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Roberg, Michael Dean (Ph.D., Electrical Engineering)

Analysis & Design of Non-Linear Amplifiers for Efficient Microwave Transmitters

Thesis directed by Professor Zoya Popović

This thesis addresses analysis and design of high efficiency microwave power amplifiers and

rectifiers. The focus of this body of work is to optimize narrow band power amplifiers for

maximization of Power-Added-Efficiency (PAE) and rectifiers for maximization of RF-DC power

conversion efficiency. A power amplifier performs DC-RF conversion while a rectifier performs

RF-DC conversion, therefore a strong analogy exists between the two.

Design with non-linear devices suffers from lack of accurate models characterizing large signal

behavior, therefore measurement based techniques are often adopted in order to create high per-

formance designs. The theoretical analysis presented in this thesis provides the microwave circuit

designer intuition concerning performance expectations of design options rather than a recipe

for creating a successful design. The complexity of non-linear device physics results in behavior

which is often limited to qualitative description, complicating accurate model development.

The presented theoretical analysis is applied to load-pull based design of S-Band and X-Band

power amplifiers and S-Band power rectifiers. The measured circuits exhibit high efficiency

consistent with the analysis. An implementation of a high efficiency pulsed S-band AM radar

transmitter is presented along with measured results. An extension of the presented analysis is

investigated in the form of a harmonic injection amplifier, which conceptually allows realization

of a high power, high efficiency broadband amplifier.

In summary, this thesis details 1) the load-pull measurement based design technique applied

to microwave power amplifiers and rectifiers, 2) a theoretical analysis technique characterizing

the performance limitations of harmonically terminated power amplifiers which may be applied

to power rectifiers as well, 3) the design and measurement of several successful high efficiency

power amplifiers and rectifiers and 4) interesting implementations of the presented theory in a

system context.
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The requirements of modern radar and communication systems are driving the use of advanced

waveforms. Conceptually, the use of these advanced waveforms allows efficient use of available

spectrum while meeting system performance goals. However, advanced waveforms are both phase

and amplitude modulated resulting in a varying envelope signal, which stresses the capability

of the transmitting portion of the microwave system, particularly in terms of efficiency. The

impacts and consequently the research problems are addressed in Section 1.2. However, prior

to the discussion of the research problems, some background information in basic concepts is

required, which is presented in Section 1.1. Section 1.2 also provides the reader with an overview

of the chapters contained within this thesis and the specific research problems they address.



As an example of the importance of efficiency, consider current cellular base stations. As of

2011, a typical third generation (3G) base station consumes between 500-1000W of power to

generate 60-120W of RF output power, resulting in an average total efficiency of 12% [3]. A 3G

base station consumes between 4.9-9.0MWh yearly, and in China there are approximately 700,000

base stations. Therefore, the cost in powering the base station portion of a cellular network is

very high and any improvement in efficiency can have a dramatic impact on the operating cost

of a cellular network. Additionally, improving amplifier efficiency will not only reduce the power

consumed by the PA, but will also reduce the energy consumption of the associated power and

cooling systems.

The main theme of the work presented in this thesis is improving efficiency of PAs for

microwave communication and radar transmitters. In order to provide an understanding of the

role of the impedance presented to the active device at the harmonic frequencies, a generalized

Fourier analysis was developed and applied not only to amplifiers with harmonic terminations at

the output, but also to microwave rectifiers and power amplifiers with external injection of waves

at harmonic frequencies. In addition, the challenge of simultaneous efficiency and linearity in a

transmitter is addressed for radar waveforms, and a possible approach to solving the even more

challenging problem of simultaneous efficiency, linearity and bandwidth is proposed.

1.1 Basic Efficiency Concepts

Section 1.1 is not intended to be a power amplifier tutorial; it is intended to address the very

basics of power added efficiency and impacts of input power back-off. For an introduction to

microwave power amplifiers, a number of excellent books are recommended, e.g. [4, 5, 6, 7].

Fig. 1.1 shows the basic block diagram of a microwave transmitter. A baseband digital signal

is converted to an analog signal using a Digital to Analog Converter (DAC), which is then

upconverted to the fundamental frequency f0 using a mixer. The output of the mixer is passed

through a bandpass filter to remove unwanted mixing artifacts and then amplified by the driver

amplifier and Power Amplifier (PA) prior to transmission. In general, the number of mixing
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stages, filters, and amplifiers varies but the basic block diagram allows simplified explanation of

the concepts contained herein.

The prime focus of this thesis is the PA stage which typically dominates the power-added-

efficiency (PAE) of the transmitter, where the PAE is defined as

ηPAE = Pout − Pin
PDC

(1.1)

where Pout is the average microwave output power, Pin is the average microwave input power, and

PDC is the consumed DC power. For continuous-wave (CW) signals, Pout and Pin are simply the

average output and input powers at the fundamental transmission frequency. Another efficiency

metric often encountered is drain efficiency, which is defined by

ηD = Pout
PDC

(1.2)

where it is evident that the drain efficiency and power added efficiency are related by

PAE =
(

1− 1
G

)
ηD (1.3)

where G is the gain of the stage. The PAE may be defined between any two points within the

microwave transmitter chain, but for the purposes of investigating the driving factor in the PAE,

the input will be considered as the input to the driver amplifier and the output as the output of

the power amplifier as shown in Fig. 1.1.

f0 Driver PA

DAC

Mixer Filter

Baseband 

Signal

G1 G2

PAE1 PAE2

Figure 1.1: Generic microwave transmitter block diagram.
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Assume that the driver amplifier has a PAE and gain given by PAE1 and G1 while the power

amplifier has a gain and PAE given by PAE2 and G2. It is straightforward to derive the total

PAE, which is given by

ηPAE =
1− 1

G1G2

1− 1
G2

PAE2
+

1− 1
G1

G2PAE1

(1.4)

Equation (1.4) allows investigation of the impact of the driver amplifier and power amplifier

parameters on the cascaded PAE. For example, consider the case where G1 = 20dB and

G2 = 15dB. Fig. 1.2 shows the impact of the driver and power amplifier PAE on the total PAE.

It is evident that the driver PAE starts to impact the total PAE when it is significantly lower

than the power amplifier PAE. For reasonable driver PAE, the total PAE is approximately that

of the power amplifier. Of course in some scenarios the driver PAE has an impact on the total

PAE, but for most microwave transmitters the output power amplifier PAE dominates the total

PAE.

The other basic concept to understand is how the efficiency is impacted by input power

back-off. A very basic example will serve to demonstrate the problem. Consider a class-A power

amplifier, which is the most basic of all power amplifiers where both the voltage and current can

vary without distortion. When the input power to the class-A amplifier is such that the voltage

and current could swing no more without distortion, the amplifier exhibits a theoretical efficiency
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Figure 1.3: Class-A amplifier performance versus input power back-off.

drain efficiency of 50%. However, if the input power to the amplifier is reduced (power back-off),

the efficiency is reduced. Fig. 1.3 depicts the reduction of drain efficiency as a function of input

power back-off. If the input power is reduced by half, the efficiency is halved corresponding in a

1.76 dB increase in power dissipation along with the 3 dB reduction in output power. Although

more exotic power amplifiers will deviate from the performance shown in Fig. 1.3, the general

trend is the same: the efficiency is reduced as the input drive is reduced from the optimally

efficient operating point.

1.2 Research Problems & Chapter Overview

The work presented in each chapter is summarized below, with Chapter 7 concluding the completed

work and presenting future work. Rather than giving an overview of background in this chapter,

summaries of previous work and the context of the work in this thesis are given at the beginning

of each chapter.

1.2.1 Chapter 2 Overview

Chapter 2 provides an overview of the measurement based PA design technique known as load-

pull. Theoretical derivations relevant to proper input and output network design for performing
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load-pull are presented. A method for characterizing and calibrating a single-slug load pull tuner

is presented along with measured results. Many of the load-pull and tuner calibration concepts

were applied to the work in [8]. A load-pull based design of a hybrid S-band power amplifier

using a GaN transistor is presented with measured performance [9]. MMIC circuit designs for

performing load-pull on-wafer are also presented with measured results. The specific research

problems addressed are as follows:

• Proper design of input and output load pull fixtures

• Characterization and calibration of single-slug load pull tuners

• Application of load-pull measurements to a high efficiency hybrid PA design

• On-wafer load-pull design considerations

1.2.2 Chapter 3 Overview

Chapter 3 presents a harmonically terminated power amplifier analysis developed by the author

which was published in [10]. The analysis investigates the performance of power amplifiers

subject to a finite set of arbitrary harmonic terminations. The main goals of the analysis include

investigating the

(1) Fidelity of harmonic terminations required to achieve a specified efficiency.

(2) Impact of resistive, reactive and complex harmonic terminations on maximum PA efficiency

and corresponding fundamental output power and load resistance.

(3) Impact of fundamental frequency reactance on maximum PA efficiency and corresponding

fundamental output power and load resistance.

Extensions of the analysis to devices with a linear parasitic output network are presented along

with examples. A qualitative validation of the theory is presented based on measurements of a

GaN device.
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1.2.3 Chapter 4 Overview

Chapter 4 discusses the design and analysis of a supply modulated radar transmitter, of which

portions are contained in [11, 12]. The motivation for using a supply modulated radar transmitter

in terms of spectral confinement is presented. The impact on radar system performance in terms

of several relevant metrics is analyzed. These include transmitted spectrum, range resolution,

time side-lobe level and signal-to-noise ratio. A test-bed demonstrating the performance of an

implemented supply modulated radar transmitter is presented along with measured efficiency and

occupied spectrum. Specific attention is paid to linearity of the transmitter, which is necessary

for achieving the desired amplitude and phase modulated radar signal at the output of the

transmitter.

1.2.4 Chapter 5 Overview

Chapter 5 investigates harmonically terminated power rectifiers based on the prior analysis done

in harmonically terminated power amplifiers. Analysis of different classes of power rectifiers is

presented, including Class-C, Class-F and Class-F−1. The analysis of each class focuses on

• Derivation of the ideal current and voltage waveforms based up an ideal rectifying element

• Relationships between fundamental frequency and DC load resistance

• Impact of on-resistance and threshold voltage parasitics

A measurement based design of a class-C rectifier using a Schottky diode as the rectifying element

is presented along with measured output power and efficiency results [13].

1.2.5 Chapter 6 Overview

Chapter 6 presents the concept of the harmonic injection amplifier, which offers the possibility of

a broadband high efficiency power amplifier. This amplifier shapes the drain waveforms through

injection of harmonic power into the device output, which can result in efficiency improvement

if done appropriately. Specifically, the cases of second harmonic only and third harmonic only

7



injection are analyzed, of which some of the second harmonic only theory is contained in [14].

The analysis provides

• Derivation of the ideal current and voltage waveforms

• Total efficiency as a function of how efficiently the harmonic power can be injected (e.g.

injector efficiency)

• Expression of the injected power and impedance for optimal efficiency as a function of

injector efficiency

In order to allow injection of harmonic power into the device output a special three-port network

is required. The requirements of this network are analyzed fully and a methodology for achieving

a broadband injection network is conceptualized.
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2.1 Introduction

Microwave transistors often lack a non-linear model suitable for efficient PA design, or an existing

non-linear model fails to accurately reproduce measured performance in high efficiency operation

points near the I-V axes. This usually means that several design iterations are required in order

to realize an efficient PA. Alternatively, a measurement-based design technique involving source

pull and load pull may be adopted [6].

Traditional passive source pull and load pull make use of fundamental-frequency mechanical

tuners to vary drain (output) and gate (input) impedance for a common source device [15].

Source pull refers to characterizing transistor performance as function of the impedance presented

to the input while load pull refers to characterizing transistor performance as a function of the

impedance presented to the output. However, for the remainder of this chapter the term load

pull will be assumed to refer to both source pull and load pull.

Using traditional passive load pull, transistor performance is measured over a constellation of

fundamental frequency impedances while the impedances at the harmonics of the fundamental

are allowed to vary arbitrarily. Passive harmonic load pull incorporates additional mechanical

slugs in order to control both the fundamental-frequency and harmonic impedances [16]. Active

load pull, introduced in [17], uses signal injection to electrically synthesize load impedances.

Elaborate active and passive harmonic load pull techniques [18] are available but are less common

and significantly more expensive. Recently, a large signal network analyzer was used to perform

real-time active harmonic load pull in development of a 2GHz PA having 75% PAE [19].

In Section 2.2, load pull measurement theory using passive tuners is presented with Section 2.3

discussing the measurement network design. Section 2.4 discusses a method for characterizing and

calibrating single-slug passive tuners. Section 2.5 discusses the implementation of fundamental

frequency (f0) load pull with Class-F−1 harmonic terminations (up to third harmonic) on a

TriQuint 12W 0.25µm GaN device at 2.14GHz. Section 2.5.1 presents the prototype PA designed

based upon the measurements presented in Section 2.5 and includes measured performance. The

PA exhibits 7W output power and 84.6% PAE with a drain voltage of 31V at 2.14 GHz. A
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Figure 2.1: Basic fundamental frequency load pull block diagram.

0.69 dB improvement in output power and 84.9% PAE is obtained at 2.15GHz. Full wave EM

modeling of the die-to-matching-network transition is used in order to accurately determine the

2f0 and 3f0 impedances at the virtual drain. Input and output pre-match circuits are designed and

class-F−1 harmonic traps are verified. Fundamental frequency source and load pull with class-F−1

harmonic terminations are performed to determine optimal fundamental frequency source ZS

and load ZL impedance. Finally, the prototype PA is designed with integrated bias lines. The

straightforward design procedure results in a first-pass success, yielding an efficient PA using an

un-modeled device. It is noted that Class-F and class-E PAs having greater than 80% PAE and

over 5W output power near 2 GHz have been reported [20]-[21]. However, this chapter details a

class-F−1 design which achieves over 80% PAE, with the results being published in [9]. Section 2.6

discusses the design of X-Band load pull circuits using the TriQuint 0.25µm GaN MMIC process.

The calibration technique is discussed and measured load pull results are presented. Future work

for developing a high efficiency PA design based upon the collected measurements is discussed.

2.2 Load Pull Measurement Theory

Fig. 2.1 shows a basic block diagram of a fundamental frequency load pull measurement setup.

The Device Under Test (DUT) is connected in some fashion to an input pre-matching and output

pre-matching circuit which provide DC bias to the DUT as well as pre-matching the impedance

to reasonable values. Proper design of the pre-matching circuits is vital to taking good load pull

measurements. The designs of the pre-matching circuits should take into account the following:

• The pre-matching circuit should have low insertion loss (or more appropriately, low dissipa-

tive loss [22]). Any power dissipated in the pre-matching circuits will reduce the tuning

11



range which the tuners can achieve at the DUT reference planes.

• The pre-matching circuits should pre-match the input and output impedances such that

minimal tuning of the source and load tuners is required. This improves measurement

accuracy due to the limited range over which the tuners are required to tune. For example,

if it is expected that the optimal output impedance should be in the neighborhood of 10Ω,

then the output pre-match should be designed such that 10Ω is presented to the DUT

with the load tuner set to the 50Ω position.

• The pre-matching circuits should fix the harmonic terminations presented to the DUT,

particularly at the output. Device performance is strongly impacted by output harmonic

terminations as discussed in Chapter 3. It would be incorrect to make conclusions based on

fundamental frequency load pull where the harmonic terminations varied as a function of

fundamental frequency impedance.

• The pre-matching circuits should incorporate a well designed bias-tee in order to stabilize

the device (e.g. prevent low frequency oscillations) and minimize insertion loss.

• The pre-matching circuits should be measurable at the fundamental and harmonic frequen-

cies. This is important for impedance verification of the pre-matches. It is also necessary

for power measurement calibration in the load pull setup. It is necessary to have the full

2-port scattering parameters of the pre-matching fixtures in order to properly calibrate the

load pull setup.

• The characterization of the output pre-matching circuit should incorporate the parasitics

associated with the attachment to the DUT as well as the internal parasitics of the DUT

which are relevant to theoretical amplifier classes. Most amplifier classes are defined at the

virtual drain of the DUT. For example, the characterization should take into account the

parasitic output capacitance of the DUT as well as the bond wire parasitics in the case

of a discrete device. For a packaged device, the additional packaging parasitics should be

characterized. This is vital to theoretical interpretation of load pull measurements and
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making valid conclusions based upon the measurements.

The source tuner and load tuner in Fig. 2.1 allow tuning of the input impedance and output

impedance presented to the DUT. These tuners can be thought of as individual scattering

parameters boxes which are a function of some controllable physical parameters of the tuners

themselves. For performing load pull, it is important to be able to control the impedances

presented to the DUT, and therefore it is necessary to know how to control the tuners to

synthesize the desired impedances. Section 2.4 discusses this in more detail.

The input 3-port network allows an input signal to drive the DUT and also be coupled to

a power measurement device in order to measure the available input power to the DUT. The

available power is measured rather than the delivered power because, in general, the DUT serves

as an unknown termination which does not allow calculation of delivered power. The output

3-port network allows the delivered output power from the DUT to be measured as well as the

spectral content. The spectral content is typically monitored in order to ensure the DUT is not

oscillating. For high power devices, it is important that the network sufficiently attenuate the

signal output from the DUT in order to measure the power with standard laboratory equipment,

which typically limits input power to 20 dBm. In the case of the output network, the delivered

output power is calibrated rather than the available output power because, in general, the DUT

again serves as an unknown termination which does not allow the available output power to be

determined. Section 2.3 discusses the specific requirements of the input 3-port and output 3-port

networks in more detail.

2.3 Load Pull Measurement Network Design

As discussed in Section 2.2, appropriate design of the input 3-port and output 3-port networks

depicted in Fig. 2.1 is vital to taking good load pull measurements. To understand the requirements

placed upon the networks, a scattering parameter analysis may be performed. The input 3-port

network shown in Fig. 2.2 is analyzed first. For the purposes of this analysis, it is assumed that

the 3-port network incorporates the source tuner, input bias & pre-match, and any additional
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parasitics that are desired to be absorbed in the network. The reflection coefficients at each

network port in Fig. 2.2 are expressed as

ΓS = ZS − Z0
ZS + Z0

(2.1)

ΓL = ZL − Z0
ZL + Z0

(2.2)

ΓP = ZP − Z0
ZP + Z0

(2.3)

where Z0 is the system impedance, ZS is the source impedance (e.g. the RF signal generator

impedance), ZL is the terminating impedance on the DUT port and ZP is the terminating

impedance on the power measurement port. The relationship between the forward and reflected

waves at each port can be written given the scattering parameters as
b1

b2

b3

 =


S11a1 + S12a2 + S13a3

S21a1 + S22a2 + S23a3

S31a1 + S32a2 + S33a3

 (2.4)

When only port-1 is driven, the input waves at the remaining ports are the product of the

outgoing wave from the port and the reflection coefficient at that port, which allows (2.4) to be

expressed as 
b1

b2

b3

 =


S11a1 + S12ΓLb2 + S13ΓP b3

S21a1 + S22ΓLb2 + S23ΓP b3

S31a1 + S32ΓLb2 + S33ΓP b3

 (2.5)
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Figure 2.2: Load pull 3-port input network analysis block diagram.

14



The goal is to solve for b1, the reflected wave at port-1, in terms of a1, the incident wave, and

the remaining known quantities. Therefore, it is first necessary to solve for the reflected waves at

port-2 and port-3 in terms of the incident wave at port-1 and the remaining known quantities.

The second and third row of (2.5) may be written as 1− S22ΓL −S23ΓP

−S32ΓL 1− S33ΓP


 b2

b3

 =

 S21

S31

 a1 (2.6)

Solving (2.6) results in b2

b3

 = a1
1− ΓLS22 − ΓPS33 + ΓLΓP (S22S33 − S23S32)

 S21 − ΓPS21S33 + ΓPS23S31

S31 + ΓLS21S32 − ΓLS22S31


(2.7)

Given that the reflected waves at port-2 and port-3 are solved for, the reflected wave at port-1

may be solved for by substitution of (2.7) into the first row of (2.5), resulting in

b1 = S11a1 + a1 [S12ΓL(S21 − ΓPS21S33 + ΓPS23S31) + S13ΓP (S31 + ΓLS21S32 − ΓLS22S31)]
1− ΓLS22 − ΓPS33 + ΓLΓP (S22S33 − S23S32)

(2.8)

The input reflection coefficient Γin,1 at port-1 is then given by

Γin,1 = b1
a1

= S11 + S12ΓL(S21 − ΓPS21S33 + ΓPS23S31) + S13ΓP (S31 + ΓLS21S32 − ΓLS22S31)
1− ΓLS22 − ΓPS33 + ΓLΓP (S22S33 − S23S32)

(2.9)

Similar expressions for the input reflection coefficients at the other ports can be derived when

only the respective port is being driven, and are given by

Γin,2 = b2
a2

= S22 + S21ΓS(S12 − ΓPS12S33 + ΓPS13S32) + S23ΓP (S32 + ΓSS12S31 − ΓSS11S32)
1− ΓSS11 − ΓPS33 + ΓSΓP (S11S33 − S13S31)

(2.10)

Γin,3 = b3
a3

= S33 + S32ΓL(S23 − ΓSS23S11 + ΓSS21S13) + S31ΓS(S13 + ΓLS23S12 − ΓLS22S13)
1− ΓLS22 − ΓSS11 + ΓLΓS(S22S11 − S21S12)

(2.11)

Equations (2.9)-(2.11) are in general complicated, but many simplifications can be made

starting from these general cases. However, it is important to have the general expressions

if an error analysis of calibration factors is to be performed, for example. Typically a power
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sensor matched to the system impedance Z0 is used to measure power on port-3, therefore

ΓP ≈ 0. Additionally, the RF source is typically matched to the network, therefore ΓS ≈ 0. These

assumptions simplify (2.9)-(2.11) to

Γin,1 = S11 + S12ΓLS21
1− ΓLS22

(2.12)

Γin,2 = S22 (2.13)

Γin,3 = S33 + S32ΓLS23
1− ΓLS22

(2.14)

As discussed in Section 2.2, it is desirable to measure the available input power to the DUT.

A straightforward manner to do this is to measure the power delivered to a power measurement

device on port-3 and use this measurement along with the 3-port network parameters to determine

available power to the DUT at port-2. Following [23], the average power delivered to the load at

port-3 and available power from port-1 are given by

PD,3 = |b3|
2

2Z0
(1− |ΓP |2) (2.15)

PA,1 =

∣∣∣ 2a1(1−ΓSΓin,1)
1−ΓS

∣∣∣2
8Z0

|1− ΓS |2

1− |ΓS |2
(2.16)

The transducer gain from port-1 to port-3 is then given by

GT,31 = PD,3
PA,1

=
|b3|2
2Z0

(1− |ΓP |2)∣∣∣ 2a1(1−ΓSΓin,1)
1−ΓS

∣∣∣2
8Z0

|1−ΓS |2
1−|ΓS |2

(2.17)

which simplifies to

GT,31 = PD,3
PA,1

= |b3|
2

|a1|2
(1− |ΓP |2)(1− |ΓS |2)
|(1− ΓSΓin,1)|2 (2.18)

Substituting in the solution for b3 from (2.7) results in

GT,31 = PD,3
PA,1

=
∣∣∣∣ S31 + ΓLS21S32 − ΓLS22S31
1− ΓLS22 − ΓPS33 + ΓLΓP (S22S33 − S23S32)

∣∣∣∣2 (1− |ΓP |2)(1− |ΓS |2)
|(1− ΓSΓin,1)|2

(2.19)

At this point it is necessary to make design choices concerning the input network to allow

practical measurements to be taken. The issue with the generality presented in (2.19) is that the

transducer gain from port-1 to port-3 is a function of ΓL which is an unknown value due to the
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DUT. At this point it is assumed that an isolator is placed between the 3-port input network

and the source tuner at port-2. This effectively results in ΓL = 0, reducing (2.19) to

GT,31 = PD,3
PA,1

= |S31|2
(1− |ΓP |2)(1− |ΓS |2)

|1− ΓPS33|2|(1− ΓSΓin,1)|2 (2.20)

For a practical application, port-3 is typically well matched given that it is terminated with a

power sensor having a high return loss. Additionally, the source is typically well matched. Given

these assumptions, the transducer gain simplifies to

GT,31 = |S31|2 (2.21)

which is most often the expression used in practice for this application. Using this expression,

the available input power at port-1 is easily calculated from the measured power at port-3 by

the equation

PA,1 = PD,3
GT,31

= PD,3
|S31|2

(2.22)

Basically, what has been concluded from the theoretical analysis of the input 3-port relevant to

load pull measurements is the following:

• An isolator should be placed on port-2 of the input network prior to the source tuner in

order to eliminate variation in the transducer gain from port-1 to port-3 as a function of

load impedance.

• The input network should be well matched to the RF source and power measurement device,

allowing the simplified form of the transducer gain given in (2.21) to be used.

An additional practical requirement is that typically only 20 dBm of input power can be delivered

to the power measurement device. This is an absolute maximum limit, so a good rule to follow is

try to optimize GT,31 such that at the maximum available input power required for driving the

DUT, only 0 dBm of input power is delivered to the power measurement device.

Now that measurement of the available input power at port-1 has been made possible, it is

necessary to scale this measurement to determine the available input power to the DUT at port-2.
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The scaling factor is a byproduct of deriving the available gain from port-1 to port-2, given by

GA,21 = PA,2
PA,1

(2.23)

Given that PA,1 is known based upon the measurement at port-3, PA,2 is directly related to PD,3

by

PA,2 = GA,21
PD,3
|S31|2

(2.24)

The assumptions made up to this point allow the available gain from port-1 to port-2 to be

simply expressed as given in [23] as

GA,21 = |S21|2

1− |S22|2
(2.25)

The load pull calibration factor Θin yielding the available input power to the DUT based on the

measurement at port-3 is then given by

Θin = |S21|2

|S31|2(1− |S22|2) (2.26)

Using a similar procedure, the load pull calibration factor yielding the delivered output power

from the DUT based upon the measurement at port-2 of the output network (assuming port-3 is

connected to a well-matched spectrum analyzer) is given by

Θout = 1− |S11|2

|S21|2
(2.27)

where the scattering parameters in (2.27) refer to those of the cascade of the network connected

to the output of the DUT rather than the input. The main additional requirement for the output

3-port network is that it must have sufficient attenuation based upon the maximum output power

of the DUT to prevent damage to both the spectrum analyzer and power measurement device.

2.4 Tuner Characterization & Calibration

For the load-pull measurements performed within this thesis, FOCUS Microwaves single slug

computer controlled mechanical tuners were used. Due to the desired measurement flexibility,

custom load-pull software was developed in MATLAB®. However, given the choice was made
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Figure 2.3: Mechanism by which single slug mechanical tuner synthesizes impedances. A metallic
probe is inserted vertically towards the center conductor of a slab-line to increase the reflection
coefficient magnitude, and moved horizontally along the slab-line to shift the reflection coefficient
phase.

to develop custom software, it became necessary to calibrate the tuners in the absence of

manufacturer provided calibration software. This section discusses the method developed for

performing tuner calibration. The method is general, and certainly could be extended to other

single slug type tuners.

Fig. 2.3 depicts the mechanism by which a single slug mechanical tuner is able to synthesize

impedances [24]. A slug, denoted by the probe in Fig. 2.3, may be moved vertically in towards

the central conductor of a slab-line as well as horizontally along the slab-line. With the probe at

a fixed vertical distance from the central conductor, motion along the horizontal axis corresponds

to a phase shift in the reflection coefficient shown as arc b in Fig. 2.3. At a fixed horizontal

location, motion vertically towards the central conductor of the slab-line transforms the 50Ω

impedance to a highly reflective impedance shown as arc a. Therefore, characterization of this

type of tuner simplifies to modeling the phase shift in the reflection coefficient as a function of

the horizontal slug position x and the reflection coefficient phase and magnitude behavior as a

function of the vertical slug position y.

At this point, a reasonable question to ask is, "Why not measure the scattering parameters at

each (x,y) tuner position?" The answer to this question is simple: This would take an unreasonable

amount of time. The tuners used for this research have approximately 7,000 unique x positions

and 2,800 unique y positions, resulting in 19.6 million positions. Taking into account that the

tuner is mechanical, assume it takes approximately 0.5 s to move from one unique (x,y) to another.
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Measuring all unique positions would then take about 113 days. Considering two tuners are

required to perform source pull and load pull, the better part of an entire year would be spent

just calibrating the tuners, which certainly is unreasonable.

In order to calibrate a tuner, a small set of data is collected such that the reflection coefficient

phase as a function of x and the phase and magnitude as a function of y can be modeled. In

general, this simply requires measuring the scattering parameter of interest on a network analyzer

at constant x as a function of y as well as the same scattering parameter at a constant y as

a function of x. Once the phase as a function of x and the magnitude and additional phase

as a function of y have been modeled, the (x,y) pair required to synthesize a target reflection

coefficient can be predicted.

As an example of the procedure, the calibration of a tuner at 4.9GHz will be described,

where it is assumed that port-2 of the tuner is connected to the DUT. In this case the scattering

parameter of interest is S22. First, S22 is measured as a function of y for several unique x positions

as shown in Fig. 2.4. Note how the shape of each arc appears the same with the exception of the

initial phase for each arc. If each arc is normalized by its initial phase and re-plotted, Fig. 2.5

results, validating the assumption that the arcs have relatively consistent shape as a function of

y.

The measured and modeled initial phases as a function of x are plotted in Fig. 2.6(a). As

expected, the initial phase exhibits linear behavior as a function of x and can be modeled as such.

The error in the model of the initial phase is shown in Fig. 2.6(b), with the error being limited to

±2.5◦. The magnitude and phase behavior as a function of y following normalization by the initial

phase as a function of x can be modeled using polynomial fits. Through experimentation, it was

found that fourth-order polynomial fits to the phase in degrees and magnitude in decibels yielded

accurate results. The measured magnitude and phase behavior versus the fitted magnitude and

phase behavior is shown in Fig. 2.7. The fit errors are shown in Fig. 2.8. The phase error is

within ±0.3◦ while the magnitude error is within ±0.1 dB.

Following the development of the mathematical model which describes the magnitude and
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Figure 2.4: Initial points measured for tuner characterization at 4.9GHz. Points at the center of
the Smith chart correspond to the slug being fully retracted from the slab-line while points at
the edge correspond to full insertion of the slug.
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Figure 2.5: Initial measured points following phase normalization.

phase of the scattering parameter versus (x,y), a set of impedances can be defined for which

to calibrate the tuner. This means that it is desired to use the tuner to synthesize this set

of impedances, and the full 2-port scattering parameters of the tuner must be measured for

proper calibration as discussed in the previous section. Once this set of points is defined, the

magnitude and phase of the scattering parameter associated with each point is evaluated and

the mathematical models are used in an inverse fashion to calculate the (x,y) to measure the

tuner at. Fig. 2.9(a) shows the desired calibration points which cover the entirety of the Smith
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Figure 2.6: (a) Initial measured and modeled reflection coefficient phase as a function of horizontal
slug position x. A first-order polynomial (line) was used to fit the measured data. (b) Error
between the measured and modeled phase as a function of x.
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Figure 2.7: (a) Measured and fitted reflection coefficient phase as a function of vertical slug
position y. A fourth-order polynomial was used to fit the measured data. (b) Measured and fitted
magnitude behavior as a function of y. A fourth-order polynomial was used to fit the measured
data. Note that y = 0 corresponds to the slug being fully retracted from the slab-line.
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Figure 2.8: (a) Error between the measured and modeled reflection coefficient phase as a function
of y. (b) Error between the measured and modeled reflection coefficient magnitude as a function
of y.
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Figure 2.9: (a) Measured calibration points. (b) Predicted calibration points.

Chart, with Fig. 2.9(b) showing the measured calibrated points. It is evident that the method

does a very good job at allowing the user to determine the appropriate (x,y) points to move the

tuner to in order to synthesize an impedance and to calibrate the necessary power measurements

for load pull.
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Figure 2.10: Load pull block diagram with defined reference planes for impedances. The transition
model characterizes the S-parameters of the bare die to microstrip two-port network. For a two
harmonic class-F−1 PA, open circuit and short circuit terminations are presented at plane P1 at
2f0 and 3f0, respectively.

