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I. Overv1ew of the Architecture
Th1s techical report is intended to serve as the most accurate

formal documentation of the Multi Associative Processor as of the Tast
revision date. It is a working reference manual, and as such, its
contents change from time to time.

The Multi Associative Processor (MAP) computer system is a hypo-
thetical parallel processor ensemble capable of simultaneously executing
up to eight programs, where each program has a single~instruction-stream,
multiple-data-stream organization. The architecture includes eight*
control units (CUs) to execute the instruction streams and up 1024*
processing elements (PEs), that may be dynamically allocated to the
CUs. Each PE has a local PE memory (PEM) to contain a data stream. The
machine makes no provision for the inclusion of a host processor to handla
compilation and operating system tasks; instead, the Tanguage processors,
utilities, operating system programs, etc., are expected to execute on
one or more of the identical CUs in conjunction with one or more PEs,

‘as required by the given program. Specific facilities for implementing
a suitable operating'system‘directly on MAP are provided in the machine
architecture. The PEs are identical and are allocated from a common

pool to the CUs, the number being allocated depending on the requirements
of the process currently executing on the CU. MAP is a special purpose
machine in that it is not intended to support I/0-bound programs. The
architecture would be more effective: on programs that have a relatively
Targe amount of processing with respect to I/0. It 1is assumed that an

LSI technology, such as that employed in bit slice microprocessor
components, is used to implement the architecture.

MAP has been called an associative processor because of the nature
of the mechanism used by‘a singTe CU in activating and deactivating the
subset of PEs currently allocated to it. This content addressability
feature and PE orgahization differ substantially from some other asso-
ciative proéessors such as the Goodyear STARAN computer.

In the remainder of this introductory section, the basic components
of MAP will be introduced with more detailed discussions following in

*These numbers are arbitrary; no studies have been perfofmed to
support the given values. '
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later sections. To provide a global view of the machine's
operation, the remainder of this section includes a trace of a typical
instruction execution and then a brief discussion of the assets and
1iabjTities of the architecture.

Technical Report No. CU-CS-102-77 (January, 1977) represented a
departure from several ideas discussed in earlier versions of this
report. Those ideas have now been incorporated into this report, and

the reader may ignore CU-CS-102-77.

A. MAP Components
A conceptual block diagram of the MAP computer system is shown 1in

Figure 1. This report discusses the design of each component shown in
the figure with the exception of the Input/Output subsystem. The 1/0
subsystem is assumed to be traditional in its design, and thus similar

to one found in any large scale conventional computer system. The sub-
system is made up of peripheral devices, controllers, and chénne1s to
support all input/output operations. It is assumed that the I/0 sub-
system can be directed to read/write information to/from the Main Memory
by a single command which specifies a device number, a Main Memory buffer
address, and a buffer length. The I/0 subsystem performs the block
transfer directly to the Main Memory buffer and then returns an interrupt
indicating the I/0 completion status.

The next component shown in Figure 1 is the Main Memory (MM). The
function of the Main Memory differs only slightly from the corresponding
‘component in a conventional machine. The MM serves as a storage for each
program that is being executed on a Control Unit. In a SIMD architecture,
data are ordinarily stored in the Tocal Processing Element Memories; for
~the MAP system, those data are first read into MM and then loaded into -the
Processing Element Memories; i.e., MM is used as an I/0 buffer for data.
In some SIMD computations, it is convenient to use a single datum as an
operand for all data streams, e.g., multiplying a vector by a scalar. The
MAP architecture allows such a datum to be stored in the MM (as opposed
to storing copies of the same datum in each Processing Element Memory).
These uses of MM create a situation in which multiple processors (i.e.,
Control Units qnd data channels) may simultaneously attempt to access MM.
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The MM design takes these conflicts into account in its design,

discussed in Section VI.

A control unit (CU),  is used to control the instruction stream
execution for a given program, i.e., a CU implements a process (in terms
of flow of control). In order to manipulate the instruction stream, the
CU is capable of fetching instructions from MM, decoding those instructions,
and causing them to be executed. A certain amount of computational
facility is incorporated in the CU so that it can manipulate index
reg1sters, form main memory addresses using. indirection and preindexing,
maintain a program counter, communicate with (processes on) other CUs,
and broadcast data and instructions to a set of processing elements cur-
rently allocated to the given CU. In terms of control flow of a MAP
process, a CU corresponds to a processor in other computer architectures.
The differences between MAP processes and processes on conventional
(SISD or MIMD) machines Tie in the handling of data computations. Each
MAP process performs multiple, concurrent data computat1ons Control
unit organization is d1scussed in the next section.

The control unit processor interface (CUPI), is a unit to execute
certain instructions in the MAP repertoire which apply to more than one
CU. The best example of such an instruction 1is a process synchroniza-
tion instruction. A1l instructions executed by CUPI are concerned with
the flow of control in a process, thus the design of CUPI is independent
of the SIMD nature of MAP; the design is equally applicable to other
multiple processor architectures. Section V discusses CUPI organization
and operations.

The distribution switch is used to handle instruction and data
vouting from CUs to PEs, to route data from PEs to CUs, and to route
data from PEs to PE. The distribution switch employs bus sharing in a
crossbar switch, allowing any CU-PE combination for routing. This
switch is discussed in Section IV.

The processing elements, PEs, perform arithmetic and Togical
operations on each data stream, stored in the respective PE memories.

Each PE, then, roughly corresponds to an arithmetic/Togical unit within

a conventional processor. One level of concurrent operation is handled by
applying the single instruction stream to the multiple processing elements.
(The other level of concurréncy is among the set of CUs). Processing



elements are described in Section III.

The idea of concurrency at the data computation level and
at the process control level was proposed in the ILLIAC IV design,
although it was not actually implemented. Some features that dis-
tinguish MAP from many other parallel processors can be mentioned:

- There are no direct data paths between individual PEs.
A1l data communication is performed via common buses run-

ning to all PEs.
- There are no logical characteristics of individual PEs which

distinguish one from another.

- The CUPI impTlements data abstraction as it applies to process
state description and manipulation.

- Control units and processing elements are microprogrammed
(bit sTlice microprocessors).

- External 1/0 is centralized via the I/0 subsystem processor.
A1 I/0 is buffered'through central memory, and individual PEs
have no direct I/0 channels.
Each of these points will be elaborated in the respective sections of

the report.

B. A Typical Instruction Execution Trace
The state of a processing element can be described as deallocated,

allocated and inactive, or allocated and active. A deallocated PE
is not assigned to an active process on a CU, and hence it does not
perform a (useful) computation. Inactive PEs are allocated, but
are temporarily suppressed from executing instructions broadcasted
from the owning CU. Active PEs execute instructions broadcasted by the
owning CU. ’

For the following discussion, assume that a given control unit,
CU, has been allocated a subset of ns PEs, and that all of the PEs are
active. The following Tist of hypothetical instructions are to be
executed one after the other.
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LOAD 3,%20,2 Load register 3 of each PE from
the effective PEM address computed
using single level indirect addres-
sing (*), preindexed by the contents
of each PE's registér 2 with a base
address of 20. Note that the index
register offset may vary from PE to

: PE.
GLOBAL LOAD 3,%20,2 Load register 3 of each PE from the
‘ effective main memory address usingsin-

‘qle level indirect addreéssing, preindex-
ed using the CU's register 2, with a base
address of 20. Each.active PE receives
the same main memory location content.

