
Eckmann-Hilton and the Hopf Fibration in Homotopy Type Theory

Raymond Baker

Department of Mathematics

University of Colorado Boulder

2023/04/06

Thesis Advisor: Professor Jonathan Wise, Department of Mathematics

Honors Council Representative: Professor Nathaniel Thiem, Department of Mathematics

Outside Reader: Professor Raul Saucedo, Department of Philosophy

Contents

0.1 Introduction . 3

I Background Theory 5

1 The Types 7

1.1 Crash Course on Types . 7

1.2 Path Types . 8

1.2.1 Groupoidal Operations on Paths . 9

1.2.2 Groupoidal Identities . 11

1.3 Type Families . 12

1.4 Function Types . 15

1.4.1 Paths in Function Types . 15

1.4.2 Homotopies . 16

1.4.3 Functions are Functors . 16

1.4.4 Dependent Functions . 19

1.4.5 Homotopies are natural transformations (apd of homotopies) 19

1.4.6 Functions of Two Variable Functions and ap 22

1.5 Sigma Types . 26

1.6 Dependent Paths . 28

1.7 Higher Inductive Types . 33

1

Honors Thesis 2022/12/18

2 Higher Paths 34

2.1 Horizontal Composition . 34

2.2 Higher ap . 39

3 Certain Types, A Closer Look 41

3.1 Higher Homotopies . 41

3.2 Fibers of Maps . 43

3.2.1 Paths in the fiber . 43

3.2.2 The family fib . 44

II Eckmann-Hilton and The Hopf Fibration 46

4 Eckmann-Hilton 49

4.1 The Eckmann-Hilton Argument . 50

4.1.1 Properties of EH . 52

4.2 The Eckmann-Hilton Loop . 55

4.2.1 Properties . 56

4.2.2 Eckmann-Hilton in S2 . 57

5 The Hopf Fibration 58

5.1 The map hpf ∶ S3
→ S2 . 58

5.1.1 The Fiber of hpf . 59

5.2 The family H ∶ S2
→ U . 66

6 Eckmann-Hilton and The Hopf Fibration 68

6.1 The forwards map, g ∶ ∏x∶S2H(x) → fib(x) . 69

6.2 The backwards map, f ∶ ∏x∶S2 fib(x) → H(x) . 73

6.3 The homotopies . 74

6.4 The corollaries . 78

2

Honors Thesis 2022/12/18

0.1 Introduction

This thesis explores the connection between the Hopf fibration and the Eckmann-Hilton

argument through the lens of Homotopy Type Theory (HoTT). Both the Hopf fibration and

the Eckmann-Hilton argument are familiar constructions from classical homotopy theory.

The Hopf fibration is a non-trivial map S3
→ S2 whose fiber is S1. The fiber sequence (and

induced long exact sequence of homotopy groups) of the Hopf fibration gives an equivalence

Ωn
(S2

) ≅ Ωn
(S3

), for n ≥ 3. This result implies, in particular, that π3(S2
) ≅ Z. This is a

surprising result. Given that S2 is generated by a single two dimensional loop, why should

S2 have any non-trivial loops at dimension three, much less have the same loop space as S3

from there on out?

The Eckmann-Hilton argument provides an answer to this question. The Eckmann-

Hilton argument can be phrased in different ways. A simple way to phrase it is simply that

a monoid object in the category of monoids is necessarily a commutative monoid. However,

a more apt phrasing is the following: for any space X and n ≥ 2, the concatenation of loops

in Ωn
(X) is commutative (up to homotopy of paths). Taking X to be S2 and n equal to 2,

Eckmann-Hilton tells us that the concatenation of loops in Ω2
(S2

) is commutative. But this

commutativity only holds up to homotopy. The homotopy itself is a three dimensional path

and this three dimensional path lends a generator of Ω3
(S3

).