2.5 Load Pull With Fixed Class-F−1 Harmonic Ter-

minations

A specific application of the theory presented in Sections 2.2-2.4 is the fabrication of a high

efficiency PA in the absence of a device model. The DUT was the TriQuint TGF2023-02 12W

bare die power GaN on SiC which operates up to 18GHz [25]. A 0.68 pF output capacitance

(Cout) was calculated using the linear model provided in the device data-sheet. The low Cout of

the device coupled with significant gain at multiple harmonics of 2.14GHz made this device an

excellent candidate for a high efficiency PA design. A full wave EM model of the transition model

indicated in Fig. 2.10 was developed in Ansoft HFSS™ to model the impedance transformation

due to the fringing capacitance from the die to the ground plane, as well as the impact of the

two bond wires connecting the die to the microstrip [8]. The two port S-parameters from plane

P1 to P2 were calculated by cascading the S-parameters of the ideal Cout with the S-parameters

of the transition model exported from HFSS™. Fig. 2.11 depicts the resultant S11 and S22 of the

model from 2 to 7GHz, showing that the Cout and transition model must be taken into account

in order to present specific impedances at the virtual drain (plane P1).

Using the impedance transformation model, a microstrip pre-match was designed on a 30-mil

Rogers 4350B substrate. The load pre-match was designed to present the ideal class-F−1 2f0

and 3f0 terminations at plane P1 shown in Fig. 2.10. A source pre-match was designed without

any specific input harmonic terminations. The S-parameters of the pre-match circuits were
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Figure 2.11: Simulated S11 and S22 versus frequency from 2GHz to 7GHz. The transformation
from plane P1 to P2 depicted in Fig. 2.10 is significant and must be accounted for in order to
present harmonic terminations at the virtual drain. Additionally, the impact of the transformation
increases with frequency.

measured using modular fixtures as mentioned in [26] to verify the harmonic terminations of

the output pre-match and calibrate the load pull measurements. The DUT bias current was set

to approximately 50mA with a drain voltage of 30V. An initial approximation to the optimal

ZS of 3.1+ j13.8Ω was determined by performing a small signal fundamental frequency source

pull for gain using a single slug tuner from FOCUS Microwaves. ZS is referenced to the bonding

plane on the input pre-match. It was found that the initial ZS did not change for drain voltages

between 25V and 35V.

Large signal load pulls were performed to determine the optimal ZL having maximum PAE,

with at least 5W output power. For each fundamental impedance point, a small input power

sweep was performed to find the input drive level resulting in maximum PAE. An optimal ZL of

164.5 - j4.5Ω was determined for a drain voltage of 30V resulting in a PAE of 84.2%. A final

large signal source pull was performed to refine the source impedance, resulting in an optimal ZS

of 1.5+ j10.4Ω, resulting in a PAE of 85.7%.
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Figure 2.12: Photo of prototype amplifier. Note that no tuning of the amplifier was required
to achieve the presented performance. Bias lines are implemented with λ\4 transmission lines
shorted to ground with resonant capacitors at 2.14GHz. Several decades of capacitors (100 pF -
10µF) are implemented in the design to suppress low frequency oscillations. A 10Ω series resistor
on the gate bias line is used to improve stability.

2.5.1 Prototype PA & Measured Performance

The prototype PA is shown in Fig. 2.12. The circuit was fabricated using an LPKF S62 milling

machine. The input matching section was realized with parallel Open Circuit Shunt Stubs (OCSS)

to present the low ZS while reducing insertion loss. The output matching section used λ\4 OCSSs

to present open and short circuits at 2f0 and 3f0, respectively. An additional OCSS is used to

match the fundamental ZL. American Technical Ceramics 100B and 600S capacitors were used

for the DC block and bias line resonant capacitors, respectively. The microstrip ground plane is

sweat soldered to a copper block, which serves as both a heat sink and continuous ground plane.

The PA exhibited over 80% PAE at VDD = 30V for a wide range of drain currents (50mA -

200mA). The best balance of PAE, output power, and gain performance was measured using

a drain current of 170mA at 30V, therefore all subsequent measurements were taken at this

corresponding gate bias point. Measurements of the prototype PA performance at 2.14GHz versus

input power are shown in Fig. 2.13 for the design point drain voltage of 30V. The non-linearity of

the amplifier is evident by investigation of the gain versus input power. The peak 2.14 GHz PAE

is achieved under 3.6 dB gain compression. The harmonic powers relative to the carrier power at

Table 2.1: Harmonic power at PA output

Harmonic 2f0 3f0 4f0 5f0
Power (dBc) −47.2 −52.3 −32.9 −49.5
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Figure 2.13: Measured PA performance at design point of 2.14GHz versus input power, VDD =
30V. The gain undergoes a slight expansion from 21.0 dB to 21.5 dB prior to entering compression.
A peak PAE of over 84% is realized at the 3.6 dB gain compression point, corresponding to
20.2 dBm input power and 6.5W output power at the design point.

the 2.14GHz, 30V peak PAE operating point are listed in Table 2.1 up to 5f0. The second and

third harmonics are on the order of −50 dBc, while the fourth harmonic is significantly higher

at −32.9 dBc. This is most likely due to the fourth harmonic termination not being explicitly

controlled in the design. The significant harmonic power measured at 4f0 and 5f0 suggests that

additional efficiency may be realized by terminating these harmonics in short and open circuits,

respectively. However, it is possible that the additional insertion loss incurred by the matching

topology would negate the benefits of terminating additional harmonics or degrade the efficiency

achieved with only 2f0 and 3f0 terminations.

The prototype PA peak PAE performance at 2.14GHz versus supply voltage is shown in

Fig. 2.14. The PA exhibits over 80% PAE from 20V to 35V with over 15 dB of gain. The PA

exhibits over 10 dB of gain and 65% PAE for supply voltages greater than 10V, making it well

suited for envelope tracking applications [27]. The output power exceeds 5W for supply voltages

greater than 26V, peaking at 8.8W output power for a supply voltage of 35V.

The performance of the PA over the 2.10 - 2.18GHz bandwidth is shown in Fig. 2.15 for a

supply voltage of 34V (chosen to show peak measured PAE operating point). The PA exhibited

its peak PAE of 84.9% at 2.15GHz while maintaining over 70% PAE from 2.11 - 2.17GHz. The
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Figure 2.14: Measurements of transducer gain, delivered output power, drain efficiency and PAE
at 2.14GHz. Peak 2.14 GHz PAE of 84.6% occurs at VDD = 31V, having 7W output power,
18 dB Gain, and 86% drain efficiency.
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Figure 2.15: Measurements of transducer gain, delivered output power, drain efficiency and PAE
versus frequency at VDD = 34V. Peak PAE of 84.9% occurs at 2.15GHz. The amplifier exhibits
over 70% peak PAE, 7.8W output power, and 17.7 dB gain over the entire 2.11 - 2.17GHz
W-CDMA bandwidth. For most of the W-CDMA bandwidth, the peak PAE exceeds 80%.

significant reduction in PAE realized as the frequency departs from 2.14GHz is expected, due to

the narrow-band harmonic terminations presented by the OCSSs. An output power level between

7.7W and 8.4W was maintained, while the gain exceeded 16 dB across the bandwidth, peaking

at 19.3 dB at 2.13GHz.

This particular power amplifier was submitted to the IEEE IMS 2010 PA Student Competition.
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PAs entered to the competition must have an operating frequency between 1GHz and 20GHz,

produce greater than 5W output power and require less than 25 dBm input power. The entrant

must inform the engineer measuring the amplifier at the competition (a representative from

Agilent) of the DC bias points, input drive level and frequency. The Agilent representative then

measures the PA and the entrant’s score is calculated as the the PAE multiplied by f0.25
0 . The

PAE of the prototype amplifier was measured as 82.6% with 38.20 dBm output power at 2.15GHz

for a score of 100.02, good enough for second place [28]. The winning design was a class-J design

which achieved a PAE of 74.67% at 3.50GHz for a score of 102.13.

2.6 X-Band MMIC Load Pull

High power X-band amplifiers are necessary for radar and communication system transmitters.

As an example, the B1B Bomber uses the APQ-164 X-band pulse-doppler radar for navigation

and weapon delivery [29]. Military communication systems, such as MILSATCOM, operate in

lower X-band (7-8GHz). For high power X-band transmitters, both power consumption and

heat dissipation become important design constraints. Improvement of the transmitter efficiency

reduces both the power consumption and heat dissipation and is therefore highly desirable.

Typically, the output stage power amplifier is the dominant component of the transmitter

efficiency, therefore this is often the component which receives the most attention [5].

In order to achieve high output power and efficiency, the active device is driven until it operates

non-linearly [30]. Therefore, linear design techniques are non-applicable and either non-linear

model-based techniques or measurement-based techniques are used for design. Non-linear models

are often created by using data collected from source pull and load pull measurements [6]. However,

often times the models fail to accurately model the performance of power amplifiers operating

with high efficiency. Therefore, power amplifier design often involves taking source pull and load

pull measurements, then designing the final power amplifier based upon the measurements.

Monolithic Microwave Integrated Circuit (MMIC) technology offers the ability to miniaturize

microwave circuits and limit the parasitics entailed with fabrication. Not surprisingly, many
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X-band power amplifiers have been realized in MMICs. The state of the art in terms of efficiency

with over 5W output power was achieved by Tayrani using a class-E design where he achieved

67% power added efficiency with 6W output power at 7.5GHz under 10% duty cycle pulsed

conditions [31]. Recently, MMIC processes using GaN as the semiconductor have become available

which allow the possibility of realizing power amplifiers with improved efficiency for a given

output power. This is mainly due to the higher power density achievable with GaN relative to

other semiconductors [32]. For the work presented in this section, TriQuint’s 0.25µm GaN on

SiC MMIC process is used. This process has been used to created impressive wide-band power

amplifiers with over 9W of power and 20% power added efficiency from 1.5GHz to 17GHz [33].

The following subsections detail the design of the MMIC structures necessary to perform

on-wafer source pull and load pull in order to realize a high efficiency X-band PA using the

TriQuint GaN on SiC process. Prior to discussing the specific structures, Section 2.6.1 discusses

the calibration procedure to motivate the development of the test structures. Section 2.6.2

discusses some of the TriQuint GaN on SiC design parameters and their impact on the test

structure design. Section 2.6.3 details the design and performance of the individual test structures.

Section 2.6.4 presents measurements of the test structures along with source pull and load pull

measurements.

2.6.1 Calibration Procedure

First it is important to define the relevant calibration reference planes for the test setup. The

term "calibration reference plane" refers to a reference plane at which a the network analyzer

measurement is calibrated to. Fig. 2.16 provides a definition of the calibration reference planes

which will be used for the remainder of the subsection.

A network analyzer may be calibrated to reference plane A through use of a commercial

calibration kit, such as a Short-Open-Load-Through (SOLT) or Through-Reflect-Line (TRL)

kit. However, calibrating to the other planes requires more care. The scattering parameters of

the source tuner and load tuner can easily be measured, however this is unnecessary because
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Figure 2.16: Definition of the calibration reference planes. The calibration method drives the
required on-wafer test structures.

the tuners will never be used in absence of the probes. Additionally, it is undesirable to have

any circuitry between the tuners and the Ground-Signal-Ground (GSG) Coplanar Waveguide

(CPW) probes because this will further restrict tuning range due to dissipative loss. Therefore, it

is reasonable to measure at least the cascade of the tuners and their respective probes.

It must be decided whether or not to measure the cascade of the tuner, probe and its respective

on-wafer fixture. This is a more difficult decision to make. Measuring the full cascade involves a

single calibration step, which is an advantage. The disadvantage is the scattering parameters of

the tuner cascaded with its respective probe are unknown, therefore using a different on-wafer

fixture would require full re-calibration. The disadvantage of not measuring the full cascade is

that two distinct calibration procedures are required: one in which the cascade of the tuner and

its respective probe are measured and one in which the scattering parameters of the individual

fixtures are measured. The full cascade is then performed by cascading the scattering parameters

collected from the separate measurements. However, due to the flexibility this method provides,

it has been selected by the author. This method does require two distinct on-wafer TRL kits:

one which allows calibration of the tuner and probe cascades, and one which allows measurement

of the fixtures. The calibration steps are summarized as follows:

• Calibrate the network analyzer up to plane A depicted in Fig. 2.16 using a commercial

calibration kit.

• Use an on-wafer TRL calibration kit to calibrate the source tuner - probe and probe - load

tuner cascades. This procedure begins by performing on-wafer TRL calibration with the
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tuners in their 50Ω positions to extract de-embedding blocks. Then the source tuner -

probe cascade scattering parameters are measured as a function of position by changing

the source tuner position with the load tuner in its 50Ω position and de-embedding the

probe - load tuner cascade which was characterized from the on-wafer TRL calibration. The

characterization of the probe - load tuner cascade as a function of position is analogous.

• Use a TRL calibration kit to measure the input fixture and output fixture. To perform this

step the tuners are tuned to their 50Ω positions and a TRL calibration is performed to

extract the de-embedding blocks following the probes. The scattering parameters of the

input and output fixtures are then measured by cascading them with the appropriate TRL

section and de-embedding accordingly.

The TRL algorithm which allows extraction of de-embedding blocks is found in [34] and has

been implemented in MATLAB® by the author. Given the calibration procedure, the required

set of on-wafer test circuits is the following:

• TRL Kit 1: input section - output section cascade

• TRL Kit 1: input section - line - output section cascade

• TRL Kit 1: input section reflect

• TRL Kit 1: output section reflect

• TRL Kit 2: input section - output section cascade

• TRL Kit 2: input section - line - output section cascade

• TRL Kit 2: input section reflect

• TRL Kit 2: output section reflect

• Input Fixture - TRL Kit 2 output section cascade

• TRL Kit 2 input section - output Fixture cascade
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Table 2.2: SiC Substrate Parameters

Dielectric Constant 9.7
Loss Tangent 0.001
Conductivity 2.05 × 107( S

m )
Height 100µm

Thickness 6.77µm
DC Current Handling 16 mA

µm

• Input Fixture - DUT - output Fixture cascade

It is also important to design a well matched, low loss probe pad to allow good on-wafer

measurements. Since Cascade Microtech 150µm pitch GSG CPW probes are available, corre-

sponding probe pads were designed. The design of the probe pads and each of the test structures

is discussed in Section 2.6.3. Prior to discussing the designs, some relevant GaN on SiC design

parameters are highlighted and their impact on the test circuit design is presented in Section

2.6.2.

2.6.2 Relevant GaN on SiC Design Parameters and Limitations

TriQuint’s 0.25µm GaN on SiC MMIC process is a 3-Metal-Interconnect (3MI) process [35].

Microstrip transmission lines have been used by the author where applicable. In order to minimize

the conduction losses of the microstrip lines, Type 7 lines are used which form the top conductor

of the microstrip lines from all three metal layers (M0, M1, and M2). The substrate parameters

which dictate the transmission line parameters of the Type 7 line are summarized in Table. 2.2.

Using the parameters in Table. 2.2 as inputs to TX-LINE®, the line width corresponding to a

50Ω characteristic impedance at 10GHz is 93.6µm. The DC current handling capability of this

line is then evaluated as approximately 1500mA. For an amplifier having 5W output power at a

40V drain bias, this line width could support an amplifier with down to 8.34% drain efficiency,

which should be more than adequate for performing load pull measurements. Further discussion

of DC current handling capability will be presented during discussion of the drain bias tee design.
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2.6.3 Test Structures

Probe Pads

It was necessary to develop RF probe pads to allow on-wafer measurements of the testing

structures using GSG CPW probes. Given the availability of 150µm pitch GSG RF probes,

150µm pitch probe pads were designed. The design goals were to minimize the parasitics of the

probe pad while providing a transition from the CPW probe to an on-wafer 50Ω microstrip line.

The layout of the probe pad design is shown in Fig. 2.17.

The red squares in Fig. 2.17 depict the landing pads for the RF probe, where the passivation

layer has been removed. The ground pads are 75µm long x 100µm wide. The signal pad is

75µm long x 75µm wide. This is larger than the minimum pad size of 35µm long x 25µm wide

suggested by Cascade Microtech [36]. Although Cascade suggests using 100µm square pads, the

presented design achieves significant improvement in parasitics.

The ground landing pads are grounded using substrate vias as depicted in Fig. 2.17. The

signal landing pad tapers to a 50Ω line width of 93.6µm. The design was initially arrived at

using a linear simulator in Microwave Office® which modeled the CPW to microstrip transition.

The design was then verified using AXIEM®, which is a Method of Moments simulator offered

in the AWR Design Environment™. Fig. 2.18 depicts the scattering parameters of the probe

pad resultant from the AXIEM® simulation. The return loss is in excess of 35 dB up to 36GHz.

B
P

B
P

B
P

Figure 2.17: Layout of the RF probe pad, with the central structure being the signal and the
remaining structures being ground. The pad is design for use with 150µm pitch GSG probes.
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Figure 2.18: AXIEM® simulation of RF probe pad layout. Minimal parasitics are realized up to
36GHz, which was chosen as the highest simulation frequency because if is the third harmonic of
the highest X-band frequency (12GHz).

Given the excellent match, the insertion loss is set by the scattering parameter S21 and is less

than 0.05 dB up to 36GHz. This design provides a low parasitic probe to microstrip transition

which will be useful not only for RF probing but for bonding to if the MMIC is used within a

hybrid circuit.

Device Selection

The device selected for fabrication is shown in Fig. 2.19 and has a 70µm gate width with 10

gate fingers, corresponding to 700µm of gate periphery. This device was selected because it was

the largest available device in the design kit library and therefore the device which is capable of

delivering the most output power. The 0.25µm GaN 3MI process data sheet quotes 5-7W/mm

for output power, therefore a rough estimate of output power for this device is 4.9W [37]. This is

lower than the required 5W, however this is just a rough estimate of the output power. Simulation

using the non-linear model provided by TriQuint indicated that more than 5W output power

could be achieved with this device. The dimension of the microstrip line which would mate

seamlessly with the gate and drain manifold for this device is 300µm. This is an important

dimension which will drive the input/output matching circuits as well as the TRL kit used for

characterization of the respective structures.
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Figure 2.19: Active device selected for load pull measurement. The gate is the top side, with the
drain being the bottom side. The circular structures are substrate vias. The device has a 70µm
gate width with 10 gate fingers, corresponding to 700µm of gate periphery.

It is important to characterize the output capacitance of the device in order to allow termination

of harmonics at the virtual drain of the device [8]. The output capacitance of the device was

extracted using the method presented in [38]. This is done by measuring the small signal scattering

parameters at 10MHz as a function of bias point and then converting these to small signal

admittance parameters Y . The gate-to-source, gate-to-drain, and drain-to-source capacitances

are then calculated using the following equations, where port-1 is the gate and port-2 is the

drain.

CGD = − Im(Y12)
2π × 107 (2.28)

CDS = Im(Y22)
2π × 107 − CGD (2.29)

CGS = |Y11 + Y12|2

2π × 107 × Im(Y11 + Y12) (2.30)

The output capacitance COUT of the transistor is then calculated using the following expression.

COUT = CDS + CGD||CGS (2.31)

Initially, the non-linear model from the design kit was used with the above procedure to

calculate COUT but invalid results were arrived at (e.g. COUT was negative). The linear model

was then used to calculate an output capacitance of 0.2478 pF. Given the author’s experience

with TriQuint’s discrete 0.25µm GaN on SiC devices, this is a reasonable result for the output

capacitance, corresponding to 0.354 pF per mm of gate periphery.
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Figure 2.20: 50Ω TRL kit. The line length is 1300µm and the reflect standards are open circuits.

TRL Calibration Kits

Section 2.6.1 discussed the calibration technique selected by the author in order to calibrate

the load pull measurements. Given the selected technique, design of two TRL kits was required.

The first TRL kit has a 50Ω line that should allow calibration between 8GHz and 36GHz. This

provides coverage down to the lowest X-band frequency and the third harmonic of the highest

X-band frequency. The designed 50Ω TRL kit is shown in Fig. 2.20. The line phase resultant

from an AXIEM® simulation is shown in Fig. 2.21.

The second TRL kit requires a taper to a 300µm line given the width of the active device

which was discussed in Section 2.6.3. Due to the wider line width, a different line length than

the previous TRL kit is required. The designed TRL kit with a 300µm line width is shown in

Fig. 2.22. The line phase resultant from an AXIEM® simulation is shown in Fig. 2.23.
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Figure 2.21: 50Ω TRL kit line phase simulated with AXIEM®. The phase is well within the
recommended range of 20◦ - 160◦ over the frequency range 8GHz - 36GHz [1].

Figure 2.22: 300µm line width TRL kit. The line length is 1200µm and the reflect standards are
open circuits.
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Figure 2.23: 300µm line width TRL kit line phase simulated with AXIEM®. The phase is well
within the recommended range of 30◦ - 150◦ over the frequency range 8GHz - 36GHz.
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Figure 2.24: Gate bias tee layout. The upper left is the RF input port (port-1), the upper right is
the RF+DC output port (port-2) and the lower open ended trace is the DC input port (port-3)

Gate Bias Tee

The gate bias tee design is significantly simpler than the drain bias tee design, however it still

presents its own design challenges. The insertion loss and isolation of the bias tee are paramount

in order to maximize the compressed gain of the amplifier, thus maximizing power added efficiency

and minimizing the waste of input drive power. For design simplicity, a bias tee matched to 50Ω

on both RF ports is designed such that once the matching circuit is designed the bias tee can

simply be added to the circuit without transforming the match. The main reason the gate bias

tee design is simpler is DC current handling requirements. Minimal current is drawn into the

gate of the transistor, and in compression minimal current is sunk into the supply, therefore the

current handling capability of the bias tee is not substantial. From experience, it has been found

that maximum PAE is obtained when the current draw is less than 1mA. Given the minimal

current draw, use of a spiral inductor as the RF choke presents no problem. Fig. 2.24 depicts the

gate bias tee design layout.

The design includes a blocking capacitor and a 10Ω low frequency stabilization resistor on

the DC line prior to the spiral inductor. The spiral inductor acts as a 90◦ transmission line at

10GHz and is shunted to ground through a resonant capacitor to optimize RF-DC isolation.

The DC current handling capability of this design is limited by the stabilization resistor current

handling and the inductor’s under-bridge current handling which is based on its width. The
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Figure 2.25: Gate bias tee relevant scattering parameters.

resistor is designed to support up to 54mA of current while the under-bridge line type can support

6.4mA/µm line width. The line width of the under-bridge was designed as 15µm, therefore the

under-bridge can handle 96mA of DC current. Therefore the stabilization resistor limits the DC

current handling capability of the gate bias tee to 54mA. However, 54mA is more than sufficient

for performing the necessary tests as discussed above.

Fig. 2.25 depicts the AXIEM® simulation of the gate bias tee scattering parameters. Port-1 is

the RF input port, port-2 is the RF+DC output port, and port-3 is the DC input port. The

match at port-1 and port-2 is excellent, exhibiting better than 24 dB return loss over the entire

8-12GHz band. The isolation is better than 25 dB over the entire band. Given the excellent match

and isolation, the insertion loss is driven by S21 and is less than 0.10 dB over the entire band.

While the performance of the bias tee is excellent, another very important parameter is size. The

size of the rectangle fully enclosing the bias tee is approximately 640µm long by 500µm wide.

This is relatively large, but as will be shown later is not a driving factor in the total MMIC size.

Input Matching Circuit

Prior to designing the load pull input matching circuit, the nominal impedance to present to the

device must be defined. This was done by using the non-linear model provided by TriQuint and

measuring the fundamental frequency input impedance to the gate of the transistor while varying
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Figure 2.26: Constellation of optimal small-signal source pre-match fundamental impedances.
Given the constellation, a 5Ω pre-match is selected.

the fundamental frequency load presented to the drain in small-signal. For these measurements a

bias point of -3.5V on the gate and 40V on the drain was used. The conjugate of these measured

impedances gives a good approximation of the impedance to present to the gate of the transistor.

Of course the source tuner will be used to modify this impedance, but it is preferable to pre-match

to a good location to maximize the validity of the calibration. Fig. 2.26 shows the constellation

of optimal input impedances to present to the gate at 10GHz as a function of the termination

at the drain. Based upon the results, a 5Ω pre-match impedance at the fundamental frequency

is selected. The harmonic terminations at the input to the transistor will not be specifically

terminated, although that is an option for future work.

Fig. 2.27 shows the layout of the designed input matching circuit. The input match includes

the gate bias tee as discussed in the previous subsection and uses a linear taper and two shunt

capacitors to realize the impedance match. The impedance presented to the gate of the transistor

from 7-13GHz is shown in Fig. 2.28 with the insertion loss being shown in Fig. 2.29. The circuit

provides an inductive match with near 5Ω real part which should allow source pull over the

8-12GHz frequency band. The insertion loss of the match at 10GHz is 0.63 dB which is large

but expected due to the dramatic impedance transformation (10:1). The size of the rectangle

fully enclosing the matching circuit is approximately 1400µm long by 700µm wide.
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Figure 2.27: Input matching circuit with bias tee layout.
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Figure 2.28: Input matching circuit with bias tee input impedance. The blue trace is from the
linear simulator while the pink trace is from simulation using AXIEM®.
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Figure 2.29: Input matching circuit with bias tee insertion loss simulated with AXIEM®.
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Figure 2.30: Source pull coverage at 10GHz assuming tuner with maximum reflection coefficient
of 0.8.

Since this structure will be used to perform source pull, it is important to look at the

fundamental impedance tuning range when a tuner is used. Fig. 2.30 shows the range over

which the input impedance the gate of the transistor sees can be tuned at 10GHz. A tuner

with maximum reflection coefficient magnitude of 0.8 has been assumed. It is expected that this

tuning range is sufficient to find the optimum source impedance.

Drain Bias Tee

Design of the drain bias tee proved more difficult than the design of the gate bias tee due to the

DC current handling requirements. Using a spiral inductor would have required a prohibitively

large bridge width. Therefore, a design was adopted which used a meandered transmission line to

effectively act as the RF choke inductor. Fig. 2.31 shows the layout of the drain bias tee. A coupled

line model was used to arrive at a design which yielded 90◦ of phase at the design frequency of

10GHz. The design was then refined using the AXIEM®. The meandered transmission line is

then shorted to ground through a 10GHz shunt resonant capacitor to cause the bias line to look

like an open circuit at RF at its connection point to the through line. The scattering parameters

of the structure are plotted in Fig. 2.32. The insertion loss at 10GHz is approximately 0.18 dB,

with approximately 30 dB of RF-DC isolation. The structure is large, taking up a footprint of
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Figure 2.31: Drain bias tee layout. The upper left is the RF+DC output port (port-1), the upper
right is the RF output port (port-2) and the lower open ended trace is the DC input port (port-3).
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Figure 2.32: Drain bias tee S-parameters.

approximately 1mm2.

Output Matching Circuit

The output matching circuit is shown if Fig. 2.33. It implements fixed class-F−1 terminations at

the virtual drain using shunt capacitors for resonators. The size of the rectangle fully enclosing

the output matching circuit is approximately 2000µm long by 1100µm wide. The fundamental
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Figure 2.33: Layout of output matching circuit. The far left connects to the transistor drain.
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Figure 2.34: Insertion loss of the output matching circuit.

impedance at the virtual drain is pre-matched to approximately 70Ω at 10GHz, with an open

circuit at 20GHz and a short circuit at 30GHz. The insertion loss of the structure versus frequency

is shown in Fig. 2.34. Less than 0.7 dB insertion loss is achieved at 10GHz.

As with the input fixture, the tuning range of the fundamental impedance is important.

Additionally, it is desired that the harmonic terminations are fixed, which given the topology of

the match should be the case. Fig. 2.35 shows the tuning range at the fundamental frequency of

10GHz and its second and third harmonics. The terminations at the second and third harmonics

are relatively fixed, while the fundamental impedance may be tuned substantially.
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Figure 2.35: Load pull coverage at 10GHz and harmonics assuming tuner with maximum reflection
coefficient of 0.8.

2.6.4 MMIC Measurements

The MMIC designs presented in the previous section were fabricated at the TriQuint foundry in

Richardson, TX. The foundry made the decision to split the circuits up into two separate 2mm

x 4mm MMICs, of which photos are shown in Fig. 2.36. The structures on the MMICs have

been labeled with the lettering corresponding to the list below.

• (A) TRL Kit 1: input section - output section cascade

• (B) TRL Kit 1: input section - line - output section cascade

• (C) TRL Kit 1: input section reflect

• (D) TRL Kit 1: output section reflect

• (E) TRL Kit 2: input section - output section cascade

• (F) TRL Kit 2: input section - line - output section cascade

• (G) TRL Kit 2: input section reflect
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Figure 2.36: (a) MMIC 1 containing the majority of the TRL calibration kits and impedance
verification structures. (b) MMIC 2 containing the remainder of TRL calibration structures, a
device for measuring scattering parameters and the full cascade for load pull measurements. Each
MMIC is 2mm x 4mm.
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• (H) TRL Kit 2: output section reflect

• (I) Input Fixture - TRL Kit 2 output section cascade

• (J) TRL Kit 2 input section - output Fixture cascade

• (K) Input Fixture - DUT - output Fixture cascade

• (L) Foundry test structure (process requirement)

• (M) Device with TRL Kit 2 standards

The scattering parameters of the input and output pre-matching circuits were measured in

order for calibrated load pull measurements to be taken, as well as for impedance verification.

Fig. 2.37 shows the simulated and measured input pre-matching fixture impedance match

versus frequency. The measured impedance is slightly shifted in frequency from the simulation.

However, the impedance presented by the measured fixture is more than sufficient for load

pull measurements. The insertion loss of the measured fixture at 10GHz was 0.60 dB, with the

simulated value being 0.62 dB. For all intensive purposes, the measured and simulated input

pre-matching fixture behaved very much the same. Given the agreement in insertion loss and

presented impedance, it can be inferred that the RF-DC isolation of the structure is satisfactory.

It was also noted during testing that the termination on the DC port did not impact the measured

scattering parameters.

Fig. 2.38 shows the simulated and measured output pre-matching fixture impedance match

versus frequency. The measured impedance is slightly shifted in frequency from the simulation.

However, the impedance presented by the measured fixture is more than sufficient for load

pull measurements. The insertion loss of the measured fixture at 10GHz was 0.47 dB, with the

simulated value being 0.63 dB. This is a welcomed improvement in insertion loss of the fixture.

The improvement in insertion loss is attributed to inaccurate modeling of the conductor loss in

the AXIEM® stackup, as both the input and output pre-matching fixtures measured as having

lower loss than the expected loss from simulation.

50



0 1
.
0

1
.
0

-
1
.
0

1
0
.
0

10.
0

-10
.0

5
.
0

5.
0

-5
.0

2
.
0

2
.
0

-
2
.
0

3
.
0

3
.
0

-
3
.
0

4
.
0

4.
0

-4
.0

0
.
2

0.
2

-0
.2

0
.
4

0
.
4

-
0
.
4

0
.
6

0
.
6

-
0
.
6

0
.
8

0
.
8

-
0
.
8

Swp Max

13GHz

Swp Min

7GHz

10 GHz
r 7.4 Ohm
x 5.9 Ohm

10 GHz
r 5 Ohm
x 1.5 Ohm

Final Axiem Results

Measured Input Fixture

Figure 2.37: Simulated versus measured input pre-matching fixture impedance match. The
measured results are slightly shifted in frequency relative to the simulation. The Smith Chart is
normalized to 5Ω.
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measured results are slightly shifted in frequency relative to the simulation. The Smith Chart is
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Table 2.3: Output Impedance vs. Frequency

f0 = 10GHz f0 = 9.79GHz
Z(f0) = 50.2 - j11.8Ω Z(f0) = 48.3 - j1.1Ω
Z(2f0) = 25.9 - j90.6Ω Z(2f0) = 291.8 - j1.0Ω
Z(3f0) = 0.0 + j0.9Ω Z(3f0) = 0.0 - j0.5Ω

For the output pre-matching fixture, the harmonic terminations are also important. Table 2.3

lists the measured fundamental frequency and up to third harmonic terminations for the output

fixture at both 10GHz and 9.79GHz. It is evident that the phase of the second harmonic

termination at 20GHz is significantly off from the design, however at harmonics of 9.79GHz

the harmonic terminations are very good. Given the fidelity of the harmonic terminations at

9.79GHz, this frequency was selected as the frequency at which load pull measurements would

be performed.