SELECT POSITIVE 3 Deactivate all PEs whose register 3
’ ~ contains a negative value.
SIGNAL Pass a signal from the executing CU
to a CU pointed to by a register in
‘ ~ the executing CU.

Fach instruction is first fetched fromnthe‘main memory location
specified by the program counter of the control unit. The CU inspects
an 8-bit operation code and chooses an execution unit based on the 3
most significant bits of the operation code. An instruction may be
executed by the control unit processor interface (e.g., the SIGNAL
instruction); by the control unit itself (e.g., a branch instruction);
a set of processing elements (e.g., the LOAD instruction); or a combina-
tion of the control unit and the processing element subset, {e.g., the
GLOBAL LOAD INSTRUCTION). ‘ ,

The CU recognizes the LOAD instruction as being executable by the
PEs; therefore, it broadcasts the instruction to the set of active
PEs. (over the distribution switch). The CU may idle for the amount of
time required for the instruction execution or continue concurrently
with PE operation while the PEs compute their respective effective
addresses and Toad their respective registers. The CU is then ready to
process the next instruction.

The GLOBAL LOAD instruction causes the CU to decode the
instruction, to.recognize that it is partially executed bywﬁheva



and partially by the PE subset, and to broadcast the instruction to
the PE subset. The PE decodes the instruction and then waits for data
to be broadcast by the CU. Meanwhile, the CU computes the effective
- address, fetches an operand from main memory, and broadcasts the operand
to the PE subset. The PEs receive the data and Toad their respective
registers.

SELECT POSITIVE is executed as an associative instruction.
Fach PE tests its respective register 3 for a positive result; if the
result is nonpositive, the PE deactivates itself. (Another selection
instruction can be used to activate previously inactive PEs). SELECT-
type instructions allow the programmer to process data streams on the
basis of previous computations within that data stream.

SIGNAL is executed by the control unit processor interface, CUPI.
The CUPI determines if the CU attempting to execute the SIGNAL is
entitled to do so; if privilege is present the CUPI determineé the
receiving CU and "attaches" the signal to it, (more details of this

operation appear in Section V).

C. Observations on the Overall Architecture
The MAP architecture provides a mechanism for exploiting parallel-

ism at two different levels. The first level is the SIMD parallelism,
allowing multiple data streams to be simultaneously handled by one in-
struction stream. The second level of parallelism is between control
units; i.e., parallel instruction streams can exist in the system. The
advantages of each level of parallelism have been argued at length by
SIMD proponents and by MIMD proponents and are not repeated here.
However, MAP provides the generality of both methods. Combining the
two methods allows an operating system to make efficient use of the
PE resource, as well as Main Memory. Whenever a process executing on
a particular CU is interrupted, the entire PE subset is not dormant;
instead, only those PEs currently allocated to the (interrupted pro-
cess on the) CU are dormant.* The remaining PEs can be used by other
CUs. Thus multiple control units tend to increase overall PE utilization.

Multiple control units also allow higher utilization of PEs in
terms of the number of allocated PEs. SIMD tasks frequently have"natural®
solutions requiring specific numbers of PEs; e.g., in air traffic control,

*Multiprogrammed CUs may or may not Teave PEs idle.



the number of PEs required corresponds to the number of objects:on track.
When the number of PEs required for the natural solution exceeds the
number actually available, alternate solutions are still possible at a
cost in program clarity and efficiency. With multiple CUs, the number
of PEs in the system may be large enough to‘hathe more demanding pro-
blems according to their "natural" solutions. At the same time, the
operating system can take advantage of a batch job mix and multiprocess-
ing to maintain overall utilization while running smaller problems.

These advantages are typical of advantages motivating any shared re-

source system.

A principle advantage of a multi control unit. system is that PEs
become a shared system resource. Dynamic allocation of PEs requires
that individual PEs be indistinguishable to the CUs using them, except
in terms of their data contents. This is also desirable in terms of
system reliability, but it rules out the use of "hard" parallel PE
to PE data communication paths of the type employed in ILLIAC IV to
achieve high inter-PE data communication bandwidths. The ILLIAC IV
scheme requires a correspondence between the physical location of the
PE within the array of PEs and its Togical function within a program.
In order to take advantage of the physical connections, the problem
topology must fit the physical topology of the machine with fixed
interconnection.

Dynamic allocation of PEs also tends to rule-out simple, bit

serial PEs of the type used in the STARAN computer. There is a certain
amount of overhead involved in providing for the switching of PEs from
one control unit to another, and individual PEs must be sufficiently
powerful to justify this overhead. Morecver, a major part of the justi-
fication for bit serial PEs is Tost in a MAP system. In a single control
unit parallel processor, each PE may have its own external 1/0 channel,
and a bit-serial PE is well matched to the bit-serial I/0 from one track
of a head-per-track parallel I/0 device. In a MAP system, this type of
parallel I/0 becomes unattractive. Because of the uncertainty of which
PEs will be available for a particular execution of a job, parallel 1/0
direct to the PEMs would require a switching matrix (analogous to the
existing distribution switch) allowing any channel to connect to any PE.
This problem does not arise in a single CU parallel processor, since the

entire pool of PEs is available to each job.



II. Control Unit Organization

The purpose of a control unit is to provide a mechanism to impTle-
ment the software notion of a process, where the process itself is com-
posed of parallel tasks; 1.e., each control unit must manage control
and data-flow for one or more SIMD programs. To implement this function,
each CU must:

- Fetch instructions stored in MM,

- Form MM global operand addresses,

- Determine the flow of control of the program,

- At least partially decode instructions to be executed by CUPI

and the PE subset,
- Broadcast instructions, addresses and/or operahds to PEs,
- Coordinate its operation with other control units via CUPI.

Figure 2 is a diagram of a control unit as it might be implemented
with bit slice microprocessor components. In this report the high
level design of the bit slice CU (and PE) are discussed. The detailed
designs, including microprograms, are fully described in the M.S.
thesis by Bruce Sanders (Department of Computer Science, University of
Colorado, 1978). The interface to CUPI and MM consists of the two
registers MMAR, MMDR, and control Tines. MMAR is a 22 bit MM address
register, and MMDR is a 32 bit data/ instruction register.* CUPI is
referenced as a set of memory locations 1in the MM space by the control
unit; i.e., a CU exchanges information with CUPI via a conceptual
mailbox located at a predefined MM address.

The MMDR is a single register in each CU, although it might be
implemented as a more elaborate lookahead buffer.** The MM design
(see Section VI) and existing technologies employed in memory chips
and bipolar microprocessors tend to match the speeds of a CU and
memory; thus the MMDR can be simplified to a single register while
sti11 maintaining a high memory bandwidth.

*An arbitrary word size of 32 bits has been chosen for the

architecture although no studies have been done to support this

choice.