This is a result known to hold classically. Proofs of this claim, however, are hard to

come by. And discussion of the claim usually involves talk of higher groups, braided groups,

and the free braided group on one generator. The goal of this thesis is to write out an

elementary proof of the above claim in the language of HoTT. The proof will be elementary

in the sense that it makes no reference to braided groups or the like. In theory, this proof will

be accesible to any undergraduate familiar with the basics of HoTT: Martin-Löf Type Theory

(MLTT), Univalence, Higher Inductive Types (HITs), and some basic background theory.

To make this thesis self contained, I will introduce each of these concepts and all prerequisite

3

Honors Thesis 2022/12/18

background theory before turning to the Hopf fibration and Eckmann-Hilton.

The thesis is broken up into two parts. Part I serves as a limited introduction to

the basics of HoTT. Part II of the thesis culminates in Part III which contains the desired

proof.

4

Part I

Background Theory

5

Honors Thesis 2022/12/18

In this part of the thesis we begin to develop some of the requisite theory for Part II. Included

in this development are many results that serve to build intuition for how the types and the

type formers encapsulate both higher categorical concepts and logical concepts. We will

make explicit note of these results as they appear.

6

Chapter 1

The Types

We begin by looking at each of the type formers that we discussed and proving some lemmas

about them. As mentioned, these lemmas will be necessary for Part III. But these lemmas

also serve as a guide for our intuition about the types.

1.1 Crash Course on Types

In this section we give a very brief introduction to what a type is, how different types are

defined, and how to work with them. Type theory, like set theory, is a formal system meant

to encode the constructions of ordinary mathematics. The basic objects of type theory are

called types. A type can be thought of as a collection. But a type differs from a set in a

few ways. We will not go into a full discussion on the difference between types and sets.

Rather we will just outline how to work with types in Homotopy Type Theory. For a proper

introduction to type theory, the reader should consult [1], which we will from here on out

refer to as “the HoTT Book”.

A type can be thought of as collecting together a type of mathematical object (in fact

this is the namesake). Its members are called terms or points. A simple example of a type

7

Honors Thesis 2022/12/18

is N, the type of natural numbers. A point in N is exactly a numeral. But we will also have

occasion to work with abstract types whose points may not have a familiar description.

In contrast to set theory, a type is not presented by a formulae that defines its terms.

Instead, a type is always presented by a universal property. For example, N is presented by

a universal property that asserts that it is the type freely generated by a point 0 ∶ N and a

function succ ∶ N → N. Any “primitive type” like N will always be presented this way. This

universal property tells us how we can map into and out of N. Since N is freely generated by

0 and ≻, to construct a map N → X, we need to only specify where 0 goes and where ≻ (n)

goes, given that we know where n goes. This is just famliar recursion on N.

Of course we are also interested in bulding new types out of old types. These types

too are defined by universal properties. For example, given two type A and B, we will the

type A ×B of pair of terms from A and B. This type is defined as the categorical product:

maps into A×B are equivalent to pairs of maps into A and into B. In the following sections,

we will review some of the fundamental types and constructions on types.

1.2 Path Types

Given an arbitrary type A ∶ U , there is not much one can say about A. In fact, one of the

only things we can say about A in absence of more details is that A comes equipped with

a family of identity (which we are calling path) types. For any two points a and a′ in A

(written a, a′ ∶ A), we can form a new type denoted a = a′. We want to think of this new

type as the type of equalties between a and a′. One of the central ideas of Homotopy Type

Theory is that this type also behaves like the type of paths in a space from a to a′.

The universal property of the family of paths types is that it is freely generated by points

1a ∶ a = a, which we call the reflexivity or trivial paths. This tells us that to define a map

out of a = a′ for each a and a′ ∶ A, we only have to specify where each 1a goes. This is going

8

Honors Thesis 2022/12/18

to be called path induction. As it turns out, this is actually endows A with a hefty amount

of structure. The identity types of A endow A with the structure of a globular ∞-groupoid.

For x, y ∶ A, the type x = y behaves like the type of paths (or isomorphisms) from x to y.