Initially, fundamental frequency source pull at 9.79GHz was performed in small signal. For

these measurements, the DC drain voltage was set to 30V and the quiescent drain current was

set to 40mA. The load impedance was set to 50Ω for these measurements. The small signal gain

contours are shown in Fig. 2.39. The peak small signal gain of 15.1 dB occurred at 3.1 + j16.3Ω.

Load pull was then performed with the same quiescent drain voltage and current, with the

input impedance set to 3.1 + j16.3Ω. The PAE contours are shown in Fig. 2.40. A peak PAE

of 51.4% occurred with a load impedance of 139.1 + j45.1Ω, which isn’t particularly far from

the real axis, verifying the model of the output capacitance. It is evident that the PAE contours

are not closed, therefore the optimal impedance was not found. Unfortunately, the tuning range

was was limited to |Γ| = 0.5 due to the loss of the matching circuit and probe-tuner cascade.

The load tuner is particularly lossy due to a second harmonic resonator carriage, which limits

how close the fundamental frequency carriage can be placed to the DUT. For comparison, the

tuning range of the load tuner - probe cascade is approximately |Γ| = 0.65, while the tuning

range of the source tuner - probe cascade is approximately |Γ| = 0.75, demonstrating the impact

which the harmonic resonator carriage has on the tuning range. The power contours are not

interesting to investigate due to the tuning range achieved. In this case, the power varied between
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Figure 2.39: Measured small signal gain contours with 30V drain voltage and 40mA quiescent
current. The Smith Chart is normalized to 5Ω.

34.0 dBm and 35.5 dBm over the range measured in Fig. 2.40, with the output power at the peak

PAE being 34.5 dBm (2.8W). Further testing at 35V improved the output power to 35.5 dBm

(3.6W) with an associated PAE of 49.6%. No significant change in the optimal input and output

impedances was noted between 30V and 35V. Testing at 15V showed a shift in the optimal

output impedance, with no significant shift in the input impedance.

Given the tuning range of the output cascade was limited to |Γ| = 0.5, the usefulness of

the measurements is limited. It is also evident that the output impedance yielding optimal

PAE is going to be high for a device of this size, and comparable to an achievable open circuit

harmonic termination. Therefore, for a future design it would be desirable to increase the device

size to improve the difference between the fundamental impedance and achievable open circuit

termination at the second harmonic, or to investigate a different class of amplifier with the same

device size. Most likely, this class should have a short circuit second harmonic termination given

the high fundamental impedance required for optimal PAE.
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2.7 Conclusion

This chapter presented some of the basics of load pull based power amplifier design, including

some basic load-pull theory and measurement network design. A method for calibrating and

measuring a single slug mechanical tuner was presented and verified with a FOCUS Microwaves

tuner. The load pull method is necessary for high-efficiency PA design when good models are not

available, which is commonly the case, especially for new device technologies such as GaN used

in this thesis. The specific contributions described in this chapter are:

• Application of the basic load pull theory to the design of a high-efficiency 2.14GHz cell-phone

band PA.
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• The resulting design was implemented in a hybrid circuit with a TriQuint 12W GaN die.

This PA was measured independently by Agilent at the 2010 IEEE International Microwave

Symposium, resulting in 82.6% PAE with 38.2 dBm output power and 18 dB large signal

gain. This PA won second place at the 2010 IMS PA Student Competition and is also

reported in [9].

• The load-pull design method was scaled to 10GHz in a GaN MMIC test structure with

implicit harmonic terminations on-chip. The TriQuint 0.25µm GaN process was used and

resulted in an efficiency of 50% at 10GHz with 3.5W of output power in a test MMIC.

The measured results from this test circuit serve as input characterization information for

the next iteration of a high-efficiency 10GHz PA design, with estimated potential PAE of

70%.
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3.1 Introduction

Power amplifier (PA) efficiency is traditionally controlled by the current conduction angle of

the transistor, which results in sinusoidal voltage and clipped sinusoidal current time-domain

waveforms at the virtual drain (collector) [6]. In the frequency domain, the clipped sinusoidal

current waveforms correspond to generation of harmonic current components by the transistor.

Given that the voltage waveform is a pure sinusoid, no harmonic voltage components are produced,

requiring that harmonic shorts are presented to the transistor at the virtual drain. Other classes

of PAs, such as class-F and class-F−1, present specific harmonic impedances at the virtual drain,

using either harmonic voltage or current components to shape the drain waveforms, therefore

improving efficiency. Non-linearities inherent to the transistor such as knee voltage, etc. are

viable methods of producing harmonic voltage components [5]. At higher microwave frequencies,

parasitics inherent to the transistor, as well as its package can limit the ability to present specific

harmonic impedances.

Investigation of PAs via Fourier analysis was published as early as 1932 [39]. In [40], Raab

analyzed efficiency and output power capability of an ideal PA having a finite number of reactive

harmonic terminations. This method maximized PA efficiency through optimization of the drain

voltage and current waveform Fourier coefficients and fundamental frequency reactance, under

the restriction of a finite set of harmonic terminations. In [41], an analytical treatment of ideal

class-F amplifiers subject to finite harmonic terminations was presented, in which purely reactive

harmonic terminations were also assumed. Using a technique similar to [40], a set of PA classes

with class-B efficiency has been treated [42]. In [43], an analytical solution to finite harmonic

class-C PA maximum efficiency was derived, which is equally applicable to analysis of a finite

harmonic class-C−1 PA. Cripps recently discussed the waveform analysis of a second-harmonic

only PA in [44].
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To the best of the authors’ knowledge, a general analysis with arbitrary sets of resistive and

reactive harmonic terminations has not been presented to date. However, in practice harmonic

terminations are complex due to resistive loss of the PA output network. Therefore, it is of interest

to understand the impact of arbitrary impedances at harmonic frequencies on PA efficiency,

output power, and load impedance. This chapter generalizes the classical method of [40] in order

to investigate several issues of practical interest:

(1) Fidelity of harmonic terminations required to achieve a specified efficiency.

(2) Impact of resistive, reactive and complex harmonic terminations on maximum PA efficiency

and corresponding fundamental output power and load resistance.

(3) Impact of fundamental frequency reactance on maximum PA efficiency and corresponding

fundamental output power and load resistance.

In Section 3.2, a generalized theoretical analysis of PA efficiency, output power, and load

impedance is presented. Section 3.3 presents the optimization procedure by which the optimal

waveforms for a given set of finite harmonic terminations are evaluated. Sections 3.4 and 3.5 detail

the results for PAs having up to third harmonic voltage and current components for real and

complex fundamental load impedances, respectively. Section 3.6 presents a practical application

of the theoretical analysis for a 2.14GHz PA with a constant device output capacitance assumed.

Section 3.7 discusses an alternate set of normalization conditions which can be applied to the

analysis presented in Section 3.2. Section 3.8 contains an example of harmonic load pull data

using a practical 50W GaN HEMT demonstrating trends predicted by the theory.
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Figure 3.1: Circuit diagram of ideal common source FET-based PA. The DC Block (Cb) and RF
Choke (RFC) are assumed to be ideal, therefore ZL is equivalent to the impedance ZD presented
to the virtual drain at the fundamental and harmonic frequencies.

3.2 Harmonically Terminated PA Analysis Approach

Fig. 3.1 depicts an ideal PA, which will be described in terms of a Field Effect Transistor (FET)

without loss of generality, and with the following assumptions:

• The device has zero on-state resistance, Ron. While non-zero Ron may be considered, the

intention of the following analysis is to investigate the performance ceiling rather than the

performance as a function of Ron.

• The drain is biased through an ideal RF Choke (RFC).

• The load ZL is DC isolated from the supply by an ideal blocking capacitor Cb that acts as

a short circuit at the operating frequency f0 and corresponding harmonics.

• A sinusoidal voltage at f0 is applied to the gate. Harmonics are present only at the output

of the transistor, and they are assumed to be generated by the various non-linearities of

the transistor, which include non-linear capacitances such as gate-to-source capacitance.

• The DC drain voltage VDD and DC drain current IDD are strictly greater than or equal to

zero.

• The drain current and voltage waveforms have fixed maximum values Imax and Vmax,

regardless of harmonic content. This allows a fair comparison of output power and funda-

59



mental load impedance for amplifiers having different harmonic terminations. Alternate

parameters may be fixed as discussed in the Appendix.

The time-harmonic drain voltage vD(θ) and current iD(θ) waveforms of an ideal PA limited

to m harmonics can be represented by Fourier series as

vD(θ) = VDD +
m∑
n=1

[av,n cos(nθ)− bv,n sin(nθ)] (V) (3.1)

iD(θ) = IDD +
m∑
n=1

[ai,n cos(nθ)− bi,n sin(nθ)] (A) (3.2)

where θ = 2πf0t is angular time [7]. In principle, m may extend to∞, but practically is finite due

to the device gain roll-off in frequency and in the case of this chapter up to m = 3 is analyzed.

The minimum values of the drain waveforms defined in (3.1) and (3.2) are required to be greater

than or equal to zero, where the case when the waveforms have minima of zero corresponds

to (3.17) being maximized. This corresponds to the DC power being minimized for the given

fundamental output power. Under this restriction, the ideal PA with no harmonic voltage or

current components corresponds to a class-A PA with full 360◦ conduction angle, as expected. By

inspection of Fig. 3.1, the load network voltage vL(θ) and current iL(θ) waveforms are given by

vL(θ) =
m∑
n=1

[av,n cos(nθ)− bv,n sin(nθ)] (V) (3.3)

iL(θ) = −
m∑
n=1

[ai,n cos(nθ)− bi,n sin(nθ)] (A) (3.4)

Due to the definitions of the load voltage in (3.3) and current waveforms in (3.4), the voltage

and current fundamental frequency and harmonics components are expressed as

VL(nf0) = av,n + jbv,n (V) (3.5)

IL(nf0) = −ai,n − jbi,n (A) (3.6)

The load impedance at frequency nf0 is given by

ZL(nf0) = VL(nf0)
IL(nf0) = −av,n + jbv,n

ai,n + jbi,n
(Ω) (3.7)
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The time average power delivered to the load at frequency nf0 is given by

PL(nf0) = Re{VL(nf0)I∗L(nf0)}
2

= −av,nai,n + bv,nbi,n
2 (W)

(3.8)

where ∗ denotes the complex conjugate operator. For analysis of an ideal PA, it is convenient to

define the fundamental frequency drain voltage Fourier coefficient av,1 as

av,1 = 0 (V) (3.9)

Any other choice of av,1 would simply shift the phase of the fundamental component of the drain

voltage waveform with respect to the higher order components, therefore requiring the same

phase shift to higher order components to restore waveform alignment. Consequently, the time

average power delivered to the load at the fundamental frequency simplifies to

PL(f0) = −bv,1bi,12 (W) (3.10)

In order to perform a generalized analysis of an ideal PA, it is convenient to normalize the drain

and load waveforms by the maximum drain voltage Vmax, which can be withstood without device

breakdown, and the maximum drain current Imax the device can support, such that

v̄D(θ) = 1
αVmax

vD(θ) (V) (3.11)

īD(θ) = 1
βImax

iD(θ) (A) (3.12)

v̄L(θ) = 1
αVmax

vL(θ) (V) (3.13)

īL(θ) = 1
βImax

iL(θ) (A) (3.14)

where α and β are scaling factors defined as

α = 1
max[v̄D(θ)] (V−1) (3.15)

β = 1
max[̄iD(θ)]

(A−1) (3.16)

The maximum values of the drain voltage and current waveforms are fixed at Vmax and Imax,

respectively, regardless of the harmonic content and are easily scaled. PA efficiency is expressed
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as

η = PL(f0)
VDDIDD

= P̄L(f0)
V̄DD ĪDD

(3.17)

where P̄L(f0), V̄DD and ĪDD are the fundamental power, DC drain voltage, and DC drain current,

respectively, calculated via optimization of the normalized equations (3.11) - (3.14). (3.17) refers to

drain efficiency, or an upper bound to power added efficiency. (3.17) shows that PA efficiency can

be maximized using the normalized equations. Once efficiency optimization using the normalized

equations is performed, the corresponding fundamental output power and fundamental load

impedance are calculated. Let the normalized fundamental frequency voltage Fourier coefficient

and normalized fundamental frequency load impedance be defined as

b̄v,1 = −
√

2 (V) (3.18)

zL(f0) = 1 + jxL(f0) (Ω) (3.19)

where the normalized fundamental load resistance rL(f0) is unity and xL(f0) is the normalized

fundamental load reactance. Defining b̄v,1 and zL(f0) in this manner results in 1W normalized

output power when xL(f0) = 0. The freedom to choose convenient definitions of these quantities is

due to the normalized equations given in (3.11) - (3.14). Alternate definitions would simply result

in different values for the normalized quantities V̄DD, ĪDD, max[v̄D(θ)] and max[̄iD(θ)] without

impacting the efficiency, fundamental output power, and fundamental load impedance. Given the

definitions of (3.18) and (3.19), the normalized fundamental frequency Fourier coefficients of the

drain current are derived as

āi,1 =
√

2xL(f0)
x2
L(f0) + 1 (A) (3.20)

b̄i,1 =
√

2
x2
L(f0) + 1 (A) (3.21)

Substituting (3.18) and (3.21) into (3.10) yields an expression for the normalized fundamental

frequency average power, given by

P̄L(f0) = 1
x2
L(f0) + 1 (W) (3.22)
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The fundamental frequency average power is then expressed as

PL(f0) = αβVmaxImaxP̄L(f0) (W) (3.23)

which through substitution of (3.15) and (4.54) simplifies the fundamental frequency average

power to

PL(f0) = VmaxImaxP̄L(f0)
max[v̄D(θ)] max[̄iD(θ)]

(W) (3.24)

In order to compare PA’s having different sets of arbitrary harmonic terminations with constant

Vmax and Imax, the output power is normalized by the output power of a class-A amplifier, which

is given by

PA = VmaxImax
8 (W) (3.25)

Dividing (3.24) by (3.25) produces an expression for fundamental output power normalized to

class-A output power given by

pLA(f0) = 8P̄L(f0)
max[v̄D(θ)] max[̄iD(θ)]

(3.26)

The fundamental frequency resistance is expressed as

RL(f0) = Re
{
αVmax
βImax

(1 + jxL(f0))
}

= αVmax
βImax

(Ω) (3.27)

which by substitution of (3.15) and (4.54) becomes

RL(f0) = max[̄iD(θ)]Vmax
max[v̄D(θ)]Imax

(Ω) (3.28)

To compare the impact of harmonic terminations on the fundamental frequency resistance, it is

useful to normalize by the class-A load line resistance given by

RA = Vmax
Imax

(Ω) (3.29)

Dividing (3.28) by (3.29) produces an expression for fundamental load resistance normalized to

the class-A load line resistance given by

rLA(f0) = max[̄iD(θ)]
max[v̄D(θ)] (3.30)
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Similarly, the fundamental load reactance normalized to the class-A load line resistance is given

by

xLA(f0) = max[̄iD(θ)]
max[v̄D(θ)]xL(f0) (3.31)

Additional parameters of interest include the drain waveform peaking factors δV and δI as

discussed in [45]. These factors relate the peak values of the drain waveforms to their respective

DC components, and are defined as

δV = max[v̄D(θ)]
V̄DD

(3.32)

and

δI = max[̄iD(θ)]
ĪDD

(3.33)

These parameters give insight into the waveform peaking characteristics of different amplifier

classes, allowing the designer to scale DC supply values in order to operate within the peak

voltage and current limitations of the amplifying device. Note that δV = δI = 2 corresponds to a

class-A PA.

3.3 Efficiency Optimization Procedure

In general, maximization of efficiency given a finite set of harmonic terminations must be

performed numerically via a global optimization procedure, although special cases exist in which

explicit expressions have been obtained [45]-[46]. A general procedure for numerical maximization

of efficiency given a finite set of harmonic terminations is as follows:

• Define a finite set of m normalized harmonic load impedances zL(2f0), zL(3f0), ..., zL(mf0)

where voltage and current harmonics greater than m are not generated by the active device.

• Apply a global optimization algorithm to maximize the efficiency by optimizing the normal-

ized fundamental frequency reactance xL(f0) and the normalized drain waveform Fourier

coefficients given the set of normalized harmonic load impedances. Either the current or

voltage coefficients may be optimized as convenient, given the remaining coefficients are

explicitly defined by the harmonic impedances.
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• Once efficiency optimization is complete, use (3.26) to calculate the fundamental frequency

output power normalized to class-A output power. Use (3.30) and (3.31) to calculate the

fundamental frequency resistance and reactance, respectively, normalized to the class-A

load line resistance.

The implementation of the general efficiency maximization procedure is performed with the

MATLAB® optimization toolbox using the fminsearch function, which implements the direct

search Nelder-Mead simplex method described in [47]. The method does not require a gradient

of the function being minimized, and it is well suited for problems that exhibit discontinuities.

Because the fminsearch function may result in a local solution, multiple sets of drain waveform

Fourier coefficients and xL(f0) initial conditions are used to ensure the global maximum efficiency

is found. Given that fminsearch is a minimization function, the cost function is defined as negative

efficiency (−η) in order to solve for maximum efficiency. Solved efficiency, Fourier coefficients,

and xL(f0) results for specific sets of harmonic impedances were in agreement with those found

using alternate optimization methods, e.g. genetic and simulated annealing [48], [49].

The detailed efficiency optimization process which is applied given a finite set of normalized

harmonic load impedance constraints is as follows:

• Define the configuration parameters of the fminsearch function. These include the termina-

tion tolerances of the optimizer, the maximum number of cost function evaluations and the

maximum number of optimizer iterations.

• Initialize the fundamental frequency reactance and the normalized harmonic drain waveform

Fourier coefficients.

• Call the fminsearch function using the configuration parameters, −η cost function, nor-

malized harmonic load impedances, fundamental frequency reactance initial condition

and normalized harmonic drain waveform Fourier coefficients as inputs. As mentioned

above, multiple sets of initial conditions are used to ensure the global optimum is found by

fminsearch.
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The cost function evaluates −η using values of fundamental frequency reactance and harmonic

drain waveform Fourier coefficients pass to it by the fminsearch function along with the normalized

harmonic load impedance constraints and is implemented as follows:

• Evaluate the normalized fundamental frequency drain current waveform Fourier coefficients

using (3.20) and (3.21).

• Evaluate the normalized fundamental frequency average power using (3.22).

• Evaluate the global minima of the normalized drain current and voltage waveforms in the

absence of their DC terms in order to find the values of V̄DD and ĪDD which are added to

the normalized waveforms such that their minima is zero.

• Evaluate −η using the calculated values of P̄L(f0), V̄DD and ĪDD.

The evaluation of the global minima of the normalized drain current and voltage waveforms

presents and interesting problem, especially as the number of finite harmonics assumed in the

analysis increases. While discrete evaluation of the waveforms may be used to approximately find

their minima, this would require increasingly fine evaluation steps as the number of harmonics

increases in order to ensure that the global minimum is found. A straightforward procedure for

evaluating the global minimum without requiring discrete evaluations of the drain waveforms is

presented in the following subsection.

3.3.1 Evaluating the Global Minimum of a Function From Its

Fourier Series Representation

Many engineering and optimization problems require evaluation of the global minimum or global

maximum of a function. It is often the case that the function is of a single variable. For example,

a periodic voltage or current waveform may be expressed as a single variable function, where time

is the variable. A straightforward manner in which to find the critical points of any single variable

function is to differentiate the function and solve for the points at which the first derivative is

equal to zero. Unfortunately, as the Fourier series representation requires terms of increasing
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order to accurately represent the periodic function, this method presents significant difficulty.

As an example, a waveform having a Fourier series representation of order m will have a first

derivative with terms up to order m. A general analytical solution to the zeroes of the first

derivative do not exist in this case, therefore numerical techniques must be used to find the

zeroes. However, directly applying numerical techniques to the Fourier series can be problematic,

due to the large number of critical points which must be found when the order m is high.

The Weierstrass substitution is particularly applicable to the problem of finding the critical

points of function given it’s Fourier series representation [50]. This substitution allows expression

of the sine and cosine terms of the Fourier series as polynomials in an auxiliary variable, which

ultimately allows the evaluation of the waveform critical points to simplify to the problem of

finding the zeroes of a polynomial. The following sections present the method and provide an

example application of the method.

Method

Consider the problem of evaluating the critical points of a real valued function with a Fourier

series representation given by

f(x) = C +
m∑
n=1

[an cos(nx)− bn sin(nx)] (3.34)

The standard procedure for evaluating the critical points is to differentiate (3.34) w.r.t x and

set it equal to zero, yielding

m∑
n=1

n[an sin(nx) + bn cos(nx)] = 0 (3.35)

Solving (3.35) in its present form is rather cumbersome in the general case. However, consider

using the Weierstrass substitution. This substitution defines an auxiliary variable t as

t = tan
(x

2

)
(3.36)
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It can be shown that sin x and cosx can be expressed as ratios of polynomials, given by

cosx = 1− t2

1 + t2
(3.37)

sin x = 2t
1 + t2

(3.38)

Additionally, sin(nx) and cos(nx) may be expressed as ratios of polynomials as well using

the generalized multiple angle formulas given by

cosnx =
n∑
k=0

(
n

k

)
cosk x sinn−k x cos

(
1
2(n− k)π

)
(3.39)

sinnx =
n∑
k=0

(
n

k

)
cosk x sinn−k x sin

(
1
2(n− k)π

)
(3.40)

Using (3.37) - (3.40), (3.35) can be expressed as a polynomial in t, for which robust root

finding techniques exist, such as Laguerre’s method [51]. Once the roots troot are found, the

reverse substitution is performed to determined the critical points in terms of x, given by

xcritical = 2 tan−1 troot (3.41)

The values of the original function at the critical points may now be directly evaluated using

(3.34) with the global minimum and global maximum being easily obtained. The polynomial

will have 2m roots, therefore requiring up to 2m evaluations of (3.34) in order to find the global

minimum and maximum. Fortunately, the complex roots are eliminated due to (3.41). If a

root exists at troot = 0, then it is necessary to ensure that both xcritical = 0 and xcritical = π

are evaluated due to the periodicity of the tangent function. It is important to note that the

coefficients of the polynomial in t have closed-form expressions for any arbitrary Fourier series of

order m. Therefore, the accuracy of the solved critical points depends on the numerical accuracy

of the zero finding technique alone.

Example

Consider an example where a waveform contains only up to second harmonic terms and is

represented as

f(x) = C +
2∑

n=1
[an cos(nx)− bn sin(nx)] (3.42)
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Table 3.1: Polynomial Coefficients for Waveform Containing up to Second Harmonic Terms

Term Coefficient
t4 2b2 − b1
t3 2a1 − 8a2
t2 −12b2
t1 2a1 + 8a2
t0 b1 + 2b2

Using the method in the previous section, the coefficients of the polynomial in t which allows

evaluation of the critical points are evaluated and listed in Table 3.1. Using the expressions

for the polynomial coefficients in Table 3.1, the critical points of any waveform which can be

represented by a Fourier series limited to order m = 2 can be determined. For example, consider

a waveform represented by the Fourier coefficients given in Table 3.2. Table 3.3 lists the resultant

roots of the polynomial and associated critical points of waveform rounded to the fourth decimal

place. The critical points normalized to the waveform period are also listed in Table 3.3. Fig. 3.2

shows a single period of the resultant waveform, as well as the critical points calculated using the

presented algorithm. Fig. 3.3 shows an example of the evaluated critical points for a waveform

with the Fourier series limited to order m = 10 to demonstrate the ability of the presented

method. It is evident that each critical point is precisely evaluated by the presented method,

allowing for direct evaluation of the global minimum or maximum of the waveform by simply

finding either the minimum or maximum of the waveform evaluated at the critical points. For

these examples, the roots of the polynomial were determined using the MATLAB® function

roots(), which evaluates the eigenvalues of the companion matrix formed from the polynomial

coefficients.

Table 3.2: Example Fourier Coefficients

Term Value
C 1
a1 0.3
b1 −0.6
a2 0.1
b2 0.5
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Table 3.3: Example Roots and Critical Points

troot xcritical
xcritical

2π
-1.9706 4.0808 0.6495
+1.8539 2.1523 0.3425
+0.4090 0.7765 0.1236
-0.1673 5.9516 0.9472
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Figure 3.2: Second-order critical point evaluation example.
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Figure 3.3: Tenth-order critical point evaluation example.
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3.4 Real Fundamental Load Impedance

In this section, the method is applied to optimizing a PA with real valued fundamental load

impedance with arbitrary complex harmonic terminations. The parameters of interest are efficiency,

fundamental output power, and fundamental load resistance. In particular, their sensitivity to

harmonic terminations is investigated.

3.4.1 Second-Harmonic Only PA

The real fundamental load impedance represents the PA configuration that will deliver maximum

power given fixed values of peak voltage and current. From (3.22), the normalized power P̄L(f0)

remains constant at 1W, independent of harmonic termination(s). Efficiency optimization is

performed for second harmonic terminations spaced uniformly over the Smith Chart. For each har-

monic termination, either the drain voltage coefficients (āv,2, b̄v,2) or the drain current coefficients

(āi,2, b̄i,2) are selected for optimization. In the case where zL(2f0) = 0, the voltage coefficients

cannot be optimized because they are necessarily zero. Therefore the current coefficients must

be optimized instead. Similarly, when zL(2f0) =∞ the current coefficients cannot be optimized

because they are necessarily zero.

Fig. 3.4(a) shows efficiency contours as a function of second harmonic impedance. Maximum

efficiency of 70.71% occurs under conditions of an ideal short or open circuit in agreement with

[43], with degraded efficiency elsewhere. The ideal short circuit case corresponds to a second

harmonic class-C PA, while the ideal open circuit case corresponds to a second harmonic class-C−1

PA.

A subset of the data shown in Fig. 3.4(a) is plotted in Fig. 3.4(b), which shows efficiency as a

function of ΓL(2f0) when |ΓL(2f0)| = 1, and when ΓL(2f0) is purely real. For a purely reactive

second harmonic termination (i.e. |ΓL(2f0)| = 1), 70% efficiency is achieved within ±22.5◦ of a

short and open circuit. For a purely real second harmonic termination (i.e. ∠ΓL(2f0) = 0◦, 180◦),

70% efficiency is achieved when |ΓL(2f0)| ≥ 0.944.

In practice, this analysis gives insight to the PA designer concerning how closely the fabricated
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second harmonic termination must be to an ideal short or open circuit to achieve a desired

efficiency. For example, RL(f0)
34.7 must be achieved for an approximate short circuit and 34.7RL(f0)

for an approximate open circuit given an ideal termination phase to achieve 70% efficiency, which

is rather restrictive. A more reasonable goal would be to achieve |ΓL(2f0)| ≥ 0.8 which would

result in greater than 68% efficiency. This corresponds to RL(f0)
9 for an approximate short circuit

and 9RL(f0) for an approximate open circuit, which is a more practical.

Fig. 3.5(a) shows contours of fundamental frequency output power, normalized to class-A.

Fig. 3.5(b) shows pLA(f0) from (3.26) as a function of ΓL(2f0) when |ΓL(2f0)| = 1, and when

ΓL(2f0) is purely real. An output power of 0.971PA is realized under conditions of maximum

efficiency. A minimum output power of 0.879PA occurs when zL(2f0) = ±j, corresponding to

a 0.56 dB reduction relative to class-A output power. It is evident that output power may not

be improved over class-A output power with only a second harmonic termination when peak

current and voltage are held fixed.

Fig. 3.6(a) shows contours of fundamental frequency load resistance, normalized to the class-A

load line. Fig. 3.6(b) shows rLA(f0) as a function of ΓL(2f0) when |ΓL(2f0)| = 1, and when

ΓL(2f0) is purely real. The load resistance exhibits a discontinuity about the imaginary axis.

The load resistance under conditions of maximum efficiency is 1.03RA when zL(2f0) = 0 and

0.97RA = 1.03−1RA when zL(2f0) =∞. This is due to the swapping of normalized current and

voltage waveforms when the normalized load is changed from 0 to ∞, which effectively inverts

(3.30). For example, when zL(2f0) =∞, the peak voltage is increased over the class-A case, while

the peak current stays the same, implying the load resistance must decrease to maintain constant

Vmax and Imax. In general, if the load resistance for one half of the Smith Chart (e.g. the left

half) is calculated, the load resistance for the other half can be directly calculated by inverting

the data, resulting in a discontinuity about the imaginary axis. In other words, the solutions

from the left half of the Smith Chart correspond to current peaking drain waveforms, while the

right half solutions correspond to voltage peaking.

Investigation of the waveform peaking factors defined in (3.32)-(3.33) provide insight into the
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Figure 3.4: (a) Ideal second harmonic PA efficiency contours vs. zL(2f0). The minimum efficiency
of 53.76% occurs when zL(2f0) = 1. The maximum efficiency of 70.71% occurs when zL(2f0) = 0
or zL(2f0) = ∞. (b) Ideal second harmonic PA efficiency for purely resistive and purely reactive
zL(2f0). The fundamental frequency impedance zL(f0) is purely real.
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Figure 3.5: (a) Ideal second harmonic PA normalized power pLA(f0) contours vs. zL(2f0). (b) Ideal
second harmonic PA pLA(f0) for purely resistive and purely reactive zL(2f0). The fundamental
frequency impedance zL(f0) is purely real.

74



0
.2

0
.5

1 2 5

+j0.2

−j0.2

+j0.5

−j0.5

+j1

−j1

+j2

−j2

+j5

−j5

0 ∞

0.92

0.
92

0.94

0.
94

0.96

0.
96

0.98

0.9
8 0.98

1

1

1

1

1

1

1.
02

1.
02

1.02

1.
04

1.04

1.
06

1.06

1
.0
8

1
.0
8

1
.1

1
.1

(a)

 1  0.5 0 0.5 1
0.85

0.9

0.95

1

1.05

1.1

1.15

Γ
L

(2f
0
)

r L
A

0 90 180 270 360

0.85

0.9

0.95

1

1.05

1.1

1.15

∠Γ
L

(2f
0
)

|Γ
L

(2f
0
)| = 1

∠Γ
L

(2f
0
) = 0

°

, 180
°

(b)

Figure 3.6: (a) Ideal second harmonic PA normalized load resistance rLA(f0) contours vs. zL(2f0).
(b) Ideal second harmonic PA rLA(f0) for purely resistive and purely reactive zL(2f0). The
fundamental frequency impedance zL(f0) is purely real.
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Figure 3.7: (a) Ideal second harmonic PA voltage peaking factor contours vs. zL(2f0). The
maximum voltage peaking factor of 2.9142 occurs when zL(2f0) = ∞. (b) Ideal second harmonic
PA current peaking factor contours vs. zL(2f0). The maximum current peaking factor of 2.9142
occurs when zL(2f0) = 0.
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Figure 3.8: Ideal second harmonic PA peaking factors for purely resistive zL(2f0). The fundamental
frequency impedance zL(f0) is purely real. (b) Ideal second harmonic PA rLA(f0) for purely
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structure of the optimal waveforms as a function of the second harmonic termination. Fig. 3.7

shows the peaking factor contours as a function of the second harmonic termination. It is evident

that the peaking factors exhibit a discontinuity about the imaginary axis, as was the case with

the resistance contours. Investigation of the peaking factors indeed shows that the transition

from left to right across the imaginary axis shows the optimal efficiency PA transitions from

a current peaking amplifier to a voltage peaking amplifier. At the discontinuity, there are two

amplifier configurations yielding optimal efficiency; one corresponding to a current peaking PA

and one corresponding to a voltage peaking PA. Fig. 3.8 shows the peaking factors as a function

of ΓL(2f0) when |ΓL(2f0)| = 1, and when ΓL(2f0) is purely real. Note that for a fixed |ΓL(2f0)|,

the voltage peaking factor remains constant on the left side of the imaginary axis, while the

current peaking factor remains constant on the right side of the imaginary axis.