**In his M.S. thesis Heinrich Siegmann has considered the design and
applicability of a lookahead mechanism for the MAP system (Department of
Computer Science, University of Colorado, 1976). He argues that the
nature of main memory references suits the lookahead technique in a

SIMD machine.
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Main memory addresses are absolute addresses although each
process executing on a CU operates in a multiple segment virtual
memory environment. The rationale for segmentation is based not so
much on traditional reasons suchas the expansion of the process name
space,'but rather on the ability to provide precise memory protection
and a flexible relocation mechanism. The protection is desirable for
the obvious reasons of security and correctness, while the need for
relocation is related to the goal of reducing memory conflicts through
MM design and MM allocation. The tentative design for the segmentation
mechanism uses data structures addressed by the MM Segment Table Pointer
register, and the internal segment table. The segmentation algorithm
is impTemented in microcode rather than in hardware. The name space of
a process is allowed to include as many distinct segments as any
operating system for MAP is willing to support. Descriptors for these
segmenis are maintained in the MM in a table addressed by the MM(
Segment Table Pointer. However, a fixed number of descriptors may
be "paged" into the Internal Segment Table whenever they are being
referenced by the address formation firmware (cf. the GE645 address
formation hardware). Notice that the Internal Segment Table paging
algorithm is also determined by microcode, and may be redefined for
each MAP configuration. In general, the entire address formation
algorithm is implemented in microcode and can be easily altered. For
example, a microprogram to form addresses (given the segment number,.
offset within the segment, and type of memory access) might be spec-

ified as:
procedure FormAddress (Segment Number, Offset, Access Type);
if Segment Number not in Internal Segment Table
then Load (Segment Number, MM S.T.PTR);
if 0 < Offset < Limit [Segment Number]
then Bound Error;
if - Access Check (Access Type, Capability [Segment Number]
- then Protection Violation;
MMAR: = Base [Segment Number] + Offset.
end;
The implementation of the Internal Segment Table is vague at this
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point in the development. Two approaches to be considered employ
either associative memory or random access memory for the Internal
Segment Table. In the CAM case, the internal memory is small, with

the bulk of the segment table residing in MM. In the RAM case, the
internal memory may contain the entire segment table for a process,

or a subset. If a subset is loaded, thena Tinear search of the internal
memory is required to retrieve the segment descriptor word. If the
entire table is loaded into an internal RAM, then the RAM must be
reloaded when a process is multiplexed onto the CU. However, the RAM
implementation is much less expensive than a CAM implementation.

Notice that the address formation algorithm is microprogrammed, thus

it is flexible but potentially slow. One aspect of the flexibility

is that the mapping mechanism can be bypassed as a function of dynamic
and/or static conditions that exist in the CU. For example, "privileged
instructions® (such as CUPI-executable instructions) may reference

absolute MM addresses.

A control unit may communicate with CUPI via MMDR, MMAR, and
control Tines. In order for a (process on a) CU to cause an instruction
execution on CUPI, the CU microprogram performs the following tasks:

- Determine that the instruction is executed by CUPI.

- Compute the effective address. |

- If the address is to a scalar operand, then fetch the operand
and prepare to pass it to CUPI, else prepare to pass the operand

address to CUPI.

- Format the instruction and operand (address).

- Store the command in a predetermined MM address.

- Wait for an acknowledge from CUPI. (The acknowledge either
indicates that the instruction was completed, or that it was
accepted and will be completed later.)

Inasmuch as the CUPI implements interprocess communication and
virtual processor (control unit) implementation, certain registers
associated with a CU process are maintained exclusively by CUPI. PCK,
CCK, TID, and INT are such registers; their use will be explained when
CUPT is discussed (see Section V). |
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The distribution switch interface is composed of two registers
and some control lines.- The data broadcast régister, DBR, is used to
pass information to/from the distribution switch, while the PID register
identifies the process for which the information interchange is taking
place. It is necessary to put the PID content into the distribution
switch in order to determine the subset of active PEs allocated to the
process being executed on the given CU. The control lines are used to
request the use of the distribution switch and to acknowledge such a
request.

The three remaining components of Figure 2 are the instruction
processor, a microprogram control unit, and a control store. It is
this portion of the CU that is implemented as a bipolar bit sTice micro-
processor chip set such as the AMD 2900 series or the Intel 3000 series.
These components appear to be ideal as building blocks for the MAP CU
since they are expandable to arbitrary word size, the cycle time is
relatively fast, the components are modular, and the resulting processor
'is microprogrammable. (The low cost of the components has also allowed
the MAP design to be changed significantly from early versions, parti-.
cularly in the area of the distribution switch.) The overall operation
of the 3 components is well documented in manufacturers' pamphlets, and
in the open literature; thus the discussion here will be directed at the
usage only in the MAP context. o

A1l microprogram execution takes place on the Instruction Processor,
(a bit sTice ALU array). This unit executes the address formation
algorithm discussed earlier, manages the program counter, fetches and
decodes instruction words, executes branching instructions, sets up CUPI
requests, etc. The microprogram control unit sequences the microprocess
through the appropriate microprogram in control store. After the in-
struction processor fetches an instruction word into its internal registers,
it can proceed with decoding. The 3 most significant bits of the MAP
op code determine the instruction type. Type0 instructions are those that
affect the operation of another CU, and are passed to CUPI as described
above. Type 1-3 instructions are to be executed (primarily) by the CU
itself, and are processed by the Instruction Processor itself. Type 4-7
instructions are executed by the PE subset. A sample instruction set is
included in Appendix B, and further-description of the architecture
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will use that set as an example to explain system operation}

After the Instruction Processor recognizes the instruction type,
it will route the instruction to the appropriate execution unit. The
microprogram must be cognizant of the timing of all instructions; either
of two methods can be used to accomplish synchronization among the Cu,
CUPI, and PE subset during instruction execution. Type 0 instructions

_are written to a predetermined MM Tocation, which will invoke CUPI to
execute the instruction. The decode unit then enters a microprcgram

Toop to await an interrupt from the CUPI to indicate that it has finished
processing the instruction. Since the PE subset allocated to a CU is
variable with respect to physical PE identities, the interrupt method for
indicating instruction completion is untenable. Instead, the decode

unit employs a synchronous mechanism where the (maximum) PE instruction
execution time is determined by the decode unit when it allocates work

to the PE subset. This requires that indirect addressing within PEs

be Timited to a single level. Global operations, such as the Global Load
discussed earlier, tend to complicate this method but do not obviate it;
the decode unit recognizes a global instruction and immediately broadcasts
it to the allocated PE subset. The Instruction Processor then performs
the CU portion of the instruction, synchronizes with the PE subset by a
bus signal, and performs the information exchange; It would be possible
to design an acknowledge line to indicate the completion of PE instruction
execution, but due to its complexity the synchronous approach 1is used

in the current design. Bit slice microprocessor internal registers

are used to implement MAP programmable registers required to perform Toop
counts, to index MM, and to allow operand testing that influences the
flow of program control. These registers are designated as CAC[0]-CAC[3]
in Figure 2. Additionally, the program counter, PC, and the MM Segment
Table Pointer are implemented as internal'microprocessor registers. A
typical set of instructions to.be executed, at least in'part, by the CU
Tnstruction Processor is shown as Type 1-3 instructions in Appendix B.
They include CAC Toad and store operations, CAC addition and subtraction,
and a variety of branch instructions based either on CAC contents or
other conditions that might exist in the machine.
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The ALU microprocessor chips that implement the CU instruction
processor require 6 internal registers; the remaining registers (5 in
the case of Intel 3001, 10 in the case of AMD 2901), are used by the
microprograms.

