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Relation extraction is a means of determining relations between entities discussed in text. In

this work we apply a number of existing and novel techniques to the J.D. Power and Associates

Sentiment Corpus to examine the techniques’ effectiveness when looking for relations in noisy blog

and social media documents. To classify relations, we use support vector machines with both vector

features and tree kernels, the current state of the art methods for relation extraction. Additionally,

we extend these methods to examine relations across multiple sentences. Unlike previous systems,

this one focuses predominantly on relations between all entities discussed in the text rather than

only entities that are mentioned in the same sentence. We present evidence that relation extraction

can be improved using an ensemble classification scheme to combine relations between mentions to

predict relations between co-reference groups of mentions.
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Chapter 1

Introduction

To accurately summarize, determine the sentiment, or answer questions about a document, it

is often necessary to determine the relationships between entities being discussed in the document

(such as part-of or member-of). For example, in this simple sentiment example

Example 1.1 : I bought a new Mazda3 yesterday. I love the powerful engine.

determining the sentiment the author is expressing about the Mazda3 requires knowing that the

engine is a part of the Mazda3 so that the positive sentiment being expressed about the engine can

also be attributed to the Mazda3.

In this work, we define relations as they were defined by Winston et al [24], as a relation

that exists between two abstract or real objects (entities) in the world. We use two corpora that

annotated relations in different ways, but in both cases they discuss relations which are expressed

by the text rather than general ontologies of relations. For instance, a car can have a spoiler as a

part of it, but not all cars do. In the sentence

Example 1.2 : We looked at a BMW 3 Series and a Mazda3, but only the latter had a spoiler.

the phrase “spoiler” would be annotated to be a part of the Mazda3, but would not be a part of

the BMW 3 Series despite the fact that generically, a spoiler is a part of a car.
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We investigated using syntactic and lexical vectors of features and tree kernels from previous

work to see how well the same techniques can be applied to the J. D. Power and Associates (JDPA)

Sentiment Corpus [13][14]. Tree kernels provide a method of extracting features directly from the

constituency parse tree of a sentence in order to detect relations. Because they operate directly on

the parse tree, we find that tree kernels are an effective way to adapt to new data sources, as they

are not optimized for any one particular corpus in the same way that vectors of features are.

The JDPA corpus presents a new relation extraction challenge because it contains social

media documents. Previous work on relation extraction largely focused on news articles. However,

the JDPA Corpus contains documents written by a wide range of authors: professional reviewers,

blog writers, and social media/message board writers. We find that this variation in writers also

results in a wider range of how they use language.

Two key terms are used throughout this paper that deserve to be properly defined up front:

“mention” and “entity”. A mention is a word or phrase in the text that refers to a real-world entity.

Example 1.1 contains the mentions “I”, “Mazda3”, “yesterday”, “I”, and “engine”. Expanding on

Example 1.1, we can look at the set of mention phrases that all refer to the same entity:

Example 1.3 : I bought a new [E1 Mazda3] yesterday. I love the powerful [E2 engine]. [E2 It] makes

the [E1 car] feel like a sports car. I love driving [E1 it].

A set of mention phrases that all refer to the same real world entity is called an entity or a co-

reference group (we use the two terms interchangeably). In Example 1.3 the mention phrases that

are referring to the Mazda3 are marked as E1 and those referring to the Mazda3’s engine are marked

with E2.

Relations can then be considered as either a relation between pairs of mentions, or a relation

between pairs of entities. Furthermore, an entity pair is composed of all of the mention pairs between

the two entities. So in Example 1.3 where E1 has three mentions and E2 has two mentions, there

are a total of six mention pairs that compose this single entity pair.
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Due to limitations in how relations have been annotated, previous work on relation extraction

was limited to only looking at relations between mention pairs occurring in the same sentence. So

in Example 1.1 above, there would be no annotated relation indicating that “engine” is a part of

“Mazda3”. The JDPA Corpus was annotated to indicate relations between all the entities being

discussed in the document. Inherently, these annotations cross sentence boundaries. This expands

the number of possible mention pairs that can be considered and thus can help boost the number

of relations detected within the document.

Similar to other systems, our relation extraction system looks at the pairs of mentions in

the documents to determine whether a relation exists between the real world entities. However,

our system then combines the results from all of the mention pairs to produce a single entity pair

prediction using a simple ensemble voting scheme. Since each mention pair provides a new “look”

at whether a relation exists between the entities, combining these results is a novel way to improve

how many relations within a document can be extracted. This novel ensemble method improves

the performance of the relation extraction system.

Prior work has mostly focused on the number of mention pair relations that can be detected.

We argue that the more appropriate metric for measuring the effectiveness of a relation extraction

system is to look at the number of correctly classified relations between entity pairs. Since each

entity pair can consist of an arbitrary number of mention pairs, the marginal amount of information

extracted from the document by correctly detecting a relation between two mentions is zero if the

relation between them has already been detected. Section 3.4 provides a more thorough discussion

of the metrics for measuring relation extraction.

In summary, in this work we find that:

• Existing relation extraction feature vectors do not work as well on the JDPA Corpus.

• Using a tree kernel to learn models for relation extraction is an effective way to avoid having

to re-engineer the vector features.
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• Relation extraction can be improved by an ensemble combination of detected relations

between mention pairs to produce predicted entity pair relations.

• The traditional metric of comparing correctly classified relations between mention pairs is

a less complete relation extraction metric than measuring the correctly classified relations

between entity pairs.



Chapter 2

Background

2.1 Relation Corpora

In this section we detail the two corpora we used in our research: the Automatic Content

Extraction 2004 Training Corpus (LDC2005T09) and the J.D Power and Associates Sentiment

Corpus.

2.1.1 Automatic Content Extraction (ACE) Corpus

The ACE Corpus [16] is one of the most common corpora for performing relation extrac-

tion. Multiple versions of the corpus have been released, but in this work we focus on the ACE

2004 Corpus as that seems to be the most common corpus in other relation extraction research.

The ACE Corpus is annotated for two different tasks: co-reference resolution and relation ex-

traction. The relation annotations consist of 23 different fine-grained relations, which are divided

up into 7 different coarse relation categories (Agent-Artifact, Discourse, Employee-Organization,

GeoPolitical-Affiliation, Other-Affiliation, Personal-Social, Physical). The relations are limited to

mentions between real-world entities that are used in the same sentence.

In this research we focus primarily on the 7 coarse relations to more easily make comparisons

to other research. But we also run our baseline vector features on the fine-grained relations. The

results from these relations were used for testing our system and as a comparison point against

the JDPA Corpus results. For our work, we use the bnews and nwire documents from the corpus

consisting of broadcast news transcripts and newswire articles from a variety of news organizations.
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Source
% of

Documents
jdpower.com/autos/powersteering/∗ 24%
∗.blogspot.com/∗ 18%
livejournal.com/∗ 18%
∗.wordpress.com/∗ 7%
autoblog.com/∗ 5%
autochannel.com/news/∗ 4%
Other 24%

Table 2.1: Breakdown of automotive document sources in the JDPA Sentiment Corpus.

2.1.2 J.D. Power and Associates Sentiment Corpus

The JDPA Corpus consists of 457 documents containing discussions about cars, and 180

documents discussing cameras [13][14]. In this work we only use the automotive documents. Table

2.1 provides the breakdown of documents from each source.

The annotated mentions in the Corpus are single or multi-word expressions that refer to a

particular real world or abstract entity. The mentions are annotated to indicate sets of mentions

that constitute co-reference groups referring to the same entity. The relation annotations are

between entities in the corpus documents. Table 2.2 summarizes the frequency of the different

relations, and provides a comparison to the number of relations in the ACE 2004 Corpus.

2.1.3 Corpora Comparison

The broadcast news transcripts and news articles in the ACE Corpus have a very different

writing style from the message board, blogs, and product reviews in the JDPA Corpus. To better

understand these differences and the difference between the mentions and relations in the corpora

we performed a simple statistical analysis of the documents in the training set.

As already mentioned, the ACE relations are between mentions within the same sentence,

while the JDPA Corpus relations are between entities. This means that the JDPA relations are

not limited to being between mentions in the same sentence. Table 2.2 shows that in the JDPA

Corpus, only 72% of the relations are between entities that have mentions co-occurring in the same
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Relation
WordNet Total Count Relations per Ave Min Percent in
Equivalent (in Training) Sentence Distance One Sentence

FeatureOf Attribute 7656 0.64 12.2 81%
InstanceOf Hyponym (subset) 1740 0.14 27.1 60%
MemberOf Meronym 1897 0.16 36.1 60%
PartOf Meronym 9706 0.81 21.3 67%
Produces None 1663 0.14 7.4 92%
JDPA Corpus

NA 22662 1.89 18.9 72%Overall
(cars)
ACE 2004 Corpus

NA 2930 0.6 3.8 100%Overall
(bnews and nwire)

Table 2.2: Statistics about the relations in the corpora generated on the 70% of the data in the
training sets. The “Ave Min Distance” is the average of the minimum number of tokens between
the two closest mentions of entities that are related to each other. The “Percent in Sentence”
indicates the number of related entities that have mentions occurring in the same sentence.