3.4.2 Second & Third Harmonic PA

As demonstrated, second harmonic short and open circuits are optimal terminations from the

standpoint of PA efficiency, which is in agreement with [40]. Efficiency is next re-optimized for an

added third harmonic under conditions of an ideal second harmonic termination. When zL(2f0)

= 0, a peak efficiency of 81.65% is realized when zL(3f0) = ∞ as shown in Fig. 3.9(a). This set

of harmonic terminations corresponds to a second & third harmonic class-F amplifier. Under

the short circuit condition zL(2f0) = zL(3f0) = 0, an efficiency of 80.90% is simulated, which

is in agreement with analysis of a finite harmonic class-C amplifier [43]. Fig. 3.9(b) shows the

corresponding contours of output power normalized to class-A output power. The class-F output

power is improved by 0.5 dB relative to class-A output power, while class-C output power is

reduced 0.69 dB relative to class-A output power. Fig. 3.9(c) shows the corresponding contours

of fundamental load resistance normalized to class-A load resistance. The class-F and class-C

load resistance are 1.19RA and 1.17RA, respectively.

Alternatively, efficiency optimization can be performed under the condition that zL(2f0)

= ∞. In this case, the resultant efficiency and power contours may be obtained by rotating
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Table 3.4: Harmonically Terminated Amplifier Parameters

Class η pLA(f0) rLA(f0)
Class-F (2f0 & 3f0) 81.65% 1.121 1.19
Class-F−1 (2f0 & 3f0) 81.65% 1.121 0.84
Class-C (2f0) 70.71% 0.971 1.03
Class-C (2f0 & 3f0) 80.90% 0.853 1.17
Class-C−1 (2f0) 70.71% 0.971 0.97
Class-C−1 (2f0 & 3f0) 80.90% 0.853 0.86

Fig. 3.9(a) and Fig. 3.9(b) 180◦ about the imaginary axis. The resultant resistance contours are

obtained by inverting the contour values shown in Fig. 3.9(c) and rotating them 180◦ about

the imaginary axis. The transformed contours may be used to extract the efficiency, output

power, and load resistance of second and third harmonic class-F−1 and class-C−1 amplifiers. The

efficiencies and output powers of the inverted amplifier classes are equivalent to those quoted

for the non-inverted classes, while the load resistance is found to be the reciprocal of that for

the non-inverted class. Consequently, the second and third harmonic class-F−1 and class-C−1

amplifiers require a smaller load resistance than their class-F and class-C counterparts to produce

equivalent output power with maximum efficiency under conditions of fixed peak voltage and

current. Table 3.4 summarizes the efficiency, fundamental output power and fundamental load

resistance for second-harmonic only and second & third harmonic Class-F, Class-C, class-F−1

and class-C−1 amplifiers.

In practice, it is important to understand the sensitivity of PA efficiency to the phase and

magnitude of the third harmonic termination under the condition of an ideal second harmonic

termination. Fig. 3.10 shows PA efficiency as a function of ∠ΓL(3f0) for the analyzed second

and third harmonic cases when |ΓL(3f0)| = 1. The maximum and minimum efficiency when

|ΓL(3f0)| = 1 are 81.65% and 76.30%, respectively, demonstrating the importance of terminating

the third harmonic in an appropriate angle. Greater than 81% efficiency is achieved within

±30.0◦ of a third harmonic short when z(2f0) = ∞ or a third harmonic open when z(2f0)

= 0. For the case of a purely resistive z(3f0), greater than 81% efficiency is achieved when

ΓL(3f0) ≥ +0.9 for zL(2f0) = 0 and ΓL(3f0) ≤ −0.9 for zL(2f0) = ∞, as shown in Fig. 3.11.

Based upon the simulated results, it is concluded that PA efficiency is less sensitive to both
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Figure 3.9: (a) Ideal PA efficiency contours vs. zL(3f0), zL(2f0) = 0. The maximum efficiency of
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Figure 3.11: Ideal PA efficiency with fixed second harmonic versus ΓL(3f0) when ΓL(3f0) is
purely real. Greater than 81% efficiency is achieved when ΓL(3f0) ≥ +0.9 for zL(2f0) = 0 and
ΓL(3f0) ≤ −0.9 for zL(2f0) = ∞. The minimum efficiency of 71.52% occurs when zL(3f0) '
zL(f0). The fundamental frequency impedance zL(f0) is purely real.

|ΓL(3f0)| and ∠ΓL(3f0) than |ΓL(2f0)| and ∠ΓL(2f0). This is a fortunate result, given that

harmonic terminations become increasingly sensitive and difficult to realize as frequency increases.
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3.5 Complex Fundamental Load Impedance

This section investigates optimization of the normalized fundamental frequency reactance xL(f0)

in order to maximize PA efficiency. Further optimization of PA efficiency is done at the expense

of normalized output power, given (3.22). The efficiency of an ideal PA restricted to only second

harmonic content is again analyzed. Unlike the analysis in the previous section, the normalized

fundamental load power P̄L(f0) will not remain constant at 1W for all second harmonic impedances.

Efficiency optimization is performed as described in the previous section. However, in this case,

xL(f0) is an additional optimization parameter, resulting in three optimization parameters for a

second-harmonic only PA.

Fig. 3.12, Fig. 3.13, Fig. 3.14(a) and Fig. 3.14(b) show efficiency, fundamental output power,

fundamental resistance and fundamental reactance contours, respectively, as a function of second

harmonic impedance when xL(f0) is an additional optimization parameter.

The efficiency contours are significantly different than those shown in Fig. 3.4(a) and no

longer symmetric about the imaginary axis. For the case when |ΓL(2f0)| = 1, an efficiency of

70.71% is obtained regardless of ∠ΓL(2f0). It is evident that efficiency is significantly improved

for much of the Smith Chart at the expense of fundamental output power, where power is reduced

by 1.63 dB in the worst case. When comparing Fig. 3.13 with Fig. 3.5(a), one concludes that

the fundamental frequency reactance results in an output power reduction. It is evident that

the fundamental frequency resistance shown in Fig. 3.14(a) is also impacted by tuning xL(f0).

Investigation of Fig. 3.14(b) reveals that the optimal fundamental frequency reactance is zero for

purely real second harmonic terminations. Given an inductive second harmonic termination, a

capacitive fundamental frequency reactance is used to improve PA efficiency. Similarly, under

the condition of a capacitive second harmonic termination, an inductive fundamental frequency

reactance is used to improve PA efficiency.

Fig. 3.15 shows the voltage and current peaking factors as a function of second harmonic

impedance when xL(f0) is an additional optimization parameter. It is evident that the peaking

factors are, in general, large than when xL(f0) is restricted to be zero, as we shown in Fig. 3.7.
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∞

Figure 3.12: Ideal PA efficiency contours vs. zL(2f0) when the normalized load reactance xL(f0) is
optimized in addition to the harmonic Fourier coefficients. The minimum efficiency and maximum
efficiency are equivalent to those calculated without optimizing xL(f0). However, the regions for
which a given high efficiency is obtained are significantly expanded.

∞

Figure 3.13: Ideal PA pLA(f0) contours vs. zL(2f0) when xL(f0) is optimized in addition to the
harmonic Fourier coefficients. Power is reduced in order to improve efficiency for much of the
Smith Chart. In the worst case, power is reduced by 1.63 dB relative to class-A output power.
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Figure 3.14: (a) Ideal PA rLA(f0) contours vs. zL(2f0) when xL(f0) is optimized in addition
to the harmonic Fourier coefficients. Note that the fundamental frequency resistance differs
significantly from that shown in Fig. 3.6(a). (b) Ideal PA xLA(f0) contours vs. zL(2f0) when
xL(f0) is additionally optimized. Fundamental frequency reactance is used to restore PA efficiency
under non-ideal harmonic termination conditions.
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Figure 3.15: (a) Ideal PA δV contours vs. zL(2f0) when xL(f0) is optimized in addition to the
harmonic Fourier coefficients. Note that the voltage peaking factor differs significantly from that
shown in Fig. 3.7(a). (b) Ideal PA δI contours vs. zL(2f0) when xL(f0) is optimized in addition
to the harmonic Fourier coefficients. Note that the current peaking factor differs significantly
from that shown in Fig. 3.7(b).
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One can conclude that the restoration of efficiency by tuning xL(f0) not only comes at the

expense of output power, but also device stress due to the large peaking factors.

In practice, the improvement in efficiency by tuning xL(f0) supports class-J amplifier theory

[52]. Tuning xL(f0) has utility in cases where the PA designer has limited or no control over

the harmonic terminations, and is forced to improve efficiency at the expense of output power.

However, in the case where ideal harmonic terminations are enforceable at the virtual drain, care

should be taken to do so in order to achieve maximum output power for a given PA efficiency.

Note that the presented analysis does not directly apply to a class-E PA, where the equivalent

output capacitance at the drain is a part of the wave shaping circuit [53].

3.5.1 Contour Discontinuity

During analysis of the second harmonic PA simulation results, it was found that the power,

resistance, and reactance exhibited a discontinuity approximately along the parabola defined by

rL(2f0) = 1− x2
L(2f0)

2 (3.43)

which is shown by the dashed lines in Fig. 3.12 - Fig. 3.14(b). The parabola is also shown in

Fig. 3.16 on rectangular axes. Data near this parabola was subsequently eliminated prior to

generation of power, resistance, and reactance contours when fundamental reactance is optimized.

As with the results presented for a real fundamental load impedance, the arc defines the transition

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

x

r

Figure 3.16: Parabolic discontinuity shown on rectangular axes of normalized resistance and
normalized reactance.
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between current peaking PA classes and voltage peaking PA classes. Although it is not proven that

the transition occurs exactly along the arc defined in (3.43), it does provide a good approximation.

Deriving the theoretical expression defining the discontinuity would very difficult if not impossible.

If one could solve such a problem, then the optimizer would not be required to find the optimal

efficiency solutions because this solution would be byproduct of that analysis.

3.6 Extension to Practical PA with Parasitic Out-

put Network

The analysis and results presented in the previous sections correspond to an ideal PA model. In

particular, the efficiency and power contours as a function of harmonic impedance are referenced

to the impedance at the virtual drain of the transistor, rather than a measurable impedance plane.

As shown in [8], the parasitics between the virtual drain and loading network not only transform

the impedance, but may significantly increase the phase sensitivity of harmonic terminations

at the virtual drain. As a first step towards developing a more realistic model, consider the

PA block diagram that includes a constant parasitic device output capacitance Cout shown in

Fig. 3.17. Though Cout can be nonlinear in some devices, it has been shown that the drain-to-

source capacitance CDS for a GaN HEMT device is nearly constant [54]. Since the gate-to-drain

VDD

vD

iL
iD

IDD

RFC

ZL

+

-

vL
vIN

ZIN

+

-

Cb

Cout

ZD

Figure 3.17: Circuit diagram of ideal common source FET-based PA with incorporation of a
constant output capacitance Cout. The S-parameters of Cout represent a transformation between
the virtual drain and the measurable plane corresponding to the loading network ZL.
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capacitance is significantly smaller than CDS , Cout can be considered to be approximately linear.

Another device technology having an approximately constant Cout is the GaAs High-Voltage

HBT (HVHBT) [55]. Device technologies that have a nonlinear output capacitance would require

an analysis procedure different from that presented in this section.

In general, the assumed constant Cout can be replaced by any two-port S-parameter model

corresponding to an arbitrary linear transformation describing the parasitics. The impedance

seen at the virtual drain is no longer equivalent to the impedance presented by the load (i.e.

ZD(nf0) 6= ZL(nf0)). For the nth harmonic, the normalized impedance at the virtual drain

zD(nf0) is translated to an actual impedance ZD(nf0) given by

ZD(nf0) = RD(f0)zD(nf0) = RD(nf0) + jXD(nf0) (3.44)

where RD(f0) is defined in (3.27). Note that (3.27) refers to RL(f0), however in the ideal analysis

of Section 3.2 RL(f0) = RD(f0) so the expression is applicable. Additionally, note that RD(f0) is

a function of the set of harmonic terminations enforced and in general will differ for each unique

set of harmonic terminations. Alternatively, RD(f0) may be fixed at a specific value without

impacting the efficiency contours shown in Fig. 3.4. However, this will result in non-constant

maximum voltage and current, along with different power contours than those shown in Fig. 3.5.

The reflection coefficient ΓD(nf0) at the virtual drain is calculated by

ΓD(nf0) = zD(nf0)− 1
zD(nf0) + 1 (3.45)

Define the two-port S-parameters at the nth harmonic that represent the parasitic transformation

between the virtual drain and a measurable reference plane as S(nf0), where the characteristic

impedance of the ports is RD(f0) Ω. The reflection coefficient ΓD(nf0) looking into the two-port

network is expressed as

ΓD(nf0) = S11(nf0) + S12(nf0)S21(nf0)ΓL(nf0)
1− S22(nf0)ΓL(nf0) (3.46)

where ΓL(nf0) is the reflection coefficient at the measurement reference plane. The reflection

coefficient ΓL(nf0) at the measurable plane is calculated by rearranging (3.46) and is given by

ΓL(nf0) = ΓD(nf0)− S11(nf0)
S22(nf0)ΓD(nf0)−∆(nf0) (3.47)
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where ∆(nf0) is given by

∆(nf0) = S11(nf0)S22(nf0)− S21(nf0)S12(nf0) (3.48)

The normalized impedance at the measurable plane zL(nf0) is then given by

zL(nf0) = 1 + ΓL(nf0)
1− ΓL(nf0) (3.49)

Using (3.47) - (3.49), the efficiency, fundamental power, fundamental resistance and fundamental

reactance contours at the virtual drain can be translated to the measurable reference plane. This

method enables a theoretical analysis of efficiency and power sensitivity to device and packaging

parasitics.

As an explicit example, consider the circuit diagram of Fig. 3.17 where Cout exists between

the virtual drain and ZL. The S-parameters of Cout assuming the characteristic impedance of

the ports is RD(f0) Ω are given by

S11(nf0) = S22(nf0) = − jπnf0RD(f0)Cout
1 + jπnf0RD(f0)Cout

(3.50)

S21(nf0) = S12(nf0) = 1
1 + jπnf0RD(f0)Cout

(3.51)

Equations (3.47) - (3.49) may now be used along with the S-parameters in order to calculate

PA contours at the loading network plane rather than the virtual drain. Under the assumptions

that f0 = 2.14GHz, RA = 10 Ω, XL(f0) = 0 Ω and Cout = 5pF, the efficiency, power, and

resistance contours are calculated as a function of zL(2f0) and are shown in Fig. 3.18. Due to the

discontinuity in RD(f0) about the imaginary axis as discussed in Section 3.4.1, the contours shown

in Fig. 3.18 were not evaluated near Re {ΓD(2f0)} = 0. The efficiency, power and resistance

contours shown in Fig. 3.4, Fig. 3.5 and Fig. 3.6 experience a significant transformation due to

Cout.

This simple example illustrates a fundamental problem the PA designer must overcome in

order to achieve a high efficiency PA design. The transformation between the virtual drain and a

measurable plane must be understood and carefully quantified in order to achieve a high efficiency

PA via proper harmonic termination.

89



0
.2

0
.5

1 2 5

+j0.2

 j0.2

+j0.5

 j0.5

+j1

 j1

+j2

 j2

+j5

 j5

0 ∞7
0

68

68

66

66

64 64

62

62

60

58

58 60
6264

6668
70

(a)

∞

(b)

∞

(c)

Figure 3.18: (a) Ideal PA efficiency contours vs. zL(2f0). (b) Ideal PA pLA(f0) contours vs.
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Fig. 3.5 and Fig. 3.6 are severely distorted given the transformation due to the 5 pF Cout.90



3.7 Alternate Normalization Conditions

It is important to note that the normalization conditions defined by (3.11) - (4.54) may be

redefined in many different ways if desired without impacting the maximal efficiency. However,

the fundamental output power and load impedance will be impacted. For instance, it may be

useful to normalize to a constant supply voltage VDD and supply current IDD. In this case, the

normalization equations are restructured to the forms given by

v̄D(θ) = 1
αVDD

vD(θ) (V) (3.52)

īD(θ) = 1
βIDD

iD(θ) (A) (3.53)

v̄L(θ) = 1
αVDD

vL(θ) (V) (3.54)

īL(θ) = 1
βIDD

iL(θ) (A) (3.55)

where α and β are the redefined scaling factors given by

α = 1
V̄DD

(V−1) (3.56)

β = 1
ĪDD

(A−1) (3.57)

The normalized output power, fundamental load resistance, and fundamental load reactance

defined in (3.26), (3.30) and (3.31), respectively, are now given by

pLA(f0) = 2P̄L(f0)
V̄DD ĪDD

(3.58)

rLA(f0) = ĪDD

V̄DD
(3.59)

xLA(f0) = ĪDD

V̄DD
xL(f0) (3.60)

It is evident that the calculated fundamental output power, load resistance and load reactance

will differ from those calculated when normalizing to peak voltage and current. However, it is

necessary to understand that this normalization scheme places no limits on the peak voltage and

current. Care should be taken to determine which normalization scheme is more appropriate for

the problem at hand. As an example, the fundamental output power and resistance contours
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Figure 3.19: (a) Ideal PA fundamental output power contours vs. zL(2f0) when the normalization
conditions of (3.52)-(3.55) are applied. (b) Ideal PA fundamental load resistance contours vs.
zL(2f0) when the normalization conditions of (3.52)-(3.55) are applied.
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for an amplifier with real fundamental load impedance limited to second harmonic voltage and

current are shown in Fig. 3.19(a) and Fig. 3.19(b), respectively. Note the difference between the

contours of Fig. 3.19(a) and Fig. 3.19(b) and their counterparts in Fig. 3.5(a) and Fig. 3.6(a).

These differences are strictly due to the applied normalization conditions, therefore they only

reflect the differences in the scale of the optimal waveforms rather than the shape.

3.8 Qualitative Experimental Validation

The goal of this chapter is to develop a generalized theoretical description of harmonically

terminated power amplifiers. Full experimental verification of the theory requires variation of

supply voltage and current in addition to fundamental and harmonic load impedances at the

virtual drain of the device. A qualitative experimental validation was performed through load

pull measurements on a Triquint TGF2023-10 50W Discrete Power GaN on SiC HEMT [25]. A

fundamental frequency load pull was performed for six unique second harmonic loads at a fixed

quiescent supply voltage and current of of 28V and 300mA, respectively. The measured results

are then de-embedded to the virtual drain of the transistor by accounting for the intrinsic output

capacitance and the extrinsic impedance transformation due to the bond wires and fringing

capacitance as shown in Fig. 3.20. The extrinsic transformation network was obtained by full

wave HFSS simulations. The optimal drain efficiency and associated output power are shown in

Fig. 3.21.

Figure 3.20: Measured device (left) and HFSS model of transformation (right). The transistor
die is 824µm x 2482µm in size.
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The measured data reveals several trends predicted by the theory:

• As the second harmonic termination is swept from a capacitive to inductive, the optimal

fundamental impedance sweeps from inductive to capacitive. This is in agreement with the

results shown in Fig. 3.14(b).

• The trend of the optimal fundamental resistance as a function of second harmonic termina-

tion is in agreement with Fig. 3.14(a).

• When the second harmonic is nearest an open circuit, the drain efficiency is maximum with

an approximately real fundamental load impedance.

• High efficiency is achieved over a range of second harmonic termination phase as predicted

in Fig. 3.12. For instance, points C and D in Fig. 3.21 show the same measured power, high

efficiency, and optimal fundamental impedances which are very close.
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Figure 3.21: Results from harmonic load pull of Triquint 50W device on a 10Ω Smith Chart.
The points denoted by diamonds mark the second harmonic termination at the virtual drain
along with resultant peak drain efficiency and associated fundamental output power. The points
denoted by an x mark the fundamental load impedance resulting in peak drain efficiency for each
respective second harmonic termination.
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A practical experiment providing full validation of the optimal drain efficiency, fundamental

output power and fundamental load impedance presented in the previous sections would require

a large set of measurements, which are not always necessary for practical design. Nevertheless,

the presented experimental data shows that the theory is useful for providing design insight and

predicting trends.

In summary, this chapter presents a generalized analysis of PA efficiency maximization with

associated fundamental output power and fundamental load impedance given arbitrary harmonic

terminations. To the best of the authors’ knowledge, a general treatment has not been previously

presented in literature. Efficiency, fundamental output power and fundamental load resistance

contours as a function of second and third harmonic terminations are calculated in Section 3.4

given a real fundamental load impedance, and provide useful guidelines for PA design.

More importantly, the analysis (Section 3.4) gives the designer information about the sensitivity

of PA efficiency with respect to the magnitude and phase of the second and third harmonic

load reflection coefficients. It is shown that PA efficiency is less sensitive to both |ΓL(3f0)|

and ∠ΓL(3f0) than |ΓL(2f0)| and ∠ΓL(2f0). This is important for practical PA design when

the harmonic frequencies are high and the harmonic impedances presented at the virtual drain

are sensitive to parasitics. Adjusting the fundamental frequency load reactance XL(f0) allows

the PA designer to improve efficiency at a reduced output power given non-ideal harmonic

terminations. Section 3.5 gives quantitative results for efficiency, output power, resistance and

reactance contours for a second-harmonic only PA.

In practical microwave PAs, device and package parasitics can prevent the PA designer from

presenting optimal harmonic terminations at the virtual drain. In that case, the results of analysis

presented here quantify the fundamental output power and load impedance tradeoffs associated

with improving PA efficiency via tuning the fundamental frequency reactance presented to the

virtual drain of a given device.
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3.9 Conclusion

The specific contributions presented in this chapter are:

• Analysis of ideal PA behavior for arbitrary complex harmonic terminations, which extends

existing theory developed by Raab in [40], which was only valid for specific reactive

impedances.

• In particular, this method is useful because it predicts the sensitivity of relevant PA

parameters to specific impedance terminations at the harmonic frequencies. This is especially

important for higher microwave frequency PAs, where the harmonics are in the millimeter-

wave range, and parasitic reactances and loss can significantly affect the impedances designed

at the harmonics.

• An interesting result from the theory is the limited sensitivity of efficiency and power

to harmonic termination phase, which points to the possibility of extending bandwidth

through use of appropriate resonant circuits.

• The theoretical approach was validated with qualitative measurements on a 2.14GHz

class-F−1 PA with second and third harmonic terminations.

• In Section 3.6, the theory was extended to include a linear transformation due to Cout and

was further extended to include bond wires in the experimental validation. In general, the

method may be applied to a PA having an arbitrary parasitic output network which is

linear and characterized by S-parameters.

• The method in this chapter can be extended to include analysis of PA efficiency, output power,

and output load given an arbitrary set of both input and output harmonic terminations.

• The theoretical approach and experimental validation is presented in [10].
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4.1 Introduction

Long-range system performance of solid-state phased array radar is enabled by a large number

of transmit modules that produce very high transmit powers. A typical transmit module has an

efficient nonlinear class-C power amplifier (PA) as the output stage [56]. This in turn restricts the

transmitted pulse waveform to constant-amplitude rectangular envelopes which inherently have

significant spectral content over a large bandwidth, which can interfere with other microwave

systems. Amplitude modulation of the envelope provides a means to obtain spectral confinement,

and has been experimentally investigated in [57, 58, 59] in an out-phasing PA with a Gaussian

envelope shape, with up to a 3 dB peak-to-average ratio (PAR) waveform and no system efficiency

reported. For these experiments, the efficiency was significantly impacted by the out-phasing

due to the use of an isolated combiner. However, a Chireix out-phasing technique which uses a

non-isolated combiner has potential for improving the efficiency at the expense of implementation

complexity [60].

This chapter addresses the implementation of a radar transmitter having the ability to

generate pulsed waveforms with both amplitude-modulation (AM) and phase-modulation (PM).

The motivation of the introduction of AM to the radar signal is spectral confinement of the

radar signal. The impact of the AM on the transmitted spectrum as well as other radar system

performance metrics is analyzed in Section 4.2. Specifically, the transmission of a waveform

having a Gaussian power envelope is investigated and compared to transmission of a uniform

envelope waveform. Additionally, a comparison to applying an analogous weighting function fully

on receive is analyzed.

Section 4.3 presents a method for creating spectrally confined radar signals based on Envelope

Elimination and Restoration (EER) first introduced in [61]. Extensions of EER are extensively
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applied to communication signals and a good overview is presented in [62]. Typical envelope

supply modulators are designed for communication signals with PARs up to 10 dB. In contrast to

communications signals, the radar signal is typically well known a priori to transmission, allowing

the use of a high efficiency resonant pulse shaping supply which shapes the signal envelope as it

is amplified by a high efficiency PA. A digital pre-distortion technique is used to linearize the

system in order to produce envelopes with a programmable PAR. The PA used for testing the

AM radar transmitter concept operates at 2.14GHz with 78% efficiency at 6 W peak power.

A 66.4% average efficiency over a 14.7µs pulse with a 4.1dB PAR shaped by a 90% efficient

resonant-pulse envelope supply modulator is demonstrated. For PARs greater than 4.1 dB, the

signal envelope can be split between the supply modulator and the PA drive, with up to 25%

improvement in composite efficiency.

4.2 Radar System Performance Metric Analysis

Any proposal to modify a component of a radar system must be accompanied by an analysis of

the impact on system performance. The performance metrics of importance for modern radar

systems are too numerous to list herein, but are covered extensively in texts such as [29, 63]. This

section addresses the key impacts which applying amplitude modulation to a transmitted radar

pulse has on radar performance. Specifically, impacts on the transmitted spectrum, time side-lobe

level, range resolution and signal-to-noise ratio (SNR) are quantified, with SNR impacting many

system metrics such as detection performance and measurement errors. Much of the analysis

in the following subsections can be lumped under the discipline of radar signal analysis, and

excellent texts on the subject include [64, 65].

The spectrum occupied by a transmitted radar signal has a serious impact on the ability of

co-located microwave systems to maintain operability. For instance, a high power S-band radar

system operating near 2.45GHz could seriously impact nearby WiFi systems which operate at

2.45GHz. Another example is inter-operability of co-located radar systems. Both cases require

the spectrum occupied by the radar signal to be limited to allow proper operation of co-located

99



microwave systems.

The time domain envelope of the signal output from the radar receive filter is of extreme

importance to radar system performance analysis, and is typically discussed in terms of its range

resolution and time side-lobe level. The range resolution refers to the width of the main-lobe of

the radar response measured at a certain level from the peak response, and is a metric which

describes the ability of the system to distinguish closely spaced objects. The time side-lobe level is

the level of the side-lobes of the radar response relative to the peak response, and is an indictor of

the ability of the radar to suppress signal returns offset in time. This is important for preventing

the masking of objects having small Radar Cross Section (RCS) by those having large RCS while

offset in range.

For the analysis presented, it is assumed that the radar signal has a pulsed Linear Frequency

Modulated (LFM) waveform phase modulation [64]. The LFM waveform is a popular waveform

used by many modern radar systems where improved range resolution is desired. It has a complex

baseband signal representation given by

s(t) = 1√
T
rect

(
t

T

)
ejπkt

2
(4.1)

where k = B
T , T is the pulse-width and B is the swept bandwidth. The rectangular function

rect(x) is defined as

rect(x) =


0, |x| > 1

2

1, |x| ≤ 1
2

(4.2)

Effectively, the phase is swept quadratically in order to change the frequency linearly as a function

of time. As will be seen later, a parameter of importance is the time-bandwidth product γ, defined

as γ = BT . Note that if the swept bandwidth B is set to zero, the signal degenerates to a pulsed

continuous-wave (CW) signal.

The analyzed amplitude modulation corresponds to a Gaussian power envelope, which is

created by the application of the square root of a Gaussian to the complex baseband signal. This

weighting was chosen because it has very attractive spectral confinement properties. Therefore,

in the cases where the transmit signal is amplitude modulated, the baseband windowing function
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is given by

w(t) = β

√
e−

1
2 (α 2t

T )2
= βe−

1
4 (α 2t

T )2
= βe−(α t

T )2
(4.3)

where the parameter α sets the PAR of the transmitted waveform and the parameter β is a

normalization factor, as will be discussed in the following subsections.

4.2.1 Transmitted Spectrum

Un-weighted LFM Pulse

Prior to investigating the transmitted spectrum of the AM LFM signal, it is important to

understand the spectrum of the LFM signal itself, which will both motivate the use of AM as

well as provide results to compare to. The Fourier transform of (4.1) is given by

S(jω) = β

∫ +∞

−∞

1√
T
rect

(
t

T

)
ejπkt

2
e−jωtdt (4.4)

The scaling factor β is defined such that

β = 1∫ +∞
−∞

1√
T
rect

(
t
T

)
ejπkt2dt

= j
√
jB

erf
(
j
√
jπBT

2

) (4.5)

where the error function erf(x) is defined as

erf(x) = 2√
π

∫ x

0
e−t

2
dt (4.6)

The definition of β in (4.5) normalizes the spectrum to the baseband DC value. Equation (4.4)

simplifies to

S(jω) = β√
T

∫ +T
2

−T2
ej(πkt

2−ωt)dt (4.7)

The indefinite form of the integral in (4.7) has the form and solution∫
ej(ax

2+bx)dx =
√
jπ

4ae
−j b24a erf

(
b
2 + ax
√
ja

)
(4.8)

which was arrived at using the MATLAB® symbolic toolbox. Note that the argument of the error

function in (4.8) is complex and must be evaluated as such. By inspection of (4.8) it is evident

that

a = πk

b = −ω
(4.9)
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Substituting the results of (4.9) into (4.7) results in

S(jω) = β√
T

√
jπ

4πke
−j ω2

4πk erf
( −ω

2 + πkt
√
jπk

)∣∣∣∣∣
+T

2

−T2

(4.10)

which simplifies to

S(jω) = β

√
j

4Be
−j ω2

4πk

[
erf
(
πB − ω
2
√
jπk

)
+ erf

(
πB + ω

2
√
jπk

)]
(4.11)

The magnitude of the spectrum is then given by

|S(jω)| = |β|
√

1
4B

∣∣∣∣erf(πB − ω2
√
jπk

)
+ erf

(
πB + ω

2
√
jπk

)∣∣∣∣ (4.12)

which through substitution of (4.5) into (4.12) simplifies to

|S(jω)| =

∣∣∣∣erf( πB−ω
2
√
jπk

)
+ erf

(
πB+ω
2
√
jπk

)∣∣∣∣
2
∣∣∣∣erf( j√jπBT2

)∣∣∣∣ (4.13)

Root Gaussian Weighted LFM Pulse

The Fourier transform of the root Gaussian weighted pulse is given by

S(jω) = β

∫ +∞

−∞

1√
T
rect

(
t

T

)
ejπkt

2
e−jωte−(α t

T )2
dt (4.14)

where β is defined such that

β = 1∫ +∞
−∞

1√
T
rect

(
t
T

)
ejπkt2e−(α t

T )2
dt

=
√
α2 − jkπT 2

√
πT erf

(√
α2−jkπT 2

2

) (4.15)

The magnitude of β expressed as

|β| =
[
α4 + (πBT )2] 1

4

√
πT

∣∣∣∣erf(√α2−jπBT
2

)∣∣∣∣ (4.16)

Equation (4.14) may be expressed as

S(jω) = β√
T

∫ +T
2

−T2
e
j
[(
πk+j( αT )2)

t2−ωt
]
dt (4.17)

The indefinite form of the integral in (4.17) has the form and solution

∫
ej[(a+jb)x2+cx]dx = j

2

√
π

ja− b
e

c2
4(ja−b) erf

( c
2 − jx(ja− b)
√
ja− b

)
(4.18)
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By inspection of (4.17) it is evident that

a = πk

b =
(
α
T

)2
c = −ω

(4.19)

Substituting the results of (4.19) into (4.18) results in

∫
ej[(a+jb)x2+cx]dx = j

2

√
π

jπk −
(
α
T

)2 e ω2

4
[
jπk−( αT )2]

erf

 −ω2 − jt
[
jπk −

(
α
T

)2]√
jπk −

(
α
T

)2
 (4.20)

Substituting (4.20) into (4.17) results in

S(jω) = jβ

2
√
T

√
π

jπk −
(
α
T

)2 e ω2

4
[
jπk−( αT )2]

erf

 −ω2 − jt
[
jπk −

(
α
T

)2]√
jπk −

(
α
T

)2
∣∣∣∣∣∣

+T
2

−T2

(4.21)

which is equivalent to

S(jω) = jβ

2
√
T

√
π

jπk −
(
α
T

)2 e ω2

4
[
jπk−( αT )2] erf

−ω +Bπ + j α
2

T

2
√
jπk −

(
α
T

)2
+ erf

 ω +Bπ + j α
2

T

2
√
jπk −

(
α
T

)2


(4.22)

The magnitude is then given by

|S(jω)| = |β|
√
π

2
√
T
[
(πk)2 +

(
α
T

)4] 1
4
e
−

(ωαT )2

4
[

(πk)2+( αT )4] ∣∣∣∣∣∣erf
−ω +Bπ + j α

2

T

2
√
jπk −

(
α
T

)2
+ erf

 ω +Bπ + j α
2

T

2
√
jπk −

(
α
T

)2
∣∣∣∣∣∣

(4.23)

Substituting (4.16) into (4.23) and simplifying results in

|S(jω)| = e
− (ωα)2

4
[

(πB)2+(α2
T )2]

2
∣∣∣∣erf(√α2−jπBT

2

)∣∣∣∣
∣∣∣∣∣∣erf

−ω +Bπ + j α
2

T

2
√
jπk −

(
α
T

)2
+ erf

 ω +Bπ + j α
2

T

2
√
jπk −

(
α
T

)2
∣∣∣∣∣∣ (4.24)

A potentially more insightful form of (4.24) where the spectrum is recast in terms of the

time-bandwidth product γ is given by

|S(jω)| = e
− (ωTα)2

4[(πγ)2+α4]

2
∣∣∣∣erf(√α2−jπγ

2

)∣∣∣∣
∣∣∣∣∣erf

(
−ωT + πγ + jα2

2
√
jπγ − α2

)
+ erf

(
ωT + πγ + jα2

2
√
jπγ − α2

)∣∣∣∣∣ (4.25)

Example

As an example, assume the pulse width T is 20µs, the swept bandwidth B is 1MHz, and α is

set such that the PAR of the weighted transmit signal is 8 dB. The relationship between α and
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Figure 4.1: Example of un-weighted transmit spectrum versus root Gaussian Weighted transmit
spectrum resulting in 8 dB PAR. The time-bandwidth product γ was set to 20, with the swept
bandwidth B set to 1MHz.

