

IMPROVING ACCESS TO SPACE WEATHER DATA VIA WORKFLOW

AND WEB SERVICES

by

ANU SWAPNA SUNDARAVEL

B.Tech., Anna University, India, 2007

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Master of Science

Department of Computer Science

2010

This thesis entitled:
Improving Access to Space Weather Data via Workflow and Web Services

written by Anu Swapna Sundaravel
has been approved for the Department of Computer Science

(Prof. Kenneth Anderson)

(Dr. Eric Kihn)

Date________________

The final copy of this thesis has been examined by the signatories, and we
find that both the content and the form meet acceptable presentation standards

of scholarly work in the above mentioned discipline

iii

Sundaravel, Anu Swapna (M.S., Computer Science, Department of Computer Science)

Improving Access to Space Weather Data via Workflow and Web Services

Thesis directed by Associate Professor Kenneth M. Anderson

 The Space Physics Interactive Data Resource (SPIDR) is a web-based interactive tool

developed by NOAA’s National Geophysical Data Center to provide access to historical space

physics datasets. These data sets are widely used by physicists for space weather modeling and

predictions. Built on a distributed network of databases and application servers, SPIDR offers

services in two ways: via a web page interface and via a web service interface.

 SPIDR exposes several SOAP-based web services that client applications implement to

connect to a number of data sources for data download and processing. At present, the usage of

the web services has been difficult, adding unnecessary complexity to client applications and

inconvenience to the scientists who want to use these datasets.

 The purpose of this study focuses on improving SPIDR’s web interface to better support

data access, integration and display. This is accomplished in two ways: (1) examining the needs

of scientists to better understand what web services they require to better access and process

these datasets and (2) developing a client application to support SPIDR’s SOAP-based services

using the Kepler scientific workflow system.

To this end, we identified, designed and developed several web services for filtering the

existing datasets and created several Kepler workflows to automate routine tasks associated with

these datasets. These workflows are a part of the custom NGDC build of the Kepler tool.

Scientists are already familiar with Kepler due to its extensive use in this domain. As a result,

this approach provides them with tools that are less daunting than raw web services and

ultimately more useful and customizable. We evaluated our work by interviewing various

scientists who make use of SPIDR and having them use the developed Kepler workflows while

recording their feedback and suggestions. Our work has improved SPIDR such that new web

services are now available and scientists have access to a desktop-based direct manipulation tool

that provides them with improved support for data access and visualization.

DEDICATION

 I would like to dedicate this dissertation to my family, especially to my husband for his

motivation and support throughout the course of this thesis work.

v

ACKNOWLEDEGEMENT

I would like to express my sincere gratitude to my advisor, Prof. Kenneth Anderson, for

his encouragement, support and patience from the start of this thesis work. His immense

knowledge and enthusiasm for research motivated me through each step of my research study. I

also thank him for his guidance in the writing of this work. I could not have imagined having a

better advisor for my Master’s thesis.

I would like to thank my co-advisor, Dr.Eric Kihn for offering me the opportunity to take

up this work as my Master’s thesis. His passion for science and research has been an inspiration

to me always.

I am indebted to both of my advisors for their motivation and support, without which this

thesis would not have been completed.

I also thank Prof. Clarence Ellis for being a member of my thesis committee and for his

insightful comments.

I would also like to thank my colleagues, Peter Elespuru and Rob Redmon for evaluating

my work and providing me with feedback.

vi

CONTENTS

CHAPTER

I. INTRODUCTION……………………………………. 1

II. BACKGROUND TECHNOLOGIES………………… 4

2.1 Web Services…………………………………. 4

2.2 Kepler – Scientific Workflow system………… 10

2.3 soapUI Testing tool…………………………… 16

III. APPROACH………………………………………….. 17

3.1 SPIDR web page interface……………………. 17

3.2 Existing SOAP-based services………………... 18

3.3 Problem Domain………………………………. 20

3.4 Proposed solution……………………………… 21

IV. METHODS……………………………………………. 24

4.1 High/Low Threshold Filter Web Service…….... 24

4.2 Kepler-NGDC scientific workflows…………… 27

V. RESULTS……………………………………………… 35

5.1 Evaluation……………………………………… 35

5.2 Discussion of results…………………………… 35

VI. RELATED WORK…………………………………….. 38

6.1 THEMIS Data Analysis Software………………38

6.2 Kepler/pPod……………………………………..39

VII. CONCLUSION………………………………………….40

BIBLIOGRAPHY…………………………………………………….....42

APPENDIX ……………………………………………………………..45

vii

TABLES

Table

1. Available Directors in the Kepler component library……………………… 12

2. Command line parameters for SpidrClient………………………………… 20

viii

FIGURES

Figure

1. Web Services Architecture………………………………………………… 5

2. Web Service Opeartion……………………………………………………. 6

3. Sample Ptolemy model structure………………………………………….. 11

4. ArrayToElements actor……………………………………………………. 13

5. Example of Composite actor………………………………………………. 13

6. Relation icon………….…………………………………………………… 14

7. Sample workflow demonstrating ‘relation’ in a workflow…...…………… 14

8. Sample Kepler workflow………………………………………………….. 15

9. Composite actor……………………………………………………….…... 15

10. Output of the sample Kepler workflow………..………………………….. 16

11. HiLoFilterService operation………………………………………………. 24

12. Interactive workflow for SPIDR data downloads…………………………. 27

13. GetInputData composite actor…………………………………………….. 28

14. Command prompt window………………………………………………… 28

15. ProcessInputData composite actor……….……………………………….. 29

16. Error message displayed to the user……………………………………….. 30

17. Interactive workflow for SPIDR data plotting…………………………….. 30

18. PreprocessData composite actor…………………………………………... 31

19. Sequence Plot of SPIDR data…..…………………………………………. 31

20. Example inputs for the interactive workflows…………………………….. 32

21. HiLoFilter workflow for SPIDR Geomagnetic data………………………. 33

22. MassageSPIDRIntoKepler composite actor……………………………….. 33

23. Plot of SPIDR filtered data……………...…………………………………. 34

24. Sample future Kepler workflow……..…………………………………….. 40

25. Output of the sample future Kepler workflow…………………………….. 41

26. ArrayAccumulator actor………………….……………………………….. 45

27. ArrayElement actor………………………………………………..………. 45

28. ArrayExtract actor……………………………………...………………….. 45

ix

29. ArrayPlotter actor……..…………………………………………………….. 46

30. ArrayToSequence actor……………………………………………………… 46

31. BooleanSwitch actor………………………………………………………… 46

32. ConcatenateArrays actor…..………………………………………………… 46

33. InteractiveShell actor…………………………..…………………………… 47

34. LookupTable actor…………….…………………………………………….. 47

35. Ramp actor……………...…………………………………………………… 47

36. SampleDelay actor……………..……………………………………………. 48

37. SequencePlotter actor………………………………….…………………….. 48

38. SequenceToArray actor……………………..……………………………….. 48

39. StringMatches actor…………..……………………………………………… 48

40. StringReplace actor………...………………………………………………… 49

41. StringSplitter actor………………………….……………………………….. 49

42. StringToFloat actor……………………………….…………………………. 49

43. URLToLocalFile actor………………………………………………………. 49

44. VariableSetter actor……...…………………………………………………… 50

45. WebService actor……………..……………………………………………… 50

46. Edit parameters for WebService actor……………………………………….. 51

 1

CHAPTER I

INTRODUCTION

 Technological innovations in computing have dramatically transformed the way research is

being carried on in the scientific community. The volume of scientific data is rapidly increasing

each year with the precision of scientific instruments and this brings up the need for managing

this data efficiently. The Scientific Data Management Center [22] has identified three major

requirements for effectively managing and analyzing the scientific data and its related metadata

information. The first requirement is to provide efficient access to the data storage system. The

system should be able to handle requests of reading and writing large volumes of data without

slowing down the simulation and analysis engines. Secondly, the scientists require technologies

that provide them the ability to perform quick searches over large volumes of data and the use of

data mining techniques that will help them to understand data better. Finally, they need tools to

generate data, visualize it and perform further processing on the data to conduct their research.