JDPA Corpus ACE 2004 Corpus
(cars only) (bnews and nwire)

Documents 457 348
Sentences Per Document 37.8 20.0
Tokens Per Document 713 426
Tokens Per Sentence 18.9 21.37
Mentions Per Sentence 4.37 3.46
Mentions Per Entity 1.48 2.36
Mentions With Only One Token 71% 56%
Entities Per Document 111.8 29.2

Table 2.3: Selected document statistics for the JDPA and ACE 2004 Corpora.



8

sentence. Since most prior research has focused on relations only within a sentence, we expect that

detecting relations between mentions in different sentences will be difficult since there is little prior

research looking at relations across sentences.

As a metric of the distance between two related entities, we counted the minimum number of

tokens between the mentions in the two co-reference groups. For each relation type we then took the

average of these counts to calculate the average minimum distance for each relation type. We find

that, not surprisingly, the JDPA Corpus relations have a much higher average minimum distance,

which we predict will also make it more difficult to predict relations. Notably, the minimum distance

with the Produces relation is much smaller, so we expect to be able to predict that relation much

more easily than the others. There are many more relation examples to learn from in the JDPA

Corpus as compared to the ACE Corpus, but we hypothesize that the increased average distance

between the mentions will likely offset any benefit that the increased number of examples provides.

Table 2.3 summarizes some additional statistics about the documents in the corpora. Of

particular interest to relation extraction is the increased number of entities in each document of

the JDPA Corpus. However, each entity on average is mentioned fewer times than in the ACE

Corpus (Table 2.3 Mentions per Entity). This is somewhat unfortunate since the more times an

individual entity is mentioned the more chances our ensemble system has of detecting a relation

between it and another entity.

2.2 Related Work

In their 1987 paper, Winston et al. created a detailed taxonomy of Part-Whole (Meronymic)

relations that combined much linguistic work from that time [24]. This work eventually formed

the basis for how the JDPA Corpus relations were defined [14]. However, there have been a wide

range of different types of relations explored in the intervening years. We do not here try to fully

summarize the literature, especially not the linguistic and cognitive nature of semantic relations.

Instead we focus first on some select recent work that has tried various ways of exploring and

predicting relations on non-ACE Corpus data, and then summarize the two primary supervised
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learning approaches applied to ACE relations that our work builds on: feature vectors and tree

kernels.

2.2.1 Relations on Miscellaneous Data Sources

Vieira and Poesio built a heuristic based system for anaphora detection [23]. In addition to

anaphora, they also created heuristics specifically for predicting relations between the mentions in

the text. However, this relation extraction, by their own admission did not perform as well as they

hoped given their results on anaphora detection. The heuristics they used focused on lexical and

syntactic patterns in the text. They concluded that semantic knowledge would be a great help in

detecting relations.

Girju et al. have also explored entity relations with a number of different methods[7][6][8].

Their initial methods did use semantic knowledge from WordNet to find pairs of words that were

related to each other. They then searched for sentences containing both words, and annotated

these sentences to indicate whether there was a relation expressed or not. A classifier was then

trained and tested on this annotated data[6].

For our work, the most interesting aspects of Girju et al’s research are their examination of

the parts of speech surrounding relations, the connecting words between related mentions, and how

compound noun phrases can express relations. In related work, Nakov and Hearst have also looked

at how noun relations can be characterized by specific verbs [18] and how relations can be found to

expand the relations within WordNet [9]. This work provides a thorough examination of relations

within a sentence that feature vectors can be based on for future work.

On the SemEval 2007 Task 04 (classifying relations between noun phrases) Girju et al. also

evaluated the results from a number of different systems to provide guidelines for what type of fea-

tures helped with determining relations between entities[8]. A very important result from this work

was that using WordNet to provide semantic information resulted in about a ten point increase in

overall F-score for this task, thus confirming Viera and Poesio’s hypothesis that semantic knowledge

can greatly help relation extraction. Snow, Jurafsky, and Ng present further evidence that WordNet
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information may be helpful in their examination of hyponomy (InstanceOf) relations[22]. Again

they focused on relations expressed within a single sentence, but they both extracted patterns for

training their classifier and made use of WordNet.

In our own work however, we explicitly do not use external semantic information in order

to limit the scope of our research and confine ourselves to finding those features that can extract

relations through syntactic and lexical information alone.

2.2.2 Relations on the ACE Corpus

As previously mentioned, the ACE Corpus appears to be the most commonly used corpus

for relation extraction. Kambhatla developed a system in 2004 using a maximum entropy model

that used lexical and syntactic features such as the parse and dependency trees of the sentence and

entity types of the mentions[12]. Zhou et al. further expanded on these features[30], creating a set

of features that many others have used as the basis for their own systems[3][10]. In our own work,

we use Zhou et al’s 2005 features as our baseline vector features.

Jiang and Zhai further expanded on the above features by performing an extensive exploration

of the syntactic and lexical feature space[10]. This work certainly improved upon the previous

features, and presented a methodology for exploring this feature space that would be necessary

for expanding these features to work on different data sets. They also expanded upon the specific

features to improve the parse trees and reduce noise in the features.

Finally, Chan and Roth have recently explored adding features outside of just the syntactic

and lexical features[3]. Of particular interest to our work is the use of co-reference information to

provide additional information about the context around the mention phrases. They also exam-

ined adding constraints on the allowable entity types with relations, and expanded the semantic

information using Wikipedia.

One difficulty with the feature vector based approach to relation extraction is the time con-

suming search to build complex features. In particular, the parse trees of sentences can often

contain information that is indicative of a relation between mentions, but finding these features
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can be quite difficult due to the complexity of the parse trees. Furthermore, different relations are

likely to be indicated by different patterns in the parse tree. By using a tree kernel rather than the

standard linear or polynomial kernel in a Support Vector Machine (SVM), the parse tree for a sen-

tence can be used directly rather than needing to engineer feature vectors from the parse tree. The

tree kernel extracts structural information from the parse trees based upon which substructures in

the trees are indicative of the relations[17]. Using a wider range of information than just the vector

features also makes it easier for the system to adapt to data sets that are very different from the

ACE Corpus. Additionally, the vector features and tree kernels are somewhat complimentary to

each other, and so combining a linear kernel with the tree kernel provides significantly improved

performance[29][26].

The earliest attempts at using structural SVM kernels to extract structural information were

done by Bunescu and Mooney[2], and by Zelenko et al.[25]. Bunescu and Mooney used a sub-

sequence kernel to encode information about the sequence of words, part-of-speech tags, and entity

types in the sentence containing two mentions. Zelenko et al seems to be the first application of

tree kernels to the domain of relation extraction. They used shallow parse trees rather than the

full constituent parse tree. Similar to other work, they decorated their parse tree with entity type

information.

Zhang et al[26] performed extensive experiments on how to prune parse trees to be most

effective at relation extraction. Zhou et al[31][29] extended this research by exploring how to

modify the parse trees to make further improvements. In Chapter 4 we discuss further how we

structured our trees based on this prior research.

2.2.3 Relations Across Multiple Sentences

In all of the work mentioned in the previous sub-sections, the relations being detected were

between mentions occurring in the same sentence. Although many relations are expressed within

a single sentence, there are many cases where two entities that are related to one another do not

contain any mentions in the same sentence. In the JDPA Corpus 27% of relations are between
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entities that do not have mentions in the same sentence.

There has been relatively little research on relations across sentences, but Gerber and Chai’s

recent work[5] on extending NomBank to include implicit arguments (arguments from other sen-

tences) presents a number of features and a basis for how to look at relations across sentences.

Furthermore, Chan and Roth’s previously mentioned work[3] on using co-reference information

in relation extraction suggests that adding information about co-referring mentions around the

mentions would help when the mentions are in different sentences.

2.2.4 Summary

The takeaway from the prior research seems to be that little to no research has been done

with supervised learning techniques across an entire document to find relations between entities. In

the context of this other research, the most interesting aspect of our research is that it focuses on

relations between entities rather than mentions. This focus also allows examining relations across

multiple sentences since the entity relation annotations in the JDPA Corpus are inherently across

multiple sentences.



Chapter 3

Experimental Setup

3.1 Data Splits

The automotive documents in the JDPA Corpus were randomly partitioned into a training

set (70% of the documents), a development set (10%), and a final test set (20%). The test set has

only been used for generating the final results for this paper.

Similarly, the ACE bnews and newswire documents were randomly split into training/development/test

sets with 70/10/20 proportions. However, we only used this split when developing our system. Most

relation research on the ACE Corpus uses five fold cross validation to report results and so all of

our results on the ACE Corpus were tested with five fold cross validation.

3.2 Relation Extraction System

To detect all relations in a document the system would need to compare all pairs of mentions

in a document. This is computationally infeasible. On the ACE Corpus we are limited by the

dataset to only pairs of mentions that are within the same sentence. For the JDPA Corpus we

constrain ourselves to all pairs of mentions within a window of S sentences. In this research we

look at a window size of between 1 and 3 sentences. Throughout this paper we will indicate sentence

windows by referring to the range of sentences from which the mention pairs are drawn. So a 2-3

sentence window indicates that the extracted mention pairs are either in consecutive sentences or

have one sentence in between them. A 1-1 sentence window means all mention pairs are in the

same sentence.
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The system extracts all pairs of mentions in the sentence window, and then classifies each pair

of mentions as either having a relationship, having an inverse relationship, or having no relationship.