PAR is derived in Section 4.2.3. For this example, (4.13) is used to evaluate the spectrum of the

un-weighted transmit pulse and (4.25) is used to evaluate the spectrum of the root Gaussian

weighted transmit pulse. To calculate the error function of a complex number in order to evaluate

(4.13) and (4.25), [66] was used. Fig. 4.1 shows the resultant spectra. It is evident that applying

the root Gaussian weighting function on transmit significantly reduces the occupied spectrum,

therefore demonstrating the ability of weighting on transmit to reduce spectral content. The

following sections will address the impact on other relevant radar performance parameters.

4.2.2 Received Radar Filter Output

The output of the radar receive filter is given by

so(t) = s(t)⊗ h(t) (4.26)

where s(t) is the complex representation of the transmitted radar signal,⊗ denotes the convolution

operator, and h(t) is the complex representation of the impulse response of the receive filter.

Expressed in terms of the convolution integral, (4.26) is represented as

so(t) =
∫ +∞

−∞
s(τ)h(t− τ)dτ (4.27)
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When h(t) is implemented as a matched filter, it is represented as

hm(t) = s∗(−t) (4.28)

where ∗ indicates the complex conjugate. Note that this definition of the matched filter is

not causal, however this definition simplifies the analysis with the only impact being that the

maximum of the autocorrelation will occur at t = 0 rather than t = T . If a weighting window

w(t) is applied on receive, then the output of the radar receive filter is given by

so,w(t) = s(t)⊗ (w(t)h(t)) (4.29)

The following subsections derive the radar receive filter output for three scenarios: no weighting,

weighting on receive-only, and splitting the weighting between transmit and receive. In all cases,

an LFM signal is assumed, where in some cases a amplitude weighting function is applied to

this phase modulated signal. The received output signal is derived assuming a no Doppler shift.

To analyze the radar receive filter output as a function of both time and Doppler shift, it is

necessary to investigate the ambiguity function of the radar signal as discussed in [64]. However,

the analysis assuming no Doppler shift will prove insightful.

LFM - Uniform Transmit Envelope - Matched Filtering

First the output of the radar receive filter will be analyzed given the transmitted waveform is an

un-weighted LFM and the radar receive filter is a matched filter. Substituting (4.1) into (4.27)

and using the condition of (4.28) yields

so(t) =
∫ +∞

−∞

1√
T
rect

( τ
T

)
ejπkτ

2 1√
T
rect

(
τ − t
T

)
e−jπk(τ−t)2

dτ (4.30)

which simplifies to

so(t) = 1
T

∫ +T
2

−T2
rect

(
τ − t
T

)
ejπk(2tτ−t2)dτ (4.31)

Define the auxiliary variable u = τ − t and substitute into (4.31) to yield

so(t) = 1
T

∫ +T
2 −t

−T2 −t
rect

( u
T

)
ejπk(t2+2tu)du (4.32)
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Equation (4.32) can be split up into two regions, given by

so(t) =


1
T

∫ +T
2

−T2 −t
ejπk(t2+2tu)du, −T ≤ t ≤ 0

1
T

∫ +T
2 −t

−T2
ejπk(t2+2tu)du, 0 ≤ t ≤ +T

(4.33)

which evaluates to

so(t) =


−
(
1 + t

T

) sin[πktT(1+ t
T )]

πTkt(1+ t
T ) , −T ≤ t ≤ 0

−
(
1− t

T

) sin[πktT(1− t
T )]

πTkt(1− t
T ) , 0 ≤ t ≤ +T

(4.34)

Substituting k = +B
T into (4.34) results in

so(t) =


−
(
1 + t

T

) sin[πBt(1+ t
T )]

πBt(1+ t
T ) , −T ≤ t ≤ 0

−
(
1− t

T

) sin[πBt(1− t
T )]

πBt(1− t
T ) , 0 ≤ t ≤ +T

(4.35)

Equation (4.30) can be expressed as a single equation in the form

so(t) = −
(

1− |t|
T

) sin
[
πBt

(
1− |t|T

)]
πBt

(
1− |t|T

) , −T ≤ t ≤ +T (4.36)

whose magnitude is simply

|so(t)| =

∣∣∣∣∣∣
(

1− |t|
T

) sin
[
πBt

(
1− |t|T

)]
πBt

(
1− |t|T

)
∣∣∣∣∣∣ , −T ≤ t ≤ +T (4.37)

The expression in (4.37) serves as a reference for comparison to other filtering techniques and

transmitted waveform options.

LFM - Uniform Transmit Envelope - Mismatched Filtering

For this analysis, it will be assumed that the receive filter is weighted by the function

w(t) = βe−
1
2 (α 2t

T )2
(4.38)

It is commonplace to apply weighting to the receive filter in order to control the time side-lobes

[65]. The term β is defined such that the response is normalized to have unity signal gain,

therefore β is given by

β = 1
1
T

∫ +T
2

−T2
e−

1
2 (α 2t

T )2
dt

(4.39)
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which evaluates to

β =
√

2α
√
πerf

(
α√
2

) (4.40)

It is assumed that this weighting function is applied to the receive filter, therefore the radar

receive filter response is given by

so(t) = β

∫ +∞

−∞

1√
T
rect

( τ
T

)
ejπkτ

2 1√
T
rect

(
τ − t
T

)
e−jπk(τ−t)2

e
− 1

2

(
α

2(τ−t)
T

)2

dτ (4.41)

which reduces to

so(t) = β

T

∫ +T
2

−T2
rect

(
τ − t
T

)
ejπk(2tτ−t2)e

− 1
2

(
α

2(τ−t)
T

)2

dτ (4.42)

Define the auxiliary variable u = τ − t and substitute into (4.42) to yield

so(t) = β

T

∫ +T
2 −t

−T2 −t
rect

( u
T

)
ejπk(t2+2tu)e−

1
2 (α 2u

T )2
du (4.43)

which simplifies to

so(t) = βejπkt
2

T

∫ +T
2 −t

−T2 −t
rect

( u
T

)
e
j
[
2πktu+j 1

2 (α 2u
T )2]

du (4.44)

Equation (4.44) can be split up into two regions, given by

so(t) =


βejπkt

2

T

∫ +T
2

−T2 −t
e
j
[
2πktu+j 1

2 (α 2u
T )2]

du, −T ≤ t ≤ 0

βejπkt
2

T

∫ +T
2 −t

−T2
e
j
[
2πktu+j 1

2 (α 2u
T )2]

du, 0 ≤ t ≤ +T

(4.45)

The indefinite integral necessary for solution of (4.45) is given by

∫
ej(ax+jbx2) = 1

2

√
π

b
e−

a2
4b erf

( a
2 + jbx

j
√
b

)
(4.46)

Equation (4.46) simplifies to

∫
ej(ax+jbx2) = 1

2

√
π

b
e−

a2
4b erf

(√
bx− ja

2
√
b

)
(4.47)

By inspection of (4.45) it is evident that

a = 2πkt

b =
(√

2α
T

)2
(4.48)
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Therefore, (4.47) simplifes to

∫
ej(ax+jbx2) = T

2
√

2α
√
πe
−
(
πktT√

2α

)2

erf
(√

2α
T

x− jπktT√
2α

)
(4.49)

Define the auxiliary variable A as the product of the integral coefficient in (4.45) and the coefficient

in front of the error function in (4.47) which is given by

A =
√
πβejπkt

2
e
−
(
πktT√

2α

)2

2
√

2α
(4.50)

The radar receive filter response is formed by substituting (4.49) and (4.50) into (4.45) resulting

in

so(t) =
√
πβejπkt

2
e
−
(
πktT√

2α

)2

2
√

2α

[
erf
(
α√
2
−
√

2α|t|
T

− jπB|t|√
2α

)
+ erf

(
α√
2

+ jπB|t|√
2α

)]
, −T ≤ t ≤ +T

(4.51)

Taking the magnitude of (4.51) yields

|so(t)| =
√
πβe

−
(
πBt√

2α

)2

2
√

2α

∣∣∣∣erf( α√
2
−
√

2α|t|
T

− jπB|t|√
2α

)
+ erf

(
α√
2

+ jπB|t|√
2α

)∣∣∣∣ , −T ≤ t ≤ +T

(4.52)

LFM - Root Gaussian Transmit Weighting - Matched Filtering

The analysis which is most relevant to an AM radar transmitter is next performed, which is

applying a matched filter following transmission of a amplitude modulated pulse. The radar

pulse is shaped on transmit by a root Gaussian window and the receive filter is implemented as

a matched filter. The output of the radar receive filter is given by

so(t) = β

∫ +∞

−∞

1√
T
rect

( τ
T

)
ejπkτ

2
e−(α t

T )2 1√
T
rect

(
τ − t
T

)
e−jπk(τ−t)2

e−(α τ−tT )2
dτ (4.53)

The term β is defined such that the receive filter has unity signal gain, therefore β is given by

β = 1
1
T

∫ +T
2

−T2
e−(α t

T )2
dt

(4.54)

which evaluates to

β = α
√
πerf

(
α
2
) (4.55)
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Equation (4.53) simplifies to

so(t) = β

T
e−(α t

T )2
∫ +T

2

−T2
rect

(
τ − t
T

)
ejπk(2tτ−t2)e−(α τ−tT )2

dτ (4.56)

Again using the auxiliary variable u = τ − t, (4.56) is expressed as

so(t) = β

T
e−(α t

T )2
∫ +T

2

−T2
rect

( u
T

)
ejπk(t2+2tu)e−(α uT )2

dτ (4.57)

which simplifies to

so(t) = β

T
e−(α t

T )2
ejπkt

2
∫ +T

2

−T2
rect

( u
T

)
e
j
[
2πktu+j(α uT )2]

dτ (4.58)

At this point we note that the integral is of exactly the same form as the previous section, so we

may immediately write

so(t) = A

[
erf
(
α

2 −
α|t|
T
− jπB|t|

α

)
+ erf

(
α

2 + jπB|t|
α

)]
, −T ≤ t ≤ +T (4.59)

where in this case

A =
√
πβejπkt

2
e−(πktTα )2

e−(α t
T )2

2α (4.60)

Plugging in the expression for A yields

so(t) =
√
πβejπkt

2
e−(πktTα )2

e−(α t
T )2

2α

[
erf
(
α

2 −
α|t|
T
− jπB|t|

α

)
+ erf

(
α

2 + jπB|t|
α

)]
, −T ≤ t ≤ +T

(4.61)

Taking the magnitude yields

|so(t)| =
√
πβe−(πBtα )2

e−(α t
T )2

2α

∣∣∣∣erf(α2 − α|t|
T
− jπB|t|

α

)
+ erf

(
α

2 + jπB|t|
α

)∣∣∣∣ , −T ≤ t ≤ +T

(4.62)

Example

As an example, assume the pulse width T is 20µs, the swept bandwidth B is 1MHz, and α is set

such that the PAR of the weighted transmit signal is 8 dB. Let Case A be defined as transmission

of an un-weighted LFM and processing the received signal with a matched filter. Let Case B

be defined as transmission of an un-weighted LFM and processing the received signal with a

matched filter weighted by a Gaussian window having α set as defined above. Let Case C be

109



−20 −10 0 10 20
−50

−40

−30

−20

−10

0

Time (µs)

N
or

m
al

iz
ed

 F
ilt

er
 R

es
po

ns
e 

(d
B

)

 

 
Case A
Case B
Case C

Figure 4.2: Radar receive filter response for Case A, Case B and Case C as defined above.

defined as transmission of a root Gaussian weighted LFM and processing the received signal with

a matched filter, with α being set identical to Case B. For Case A, Case B and Case C (4.37),

(4.52) and (4.61) are used to evaluate the radar receive filter response, respectively. Fig. 4.2

shows the resultant radar receive filter response. Note how Case A has the narrowest main-lobe,

while Case B has the widest. This means that Case A has the best range resolution and largest

effective bandwidth, while Case B has the worst range resolution and smallest effective bandwidth.

Note that Case C has the best performance in terms of time side-lobes. They are effectively

non-existent due to the implementation of the weighting on transmit along with a matched filter.

This is a very desirable feature which would eliminate large objects and offset ranges interfering

with the measured response.

It is evident that the window applied to the receive filter in Case B is not very productive.

I greatly degrades the range resolution while providing only minimal time side-lobe reduction.

Additionally, the loss associated with mismatched filtering is significant, which will be discussed

in the following subsection. It should also be noted that swept bandwidth for each case could be

set uniquely such that the range resolution for each case is equivalent. This will be discussed in

a later subsection as well. As a final note, a disadvantage to reduction of the transmit power

via amplitude modulation is that the SNR on receive will generally be degraded relative to
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transmitting a uniform envelope. This is due to the average power reduction, which is discussed

in the following subsection.

4.2.3 Transmit Power Reduction & Receive Filter Mismatch

Loss

To allow a fair comparison of different combinations of transmit signal weighting and receive filter

weighting it is necessary to consider the loss factor, which is a combination of the loss due to

average power reduction on transmit if a weighting is employed and the loss due to mismatched

filtering. The reduction of average power on transmit is simply the Peak-to-Average-Power-Ratio

(PAR) of the transmitted signal. When the power envelope on transmit is shaped as a Gaussian

using the square root of the window as defined in (4.38), it is easily shown that the PAR is given

by

PAR = 1
1
T

∫ +T
2

−T2
e−

1
2 (α 2t

T )2
dt

=
√

2α
√
πerf

(
α√
2

) (4.63)

Fig. 4.3 shows the variation of α as a function of PAR for up to 12 dB PAR. The receive filter

loss comes about when a matched filter is not applied on receive [65]. This loss is expressed as

Lm =
[∫
w(t)dt

]2
T
∫
w2(t)dt

(4.64)
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Figure 4.4: Mismatched filter loss when Gaussian window is applied to the radar receive filter as
a function of PAR. The PAR corresponds to the PAR that would be achieved on transmit if the
root of the window was applied to the transmitted signal, resulting in a Gaussian power envelope.

When a mismatched filter is implemented as a Gaussian filter, the mismatch loss is given by

Lm =

[∫
e−

1
2 (α 2t

T )2
dt
]2

T
∫
e−(α 2t

T )2
dt

(4.65)

which evaluates as

Lm =
√
π

α

erf
(
α√
2

)2

erf(α) (4.66)

For a Gaussian window on receive, whose loss factor is given in (4.66), the loss in dB is shown

in Fig. 4.4. For large PAR, the loss is approximately 1.5 dB greater than the PAR. In all cases,

the loss is greater than the PAR. Therefore, if the only important metric is SNR, then splitting

the window up between transmit and receive will always result in a lower SNR.

4.2.4 Range Resolution & Time Side-lobe Level

The range resolution of a radar corresponds to the width of the main-lobe of the radar receive filter

output. In general, the range resolution is not a fixed number, for one could conceivably define it

as the points at which the main-lobe decays to any arbitrary level. For the analysis performed

below, the 3 dB range resolution will be investigated, which corresponds to the half-power width

of the main-lobe of the radar receive filter output. It is noted that another means by which
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the range resolution properties of a radar waveform can be analyzed is calculation of the time

resolution constant as discussed in [64]. To perform a general analysis of range resolution, it will

be convenient to define the normalized time variable as

tn = t

T
(4.67)

Substituting this relationship in (4.52) recasts the radar receive filter output from an un-weighted

transmit LFM and Gaussian window applied to the matched receive filter as

|so(t)| =
√
πβe

−
(
πγtn√

2α

)2

2
√

2α

∣∣∣∣erf( α√
2
−
√

2α|tn| −
jπγ|tn|√

2α

)
+ erf

(
α√
2

+ jπγ|tn|√
2α

)∣∣∣∣ , −1 ≤ tn ≤ +1

(4.68)

Substituting the same relationship in (4.62) recasts the radar receive filter output from a root

Gaussian weighted transmit LFM processed with a matched receive filter as

|so(t)| =
√
πβe−(πγtnα )2

e−(αtn)2

2α

∣∣∣∣erf(α2 − α|tn| − jπγ|tn|
α

)
+ erf

(
α

2 + jπγ|tn|
α

)∣∣∣∣ , −1 ≤ tn ≤ +1

(4.69)

Note that the values of β in (4.68) and (4.69) have different definitions which were defined in

(4.40) and (4.55), respectively. To solve for the 3 dB range resolution it is necessary to find

the points at which the magnitude of the radar receive filter output is 1√
2 . Solving the (4.68)

and (4.69) for this condition appears intractable, but calculating the 3 dB range resolution is

achievable numerically. Fig. 4.5 shows the range resolution relative to an un-weighted LFM on

transmit and receive versus time bandwidth products for a 4 dB PAR window either fully applied

on receive or split on transmit and receive. Note that for low time-bandwidth products, splitting

up the Gaussian window on transmit and receive actually results in a better range resolution

than does the un-weighted transmit LFM convolved with its matched filter. This is even more

evident when the PAR is increased to 12 dB, as shown in Fig. 4.7. The reason for the variation in

range resolution is that the effective bandwidth is not equivalent for the uniform LFM and the

root-Gaussian weighted LFM. If the effective bandwidths of the two schemes are made equivalent,

then the range resolutions of the two schemes will be equivalent. The effective bandwidth, also
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Figure 4.5: Range resolution factor versus time-bandwidth product γ for 4 dB PAR Gaussian
window either full applied on receive or split on transmit and receive. The results are normalized
to the range resolution achieved when a un-weighted LFM pulse is processed with its matched
filter.
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Figure 4.6: Range resolution factor versus time-bandwidth product γ for 8 dB PAR Gaussian
window either full applied on receive or split on transmit and receive. The results are normalized
to the range resolution achieved when a un-weighted LFM pulse is processed with its matched
filter.
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Figure 4.7: Range resolution factor versus time-bandwidth product γ for 12 dB PAR Gaussian
window either full applied on receive or split on transmit and receive. The results are normalized
to the range resolution achieved when a un-weighted LFM pulse is processed with its matched
filter.

referred to as the rms bandwidth, is given as

B2
rms = 1

2π

∫ +∞
−∞ ω2|So(ω)|2dω∫ +∞
−∞ |So(ω)|2dω

(4.70)

where the notation has been modified from [63] to match the notation in this chapter. The term

So(ω) corresponds to the signal voltage spectrum at the output of the radar receive filter. Given

the the complexity of evaluating (4.70) for the weighted signals discussed in this chapter, a full

evaluation is not presented. However, if the rms bandwidth for two different transmission and

reception schemes was equivalent, it is expected that the range resolution would be the same.

Here is an approximate example demonstrating this. Let us again use the 1MHz 20µs LFM

modulation, but for the root-Gaussian weighted pulse we will increase the parameter B until

the bandwidth for the two cases is approximately the same. It was found that 5.8MHz of swept

bandwidth for the 12 dB PAR root-Gaussian weighted pulse resulted in a nearly identical range

resolution and therefore must have approximately the same effective bandwidth. Fig. 4.8 shows

the transmitted spectrums for this case with Fig. 4.9 showing the radar receive filter outputs. It

is evident that the 3 dB range resolution is the same for the two cases. However, the spectrum is

far better confined with the root-Gaussian transmit pulse and the filter output has far better
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Figure 4.8: Spectrum resulting in same range resolution for cases A,B and C.
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Figure 4.9: Radar receive filter output demonstrating same range resolution.

time side-lobes. The drawback however is the power, since 12 dB of average power was sacrificed

to achieve the demonstrated spectrum, which is a very significant amount of power.

The time side-lobe level is also of extreme importance to modern radar systems due to its

impact on target masking. For instance, a large RCS object closely spaced to a small RCS object

can mask the detection of the small RCS object if the time side-lobe level is not controlled

appropriately. It is evident from the presented results however, that the time side-lobe level

achieved through application of a root Gaussian window on transmit is more than sufficient,

given that the time side-lobes are effectively gone as shown in Fig. 4.9. This implies that the
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actual time side-lobe level of a radar system will be set by hardware instabilities and errors

such as local oscillator phase noise and clock jitter rather than the waveform transmission and

processing scheme.

4.3 Efficient and Linear Amplification of Spectrally

Confined Pulsed AM Radar Signals

This section discusses the implementation of a efficient linear transmitter for generation of pulsed

AM radar signals with the goal of spectral confinement in mind. This is accomplished through

integration of a high efficiency resonant pulse shaping supply and a high efficiency non-linear

PA. Linearization is performed using a two-dimensional static pre-distortion technique which is

discussed below.

4.3.1 Pulsed Radar Transmitter Architecture

Fig. 4.10 shows the transmitter architecture for creating spectrally confined pulsed radar wave-

forms. The desired waveform is generated and pre-distorted at baseband. The baseband signal is

up-converted and amplified by the PA. The supply voltage of the PA is modulated by the resonant

pulse shaping supply which is triggered by the baseband signal generator. Time alignment of

the resonant pulse shaping supply and PA input envelope is critical to generating the desired

transmitter output signal. When the PA is driven with a constant envelope, the waveform envelope

is created by the resonant pulse shaping supply and the gain variation it introduces in the PA.

However, the system is not limited to constant input PA drive, allowing for an additional degree

of freedom in shaping the waveform envelope.

For this demonstration, a 2.14GHz PA was designed with a TriQuint 0.25µm GaN device,

following [9]. The low-frequency stabilization capacitors on the drain bias line need to be removed

to allow drain supply modulation. The PA drain bias line is connected to the resonant pulse

shaping supply with a low-inductance interconnect as shown in Fig. 4.11.
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Figure 4.10: Block diagram of radar transmitter with resonant pulse shaping supply for shaping
the waveform envelope allowing spectral confinement of the transmitted waveform.

Figure 4.11: Photo of the amplifier integrated with the pulsing circuit.

The implementation of the resonant pulsing circuit is shown in Fig. 4.12. Efficient design

of the pulsing circuit requires knowledge of the impedance that the PA presents to the supply,

therefore characterization of the PA is required. Upon receipt of a trigger, an FPGA is used to

turn on switch M1. This produces a resonant pulse across the PA which theoretically has a raised

cosine shape. Switches M2 and M3 are used to actively damp the pulse and improve the output

wave shaping. The implemented resonant pulsing circuit has an efficiency of approximately 90%

when driving a resistive load. Further detail on the implementation of the resonant pulsing circuit

is given in [11]. Fig. 4.13 shows the measured voltage vDD(t) when connected to the PA, which is

well approximated by the square root of a Blackman window [67]. Therefore, the power envelope

of the signal may easily be shaped by a Blackman window.

For this proof-of-concept demonstration, a pulse width of approximately 14.7µs is generated.

Changing the pulse width would require modification of the lumped element values indicated in
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Figure 4.12: Block diagram of resonant pulse shaping supply implementation.
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Figure 4.13: Measured supply voltage vs. time. The measured supply voltage is well approximated
by the square root of a Blackman windowing function.

Fig. 4.12. However, a system implementation could include several switched resonant pulsing

circuits to allow a tunable pulse width.

4.3.2 Static Digital Pre-Distortion Concept

Both envelope shape and phase of the pulse output from the PA need to be controlled in order

to achieve spectral confinement of the radar waveform. Digital pre-distortion (DPD) using a

Look-Up-Table (LUT) was applied, as a common technique for PA linearization and limiting

spectral regrowth, e.g. [68]. Application of LUT-based pre-distortion to the system shown in

Fig. 4.10 is not straightforward, since the supply modulator modifies the gain nonlinearity of

the transmitter relative to that of the PA alone. Given the time varying nature of the supply

waveform, a two-dimensional LUT approach was adopted. In contrast, the LUT would be a
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Figure 4.14: (a) Gain magnitude variation as a function of input voltage and time, normalized to
peak input voltage. (b) Gain phase variation as a function of input voltage and time, normalized
to peak input voltage.

one-dimensional function of input voltage for constant vdd(t).

Initially, the complex voltage gain of the PA connected to the resonant pulse shaping supply

as a function of time and input voltage is measured. Fig. 4.14 shows the variation of the measured

PA gain and phase over the duration of the pulse as a function input voltage. The input drive

waveforms are pre-distorted using this data in order to achieve the appropriate output waveform

envelope and phase from the PA based upon the programmed baseband waveform.
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4.3.3 Experimental Setup and Measurements

MATLAB® is used to generate the ideal waveforms and apply pre-distortion corrections. The I and

Q signals are downloaded to two Agilent 33250A arbitrary waveform generators and upconverted

by an Agilent N9310A RF signal generator, whose output is amplified with a linear amplifier,

providing the drive to the GaN PA. The output time-domain IQ waveforms are measured with an

Agilent E4440A PSA series spectrum analyzer. Power calibration is performed by operating the

PA in CW and comparing the spectrum analyzer measurements to those of a power meter. Average

input and output power over the pulse are calculated from the spectrum analyzer measurements.

Average DC power over the pulse is calculated using average current and voltage measurements

input to the resonant pulse shaping supply, and scaling the power using the duty cycle. This is

valid given vdd(t) is zero outside the pulse width and therefore the PA consumes no DC power in

this region. A 14.7µs full pulse width was used to be consistent with the approximate full pulse

width of the resonant pulse shaping supply. The peak supply voltage is 30V.

Fig. 4.15 shows the measured spectrum with a Blackman window applied to the power

envelope, while the input drive is pulsed CW with slight pre-distortion corrections. Measured

and simulated spectra are in good agreement, and the composite PAE is 66.4% with 6W peak

output power and 4.16 dB PAR. Producing the same pulse shape with the same PA at a constant

supply voltage of 30V results in a PAE of 58.4%, therefore the system improves the PAE by

13.7%.

Fig. 4.16 shows the measured spectrum with a Gaussian window with 12 dB PAR applied

to the power envelope, requiring the input drive to contain some envelope variation given the

resonant supply is limited to 4.16 dB. The measured and theoretical spectra show good agreement,

although it is evident that the pre-distortion does not result in the ideal response. The composite

PAE in this case is 37.1% which is a 23.7% increase over the value obtained using pure drive

modulation. Fig. 4.17 shows the efficiencies as a function of PAR, with the 4 dB measurement

corresponding to application of a Blackman power window and the remaining measurements

corresponding to application of a Gaussian power window with variable PAR. In all cases, the
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Figure 4.15: Normalized frequency response of the measured power spectrum. The is consistent
with the frequency response resultant from shaping the power using a Blackman power window,
which is shown in the solid blue curve.
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Figure 4.16: Normalized frequency response of the measured power spectrum. The is consistent
with the frequency response resultant from shaping the power using a 12dB Gaussian power
window, which is shown in the solid blue curve.

first sideband in the spectrum is kept below -40 dBc and the system PAE is improved over that

obtained with pure drive modulation.
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Figure 4.17: Efficiency vs. PAR comparison for 6W output power.

4.4 Conclusion

In this chapter, a theoretical motivation has been presented for development of a radar transmitter

capable of generating amplitude modulated pulses. The spectral confinement properties of a radar

system capable of AM signal transmission is superior to that of one limited to constant envelope

signals. However, it is also important to understand the impacts which transmission of an AM

signal has on other radar performance characteristics, of which some have been investigated in

the previous sections. Implementation and measurement of a system capable of high efficiency

AM radar signal transmission has been detailed as well, demonstrating the feasibility of such a

transmitter. The specific contributions presented in this chapter are:

• Development of theoretical analysis of the impact of amplitude-modulated pulses on radar

performance, which was reported in [69].

• In collaboration with Prof. Dragan Maksimović and Dr. Miguel Rodríguez, implemented a

simple efficient pulsed supply modulator with an approximately raised cosine amplitude

modulation. The supply was characterized with an efficient PA from Chapter 2, with a

modified bias line.

• With digital pre-distortion used for linearization, the supply-modulated PA demonstrated
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reduced spectral content outside of the band of interest. The PA operates at 2.14GHz with

78% efficiency at 6 W peak power, and with 66.4% average efficiency over a 14.7µs pulse

with a 4.1dB PAR shaped by a 90% efficient resonant-pulse envelope supply modulator. For

PARs greater than 4.1 dB, the signal envelope can be split between the supply modulator

and the PA drive, with up to 25% improvement in composite efficiency.

• This work is reported in [11], where details of the supply modulators are given, as well as a

submitted paper to IEEE Microwave and Wireless Components Letters with focus on RF

characterization and linearization [12].
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5.1 Introduction

Microwave power rectifiers play an important role in many microwave systems. From a chronologi-

cal standpoint, the experiments of Nikola Tesla in the transmission and reception of wireless power

for lighting applications and the method of obtaining direct from alternating currents performed

in the 1890’s was the first work performed in transmission and rectification of wireless power [70].

A main application of microwave power rectifiers in the early 1900’s was in signal detection where

crystals, vacuum tubes or diodes served as the nonlinear element [71, 72]. An excellent discussion

of the early history of microwave detectors is provided in [73]. However, the early application

of microwave rectifiers was specifically for extraction of information rather than extraction of

DC power. The first works in application of microwave rectifiers to extraction of DC power were

performed in the 1960’s using diode-based rectifiers by Purdue University and Raytheon under

funding from the U.S. Air Force Laboratories at Wright Field [74, 75, 76, 77, 78, 79, 80].

Free-space power transmission seemed to find a renewed interest in the early 1970’s. A rather

interesting microwave rectifier for production of DC power or low-frequency AC power called the

Cyclotron-Wave Rectifier was introduced in [81, 82]. This device operates by adding microwave

power in the form of beam cyclotron rotation to an electron beam using a Cuccia coupler. A

conversion region exists where the magnetic field changes, converting the rotational energy in the

cyclotron to longitudinal energy which is recovered as DC power. William C. Brown of Raytheon,

one of the original researchers in the field, continued publishing diode-based rectifier work as well

as introducing the term rectenna, which corresponds to an antenna for the reception microwave

energy integrated with a rectifier [83, 84, 85]. In this time frame, a paper was also published

concerning power combining for an array of microwave power rectifiers [86]. Within this paper,

the authors inadvertently graze the topic of harmonically terminated rectifiers, of which they

seem to hint at a class-F rectifier as will be discussed in detail in Section 5.3.2. A fine history of

microwave power transmission was later presented by Brown in 1984 [87].
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At present time, a plethora of excellent work is going on with diode-based rectifier circuits.