With many data management architectures being introduced to the community, grid [8] is the

widely used technology to develop earth science systems that integrate large volume and

heterogeneous data sets in a distributed environment. Grid applications provide a platform for

managing and accessing the scientific data that are geographically distributed and also data from

different institutions thus increasing the accessibility of the data sets to a researcher. This data is

used for climate modeling, space weather predication, structural biology and ecological study.

These kinds of modeling and study are best supported through scientific workflows. Scientific

workflows are automated processes where data is passed from one component to another for

processing and the result is a solution to a scientific problem. Grid computing supports scientific

workflow technologies [10] to solve complex scientific problems. The advantages of using

 2

scientific workflow systems include the ability to integrate distributed resources, monitoring the

execution, sharing the workflows across the community and workflow reuse. Several scientific

workflow management systems exist to create, support, manage and execute workflows on

computing resources. Some of them include SCIRun [23], Taverna [31], Kepler [12] and Triana

[34]. For a taxonomy of the available workflow management systems and their comparison, see

[10]. A few of the projects that use workflows to support their research include:

• the Kepler/pPod project developed by a team at UC Davis that makes use of the Kepler

workflow system to study phylogenetic analysis;

• the SANParks project which also makes use of Kepler for managing wildlife populations;

• and the European Model for Bioinformatics Research and Community Education

(EMBRACE) project which integrates Taverna workflows for the study of

bioinformatics.

 My thesis work focuses on improving the access to the space weather data sets published

by NOAA/NGDC [19] (National Oceanic and Atmospheric Administration/National

Geophysical Data Center) via Space Physics Interactive Data Resource (SPIDR) [27; 39] by

developing scientific workflows. SPIDR is built to provide online access to a large volume of

space weather data sets and to assist in environmental research. It is a distributed network

application developed using various open-source tools and currently archives solar, geomagnetic,

ionospheric and several other types of data from ground observatories and satellites. The SPIDR

components are mirrored at numerous locations that include the USA, Russia, Japan, India,

China, Australia, South Africa, France and the Ukraine. This ensures fast data delivery and data

visualization irrespective of a scientist’s geographic location. The users of this data chiefly

include people from academic, U.S government and commercial sectors who perform research

 3

related to space weather effects on Earth and on space. SPIDR provides tools and methods that

allows data users to browse, download and visualize these datasets. These services are made

available via web applications (accessed via a portal) and via SOAP-based web services.

Scientists using SPIDR currently face problems and difficulties while using the SPIDR web

interface, as these do not offer any data processing capabilities and lacks ways to integrate data

from their research tool. We have identified that the accessibility to the space weather data can

be improved via scientific workflows. Hence, we developed workflows that automate the routine

tasks of the scientists like data downloading, plotting and filtering.

 The thesis document is organized as follows. Chapter 2 gives an overview of the

computing technologies used in this thesis work. Chapter 3 and 4 presents the problem domain

and the proposed solutions. Results of this work are presented in Chapter 5 and few of the related

work are explained in Chapter 6. Conclusion and future work are discussed in Chapter 7.

 4

CHAPTER II

BACKGROUND TECHNOLOGIES

This chapter gives an overview of the computer technologies used in this thesis work.

The main technologies include SOAP-based web services, the Kepler scientific workflow system

and the soapUI tool.

2.1 Web Services

 A Web Service [9; 17; 36] is an application-programming interface (API) that provides a

set of functions/services that are accessed by other software applications running on different

machines, irrespective of their location and implementation. As defined by W3C Web Service

Architecture [4], ‘A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL [5; 17; 37]).’ They make use of standard XML [5]

messages for their communication via Hypertext Transfer Protocol (HTTP).

Advantages of web services include:

1) Interoperability: The use of XML messages makes web services both language and platform

independent. For example: an application written in Perl and running under Windows can

request a service from another machine where the service is written in Java and running under

Linux OS.

2) Reusability: Web services allow reuse of other services in other Web Service components.

3) Usability: Since web services make use of open standards and protocols, it is easier for

developers to understand.

4) Easy Integration: Web services allow programs and services from different organizations and

locations to be combined easily to provide an integrated service. For example: A custom

 5

application can make use of the services provided by companies like Amazon [2], Google [7],

Yahoo [38] and offer an integrated service.

There are two types of web services: SOAP-based [5; 17; 35] and RESTful services. We will

focus on SOAP-based services as this is the technology previously used by SPIDR.

2.1.1 SOAP-based web services:

 These web services make use of Simple Object Access Protocol (SOAP [5; 17; 35]) to

exchange messages via HTTP.

Figure 1: Web Services architecture

Figure 1 taken from [4] shows the web service architecture stack that involves many layered and

interrelated technologies. This section describes some of the technologies that are involved in

making a web service call. In the communications layer, HTTP is used as the transport protocol

for the messages. SOAP provides the messaging framework to be used by the applications and

the web services to send messages and data across the network. Web Service Description

Language (WSDL [5; 17; 37]) contains information about the service operations along with the

parameters. This is an XML-based language describing how to interact with the web services and

their implementation details. In order to have the service requestor/client know about what web

 6

services are being offered by an organization, the service provider registers their web services on

a service registry which acts like a look up directory for the requestor. The requestor can then

search and identify the service that would be useful to them. For service registration and

discovery, the Universal Description, Discovery and Integration (UDDI [5; 17]) was created.

2.1.2 Web Service Invocation:

 The figure below taken from [17] demonstrates the web service interactions between the

provider and the client.

Figure 2: Web Service Operation

First, the service provider publishes its service description (WSDL) with the service registry. The

client then looks up for the service in the registry and locates the service it is interested in. It then

makes use of the WSDL information obtained from the service registry and invokes the service

from the service provider.

2.1.3 SOAP:

 SOAP is an XML-based technology that allows disparate applications to communicate

with each other in a distributed environment. SOAP encapsulates the XML data that is

exchanged between applications and web service components. The SOAP message consists of an

<Envelope> element, which wraps an optional <Header> element, and a mandatory <Body>

 7

element.

Structure of a SOAP message:

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
 <soapenv:Header>
 <!--Application specific information -->
 </soapenv:Header>
 <soapenv:Body>
 <!-- Application specific data -->
 </soapenv:Body>
</soapenv:Envelope>

The <Envelope> element is the root element that defines the framework for processing the

message. The <Header> element is the immediate child of the <Envelope> element and it

contains information about the message, like its origination, destination and also carries

information on digital signatures. The <Body> element contains the message or data that is to be

sent.

In the example below, GetItemQuantity is the request sent to the server and the

GetItemQuantityResponse is the response from the server. The SOAP request has a parameter

ItemName and the response is contained in the ItemQuantity parameter. The namespace is

defined in http://www.example.com/Item/.

SOAP Request:

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
 <soapenv:Body xmlns:item="http://www.example.com/Item/”>
 <item:GetItemQuantity>
 <item:ItemName>Mac Book</item:ItemName>
 </item:GetItemQuantity>
 </soapenv:Body>
</soapenv:Envelope>

SOAP Response:

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
 <soapenv:Body xmlns:item="http://www.example.com/Item/">
 <item:GetItemQuantityResponse>

 8

 <item:ItemQuantity>200</item:ItemQuantity>
 </item:GetItemQuantityResponse>
 </soapenv:Body>
</soapenv:Envelope>

There are two communication styles for SOAP: RPC (Remote Procedure call) and Document (or

message). In RPC-style web service communication, the client makes a synchronous method call

to the service provider with a set of parameters and the service responds with the return value.