So for the PartOf relation in the JDPA Corpus we consider both the relation “M1 is part of M2” and

“M2 is part of M1” for a pair of mentions < M1, M2 >. The following subsections detail the system

of how the documents are processed and how classification of these instances is accomplished. We

leave the discussion of the actual features used for performing the classification to chapter 4.

For creating features we make use of the gold mentions, entity types, and co-reference groups

from the corpora. Predicting this information would be a more realistic task, but in this work

(similar to other relation extraction work) we focus solely on the detection of the relations.

3.2.1 Tokenization

Each document is first split into sentences using the OpenNLP Sentence Splitter, and then

tokenized using the OpenNLP Tokenizer [1]. Additional custom post processing rules were written

to improve the tokenization of the JDPA Corpus documents. In particular rules were written to

tokenize the following examples that the standard OpenNLP tokenizer could not handle:

• “Foot/head/leg” into “foot” “/” “head” “/” “leg”

• Typos: “end.The” into “end” “.” < NewSentence > “The”

• Itemized lists: “2.It” into “2” “.” “It”

• Number and unit: “120hp” into “120” “hp”; “2.0L” into “2.0” “L”

• Parenthesis/Brackets: “good)” into “good” “)”

In general the tokenization of the documents in the JDPA Corpus is a difficult problem

because the documents have many typos and do not contain just a series of sentences, but rather

also contain lists, headings, and other structure that the authors added to the documents. For

instance, one troublesome document consists of a single long sentence with the clauses separated

by commas. There is certainly additional work that could be done to improve the tokenization on
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this dataset. Additionally, the current structure of separating data simply into sentences may not

be the best breakdown when dealing with some of the documents which contain numbered lists or

headings in different parts of the document. We speculate that summarizing this structure using

a tree kernel may provide additional useful information for the classifier, but leave this to future

work.

3.2.2 Parsing and Phrase Chunking

The Stanford Parser [15] is used to generate constituent parse trees and part of speech tags

for the sentences in the documents. As per Zhou et al 2005 [30] we also use the Perl script written

by Sabine Buchholz from Tilburg University (http://ilk.kub.nl/~sabine/chunklink) to detect

phrases in the parsed sentences, as well as to build the dependency trees used for determining the

head words of phrases.

3.2.3 Relation Classification

The classification of the relation between mention pairs was done using support vector ma-

chines implemented with uSVM [21], a variant of SVMLight-TK [17][11]. Section 3.3 details how

and why we used uSVM.

For each mention pair < M1, M2 > we must consider all of the relations and the inverse

relations the two mentions could have to each other. On the JDPA Corpus this means considering

11 classes (5 relations, 5 inverse relations, and 1 NoRelation class). So we train our binary classifiers

to detect both “M1 is part of M2” and “M2 is part of M1” using separate binary classifiers. Each

classifier is implemented as a 1 versus rest classifier. Applying these classifiers to the < M1, M2 >

instances (and their associated features) provides a set of predictions for relations between the

mentions.

Additionally, there are a small number of cases in both corpora where some of the relations

between the mentions/entities are symmetric. In the JDPA Corpus these are probably errors in

the corpus, whereas in the ACE Corpus, some of the relations are sometimes symmetric. We make
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no attempt to judge whether the annotations are wrong or not, and simply consider symmetric

relations to be another relation class to be predicted (eg S PART OF). So for those cases where

a symmetric relation occurs we also built classifiers for those symmetric classes. On the JDPA

Corpus this results in a total of 14 different classes (3 symmetric ones).

We build three separate sets of classifiers (c0, c1, and c2+) depending on the number of

sentences between the two mentions. Each mention pair is classified according to the distance

between the mentions: pairs in the same sentence (c0), pairs in consecutive sentences (c1), and

pairs with at least one sentence in between (c2+). On the JDPA Corpus this means training a

total of 39 binary classifiers ((14− 1)× 3) to extract relations for the 14 classes with a window of

3 or more sentences.

Since the ultimate goal is to find relations between the co-reference groups not just the

mentions, a second step combines the predicted mention relations between a pair of entities to

form a single predicted relation between the entities. This combination is done by a simple voting

scheme where each vote for a relation counts once, except for the NoRelation class, which is only

assigned between two entities if no other relation was predicted between their mentions.

Effectively this converts our system into an ensemble of mention pair classifiers whose results

are combined to predict the relations between entities. Across a series of sentences there may only

be one or two places where the text indicates a relation between two entities. This voting scheme

is biased towards any single detection of a relation and will override any times no relation was

detected. Training a classifier to combine the results from the separate mention predictions would

quite likely improve upon this system, but we leave this to future work.

3.3 SVM Classification

The uSVM software that we use to produce our binary SVM classifiers uses a uniform sam-

pling technique applied to the cutting planes algorithm to drastically decrease the training time

of the models [21]. Without this approximation method, running with tree kernels on this project

would be impractical as we estimate that exact training with SVMLight-TK [17][11] would take
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over a week to train a single binary classifier. Furthermore, uSVM allows changing the sampling

rate to reduce the run time (and of course decrease accuracy). This is useful for quickly testing

new features, but also for determining the best parameters to use for training.

As suggested in Severyn and Moschitti’s paper on uSVM we use a sampling rate of 100 when

searching for optimal training parameters [21]. For our final model training we use a sampling rate

of 1000. In Severyn and Moschitti’s work they found that a sampling rate of 5000 was necessary

to train a model as accurately as the exact approach of SVMLight-TK. However, due to time

constraints we were unable to train all of our classifiers at this higher accuracy level. Based on

Severyn and Moschitti’s work we estimate this reduces our classifier’s performance by 1-2 points

overall.

SVM tree kernels function in a similar way to using a vector of features with a SVM. Each

positive or negative instance in the training set is associated with one or more trees rather than a

vector of features. Rather than the SVM directly separating the features with a hyperplane, the

trees are then decomposed into a sequence of frequently occurring substructures within the trees.

The presence of these substructures then becomes a binary vector summarizing each instance. It

is this binary substructure vector which the SVM classification algorithm then operates on[17].

For performing classification with tree kernels we use Moschitti’s SST tree kernel, the default

tree kernel for uSVM and SVMLight-TK. We did not compare our results to using other tree

kernels, although there is some indication that other tree kernel methods may be able to extract

more complicated substructures. When combining tree kernels with feature vectors we exclusively

used a linear kernel. Many results have shown that a polynomial kernel performs better. We chose

a linear combination solely to reduce the training time for our models. Appendix A also provides

example command lines for training our models.

When optimizing the training parameters there are actually two different measures to op-

timize for: the F-Measure for relations between mentions, and the F-Measure for the relations

between entities. We found that the maximum F-Measure between mentions often occurred when

the recall was slightly higher than the precision. However, for an ensemble classifier such as the one
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predicting the relations between entities, having low precision in the individual classifiers will cause

the precision of the ensemble to be significantly lower. For this reason when training the individual

classifiers that were part of an ensemble we did not choose parameters to maximize the mention

F-Measure, but rather chose a point where the precision was reasonably high (above 50%) without

reducing the recall too much. Unfortunately, time constraints prevented running enough tests to

determine the optimal parameters by searching for the maximum entity relation F-Measure.

In Appendix A we document the specific parameters we used for training our models.

3.4 Evaluation Metrics

Like most other relation extraction work we use precision(P), recall(R), and F-Measure(F) to

evaluate our system. We perform this evaluation on two sets of results: relations between mentions,

and relations between entities (co-reference groups). For clarity, in the remainder of this paper we

refer to these two different metrics as MentRel and EntRel respectively.

Given the total number of true positive (TP), true negative (TN), false positive (FP), and

false negative (FN) results for a class, we calculate recall for a single relation type c and an inverse

relation type of ċ as follows:

Recallc =
TPc + TPċ

TPc + FNc + TPċ + FNċ
(3.1)

Similarly, we calculate precision for a single class as follows:

Precisionc =
TPc + TPċ

TPc + FPc + TPċ + FPċ
(3.2)

To get the overall precision and recall results across all classes C we exclude the results on

the NoRelation class, and calculate as follows:

RecallOverall =

∑
c∈C,c6=NoRelation TPc + TPċ∑

c∈C,c6=NoRelation TPc + FNc + TPċ + FNċ
(3.3)
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PrecisionOverall =

∑
c∈C,c6=NoRelation TPc + TPċ∑

c∈C,c6=NoRelation TPc + FPc + TPċ + FPċ
(3.4)

Finally to calculate the F-Measure for a class c we use the harmonic mean of the precision

and recall values:

FMeasurec =
2×Recallc × Precisionc

Recallc + Precisionc
(3.5)

In most research, MentRel has been the standard by which those systems have been judged.

This is largely a consequence of corpora such as ACE defining their relations between mentions, and

so that is the most natural method of reporting results. We evaluate MentRel in order to compare

against previous work, as well as for examining the results from individual classifiers since they are

directly classifying relations between pairs of mentions. However, the end goal of our system is to

find relations between the entities. Chan and Roth also evaluated their ACE relation extraction

system on the basis of precision and recall on EntRel [3], and we will do the same.