The entire operation of the CU depends heavily on the Distribution
Switch to rapidly route data and instructions to the PE subéet. There-
fore, the bus system used to route information is a multiplexed cross-
bar switch, although the conflict resolution hardware at the cross con-
nections is eliminated by establishing the information fiow path at PE
allocation time, i.e., once a PE is allocated to a CU, it cannot be
shared with another CU. These conventions make the crossbar switch

for instruction broadcasting plausible.
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III. Processing Element Organization

The purpose of each processing element is to carry out single data
stream operations as they are required by the control unit. The opera-
tion of a PE is complicated by the need to selectively activate and de-
activate itself for certain instruction sequences as specified by the
program, i.e. the program may wish to deactivate a PE based on condi-
tions that exist locally in the PE. The 1ist of functions to be imple-
mented in each PE include:

Receipt of the PE instruction,

Execution of arithmetic and logical instructions,
PE memory address formation and access,

Receiving and sending data from/to a CU,
Determining the activity state of the PE.

Figure 3 is a diagram of a processing element as it might be
implemented using bit slice microprocessors. The overall operation of a
PE is simpler than that of a CU, since the PE need not include logic to
handle instruction fetching nor does it communicate with CUPI. On the
other hand, the PE must provide an interface to the Distribution Switch
as indicated in the upper portion of Figure 3. The 8-bit OWNER register
is set when the PE is allocated to a CU so that its content matches the
content of the ID register of the corresponding control unit. Whenever
information is placed on the data bus of the Distribution Switch and
" the PID bus matches the OWNER content, the data is gated onto the PE
data bus. Data can also be gated back onto the Distribution Switch if
the PID and OWNER tags match. In order for a data transfer in either
direction, a signal from the microprogram control store must be available;
thus, a PE accepts data from the Distribution Switch only when the micro-

4

1

program is veady to synchronize.
Although the PE does not fetch instructions from a memory, 1t stiltl

has a fetch-execute cycle. Whenever the PE is in a fetch state, it waits
for data (i.e. an instruction word) from the Distribution Switch. The
Distribution Switch interface gates data onto the internal PE data bus
where it is available to the PE Instruction Processor. Preliminary
decoding in the CU is used to determine the execution unit for a given
instruction. Final decoding and subsequent execution all take place in
the PE Instruction Processor. This approach is counter to the original
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philosophy of SIMD machines, viz. that hardware costs could be minimized -
by centralizing all traditional control unit functions. However, hardware
costs are no longer as important, and so the other important property of
SIMD machines remains a justification for MAP (i.e. MM conflicts are
reduced over multiple processor designs).

The Instruction Processor need only handle 7 bit op codes, since
only Type 4-7 instructions will be received by the PE. - Most of the
action to be taken by the Instruction Processor are straightforward,
with the exception of the way PE activity is handled. If a PE is
currently inactive, the microprogram enters a loop that decodes the
instruction but does not execute it (unless the instruction causes the
PE to change its activity). Thus, the PE is always physically active
whether or not computations are to be logically carried out in the PE.
The Activity register (flag) is an external register that is set and reset
by the microprogram control unit to accomplish this task. The internal
registers are used to provide a set of eight general purpose MAP registers,
denoted AC[0]-AC[7], i.e., these registers are used by the MAP assembly
fanguage programmer to perform arithmetic/logical operations, and as
index registers. The remaining internal registers are used by the m1cro-
programs. ‘
The SELECT register shown in Figure 3 is the mechanism used to
save the results of uptoeight conditions in the PE. Any MAP instruc-.
tion set must include a set of associative instructions similar to the
type 4 instructions shown in Appendix B. Each associative instruction
includes an 8 bit Key field and an 8 bit Mask field, see Figure 4. The
“SELECT" instruction activates all PEs such that

(C(SELECT)=Key) A Mask

results in all eight bits being set.’ Thus, the SELECT inétruction com-
putes the activity of all PEs as a function of the contents of the

SELECT register, Key field, and Mask field. In Appendix B the instruction
"SELECT,R" is used to restrict the domain of selection to the currently
active PE subset. The "COMSEL" instruction performs the same function as
SELECT, except that it complements the activity state of the PEs after
performing the normal SELECT. The remaining Type 4 associative instruc-
tions are used to set/reset bits in the SELECT register, depending on
conditions that exist in the PE at the time of their execution. For
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example, "SETPL" is used with a Key and a Mask field to manipulate
the contents of the SELECT register as follows: If a designated AC is
greater:than or equal to Zero;vthen‘the,SELECT registér’is changed by

SELECT < SELECT A -1 MASK
SELECT « SELECT v KEY .

Thus, the Mask field specifies one or more bits that should be set or
reset if the AC is nonnegative, and the Key field determines their
settings.

As an example of how PE selection operates, suppose that bits 0O,
1, and 2 of the SELECT register (numbering from low order to high order,
or right to left) record the boolean values of conditions designated
as A, B, and C respectively. An instruction applying to PEs for which
A and B are true but C is false can be designated by a key of ”0038”
and a mask of “0078" under normal selection. An instruction applying
to all PEs for which A was true or B was false -- with C irrelevant --
could be designated by a key of "018" and a mask of "0038" under com-
plement selection. Although keys and masks apply conceptually to every
instruction, it is necessary for the CU to broadcast them only when they
change. ‘ .
The associative instructions are implemented in firmware. The
Instruction Processor is responsibTe for both testing and setting the
activity flag for the PE. Since associative instructions are im-
plemented almost entirely by microprograms, the associative instruc-
tion repertoire is as flexible and general as experience dictates that
it should be; the hardware organization does not fix the selection
strategy. The SELECT register can be Toaded and stored just as any
accumutator. This feature allows an almost unlimited number of selec-
tion conditions to be saved with the PE.