While, with Document-style communication, the client sends an entire XML document rather

than a set of arguments and the service responds asynchronously with another document.

2.1.4 WSDL:

 WSDL is an XML-based service description language that specifies the interface to the

web service, the service operations and where it is located. Through WSDL the provider informs

the client of what service it provides and how to invoke them.

Sample WSDL document structure:

<!-- root element ‘definitions’ defines a set of related services -->
<definitions targetNamespace=”http://www.example.com/sample/wsdl/”>

<!-- ‘types’ element defines the data types involved in the operations -->
 <types>

<!-- Namespace declarations -->
 <schema targetNamespace=”http://www.example.com/sample/wsdl/”>
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

<!-- Definition of an array of integers -->
 <complexType name="Array_of_xsd_int">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:int[]"/>
 </restriction>
 </complexContent>
 </complexType>
 </schema>
 </types>

 9

<!-- ‘message’ element defines the data elements of the operations -->
<!-- request ‘AddNumbersRequest’ is of type ‘Array_of_xsd_int’ -->
 <message name=”AddNumbersRequest”>
 <part name=”number” type=”Array_of_xsd_int”/>
 </message>

<!-- response ‘AddNumbersResponse’ is of type Integer -->
 <message name=”AddNumbersResponse”>
 <part name=”value” type=”xsd:int”/>
 </message>

<!-- ‘portType element’ states the operations performed and the messages associated with
them -->
 <portType name=”AddNumsInterface”>
 <operation name=”Addition”>
 <input message =”AddNumbersRequest”/>
 <output message=”AddNumbersResponse”/>
 </operation>
 </portType>

<!-- ‘binding’ element describes the format of the message and the protocol involved in
making the call -->
 <binding type=”AddNumsInterface”>
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name=”Addition”>
 <soap:operation soapAction=”http://www.example.com/sample/wsdl/”/>
 <input name=”AddNumbersRequest”><soap:body use="literal"/></input>
 <output name=” AddNumbersResponse”><soap:body use="literal"/></output>
 </operation>
 </binding>
</definitions>

The corresponding web service pseudocode for the above WSDL would look like:
Function Addition (int[] a)
 initialize b to 0
 for x from 0 to n
 b = b + a[x]
return b

2.1.5 UDDI:

 UDDI [5; 17] is a directory of web services created for the clients to search and discover

the services they are interested in. The service provider by publishing their services on the

UDDI, make it easier for the client to look up for the service they want and integrate it with their

 10

application. Through this, the client gets an idea of what web services are currently available.

Presently, over 220 companies are members of the UDDI community.

2.1.6 SOAP implementations for developers:

 There are many SOAP implementations available for developers, including:

Apache Axis for Java [3; 11], SOAP:: Lite for Perl [11; 25] and Microsoft .NET[11; 18].

2.2 The Kepler Scientific Workflow System

 Kepler [1; 12; 16] is an open-source software application developed in Java to build

scientific workflows that help scientists with analyzing and modeling scientific data. It provides

a graphical user interface containing the various components and an editor for creating and

executing the workflows. The components can be dragged and dropped on the editor where they

can be connected and executed. These workflows can be exchanged as XML and Kepler

provides the option of sharing these workflows with other scientists across the world and also

connects to data sets from remote location. Kepler is based on the Ptolemy II [21] framework,

developed at the University of Berkeley. This is a Java-based open-source framework that

enables computational modeling and design. From the Ptolemy II website:

“The key underlying principle in the [Ptolemy] project is the use of well-defined models of

computation that govern the interaction between components.”

The concept of ‘Actors’ and ‘Directors’ in Kepler are notable features adopted from Ptolemy II.

 11

2.2.1 Sample Ptolemy II model structure:

Director

Actor 1 Actor 2

Channel

Output port Input port

Figure 3: Sample Ptolemy model structure

 In Ptolemy II, a model is viewed as a composition of individual, reusable, connected

components called ‘Actors’ and the interaction between them. The execution of the

model/workflow and the communication between the actors are controlled by another component

called the ‘Director’. The director makes sure that the actors are fired in the proper order. A

workflow cannot be executed without a director. There are many types of director and each

differs by how the workflow is executed. An actor communicates with other actors by means of

interfaces called ‘ports’. There can be single/multiple input and output ports. A single port allows

only one connection from/to the actor, while a multiple port allows more than one connection

from/to the actor. All the actors in the workflow must be connected. The connection that exists

between the ports is called a ‘channel’.

2.2.2 Kepler Installation:

 Kepler is cross-platform software application compatible across the Windows, Mac OS X

and Linux operating systems. All three versions of Kepler can be downloaded from the Kepler

website [12] and installation instructions can be found in the User Manual [6].

 12

2.2.3 Components of Kepler workflow:

 The components of a workflow include the directors, actors, parameters and ports.

Directors [6; 13]:

 The director is an important component in a Kepler workflow. It provides the algorithm

that determines when actors in a workflow will perform their computations. Kepler offers five

different directors to choose from. These include SDF, PN, DDF, DE and CT.

Table 1: Available Directors in the Kepler component library; Taken from the Actor-Reference Guide at [13]

Director Description

The SDF Director is often used to oversee fairly simple, sequential
workflows. Types of workflows that run well under an SDF Director
include processing and reformatting data, converting one data type to
another, and reading and plotting a series of data points.

The PN Director is often used for managing workflows that require
parallel processing on distributed computing systems.

The CT Director is designed to oversee workflows that predict how
systems evolve as a continuous function of time (i.e., "dynamic
systems").

The DE Director is often used for modeling time-oriented systems:
queuing systems, communication networks, and occurrence rates or
wait times.

The DDF Director is often used for workflows that use looping,
branching or other control structures but do not require parallel
processing (in which case a PN Director should be used).

Actors [6; 13]:

 Actors are the main processing elements in the workflow. Kepler actors can be used to

access data sources and web services, perform statistical computations and also provide the

ability to create graphs of the data being processed by a Kepler workflow. More than 350 actors

are available in Kepler’s component library and actors can also be downloaded on-line.

Additional actors are constantly added to increase Kepler’s functional capabilities. Kepler also

 13

provides the user the ability to develop their own actors and share it with others through a

repository. There are two types of actors: individual and composite actors. Individual actors are

independent processing elements, while composite actors are collections of individual actors

created to perform one complex operation. In other words, a composite actor represents a nested

sub-workflow. An entire workflow can be added to a composite actor and the resulting actor can

be included in another workflow.

Example of an individual actor:

Figure 4: ArrayToElements actor

 The ArrayToElements actor accepts an array of any type via its single input port and

outputs the disassembled values of the array via its multiple output port. The actor name that

appears on the top of the icon denotes the function performed by the actor and can be customized

by choosing ‘customize name’ on the right-click menu. A single port is differentiated from a

multiple port by a shaded triangle. The right-click menu on the actor provides options to

configure the actor and its ports and to view the documentation of the actor.

Example of a Composite Actor:

Figure 5: Example of Composite actor; Taken from the Kepler Getting Started Guide [6]

 14

 In the above workflow, actor B is the composite actor; it includes another workflow

consisting of actors D, E and F. The input to actor B is routed to the input port of actor D and the

output from actor B is coming from the output port of actor F. The workflow embedded in B

contains a director that controls its execution. The workflow starts executing when actor B is

fired on the upper level. There can be many levels of workflows and each level has its own

director.