Unfortunately, the terminology seems to have gravitated towards topological: usually it is

said the the type x = y behaves like the type of paths from x to y, even thought call this the

type of isomorphism is much closer to the truth. But, in sticking with convention, we too

will refer to terms p ∶ x = y as paths from x = y and may even refer to the type x = y as the

type of paths from x to y.

We cannot state internally in HoTT that the paths types behave like an ∞-groupoid (though

it is an area of research). But we can flesh out as much structure as we like.

1.2.1 Groupoidal Operations on Paths

If the types x = y behave like isomorpisms in an ∞-groupoind, then they should have compo-

sition and inverse operations. Our goal in this subsection is to define these operators. As a

brief aside, we introduce some notation for function. For two types X and Y , we will denote

the type of function from X → Y by X → Y . Additionally, we have a notion of a family of

types over X. This can be thought of as an assignment of a type B(x) to each point x ∶ X.

We have already seen an example of this: for any type A and point a ∶ A, we have the family

of identity types, which assigns to each point x ∶ A the type a = x. We also have the family

that assigns to each point a ∶ A the type a = a. We will want to talk about “maping into

the family”. For example, we want to be able to express in the type theory that, for each

a ∶ A, we have a term of type a = a (namely 1a). For a family B over some type X, we will

denote the type of “maps into the type family” by ∏x∶X B(x). For now, we can think of this

as a universal quantifier. A term of this type gives an assignment of a point in B(x) for all

x ∶X.

Now we return to defining groupoidal operations on the path types.

9

Honors Thesis 2022/12/18

Definition 1.2.1 (Composition of Paths, (−) ⋅ (−)). We have a term of type

(−) ⋅ (−) ∶ ∏

x,yz∶A
x = y → y = z → x = z

Proof. Let x, y, z ∶ A and p ∶ x = y and q ∶ y = z. We need to construct a term p ⋅ q ∶ x = z.

We can do this by path induction on x, y, p ∶ x = y. That is, it suffices to specify where

the reflexivity path 1x gets mapped to. So our goal becomes 1x ⋅ q ∶ x = z. We again use

path induction on q so that our goal further reduces to 1x ⋅ 1x ∶ x = x. Thus we can define

1x ⋅ 1x ∶≡ q.

There are multiple ways to define (−)⋅(−). We could have used path induction on only p and

defined 1x ⋅ q ≡ q. Though these functions have different reduction behavior, they themselves

will be equal. We can prove this fact once we discuss function extensionality. The reason for

our choice of definition is simply to keep in line with the conventions of [1], which we will

call the HoTT book from here on out.

If we think of terms p ∶ x = y as identifications or proofs of equality, then preceeding definition

can, in this light, be thought of as a lemma establshing that equality is transitive.

Of course a groupoid is not a groupoid without inverses.

Definition 1 (Inverse of a path, (−)−1). We want to define a function (−)
−1
∶ ∏x,y∶A x = y →

y = x.

Let x, y ∶ A and p ∶ x = y. Our goal is to construct a term p−1
∶ y = x. By path induction on

p, it suffices to assume y ≡ x and p ≡ 1x. Then our goal becomes 1−1
x ∶ x = x. Thus we may

set 1−1
x ≡ 1x.◇

Under the proposition as types paradigm, this proves that equality is symmetric. Since we

have reflexivity for free (witnessed by 1(−) ∶ ∏x∶A x = x), these definitions serve to show that

the paths types are an appropriate notion of equality.

10

Honors Thesis 2022/12/18

1.2.2 Groupoidal Identities

But the path types, and the operators we have defined on them, do more than serve as mere

witnesses to equality; they encode groupoidal structure. To demonstrate this, we show that

the operators satisfy appropriate groupoidal identites. Before proving these identites, we

should note that In the land of 1-groupoids, the identites take the form of properties. That

is, in a one groupoid, the identity has the property that 1 ⋅ p ≡ p. But in HoTT, and higher

groupoids more generally, the identites take the form of additional paths; the identities are

additional stuff (see, Stuff, Structure, and Properties). Thus, we do not have that 1x ⋅ p ≡ p.