Two major difficulties with implementing processing elements
have to do with synchronization between the CU and its PEs, and with
synchronization among the set of PEs allocated to a CU. Synchronization
between the CU and its PEs was briefly described in section II. The
primary difficulty in implementation arises with the stream instruc-
tions (LSTR, SSTR, and XSTR in Appendix B). The problem to be over-
come is that the CU must synchronize with the distribution switch, the
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main memofy, and all PEs in order to cause an information transfer to
- take place. The ICTL and OCTL registers of Figure 3 are used to’imp1e—
ment this form of synchronization; an explanation of the solution is
presented in Section IV. As mentioned in Section II, the CU must also
synchronize with its PEs at the beginning of ‘each fetch-execute cycle.
(The approach taken here was to have the CU microprogram time the
execution of the PE microprograms.) ‘ '

PE-PE synchronization is required for inter-PE comparison and
selection instructions, e.g., SETMAX sets a bit in the SELECT register
of a PE which contains the maximum value in a corresponding register
: ovér all active PEs. Fach PE transmits the appropfiate register con-
tent to the CU simultaneously, resulting in a logical OR of all such
registers on the data bus in the distribution switch. The CU retrieves
the Togical sum and recognizes that a PE with maximum value must have
had a bit set in the position of the most sighificant,bit of the sum.
A11 PEs that do not satisfy the above condition are temporarily de-
activated and the process is repeated until a set of PEs with the max-
imum value is determined. One PE is chosen from the set as the PE
with maximum value. Such an approach relies on mu1tip1e'distr1bution
switch transactions with corresponding synchronizations. However,
it precludes the requirement of a separate switching network especially
designed for muTtip]e PE comparisons. '
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IV. Distribution Switch Organization

-

The Distribution Switch must allow any control unit to pass/

" receive information to/from any subset of processing elements in the

system. This requires a switching mechanism logically equivalent to
an 8 x 1024 crossbar switch in one extreme; or a single, common multi-

~ plexed bus in the opposite extreme. The full crossbar organization
" minimizes bus conflicts at the expense of complex hardware, while the

shared bus minimizes hardware complexity at the expense of expected

bus transfer time. Fach machine instruction (PE or CU) requires muiti-
ple microcycles to carry out execution; for bit slice microprocéssors;
each microcycle is in the range of 100-200 ns and preliminary estimates
indicate that the average microprogram length exceeds 10 microinstruc-
tions. The bus can be constructed to transfer information in 80-100 ns;
hence, it is possible to share data paths between the CUs and the PEs.
The mechanism used in MAP, shown.- n Figure 5, is composed of an 8 x 16
crosshar switch where each CU has a dedicated crossbar, and sets of 64
PEs share an orthogonal crossbar. Each crossbar shared by PEs is re-
ferred to as a bus sector.

A control unit broadcasts information-to its PEs by gadsing-cross—
point connections at its crosshar and all sector crossbars where the
sector contains PEs currently allocated to the CU. If two CUs have no
PEs allocated within a common sector, then they can simultaneously
transmit data to their PEs; otherwise a transmission conflict arises,
and hardware is provided to arbitrate the conflict. The Bus Sector
Allocation unit is the conflict arbiter, and is discussed Tlater in
this section. Since PEs share crossbars, any operating system imp1e-
mented on MAP must pay particular attention to the physical location
of PEs allocated to a given control unit. Although PEs are Togically
identical to user programs executing on CUs, they must be treated as
individuals by the operating system.

Since the bus is shared, data to be broadcast are placed on the
bus only when the bus is allocated and the PEs have been set up to
receive data using the input control register (ICTL) and the output

control register (0CTL), shown in Figure 3.

The ICTL and OCTL registers work in a similar manner. A register
is initially loaded with a value representing a delay time. For each
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cycle to which the CU controlling the opéfation 55465%—B?ocked from
the data bus, the register is decremented by one. When the register
reaches zero, a signai'is generated which, in the case of the ICTL
register, causes a word to be gated from the PE data bus to the PE In-
struction Processor. For the OCTL register, the signal causes the data
to be gated to the PE data bus from the PE processor. Generally the
initial contents of the ICTL or OCTL register will be different for
each individual PE. The result is that each PE reads or writes one
word from a stream of words on the data bus. It is, however, entirely
possible for two or .more PEs to have the same starting value. If a '
set of PEs share a common ICTL value, for instance, then each element
of that set will accept the same word from the data.stream on the bus.

Data streams need not always originate from or terminate to cen~
tral memory. The CU may cause the contents of the bus to be fed back
to the bus, so that different PEs may act simultaneously as source and
destination of the data stream. This allows exchange of data among PEs
in arbitrary patterns, according to the initial values loaded into the
ICTL and OCTL registers. One PE may pass data to any other PE in a
direct manner, but all PEs cannot simultaneously shift data to
“adjacent" PEs.

v The Bus Sector Allocation unit is a critical unit of the Distri-
bution Switch which provides the following functions:

- Establish data routes through the switch,

- Resolve conflicting transmission requests,

- Enable the ICTL/OCTL countdown clocks whenever -an own-
ing CU is not blocked by transmission conflict.

The inputs to this unit are the ID register contents, Bus request
signals, and a Sector Mask for each CU. The Sector Mask is a 16 bit
register, maintained by CUPI, which contains a 1 in each bit position
(corresponding to a sector) in which the CU is allocated PEs. An out-
Tine of the Bus Sector Allocator is shown in Figure 6. The Sector
Conflict Test subunit determines if any two CUs share a sector; the
Transmission Conflict unit determines if two CUs are simu1taneods1y
attempting to use the Distributioh Switch., If there is no sector con-
flict and no transmission conflict, then.the ICTL/OCTL clocks for all
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PES"are enabled.  In the event of transmission conflict, the Transmis-
~sion Conflict Unit arbitrates to select one CU for transmission; the
Route Unit then uses the appropriate Sector Mask to broadcast the ID
and the CU's DBR to the appropriate sectors.
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V. Control Unit Processor Interface

The function of the CUPI is to execute instructions which effect
more than one process. These instructions are primarily intended to
provide a mechanism that is useful in managing processes. In partic=’
ular, the CUPI-executed instructions establish means for process com-
munication, process creation, pkocess destruction, and processor
(i.e.,CU) multiplexing. CUPI s a mechanism which is controlled by
software executing on CUs (and microprograms executing within the

CUPI 1itself) which is used to set policy. In the following discussion
of CUPI, certaiﬁ_po1icy decisions are reflected by the choice of an
instruction repertoire and internal CUPI data structures; note that
these aspects of CUPI are strictly a function of the microprograms
which control the CUPI hardware. Thus, a goal of the design is to
isolate all policy decisions relating to the-CUPI process management
in CU software and CUPI microprograms. A more complete discussion of
the CUPI design is found in the M.S. thesis ofiKimbaIASmith (Depart-
ment of Computer Science, University of Colorado, 1978).

-The physical organizatioh of the CUPIis similar to that for
a PE or a CU (see Figure 7). The architecturé is that of a common
bus, microprogrammed minicomputer system. The CUPI behaves in a
~manner analogous to a PE with respect to the .Jinstruction fetch-
execute cycle, 1i.e., during the fetch phase of execution, the CUPI
receives a single instruction from a CU without sequencing through a
program in a memory module. Thus, CUPI is really a special purpose
execution unit shared by the 8 control units.

The CUPI external interface to control units is through the
MMDR and the control Tines. Information is passed from a CU to CUPI
by storing a formatted message in MM and then passing an interrupt to
the CUPI microprogram control unit. This unit receives interrupts
by having the fetch-execute cycle poll an interrupt request Tine.
When an interrupt is pending, the microprogram services the interrupt
by retrieving the formatted instruction from MM, executing the in-
struction, and achnowledging. the execution by sending a similar
interrupt to the microprogram control unit of the requesting CU.
(Note that this sequence of activities causes the reqyesting cu
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to treat type O iﬂstructions_és indivisible machine instructions
similar to type 1-7 instructions.) This CU-CUPI interface protocol
‘does create a situation in which type 0 instructions are executed in
an 1ndeterminate amount of time. If the CUPI is saturated with CU
requests, then the response to those requests will be influenced by

the order in which the CUPI microprogram chooses to service simul-
taneous requests.