Relations, ports and parameters [6]:

 Relations allow workflows to branch a data flow. The branched data can be sent to multiple

places in workflow. For e.g.: an output from an actor can be directed to both a display actor and

to another actor for processing.

Figure 6: Relation icon

Figure 7: Sample workflow demonstrating ‘relation’ in a workflow

 Ports are interfaces through which actors communicate with each other. Ports that are

coupled with the actors are called “Actor ports”, while the ports that connect a workflow to

another workflow is called ‘External ports’.

 Parameters are variables declared in a workflow. Their values can be used in any part of

 15

the workflow.

Sample Kepler Workflow:

Figure 8: Sample Kepler Workflow

 As you see, workflows developed in Kepler have structure similar to the Ptolemy model.

The above is a simple workflow that performs some numerical calculations. It adds three

numbers, multiplies the result with another number and the overall result is rounded up before it

is displayed in a text window.

Figure 9: Composite actor

This workflow contains a composite actor that performs the multiplication and the rounding

calculations. In Figure 9, port and port2 are ‘External ports’ that connects a workflow to another

workflow. In this case, it connects the nested sub-workflow in the composite actor with the main

workflow. The ‘SDFDirector’ controls each of the workflow execution, as this is a sequential

workflow where the order of the actor execution is pre-determined. For adding the numbers, we

make use of the ‘AddorSubtract’ actor. As the name indicates, this actor can be used for both the

 16

arithmetic operations: plus and minus. The ‘AddorSubtract’ actor has two multiple input ports.

The first port accepts integers that need to be added and the second port accepts integers that

need to be subtracted. Since it is a multiple input port it accepts more than one input. The input is

given via three actors. The ‘constant’ actor outputs the constant value specified in the parameter.

The ‘Expression’ actor evaluates an expression and outputs the value of the evaluated

expression. In this case, the ‘Expression’ actor evaluates the value of the parameter ‘num’

defined in the workflow and outputs the value to the ‘AddorSubtract’ actor. The output from the

‘AddorSubtract’ actor is given ‘MultiplyorDivide’ actor. This is similar to the ‘AddorSubtract’

actor but performs the functions of Multiply or Divide. Using the ‘Round’ actor, the result is

rounded up and displayed in a window.

Figure 10: Output of the sample Kepler workflow

2.3 soapUI Testing Tool:

 For testing of web services we made use of the soapUI tool. soapUI [26] is a open-source

testing tool for SOAP-based web services. It is functional testing tool where all the web service

operations can be tested against various inputs. The tool takes the WSDL URL as input and

generates SOAP requests for all the operations defined in the WSDL. It provides a clean

interface to run the tests and to view the SOAP responses.

 17

CHAPTER III

APPROACH

 This chapter discusses about the SPIDR’s web page interface and the SOAP-based services

offered to the scientists to access the space weather data, problems faced by them in using the

SPIDR interfaces and the possible solutions to the problems. The proposed solution focuses on

improving SPIDR’s SOAP-based services by adding new functionality and making it easy to use

for the scientists with a desktop-based data processing and analysis application, hence providing

greater accessibility to the scientists who use SPIDR’s data in their day-to-day research.

3.1 SPIDR web page interface

 SPIDR [27; 39] provides an interactive web page interface [30] to access its data sets. It is

a distributed network application developed using various open-source tools and currently

archives solar, geomagnetic, ionospheric and several other types of data from ground

observatories and satellites. This tool allows data users to browse, download and visualize these

data sets.

 It performs two main functions: data management and data access. The data administrator

has the privileges to load data to the SPIDR databases and the data user can download these data

sets in various formats, view their metadata and can also download a graph plot of the data. The

page displays all the data sets with links to the metadata holdings and the time period for which

data is available.

 Data access is a three-step process.

1) Choosing the time interval the user is interested in

2) Picking the data set

3) Selecting the parameters and the download option

 18

 The user selects the time interval for which he needs the data and the data sampling

interval. On selecting this, the data sets categories page displays all the data sets that have data in

the time interval selected by the user. Then the user chooses the data set followed by selecting a

few related parameters; SPIDR then offers the user with the choice to download data in a variety

of formats such as ASCII, XML and MATLAB or plot a graph of the data.

3.2. Existing SOAP-based services

 SPIDR offers two separate SOAP-based services to allow applications to access SPIDR as

a data source. They are called the FileService and the SpidrService. The FileService web service

provides methods to load space weather data into a database and the SpidrService web service

provides methods to access these data sets. SPIDR also provides client applications that make

use of these web services. They include: FileClient, SpidrClient and the MetadataClient. These

applications are wrapped within a spidr.war file and can be obtained from SourceForge [29] .The

client applications can be invoked from a command prompt. FileClient can be used for loading

data into SPIDR; the MetadataClient is used to retrieve metadata and inventory details; and the

SpidrClient is used to exporting data from the SPIDR database.

 We will now go into detail on the existing data retrieval web service and its client. The

WSDL (Web Service Description Language) for the ‘SpidrService’ web service can be found at:

 http://spidr.ngdc.noaa.gov/spidr/services/SpidrService?wsdl

3.2.1 Methods:

Below are some of the methods offered by the SpidrService related to data retrieval.

§ public string getTables (string viewGroup)

 This method obtains a list of tables for the specified view group name. It returns a string,

containing the list of SPIDR tables.

 19

§ public InventoryBean[] getInventory (string table, string station, string element, string

dataFrom, string dateTo)

This method returns the inventory details for a given table, station, element and time interval.

The value returned is a SOAP array of type InventoryBean. Each element of type InventoryBean

includes information on the element name, the number of records for the given time interval, the

station name that collected the data, a table name, and the time interval itself.

§ public string getData (string Table, string Stn, string Elem, string dataFromStr, string

dateToStr, string format, string samplingStr)

This method exports the data based on the given table name, station, element, time interval,

format and sampling interval and returns the URL link to the exported file.

§ public string getDataStream (string spidrTable, string station, string element, string

startDayAndTime, string stopDayAndTime, string format, string samplingRate)

This method returns raw data in the format specified as input for the given table name, station,

element, time interval and sampling rate.

§ public StationBean[] getStations (string table)

This method returns the list of station belonging to the specified table name. The value returned

is an array of type StationBean. Each element of type StationBean includes information about a

particular station including its name, lat/long, station code, etc.

§ public InventoryBean[] getElementPeriods (string table)

This method returns the time period for which data is available for all the elements of the given

table. The value returned is an array of type InventoryBean.

§ public InventoryBean[] getStationPeriods (string table)

This method returns the time period for which data is available for all the stations of the

 20

specified table. The value returned is an array of type InventoryBean.

3.2.2 SpidrClient:

 This client application can be called from the command prompt using the following

command.

> java spidr.export.SpidrClient <parameters>

It downloads the data specified by the parameters to the local machine and returns the name of

the file.

Table 2: Command line parameters for SpidrClient; taken from SPIDR guide [28]

Parameters Description
(-h | --help) Prints usage help
(-l | --link) <url> Sets the web-service URL
(-u | --user) <name> Sets user name
(-p | --passwd)
<password>

Sets password

(-t | --table) <table> Sets SPIDR table name
(-s | --station) <station> Sets station code
(-e | --element)
<elements>

Sets element name

(-d | --day) <day> Sets a single day for the data request. <day> must be given
YYYYMMDD. If you need to obtain data within a time
interval, use d1 and d2 parameters.

(-d1 | --dayfrom) <day> Sets upper boundary of the time interval. <day> must be
given as YYYYMMDD.