We believe that the EntRel metric is a better measure of how many relations have been

extracted from a set of documents (the ultimate goal of relation extraction). The MentRel metric

only measures the effectiveness of the system at determining relations between those mention pairs

that have actually been extracted from the document. One could look at all pairs of mentions

across the entire document, but doing so results in an exceptionally large number of mention pairs

to consider, making this calculation computationally infeasible. The EntRel metric reduces the

total number of pairs such that it is more feasible to consider all pairs of entities. Furthermore,

MentRel is biased towards relations between entities with a large number of mentions of each entity.

EntRel considers each related entity only once.

For instance, consider a hypothetical case where a document has two entities (E1 and E2)

with a Produces relation between them. Each entity is mentioned 10 times in the document so

there are a total of 100 related mention pairs due to this single related entity pair. Also in the

document are an additional 9 related entity pairs with each pair related with a PartOf relation.
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Each of the 18 entities (E3 through E20) in these 9 pairs is mentioned only a single time so there

are 9 related mention pairs for these 9 related entity pairs. In total the document has 10 related

entity pairs and 109 related mention pairs.

Now assume that our system provides 100% recall of the Produces relation, but 0% recall

of the PartOf relation. In this case, the overall MentRel recall will be 91.7% (100/109) while the

EntRel recall will be 10% (1/10). We contend that the second measure is a much better metric for

how much information the system has extracted since it says that only 10% of the relations in the

document were found. After the first Produces relation is found between a mention pair involving

entities E1 and E2, each subsequent relation found between those entities provides significantly

less (if not zero) value since the relation has already been found. Certainly subsequent detection

of relations increases the confidence in the original prediction, but the MentRel metric treats

all mention pair relations equally, which skews the results to focus on those entities with many

mentions.

However, since prior work largely uses the MentRel metric, we also report our results using

this metric for comparison purposes. The MentRel metric is also a useful measure for how well a

classifier is performing at detecting relations between mention pairs since it is a more direct measure

of the instances the classifier is working with.



Chapter 4

Relation Features

In our experiments we compare three sets of features, and combinations of those features:

baseline vector features, extended vector features, and tree kernel features.

4.1 Baseline Vector Features

We used Zhou et al.’s lexical features [30] as the baseline features of our system similar to what

other researchers have done [3]. Additional work has extended these features [10] or incorporated

other data sources (e.g. WordNet), but in this paper we focus solely on applying these same lexical

features to the JDPA Corpus as a comparison baseline.

In our implementation, the Mention Level, Overlap, Base Phrase Chunking, Dependency

Tree, and Parse Tree features are the same as Zhou et al. (except for using the Stanford Parser

rather than the Collins Parser). The minor changes we have made are summarized below:

• Word Features: Nearly identical. Rather than using a heuristic to determine the head

word of the phrase it is chosen to be the noun (or any other word if there are no nouns in the

mention) that is the least deep in the parse tree. This change has minimal impact. Also, in

generating features, we replace any numbers from the document with “< NUMBER >”

in order to improve the generalization. This is helpful because of the frequent mentions of

performance numbers when discussing cars.

• Entity Types: When running on the ACE Corpus these features are the same as Zhou

et al. In the JDPA Corpus, some of the entity types indicate the type of the relation
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(CarFeature and CarPart) and so we replace those entity types with “Unknown”. The

remaining entity types are: Facility, Food, GeoPolitical, GeoPolitical-City, GeoPolitical-

Nationalities, GeoPolitical-USStates, GeoPolitical-Countries, Location, Organization, Per-

son, Time, Time-Date, Time-DaysOfTheWeek, Time-Month, Time-Year, Units, Units-Age,

Units-Money, Units-Rate, Vehicles, Vehicles-Cars, Vehicles-SUVs, Vehicles-Trucks

• Semantic Information: These features are specific to the ACE relations and so we did not

implement them. In Zhou et al.’s work, this set of features increases the overall F-Measure

by 1.5.

4.2 Extended Vector Features

An extended set of features were created to augment the baseline vector features. Inspired by

Chan and Roth’s work [3], this set of features largely focused on indicating which words around the

two mentions were in the same co-reference group as either of the mentions and the distance from

the mentions to co-referring mentions. These features especially start to help when the mentions

are not in the same sentence. We also added bi-gram and part-of-speech tags as features since there

is a lot of research showing that particular patterns of words and POS tags can be indicative to

relations.

However, in the course of deciding which features to use across sentences it became clear that

the possible features were too numerous to fully explore in the course of this project. There does

not seem to be much relation extraction research that suggests effective features across multiple

sentences. For this reason we turned to tree kernels to try and improve the relation extraction

across sentences.

The extended features that were created are better than our baseline vector features, so we

used them in our classifiers. A complete description of the features is in Appendix B.
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4.3 Tree Kernel Features

As already discussed, much prior work has had success using tree kernels to detect relations

[26][29][31]. Tree kernels were particularly useful to us because not much work has been done

looking at relations across sentences, and so creating tree structures out of the multiple sentences

and then allowing the learning algorithm to find the best features was more practical. An additional

benefit is that the prior work was all done on a very different dataset, and using tree structures

would remove some of the bias that our baseline vector features have towards the newswire and

broadcast news transcripts in the ACE Corpus.

We used different trees depending upon whether the two mentions being classified were in

the same sentence, in two consecutive sentences, or had at least one sentence between them. In the

following subsections we detail how these trees are constructed.

4.3.1 Mentions in one sentence

How to structure the parse tree to determine the relation between two mentions in a sentence

has been rather extensively studied. In particular Zhang et al. [26] showed that truncating the

constituent parse to only include those nodes containing the two mentions as well as the nodes

between the mentions (which they called the partial tree) was the most effective tree structure of

seven that they experimented with. The partial tree (PT) is augmented by adding a node for each

mention that is the parent of all of the words in that mention. We also looked at extending the PT

to include any co-referenced mentions within the original parse tree, but in our limited experiments

adding this additional context reduced the classification performance.

Zhou et al. [29] further explored a number of other methods of changing the partial tree

to improve performance. We implemented three of the suggestions from their work: removing

single-in and single-out nodes to compress the tree, expanding the context of the tree to include

the predicate for certain mention pairs, and adding the entity types of the two mentions at the

top of the parse tree. Neither compressing the tree, nor including the predicate improved the
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Figure 4.1: Production of the feature tree for the mentions “Acura” and “Acura TSXs” from the
constituency parse of the sentence “All Acura TSXs are front-wheel drive.” The mention phrase
“front-wheel drive” is not in the co-reference group for either M1 or M2 and so its mention node
contains the string “FF”.
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classification performance in our experiments on limited portions of the JDPA Corpus. However,

adding the entity type at the top of the tree did substantially improve the results. We hypothesize

that the other two methods did not work either because of the differences between the corpora, or

because our parse trees were not of high enough quality, resulting in too much noise.

In figure 4.1 we show the full parse tree and final partial tree for the sentence

Example 4.1 : All [M2 [M1 Acura] TSXs] are [M-FF-Unknown front-wheel drive].

where the two mentions being tested for a relation are “Acura” and “Acura TSXs”. In addition to

marking the other mention in the sentence “front-wheel drive” with its entity type, we have also

added a binary encoding (“FF”, “TF”, “FT”, or “TT”) to indicate whether that mention is in the

same co-reference group as M1 or M2. Further detail on the co-reference encoding is described in

Appendix B.

4.3.2 Mentions in Consecutive Sentences

When two mentions occur in consecutive sentences there can often be an implicit relationship

between the two mentions. For instance, in the sentences

Example 4.2 : [M-FF-Person I] love the [M1 styling]. [M2 It] [M-FF-Unknown looks] and

[M-FF-Unknown feels] like a foreign [M-FF-Vehicles-Car car].

The mention “styling” is implicitly a feature of the car being referred to with the mention “It”.

To build the trees for our features, we create tree T1 by taking the constituent parse tree of the

first sentence and removing all nodes to the left of the mention phrase that are not parents of the

mention (Figure 4.2). Similarly, we build tree T2 by removing all nodes to the right of the second

sentence’s mention phrase which are not parents of that phrase.

We experimented with then combining T1 and T2 into a single tree by adding a joint top

node, however, this decreased classification performance. Therefore we used each tree separately
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Figure 4.2: Tree production of T1 with a single mention, “styling”, in the parse tree.

as a feature for the mention pair, and attached to the top of each tree the entity types of the two

mentions. Figure 4.3 depicts the the resulting trees T1 and T2 used as features for classifying the

relation between the mentions “styling” and “It” in the above example.

4.3.3 Mentions with at Least One Sentence in Between

To illustrate relations across three sentences we will use the following example:

Example 4.3 : This [M1 car] is good. [M-TF-Vehicle-Car It]’s [M-FF-Unknown powerful], has great

[M-FF-Unknown handling] and is very [M-FF-Unknown fuel efficient]. My

[M-FF-Person friend] has [M2 one].

