in last 250 years.
The data from Figure 1 and Table 1 suggest the overall
frequency of great auroral storms is approximately once every
40–60 years.

Markers in Figure 1 with larger radii correspond to more
equatorward auroral events. Note that auroras viewed equator-
ward of 30� MLAT does not mean that the auroral structures
nor the auroral particle boundaries are at such a low latitude.
For reference, Case et al. (2016) report that mid-to-high latitude
auroras are typically visible from about ~400 km equatorward
of the actual auroral structure. Figure 1 of Vallance Jones,
(1992) and Figure 2 of Nakazawa et al. (2004) suggest that
low-latitude aurora might be viewed from ~1000 km equator-
ward of the auroral structure location. Table 1 provides dates,
auroral location in geographic coordinates, and additional
source details about these events (note that we have intention-
ally kept the reference listings short and recent for the sake of
educational brevity). Some of the events have multi-day, low-
latitude auroral sightings; these are shown as overlaid markers.

Annotations in Figure 1 highlight technology developments.
Regular sunspot observations and development of magnetome-
ters and electrical devices were the basis for understanding
storm impacts during and after the 1859 Carrington-Hodgson
storm (Carrington, 1859; Hodgson, 1859). Proliferation of elec-
tronic devices (and their susceptibility to space weather storms)
continued apace in the 20th century, presenting the opportunity
for broader societal consequences from storms with less inten-
sity than those shown in Figure 1 (see Sects. 3 and 4). Some
readers may recognize the multi-day Carrington-Hodgson
1859 storm as an archetype of great solar, auroral and geomag-
netic storms (e.g., Cliver & Dietrich, 2013 and references
therein). The combination of a white light solar flare, followed
shortly by low-latitude auroras and substantial mid-latitude
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geomagnetically induced currents (GICs) have earned this storm
a place in history. The 1859 storm ranks very high in many
storm categories: flare intensity, magnetic disturbance intensity
and auroral boundary location. In terms of aurora and magnetic
disturbance it appears to fit into a broader population of great
auroral storms (Hayakawa et al., 2019a; see also Chapman
et al., 2020). Unusual aspects of the event include its multi-
day longevity of low-latitude auroras and its ranking as a top
contender in most storm categories (Cliver & Svalgaard, 2004)

Table 1 provides additional storm “measures” based on
ground magnetic records when available. The Dst index,
available from the Kyoto World Data Center (WDC for
Geomagnetism, Kyoto, 2015), is often used as a measure of
geomagnetic storm strength. We use it to provide context for
the association between aurora and magnetic storm strength in
these events. An approximate version of the Dst index extends
back in time to 1932 as the Dcx Index (Karinen & Mursula,
2005). Riley (2017) report some magnetometer saturation
effects in the Dcx Index. These indices provide the surface-
observed, longitudinally-averaged perturbation of Earth’s
near-equatorial external magnetic field measured at the surface.
See Borovsky & Shprits (2017) for interpretive cautions related
to this class of geomagnetic indices.

Loewe & Prölss (1997) assign magnetic categories for storm
strength based on Dst: A strong storm is�100 nT > Dst >�200
nT; a severe storm is �200 nT > Dst > �350 nT, and a great
storm is Dst < �350 nT. Eleven of the 14 storms in Figure 1
have Dst estimates that place them in the “severe” or “great”
magnetic storm categories. Lacking magnetic measurements
and the consequent uncertainty of storm-strength estimates prior

to 1850, we provide a descriptive storm-strength estimate rather
than a numeric estimate of strength in Table 1. See the starred
references for values. Three storms do not yet have Dst esti-
mates in the literature. Most of the recent storms also have
short-lived rapid magnetic variations associated with sudden
changes in the solar wind storm driver(s). These are called Sud-
den Commencements (SCs) or Storm Sudden Commencements
(SSCs) if followed by a geomagnetic storm (Mayaud et al.,
1973). Some of the storms are multi-day events with multiple
SSCs. Information on SSCs since 1869 is available at http://
www.obsebre.es/en/rapid from the Ebro Observatory, where
interpretive information about them is also provided.