(-d2 | --dayto) <day> Sets lower boundary of the time interval. <day> must be
given as YYYYMMDD.

(-f | --format) <format> Sets export format. <format> may be one of the following:
ASCII, XML, Matlab, IIWG (ionospheric data only), WDC
(geomagnetic data only)

(-ts | --timestep)
<sampling>

Sets data sampling in minutes.

3.3 Problem Domain

 Scientists were not completely satisfied with the way of accessing SPIDR data via its web

interface and the command-line client application. This interface did not satisfy the entire

 21

scientific community needs to access the data. Scientists who work with this data everyday for

their research wish to access the SPIDR data directly from their data analysis software/tool. The

web page interface does not provide this facility to the scientists and the existing SOAP-based

services produce complex SOAP array type outputs that introduces difficulties and

inconvenience to the scientists while making calls to these service operations from their data

analysis applications. So, their only option was to make use of the command-line client

application to download the data.

 The web page interface and the SOAP-based services with its client application is a useful

tool for data downloading and plotting activities, but does not provide any interactive data

processing capabilities and also offers no ways to combine data from other data sources. It

retrieves data from its internal databases and displays it to the scientists. The scientists after

downloading it to their machine perform various data processing, filtering and analysis

techniques on the data using data analysis and research tools.

3.4 Proposed solution

 On analyzing the problems, we found that by enhancing the SOAP-based services by

adding new functionality and by developing an interactive client application to support them, it

would help the scientists to better access SPIDR data. To improve the SOAP-based services to

include data processing capabilities, we added new operations to the service. To identify what

new services can be added to SPIDR, we got input from the users and scientists by analyzing the

ways they access and manipulate the data currently. From that, we found quite a number of

processes that are widely being used by researchers. To begin with, we worked upon adding the

High/Low Threshold filter service to SPIDR. This filter process is used by scientists to filter the

data they need for their research. By adding this operation to the service, the scientists can

 22

directly download the filtered data, rather than downloading the data to their machine and then

using external applications to filter out the ones they do not need.

 For the SOAP client application, we chose to develop a scientific workflow client using the

Kepler workflow system. The reasons for choosing Kepler over other scientific workflow

systems is because:

1) Kepler offers its users with a wide range of models of computation with the help of its

‘Director’ components.

2) The Kepler tool is already widely used in fields such as ecology and geology and hence it is

quite popular among geoscientists. Providing the scientists with a tool that they are already

familiar with makes them comfortable in using the data.

3) Kepler has great support for SOAP-based services and data visualization techniques.

 Using Kepler, we designed and developed workflows that automate the routine tasks of

the scientists by adapting the existing SOAP-based services. The basic tasks that scientists

perform are data downloading and generating a plot of the data. We started off by creating a

Kepler workflow for downloading and plotting of data from a single dataset. The parameters

were hard-coded in the workflow. Since it is not a good approach to have separate workflows for

each datasets and also not so user-friendly, we analyzed that it would be better to develop

interactive workflows that get input from their users and can also be applied across multiple

datasets. We then developed a separate workflow that interacts with the user to obtain inputs and

sets up the parameters required for data downloading and generating a plot of the data. This

workflow was added as a composite actor to the first developed workflow, replacing the hard-

coded inputs. Thus, we ended up developing two interactive workflows, one that supports

downloading of data and the other workflow generates a plot of the data. We also created a

 23

sample Kepler workflow that makes use of the newly added High/Low Threshold Filter web

service. These workflows were added to the Kepler system and distributed as a customized

Kepler-NGDC [14] workflow application.

 24

CHAPTER IV

METHODS

 This chapter explains the implementation of the solutions to the problems. It also states the

problems faced while implementing the solutions and their associated limitations.

4.1 High/Low Threshold Filter web service

 The Filter Service (known as the HiLoFilterService) takes the data as a comma-separated

value string and a threshold value as input and outputs the filtered data based on the high/low

function selected. The output is either an integer array or a float array. The HiLoFilterService

offers 4 methods. The WSDL for this web service can be found at:

http://spidr.ngdc.noaa.gov/spidr/services/HiLoFilterService?wsdl

4.1.1 Architecture Diagram:

User Workstation Remote SPIDR Server

SPIDR Client

HiLoFilterService

Filter

Formatter

Data String and
Threshold value

Filtered Data

Figure 11: HiLoFilterService operation

 The HiLoFilterService resides in a remote SPIDR server. The client makes a method call

by passing the data values and the threshold value as input arguments. The service executes the

called method that filters the data and formats the filtered data as an array and returns the result

to the client.

 25

4.1.2 Methods:

§ public int[] loPassFilterInt (string data, int thresholdValue)

This method takes the data string and a threshold value as input and outputs the data values that

are below the threshold value as an integer array.

Pseudocode of the function is given below:

function int[] loPassFilterInt (string data, int thresholdValue)
 var y[0..n]= split input data string by (,)
 var h[0..n]
 initialize i to -1
 for x from 0 to n
 var int a = integer (y[x])
 if (a<= thresholdValue)
 increment i
 h[i]=a
 var r[0..i+1]
 copy array values from h[0..n] to r[0..i+1]
return r[0..i+1]

§ public int[] hiPassFilterInt (string data, int thresholdValue)

This method takes the data string and a threshold value as input and outputs the data values that

are above the threshold value as an integer array.

Pseudocode of the function is given below:

function hiPassFilterInt (string data, int thresholdValue)
 var y[0..n]= split input data string by (,)
 var h[0..n]
 initialize i to -1
 for x from 0 to n
 var int a = integer (y[x])
 if (a>= thresholdValue)
 increment i
 h[i]=a
 var r[0..i+1]
 copy array values from h[0..n] to r[0..i+1]
return r[0..i+1]

§ public float[] loPassFilterFloat (string data, int thresholdValue)

 26

This method takes the data string and a threshold value as input and outputs the data values that

are below the threshold value as a float array.

Pseudocode of the function is given below:

function float[] loPassFilterFloat (string data, int thresholdValue)
 var y[0..n]= split input data string by (,)
 var h[0..n]
 initialize i to -1
 for x from 0 to n
 var int a = float (y[x])
 if (a<= thresholdValue)
 increment i
 h[i]=a
 var r[0..i+1]
 copy array values from h[0..n] to r[0..i+1]
return r[0..i+1]

§ public float[] hiPassFilterFloat (string data, int thresholdValue)

This method takes the data string and a threshold value as input and outputs the data values that

are above the threshold value as a float array.

Pseudocode of the function is given below:

function float[] hiPassFilterFloat (string data, int thresholdValue)
 var y[0..n]= split input data string by (,)
 var h[0..n]
 initialize i to -1
 for x from 0 to n
 var int a = float (y[x])
 if (a>= thresholdValue)
 increment i
 h[i]=a
 var r[0..i+1]
 copy array values from h[0..n] to r[0..i+1]
return r[0..i+1]

4.1.3 Testing:

 The developed HiLoFilterService was tested using soapUI - 3.5, a functional Testing tool

for Web Services. The goal of the testing was to make sure that all the operations offered by the

 27

service worked correctly for valid inputs. Different values for data and threshold were given as

inputs and the outputs were compared against the actual outputs. After it passed all the test cases,

it was deployed on SPIDR’s Production server.

4.2 Kepler-NGDC scientific workflows

 As part of this thesis work, we developed three Kepler workflows that made use of the

existing SOAP-based services and the new filter service added. All these workflows are part of

the Kepler-NGDC [14] application which can be downloaded from the SPIDR website. The

workflows can be accessed from the ‘Workflows’ tab of the application.