With additional sentences between the two mentions, the trees for the sentences containing mentions

M1 and M2 are produced the same as trees T1 and T2 above. To classify the relation between the

mentions “car” and “one” (an InstanceOf relation) we generate the trees T1 and T2 as seen in

Figure 4.4. However, using full trees for the sentence in between the two mentions would almost

certainly add too much noise to be useful. This would become even more true as the number of

sentences between the mentions increases above one.
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Based loosely on the concept of centering[20], where the author of a document focuses on

one or two entities before moving on to others, we created a tree structure to try and capture the

entities being mentioned in the intervening sentences. The inter-tree TI contains a parent node for

each sentence in between the two mention sentences. Each sentence node then contains a sequence

of children corresponding to the mentions in that sentence. These mention nodes indicate if the

mention is co-referring to one (or both) of the mentions being classified. Additionally, any verbs in

the sentence are added in among the sequence of mentions. Figure 4.5 depicts the generation of the

inter-tree for the above example sentence. In limited experiments on our development set, adding

TI to our instances improved the MentRel F-Measure by 3.5 on mention pairs with one sentence in

between them (a window of 3 sentences).

4.4 Feature Combinations

Prior research has found that combining vector and tree features together can improve clas-

sification accuracy because the two types of features tend to be complementary and reinforce one

another [26][29][31]. We also investigate combining our tree kernels with the vector features to im-

prove classification accuracy. In our experiments we look at the following combinations of features:

• Baseline Vector

• Baseline + Extended Vector

• Tree

• Baseline Vector + Tree

• Baseline Vector + Extended Vector + Tree
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Chapter 5

Results and Discussion

5.1 ACE Results

Table 5.1 shows our results on both the ACE 2004 and JDPA Corpora test sets. The ACE

MentRel results on our system were run with 5 fold cross validation across the seven coarse-grained

relations. As a comparison, Table 5.2 lists some of the best results by other researchers on the ACE

Corpus. This second table also lists (in parentheses) the results other researchers achieved on fine-

grained relations. We did not examine fine-grained relations using our system for all combinations

of our features. But on our baseline vector features we got a MentRel F-Measure of 50.5 (P=54.8,

R=46.9) using 5 fold cross validation, about 5 points less than Zhou et al’s 2005 results.

Our baseline features, a reimplementation of the Zhou et al 2005 features[30], performs about

10 points worse than Zhou’s results on the ACE-2003 or ACE-2004 coarse-grained relations. As

discussed in the features section (Section 4.1) we do not include a few features which accounts for

Feature Set
Sentence ACE 2004 Corpus JDPA Corpus
Window P R F P R F

Baseline 1-1 61.4 57.3 59.3 35.6 49.2 41.3
Baseline + Extended 1-1 54.6 55.2 54.8 37.2 50.2 42.7
Tree 1-1 55.8 55.1 55.4 46.9 38.2 42.1
Tree + Baseline 1-1 61.8 60.0 60.9 50.0 38.1 43.3
Tree + Baseline + Extended 1-1 57.9 60.0 58.9 40.1 54.7 46.3

Table 5.1: Overall MentRel results for ACE and JDPA Corpora for mentions occurring in the same
sentence.
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a shortfall of about 1.5 points. Using uSVM’s sampling technique to reduce the training time also

probably costs us about 2 points, and we only use linear kernels while some of the other research

has been able to get modest improvements by using polynomial kernels. These differences though,

only account for at most a 4 point difference. We speculate that some of the remainder is due to

differences in the parser and tokenization methods that we are using.

Similarly, we see that our non-composite tree kernel gets a much lower score when compared

to Zhou et al’s 2010 tree kernel that our tree is based off of (with the entity type attached to the top

of the tree). This difference of 13 points further suggests that the problem is in the parsing of the

documents. Indeed, Zhou et al noted that: “the final performance of semantic relation extraction

may change greatly with a different range of syntactic parsing errors.”[29] In their research they

use the Charniak parser[4] in order to reduce the errors in their parse trees. Furthermore, they

perform pre-processing on the sentences, and post-processing of the parse trees in order to improve

the parsing and particularly to prevent mentions from being spread erroneously across different

branches of the parse tree. We find it likely that Zhou et al’s particular attention to the quality of

their parse trees has greatly helped their system in competing with others.

The extended features significantly reduce the system’s performance on the ACE Corpus

whether they are combined with a tree kernel or not. These features were optimized specifically

to improve performance on the JDPA Corpus, so it is interesting to see how much they hurt

performance on the ACE data. We believe that the extended features add too much noise when

being applied to the ACE Corpus. The JDPA Corpus contains many more mention pairs and

positive relation examples, so perhaps the increased number of examples enables these features to

be useful. Or perhaps the baseline features are so well optimized for the ACE Corpus that any

additional noise from other features significantly reduces performance.

Overall, we are surprised at the large difference between our results and Zhou’s with approx-

imately the same features. The fact that we get significantly worse performance with both tree

kernels and our baseline vector features suggests that the problem is common to both methods,

thus leading to our suspicions about the parser and tokenization.
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Author
ACE

Features P R F
Dataset

Zhou et al 2005 [30] 2003 Linear Kernel 77.2 (63.1) 60.7 (49.5) 68.0 (55.5)
Zhou et al 2010 [29] 2004 Linear Kernel 78.2 (-) 63.4 (-) 70.1 (-)
Jiang and Zhai 2007 [10] 2004 Linear Kernel 74.6 () 71.3 (-) 72.9 (-)
Bunescu and Mooney 2005 [2] 2003 Seq. Kernel 65.5 (-) 43.8 (-) 52.5 (-)
Zhou et al 2010 [29] 2004 Tree Kernel 76.8 (-) 62.1 (-) 68.6 (-)
Zhang et al 2006 [26] 2003 Tree Kernel 76.3 (62.4) 63.0 (48.5) 68.7 (54.6)
Zhao and Grisham 2005 [28] 2004 Composite 69.2 (-) 70.5 (-) 70.4 (-)
Zhou et al 2010 [29] 2004 Composite 83.1 (71.2) 73.5 (64.2) 77.8 (67.5)

Table 5.2: ACE overall MentRel obtained by other researchers on the 7 type relations, and 23
subtype relations in parenthesis.

Relation P R F Total Positive Instances
FeatureOf 40.7 60.4 48.7 1736
InstanceOf 49.8 33.9 40.3 348
MemberOf 34.3 9.6 14.9 387
PartOf 37.3 52.2 43.5 1919
Produces 43.3 82.0 56.7 724
Overall 40.1 54.7 46.3 5114

Table 5.3: MentRel results on the JDPA test set for mentions in the same sentence using the
combined Baseline, Extended, and Tree features.

Relation P R F
Total Related Related Entity Pairs Outside
Entity Pairs Single Sentence Window

FeatureOf 38.6 49.1 43.2 1667 382
InstanceOf 46.4 20.3 28.2 419 183
MemberOf 36.0 5.8 10.0 553 259
PartOf 35.0 34.6 34.8 2122 793
Produces 38.5 79.9 51.9 368 43
Overall 37.3 38.3 37.8 5129 1660

Table 5.4: EntRel results on the JDPA test set using the combined Baseline, Extended, and Tree
features to predict mentions in the same sentence.
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5.2 JDPA MentRel Results

As compared to the ACE MentRel results, the JDPA results are quite a lot worse. Table 5.3

shows the JDPA mention results of each relation using our composite kernel using the baseline and

extended features combined with the tree kernel. These results are from looking only at mention

pairs that occur in the same sentence.

It is important to point out that the JDPA relations are more similar to the ACE fine-grained

relations than to the ACE coarse-grained relations. Still, our system is not performing nearly as well

as other systems perform on the ACE fine-grained relations (46 vs. 67). As previously discussed

we attribute some of this difference to parsing and other issues; however, it seems likely that a

significant portion is also due to the difference between well edited news articles in ACE as opposed

to the blogs and social media documents from the JDPA Corpus. In an analysis that limits the

JDPA Corpus test documents to only those that were written by JDPA professional authors for their

Power Steering blog, we found that using our baseline features our system achieved a 49.9 MentRel

F-Measure, 8.6 points higher than our results on the entire test set. This suggests that higher

editing standards do indeed contribute to better relation extraction performance, presumably due

to more uniform use of language.

From Table 5.3 it becomes clear that there is an interesting difference between the results on

the MemberOf and InstanceOf relations. As shown in Table 2.2 these two relations occur much less

frequently than the others, and often do not occur within the same sentence, further reducing the

number of examples to learn from. But our system performs 25 points better on the InstanceOf

relation. It is possible this is an artifact of the dataset we are using. Since all of the documents

are about cars there will often be discussion of a particular car which is an instance of a previously

mentioned model, whereas the MemberOf relation may have a wider range of related entities.

The Produces relation performs by far the best. It seems likely that this is due to the short

average distance between mention pairs for this relation. Very often this relation is between two

overlapping mention phrases such as when a car is referred to both by the manufacturer and by
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the model in a single, multi-word noun phrase.

In addition to the suspected problems we have with our parsing across the ACE Corpus, a

further problem arises when using the JDPA Corpus: many “sentences” are not complete English

sentences but fragments or headings or list items. For instance, the following fragments’ part of

speech tags were generated with our parser:

Example 5.1 : [DT No ] [NN radiator ] [NN fan ] [VBP issue ] [. . ]

Example 5.2 : [UH No ] [VB worn ] [NN piston ] [NNS rings ] [. . ]

In both cases the parser wrongly tags a word as a verb when there is no verb in the fragment.