Deeper investigations of the references in column four of
Table 1 reveal that most great auroral events originate in large
and/or complex sunspot regions. Such regions can be long-lived
with extended transits across the solar disk. Further, multiple
eruptions from such regions affect interplanetary space, poten-
tially allowing for faster travel of ejecta emitted later in the
series (Temmer et al., 2017). This scenario is the probable con-
text for the double events in 1859 and 1938. The event in 1770
(Hayakawa et al., 2017) had visible auroras below 20� MLAT
for one night and visible aurora below 30� MLAT for nine
nights in a row. We suggest that based on duration, the 1770
event is a strong candidate for a once-in-500-year auroral storm
designation, with the understanding that this was likely not a
single eruptive event (See also Liu et al., 2019).

Another lesson from a deeper reading of the references in
Table 1 is the association between great auroral storms and
disruptive geomagnetically induced currents (GICs). Every
great auroral storm after 1850 had reports of GICs in the long

Fig. 1. Year and approximate magnetic latitude of lowest latitude report of visible aurora for storms spanning 500 years (1520–2020). The 14
events are placed above and below the timeline to avoid overlap. Brackets indicate southern latitudes. All MLAT values have been rounded to
the nearest whole degree. Large circles correspond to more equatorward auroral visibility. An open marker indicates a probable event. See
references in Table 1. Several technology developments are listed, as are the approximate intervals of grand/secular solar minima.
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electrically-conducting structures of the day. Over time these
included telegraph lines, transoceanic communication cables,
railways, some telephone lines and power grids. See Hapgood
(2019) and Boteler (2019) for recent discussion of such
problems.

It is natural to ask about storms on the CSAGI list that are
not on Figure 1. We list these in Table 2 and note that there are
eight such storms in an ~70-year span – about one per solar
cycle. We briefly surveyed recent literature describing these
events to determine if there were common characteristics.
Table 2 shows that most of these events: 1) had reported
equatorward auroral visibility around 40� MLAT, and 2) are
categorized as great magnetic storms according to the Dst or
Dcx indices. Further, most were associated with disruptive

technology effects that would have made them memorable to
CSAGI attendees. The storm events in Table 2 seem similar
in strength and intensity to that of the 20 November 2003
magnetic storm, during which red aurora were photographed
from Athens, Greece (Ayiomamitis, 2003).

3 Low latitude auroral storm and radio and
aviation effects of January 1938 storms

The sequencing of events in space weather storms can be
mystifying to those outside the space weather field. In this
section we offer an approach to organizing and communicating
information about storm timing. We also list some of the space

Table 1. Details of events in Figure 1: Date, geographic latitude/longitude, magnetic storm strength estimates (Dst or Dcx), and other relevant
information from references or databases.

Year Geographic
Lat/Lon�/0

Storm
strength

Recent representative
references

Remarks

8 Mar 1582 N 33 14 Great* Willis & Stephenson (2000) Mid-latitude visibility for 3 nights, as well
E 131 36 *Hattori et al. (2019)

2 Mar 1653 N 34 59 Strong–Severe* Willis & Stephenson (2000) During Maunder Minimum
E115 32 *Isobe et al. (2019) No reported sunspots

15 Feb 1730 N 34 59 Great* *Hayakawa et al. (2018a) Considerable brightness at low latitude
E135 47

17 Sep 1770 N 28 51 Great* Willis et al. (1996) Low latitude aurora for 9 nights
E112 37 *Hayakawa et al. (2017)

Ebihara et al. (2017)
Kataoka & Iwahashi (2017)