4.2.1 Interactive workflow for SPIDR data downloading:

 This workflow is named as ‘SPIDR_Multi_Prompt’ in the Kepler-NGDC application. It

allows the users to download data from the SPIDR database and save a copy of it to their local

machine. It interacts with the users to get the input arguments that are needed to retrieve data

from the database and also asks them to enter the path and file name that should be used for the

downloaded data file.

Figure 12: Interactive workflow for SPIDR data downloads

 The workflow consists of 4 actors, each with their own role to play in the workflow (see

Figure 12). The DDF director dictates the actors’ executions. The ProcessInputData actor is

 28

responsible for interacting with the user to get the necessary inputs and prepares the inputs to

serve as arguments to query the database. The ProcessInputData is a composite actor. For details

on directors, actors, composite actors and connection, please refer to Chapter 2. The

ProcessInputData actor encapsulates another composite actor, GetInputData.

Figure 13: GetInputData composite actor

The GetInputData composite actor contains the interactive part of the workflow. We made use of

the InteractiveShell actor to display the prompt command window.

Figure 14: Command prompt window

The GetInputData actor displays the text-based form to the user prompting them to enter the data

 29

set name, station name, element name, time interval they are looking for along with the absolute

path for the output file (the directory path under which the file is to be saved and the file name to

be assigned). The values entered by the user are collected in an array and passed to the

ProcessInputData actor. This actor then sets the outputfileport parameter value to the absolute

path of the downloaded file and extracts from the array the query parameters to retrieve the data.

The actor retrieves the table name from the data set value entered by the user. It matches for a

particular keyword in the data set name and sets the table name appropriately. It is not required

for the user to know the table name. However, the workflow expects the user to know the station

code and element name for that particular dataset. For example: If the user enters ‘Ionospheric

data’ for the data set value, the actor looks for the word ‘iono’ and assigns the table name as

‘iono’.

Figure 15: ProcessInputData composite actor

 30

The workflow supports for 14 different data sets and if the user enters a value different from the

supported data sets, it displays an error that the data set specified is invalid.

Figure 16: Error message displayed to the user

The output from the ProcessInputData actor is an array, which is split into elements using the

ArrayToElements actor. The output is then passed to the WebService actor that calls the

corresponding remote SpidrService and executes the getData method. The output of the

operation is a URL link pointing to the datafile in the remote server. The URLToLocalFile actor

reads the URL and saves the file under the path and the filename specified by the user.

4.2.2 Interactive workflow for SPIDR data plotting

 This interactive workflow is named as ‘SPIDR_Interactive_Plotting’ in the Kepler-NGDC

application.It is very similar to the previous one, except that instead of downloading the data it

generates a sequence plot of the data. The actors involved in this workflow consist of actors from

the previous workflow and also includes a few other actors necessary to generate the plot.

Figure 17: Interactive workflow for SPIDR data plotting

The ProcessInputData actor followed by the WebService actor in the workflow provides the

means to get input from the users and to retrieve data from the server. This WebService actor

 31

uses the getDataStream method of the SpidrService web service and returns data in ASCII

format. The output from the web service call is then processed by the PreprocessData composite

actor to remove comments and other text and to extract only the data values.

Figure 18: PreprocessData composite actor

The string data values are then converted to a sequence of float values and then plotted via a

SequencePlotter actor. Below figure is the plot generated by this workflow.

Figure 19: Sequence Plot of SPIDR data

4.2.3 Problem faced:

 These Kepler workflows automate the routine tasks of the scientists, which include SPIDR

data downloading and graph plotting. It also provides the scientists with interactive data

processing and analytical tools through Kepler and using this workflow, the scientists can build

 32

other workflows over them. For example: they can combine data from SPIDR and data from

another source and perform further analysis and research on both the data with the tools provided

by Kepler. Though this solution solves the problems faced by the scientists, it is a less ideal

solution. This is because these workflows allow users to enter the inputs to the workflow. This

may cause the possibility for the users to type in wrong station and element names.

 Initially we wanted to build a workflow that guides the users through the inputs, by

displaying the data sets available, allowing the users to choose the station name from a list of

stations and by displaying the time interval for which data is available. To support this kind of

design, Kepler provides the SelectionDialog actor that allows users to select a value from a list of

values. This actor worked well on the Windows platform, but did not work well on Mac OS X.

Due to this incompatibility issue, we had to design the workflow with the text-based form

allowing users to enter the inputs. In order to reduce the error caused by this design, we have

added a table document to the web site that gives examples of inputs for each of the data set.

Figure 20: Example inputs for the interactive workflows

However, a few months into the development of Kepler-NGDC tool, the Kepler team solved the

incompatibility issue and added a new version of the SelectionDialog actor to the Kepler

repository, which is compatible across all OS. We now intend to integrate this dialog into the

workflows we developed for the Kepler-NGDC tool.

 33

4.2.4 HiLoFilter workflow for SPIDR Geomagnetic data:

 This workflow is named as ‘SPIDR_Geomagnetic_Filtered’ in the Kepler-NGDC

application. This workflow makes use of the HiLoFilterService to filter geomagnetic data and

generates a plot of the filtered data.

Figure 21: HiLoFilter workflow for SPIDR Geomagnetic data

 This is a sample workflow created to make use of the HiLoFilter service developed. Hence,

the inputs to the workflow are hard-coded. The WebService actor calls the getDataStream

method of the Spidrervice to retrieve data in ASCII format.

Figure 22: MassageSPIDRIntoKepler composite actor

The data is passed to the MassageSPIDRIntoKepler composite actor, which formats and

processes the data to remove comments and other text and retrieves only the data values. The

 34

data values are then passed to another WebService actor, which calls the HiLoFilterService and

executes the method selected by the user. The threshold value is provided via a Constant actor.

The filtered data values are plotted using an Array plotter as the output from the previous actor is

in array form.

Figure 23: Plot of SPIDR filtered data

4.2.5 Testing:

 The interactive workflows were tested with inputs from the 14 data sets and the outputs

were verified. The goal of this testing was to make sure that the data were downloaded and

plotted for all the supported data sets. Once they passed the testing phase, they were added to the

customized NGDC-Kepler system.

 35

CHAPTER V

RESULTS

 In this chapter we discuss the evaluation of the developed Kepler-NGDC tool by scientists

and their suggestions for improving the tool.

5.1 Evaluation

 The developed Kepler-NGDC workflow system was evaluated by having two scientists

and a software engineer from the National Geophysical Data Center (NGDC) use the created

Kepler workflows and recording their feedback. The scientists make use of SPIDR data to carry

out their research and the software engineer has experience in developing clients for SPIDR’s

RESTful Web services. These users have prior Kepler experience and have a basic understanding

of what Kepler does and provides. We requested the scientists to use each of the workflows and

to build their own Kepler workflows by re-using the composite actors from these built

workflows. Following this, they gave us feedback on the system, suggestions on how each of the

individual workflows can be improved and also gave suggestions on what new web services and

workflows can be included in the Kepler-NGDC application. Below is a summary of their

feedback.

5.2 Discussion of Results

 Having prior Kepler experience, the scientists found the Kepler workflows simple to use

and easy to understand the flow of the data through the actors/components. However, they found

that the interactive workflows required a small learning curve, but once trained in its use, they

found it to be a useful tool for issuing repeated data requests. The created Kepler workflows

covered their routine tasks with SPIDR data like downloading and plotting. One of the scientists

pointed out that the ability of incorporating web services to the workflows, which provides

 36

complex analytical tools for wide variety of data makes the whole experience more interactive,

direct and rapid.