Summaries of current work with state of the art rectification efficiencies, as well as excellent

bodies of work in their own right include [88, 2]. The topic of rectenna use for low-power RF

energy harvesting was fully investigated in [89]. Additional applications where rectifier efficiency

is important include microwave power recycling [90], and DC/DC converters with extremely high

frequency switching [91]. In many of the reported microwave rectifiers, filtering of the harmonics

at both the input and output has been investigated, e.g [92],[93], mainly to reduce re-radiated

harmonic power.

The contribution this chapter provides is the identification of the similarity between power

rectifiers and power amplifiers. Given the similarity as discussed in 5.2, many of the efficiency

improvement techniques developed for power amplifiers may be applied to power rectifiers as

well. Particularly, the impact which harmonic terminations have on the rectification efficiency is

addressed. A general rectifier analysis approach is presented in 5.3, and several classes of microwave

power rectifiers are introduced. An experiment is performed with a Schottky diode-based class-C

rectifier in order to demonstrate the impact of harmonic terminations on rectification efficiency.

The work presented herein is not limited to use of a diode as the nonlinear rectifying element.

Any element which can operate as a switch may be used, which includes transistors [94].

5.2 Relationship to Power Amplifiers

In the opinion of the author, there seems to be less understanding of power rectifiers than power

amplifiers. This may be due to the extensive investigation of power amplifiers relative to rectifiers.

Most likely this stems from the fact that power amplifiers arguably serve a more practical purpose:

increasing the power of a microwave signal. In contrast, microwave power rectifiers seem to make

little sense at first glance. Why would one wish to take a microwave signal, which certainly took

some DC power to generate, and then rectify it to produce DC power? This seems to be a rather

inefficient manner of making DC power in general, but in some cases it becomes necessary. For

instance, there are many embedded sensors that required DC power which cannot be reached
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to change batteries. These sensors could certainly benefit from wireless powering. Thus, such

as in the case of wireless power transmission, the question remains how to do rectification as

efficiently as possible and what topologies make sense.

If one simplifies a power amplifier to its absolute basic principle of operation, it can be simply

stated that a power amplifier is a DC-RF converter. It takes as inputs microwave power and DC

power, and produces as an output microwave power. As is common with most classes of amplifier

analysis, the input microwave power is typically ignored, therefore the amplifier is often analyzed

as having an input DC power and output microwave power, thus being a DC-RF converter. A

seemingly dual problem is where RF power is the input and DC power is the output: a RF-DC

converter, or rectifier. Conceptually, this is a very powerful statement because it immediately

suggests that, in an ideal sense, a perfectly efficient RF-DC converter would operate in exactly

the same manner as a perfectly efficient DC-RF converter. A more succinct way to say this is an

efficient power amplifier should behave as an efficient microwave power rectifier, and vice versa.

From the standpoint of analysis, the analogy also suggests that different classes of microwave

power rectifiers analogous to different classes of microwave power amplifiers with specific harmonic

terminations exist. As will be shown in the following sections, harmonically-terminated rectifiers

exhibit analogous behavior. Rectifiers which will be referred to as class-C, class-F and class-F−1

are analyzed and shown to have identical waveforms to amplifiers of the same classes.

5.3 Power Rectifier Analysis

Consider the microwave rectifier shown in Fig. 5.1. A sinusoidal microwave power source with

voltage magnitude Vs and impedance Rs drives the rectifying element having a resistance RD(vD)

defined as

RD(vD) =


∞, vD > 0

0, vD ≤ 0

(5.1)

where vD and iD are the instantaneous voltage across and current through the rectifying element,

respectively. The dc load seen by the rectifying element is RDC , while the load at the fundamental
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Figure 5.1: Microwave rectifier circuit diagram. An ideal blocking capacitor Cb provides dc
isolation between the microwave source and rectifying element. An ideal choke inductor Lc
isolates the dc load RDC from RF power.

frequency f0 and successive harmonics is set by the matching network.

While the rectifying element depicted by RD(vD) is shown as a shunt diode in Fig. 5.1,

in general it could be replaced by an alternative nonlinear device that acts as a switch, such

as a transistor. In some cases presented below, the analysis is extended to include a non-zero

on-resistance Ron and non-zero threshold voltage Vtr. For these cases, the resistance of the

rectifying element is given by

RD(vD) =


∞, vD > −Vtr

Ron, vD ≤ −Vtr

(5.2)

The analysis of different classes of power rectifiers will now be presented based upon the

harmonic terminations presented to the rectifying element, independent of the physical nonlinear

device which performs the rectification.

5.3.1 Class-C Power Rectifier

Assume the matching circuit of Fig. 5.1 presents Rs(f0) to the rectifying element with all

subsequent harmonics terminated in short circuits. This is equivalent to the harmonic terminations

for a canonical reduced conduction angle power amplifier. The reduced conduction angle amplifier

with maximum drain efficiency is the class-C amplifier, therefore a rectifier with this set of

harmonic terminations will be referred to as a class-C rectifier. The motivation for analyzing

short-circuit harmonic terminations rather than opens is the intention to build the rectifier with

a Schottky diode which has a significant non-linear junction capacitance. Short-circuiting the
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harmonics fixes the harmonic terminations at the intrinsic diode by shorting out the non-linear

junction capacitance.

When the incident RF voltage at the ideal rectifier swings negative, it is clipped at zero given

(5.1). However, the enforced harmonic terminations force the voltage waveform to contain only a

dc and fundamental frequency component. Therefore, a dc component must be produced by the

rectifying element such that the voltage waveform maintains its sinusoidal nature. The voltage

across the rectifying element can now be expressed as

vD(θ) = VDC + VD(f0) sin θ (5.3)

where VD(f0) is the fundamental frequency component of the voltage across the rectifying element,

VDC is the dc component, VDC = VD(f0) and θ = 2πf0t. The current waveform contains infinite

frequency components, and is expressed as

iD(θ) = 2πIDCδ
(
θ − 3π

2 − 2nπ
)
, n = 0, 1, ...,∞ (5.4)

where IDC is the dc current and δ(θ) is the Dirac delta function.

When all available input power Pin is delivered to the rectifier, the fundamental frequency

component of the current through the rectifying element ID(f0) is expressed as

ID(f0) = 2Pin
VD(f0) (5.5)

Additionally, since there is no mechanism by which the rectifier itself can dissipate power, all

of the available input power must be dissipated in the DC load and the conversion efficiency is

100%. Therefore,

Pin = VDCIDC (5.6)

Substituting in (5.5) and rearranging yields the relationship

ID(f0) = 2IDC (5.7)

Therefore, the optimal dc load is given by

RDC = 2Rs(f0) (5.8)
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When all available input power is delivered to the rectifier, the RF-DC conversion efficiency

is 100% because the rectifying element is ideal and cannot dissipate power itself. In order for all

available input power to be delivered to the rectifier, it is straightforward to show that the dc

load must be set relative to the fundamental frequency load as (5.8).

A harmonic balance simulation of an approximately ideal rectifier with short-circuited harmonic

terminations was performed in Microwave Office® using the SPICE diode model with no parasitics

(PNIV) as the rectifying element. The device temperature was set to 1◦K to approximate an

ideal switch. The fundamental frequency excitation was set to 1W at 1GHz with the first 200

harmonics terminated in short-circuits. The diode was presented with 50Ω at the fundamental

frequency and the dc load was swept from 5Ω to 200Ω. The simulated data was then normalized

to generalize the simulation results. The ideal time-domain current and voltage waveforms across

the diode are shown in Fig. 5.2 with the RF-DC conversion efficiency as a function of RDC/Rs(f0)

for varying rectifier on-resistance shown in Fig. 5.3. It is clear that the mechanism of operation

in the ideal case agrees with the theory presented above. The reduction in RF-DC conversion

efficiency when the DC load is not set according to (5.8) is simply due to a fraction of the incident

power being reflected due to the impedance mismatch, and is given by

η = 1−
(
RDC − 2Rs(f0)
RDC + 2Rs(f0)

)2
(5.9)

The waveforms in Fig. 5.2 are identical to those of a class-C PA as the conduction angle

approaches 0◦. The parasitics of realistic rectifying devices such as on-resistance, non-linear ca-

pacitance and threshold voltage will cause actual implementations of the harmonically terminated

rectifier to deviate significantly from theory, but it is instructional to understand the mechanism

of efficient rectification nonetheless.

Rectifier Circuit

The Skyworks SMS7630 Schottky diode in the SC-79 package was selected for the half-wave

rectifier [95]. Source-pull was performed at 2.45GHz with 0-10 dBm available input power for

various dc loads in order to identify the combination of input power, fundamental load and
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Figure 5.2: Ideal normalized voltage (dashed) and current (solid) waveforms for reduced conduction
angle half-wave rectifier. The waveforms have been normalized to their peak values.
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Figure 5.3: Simulated efficiency of reduced conduction angle half-wave rectifier versus RDC/Rs(f0)
for varying rectifier on-resistance.

dc load resulting in highest efficiency. The best case occurred at 6 dBm input power, with the

source-pull contours shown in Fig. 5.4. The on-resistance of the SMS7630 is 20Ω with the optimal

DC load of 1080Ω, therefore RON is approximately 2% of RDC which in theory is 4% of Rs(f0).

From Fig. 5.3, a peak efficiency of 87% occurs with infinite harmonic terminations, therefore the

achieved 77.6% is very reasonable considering only the 2nd and 3rd harmonics were explicitly

terminated.

Measurements of a rectifier designed using the source-pull data show a maximum RF-DC

conversion efficiency of 72.8% when matched to 50Ω being obtained after the 0.6 dB matching
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Figure 5.4: Source-pull contours at f0 with available input power to the diode set to 6 dBm.
The 2f0 and 3f0 harmonics were terminated in short circuits. The impedance is referenced to
the junction capacitance of the diode, therefore the lead inductance of the package has been
compensated for. Setting RDC to 1080Ω was found to result in the optimal efficiency for this
input power.
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Figure 5.5: RF-DC conversion efficiency versus dc load fixed available input powers with 0.6 dB
matching network loss de-embedded. The maximum efficiency of 72.8% occurred at 8 dBm with
RDC = 742Ω, which is lower than the 1080Ω found during source-pull. However, the efficiency
at 1080Ω is 69.9% which is very close to the peak value.

network loss is de-embedded. The fabricated rectifier and dc load sweep measurements are shown

in Fig. 5.5. Open circuit shunt stubs were used to present short-circuit terminations at the second

and third harmonic as shown in the inset of Fig. 5.5. A shunt capacitor was used for presenting the

fundamental frequency impedance to reduce size and allow tunability. The reduction in efficiency

relative to the source-pull measurements is due to the matching circuit not presenting the ideal

impedance found during source-pull. It is difficult to fabricate a low-loss impedance match which
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presents the ideal impedance shown in Fig. 5.4. Additionally, the efficiency is reasonably sensitive

to the impedance match, which accounts for the reduction in efficiency demonstrated by the

fabricated circuit.

Improving Wireless Powering Efficiency

The class-C rectifier can be applied to improving the efficiency of a wireless powering reception

device. We demonstrate the concept on the example of a dual-linearly polarized patch rectenna,

with a rectifier circuit for each polarization (Fig. 5.6). In this circuit, the first 5 harmonics

are shorted and the impedances are validated by calibrated measurements. Fig. 5.6 shows the

simulated vs. experimentally achieved harmonic terminations. Fig. 5.7 shows the simulated time

domain waveforms corresponding to these terminations, with higher harmonics not explicitly

terminated in the harmonic balance simulation, as compared to the infinite number of shorted

harmonics shown in Fig. 5.2. The rectenna is fabricated and measured in a free-space calibrated

measurement system, by measuring the incident power density on the rectenna and multiplying

by the physical antenna area (64 cm2) to determine incident power on the rectifier [2]. The

efficiency calculated from the measured dc output in this case is 56% at 150µW/cm2 power

density (9.6mW total power), which includes antenna and matching circuit losses and is a lower

bound on efficiency, and is slightly lower than measured for the rectifier in Fig. 5.5 [13].
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5.3.2 Class-F Power Rectifier

Consider again the rectifier circuit shown in Fig. 5.1 and assume that all even harmonics are

terminated in short circuits, while all odd harmonics are terminated in open circuits. This set of

harmonic terminations is the same as for a class-F amplifier. Given the harmonic terminations are

equivalent to a class-F amplifier, this rectifier will be referred to as a class-F rectifier. The voltage

and current waveforms across the rectifying element can now be derived given the assumed set of

harmonic terminations. The fundamental frequency component of the voltage across the diode is

given by

VD(f0) = Vs(f0) (5.10)

During the second half of the RF cycle, it is evident that the voltage across the rectifying

element must be zero, given (5.1). This condition must be met through the addition of DC and

strictly odd harmonic voltage components, given the enforced harmonic terminations. Therefore,

the voltage waveform is expressed as

vD(θ) =


2VDC , 0 ≤ θ < π

0, π ≤ θ < 2π

(5.11)

A Fourier expansion of (5.11) expresses the DC component of the voltage waveform as

VDC = π

4VD(f0) (5.12)

The current waveform is then expressed as

iD(θ) =


0, 0 ≤ θ < π

−2ID(f0) sin θ, π ≤ θ < 2π

(5.13)

A Fourier expansion of (5.13) expresses the DC component of the current waveform as

IDC = 2ID(f0)
π

(5.14)

For reference, the ideal current and voltage waveforms defined in (5.11) and (5.13) are shown

in Fig. 5.8(a). The waveform equations derived are in agreement with a Microwave Office®
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simulation as shown in Fig. 5.8(b), with the rectifying element modeled as discussed in Section

5.3.1.

Up to this point nothing has been said about the DC load. It can be derived for the optimal

rectifier waveforms given that the DC voltage and current are known from (5.12) and (5.12).

Effectively, this method of analysis is calculating the required DC load which will result in the
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Figure 5.8: (a) Ideal class-F voltage and current waveforms calculated from (5.11) and (5.13),
normalized to their peak respective values. (b) Ideal class-F voltage and current waveforms,
normalized to their peak respective values simulated in Microwave Office® using an harmonic
balance and an ideal rectifying element.
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expressions of (5.11) and (5.13) being valid. Therefore, RDC is given by

RDC = π2VD(f0)
8ID(f0) = π2

8 RD(f0) (5.15)

The efficiency of the rectifier may now be determined. Let the efficiency be defined as the ratio

of the DC power dissipated in the load resistance to the available fundamental frequency power.

This ratio is evaluated as

η = PDC

P (f0) = 2 VDCIDC
VD(f0)ID(f0) = 2

π
4VD(f0) 2

π ID(f0)
VD(f0)ID(f0) = 1 (5.16)

Therefore, the ideal class-F half-wave rectifier converts all available RF power to DC power if

the the DC loading resistance set to the value given in (5.15). At this point, it is worthy to

note that the current and voltage waveforms of the ideal class-F rectifier are equivalent to the

ideal class-F power amplifier waveforms, demonstrating the similarity between power rectifiers

and power amplifiers as discussed in Section 5.2. The RF-DC conversion efficiency as a function

of RDC/Rs(f0) was simulated in Microwave Office® for varying rectifier on-resistance and is

shown in Fig. 5.9. The peak efficiency as a function of on-resistance is higher than for the

class-C rectifier, although the efficiency degrades more quickly when the non-ideal DC load is

applied. In general, the optimal DC load appears to increase as the on-resistance increases. For

zero on-resistance, the optimal DC load is exactly that predicted by (5.15). The reason for the

increase in optimal DC load as the on-resistance increases is that by increasing the DC resistance,

the current through the on-resistance is reduced, thus reducing the loss. However, there is a

penalty paid in reflected power from the rectifying element due to the non-ideal match. This

limits the benefit of increasing the DC load infinitely with a fixed fundamental frequency match.

Theoretically, if the fundamental and DC loads could be increased infinitely the efficiency would

approach 100% no matter how large the on-resistance became.

Class-F Power Rectifier On-Resistance & Threshold Voltage

With the waveforms for an ideal class-F rectifier derived, the waveforms with a parasitic on-

resistance and threshold voltage included in the model may be investigated. Since the rectifier

138



0 0.5 1 1.5 2 2.5 3 3.5 4
RDC / Rs(f0)

0

20

40

60

80

100

E
ff

ic
ie

n
cy

 (
%

)

On Resistance = 0

On Resistance = 4% of

On Resistance = 10% of Rs(f0)

Rs(f0)

Figure 5.9: Simulated efficiency of class-F rectifier versus RDC/Rs(f0) for varying rectifier
on-resistance.

impedance is given by (5.2), the time domain voltage and current waveforms are approximated as

vD(θ) =


Vmax + ImaxRon(sin θ − 1), vD(θ) > −Vtr

−Vtr + ImaxRon sin θ, vD(θ) ≤ −Vtr

(5.17)

iD(θ) =


0, vD(θ) > −Vtr

−Imax sin θ, vD(θ) ≤ −Vtr

(5.18)

where Vmax is the maximum of the voltage waveform, Imax is the maximum of the current

waveform, Ron is the on-resistance of the rectifying element and Vtr is the threshold voltage of

the rectifying element. As an example, Fig. 5.10 shows what the current and voltage waveforms

look like for a specific set of non-ideal parameters (Vtr = 0.7V, Vmax = 20V, Imax = 200mA,

and Ron = 5 Ω).

From (5.17), it is evident that the voltage waveform does not have the ideal rectangular

shape as in an ideal class-F rectifier. This is due to the on-resistance of the device. When the

device is conducting current, it creates a voltage drop across the on-resistance which has a shape

equivalent to the shape of the current waveform during this portion of the cycle. To maintain

waveform symmetry, this variation in the voltage waveform is also seen when the device is not

conducting. If the on-resistance were zero, the only difference between the waveform in (5.17)
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and the ideal voltage waveform would be the minimum value, which would be −Vtr rather than

zero. For θ = 0 and θ = π, transitions occur in (5.17). A Fourier decomposition of the voltage

waveform using the transition points must be performed in order to determine the DC and

fundamental components. The DC component is then expressed as

VDC = 1
2π

2π∫
0

vD(θ)dθ (5.19)

which expands to

VDC = 1
2π

 π∫
0

(Vmax + ImaxRon(sin θ − 1))dθ −
2π∫
π

(Vtr − ImaxRon sin θ)dθ

 (5.20)

Equation (5.20) evaluates to

VDC = 1
2 (Vmax − Vtr − ImaxRon) (5.21)

Let the fundamental frequency voltage be expressed as

V (f0) = av + jbv (5.22)

where

av = 1
π

2π∫
0

vD(θ) cos θdθ (5.23)
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Figure 5.10: Non-ideal class-F voltage and current waveforms, normalized to their peak respective
values.
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bv = 1
π

2π∫
0

vD(θ) sin θdθ (5.24)

First av is evaluated as

av = 1
π

 π∫
0

(Vmax + ImaxRon(sin θ − 1)) cos θdθ −
2π∫
π

(Vtr − ImaxRon sin θ) cos θdθ

 = 0

(5.25)

The value of bv is then expressed as

bv = 1
π

 π∫
0

(Vmax + ImaxRon(sin θ − 1)) sin θdθ −
2π∫
π

(Vtr − ImaxRon sin θ) sin θdθ

 (5.26)

which is simplified to

bv = 2
π

(
Vmax + Vtr + π − 2

2 ImaxRon

)
(5.27)

Now a Fourier decomposition is performed for the current waveform. The DC component of

the current waveform is given by

IDC = − 1
2π

2π∫
π

Imax sin θdθ (5.28)

which simplifies to

IDC = Imax
π

(5.29)

Let the fundamental frequency current be expressed as

I(f0) = ai + jbi (5.30)

where

ai = 1
π

2π∫
0

iD(θ) cos θdθ (5.31)

and

bi = 1
π

2π∫
0

iD(θ) sin θdθ (5.32)

The fundamental components ai and bi are evaluated as

ai = − 1
π

2π∫
π

Imax sin θ cos θdθ = 0 (5.33)

and

bi = − 1
π

2π∫
π

Imax sin2 θdθ = −Imax2 (5.34)
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Now that the fundamental frequency components of the current and voltage waveforms have

been evaluated, the input power to the rectifying element can be expressed as

Pin = Re
{
V (f0)I(f0)

2

}
(5.35)

Substituting (5.22) and (5.30) into (5.35) results in

Pin =
[ 2
π

(
Vmax + Vtr + π−2

2 ImaxRon
)] [

Imax
2
]

2 (5.36)

which simplifies to

Pin = Imax
2π

(
Vmax + Vtr + π − 2

2 ImaxRon

)
(5.37)

Rearranging (5.37) in terms of Imax results in

Pin = (Vmax + Vtr)
Imax
2π + π − 2

4π I2
maxRon (5.38)

which may be expressed as

π − 2
4π RonI

2
max + Vmax + Vtr

2π Imax − Pin = 0 (5.39)

The solutions to (5.39) are given by

Imax = −
Vmax + Vtr −

√
(Vmax + Vtr)2 + 4πPin(π − 2)Ron

(π − 2)Ron
(5.40)

and

Imax = −
Vmax + Vtr +

√
(Vmax + Vtr)2 + 4πPin(π − 2)Ron

(π − 2)Ron
(5.41)

The correct solution is (5.40) because it is the only solution resulting in Imax > 0. In the case

where Ron is zero, (5.39) simplifies to

Vmax + Vtr
2π Imax − Pin = 0 (5.42)

whose solution is simply

Imax = 2πPin
Vmax + Vtr

(5.43)

Note that in the case of an ideal rectifying element, Vtr = 0, therefore

Imax,ideal = 2πPin
Vmax

(5.44)
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Given that Imax is fully expressed in terms of rectifying element parameters, VDC and IDC ,

V (f0) and I(f0) may be calculated, and from these the DC load, fundamental load, and rectifier

efficiency are determined. The DC load is given by

RDC = VDC
IDC

(5.45)

while the load at the fundamental frequency is given by

R(f0) = −V (f0)
I(f0) = −bv

bi
(5.46)

The negative impedance in (5.46) indicates that power is delivered to the rectifying element

rather than created by the rectifying element. Therefore, (5.46) gives the impedance of the source

delivering power to the rectifying element. The rectifier efficiency is given by

η = PDC
Pin

= VDCIDC
Pin

(5.47)

An example demonstrating the design procedure should be instructive. Assume the rectifying

element has the following parameters: Vmax = 10V, Ron = 5 Ω, Vtr = 0.7V and P (f0) = 1W.

First, (5.40) is used to calculate Imax which evalutes to 516.2mA. Next, The DC voltage and

current are evaluated using (5.21) and (5.29), respectively. These parameters evaluate to 3.36V

and 164.3mA respectively. The fundamental frequency voltage and current Fourier coefficients

are then evaluated using (5.22) and (5.30), respectively. These parameters evaluate to 7.409V

and -258.1mA, respectively. The DC and fundamental frequency resistances are then calculated

using (5.45) and (5.46) which evaluate to 20.45Ω and 28.71Ω, respectively. The efficiency is

then calculated using (5.47) and calculates as 55.20%. This is not extremely good performance,

but again we have chosen the 1W input power as a design parameter. If the input power were

selected as 0.1W rather than 1W, the resultant efficiency is 82.93% instead. The point is that

a specific element will always have an approximate input drive level at which it can be most

efficient, just as with power transistors in power amplifiers. In the end the goal is always to

minimize the amount of power dissipation in the on-resistance of the rectifying element and

maximize the power dissipated in the DC load resistor.
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5.3.3 Class-F−1 Power Rectifier

Consider again the rectifier circuit shown in Fig. 5.1 and assume that all even harmonics are

terminated in open circuits, while all odd harmonics are terminated in short circuits. This set

of harmonic terminations is the same as for a class-F−1 amplifier, therefore this rectifier will

be referred to as a class-F−1 rectifier. The voltage and current waveforms across the rectifying

element can now be derived given the assumed set of harmonic terminations. The fundamental

frequency component of the voltage across the diode is again given by (5.10).

During the second half of the RF cycle, it is evident from (5.1) that the voltage across the

rectifying element must be zero. This condition must be met through the addition of DC and

strictly even harmonic voltage components, given the enforced harmonic terminations. Therefore,

the voltage waveform is expressed as

vD(θ) =


2VD(f0) sin θ, 0 ≤ θ < π

0, π ≤ θ < 2π

(5.48)

The construction of the voltage waveform defined in (5.48) is shown in Fig. 5.11. A Fourier

0 45 90 135 180 225 270 315 360
−1

0

1
VD(f0) sin θ

0 45 90 135 180 225 270 315 360
−1

0

1

∞∑
n=0

VD(2nf0) sin(2nθ)

0 45 90 135 180 225 270 315 360
0

1

2

θ (°)

vD(θ)

Figure 5.11: Class-F−1 half-wave rectifier voltage waveform construction. The voltage is normalized
to vD(f0).
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expansion of (5.48) expresses the DC component of the voltage waveform as

VDC = 2VD(f0)
π

(5.49)

In the first half of the RF cycle, it is evident that the current through the rectifying element

must be zero, given (5.1). This condition must be met through the addition of a DC current

and strictly odd harmonic current components, given the enforced harmonic terminations. It is

well known that any function that may be represented by a Fourier series can be expressed by

the sum of an even function and an odd function. Even functions contain only even harmonics,

therefore the even function in this case is strictly the DC current. Odd functions contain only

odd harmonics, therefore the odd function in this case is the summation of the remaining odd

harmonic terms. Given the definition of the current direction in Fig. 5.1, the DC component of

the current must be positive. Therefore, in the first half of the RF cycle, the remaining harmonics

must sum to a constant value equivalent to the negative of the DC component. Given that the

function which is the sum of the remaining harmonics is odd, the second half of the RF cycle

must sum to the DC component. The current waveform is then expressed as

iD(θ) =


0, 0 ≤ θ < π

2IDC , π ≤ θ < 2π

(5.50)

A Fourier expanson of (5.50) expresses the DC component of the current waveform as

IDC = π

4 ID(f0) (5.51)

For reference, the ideal current and voltage waveforms defined in (5.48) and (5.50) are shown in

Fig. 5.12. The waveform equations derived are in agreement with a Microwave Office® simulation,

with the rectifying element modeled as discussed in Section 5.3.1. The DC load consistent with

(5.48) and (5.50) is given by

RDC = 8VD(f0)
π2ID(f0) = 8

π2RD(f0) (5.52)

The efficiency of the rectifier may now be determined. Let the efficiency be defined as the ratio

of the DC power dissipated in the load resistor to the available fundamental frequency RF power.
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This ratio is evaluated as

η = PDC

P (f0) = 2 VDCIDC
VD(f0)ID(f0) = 2

2
πVD(f0)π4 ID(f0)
VD(f0)ID(f0) = 1 (5.53)

Therefore, the ideal half-wave rectifier converts all available RF power to DC power if the the DC

loading resistance set to the value given in (5.52). The RF-DC conversion efficiency as a function

of RDC/Rs(f0) was simulated in Microwave Office® for varying rectifier on-resistance and is

shown in Fig. 5.13. The harmonic balance settings were identical to those used for the class-C

rectifier as discussed in Section 5.3.1. The peak efficiency as a function of on-resistance is higher
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Figure 5.12: (a) Ideal class-F−1 voltage and current waveforms calculated from (5.48) and (5.50),
normalized to their peak respective values. (b) Ideal class-F−1 voltage and current waveforms,
normalized to their peak respective values simulated in Microwave Office® using an harmonic
balance and an ideal rectifying element.
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than for the class-C rectifier, although the efficiency degrades more quickly when the non-ideal

DC load is applied. In general, the optimal DC load appears to increase as the on-resistance

increases. For zero on-resistance, the optimal DC load is exactly that predicted by (5.52). The

reason for the increase in optimal DC load as the on-resistance increases is that the current

through the on-resistance is reduced, thus reducing the loss. However, there is a penalty paid in

reflected power from the rectifying element due to the non-ideal match. This limits the benefit of

increasing the DC load infinitely with a fixed fundamental frequency match. Theoretically, if the

fundamental and DC loads could be increased infinitely the efficiency would approach 100% no

matter how large the on-resistance became.

Again, as with the class-F rectifier, the current and voltage waveforms of the ideal class-F−1

rectifier are equivalent to the ideal class-F−1 power amplifier waveforms, demonstrating the

similarity between power rectifiers and power amplifiers as discussed in Section 5.2.

Class-F−1 Power Rectifier On-Resistance & Threshold Voltage

With the waveforms for an ideal class-F−1 rectifier derived, the waveforms given a parasitic

on-resistance and threshold voltage may be investigated assuming the rectifier impedance from
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Figure 5.13: Simulated efficiency of class-F−1 rectifier versus RDC/Rs(f0) for varying rectifier
on-resistance.
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(5.2). The time domain voltage and current waveforms are approximated as

vD(θ) =


Vmax sin θ, vD(θ) > −Vtr

−Vtr − ImaxRon, vD(θ) ≤ −Vtr

(5.54)

iD(θ) =


0, vD(θ) > −Vtr

Imax, vD(θ) ≤ −Vtr

(5.55)

This analysis is a departure from the efficiency results as a function of on-resistance shown in

the previous section. This analysis takes into account that the peak voltage is constrained and

that an optimal fundamental matching resistance exists which is a function of both parameters.

As an example, Fig. 5.14 shows the current and voltage waveforms for a specific set of non-ideal

parameters (Vtr = 0.7V, Vmax = 20V, Imax = 200mA, and Ron = 5 Ω).

From (5.54), it is evident that the voltage waveform does not have the ideal clipped sinusoidal

shape as in an ideal class-F−1 rectifier. This is due to the on-resistance of the device. When

the device is conducting current, it creates a voltage drop across the on-resistance which is

constant due to the constant current. If the on-resistance were zero, the only difference between

the waveform in (5.17) and the ideal voltage waveform would be the minimum value, which
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Figure 5.14: Non-ideal class-F−1 voltage and current waveforms, normalized to their peak respec-
tive values.
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would be −Vtr rather than zero. The values of θ at which the transition between the conducting

and non-conducting regions occurs are given by

sin θt1 = − Vtr
Vmax

sin(π − θt2) = − Vtr
Vmax

(5.56)

Solving the transition points in (5.56) in terms of θ expresses the transition angles as

θt1 = 2π − arcsin
(

Vtr
Vmax

)
θt2 = π + arcsin

(
Vtr
Vmax

) (5.57)

A Fourier decomposition of the voltage and current waveforms using the transition points in (5.57)

is performed in order to determine the DC and fundamental components. The DC component is

expressed in (5.19) which simplifies to

VDC = 1
2π

2Vmax

√
1−

(
Vtr
Vmax

)2
− (Vtr + ImaxRon)

[
π − 2 arcsin

(
Vtr
Vmax

)] (5.58)

The fundamental frequency voltage is expressed in (5.22) with the individual components given

in (5.23) and (5.24). First, av is calculated as

av = 1
π


π+arcsin( Vtr

Vmax
)∫

− arcsin( Vtr
Vmax

)

Vmax sin θ cos θdθ −

2π−arcsin( Vtr
Vmax

)∫
π+arcsin( Vtr

Vmax
)

(Vtr + ImaxRon) cos θdθ

 = 0

(5.59)

Then bv is given by

bv = 1
π


π+arcsin( Vtr

Vmax
)∫

− arcsin( Vtr
Vmax

)

Vmax sin2 θdθ −

2π−arcsin( Vtr
Vmax

)∫
π+arcsin( Vtr

Vmax
)

(Vtr + ImaxRon) sin θdθ

 (5.60)

which simplifies to

bv = 1
π

Vmax arcsin
(

Vtr
Vmax

)
+ πVmax

2 + (Vtr + 2ImaxRon)

√
1−

(
Vtr
Vmax

)2
 (5.61)

The DC component of the current waveform is expressed as

IDC = 1
2π

2π−arcsin( Vtr
Vmax

)∫
π+arcsin( Vtr

Vmax
)

Imaxdθ (5.62)

which simplifies to

IDC = Imax
2π

(
π − 2 arcsin

(
Vtr
Vmax

))
(5.63)
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The fundamental frequency current is expressed in (5.30) with the individual components given

in (5.31) and (5.32). First, ai is calculated as

ai = 1
π

2π−arcsin( Vtr
Vmax

)∫
π+arcsin( Vtr

Vmax
)

Imax cos θdθ = 0 (5.64)

The fundamental component bi is given by

bi = 1
π

2π−arcsin( Vtr
Vmax

)∫
π+arcsin( Vtr

Vmax
)

Imax sin θdθ (5.65)

which simplifies to

bi = −2Imax
π

√
1−

(
Vtr
Vmax

)2
(5.66)

The input power is expressed in (5.35) simplifies to

Pin = kImax
π2

(
Vmax arcsin

(
Vtr
Vmax

)
+ πVmax

2 + (Vtr + 2ImaxRon)k
)

(5.67)

where k is defined as

k =

√
1−

(
Vtr
Vmax

)2
(5.68)

This simplifies to

2kRonI2
max + Vmax

(
arcsin

(
Vtr
Vmax

)
+ π

2 + k
Vtr
Vmax

)
Imax −

π2

k
Pin = 0 (5.69)

The solutions to (5.69) when Ron is non-zero are given by

Imax = −
Vmax

(
arcsin

(
Vtr
Vmax

)
+ π

2 + k Vtr
Vmax

)
4Ronk

+

√(
Vmax

(
arcsin

(
Vtr
Vmax

)
+ π

2 + k Vtr
Vmax

))2
+ 8π2PinRon

4Ronk

(5.70)

and

Imax = −
Vmax

(
arcsin

(
Vtr
Vmax

)
+ π

2 + k Vtr
Vmax

)
4Ronk

−

√(
Vmax

(
arcsin

(
Vtr
Vmax

)
+ π

2 + k Vtr
Vmax

))2
+ 8π2PinRon

4Ronk

(5.71)

The correct solution is (5.70) because it is the only solution resulting in Imax > 0. In the case

where Ron is zero, (5.69) simplifies to

Vmax

(
arcsin

(
Vtr
Vmax

)
+ π

2 + k
Vtr
Vmax

)
Imax −

π2

k
Pin = 0 (5.72)

150



whose solution is simply

Imax = Pin
π2

kVmax

(
arcsin

(
Vtr
Vmax

)
+ π

2 + k Vtr
Vmax

) (5.73)

Note that in the case of an ideal rectifying element, k = 1 and Vtr = 0, therefore

Imax,ideal = 2πPin
Vmax

(5.74)

Now that Imax is fully expressed given known rectifier parameters, VDC and IDC , V (f0) and

I(f0) may be calculated, and the DC load, fundamental load, and rectifier efficiency determined,

whose expressions are equivalent to those given in Section 5.3.2.