14 Nov 1789 N 19 26 No estimate published *Vázquez et al. (2006)
W 99 08

17 Nov 1848 N 17 44 No estimate published Lang (1849) Europe and America
W 64 41

28/29 Aug N 8 59 Great *Siscoe et al. (2006) Two great auroral storms
W 79 31 Dst_est* ~ �900 nT Hayakawa et al. (2018b)

3/4 Sep 1859 S 19 0 Hayakawa et al. (2019a) Very bright aurora
*Hayakawa et al. (2020a)

E 149 0 *Cliver & Dietrich (2013)
24–25 Oct 1870 N 30 5 No estimate published *Vaquero et al. (2008) 2 Sudden Storm Commencements (SSCs)

E31 23
4–6 Feb 1872 N 30 0 Great Silverman (2008) 1 SSC

E 120 35 Dst_est* < �830 nT Hayakawa et al. (2018c) Aurora possibly as low as 10� MLAT
Bekli & Chadou (2020)

25 Sep 1909 N 33 51 Great Silverman (1995) 2 SSCs
E 132 47 Dst_est*= �595 nT *Hayakawa et al. (2019b)

*Love et al. (2019a)
13–16 May 1921 S 13 48 Great Silverman & Cliver (2001) 4 SSCs

W 171 45 Dst_est* = �907 nT *Love et al. (2019b)
Hapgood (2019)

16–26 Jan 1938 N 39 42 Severe Hayakawa et al. (2021a) Three distinct storms
E 141 09 Dcx = �336 nT# Two great auroral storms
S 31 50 4 SSCs
E 15 30

11 Feb 1958 N 19 26 Great Rivera-Terrezas & Gonzalez (1964) 1 SSC
W 99 08 Dst = �426 nT** Kataoka et al. (2019)

Kataoka and Kazama (2019)
13–14 Mar 1989 S 24 08 Great Allen et al. (1989) 2 SSCs

E 49 10 Dst = �589 nT** Silverman (2006)
Boteler (2019)

* Estimated storm strength from *citations,
# Dcx = reconstructed Dst Index from University of Oulu http://dcx.oulu.fi/?link=main.
** Dst from http://wdc.kugi.kyoto-u.ac.jp/dstdir/
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weather technology effects in the pre-World War II era. Figure 2
shows the sequence of events leading to the great auroral
storm(s) of January 1938 – a storm in Nicolet’s CSAGI list.
This storm sequence occurred as the world was becoming more
technology savvy and dependent. Bartels et al. (1939) described
several aspects of the late January 1938 activity-interval to

illustrate the newly developed Kp index, which characterized
magnetic storm intensity based on data from widely distributed
ground magnetometer stations. Figure 2 orders the information
with solar emissions at the top, geophysical responses/geospace
events in the middle section, and technology effects and the Ap
index is at the bottom. For readers/users new to space weather,

Fig. 2. A timeline of solar, geophysical and technology effects for the January 1938 storms. The two vertical lines for the first storm indicate a
range of uncertainty about which solar storms or combinations thereof caused the geomagnetic disturbances on 16/17 January. Events and solar
longitudes of flares are from data in Table 2 of Hayakawa et al. (2021a).

Table 2. CSAGI magnetic storm events with mid-latitude aurora.

Date Approximate auroral
visibility � MLAT

Storm strength Reference Comment

17 and 22 Nov 1882 39 Great *Love (2018) Telegraph disruptions (see reference)
Dst_est = �386 nT*

31 Oct 1903 40 Great *Hayakawa et al. (2020b) Telegraph disruptions (see reference)
Dst_est = �531 nT*

16 April 1938 41 Severe Nicholson &
Sternberg-Mulders (1939)Dcx = �255 nT*

24 Mar 1940 41 Great Nicholson (1940) Power disruption (see reference)
Dcx = �366 nT** Araki (2014)

1 Mar 1941 35 Great Hayakawa et al. (2021b) Polar cap absorption
Dst_est � �464 nT*

18 Sep 1941 Near 40 Great Love & Coïsson (2016) Radio and grid disruption,
military impacts (see reference)Albuquerque Journal (1941)