 Regarding the question of how the created Kepler workflows can be improved, the

scientists suggested some features that will enhance the usability of these workflows with the

data. One of them observed that in the workflow, SPIDR_Multi_Prompt (the Kepler workflow

built for interactive data downloading), the prompt shell requests the user to enter the absolute

path for the downloaded file and the name of the file. This appears as two separate questions on

the prompt shell. The scientist remarked that these can be combined as a single question,

prompting the user to just enter the absolute path for the downloaded file which includes both the

path and file name for the downloaded zip file. This change has already been deployed in

subsequent versions of the Kepler-NGDC application. They also commented that cataloging and

documenting the information within the interactive workflows, like which data sets are available

for what time ranges, would make the interactive workflows more usable. Currently, the Kepler-

NGDC application offers a table document that lists the data sets that are presently applicable to

the workflows and also gives an example of the inputs to the workflows. If instead, the workflow

guides the user through the inputs, by displaying the data sets that are applicable and stating the

time interval for which the selected data is available, it will make the interface more interactive

and usable.

 Below are the features the scientist preferred to be added to the developed Kepler

workflows.

1) Display timestamps on the plots. This would help them in case they come across any

suspicious data on the plot, then they can use the timestamp to investigate the data set in

more detail.

 37

2) Display Quality flags of the data on the plot. This would enable the scientists to

understand the data.

3) Add a refresh option to the Kepler workflow so that it updates itself every 5 minutes with

the most recent data; this will help those scientists working with real-time data.

4) Add the Lomb-Scargle method of transformation as a web service. This method would

allow scientists to look for periodic harmonics in the data.

 The users found the composite actors to be very useful. Indeed, the scientists found

immediate use for these actors in their own workflows.

 On the whole, the users felt that this tool has improved SPIDR, making it a better

resource supported by more interactive data processing capabilities. They concluded that this

tool has offered the ability to combine and process data from both SPIDR and other data sources

like Space Weather Prediction Center (SWPC) quickly and easily.

 38

CHAPTER VI

RELATED WORK

 Many scientific data centers provide web page interfaces and software tools to access and

perform analysis on their datasets. This chapter will cover two such data analysis tools that are

very similar to this work.

6.1 THEMIS Data Analysis Software:

 The THEMIS Data Analysis Software [32] (TDAS) is an IDL-based software (IDL -

Interactive Data Language) tool developed to provide the public access to THEMIS (Time

History of Events Macroscale Interactions during Substorms) data. NASA’s THEMIS [33]

mission is to identify what physical processes cause the auroras to occur in the Earth’s

magnetosphere. THEMIS data includes observations from both ground observatories and the

spacecraft. These datasets provide observations of the solar wind, magnetosphere, aurora and the

magnetic field perturbations over Northern North America. The THEMIS Data Analysis

Software (TDAS) tool is very similar to the work performed in this thesis in that they both

provide their associated research communities with a desktop-based direct manipulation tool to

access the datasets. This application provides various IDL routines to download, open and view,

analyze and plot these datasets. It provides two levels of data. Level 1(L1) data is raw data in

CDF format, while Level 2 (L2) data is calibrated in physical quantities. Downloading and

plotting routines can be called on both these levels of data. The IDL routines can be invoked

from the command-line to execute functions as needed. The software tool in addition provides a

Graphical User Interface to access and analyze these datasets. This software tool is compatible

across Windows, Linux, and Mac OS X.

 39

6.2 Kepler/pPod

 There are various projects that make use of Kepler to develop their applications.

Kepler/pPod [24] is one of them. It is a customized distribution of the Kepler scientific workflow

system, very similar to the Kepler-NGDC tool. It was designed to support researchers involved

in phylogenetic data analysis. The goal was to provide the researchers with an easy-to-use

desktop application to create, run and share the phylogenetic workflows as well as to manage the

provenance of the workflow results. It is one of the core database technologies developed within

the NSF-funded processing PhylOData (pPod), which aims at providing a research tool that is

helpful to the phylogenetic communities. The Kepler/pPod tool contains reusable components to

work with biological sequences and inferring phylogenetic trees and a workflow editor provided

by Kepler to create and execute workflows. The tool contains sample workflows for

phylogenetic analyses. These workflows can be easily modified by changing the parameters,

selecting different input data and by selecting different methods for analysis steps. The tool can

be downloaded from [15]. The Kepler/pPod team is working on the tool to add components and

workflows that will help the researcher’s work with phylogenetic data.

 40

CHAPTER VII

CONCLUSION AND FUTURE WORK

 Through our work we have made a new SOAP-based web service—the

HiLoFilterService—available in SPIDR and also provided scientists with an easy-to-use desktop

application—the Kepler-NGDC scientific workflow system—to access and visualize the

datasets. The Kepler-NGDC tool has built-in workflows to download, filter and plot the SPIDR

datasets. These workflows can be customized to the scientists needs and can also be used in other

workflows.

 In the future, based on community input, new SPIDR SOAP-based web services, such as a

service that applies the Lomb-Scargle method of transformation, will be made available

alongside additional Kepler workflows that will be added to the Kepler-NGDC tool to enable

other types of analysis on SPIDR data. The interactive part of the Kepler workflow will be

improved to guide the users through the inputs by making them choose from a list of options.

This can be accomplished by using the SelectionDialog actor. Internal documentation to inform

users of what data sets are applicable and the time interval for which the selected data is

available will also be added to the workflows. Below is an example of the workflow that

demonstrates how the interactive part can be improved with the help of a SelectionDialog actor.

Figure 24: Sample future Kepler workflow

 41

Figure 25: Output of the sample future workflow

With the help of the SelectionDialog actor, the workflow guides the users through the inputs and

thus reduces the error caused by entering invalid inputs on the current text-based form. The

workflows can be developed using the existing web services and if necessary, new services will

also be created to support them. This will make the workflows more usable and user friendly.

 42

BIBLIOGRAPHY

[1] Altintas I, Berkley C, Jaeger E, Jones M, Ludäscher B, Mock S. 2004. Kepler: An Extensible

System for Design and Execution of Scientific Workflows. Proceedings of the The Future of

Grid Data Environments, Global Grid Forum 10

[2] Amazon web services. http://aws.amazon.com/

[3] Apache Axis for Java: http://ws.apache.org/axis/index.html

[4] David Booth, Hugo Haas, Francis McCabe et al., Web Services Architecture, W3C Working

Group Note, 11 February 2004. http://www.w3.org/TR/ws-arch/

[5] E. Newcomer, Understanding Web Services: XML, WSDL, SOAP, and UDDI. Addison-

Wesley, 2002.

[6] Getting started guide - Kepler: https://code.kepler-project.org/code/kepler-

docs/trunk/outreach/documentation/shipping/2.1/getting-started-guide.pdf

[7] Google web services: http://code.google.com/apis/ajaxsearch/

[8] I. Foster and C. Kesselman (editors). The Grid: Blueprint for a Future Computing

Infrastructure, Morgan Kaufmann Publishers, USA, 1999.

[9] J.Roy and A. Ramanujan, Understanding Web Services. IEEE IT Professional,

November/December, 2001.

[10] J. Yu and R. Buyya. A Taxonomy of Workflow Management Systems for Grid

Computing.Technical Report GRIDS-TR-2005-1, Grid Computing and Distributed Systems

Laboratory, University of Melbourne, 2005.

http://www.cloudbus.org/reports/GridWorkflowTaxonomy.pdf .

[11] James Snell, Doug Tidwell, Pavel Kulchenko, Programming web services with SOAP.