Instead we will have a path l-unitp ∶ 1x ⋅ p = p.

Lemma 0.1 (Unit Laws, l-unitp, r-unitp). For the left unit law, we have a term l-unit(−) ∶

∏x,y∶A∏p∶x=y 1x ⋅ p = p. For the right unit law, we have term r-unit(−) ∶ ∏x,y∶A∏p∶x=y p ⋅ 1y = p.

Proof. Both identites can be proven by path induction. We only prove the l-unit identity,

since r-unit can be defined similarly. By path inductionon p, our goal reduces to constructing

a term l-unit1x ∶ 1x ⋅ 1x = 1x. But we have 1x ⋅ 1x ≡ 1x, so we define l-unit1x ≡ 12
x.

Under the propositions as types paragdim, this theorem shows that 1x behaves like the

identity. Under the homotopical interpretation, we can think of this as a definition of a

homotopy l-unit ∶ (λp.1x ⋅ p) ∼ idx=y. This perspective will be important later on.

Now we move on to the inverse laws.

Lemma 1.2.1 (Inverse Laws, l-invp, r-invp). For p ∶ x = y, we have terms l-invp ∶ p−1
● p = 1y

and r-invp ∶ p ● p−1
= 1x.

We leave the proof to the reader.

11

Honors Thesis 2022/12/18

1.3 Type Families

In this section we will take a brief look at type famlies, which we have only briefly mentioned.

First we need to introduce the universe of types U . The universe is itself a type whose point

are (small) types. Due to size issues, we can never have one universe to rule them all, since

a universe cannot contain itself. However, we will not encounter size issues in this thesis, so

we will not discuss them.

For a fixed type A ∶ U , a type family over A is a function of the form B ∶ A → U . Thus, a

type family is an assignment of a type B(a) to each point a ∶ A. But, as we shall see, B also

carries with it a hefty amount of higher dimensional structure induced by the paths in A.

As we will see, type families behave like fiber bundles over A. In more categorical language,

a type family B ∶ A → U behaves like a higher (co)presheaf on A: it assigns to each point

a ∶ A an ∞-groupoid B(a) and to each path p ∶ a = a′ an equivalence B(a) ≃ B(a′). We will

briefly outline some important properties of a type family.

First we discuss the structure in a type family induced by paths in A. This induced structure

takes the form of an equivalence called “transport”, denoted trB.

Theorem 1.3.1 (transport , trB). Given points a and a′ in A and a path p ∶ a = a′, we have

a canonical function trB(p) ∶ B(x) → B(y).

Proof. We can define trB(p) by path induction on p. So we may assume that a′ ≡ a and

p ≡ 1a. Since 1−1
a ≡ 1a, we only need to define function trB(1a) ∶ B(a) → B(a). The obvious

(and only) candidate is trB(1a) ∶≡ idB(a).

When the type family is clear from context, we may denote trB(p) by (p)∗. To prove this is

an equivalence, we require an additional definition.

Theorem 1.3.2 (2-D transport, tr(B)
2
). Let p, p′ ∶ x = y and α ∶ p = p′. Then, for each

u ∶ B(x), we have a term tr(B)
2
(α)(u) = trB(p)(u) = trB(p′)(u).

12

Honors Thesis 2022/12/18

Proof. By path induction on α.

Once we discuss homotopies, it will be clear that tr(B)
2
(α) is homotopy between trB(p) and

trB(p′). We can think of tr(B)
2

as a higher dimensional transport: a path p ∶ x = y induces

an equality B(x) = B(y) and a 2-path induces a higher equality trB(p) = trB(p′).

For an arbitrary type family B and path p, there is not much one can say about the function

trB(p). Some of the subsequent sections deal with characterizing trB(p) in specific instances.

We can, however, prove some basic results about trB. We already know that trB(p−1
) =

trB(p)−1. The next theorem characterizes trB(p ● q).

Theorem 1.3.3 (transport on concatenation, tr-concat). Let p ∶ a = a′ and q ∶ a′ = a′′. Then,

for every u ∶ B(a), we have trB(p ● q)(u) = trB(q) ○ trB(p)(u).