Dcx = �359 nT** McNish (1941)
28 Mar 1946 < 42 Great Hayakawa, et al. (2020c) Radio disruption to transatlantic

aviation Odenwald (2007)Dst_est � �512 nT
21–22 Sep 1946 Strong Araki (2014) Remarkable SC

Dcx = �163 nT* GICs

* Storm strength estimated from citations or published indices, Dcx = reconstructed Dst Index from University of Oulu.
** Storm Strength also reported as Dst/Dcx values in Cliver & Svalgaard (2004).
Note some Dcx values may be derived from off scale-magnetograms and thus underestimate the actual magnitude.
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the Ap index is a linearized version of Bartel’s Kp index.
Students report that starting with an approximately linear index
is a good segue into more in depth discussion of the quasi-
logarithmic Kp index.

The 21/22 and 25/26 January 1938 great auroral storms were
the second and third in a series of geomagnetic storms associated
with Mount Wilson Observatory-designated Region 5726 transit
of the Earth-facing solar disk (Hayakawa et al., 2021a). These
authors note that the large AR appeared at the solar East (E) limb
on 12 January, crossed the central meridian on 18 January, and
disappeared behind theWest (W) limb on 24 January. Therewere
numerous solar flares through the interval. The flare level (impor-
tance) in hydrogen alpha (Ha = 656.28 nm) emission indicates
the Ha flaring area in millionths of a solar hemisphere (msh)
(1 = 100�250 msh; 2 = 250�600 msh; and 3 > 600 msh). There
were also three distinct intervals of high geomagnetic activity, the
latter of which continued well after the AR had rotated off the
visible solar disk. Based on time between flares and sudden storm
commencements, Hayakawa et al. (2021a) suggest there were at
least three ICMEs that arrived at Earth on 16, 22 and 25 January
1938. These are listed as “probable” in Figure 2, since there were
no appropriate measurements to verify the solar wind distur-
bances. These had estimated average velocities of 1900 km/s,
1370 km/s, and 1260 km/s, respectively. The 25�26-January
storm associated with the latter solar event is identified by Jones
(1955) as being in the top 10% of 112 great magnetic storms
between 1874 and 1954.

We use the information in Table 2 of Hayakawa et al.
(2021a) to show how such ongoing events and effects can be
visually structured to help students and novices in the field of
space weather make sense of space weather storms. Vertical dot-
ted bars on Figure 2 are intended to link solar activity with the
subsequent geomagnetic activity. Figure 2 suggests that the com-
plex AR was hyperactive, producing ejecta that strongly inter-
acted with the near-Earth environment. AR 5726 emitted an
intense solar flare (Ha, Importance level 3) as it arrived at E
45 solar longitude. Other areas were also flaring, so it is challeng-
ing to fully associate flares with probable ICMEs. The first
strong geomagnetic activity developed at Earth in just over
two days, with a SSC late on 16 January. The associated ICME
likely would have moved through relatively dense solar wind
somewhat slowing its arrival at Earth relative to subsequent
events. Strong galactic cosmic ray (GCR) decreases (noted by
Forbush, 1938 and now called “Forbush Decreases”) were
observed. These are indicative of large interplanetary ejecta that
scatter GCR particles back to space. After the first ICME swept
through interplanetary space, the ICMEs from subsequent
eruptions should have traveled through a less dense solar wind
and arrived at Earth more quickly. The shorter horizontal arrows
indicate this timing. The first ICME arrival produced mid-
latitude aurora and a strong geomagnetic storm, while the
second ICME produced a low-latitude aurora visible at
30� MLAT and a severe geomagnetic storm on 22 January.
The final storm (25 January) followed a level 3 solar flare at
West 85 solar longitude and produced aurora visible at
30� MLAT. By the time the third ICME arrived at Earth
the AR had rotated to the far side of the Sun (see over-the-limb
loops in Fig. 4, Nicholson, 1938). Researchers of the day
marveled that a great storm could occur in the absence of a
visible sunspot.