The JDPA Corpus contains many sequences of text which do not fall into the category of being

true sentences. Often the structure of the text (such as lists of car features) is more indicative of

the relationship within the text than any sentence structure. Our current system’s approach does

not allow any way to encode these sorts of structural relationships between lines of text, but it

seems that future work could encode this information using tree kernels in a similar way to how

our inter-sentence tree was constructed.

Our results also confirm the generally accepted idea that optimized vector features will per-

form better than a tree kernel itself. Using just the linear baseline features works better than

the tree kernel on ACE, and the baseline+extended features work better than the tree kernel on

the JDPA Corpus. In both cases the vector features have been optimized to work well on their

respective datasets. But those optimized features do not perform as well on the data from the other

corpus. On the JDPA data, the baseline features perform worse than the tree kernel, whereas the

reverse is true on the ACE data that the baseline features were optimized for. Furthermore, our

results confirm that combining feature vectors with tree kernels produces results which are better

than either set of features by themselves.
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Sentence MentRel EntRel Untested
Window P R F P R F Relations
1-1 40.1 54.7 46.3 37.3 38.3 37.8 1660
1-2 42.5 35.3 38.6 37.6 39.1 38.3 834
1-3 44.0 29.9 35.6 37.8 40.1 38.9 525
2-2 58.6 13.5 21.9 56.6 5.8 10.5 2892
3-3 56.6 15.3 24.1 56.4 5.1 9.4 3399

Table 5.5: Overall MentRel and EntRel results on the JDPA Corpus using the Baseline + Extended
+ Tree feature set. The sentence window gives the range of sentences from which mention pairs to
classify were extracted. So “2-2” indicates that the system was run only on those mention pairs in
two consecutive sentences (i.e., using only classifier c1).

5.3 JDPA EntRel Results

As we argued in Section 3.4 we feel that the EntRel metric is a much better means of mea-

suring how much information a relation extraction system has extracted from a set of documents.

From an information point of view (assuming one has the co-referring groups of mentions) once a

single relation between a pair of mentions is known, knowing the relation between any additional

mention pairs between those two entities provides one with no additional information. Table 5.4

shows our detailed EntRel results on mentions within a single sentence, and Table 5.5 summarizes

our EntRel and MentRel results on the JDPA Corpus across multiple sentence windows. An addi-

tional benefit of the EntRel metric is it considers relations between entities that are not detected

because they are outside of the sentence window. Whereas the mention relation metric only con-

siders those relations that are within the sentence window. This difference accounts for why the

EntRel results are lower than MentRel. For instance, by evaluating the EntRel metric for the 1-1

sentence window only on those entities that are mentioned in a single sentence (i.e. excluding the

1660 untested relations) we get an EntRel F-Measure of 45.0, significantly higher than the 37.9

score when including the untested relations.

For this reason, we see that as the sentence window increases the number of untested entity

relations decreases, resulting in a modest increase in the overall EntRel rate. This increase is despite

the fact that the MentRel rate decreases as the sentence window increases. Overall, the system
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extracts more information about relations as the sentence window increases.

5.4 JDPA Ensemble Entity Pair Classification

The ensemble combination of mention relation predictions to form the entity relation predic-

tions also has implications for how EntRel improves as the sentence window increases. Table 5.6

depicts the percentage of entity relations which have Y mention pairs expressed within a window

of X sentences. So with a sentence window of 1-1 (i.e. only looking at mention pairs in the same

sentence), 54.79% of entities with a relation between them have only one place where both entities

are mentioned in the same sentence. From this data it can be seen that as the sentence window

increases the number of relations with more than one mention pair increases from about 20% to over

50%. This increase means that our ensemble classifier has to deal more and more with combining

separate mention pair votes to determine the relation between two entities.

As stated in Section 3.3, for our single sentence relation detection we have optimized our

learning parameters largely to maximize the MentRel metric. With a sentence window of 1-1,

maximizing the MentRel seems to also approximately maximize EntRel. However, as the sentence

window is increased, the increase in the number of mention pairs per entity relation results in

increased classification errors. This is due to the precision of the results being lower when the

mention pairs are in different sentences.

Since the MentRel precision indicates the probability that a particular mention pair prediction

is correct we optimized the c1 and c2+ classifiers so that the MentRel precision was above 50%.

This increases the likelihood that a mention pair prediction will be correct and that it will help

rather than hurt when combining the mention pair predictions with our voting scheme. Quite a

bit of further work should be done to improve on the best ways to combine the multiple mention

pair predictions into a single entity pair prediction. From our current work, the key point is that

combining the results from multiple mention pairs can improve the total number of entity relations

that get extracted from a document.

As further evidence that combining mention pair predictions into a single entity pair predic-



37

Mention Pair Count
% of Relations at Window Size

1-1 1-2 1-3 1-4 1-5
0 27.63% 13.64% 8.58% 6.20% 4.58%
1 54.79% 45.60% 41.87% 39.70% 38.72%
2 11.28% 18.85% 17.02% 15.71% 14.39%
3 3.34% 8.75% 10.49% 9.65% 8.98%
4 1.44% 5.38% 7.03% 7.92% 7.92%
5 0.38% 2.69% 4.22% 4.67% 5.07%
6 0.34% 1.92% 3.61% 4.88% 4.97%
7 0.13% 0.66% 1.71% 2.37% 3.31%
8 0.20% 0.68% 1.62% 2.42% 2.92%
9 0.05% 0.32% 0.70% 1.25% 1.73%

10+ 0.42% 1.51% 3.16% 5.24% 7.41%

Table 5.6: Frequency of occurrence of mention pairs that are a part of a relation as the sentence
window size increases. The “Mention Pair Count” is the number of times a mention pair for
a particular relation occurs. The “% of Relations at Window Size” is the overall percentage of
relations with that number of mention pairs at the given window size. The data was generated by
examining all relations in the JDPA Training set which has a total of 22622 relations.

Number of Total Mention Pairs Non-NULL Mention Pairs
Mention Pairs Entity Count F Entity Count F
1 58543 37.3 4044 46.7
2 11647 39.1 767 56.3
3 3914 42.0 293 61.2
4 2550 42.0 143 67.5
5 1280 48.3 54 74.2
6 942 57.3 51 77.8
7 368 43.5 19 84.8
8 355 51.6 16 74.1
9 188 57.5 13 76.2
10+ 885 48.8 39 78.1

Table 5.7: A breakdown of the EntRel results for the 1-3 sentence window based on the number of
mention pairs that were classified. Columns two and three provide a breakdown for those entities
that had the specified number of mention pairs occurring within the sentence window. Columns
four and five indicate the breakdown based on the number of mention pairs that were classified to
have a relation other than NoRelation (i.e. Non-NULL).
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tion improves performance, we created a breakdown of the EntRel results based upon the number

of mentions that occur within the sentence window. In the second and third columns of Table 5.7

we show the EntRel F-Measure for those entity pairs that have a certain number of mention pairs

occurring within the three sentence window. Quite clearly, as the number of mention pairs for a

particular entity pair increases, the EntRel F-Measure increases from the high 30s with a single

mention pair, up to the high 40s and mid 50s when there are 8 or more mention pairs. The more

opportunities that the system has to classify pairs of mentions from two entities, the more likely it

is that the system will correctly determine the relationship between the entities.

The fourth and fifth columns of Table 5.7 breaks down the EntRel results based on the

number of those mention pair predictions within the sentence window that were predicted to have

a relation other than NoRelation. These results make it even more clear that the more often the

system has more than one mention pair prediction, the better the system will perform. As previously

discussed, this area of combining mention pair predictions to create entity pair predictions is ripe

for the application of a classifier rather than a voting scheme for combining these predictions. But

even our simple voting ensemble demonstrates the usefulness of combining mention pair predictions.



Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis we have applied a number of existing and novel techniques to the problem of

relation extraction on the J.D. Power and Associates Sentiment Corpus. We implemented Zhou et

al’s set of vector features[30] and found that they do not seem to perform nearly as well on the

relations defined within the JDPA Corpus. This disparity appears to be both due to the types of

relations and data in the JDPA Corpus, and also that these vector features are at least somewhat

tuned to the ACE Corpus. To support this we found that a tree kernel can beat these vector

features on the JDPA Corpus while on the ACE Corpus a tree kernel is unable to perform as well

as the optimized feature vectors. This confirms the conventional wisdom that optimized feature

vectors will beat a tree kernel, but also that combining vectors with tree kernels will perform better

than either method by itself.

We find that tree kernels are an effective method of extracting relations from new datasets and

avoid the problems of over-fitting the features to match any one particular corpus. In examining

features for relation extraction we found that co-reference information can improve the Zhou et

al features on the JDPA Corpus, but these features significantly reduce performance on the ACE

Corpus.

Overall our results on both the ACE and JDPA Corpora seem fairly low. We attribute at

least some of this error to poor parsing and tokenization of the documents based on some anecdotal

reviews of parse trees and the reported methods which other researchers have used to improve the
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parsing on their own systems. Our ACE results are worse than other researchers whether we use

tree kernels or Zhou’s 2005 features, providing further evidence that the tokenization and parsing

that is common to both methods is partly to blame.

We have also argued that the primary metric used by most researchers for reporting relation

extraction results (F-measure of relations between mention pairs) has underlying flaws when the

ultimate goal is to determine the relations between entities being discussed in a document. This

mention pair metric is sensible given the annotations which were done on the ACE Corpora, but

seems inappropriate when the annotated relations are between entities in the documents rather

than mentions. Future relation annotation projects should annotate the relations between entities

rather than limiting the annotations to relations between mentions in the same sentence.