" Figure 7 also shows an internal memory for the CUPI instruction
© processor as well as five banks of 8 registers each. Inasmuch as
CUPI is the only prdcessor capable of direét]y reading or writing
those registers, it is entirely reasonable to impTemenf them as mem-
ory locations in the internal memory. The purposes of the register

" banks with the exception of the SECTOR registers, is explained below.

(The SECTOR registers are described in the previous section, and also
appear in Figure 6.) : .

Process Intercommunication

PCK, CCK, TID, and INT registers are all used for process inter-
communication. Recall that each process is also assigned a unique pro-
cess identifier, which is stored in the PID register of the CU execut-
iing the process. ‘(Thus one can refer to process number i as that pros-
cess which has the integer i Toaded into its PID.) If process i wishes
to communicate with process j? then process i first identifies the tar-
| get (receivef} process by requesting CUPI to Toad the integer j into
) TIDiﬂ Process i may they communicate with j, via CUPI, provided that

it has. been allocated the right to participate in such a communication.
PCK and CCK are used to specify thoée communication rights. Let PCKi[k]
denote bit number k in the PCK register for process i; similarly define
CeK; [k]. o

If
CCK.[k] A CCKj[k] = for some k (0Osk<q)

" then processes i and j can cooperatively communicate with one another.

If
PCK,[K] = 1= PCK,[k] =1 for all k (0sk=q)

then process i has privilege with respect to process j.
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The basic 1deé for Type 0 instructions is that each instruction
~applies to more than one process; process 1 requests that CUPT ex-
ecute the instruction with respect to the target process J (identified
by TIDi). Almost all Type O instructions require that process i have
appropriate right for that instruction, viz. cooperative or privileged
rights. Thus, when the CU which is executing process 1 requests a . -
Type 0 instruction execution with c(TID ) = j then CUPI first checks
TID; and then either FCK1 and PCKJ or_CCK1 and CCKJ before actually

executing the instruction.

The two most important Type 0 instructions for process intercom-
munication are SIGNAL and PREEMPT (see Appendfx B). SIGNAL is used to
cooperatively pass a message from process i to process j, and PREEMPT fis
used to pass.a message in a privileged manner. Each instruction acts
essentially 1iké an interrupt to the receiving process, thus semaphore-
Tike mechanisms can be used by a process to suppress incoming message
processing. - If ARM is cleared, then process j will temporarily ignore
PREEMPT messages d1rected at it. If ARM is cleared or ABLE is cleared
(i.e., false), then process j will temporar11y ignore 1ncom1ng SIGNALs.

The 22 bit INT register is used during the SIGNAL instruction ex-
ecution when the s1gna1 is directed at process j. If process 1 can coop-
eratively communicate with process Js ARM is set, and ABLE is set, then
when process i signals process Jj, process J interrupts norma] processing
and resumes execution at the address specified by INTJ

_The CUPI mechanism to implement SIGNAL and PREEMPT also handles
other instructions to load, store, and test the relevant registers (see
Appendix B). Tn most cases the PCK and CCK register contents are used
to determine the right to execute these "privileged" instructions. In
the case of register load instructions for PCK and CCK an additional re-
striction must be imposed to preserve the integrity of those registers.

A process is not allowed to set bits in the target process' PCK or CCK
if the corresponding bit is not set in the executing processes respective

register.



-31-

Process Creation, Deétruction, and Mu]tip]exing

In the MAP context, a process is a Togica11y executing program
assigned to a process descriptor. A process is created when a descriptor
is allocated, and the process is destroyed when the descriptor is de-
allocated. Within the CUPI design processes are created at systems genera-
tion time and destroyed when the machine is powered down. Processes known
to CUPI are neither created nor destroyed -- they only change states.

When a system is generated, space is allocated to the CUPI (pos-
sibly in its own internal memory) to be used as internal process descrip-
ors. The descriptor specifies a PID content, PC, general registers,
segment table pointer, SECTOR, PCK, CCK, TID, and INT for a process (as.
well as other information internal to CUPI such as the process state).

Thus the internal process description corresponds to the machine state

for a process. An internal process may be dead, static, or dynamic. If
the status is dead, then no external process descriptor exists for the
process, i.e., there is no corresponding external process. If the operat--
ing system wishes to create a process in its domain, then it requests pro-
cess creation to CUPI while setting up its own exterha1 process descriptor
to reflect resource allocation, accounting, etc. (but not machine state).
When CUPI executes this creation command, it sets thé PID of an internal
process descriptor and changes the status to static. (Note that the newly
created process is not presumed to be Togically running; it is neither
physically running nor dead). When the process is destroyed (halted)

then the PID is cleared and the status is returned to dead. Thus creation
and destruction within CUPI corresponds only to state transformations, while
the corresponding functions in an operating system that utilizes CUPI

cause processes to appear and disappear. |

CU multiplexing is also handled by the CUPI (under the policy set
by CU software). A process must be in the static state in order to be
allocated a physical CU. Upon CU allocation, CUPI loads the physical
registers from the internal process descriptor and sets the internal pro-
cess state to dynamic. When the process is multiplexed off of the CU, its
registers are saved in the internal process descriptor and the state 1is
transformed to static.  The mechanism used to introduce a scheduling policy
relies on the schedule being imp]emented as a process that executes qn a
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U, That process maintains a ready 1ist of Togically executing processes.
Whenever an external process is logically running, then its internal
counterpart is in the ready 1ist. The scheduling process then selects
processes from this ready 1ist for physical execution(transformation from
internal static to internal dynamic status). Process suspension and
activation are handled by signaling the scheduling process. In order for
this scheme to work, CUPI must be aware of the one special scheduling pro-
cess at system creation time. v



VI. Main Memory and the I/0 System

A block diagram of the Main Memory and I/0 subsystem appears in
Figure 8. Main Memory is divided into 16 physically distinct 256K word
modules each with thrée ports. Each module may, in turn be subdivided to
incorporate interleaving if there is a need. MM modules 0 through 7 are
configured‘such that CU_i has a preferred path to module i, and CUPI has a
preferred path to module 15. Any of the nine units has access to any of
the 16 memory modules via a shared memory bus. Likewise, the I/0 subsys-
tem uses a distinct bus to access any of the modules. No priority among
the three ports has been set at this time, although the most likely scheme
would give the I/0 subsystem the highest memory access priority, followed
by the preferred CU,,foilowed by the shared memory bus. This arrangement
was chosen to reduce memory conflicts among CUs as much as possible, where.
a CU will normally have sectors-containing its instruction stream loaded
in its corresponding MM module. In the event that an instruction stream
(program) and associated global data do not fit within the preferred
~ module, the memory can be allocated by the operating system so that most
- of the code sectors fit within the preferred module, but others may be
Toaded into neighboring_modu1es. If all CUs require more than 256K words
of MM, then memory bus conflicts will occur. The code for the distributed
operating system will be Toaded into modules 8 to 14.