Accompanying the natural phenomena was a series of
technology impacts. These included radio fades, which can be
caused by solar flares and/or mid-latitude ionospheric
disturbances during magnetic storms, and polar cap absorption
of radio signals, which are caused by excess ionization by SEPs.
Geomagnetically induced currents affected telegraph systems
worldwide and train operations in the United Kingdom
(Odenwald, 2007). The significant radio blackouts reported by
US airlines added urgency to the US Department of Commerce
National Bureau of Standards’ efforts to establish high frequency
(HF) radio forecasting capability within its Radio Section (see
historical discussions and references in Caldwell et al., 2017).
There were ongoing radio fades during January 1938. These
were probably more pervasive than shown, as such reports are
still under active investigation. Finally, GICs appeared with each
SSC. This indicates fast compressions of Earth’s magnetosphere
and strong storming after the compressions.

The January 1938 series of storms exemplifies the pattern of
numerous other storms discussed in the recent literature: a large,
extremely active sunspot complex, with a multi-day solar disk
transit that ejects a sequence of ICMEs. The later ICMEs
quickly move through the partially evacuated channels cleared
by the previous ICMEs. Bright aurora appeared at mid-latitudes
during all three storms in the sequence and particularly at low
latitudes during the final two storms.

This event offers valuable lessons in the basic development
of space weather storms. There are aspects of solar, heliospheric,
geomagnetic and societal impacts. The latter included telegraph
outages, railway disruptions and radio interference in communi-
cations and aviation applications. The individual events are
well-enough separated that cause-effect relationships are fairly
straightforward to describe. In subsequent decades disruptions
of space-based applications have add new dimensions to space
weather storm complexity and challenges is sorting timing and
causes, as we illustrate in the section and figure below.

4 December 2006 storm event timeline

In this section we discuss an event in December 2006 with
many solar behaviors in common with the January 1938 great
auroral storm, whereas the aurora only extended only to about
40 MLAT and the geomagnetic storm level (Dst = �147 nT
on 15 December) was less intense than most of the events on
the CSAGI list. While this event was not a great auroral storm,
its far-ranging effects on space-age technology provide context
for planning for future storms. Figure 3 illustrates the effects of
an unanticipated nest of solar activity in December 2006, when
the Sun was in the late declining phase of solar cycle 23. We
note that better understanding of such events and more technol-
ogy impacts produce a visually “busier” graphic. We will not
delve into every aspect, since a full investigation would require
a much lengthier explanation.

The stormy interval of 5–17 December 2006 began with the
appearance of NOAA AR 10930 on the Sun’s Eastern limb late
on 4 December. The extreme East limb location (~E80)
prevented a good view of the AR. With no warning the region
emitted an X9.0 flare on 5 December. The probable first
ICME was not Earth-directed, however detectors on spacecraft
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at Mars and Venus suggest that such a structure passed these
planets (Futaana et al., 2008; McKenna-Lawlor et al., 2008).
The following day AR 10930 hosted an X6.5 flare and the

largest radio burst (> 106 solar flux units) ever recorded at the
Global Positioning System (GPS) frequency of 1.575 GHz
(Cerruti et al., 2008). A substantial SEP event and a halo

(a)

(b)

Fig. 3. A two-panel timeline of solar, geophysical and technology effects for the December 2006 storms. a) Solar and interplanetary aspects of
the event; longitudes of major flares are provided. b) Technology effects and is slightly expanded with respect to panel a. Event start/stop times
and thresholds are in the references cited in this section.
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CME followed. Technology effects were immediate, with per-
manent damage to the GOES 13 Solar X-ray Imager (NGDC,
2007) and sudden saturation of dayside GPS ground receivers
causing GPS outages throughout the American sector (Cerruti
et al., 2008). Although ISS crew members were instructed to
retreat to safe haven on 5 December, the eastern location of
the event delayed the arrival of energetic particles at Earth. Loss
of data from SEP-sensitive instruments on the ACE spacecraft
started ~07 UT on 8 December (McKenna-Lawlor et al.,
2008). An HF radio polar cap absorption (PCA) event began
about the same time and continued intermittently until 16
December.