An example demonstrating the design procedure should be instructive. Assume the rectifying

element has the following parameters: Vmax = 10V, Ron = 5 Ω, Vtr = 0.7V and P (f0) = 1W.

First, (5.70) is used to calculate Imax which evaluates to 456.7mA. Next, The DC voltage and

current are evaluated using (5.58) and (5.63), respectively. These parameters evaluate to 1.75V

and 218.2mA respectively. The fundamental frequency voltage and current Fourier coefficients

are then evaluated using (5.22) and (5.30), respectively. These parameters evaluate to 6.896V

and -290mA, respectively. The DC and fundamental frequency resistances are then calculated

using (5.45) and (5.46) which evaluate to 8.02Ω and 23.77Ω, respectively. The efficiency is then

calculated using (5.47) and calculates as 38.18%. Of course this is not very good performance,

but again we have chosen the input power is a design parameter. If the input power were selected

as 0.1W rather than 1W, the resultant efficiency is 72.43% instead. The point is that a specific

element will always have an approximate input drive level at which it can be most efficient, just

as with power transistors in power amplifiers. In the end the goal is always to minimize the

amount of power dissipation in the on-resistance of the rectifying element and maximize the

power dissipated in the DC load resistor.
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5.4 Conclusion

This chapter presents an analysis of microwave rectifiers using analogies from power amplifiers

with harmonic terminations to improve efficiency. The analysis is confirmed with measured data

on several shunt Schottky diode rectifiers, and can be applied to wireless powering which is

investigated in [96]. The specific contributions of this chapter are:

• A new approach to rectifier analysis and to increasing efficiency in rectifiers, modeled after

efficient power amplifier design, and reported only briefly in [13].

• Experimental verification of the analysis, based on measurements of a class-C 2.45GHz

Schottky-diode rectifier with short-circuit 2nd and 3rd harmonic terminations. A maximum

RF-DC conversion efficiency of 72.8% when matched to 50Ω is demonstrated. The approach

is applied to integration of a rectifier with a dual-polarization patch antenna in a non 50Ω

environment and free-space measurements demonstrate a lower bound on efficiency of 56%

at 150µW\cm2 power density which includes matching circuit and mismatch losses [13].

• The details and extensions of the presented theory in [13] will be submitted for journal

publication in IEEE Transactions on Microwave Theory & Techniques.
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Chapter 6

Harmonic Injection Power

Amplifier
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6.1 Introduction

A large portion of current research in high-power amplification of signals with carriers in the

microwave range focuses on improving efficiency and linearity [30]. There are many power amplifier



(PA) topologies which achieve high efficiency by driving the active device into a non-linear region

and shaping voltage and current waveforms across the device via proper selection of the output

loading network at harmonic frequencies. These techniques, such as class-F and F−1 PA topologies

[53], rely on the nonlinear active device for harmonic current or voltage generation. The concept

of harmonic injection, however, refers to architectures in which power at a harmonic of the

operating frequency is supplied externally to either the input, output, or both input and output

of the active device.

Analysis of efficiency improvement of tube based PAs using harmonic injection into both the

grid (input) and plate (output) has been presented in [97, 98, 99]. A novel harmonic injection

scheme referred to as a harmonic reaction amplifier was presented in [100]. The harmonic reaction

amplifier uses two parallel devices and effectively acts as a push-pull amplifier with respect to the

second harmonic. An experiment demonstrating a 15.2% efficiency improvement of a 2GHz GaN

PA using second harmonic injection at the input was published in [101]. In 1992, a patent was

issued for a harmonic injection amplifier in which the harmonic signal created using a frequency

multiplier is injected into the transistor output [102]. More recently, a concept for efficiency

improvement via injection of harmonics into the output of a class-B/J amplifier was demonstrated

[103]. A novel scheme of efficiency improvement of a class-E amplifier using input harmonic

injection via a feedback loop was shown in [104].

This chapter presents an analysis of linear amplifiers with second or third harmonic injection.

Raab presented a theoretical analysis showing that an ideal PA with only an optimal purely

reactive second harmonic termination can have a maximum efficiency of 70.7% [40]. In this work,

a theoretical concept for a second-harmonic-only PA realized with second harmonic injection is

presented, showing that the maximum efficiency in this case is 89.9%. The injection of third-

harmonic-only has a maximum efficiency of 65.5%. Since a separate circuit is required to produce

and inject power at the harmonics, it is important to quantify the effect of injector efficiency on

the maximum total efficiency of the PA, as well as the sensitivity of PA efficiency to the injected

power level. A detailed analysis of the injection circuit is also presented, along with an analysis
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of the mechanism for electrical impedance synthesis with harmonic injection.

6.2 Electrical Impedance Synthesis

A harmonic injection amplifier relies on shaping the output waveforms of the active device by

electrically synthesizing the proper harmonic impedance at the virtual drain as well as delivering

the necessary amount of harmonic power. For example, the harmonic impedance and delivered

harmonic power for an ideal second harmonic injection amplifier is presented in Section 6.3. In the

case where the virtual drain of the transistor is the ideal terminating impedance at the injected

harmonic, no electrical impedance synthesis is required and only the delivered power must be

controlled. However, the general case requires control of both. This section provides an analysis

of the mechanism by which both the harmonic impedance seen by the virtual drain and delivered

harmonic power may be controlled.

Consider the circuit diagram shown in Fig. 6.1. The reference plane depicted by the dashed

line is excited by two sources simultaneously, with the incident and reflected waves ai and bi,

respectively. The characteristic impedances of the media on each side of the reference plane are

ZA and ZB , respectively. The wave variables ai and bi are defined in [105] as

ai = V +
i√
Z0i

bi = V −i√
Z0i

(6.1)

where V ±i are RMS voltages and Z0i is a real normalizing impedance. For the following analysis,

it is assumed that ZA and ZB are real, therefore Z01 = ZA and Z02 = ZB . The input impedance

at the reference plane looking into the medium with characteristic impedance ZB is defined as

ZIN . It is assumed that each medium is terminated in its respective characteristic impedance.

A straightforward manner to analyze the circuit in Fig. 6.1 is to apply the principle of

superposition. Let the total wave traveling into the media on the left side of the dashed line

be defined as bT . By superposition, the component of bT due to a1 can be found by removing

the source a2. Similarly, the component of bT due to a2 can be found by removing the source

a1. Then bT is found by adding the components. The total wave bT traveling into media ZA is
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a

a1

b1

a2

b2
ZA ZB

ZIN

Figure 6.1: Basic impedance synthesis circuit depicting two simultaneous excitations.

expressed as

bT = ZB − ZA
ZA + ZB

a1 +
[
1 + ZA − ZB

ZA + ZB

]√
ZB
ZA

a2

= a1
ZB − ZA + 2

√
ZAZB

a2
a1

ZA + ZB

(6.2)

The reflection coefficient at the reference plane is then given by

ΓIN = bT
a1

=
ZB − ZA + 2

√
ZAZB

a2
a1

ZA + ZB
(6.3)

The input impedance is calculated from the reflection coefficient using the equation

ZIN = ZA
1 + ΓIN
1− ΓIN

(6.4)

Substituting (6.3) into (6.4) results in

ZIN = ZA
1 +

ZB−ZA+2
√
ZAZB

a2
a1

ZA+ZB

1−
ZB−ZA+2

√
ZAZB

a2
a1

ZA+ZB

(6.5)

which simplifies to

ZIN = ZA
ZB +

√
ZAZB

a2
a1

ZA −
√
ZAZB

a2
a1

= ZA
ZBa1 +

√
ZAZBa2

ZAa1 −
√
ZAZBa2

(6.6)

The resultant input impedance given in (6.6) reveals some very interesting implications of

electrical impedance synthesis. First consider the case when there is no incident wave a1. This

case is relevant to the situation in which a transistor does not produce any harmonic content
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at the virtual drain, or produces extremely little harmonic content. In this case, ZIN = −ZA,

independent of the impedance ZB and the level of the excitation wave a2. What this reveals is

that there is no hope of electrically synthesizing an arbitrary impedance at the reference plane if

the first source a1 is absent. In the case of a harmonic injection amplifier, this means that it is

impossible to electrically synthesize an arbitrary harmonic impedance to the virtual drain if the

transistor fails to produce harmonic content at the virtual drain. The harmonic content must

exist to synthesize an arbitrary impedance, whether it be created by the non-linearity of the

transistor, or by injecting harmonic content into the input of the transistor in order to create

harmonic content at the output.

However, for the moment let us assume that a1 6= 0 and the second source a2 is able to be

controlled. Let us investigate the impedances that can be synthesized. For simplicity, assume

that the impedances ZA and ZB are fixed, and assume the ratio a2
a1

which we will define as r can

be controlled. From (6.6), the input impedance is then re-written as

ZIN = ZA
ZB +

√
ZAZBr

ZA −
√
ZAZBr

(6.7)

Equation (6.7) can be re-arranged to express r as

r =
√
ZA
ZB

(
ZIN − ZB
ZIN + ZA

)
(6.8)

For a generalized analysis, it is convenient to normalize to the impedance ZA, therefore the

normalized impedance is given by

zIN =
zB +√zBr
1−√zBr

(6.9)

Equation (6.9) contains two free complex variables: r and zB . Therefore, there are four degrees

of freedom due to both variables being complex quantities in general. This gives some freedom in

synthesizing an arbitrary input impedance. For an initial investigation, let us fix zB = 1 and

investigate the input impedances which may be synthesized as a function of |r| and ∠r. This will

demonstrate how controlling the relative power and phase of the excitation sources a1 and a2

can be used to synthesize an arbitrary impedance. The resultant range of input impedances is
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shown in Fig. 6.2 as a function of |r| and ∠r. The specific cases when ∠r = 0◦ and ∠r = 180◦ are

depicted in Fig. 6.3. There are some conclusions that can be drawn from Fig. 6.2 and Fig. 6.3.

It is evident that any resistance between +∞ and −∞ can be electrically synthesized at the

reference plane by simply adjusting the magnitude and sign of r. Of course this is under the

condition where a1 6= 0.

Up to this point, we have simply addressed the synthesized impedance. However, it is also

important to understand the power delivered into medium A under the conditions of the impedance
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Figure 6.2: zIN versus |r| and ∠r when zB = 1.
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Figure 6.3: Real part of input impedance when ∠r = 0◦ or ∠r = 180◦. Note that in this
configuration the imaginary part of the input impedance is zero.

synthesis. This can be accomplished through use of the reflection coefficient derived in (6.3).

Effectively, this reflection coefficient is used to calculate the average reflected power, given by

PD = |a1|2|ΓIN |2 = |bT |2 (6.10)

Substituting (6.2) into (6.10), the average power expands to

PD =

∣∣∣∣∣a1
ZB − ZA + 2

√
ZAZB

a2
a1

ZA + ZB

∣∣∣∣∣
2

(6.11)

which can also be expressed in the form

PD = |a2|2
∣∣∣∣ (ZB − ZA)r−1 + 2

√
ZAZB

ZA + ZB

∣∣∣∣2 (6.12)

Substituting (6.8) into (6.12) and simplifying yields

PD = |a2|2
ZB
ZA

∣∣∣∣ZA − ZINZB − ZIN

∣∣∣∣2 (6.13)

This expression allows one to determine the power delivered into medium A at the reference

plane. This is necessary to characterize for the harmonic injection amplifier because of the specific

relationship between fundamental and harmonic Fourier coefficients of the drain voltage and

current waveforms. This will be investigated further in the following sections. Finally, the wave

amplitude is expressed as

|a2|2 = PD

ZB
ZA

∣∣∣ZA−ZINZB−ZIN

∣∣∣2 (6.14)
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Under the conditions ZA = ZB and a1 = 0, (6.14) reduces to

|a2|2 = PD (6.15)

This represents the most efficient use of injected power, because all available power from the

injector translates to delivered power at the reference plane. It should be noted that in this case

no electrical impedance synthesis is required. This concludes the necessary basic circuit analysis

for understanding impedance synthesis using harmonic injection. The most important conclusion

is that the transistor must be a harmonic source in order to synthesize an arbitrary impedance.

Furthermore, it is necessary to know the amount of harmonic power it is able to generate, as well

as the its effective source impedance. Once these things are known, the required input impedance

and delivered power may be satisfied for ideal drain voltage and current wave shaping. The

main purpose of this analysis has been to understand how to synthesize an impedance having a

negative real part if necessary, but is applicable to impedance synthesis in general.

6.3 Second Harmonic Injection Drain Waveforms

Consider the normalized drain voltage and drain current waveforms at the virtual drain of a

linear FET PA shown in the block diagram in Fig. 6.4 which are given by

v̄D(θ) = V̄DD +
√

2 sin θ (6.16)

īD(θ) = ĪDD −
√

2 sin θ (6.17)

where θ = 2πf0t, and the bar indicates a normalized quantity. For instance, when V̄DD = ĪDD =
√

2, the normalized class-A output power is 1W and the waveforms result in 50% efficiency.

If the drain waveforms can be shaped in a manner such that the overlap of the voltage and

current is minimized for a given fundamental frequency output power, then drain efficiency will

be maximized.

The class-A current and voltage waveforms are symmetrical, and next we consider how the

duration of current and voltage waveform overlap, and thus dissipation in the device, can be

160



Figure 6.4: Block diagram of a linear PA with second harmonic injection at the virtual drain. The
three-port network is an ideal passive injection circuit element described in Section 6.5 and further
analyzed in Section 6.6. The injector voltage and impedance Z(2f0) determine the dissipation in
the transistor. The matching networks at input and output are designed for a linear PA.

minimized while maintaining time-domain waveform symmetry. This can be accomplished by

adding appropriate harmonic components to (6.16) and (6.17). Consider the addition of only a

second harmonic term. In order to maintain waveform symmetry following addition of a second

harmonic term, only co-sinusoidal components may be added because sinusoidal components are

not even functions about θ = 180◦. Such a condition will result in a current waveform consistent

with a finite harmonic class-B amplifier, with the voltage waveform being the same shape and

180◦ out of phase. The waveforms following addition of a second harmonic term become

v̄D(θ) = V̄DD +
√

2 sin θ + a2 cos(2θ) (6.18)

īD(θ) = ĪDD −
√

2 sin θ + a2 cos(2θ) (6.19)

It is important to note at this point that these waveforms represent a negative impedance being

presented to the virtual drain of the transistor at the second harmonic. Effectively, this requires

that power is delivered to the transistor at the second harmonic. The impedance synthesized is

the negative of that presented at the fundamental frequency. This can be seen by investigation of

(6.18)-(6.19) and noting that the ratio of the second harmonic Fourier coefficients is equivalent

to that of the fundamental coefficients, except the sign is reversed.

Next, the optimal value of a2 is found to maximize the efficiency, taking into account an

assumed injector efficiency. First, the critical points of the drain voltage waveform are expressed

as
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sin θcritical,v =
√

2/4a2 (6.20)

and

θcritical,v = π/2 + nπ, n = 0, 1, ...,∞ (6.21)

where θcritical,v corresponds to a point at which the first derivative of the voltage waveform w.r.t

θ is equal to zero. Note that (6.20) is only valid when

− 1 ≤ sin θcritical,v ≤ +1 (6.22)

Therefore, (6.20) is only valid when

|a2| ≥
√

2/4 (6.23)

The second derivative of the normalized drain voltage at the critical point described by (6.20)

results in

∂2v̄D(θ)
∂θ2 = −4a2 (6.24)

Therefore, if a2 is negative in sign, then the critical point corresponds to a minimum, while if it

is positive in sign, then it corresponds to a maximum. Applying the second derivative test to the

critical point described by (6.21) results in

∂2v̄D(θ)
∂θ2 =

√
2(−1)n+1 + 4a2, n = 0, 1, ...,∞ (6.25)

Therefore, the critical point described by (6.21) will be an extremum as follows:

a2 > +
√

2/4, v̄D(θcritical,v) is a minimum (6.26)

a2 < −
√

2/4, v̄D(θcritical,v) is a maximum (6.27)

When −
√

2
4 < a2 < +

√
2

4 , the critical points will alternate with n between maxima and minima.

If a2 ≥ −
√

2
4 , the global minimum occurs at the critical point corresponding to (6.21) with n = 1.

Otherwise, the global minimum occurs at the critical point corresponding to (6.20).

The normalized total DC power consumed by the PA can now be expressed as

P̄DC = V̄DD ĪDD + a2
2

2ηinj
= V̄ 2

DD + a2
2

2ηinj
(6.28)
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where ηinj is the efficiency of the injection circuit, defined as the ratio of available injector power

Pinj(2f0) to the DC power consumed by the injector Pinj,DC . The highest efficiency is achieved

when the DC supply voltage results in a drain voltage waveform minimum of zero. Therefore,

V̄DD = −
√

2 sin θmin,v − a2 cos(2θmin,v) (6.29)

The expansion of (6.28) can be written as

P̄DC =


(

1+4a2
2

4a2

)2
+ a2

2
2ηinj , a2 ≤ −

√
2

4

(
√

2 + a2)2 + a2
2

2ηinj , a2 >
−
√

2
4

(6.30)

The coefficient a2 corresponding to the highest efficiency is found by setting the partial derivative

of (6.30) to zero:

∂P̄DC
∂a2

=


2a2 − 1

8a3
2

+ a2
ηinj

= 0, a2 ≤ −
√

2
4

2
√

2 + 2a2 + a2
ηinj

= 0, a2 >
−
√

2
4

(6.31)

The solution for a2 which optimizes efficiency is:

a2 =


− 1

4

√
8
(

2+ 1
ηinj

) , a2 ≤ −
√

2
4 −→ ηinj ≥ 1

6

− 2
√

2
2+ 1

ηinj

, a2 >
−
√

2
4 −→ ηinj <

1
6

(6.32)

A plot of a2 versus ηinj is shown in Fig. 6.5. As expected, the magnitude of a2 decreases as

the injector efficiency decreases. Another interesting parameter to investigate is the ratio of the

delivered fundamental output power to the required delivered second harmonic injected power,

which is found by calculating 20 log10

∣∣∣ a2√
2

∣∣∣, and is also shown in Fig. 6.5.

The normalized DC power is found from (6.30) and (6.32), and is given by

P̄DC =


1+2ηinj

ηinj
√

8
ηinj

+16
+ 1

2 , ηinj ≥ 1
6

2
2ηinj+1 , ηinj <

1
6

(6.33)

The normalized fundamental output power is 1W based upon the definition of the fundamental

frequency Fourier coefficients, therefore the total efficiency becomes the inverse of the normalized
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Figure 6.5: Optimal solution for Fourier coefficient a2 (solid line) and second harmonic delivered
power relative to fundamental frequency output power (dashed line) versus second harmonic
injection efficiency ηinj .

DC power, given by

ηtotal =


ηinj

(√
8

ηinj
+ 16− 4

)
, ηinj ≥ 1

6

2ηinj+1
2 , ηinj <

1
6

(6.34)

A plot of the total efficiency versus injector efficiency is shown in Fig. 6.6. The maximum value

is 89.9%, and it rolls off reasonably slowly with decreasing injector efficiency. This is intuitive

because the power required from the injector is significantly lower than the fundamental output

power of the PA, as shown in Fig. 6.5. As expected, the drain efficiency reaches 50% as injector

efficiency reduces to zero, corresponding to the canonical class-A configuration.
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Figure 6.6: Total efficiency ηtotal versus injector efficiency ηinj .

As previously mentioned, the load presented to the virtual drain at the second harmonic is
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the negative of that presented at the fundamental, so the harmonic load resistance normalized to

the class-A fundamental load is −1. However, the output power of the PA normalized to class-A

output power remains to be found. In order to find this, normalization conditions corresponding

to constant peak voltage and current constraints are enforced. V̄DD and ĪDD are now found

which will enable determination of the maximum instantaneous normalized voltage V̄max and

current Īmax. Using V̄max and Īmax, the output power normalized to the class-A PA output

power is determined. The normalized DC voltage may now be expressed as

V̄DD =


− 1+4a2

2
4a2

, ηinj ≥ 1
6

√
2 + a2, ηinj <

1
6

(6.35)

Due to the symmetry of the current and voltage waveforms, V̄DD = ĪDD, and the maximum

value of the normalized current waveform is equivalent to the maximum value of the normalized

voltage waveform

V̄max =


− 1+8a2

2−4
√

2a2
4a2

, ηinj ≥ 1
6

2
√

2, ηinj <
1
6

(6.36)

The output power normalized to class-A is then given by

pLA(f0) =


8(

1+8a2
2−4
√

2a2
4a2

)2 , ηinj ≥ 1
6

8
(2
√

2)2 = 1, ηinj <
1
6

(6.37)

Fig. 6.7 depicts the fundamental frequency output power reduction relative to a class-A

PA versus injector efficiency. This was calculated by computing a2 as a function of ηinj , then

computing the output power from a2 and determining the ratio relative to 1W. When injection

efficiency is 100%, the output power is reduced by 0.13 dB relative to the class-A PA.

It is of practical interest to plot the supply voltage normalized to class-A supply voltage

found as

vDD,A = V̄DD/
√

2 (6.38)

165



0 0.2 0.4 0.6 0.8 1
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

η
inj

P
ow

er
 R

ed
uc

tio
n 

(d
B

)

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

v D
D

,A

Figure 6.7: Power reduction and normalized supply voltage vDD,A versus injector efficiency ηinj .

In this formulation, the normalized supply current is equivalent to the above. Fig. 6.7 shows the

supply voltage normalized by the class-A supply voltage as a function of injector efficiency. The

value when the injector efficiency is 100% is approximately 0.7107. The resultant normalized ideal

drain waveforms (i.e. injector efficiency is 100%) are shown Fig. 6.8. As expected, the current

waveform appears as a class-B current waveform with limited harmonic content, while the voltage

waveform is identical to the current waveform shifted by 180◦.
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Figure 6.8: Optimal drain current and voltage waveforms when the optimal value of a2 from
(6.32) and V̄DD from (6.35) are calculated assuming ηinj = 1.
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6.4 Third Harmonic Injection Drain Waveforms

The previous section introduced the second harmonic injection amplifier with the logic behind

the selection of the harmonic injection component being to maintain waveform symmetry. This

section introduces another idea for a harmonic injection amplifier based upon third harmonic

injection. An alternate set of ideal waveforms is considered in order to develop the third harmonic

injection concept. Consider shaping the current and voltage waveforms to symmetric square

waves. It is well known that a square wave contains only DC, fundamental and odd harmonic

components. Therefore, it should be possible to shape the current and voltage waveforms into

symmetric square waves using infinite injection of odd harmonics, but let us consider use of only

the first odd harmonic (e.g. the third harmonic). In order to maintain waveform symmetry, the

third-harmonic-only amplifier normalized drain waveforms are constructed in the form given by

v̄D(θ) = V̄DD +
√

2 sin θ + b3 sin(3θ) (6.39)

īD(θ) = ĪDD −
√

2 sin θ − b3 sin(2θ) (6.40)

It is interesting to note is that in the case of third harmonic injection, the impedance at the

third harmonic is positive rather than negative, so the waveforms of (6.39) and (6.40) can be

realized with a passive set of output terminations rather than by electrical impedance synthesis

via harmonic injection at the output. However, relying on a passive set of terminations and the

third harmonic components generated by the active device is unlikely to realize the optimal levels

of harmonic current and voltage. Additionally, the active device would produce some second

harmonic current or voltage if it were to produce third harmonic components, which would

destroy the waveform symmetry. The third harmonic injection concept suggests the injection be

done at the input of the active device with a passive third harmonic termination, allowing the

device to operate in its linear region. To analyze the concept, the optimal value of b3 is found

just as a2 was found in the previous section. The first partial derivative of the voltage waveform

in (6.39) w.r.t θ is

∂v̄D(θ)
∂θ

=
√

2 cos θ + 3b3 cos(3θ) (6.41)
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Substituting the trigonometric identity

cos3θ = 4cos3θ − 3cosθ (6.42)

into (6.41) reduces the partial derivative to

∂v̄D(θ)
∂θ

= 12b3 cos3 θ + (
√

2− 9b3) cos θ (6.43)

The critical points are determined by setting (6.43) to zero and finding the solutions, which are

cosθcritical,v = ±

√
9b3 −

√
2

12b3
(6.44)

and

θcritical,v = π

2 + nπ, n = 0, 1, ...,∞ (6.45)

First the solutions of (6.44) are investigated. In order for the solution to be valid, the term under

the square root of (6.44) is restricted such that −1 ≤ cos θcritical,v ≤ +1. Therefore,

9b3 −
√

2
12b3

≥ 0 (6.46)

and

9b3 −
√

2
12b3

≤ 1 (6.47)

The numerator of (6.46) has a root at b3 =
√

2
9 and the denominator has a root at b3 = 0.

Therefore, the intervals of analysis are [−∞, 0),
(

0,
√

2
9

]
, and

[√
2

9 ,+∞
]
. Using the test point

method (i.e. picking a test point in each defined interval and checking the sign),

9b3 −
√

2
12b3

≥ 0, b3

∣∣∣∣[−∞, 0),
[√

2
9 ,+∞

]
(6.48)

To analyze (6.47), all terms are collected over a common denominator which yields the form

3b3 +
√

2
12b3

≥ 0 (6.49)

The numerator of (6.49) has a root at b3 = −
√

2
3 and the denominator has a root at b3 = 0.

Therefore, the intervals of analysis are
[
−∞,−

√
2

3

]
,
[
−
√

2
3 , 0

)
, and (0,+∞]. Using the test point

method,

3b3 +
√

2
12b3

≥ 0, b3

∣∣∣∣[−∞,−√2
3

]
, (0,+∞] (6.50)
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Therefore, when b3 is in the interval
(
−
√

2
3 ,+

√
2

9

)
, (6.44) does not produce a critical point, and

the critical points are strictly defined by (6.45). Which critical points correspond to the minima,

maxima, the global minimum, and the global maximum must now be proven. The second partial

derivative of the voltage waveform w.r.t θ is

∂2v̄D(θ)
∂θ2 = −36b3 cos2 θ sin θ − (

√
2− 9b3) sin θ (6.51)

which simplifies to

∂2v̄D(θ)
∂θ2 = 36b3 sin3 θ − (

√
2 + 27b3) sin θ (6.52)

First the solution of (6.44) is investigated. Substituting this into (6.52) results in

∂2v̄D(θ)
∂θ2 = 36b3

±
√

1− 9b3 −
√

2
12b3

(1− 9b3 −
√

2
12b3

)
− (
√

2 + 27b3)

±
√

1− 9b3 −
√

2
12b3


(6.53)

which simplifies to

∂2v̄D(θ)
∂θ2 = (2

√
2− 18b3)

±
√

1− 9b3 −
√

2
12b3

 (6.54)

The best way to analyze (6.54) is to look at the two terms separately. Start by writing (6.54) in

the form

∂2v̄D(θ)
∂θ2 = (2

√
2− 18b3)

±
√

3b3 +
√

2
12b3

 (6.55)

It is evident that the first term is greater than zero when b3 <
√

2
9 and less than zero when

b3 >
√

2
9 . The first term equals zero when b3 =

√
2

9 . The second term is a bit more difficult

to analyze. First the range of b3 over which the inside of the square root is positive must be

determined. This is done by analyzing the equation

3b3 +
√

2
12b3

> 0 (6.56)

The numerator of the equation has a root at b3 = −
√

2
3 and the denominator has a root at b3 = 0.

Therefore, the intervals of analysis are
[
−∞,−

√
2

3

]
,
[
−
√

2
3 , 0

)
, and (0,+∞]. Using the test point

method,

3b3 +
√

2
12b3

> 0, b3

∣∣∣∣[−∞,−√2
3

]
, (0,+∞] (6.57)
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However, the interval
[
0,
√

2
9

)
does not contain a valid solution based upon the previous analysis.