Our system predicts relations between entities using an ensemble voting method to combine

the predictions of relations between pairs of mentions. Although significant further work could be

done in how to perform this ensemble classification, we showed that by increasing the number of

mention pairs considered, the overall performance of finding entity relations can be improved. In

our system, we consider a window of sentences in which all pairs of mentions are classified according

to their relation. Combining the predictions from multiple mention pairs yields improved entity

relation extraction results.

6.2 Future Research

Since this research brings up a number of interesting directions to pursue, we present here a

list of the individual aspects that appear to need further research.

• The effect of parsing and tokenization on relation extraction, in particular how they affect

tree kernels.

• Combining mention pair predictions to create entity pair relation predictions. In particular,

creating an ensemble classifier to combine these results seems like an obvious way to improve

the relation extraction.
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• Using tree kernels to summarize additional structure within a document such as headings,

paragraphs, and itemized lists. A lot of structure in the documents is lost by simply

considering a document a sequence of sentences, and in at least some cases this structure

seems like it would be useful for relation extraction.

• Although in this paper we have discussed how the EntRel metric provides a better as-

sessment of how much information a relation extraction system extracts, we have done so

only within the context of a system that has complete knowledge about both the mention

phrases and the sets of mention phrases that constitute the entities within the document.

How this metric, and this type of system in general works on the more general task of joint

mention, entity, and relation detection is unknown, and has not been studied.

• Detection of relations between mentions in different sentences could certainly benefit from

future work on determining the best features to use.

• There are a number of other types of tree kernels, and some research has suggested that

other kernels may be better at extracting complex features from the parse trees.

• Our system builds separate classifiers based on whether the mentions are in the same

sentence, consecutive sentences, or have sentences in between. In retrospect, it is not clear

this was a good decision. The added complexity may be unnecessary, and it is possible

that combining the examples together may provide the classifier with additional training

instances.



Bibliography

[1] Apache Software Foundation. OpenNLP. http://incubator.apache.org/opennlp/, version 1.5.0.

[2] R Bunescu and R Mooney. A shortest path dependency kernel for relation extraction. HLT
’05 Proceedings of the conference on Human Language Technology and Empirical Methods in
Natural Language Processing, pages 724–731, 2005.

[3] Y S Chan and D Roth. Exploiting background knowledge for relation extraction. COLING
’10 Proceedings of the 23rd International Conference on Computational Linguistics, pages
152–160, 2010.

[4] E Charniak. Immediate-head parsing for language models. Proceedings of the Annual Meeting
of the Association for Computational Linguistics (ACL’2001), pages 129–137, 2001.

[5] M Gerber and J Chai. Beyond Nombank: A study of implicit arguments for nominal predi-
cates. ACL ’10 Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, 2010.

[6] R Girju, A Badulescu, and D Moldovan. Automatic discovery of part-whole relations.
Computational Linguistics, pages 83–135, 2006.

[7] R Girju, D Moldovan, M Tatu, and D Antohe. On the semantics of noun compounds. Computer
speech & language, pages 479–496, 2005.

[8] R Girju, P Nakov, V Nastase, S Szpakowicz, P Turney, and D Yuret. Semeval-2007 task 04:
Classification of semantic relations between nominals. Proceedings of the 4th International
Workshop on Semantic Evaluations, pages 13–18, 2007.

[9] M.A Hearst. Automated discovery of wordnet relations. WordNet: an electronic lexical
database, pages 131–151, 1998.

[10] J Jiang and C Zhai. A systematic exploration of the feature space for relation extrac-
tion. Proceedings of Human Language Technologies: The Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL-HLT’07), pages 113–120,
2007.

[11] T Joachims. Making large-scale SVM learning practical. Advances in Kernel Methods - Support
Vector Learning, 1999.



43

[12] N Kambhatla. Combining lexical, syntactic, and semantic features with maximum entropy
models for extracting relations. Proceedings of the ACL 2004 on Interactive poster and
demonstration sessions, 2004.

[13] J Kessler, M Eckert, L Clark, and N Nicolov. The ICWSM 2010 JDPA Sentiment Corpus
for the automotive domain. 4th International AAAI Conference on Weblogs and Social Media
Data Challenge Workshop (ICWSM-DCW 2010), 2010.

[14] J Kessler and N Nicolov. Targeting sentiment expressions through supervised ranking of
linguistic configurations. 3rd International AAAI Conference on Weblogs and Social Media,
2009.

[15] D Klein and C Manning. Accurate Unlexicalized Parsing. Proceedings of the 41st Meeting of
the Association for Computational Linguistics, pages 423–430, 2003.

[16] A Mitchell, S Strassel, S Huang, and R Zakhary. ACE 2004 Multilingual Training Corpus.
Linguistic Data Consortium, Philadelphia, 2005.

[17] A Moschitti. Making tree kernels practical for natural language learning. Proceedings of the
Eleventh International Conference on European Association for Computational Linguistics,
2006.

[18] P Nakov and M Hearst. Using verbs to characterize noun-noun relations. Artificial Intelligence:
Methodology, Systems, and Applications, pages 233–244, 2006.

[19] M Poesio. The MATE/GNOME proposals for anaphoric annotation, revisited. Proceedings of
SIGDIAL, 2004.

[20] M Poesio, B Di Eugenio, R Stevenson, and J Hitzeman. Centering: A parametric theory and
its instantiations. Computational Linguistics, pages 309–363, 2004.

[21] A Severyn and A Moschitti. Large-Scale Support Vector Learning with Structural Kernels.
ECML PKDD’10 Proceedings of the 2010 European conference on Machine learning and
knowledge discovery in databases, 2010.

[22] R Snow, D Jurafsky, and A Ng. Learning syntactic patterns for automatic hypernym discovery.
Advances in Neural Information Processing Systems (NIPS 2004), 2005.

[23] R Vieira and M Poesio. An empirically based system for processing definite descriptions.
Computational Linguistics, 2000.

[24] M E Winston, R Chaffin, and D Herrmann. A taxonomy of part-whole relations. Cognitive
Science, pages 417–444, 1987.

[25] D Zelenko, C Aone, and A Richardella. Kernel methods for relation extraction. The Journal
of Machine Learning Research, pages 1083–1106, 2003.

[26] M Zhang, J Zhang, and J Su. Exploring syntactic features for relation extraction using a convo-
lution tree kernel. HLT-NAACL ’06 Proceedings of the main conference on Human Language
Technology Conference of the North American Chapter of the Association of Computational
Linguistics, pages 288–295, 2006.



44

[27] M Zhang, G Zhou, and A Aw. Exploring syntactic structured features over parse trees for
relation extraction using kernel methods. Information Processing & Management, pages 687–
701, 2008.

[28] B Zhao and R Grishman. Extracting relations with integrated information using kernel-based
methods. Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL’2005), pages 419–426, 2005.

[29] G Zhou, L Qian, and J Fan. Tree kernel-based semantic relation extraction with rich syntactic
and semantic information. Information Sciences, pages 1313–1325, 2010.

[30] G Zhou, J Su, J Zhang, and M Zhang. Exploring various knowledge in relation extraction. ACL
’05 Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
pages 427–434, 2005.

[31] G Zhou, M Zhang, DH Ji, and QM Zhu. Tree kernel-based relation extraction with context-
sensitive structured parse tree information. EMNLP-CoNLL’2007, pages 728–736, 2007.



Appendix A

Model Training

A.1 Parameter Optimization

In training our SVM models with uSVM we performed a search of the learning parameters

to find those which maximized the MentRel F-Measure. In searching for these parameters we

used uSVM’s “-q” option to reduce the sample size to 100 and speed the search. According to

Severyn and Moschitti’s research on uSVM parameter optimization, parameters chosen with a

lower sampling rate should perform well at a higher sample rate[21]. For the most part we found

this to be true, though there were a few cases where optimized parameters did not perform much

if any better at the higher sampling rate. When training our final classifiers we used a sampling

size of 1000 which most likely reduces our overall performance by 1-2 points from an exact SVM

model.

Although we were training multiple binary classifiers, in all cases we used the same learning

parameters across all classes. This was done to reduce the complexity and number of options

to consider, but likely resulted in slightly worse results, especially given the disparity in number

of training examples for each class. Three particular learning parameters were optimized in this

search:

• -j: This parameter controls the cost applied to incorrectly classified positive examples in

the binary classifier. Effectively this controls the trade-off between precision and recall in

the learning process. A high precision and low recall indicates that the cost value needs to
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Corpus Features Classifier
Parameters

j c T
ACE Baseline c0 6.5 0.17 -
ACE Baseline + Extended c0 2.5 0.004 -
ACE Tree c0 6.5 0.16 -
ACE Baseline + Tree c0 6.5 0.44 0.45
ACE Baseline + Extended + Tree c0 6.5 0.079 0.43
JDPA Baseline c0 3.36 1.05 -
JDPA Baseline + Extended c0 5.5 0.005 -
JDPA Tree c0 8 0.7 -
JDPA Baseline + Tree c0 4 0.05 0.95
JDPA Baseline + Extended + Tree c0 8.3 0.051 0.56
JDPA Baseline + Extended + Tree c1 3 0.03 0.2
JDPA Baseline + Extended + Tree c2+ 3 0.035 0.84

Table A.1: The final parameters used when training the SVM classifiers.

be higher, and similarly a high recall indicates the cost value is too high.