After 7 December, AR 10930 quieted until new solar
magnetic flux began to emerge near the site of the previous
activity on 10 December. Early on 13 December the AR, which
was by then better positioned for geoeffective activity, produced
an X3.4 flare, another broad (halo) ICME and another SEP
event that almost immediately caused a ground level event
(GLE-70), recorded by ground-based neutron monitors (Matthiä
et al., 2009). The SEP event nearly blinded the Solar
Heliospheric Observatory (SOHO) imager that was tracking
the advancing ICME (Kataoka et al., 2009). The associated
solar wind shock arrived at Earth’s L1 point after only 35.5 h
(McKenna-Lawlor et al., 2008), with the driver ICME arriving
about 8 h later (Zhou et al., 2011). The shock and interplanetary
magnetic field (IMF) structures following the shock brought the
magnetopause to within geosynchronous orbit for part of the
subsequent 12 h. Southward IMF in this ICME expanded the
polar cap and allowed very energetic particles from the ongoing
SEP event to access mid-latitudes (Adriani et al., 2016), thus
expanding the polar cap HF radio outages.

Additionally, strong southward IMF “opened” the magneto-
sphere to substantial energy input, which was quickly shared
with geospace. NASA reported that the ISS crew struggled to
maintain attitude control. The ionospheric F-layer was subject
to extreme enhancement and uplift as well as large interhemi-
spheric asymmetries (Suvorova et al., 2013). Some monitored
power grids in Asia reported geomagnetically induced currents
(Watari et al., 2009; Ni, 2018). Within a few hours the
European Giove, a research spacecraft in medium Earth orbit
began reporting spacecraft charging effects that continued into
January 2007 (Fig. 12, Cannon, 2013) as Earth’s radiation belts
were energized and remained so for weeks (Tverskaya et al.,
2008).

Although auroras were reported only to mid-latitudes – a
faint auroral red glow was noted from Payson AZ in the US
(~44� MLAT), the mid-latitude ionosphere was significantly
disturbed. The GPS measured strong Total Electron Content
(TEC) variations and plasma irregularities (Pedatella et al.,
2009; Zhang et al., 2009) at mid- and high-latitudes. These
combined factors led to elevated GPS positioning errors in the
tens-of-meters range in the horizontal and vertical directions,
respectively, during this event (Carrano et al., 2009).

5 Discussion and summary

This article is dedicated to visualizing and sharing informa-
tion about space weather and space climate. Our example
timelines cover a range of complexity. We used a storm list

created prior to the IGY as starting point to chart the great
auroral storms of the last 500 years. Further surveys should
reveal additional events. To provide a visual perspective on
the frequency of great auroral events, Figure 1 presents 14
events with auroral visibility at or equatorward of 30� MLAT.
We find that on average a great auroral storm appears about
every four to five solar cycles, whereas the distribution is tem-
porally uneven with the Sun apparently modulating the distribu-
tion as it cycles through grand minima and maxima. The sparse
auroral records prior to 1850 and probable inability to identify
some storms due to terrestrial cloudiness during any part of
the record lead us to believe that such storms could be more
frequent. Others may yet be discovered. One event in 1770
stands out as an especially long-lasting auroral event, whereas
there are other events during which the auroral were observed
at more equatorward locations.