‘The I/0 subsystem must have access to each memory module in ovrder
to Toad programs and to accomplish normal I/0. An analysis of the I/0
subsystem may possibly require that multiple shared buses are required to
“perform I/O, depending on the bandwidth of the I/0 subsystem. The initial
design of the entire system discourages high operating rates for the I/0
system, since each I/0 implies more use of the data bus system interconnect-
ing CUs and PEs. The overall design phiTosophy'of MAP-dictates that high
I/0 programs will not perform well on the machine.
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Appendix B
A SampTe Instruction Set



~An assembler for all instructions other than the type 0 instructions has been wrilten, and the
resulting machine code can be interpreted on a Nova or a CDC 6400. The same instructions have

also been implemented in Intel -3000- microprograms.

TYPE 0 INSTRUCTIONS
This entire set of instructions is executed on the CUPL The list of instructions is incomplete since

the full list includes several instructions that are not explained in this report. The full Type 0 set
can be found in the M.S. thesis by Kimbal Smith, along with a complete discussion of the CUPI
mechanism.
In order to abbreviate the instruction descriptions, a shorthand notation will be used, where the
following "procedure” is used in the semantic descriptions.
It is assumed that the process whose c(PID)=i is executing the given instruction, and that
(TID)=j.
i.privilegej means that PCKJ-U{]—TI => PCKj[k]=1
for all k (0< =k<=9)
HALT :
if i.privilege]j then
begin
halt the process with c(PID) =j;
_ change the CUPI state of j to dead
end
PREEMPT <k>
ift i.privilege]j then
if arm[j] then
begin
armfj] = false
MMIf§)] = PCl

=0

PC[j] = g(k) _
CAC[0,j] := CAC[0,]
end
SIGNAL
if 3KCCK[k]=1 & CCKJ-[k}:l) then
if arm[j] & ablefj] then
begin
abldjl 1= false;
arm[]] = false
MIfG)] -
Pcm = INT[]]
CAC[oj] := CAC0,i];
armlj] = true
end

The remaining Type 0 instructions allow process i to mampulate the various registers of plOCCSS i, to
test values, and to mampulate values mamtamcd by the CUPL-

TYPE 1 INSTRUCTION
These instructions are used to perform opcxalxons on the CU general purpose registers, Their

general form is
<op-code > < destination >, <left- opd >, <right-opd >
The scmantic descriptions shall refer to the destination as D and the left and right operands as R1

and R2, respectively, e.g.,

op DRILR2
CLR - CU Load Register ﬁom Register
D = ¢R]1)

CRR - CU Right Rotate Register
D := right-rotate ¢(R1) by ¢(R2)
CAR - CU Integer Add Registers



A Sample Instruction Set

D := c(R1) + c(R2)
CNR - CU logical AND Registers
D = crl) & c(R2)
CSR - CU Integer Subtract Registers
D := cRl) - c(R2)

TYPE 2 INSTRUCTIONS
These instructions apply primarily to CU operations, but in some cases PE operations are also
~involved in the instruction execution. The set includes immediate operand instructions of the form
: Cop-code > < destination >, < immediate opd >

where the immediate operand is designated as I in the following. Global instructions apply to the
CU and its PEs; these op codes are generally of the form

G < op-code > Ceffective address >, < effective address >
where each effective address may be a main memory address, M; a CU destination register, D; a
PE destination register, d; a PE operand register, r; or a PE register such as ICTL, OCTL or
OWNER.
CLI - CU Load Register with Immediate Operand

D=1

CRI - CU Register Right Circular Shift by Immediate
D := right-rotate ¢(D) by I
CAI - CU Add Immediate Operand to Register
D := D) + 1 A
CNI - CU Register Logical AND with Immediate Operand
D :=c¢D) &1 '
CSI - CU Integer Subtract Immediate. Operand from Register
D := c¢D) -1
GL - Global Load PE registers
d := M)
GLIC - Global Load ICTL Registers
' ICTL := c(M)
GLOC - Global Load OCTL Registers
OCTL := M)
GLOW - Global Load OWNER Registers
OWNER := cM) .
GS - Global Store PE Registers
v M := c(r) ;union over all active PEs

GSIC - Global Store ICTL Registers
M = c(ICTL) :union over all active PEs

GSOC - Global Store OCTL Registers -
M := «(OCTL) union over all active PEs

GSOW - Global Store OWNER Registers
M := ¢(OWNER) : :union over all active PEs
LSTR - Load Stream from Memory :
d{of active PEs} := (MMM + fICTL)])
SSTR - Store Stream 'into Memory
MMM +ROCTL)] := d{of active PEs}
GMPC - Global Move from a PE rcgister to a CU Register

D = c¢(d) ‘union over all active PEs
GMICR - Global Move from a PE ICTL to a CU Register

D := c(ICTL) 4 ‘union over all active PLs
GMOCR - Global Move from a PE OCTL to a CU Register

D := ¢(OCTL) «union over all aclive PEs
GMCP - Global Move from a CU Register to a PE Register

d := D)

GMRIC - Global Move from a CU Register to a PE ICTL



A Sample Instruction Set

' ICTL := <(D) ‘
GMROC - Global Move from a CU Register to a PE OCTL
OCTL := (D) .

TYPE 3 INSTRUCTIONS -

This class of instructions is intended to be used for manipulating the CU general purpose registers.

Full arithmetic capability has not been included, but it is easy

to see that such capability could be

included in the existing hardware design of the CU by utilizing appropiate microprograms. The

general format for these instructions is
<op-code> < register >, < register > <memory address >

where the registers will be designated as D, R1 an

as M.
CL - CU Register Load
' D = ¢M)
CS - CU Register Store
M = D) ,

'CRM - CU Register Right Rotate by Memory Content
D := rightrolate of c(R1) by c(M)
CAM - CU Register Added to Memory, Result in a Register
‘ D := c¢(R1) + M)
CNM - CU Register Logically ANDed with Memory
D := coRl) & M)
CSM - CU Register Subtract Memory
D := ¢(Rl) - (M)
XCHNG - Exchange Register and Memory Contents ‘
exchange c(R1) and c(M) : :
B - Unconditional Branch
, goto M o
BOVF - Branch on Overflow Condition
: if overflow flag is set then goto M
BCTZ - Branch if the Count of Active PEs is Zero
if no active PEs then goto M
BCTO - Branch if the Count of Active PEs is One
if exactly one active PE then golo M :
BCTGO - Branch if the Count of Active PEs is Greater than One
if more than one active PE then goto M
BXEQ - Branch on Registers Equal
if ¢(R1) = c(R2) then goto M
BXGT - Branch if One Register Greater Than the Other
if ¢(R1) > c(R2) then goto M
BXGE - Branch if One Register Greater Than or Equal the Other
if o(R1) >= c(R2) then goto M ‘
BXLT - Branch if One Register Less Than the Other
if c(R1) < c(R2) then goto M
' BXLE - Branch if One Register Less Than or Equal the Other
if ¢(R1) <= c(R2) then goto M
BXCHNG - Branch on Zero after an Exchange
XCHNG;
if ¢(R1) = 0 then goto M
BXZR - Branch if Register is Zero
if ¢(R1) = 0 then golo M
BXNZ - Branch if Register is Nonzero
if «(R1) <> 0 then goto M
BXPL - Branch if Register is Plus
if ¢(Rl) >= 0 then goto M
BXNG - Branch if Register is Negative
iff «(R1) < 0 then goto M

d R2, and the memory address will be referred to
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TYPE 4 INSTRUCTIONS
These instructions are primarily associative instructions, executed by the PEs.