• -c: The margin parameter controls the SVM margin width of the classifier.

• -T: For composite tree and linear kernels, this parameter controls how much the tree and

linear kernels respectively contribute to the SVM kernel function being optimized.

The following list provides command line option examples for the various types of classifiers

we used:

• Linear Kernel: -q 1000 -t 0 -c 0.02 -j 6.5

• Tree Kernel: -q 1000 -t 5 -c 0.02 -j 6.5

• Composite Linear/Tree Kernel: -q 1000 -t 5 -c 0.035 -j 5 -T 0.84 -S 0 -C +



Appendix B

Extended Vector Features

A prominent feature among the extended features is the encoding of whether a word is co-

referring to either M1 or M2. Hence for each word there are four possible states plus an additional

NULL state for when the word does not exist:

• FF: The word is not in the same co-reference group of either M1 or M2.

• TF: The word is in the same co-reference group as M1 but not M2.

• FT: The word is in the same co-reference group as M2 but not M1.

• TT: The word is in the same co-reference group of both M1 and M2 (also indicating that

M1 and M2 are in the same co-reference group).

• –: The word in question does not exist.

In the following description of the features we use CR to indicate this five-state variable for

a particular word.

B.1 Co-Reference Location

• CR12: True if M1 and M2 are co-refs of each other

• CRFL+ET12: CR for the one and only word between the mentions combined with the

entity types.
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• CRF+ET12: CR for each of the two words following M1 (25 possible states) combined

with the entity types

• CRL+ET12: CR for each of the two words preceding M2 (25 possible states) combined

with the entity types

• CRO+#SB+ET12: CR for all other words between M1 and M2 ORed together (5 states)

combined with the entity types and the number of sentences between the mentions (see

below)

• CRB+ET12: CR for each of the three words preceding M1 (125 possible states) combined

with the entity types

• CRA+ET12: CR for each of the three words following M2 (125 possible states) combined

with the entity types

• AM2F+CRA2: Combination of word after M2 and CR of second word after M2

• WMF+CRF2: Combination of word after M1 and CR of second word after M1

• AM2F+CRA3: Combination of word after M2 and CR of third word after M2 (attempt to

detect M2 PRP DT NP)

• WMF+CRF3: Combination of word after M1 and CR of third word after M1 (attempt

detect M1 PRP DT NP)

• POSSM1+CRB2+ET12: Binary indication of whether word before M1 is possessive and

the CR of that word, combined with the entity types

• POSSM1+CRB2+ET12: Binary indication of whether word before M2 is possessive and

the CR of that word, combined with the entity types
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B.2 Co-Reference Distance

• #WBCR1: Number of words between M1 and closest co-ref of M2 (-SELF-,-OVERLAP-,

0, 1, 2, 3, 4, 5, 6+)

• #WBCR2: Number of words between M2 and closest co-ref of M1 (-SELF-,-OVERLAP-,

0, 1, 2, 3, 4, 5, 6+)

• #MBCR1: Number of mentions between M1 and closest co-ref of M2 (-SELF-,-OVERLAP-,

0, 1, 2, 3, 4+)

• #MBCR2: Number of mentions between M2 and closest co-ref of M1 (-SELF-,-OVERLAP-,

0, 1, 2, 3, 4+)

• #SBCR1: Number of mentions between M1 and closest co-ref of M2 (-SELF-, 0, 1, 2, 3, 4,

5+)

• #SBCR2: Number of mentions between M2 and closest co-ref of M1 (-SELF-, 0, 1, 2, 3, 4,

5+)

B.3 Co-Reference Parse Tree

• PTPCR1: The parse tree path between M1 and the closest co-ref of M2

• PTPCR2: The parse tree path between M2 and the closest co-ref of M1

B.4 Co-Reference Phrase Chunking

• CPPCR1: Path of phrase labels connecting M1 and closest co-ref of M2 in the phrase

chunking

• CPPCR2: Path of phrase labels connecting M2 and closest co-ref of M1 in the phrase

chunking



50

• CPPHCR1: Path of phrase labels augmented with head words connecting M1 and closest

co-ref of M2 in the phrase chunking

• CPPHCR2: Path of phrase labels augmented with head words connecting M2 and closest

co-ref of M1 in the phrase chunking

B.5 Other Features

• BIWB+#WB: Bi-grams of words between mentions (if less than 6 words between) com-

bined with the number of words between.

• #SB: Number of sentences between mentions (0, 1, 2, 3, 4, 5+)

• POSM1: Bag of Part-of-Speech terms in M1

• POSM2: Bag of Part-of-Speech terms in M2

• POSBFL+ET12: The only POS in between when only one word in between, combined

with the entity types of the mentions.

• POSBF+ET12: First POS in between when at least two words in between, combined with

the entity types of the mentions.

• POSBL+ET12: Last POS in between when at least two words in between, combined with

the entity types of the mentions.

• POSBO+ET12: Other POS in between except first and last words when at least three

words in between, combined with the entity types of the mentions.

• POSB1+ET12: POS of word before M1, combined with the entity types of the mentions.

• POSA1+ET12: POS of word after M2, combined with the entity types of the mentions.
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B.6 System Development Testing

In the course of developing our system and the sets of features that we examined a number of

experiments were run on our development sets both to verify that the system was working properly

and to try and optimize the features that the system used. In this section we will attempt to outline

some of the primary experiments that were run and their outcomes. Because these experiments were

run only on the development set it is quite likely that some of them are not statistically significant.

Still, it is hoped that this background can provide some information for future researchers. These

results are presented in chronological order since one experiment tended to build upon the previous

ones as the features changed over time.

• Early testing of Baseline+Extended Features on a sentence window from 1-1 up to 1-3

sentences (MentRel F1 = 44.34, 39.29, 37.91; EntRel F1 = 37.63, 39.18, 39.29). These

results led to building a separate classifier depending on whether the mention pair was in

the same sentence, consecutive sentences, or had a sentence in between. In retrospect it is

not clear using separate classifiers was necessarily the correct decision.

• Attempted to discover combinations of features that improved results by looking at the

mutual information for pairs of features. However, the identified combinations of features

actually decreased performance. In retrospect, we believe the mutual information metric

used was not adequate because it gave equal weight to both positive and negative indicators

of relations and positive indicators of relations would probably be more important.

• Used the Baseline features to only detect whether a relation exists between two mention

pairs (MentRel F1 = 49.56) and in a separate test to distinguish between the type of

relation when it was already known that a relation exists (MentRel F1 = 76.26). From

this result it is clear that the true difficulty in relation extraction comes largely from the

actual detection of whether a relation exists between the mentions. Distinguishing between

relation types (at least for this set of relations) is much easier. This is probably because
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the entity types provide a lot of information as to what type of relation is involved.

• Modified the Baseline features to replace all numbers in the lexical features with the generic

symbol “< NUMBER >”. This increased results from 39.99 to 40.43 so it was retained.

• Added a binary feature to indicate if there was a determiner (and the type of the determiner)

before each of the mentions. This feature had no effect on the results, and the feature was

removed.

• Tested adding only the bi-grams from the extended features to the baseline features. No

impact on results, but a more limited version of this features was later added back in.

• Tested adding only the co-reference features from the extended features to the baseline

features. Improved MentRel F-1 by 2.5

• Tested adding only the POS features from the extended features to the baseline features.

Improved MentRel F-1 by 0.25

• At this point we abandoned further feature vector engineering efforts in order to focus on

trying to develop tree kernel methods to apply to relation extraction. Initially our results

with tree kernels were quite poor until we recognized the increased importance that the

training parameters played in helping the SVM tree kernel to work.

• Due to observed errors in the sentence splitting and tokenization as well as a desire to use

a publicly available library we converted the system to use the OpenNLP sentence splitter

(F1 = 36.84) and tokenizer rather than the proprietary JDPA tokenizer (F1 = 35.94). This

change helped a bit due to better sentence splitting.

• Added co-reference information to parse tree to indicate co-referring mentions. Improved

MentRel F-1 by 0.74

• In Zhou et al’s 2010 work they reduced the complexity of some trees by compressing single-

in-single-out nodes to remove the node. However, in our system, simplifying the tree
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resulted in a reduction of MentRel F1 by 0.4.

• We also tried to expand the partial tree to include any other mentions within the sentence

which were co-referring to one of the mentions in the mention pair. However, this expanded

context reduced performance of MentRel F1 by 2.4.

• In developing our inter-tree for summarizing sentences between the mentions we tested our

c2 classifier both with and without the inter-tree. With the inter-tree our MentRel F1 for

this classifier improved by 3.5.

• As an alternative to our simple voting scheme we tried allowing classifications of mention

pairs with NoRelation to count as a vote towards there being no relation between the

entities. This reduced EntRel by 3.5.

• As an alternative to our simple voting scheme we tried summing the margin output value

for each mention pair prediction. The hope was that strong indications of relations would

overcome the weak indications that there was no relation. However, this method still

reduced EntRel by 3.0 from our simple voting scheme.