O’Reilly Media, 2001

 43

[12] Kepler: https://kepler-project.org/

[13] Kepler Actor Reference Guide: https://code.kepler-project.org/code/kepler-

docs/trunk/outreach/documentation/shipping/2.0/ActorReference.pdf

[14] Kepler-NGDC workflow application can be downloaded at

http://spidr.ngdc.noaa.gov/spidr/friend.do?hlink=http://spidr.ngdc.noaa.gov/workflow/

[15] Kepler/pPod web site: http://daks.ucdavis.edu/kepler-ppod/

[16] Ludäscher B., Altintas I., Berkley C., Higgins D., Jaeger-Frank E., Jones M., Lee E., Tao J.,

Zhao Y. 2006. Scientific Workflow Management and the Kepler System. Special Issue:

Workflow in Grid Systems. Concurrency and Computation: Practice & Experience 18(10): 1039-

1065

[17] Michael P. Papazoglou, Web Services: Principles and Technology. Pearson Prentice Hall,

2008

[18] Microsoft .NET: http://msdn.microsoft.com/en-us/netframework/aa663324.aspx

[19] NOAA/NGDC http://www.ngdc.noaa.gov/

[20] O'Loughlin, K. F. (1997), SPIDR on the Web: Space Physics Interactive Data Resource on-

line analysis tool, Radio Science, 32(5), 2021–2026

[21] Ptolemy II project and system. Department of EECS, UC Berkeley, 2004.

http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm

[22] Scientific Data Management Center website: https://sdm.lbl.gov/sdmcenter/

[23] SciRUN http://software.sci.utah.edu/scirun.html

[24] Shawn Bowers, Timothy Mcphillips, Sean Riddle, Manish Kumar Anand, Bertram

Ludäscher, Kepler/pPOD: Scientific Workflow and Provenance Support for Assembling the Tree

of Life, Provenance and Annotation of Data and Processes: Second International Provenance and

 44

Annotation Workshop, IPAW 2008, Salt Lake City, UT, USA, June 17-18, 2008. Revised

Selected Papers, Springer-Verlag, Berlin, Heidelberg, 2008

[25] SOAP::Lite for Perl: http://www.soaplite.com/

[26] Soap UI, Web Service Testing tool: http://www.soapui.org/

[27] SPIDR: http://spidr.ngdc.noaa.gov/spidr/

[28] SPIDR SOAP-based web services user’s guide:

http://spidr.ngdc.noaa.gov/spidr/docs/SPIDR.WSGuide.en.pdf

[29] SPIDR SourceForge: http://sourceforge.net/projects/spidr/

[30] SPIDR web interface user’s guide:

http://spidr.ngdc.noaa.gov/spidr/docs/SPIDR.UserGuide.en.pdf

[31] Taverna http://taverna.sourceforge.net

[32] THEMIS Data Analysis Software (TDAS) web site:

http://themis.ssl.berkeley.edu/index.shtml

[33] THEMIS NASA web site: http://www.nasa.gov/mission_pages/themis/main/index.html

[34] Triana http://www.triana.co.uk

[35] W3Schools SOAP: http://www.w3schools.com/soap/soap_intro.asp

[36] W3Schools Web Services: http://www.w3schools.com/webservices/ws_intro.asp

[37] W3Schools WSDL: http://www.w3schools.com/wsdl/wsdl_intro.asp

[38] Yahoo web services: http://developer.yahoo.com/

[39] Zhizhin, M., E. Kihn, R. Redmon, D. Medvedev, D. Mishin, Space Physics Interactive Data

Resource- SPIDR. Earth Science Informatics, 2, 79-91, 2009.

 45

APPENDIX

 This Appendix describes the actors that have been used to develop the Kepler-NGDC [14]

workflows in this thesis.

ArrayAccumulator:

Figure 26: ArrayAccumulator actor

 The ArrayAccumulator actor takes an array as input and outputs the array elements as a

string, with each element separated by the character specified in its parameter.

ArrayElement:

Figure 27: ArrayElement actor

 The ArrayElement actor takes an array and an index number as inputs and outputs the

element present at the given index.

ArrayExtract:

Figure 28: ArrayExtract actor

 The ArrayExtract actor reads an array and outputs a subarray depending on the specified

parameters. The parameters for this actor include sourcePosition, destinationPosition,

extractLength and ouputArrayLength.

 46

ArrayPlotter:

Figure 29: ArrayPlotter actor

 The ArrayPlotter actor takes an array of double values via its multiple input port and

displays a plot of each array received as a separate dataset.

ArrayToSequence:

Figure 30: ArrayToSequence actor

 The ArrayToSequence actor reads as array and outputs the values of the array elements as

a sequence of tokens.

BooleanSwitch:

Figure 31: BooleanSwitch actor

 The BooleanSwitch actor takes a value of any type and a Boolean token as inputs.

Depending on the value of the Boolean token (true/false), either the trueOutput port or the

falseOutput port is selected.

ConcatenateArrays:

Figure 32: ConcatenateArrays actor

 47

 The ConcatenateArrays actor reads any number of arrays via its multiple input port and

outputs a single array containing the elements of all the input arrays.

InteractiveShell:

Figure 33: InteractiveShell actor

 The InteractiveShell actor displays a Unix command shell along with the string it receives

as input and waits for the user to enter any commands. The entered commands are sent via its

output port. We used this actor to create text-based forms that allow users to enter inputs to a

workflow.

LookupTable:

Figure 34: LookupTable actor

 The LookupTable actor takes an array as input and looks up for an element specified by a

given index number. This is very similar in function to the ArrayElement actor but differs in how

they read the input array. In the LookupTable actor, the input array is specified via its parameter

and takes the index number via its port, while the ArrayElement actor reads the array via its input

port and the index number via its parameter.

Ramp:

Figure 35: Ramp actor

 The Ramp actor is similar to the ‘for’ loop in a programming language. Its parameters

 48

include an initial value, the amount by which the value has to be incremented or decremented

and the upper limit the value can reach. The actor outputs an integer value each time it fires.

SampleDelay:

Figure 36: SampleDelay actor

 The SampleDelay actor is used to output an initial value when a workflow starts up. This

actor can also be used to prevent deadlock loops that occur when an output of an actor is the

input to itself. In such cases, adding a SampleDelay actor fixes the deadlock loop issue.

SequencePlotter:

Figure 37: SequencePlotter actor

 The SequencePlotter actor reads one or more sequences of values via its multiple input port

and displays a plot of the data received.

SequenceToArray:

Figure 38: SequenceToArray actor

 The SequenceToArray actor reads a sequence of elements and wraps them up in an array.

The length of the output array can be specified as a parameter.

 49

StringMatches:

Figure 39: StringMatches actor

 The StringMatches actor takes a string as input and matches it against a given pattern. The

actor returns true if it matches, else false.

StringReplace:

Figure 40: StringReplace actor

 The StringReplace actor replaces a part of the input string with the specified element.

StringSplitter:

Figure 41: StringSplitter actor

 The StringSplitter actor splits the input string with the delimiter specified via its input

parameter.

StringToFloat:

Figure 42: StringToFloat actor

 The StringToFloat actor reads a string value as input and outputs it as a float value.

URLToLocalFile:

 50

Figure 43: URLToLocalFile actor

 The URLToLocalFile actor reads a URL and copies the file to the local machine. The

output value is true when the actor is done saving the file.

VariableSetter:

Figure 44: VariableSetter actor

 The VariableSetter actor sets the input value to the variable specified as its input

parameter.

Web Service:

Figure 45: Web Service actor

 The Web Service actor accepts the URL of the WSDL file and the name of the operation to

be executed via its parameters and executes the web service running on the remote machine and

outputs the result. Once the user enters the WSDL URL, the actor automatically configures the

input and the output ports.

 51

Figure 46: Edit Parameters for WebService actor