The variable field of
applies to all

each mnemonic instruction can contain a flag to specify whether or not the instruction '
PEs allocated to the CU, or just to those currently allocated and active. Each instruction specifies a
key (K) and a mask (MSK) to manipulate bits in the SELECT register -- see text.

SELECT - Select Activity based on the current K and MSK
if K .equivalent. (MSK & SELECT) then activate
COMSEL - Complement Select v
SELECT;
deactivate all active PEs and activate all inactive PEs
SET - Set the SELECT register
SELECT := (c(SELECT) & ~MSK) | K
'SETPL - Set Active if the Register is Plus
if «(d) >= 0 then SET
SETNG - Set Active ‘if the Register is Negative.
if c(d) < 0 then SET
SETZR - Set Active if the Register is Zero -
if c(d) = 0 then SET _
SETMAX - Set active if this PE's Register is Maximum over all PEs
if c(d[*]) is maximum then SET
SETMIN - Set active if this PE's Register is Minimum over all PEs
iff o(d[*]) is minimum then SET
SETEQ - Set active if Registers are Equal
if c(rl) = c(r2) then SET
SETEQ - Set active if Registers are Not Equal
if o(rl) <> c(r2) then SET
SETLT - Set active if one Register is Less Than the Other
‘ if c(rl) < c(r2) then SET . ‘ ;
SETLE - Set active if one Register is Less Than or Equal the Other
if c(rl) <= c(12) then SET
SETGT - Set active if one Register is Greater Than the Other
if o(rl) > c(12) then SET

SETGE - Set active if one Register is Greater Than or Equal the Other

if c(rl) > = c(12) then SET

SETFST - Set the TFirst PE Active
Set the active PE with the lowest hardware address;
then deactivate all others

CLRFST - Clear the Tirst PE Active
~ Clear' bits in SELECT as specified by K and MSK

TYPE 5 INSTRUCTIONS

This class is used for general arithmetic and logical manipulations of data within the PE. In this
section, d refers to a general PE register, m refers to an address in the PE memory,

refer to operands in PE registers.
LR - Load PE Register

d := c(m)
LICR - Load PE ICTL Register
ICTL := c(m)
‘LOCR - Load PE OCTL Register
OCTL := c¢(m)

LSLR - Load PE SELECT Register
SELECT := c(m)

LRIC - lLoad Register from ICTL
d := (ICTL)

LROC - Load Register from OCTL
d = c(OCTL)

LRSL - Load Register from SELECT
d := ¢(SELECT)

and rl and 12
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LICOC - Load ICTL from OCTL
. ICTL := ¢(OCTIL)

LOCIC - Load OCTL from ICTL
OCTL := (ICTL)

XSTR - Exchange Data Streams Among PEs
see text {multiple data exchange across PEs}

IFIX - Floating Point to Integer Conversion
d := entier(c(rl))

NORM - Normalize Register
d := normalize(c(rl))

COMP - Two-s Complement of a Register

d := 2's complement of c(rl)
NOT - logical Complement
d 1= ~c(rl)

AR - Integer Add Registers
d := c(rl) + c(12)
FAR - Floating Point Add Registers
d := c(rl) + c(r2)
SR - Integer Subtract Registers
t= c(rl) - <(12)
FSR - Floatxng Point Subtract Registers
= c(rl) - o(r2)
MIR - Multiply Integer Registers
d = c(rl) * c(r2)
FMR - Floatmg Point Multiply Registers
t= c(rl) * o(r2)
MODR - Intege1 Modulo Operation on chmters
: d := c(rl) mod c(r2)
FDR - TIloating Point Divide Registers
d 1= orl) / c(t2)
ORR - Loglcal OR Registers
= oorl) | e(r2)
ANDR - Logzcal AND Registers
= e(rl) & c(r2)
EORR - Loglcal EOR Registers
d = c(rl) .eor. c(r2)
SC - Left Circular Shift on Registers
d := left-rotate c(rl) by o(r2)
SL. - Signed Logmal Shift on Registers
d := ‘left-logical c(rl) by c(12)
{left on positive ¢(r2), right otherwise}
SA - Arithmetic Shift on Registers
d := arithmetic-right c(rl) by c(r2)

TYPE 6 INSTRUCTIONS
Immediate operand instructions for use within the PEs. The 1m1md1ate operand is referred to as i,

and the other operand as d.’
LI - Load with qumediate Operand

d =1

LICI - Load ICTL with Immediate Operand
ICTL = i

LOCI - Load OCTL with Immediate Operand
OCTL := i

Al - Add Immediate Opcrand to Register
d i= c(d) + i

AICI - Add ICTL to Immediate Operand
ICTL := c(CTL) + i
AOCI - Add OCTL to- Immediale Operand
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OCTL := ¢(OCTL) + i

SI - Subtract Immediate Operand from Register
d = ¢d) - i

SICI - Subtract Immediate Operand from ICTL
ICTL := c(ICTL) - i

SOCI - Subtract Immediate Operand from OCTL
OCTL := ¢(OCTL) - i

SCI - Shift Circular Immediate

: d := left-rotate cfd) by i

SLI - Shift Logical Immediate

: d := lef-logical c(d) by i

SAI - Shift Arithmetic Immediate

d = arithmetic-right ¢(d) by i

TYPE 7 INSTRUCTIONS

General PE register/memory manipulation instructions.

memory addresses as m.
L - Load Register
d = c(m)
LIC - Load ICTL Register
ICTL := c(m)
LOC - Load OCTL Register

OCTL := c(m)
S - Store Register
m = )
SIC - Store ICTL Register
m := c(ICTL)
SOC - Store OCTL Register
m = c¢(OCTL)

AM - Add Memory to Register
d := cd) + c(m)

AMIC - Add Memory to ICTL Register
ICTL := c(ICTL) + c(m)

AMOC - Add Memory to OCTL Register
OCTL := c¢(OCTL) + c(m)

SM - Subtract Memory from . Register
d := cd) - c(m)

SMIC - Subtract Memory from ICTL Register
ICTL := c(ICTL) - c¢(m)

SVIOC - Subtract Memory from OCTL Register
OCTL := c¢(OCTL) - c(m)

PE registers are referred to as d and r; PE

FSM - Floating Point Subtract Memory from Register

d 1= c(d) - c(m)
MIM - Multiply Integer Memory by Register
d 1= cod) * cim)

FMM - Tloating Point Multiply Memory by Register

d = c(d) * c(m)

MODM - Modulo Opeation by Memory
d := c(d) mod c(m)

FDM - Tloating Point Divide by Memory
d ;= cd) / c(m)

ORM - Logical OR by Memory
d 1= c(d) | c(m)

ANDM - Logical AND by Memory
d = od) & c(m)

[LORM - Logical EOR by Memory
d = cod) .cor. c(m)