Figure 1 provides a visual guide to great auroral storms of
the last 500 years, however auroral visibility boundaries are
insufficient for full storm description. Students and novices will
ultimately learn that space weather operators rely on an array of
storm measures for conveying storm strength. Greater insight
can be gained with ground-based magnetic measures (Table 1),
radio measures as in Section 3 and 4, and from space-based
measures as in Section 4. Additional learning opportunities
for students and novices could include plotting these storms
according to a storm strength index or sunspot number, when
those data are available, or plotting the data in context with
cultural/technology/industrialization activity. Students and
novices interested in reading the literature cited in Table 1
can compare and contrast the reported longevity of solar active
regions associated with these storms or look more deeply into
the associated geomagnetic disturbances for the post-1850
events. An additional worthy discussion point could be related
to the possible effects of a quasi-9-day-long great auroral event
on modern space systems. In particular, low earth orbiting
spacecraft (and space debris) would likely feel long-term atmo-
spheric drag and attitude control effects from such an event.

To demonstrate the effects of space weather storms on
society and technology, we illustrate two events. The first of
these was associated with a series of solar eruptions and geo-
magnetic storms in January 1938; a time of increasing reliance
on radio technology, but still strong use of telegraph systems.
The storms created awe-inspiring aurora and silenced telegraph
and radio communications. Figure 2 shows a sequence of three
storms in early 1938, with numerous solar flares and probable
high-speed ejecta directed at Earth. The ability to recognize
and categorize flares was still cutting-edge technology at the
time. More reliance on technology at the time meant more space
weather susceptibility. The 1938 event appears to be the first
multi-day storm to have wide effects on commercial aviation
documented in newspapers. This event supports the discussion
of the typical sequencing and time delays associated with space
weather storms. There are a number of basic concepts (and
acronyms) for this event that are worthy of attention in a class-
room or group-discussion setting.

A more “moderate” event in late 2006 is our final storm
timeline. Space systems bore the wrath of that storm. Space
weather X-ray monitors were damaged by intense X-rays. Solar
energetic particles blinded some imagers. Some space plasma
measurements for space weather operations were interrupted.
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GPS navigation and guidance were interrupted. After passage of
the solar wind shock geospace was greatly disturbed. In the
upheaved thermosphere the International Space Station crew
struggled to maintain attitude control while the space shuttle
Discovery was docked. While only minor geomagnetically
induced current influences were reported on high-latitude power
grids there were significant disturbances in Earth’s ionosphere
leading to single frequency GPS positioning errors. Earth’s
radiation belts were enhanced for several weeks. Instrumenta-
tion at other planets also recorded effects of the storm.

Although the 14–16 December 2006 geomagnetic storm did
not rate as severe storm on the Dst scale, the long list of
associated technology challenges suggests that any single
storm-scale is likely to fail at adequately describing the possible
effects of complex active regions. These ARs can produce
multiple or single fast ejecta and possibly interact with and/or
pre-condition geospace to be sensitive to less-than-extreme
storm drivers. This event is a candidate for case study and
scenario-based exercises.

Here are several important points discussed by students
involved in this project that we deem important for teaching
and learning about space weather. 1) There is no comprehensive
space weather scale or index that can cover the multitude of
space weather responses at Earth. 2) Further, descriptive terms
like strong, super, great or extreme have different meanings
within the sub-disciplines in space weather. 3) Sequencing of
storm drivers and pre-conditioning of the geospace environment
can be difficult to disentangle and produce results very different
from what might be anticipated. 4) Despite more than 500 years
of great auroral storms, we are only at the beginning of forecast-
ing space weather.

Development of timelines for this article is an outcome of
independent study projects using historical literature searches,
guided journal-article reading and archival searches via site
visits and the Internet. Students and novices reported that learn-
ing new terminology and cause-and-effect timing in the context
of actual events helped solidify their grasp of space weather
events. We plan to extend space weather timelines to more
interactive platforms, such as web-based interactive formats or
toolkits to investigate different scenarios. Better understanding
of space weather interactions will require a level of visualization
not possible with two-dimensional diagrams, however such
diagrams are a good starting point.
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