So subsequent analysis is limited to the intervals
[
−∞,−

√
2

3

]
and

[√
2

9 ,+∞
]
. Combining these

results with the analysis of the first term, the properties of the second partial derivative as a

function of valid values of b3 can be stated. When the sign of the square root in (6.54) is positive,

∂2v̄D(θ)
∂θ2 →



> 0, b3

∣∣∣(√2
9 ,+∞

]
< 0, b3

∣∣∣[−∞,−√2
3

)
= 0, b3 =

√
2

9

(6.58)

When the sign of the square root in (6.54) is negative,

∂2v̄D(θ)
∂θ2 →



< 0, b3

∣∣∣(√2
9 ,+∞

]
> 0, b3

∣∣∣[−∞,−√2
3

)
= 0, b3 =

√
2

9

(6.59)

Now the solution of (6.45) is investigated. Substituting this into (6.52) results in

∂2v̄D(θ)
∂θ2 = 36b3 sin3(π2 + nπ)− (

√
2 + 27b3) sin(π2 + nπ), n = 0, 1, ...,∞ (6.60)

which simplifies to

∂2v̄D(θ)
∂θ2 = (9b3 −

√
2) (−1)n , n = 0, 1, ...,∞ (6.61)

It is only necessary to investigate the first two solutions corresponding to n = 0 and n = 1

because the rest correspond to the periodicity of the waveform. When n = 0,

∂2v̄D(θ)
∂θ2 →



> 0, b3

∣∣∣(√2
9 ,+∞

]
< 0, b3

∣∣∣[−∞,−√2
3

)
= 0, b3 =

√
2

9

(6.62)

When n = 1,

∂2v̄D(θ)
∂θ2 →



< 0, b3

∣∣∣(√2
9 ,+∞

]
> 0, b3

∣∣∣[−∞,−√2
3

)
= 0, b3 =

√
2

9

(6.63)
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To identify the global minimum the four known minima must be compared to see which results

in the lower value. The known minima are dictated by values of b3 for which (6.58), (6.59), (6.62)

and (6.62) are greater than zero. The voltage minimum corresponding to the critical point in

(6.44) with the square root taken as positive is

v̄D(θcritical,v) = V̄DD +
√

2

√
1− 9b3 −

√
2

12b3
+ b3 sin(3θv,critical) (6.64)

which through use of the triple angle formula becomes

v̄D(θcritical,v) = V̄DD +
√

2

√
1− 9b3 −

√
2

12b3
+ b3

[
3 sin(θv,critical)− 4 sin3(θv,critical)

]
(6.65)

which simplifies to

v̄D(θcritical,v) = V̄DD +
(

2
√

2
3 + 2b3

)√
1− 9b3 −

√
2

12b3
(6.66)

Similarly, if the negative square root of the critical point in (6.44) is taken, the voltage minimum

is

v̄D(θcritical,v) = V̄DD −
(

2
√

2
3 + 2b3

)√
1− 9b3 −

√
2

12b3
(6.67)

The value of the voltage minimum corresponding to the critical point in (6.45) with n = 0 is

v̄D(θcritical,v) = V̄DD +
√

2 sin
(π

2

)
+ b3 sin

(
3π2

)
(6.68)

which simplifies to

v̄D(θcritical,v) = V̄DD +
√

2− b3 (6.69)

This is a minimum when b3 is in the range
(√

2
9 ,+∞

]
. The value of the voltage minimum

corresponding to the critical point in (6.45) with n = 1 is

v̄D(θcritical,v) = V̄DD +
√

2 sin
(π

2 + π
)

+ b3 sin
(

3π2 + 3π
)

(6.70)

which simplifies to

v̄D(θcritical,v) = V̄DD −
√

2 + b3 (6.71)

This is a minimum when b3 is in the range
[
−∞,

√
2

9

)
. Now the minima are compared to determine

the global minimum as a function of b3. First, the global minimum when b3 is in the range
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[−∞,−
√

2
3 ] is determined. In this case, there are two minima of interest. Let us try to prove that

the minimum corresponding to (6.44) with the positive root taken is the minimum. Then we

must prove (
2
√

2
3 + 2b3

)√
1− 9b3 −

√
2

12b3
< −
√

2 + b3 (6.72)

Direct evaluation of (6.72) proves its invalidity, therefore when b3 is in the range
[
−∞,−

√
2

3

]
,

the solution to the critical point corresponding to the global minimum is θcritical,v = π
2 + π.

The range over which this critical point corresponds to the global minima can be extended to[
−∞,

√
2

9

)
since it is the only minima in this extended range.

Next the global minimum when b3 is in the range
(√

2
9 ,+∞

]
is determined. By direct

evaluation, it can be shown that when b3 is in this region, the solution to the critical point

corresponding to the global minimum is given by cosθcritical,v = ±
√

9b3−
√

2
12b3 . Now it is fully

known how to determine the global minimum of the voltage waveform as a function of b3. Due

to the symmetry of the voltage and current waveforms, the minimum normalized voltage will be

equivalent to the minimum normalized current. Therefore, the normalized supply current will be

equivalent to the normalized supply voltage, and the normalized voltage global maximum will be

equivalent to the normalized current global maximum. Next the normalized supply voltage is

found for each potential global minimum. The normalized supply voltage is

V̄DD = −
√

2 sin θmin,v − b3 sin(3θmin,v) (6.73)

Through substitution of the appropriate critical points, the normalized supply voltage is expressed

as

V̄DD =


√

2− b3, b3

∣∣∣[−∞, √2
9

)
(

2
√

2
3 + 2b3

)√
1− 9b3−

√
2

12b3 , b3

∣∣∣(√2
9 ,+∞

] (6.74)

The consumed DC power is expressed as

P̄DC = V̄DD ĪDD + b23
2ηinj

= V̄ 2
DD + b23

2ηinj
(6.75)
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Which in the two regions of b3 having unique solutions is expressed as

P̄DC =


(
√

2− b3)2 + b23
2ηinj , b3

∣∣∣[−∞, √2
9

)
[(

2
√

2
3 + 2b3

)√
1− 9b3−

√
2

12b3

]2
+ b23

2ηinj , b3

∣∣∣(√2
9 ,+∞

] (6.76)

which reduces to

P̄DC =


(
√

2− b3)2 + b23
2ηinj , b3

∣∣∣[−∞, √2
9

)
√

2b3 + 2
√

2
27b3 + b23 + 2

3 + b23
2ηinj , b3

∣∣∣(√2
9 ,+∞

] (6.77)

Now the DC power is minimized. The partial derivative of (6.77) w.r.t. b3 is

∂P̄DC
∂b3

=


−2(
√

2− b3) + b3
ηinj

, b3

∣∣∣[−∞, √2
9

)
√

2− 2
√

2
27b23

+ 2b3 + b3
ηinj

, b3

∣∣∣(√2
9 ,+∞

] (6.78)

Note that if the second partial derivative of (6.78) is taken and evaluated for a given b3, the

result is positive, therefore the critical point of the DC power always corresponds to the global

minimum. Setting (6.78) equal to zero and solving for b3 results in

b3 = 2
√

2
2 + 1

ηinj

, b3

∣∣∣∣[0, √2
9

)
(6.79)

and the purely real positive root of the other expression in (6.78), which is the root of a cubic

equation. Notice that b3 must be greater than zero, given the injector efficiency is always positive.

That is the reason for the changed limits of b3 in (6.79). Also, note that above a certain injector

efficiency, the result becomes inconsistent with the range of b3 over which it is valid. By setting

b3 to the limiting values of the range and solving for injector efficiency, we find that (6.79) is only

valid when ηinj is in the range
[
0, 1

16
)
, or in other words up to 6.25% injector efficiency. Above

6.25% injector efficiency, the other solution for b3 is the valid solution. Fig. 6.9 depicts the optimal

solution for b3 as a function of injector efficiency. This graph was created by parsing together

the results from the two different regions of solution. The efficiency may now be calculated as a

function of injector efficiency. An analytical expression is not provided because it is complicated

due to the root of the cubic equation in (6.78). Fig. 6.10 depicts the total efficiency versus injector

efficiency. Fig. 6.11 depicts the optimal drain voltage and current waveforms using third harmonic

injection which result from 100% injector efficiency.
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Figure 6.9: Solution for b3 versus injector efficiency.
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Figure 6.11: Optimal drain current and voltage waveforms for third harmonic injection amplifier.
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6.5 Practical Implementation Issues & Limitations

The analysis of the previous sections demonstrates that a high drain efficiency can theoretically

be realized via harmonic injection. However, there are several practical issues that must be

considered, such as synthesis of the harmonic impedance at the virtual drain of the transistor

and the design and influence of the injector passive three port from Fig. 6.4.

The synthesis of a negative second harmonic impedance at the virtual drain can be accom-

plished using output harmonic injection only in the case where the transistor itself is generating

second harmonic content. If the transistor fails to generate second harmonic power and presents

an impedance other than that of the fundamental frequency output termination, the necessary

negative impedance for optimal injection cannot be synthesized using harmonic injection. In this

case, it would be necessary to perform harmonic injection at both the input and output of the

transistor.

The ideal passive three port injection circuit shown in Fig. 6.4 is assumed to be lossless in

the presented analysis. In general, the ideal S-parameters of the network at the fundamental and

harmonic frequencies are given by

S(f0) =


0 ejφ21(f0) 0

ejφ21(f0) 0 0

0 0 ejφ33(f0)

 (6.80)

S(2f0) =


0 0 ejφ31(2f0)

0 ejφ22(2f0) 0

ejφ31(2f0) 0 0

 (6.81)

where the S-parameters are assumed to be normalized to the fundamental frequency load

impedance. Port-1, port-2, and port-3 are assumed to connect to the device, output load, and

harmonic injector, respectively. An example of such a circuit can be found in [103], where

the presented multiplexing circuit coupled with the appropriate termination on port-2 obeys

(6.80)-(6.81).
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6.6 Injection Circuit Analysis

In order to allow for design of a satisfactory injection network, a theoretical design procedure is

presented. First assume that there are two individual two-port networks and that their scattering

parameters are known. Let the networks be defined as network-A and network-B, with the

respective scattering parameters SA,ij and SB,ij . The two-port networks are shown on the left

side of Fig. 6.12 and the connection scheme resulting in the three-port network is shown on the

right side of Fig. 6.12. The goal is to derive the scattering parameters of the three-port network

a

A

B

A

B

1

1

2

2

1

2

3

Figure 6.12: Diagram showing construction of a three-port network from two two-port networks.

in terms of the parameters of the two-port networks. A straightforward manner in which to

approach the problems is depicted in Fig. 6.13. A signal flow graph analysis could be performed

as an alternative approach.

The shunt impedance shown in Fig. 6.13 represents the effective impedance created by the

termination of port-2 of either network-A or network-B in a load consistent with the reference

impedance for the scattering parameters, which is denoted as Z0. In the case of analysis of

port-1 to port-2, [Sx] = [SA] while in the case of analysis of port-1 to port-3 [Sx] = [SB].

First, let us derive an expression for the normalized shunt impedance zshunt,x. Remember that

this represents and normalized input impedance created by two-port network terminated in

Z0. Under the assumption that the scattering parameters of the network are normalized to the

reference impedance Z0, the input reflection coefficient is simply S11 of the network. Therefore,
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Figure 6.13: Diagram showing the circuits used to determine the three-port scattering parameters.
Zshunt,x and [Sx] denote a shunt impedance and scattering parameter block, respectively. Note
that in general Zshunt,x and [Sx] will differ for each analysis circuit. For example, Zshunt,x and [Sx]
will differ for the analysis of port-1 to port-2 and port-1 to port-3, although they are represented
by the same basic circuit in the figure.

the normalized shunt impedance zshunt,x is given by

zshunt,x =


1+SB,11
1−SB,11

, (port-1 to port-2)

1+SA,11
1−SA,11

, (port-1 to port-3)

(6.82)

From now on, the normalized shunt impedance presented by network-A as is referred to as zshunt,A

and the normalized shunt impedance presented by network-B as zshunt,B . Now that an expression

for the normalized shunt impedance is obtained, the most straightforward analysis procedure is

to analyze the three analysis circuits using ABCD parameters. The ABCD parameters of the

shunt impedance are given by

ABCDZshunt,x =

 1 0

Yshunt,x 1

 (6.83)

Let the ABCD parameters of the network-A and network-B be defined as

ABCDA =

 AA BA

CA DA

 (6.84)

ABCDB =

 AB BB

CB DB

 (6.85)

Now we begin to form the scattering parameters. First we analyze port-1 to port-2. In this case
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the cascaded ABCD parameters are given by

ABCD12 =

 AA BA

AAYshunt,B + CA BAYshunt,B +DA

 (6.86)

Using the formulas in [23] where a real port impedance is assumed, the scattering parameters

are expressed as

S11 = 2zshunt,B(SA,11 + 1)
2zshunt,B + SA,11 + 1 − 1 =

SA,11 − SA,11+1
2zshunt,B

1 + SA,11+1
2zshunt,B

(6.87)

S12 = 2zshunt,BSA,12
2zshunt,B + SA,11 + 1 = SA,12

1 + SA,11+1
2zshunt,B

(6.88)

S21 = 2zshunt,BSA,21
2zshunt,B + SA,11 + 1 = SA,21

1 + SA,11+1
2zshunt,B

(6.89)

S22 = SA,22 −
SA,12SA,21

2zshunt,B + SA,11 + 1 (6.90)

Now (6.82) may be substituted to fully express the scattering parameters in terms of the two-

port network parameters. However, as we will see later, it is more useful to leave the expressions

in the current form. Through an identical analysis, we can also express the port-1 to port-3

results as

S11 = 2zshunt,A(SB,11 + 1)
2zshunt,A + SB,11 + 1 − 1 =

SB,11 − SB,11+1
2zshunt,A

1 + SB,11+1
2zshunt,A

(6.91)

S13 = 2zshunt,ASB,12
2zshunt,A + SB,11 + 1 = SB,12

1 + SB,11+1
2zshunt,A

(6.92)

S31 = 2zshunt,ASB,21
2zshunt,A + SB,11 + 1 = SB,21

1 + SB,11+1
2zshunt,A

(6.93)

S33 = SB,22 −
SB,12SB,21

2zshunt,A + SB,11 + 1 (6.94)

Finally, we must analyze the final circuit to arrive at the remaining scattering parameters. The

cascaded ABCD parameters are give by

ABCD23 =

 A∗A B∗A

C∗A D∗A


 1 0

Y0 1


 AB BB

CB DB

 (6.95)

ABCD23 =

 A∗AAB +B∗ACB +B∗AABY0 A∗ABB +B∗ADB +B∗ABBY0

C∗AAB +D∗ACB +D∗AABY0 C∗ABB +D∗ADB +D∗ABBY0

 (6.96)

178



where the ∗ indicates that the ABCD parameters are calculated with port-1 and port-2 reversed.

After applying the conversion, the remaining scattering parameters are given by

S22 = SA,22 + 2SA,12SA,21(SB,11 − 1)
SB,11 − SA,11(SB,11 − 1) + 3 (6.97)

S23 = 2SA,12SB,21
SA,11 − SB,11(SA,11 − 1) + 3 (6.98)

S32 = 2SB,12SA,21
SA,11 − SB,11(SA,11 − 1) + 3 (6.99)

S33 = SB,22 + 2SB,12SB,21(SA,11 − 1)
SA,11 − SB,11(SA,11 − 1) + 3 (6.100)

This completes the derivation of the 3-port scattering parameters as a function of the 2-port

scattering parameters. Now we start to place requirements on the 2-port scattering parameters

based upon the requirements placed on the 3-port scattering parameters given in (6.80) and (6.81).

Note that from these requirements we have some commonality between the fundamental and

second harmonic scattering parameters. We see that at both frequencies, S11 = S32 = S23 = 0.

First, based upon (6.87) and (6.91) we have that

2zshunt,B(SA,11 + 1)
2zshunt,B + SA,11 + 1 − 1 = 0 (6.101)

2zshunt,A(SB,11 + 1)
2zshunt,A + SB,11 + 1 − 1 = 0 (6.102)

These may be solved in the following forms

zshunt,A = SB,11 + 1
2SB,11

(6.103)

zshunt,B = SA,11 + 1
2SA,11

(6.104)

SA,11 = 1
2zshunt,B − 1 (6.105)

SB,11 = 1
2zshunt,A − 1 (6.106)

This gives some guidance about what the two-port networks must present as shunt impedances,

or what SA,11 and SB,11 must be in order to enforced the matched condition at port-1. Next,

from the condition that S32 = S23 = 0 we can state using (6.98) and (6.99) that

SA,12SB,21 = SB,12SA,21 = 0 (6.107)
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Given that the two port networks are passive, we have the knowledge that they are reciprocal.

Therefore, we can state that for this condition to hold we require that either SA,12 = SA,21 = 0

or SB,12 = SB,21 = 0. Note that these conditions must not be simultaneously true at a given

frequency because transmission of energy would never be able to occur between any ports in that

case. By inspection of (6.80) and (6.81) with the knowledge of the derived scattering parameters,

we conclude that

SB,21(f0) = SB,12(f0) = 0 (6.108)

and

SA,21(2f0) = SA,12(2f0) = 0 (6.109)

We know that we want total transmission from port-1 to port-2 at f0, therefore

|S21(f0)|2 = 1 (6.110)

which from (6.89) and (6.104) results in

|SA,21(f0)|2

|1 + SA,11(f0)+1
2zshunt,B(f0) |2

= |SA,21(f0)|2

|1 + SA,11(f0)|2 = 1 (6.111)

Which expands to

|SA,21(f0)|2

1 + 2 Re{SA,11(f0)}+ |SA,11(f0)|2 = 1 (6.112)

Therefore, for the above to be satisfied we require that

|SA,21(f0)|2 = 1 |SA,11(f0)|2 = 0 (6.113)

These requirements further simplify our previous expression for the shunt impedance to

zshunt,B(f0) =∞ (6.114)

Similarly, we know that we want total transmission from port-1 to port-3 at 2f0, therefore

|S31(2f0)|2 = 1 (6.115)

which results in

|SB,21(2f0)|2

|1 + SB,11(2f0)+1
2zshunt,A(2f0) |2

= |SB,21(2f0)|2

|1 + SB,11(2f0)|2 = 1 (6.116)
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Which expands to

|SB,21(2f0)|2

1 + 2 Re{SB,11(2f0)}+ |SB,11(2f0)|2 = 1 (6.117)

Therefore, for the above to be satisfied we require that

|SB,21(2f0)|2 = 1 |SB,11(2f0)|2 = 0 (6.118)

We can also write that

S22(f0) = 0 (6.119)

Therefore

SA,22(f0)− SA,12(f0)SA,21(f0)
2zshunt,B(f0) + SA,11(f0) + 1 = 0 (6.120)

which immediately requires that

SA,22(f0) = 0 (6.121)

We can also write that

S33(2f0) = 0 (6.122)

Therefore

SB,22(2f0)− SB,12(2f0)SB,21(2f0)
2zshunt,A(2f0) + SB,11(2f0) + 1 = 0 (6.123)

which immediately requires that

SB,22(2f0) = 0 (6.124)

Next we solve for SA,11(2f0). We know that

zshunt,B(2f0) = 1 + SB,11(2f0)
1− SB,11(2f0) = 1 + 0

1− 0 = 1 (6.125)

Therefore, using (6.105) we may state that

SA,11(2f0) = 1
2zshunt,B(2f0)− 1 = 1

2− 1 = 1 (6.126)

Next we solve for SB,11(f0). We know that

zshunt,A(f0) = 1 + SA,11(f0)
1− SA,11(f0) = 1 + 0

1− 0 = 1 (6.127)
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Therefore, using (6.106) we may state that

SB,11(f0) = 1
2zshunt,A(f0)− 1 = 1

2− 1 = 1 (6.128)

Now we solve for SA,22(2f0). We require that

|S22(2f0)|2 = 1 (6.129)

First we can simplify (6.90) to the form

S22(2f0) = SA,22(2f0)− 0
2 + 1 + 1 = SA,22(2f0) (6.130)

Therefore, we require that

|SA,22(2f0)|2 = 1 (6.131)

Through a similar procedure, it can be shown that

|SB,22(f0)|2 = 1 (6.132)

We have now fully expressed the requirements on the individual two port networks, and they are

now summarized below

SA(f0) =

 0 ejθA,21(f0)

ejθA,21(f0) 0

 (6.133)

SA(2f0) =

 1 0

0 ejθA,22(2f0)

 (6.134)

SB(f0) =

 1 0

0 ejθB,22(f0)

 (6.135)

SB(2f0) =

 0 ejθB,21(2f0)

ejθB,21(2f0) 0

 (6.136)

Investigation of SA reveals that it represents nothing more that a low-pass filter. However, it

represents a special low-pass filter under further inspection due to the requirement on SA,11(2f0).

In the stop-band, the network must look like an open circuit rather than just a reflective
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termination as is typically the case with a reflective filter. This represents a difficult design

challenge, where not only the magnitude of the reflection coefficient must be synthesized but

also the phase. This is certainly achievable over a narrow bandwidth, but it is desirable to find a

way to achieve it over a broad bandwidth. It is noted that the same stop-band characteristic is

required for the network represented by SB , where in this case the filter is a high-pass filter.

6.7 Conclusion

This chapter presents an analysis of an alternative approach to high-efficiency PA design, using a

nominally linear amplifier and injecting harmonic power externally at the load side. The details

of second and third harmonic injection are given, along with a discussion of an appropriate

network that can be inserted into the output network for harmonic injection. Ground work

for experimental verification and appropriate efficiency definitions are also presented. Specific

contributions of this chapter include:

• Development of a theory for externally harmonically injected amplifiers for the first time,

to the best of our knowledge. It is our plan to submit this work for publication in IEEE

Transactions on Microwave Theory & Techniques, along with some experimental validation.

• The theoretical approach shows that from the efficiency and complexity standpoint, it is

practical to only consider injection of the second harmonic, and that under ideal conditions

the injected amplifier exceeds the theoretical best efficiency of a harmonically terminated

amplifier.

• The results are validated with a simple set of experiments and are reported in [14].

• Because a linear amplifier is used as the main amplification mechanism, the overall PA is

more linear than a standard harmonically-terminated high efficiency PA, leading to the

possibility of achieving linearity with simultaneous high efficiency over a potentially broad

bandwidth, assuming a broadband injection circuit can be designed.
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• Theoretical analysis of the passive 3-port injection circuit is developed, with a conclusion

it needs to behave like interconnected low-pass and high-pass 2-port filters, which act as

open circuits in the stop bands. If such a circuit can be designed, simultaneous linearity,

efficiency and bandwidth in a PA would be enabled by the harmonic injection architecture.
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Chapter 7

Summary and Future Work

Contents
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7.1 Summary & Contributions

In summary, the research presented in this thesis addresses techniques for analysis and design

of high-efficiency power amplifiers, with extensions to linear high-efficiency transmitters and

high-efficiency rectifiers. Specific contributions associated with the material in Chapters 2-6 are

summarized below, followed by some obvious directions for future work.

Chapter 2 presented some of the basics of load pull based power amplifier design, including

some basic load-pull theory and measurement network design. A method for calibrating and

measuring a single slug mechanical tuner was presented and verified with a FOCUS Microwaves

tuner. The load pull method is necessary for high-efficiency PA design when good models are not

available, which is commonly the case, especially for new device technologies such as GaN used

in this thesis. The specific contributions described in this chapter are:



• Application of basic load pull theory to design of a high-efficiency 2.14GHz cell-phone

band PA.

• The resulting design was implemented in a hybrid circuit with a TriQuint 12W GaN die.

This PA was measured independently by Agilent at the 2010 IEEE International Microwave

Symposium, resulting in 82.6% PAE with 38.2 dBm output power and 18 dB large signal

gain. This PA won second place at the 2010 IMS PA Student Competition and is also

reported in [9].

• The load-pull design method was scaled to 10GHz in a GaN MMIC test structure with

implicit harmonic terminations on-chip. The TriQuint 0.25µm GaN process was used and

resulted in an efficiency of 50% at 10GHz with 3.5W of output power in a test MMIC.

The measured results from this test circuit serve as input characterization information for

the next iteration of a high-efficiency 10GHz PA design, with estimated potential PAE of

70%.

Chapter 3 expands previous work on harmonic terminations for high-efficiency PAs. The

analysis of ideal PA behavior for arbitrary complex harmonic terminations is presented, which

extends existing theory developed by Raab in [40], which was only valid for specific reactive

impedances. Specific conclusions resulting from the analysis can be summarized as follows.

• The method is useful because it predicts the sensitivity of relevant PA parameters to

specific impedance terminations at the harmonic frequencies. This is especially important

for higher microwave frequency PAs, where the harmonics are in the millimeter-wave range,

and parasitic reactances and loss can significantly affect the impedances designed at the

harmonics.

• An interesting result from the theory is the limited sensitivity of efficiency and power

to harmonic termination phase, which points to the possibility of extending bandwidth

through use of appropriate resonant circuits.
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• The theoretical approach was validated with qualitative measurements on a 2.14GHz

class-F−1 PA with second and third harmonic terminations and is presented in [10].

• In Section 3.6, the theory was extended to include a linear transformation due to Cout and

was further extended to include bond wires in the experimental validation. In general, the

method may be applied to a PA having an arbitrary parasitic output network which is

linear and characterized by S-parameters.

• The method in this chapter can be extended to include analysis of PA efficiency, output power,

and output load given an arbitrary set of both input and output harmonic terminations.

In Chapter 4, a theoretical motivation has been presented for development of a radar transmitter

capable of generating amplitude modulated pulses. The spectral confinement properties of a radar

system capable of AM signal transmission is superior to that of one limited to constant envelope

signals. However, it is also important to understand the impacts which transmission of an AM

signal has on other radar performance characteristics, of which some have been investigated in

the previous sections. Implementation and measurement of a system capable of high efficiency

AM radar signal transmission has been detailed as well, demonstrating the feasibility of such a

transmitter. The specific contributions presented in this chapter are:

• Development of theoretical analysis of the impact of amplitude-modulated pulses on radar

performance, which was reported in [69].

• In collaboration with Prof. Dragan Maksimović and Dr. Miguel Rodríguez, implemented a

simple efficient pulsed supply modulator with an approximately raised cosine amplitude

modulation. The supply was characterized with an efficient PA from Chapter 2, with a

modified bias line.

• With digital pre-distortion used for linearization, the supply-modulated PA demonstrated

reduced spectral content outside of the band of interest. The PA operates at 2.14GHz with

78% efficiency at 6 W peak power, and with 66.4% average efficiency over a 14.7µs pulse

with a 4.1dB PAR shaped by a 90% efficient resonant-pulse envelope supply modulator. For
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PARs greater than 4.1 dB, the signal envelope can be split between the supply modulator

and the PA drive, with up to 25% improvement in composite efficiency.

• This work is reported in [11], where details of the supply modulators are given, as well as a

submitted paper to IEEE Microwave and Wireless Components Letters with focus on RF

characterization and linearization [12].

Chapter 5 presents an analysis of microwave rectifiers using analogies from power amplifiers

with harmonic terminations to improve efficiency. The analysis is confirmed with measured data

on several shunt Schottky diode rectifiers, and can be applied to wireless powering which is

investigated in [96]. The specific contributions of this chapter are:

• A new approach to rectifier analysis and to increasing efficiency in rectifiers, modeled after

efficient power amplifier design, and reported only briefly in [13].

• Experimental verification of the analysis, based on measurements of a class-C 2.45GHz

Schottky-diode rectifier with short-circuit 2nd and 3rd harmonic terminations. A maximum

RF-DC conversion efficiency of 72.8% when matched to 50Ω is demonstrated. The approach

is applied to integration of a rectifier with a dual-polarization patch antenna in a non 50Ω

environment and free-space measurements demonstrate a lower bound on efficiency of 56%

at 150µW\cm2 power density which includes matching circuit and mismatch losses [13].

• The details and extensions of the presented theory in [13] will be submitted for journal

publication in IEEE Transactions on Microwave Theory & Techniques.

Chapter 6 presents an analysis of an alternative approach to high-efficiency PA design, using

a nominally linear amplifier and injecting harmonic power externally at the load side. The details

of second and third harmonic injection are given, along with a discussion of an appropriate

network that can be inserted into the output network for harmonic injection. Ground work

for experimental verification and appropriate efficiency definitions are also presented. Specific

contributions of this chapter include:
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• Development of a theory for externally harmonically injected amplifiers for the first time,

to the best of our knowledge. It is our plan to submit this work for publication in IEEE

Transactions on Microwave Theory & Techniques, along with some experimental validation.

• The theoretical approach shows that from the efficiency and complexity standpoint, it is

practical to only consider injection of the second harmonic, and that under ideal conditions

the injected amplifier exceeds the theoretical best efficiency of a harmonically terminated

amplifier.

• The results are validated with a simple set of experiments and are reported in [14].

• Because a linear amplifier is used as the main amplification mechanism, the overall PA is

more linear than a standard harmonically-terminated high efficiency PA, leading to the

possibility of achieving linearity with simultaneous high efficiency over a potentially broad

bandwidth, assuming a broadband injection circuit can be designed.

7.2 Some Directions for Future Work

The underlining theme of this thesis is Fourier analysis applied to various seemingly unrelated

nonlinear microwave circuits such as harmonically terminated saturated PAs, rectifiers and

harmonically injected linear PAs. The theory is idealized in most cases, and can be extended

to include more practical and non-ideal parameters. A direction for doing this is shown, e.g. in

Chapter 3 by including Cout, and in Chapter 5 by including Vtr and Ron.

Follow-up work related to the method described in Chapter 2 is in the direction of GaN MMIC

design at X-band and above. TriQuint Semiconductor has developed a 0.15 µm GaN process, and

the methodology described in Chapter 2 can be applied to future MMIC designs for high-efficiency

PAs. Since this process has limited power available from a single device, power combining on-chip

will be necessary, and initial work on including integrated power combiner networks is underway.

Specifically, investigation of odd and even mode contributions in a corporate symmetrical power

combined MMIC PA is of interest and will be necessary to achieve a stable and efficient GaN
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Figure 7.1: Transistor rectifier block diagram. The fundamental frequency RF source shown as
Vin(f0) and Z0 is used to drive both the drain and the gate of the field effect transistor in a
common source configuration.

MMIC at 10GHz.

The microwave power rectifier work presented in Chapter 5 may be extended to transistor

rectifiers. Fig. 7.1 shows the basic block diagram of a transistor-based rectifier using a field effect

transistor. The drive level at the gate relative to the drain is optimized via the coupling factor of

the coupler, phase shifter and attenuator to maximize the RF-DC conversion efficiency. Matching

networks are used at the gate and drain in order to present the optimal impedances for RF-DC

conversion efficiency. The DC load RDC is also optimized to maximize efficiency. A preliminary

rectifier was fabricated and tested at 2.45GHz using the following procedure. A 25W TriQuint

0.25 µm GaN die was tested as an amplifier with source pull and load pull measurements subject

to second and third harmonic class-F−1 terminations. The device was biased at the class-B bias

point. Given the dual nature of a microwave amplifier and rectifier as discussed in Chapter 5, it

is postulated that the impedances found through this procedure will work well for a microwave

rectifier. This method of determining the impedance matching networks was chosen because it

greatly simplifies the measurement procedure. If the device were initially tested as a rectifier, the

drive level at the gate and drain, as well as the RF impedances and DC load would need to be
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optimized. Additionally, the phase of the drive at the gate relative to the drain would need to be

optimized. However, when testing the device as an amplifier, only the RF impedances and gate

drive level need to be optimized.

When presented with the optimal impedances at the gate and source and bias at 35V, the

rectifier exhibited a 79.7% PAE with 42.3 dBm output power and 14.3 dB of gain. The optimal

fundamental frequency load impedance was 66Ω, while the ratio of DC supply voltage to DC

supply current was 59.25Ω. Note that the ratio of the fundamental impedance to the DC load

is very near that of an ideal class-F−1 amplifier. Given the amplifier measurements, the device

was then tested as a rectifier, with identical RF matching and the DC load set to 59.25Ω. After

optimization of the gate and drain drive levels and relative phase, the rectifier produced 13.4W

when driven with a total of 17.7W, resulting in an RF-DC conversion efficiency of 75.7%. This

efficiency is very close to the PAE of the transistor when used as an amplifier. Additionally, the

ratio of the drain drive level to the gate drive level was approximately the gain of the device

when operating as an amplifier with optimal PAE (14 dB). It was noted that the efficiency of the

rectifier was sensitive to the phase of the gate drive relative to the drain drive. Investigation of

the sensitivity due to the relative phase is a path for future work.

The harmonic injection power amplifier work in Chapter 6 has many possibilities for future

work. Initial research in the synthesis of a wide-band injection network is necessary for achieving

a broadband amplifier, with a path toward this end being presented in Chapter 6. Investigation

of the linearity of the concept is currently underway with some of the work being published in

[14]. Further investigation of the linearity of the harmonic injection amplifier when driven with a

modulated signal is important research which needs to be performed. Finally, development of a

communication transmitter using the harmonic injection amplifier is relevant, with the system

performance metrics being of interest.

The research presented in Chapter 4 has several areas in which future work could be performed.

Specifically, experimentation with phase and amplitude modulated radar signals is of interest,

especially from a linearity standpoint. In order to be more efficient for higher PAR levels, a
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modulator needs to be developed which can more drastically swing the drain voltage of the PA.

The many challenges of the future work include linearization, the modulator-PA interconnect,

and accurate co-characterization. Initial work in this area for communication signals is given in

[106] where some parts from Chapter 3 are included.

In summary, the work presented in this thesis demonstrates concepts for improving efficiency

of PAs for microwave communication and radar transmitters. The role of the impedance presented

to the active device at harmonic frequencies is investigated via a generalized Fourier analysis

which may be applied not only to amplifiers with harmonic terminations at the output, but

also to microwave rectifiers and power amplifiers with external injection of waves at harmonic

frequencies. The challenge of simultaneous efficiency and linearity in a transmitter is addressed

for radar waveforms. The harmonic injection amplifier is shown as a possible approach to solving

the even more challenging problem of simultaneous efficiency, linearity and bandwidth.
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