Proof. By path induction on p and q, it suffices to demonstrate this for the case p ≡ q ≡ 1a.

But in this case, we have p ● q ≡ 1a ● 1a ≡ 1a. So

trB(p ● q) ≡ trB(1a) ≡ id ≡ id ○ id ≡ trB(q) ○ trB(p)

This theorem amounts to constructing a homotopy between the two functions trB(p ● q)

and trB(q) ○ trB(p).

Putting these previous results together, we get the following theorem.

Theorem 1.3.4. For p ∶ x = y, trB(p) is an equivalence with inverse trB(p−1
).

Proof. We have trB(p) ○ trB(p−1
) ∼ trB(p−1

● p) ∼ trB(1) ≡ id. The other direction is

similar.

The equivalence trB(p) lets us define an very important concept: dependent paths. Type

13

Honors Thesis 2022/12/18

families B ∶ A → U often aries as a consructions on A. That is, for each a ∶ A, we think of

deriving a structure B(a) which may tell us something about the point a. The equivalence

trB demonstrates that, given a path p ∶ a = a′, the resulting constructions B(a) and B(a′)

must be equivalent (in a specified way). In the same context, we may want to consider two

point u ∶ B(a) and v ∶ B(a′) “the same”. However, we cannot ask for a path between the

two points since u and v need not be of the same type (which is a prerequisite to even form

the type u = v). However, we can ask for a path between u and v under the equivalence

trB(p). That is, we can ask for a term of type trB(p)(u) = v. We will call a term of this type

a dependent path over p. We will often denote this type by u =Bp v.

Definition 1.3.1 (dependent paths). Given B ∶ A→ U and p ∶ a = a′ in A, we can form the

type u =Bp v ∶≡ trB(p)(u) = v of dependent paths from u to v.

Dependent paths are a fundamental concept in homotopy type theory. We will flesh out

more of their properties in section 1.6. One thing to note is that, if the path p is non-trivial,

then the type of depedent paths can be non-trivial as well. Consider, for instance, a loop

l ∶ a = a. This induces an autoequivalence trB(l) ∶ B(a) ≃ B(a). This autoequivalence need

not be the identity function. In fact, part of what makes homotopy type theory tick is that

the equivalence trB(l) can be non-trival. This means that, for a point u ∶ B(a), we need

not have a term of type u =Bl u. We will see our first example of this when we consider the

incarnation of the circle in homotopy type theory.

So far, these results suggest thinking of a type family B as a copresheaf over A. We have

yet to relate B to a fibration or fiber bundle. Section 1.5 does exactly that. But, before we

can turn our attention make such ideas as path lifting properties precise, we need to discuss

how function interact with paths.

14

Honors Thesis 2022/12/18

1.4 Function Types

In this section we characterize the path types of function types and we discuss some of the

further properties of functions in HoTT. A main result of this section is that functions behave

like functors between ∞-groupoids.

1.4.1 Paths in Function Types

For types A ∶ U and B ∶ A → U and functions f, g ∶ ∏x∶ABx, we can define the type of

“homotopies” between f and g:

f ∼ g ∶≡ ∏
x∶A
fx = gx

This is just the type of point-wise identifications between two functions. One might object

that this is an insufficent definition since a homotopy should be a continous point-wise

identification. But, in fact, in HoTT, all functions are continous. Closer to the truth, all

functions are functors. This is sufficent to endow any term of type f ∼ g with the structure

of a natural transformation. We will show this in a later section.

One might hope that we can prove (f = g) ≃ (f ∼ g). Sadly, unlike ∑-types, the universal

property of function types is insufficent to characterize the path type f = g. So we char-

acterize it “by hand”. For each f ∶ ∏x∶ABx, we have a canonical element refl-htpyf ∶ f ∼ f

given by refl-htpyf ∶≡ (λx.1fx). We use this to define a define a cannonical map

happly ∶ ∏

f,g∶∏x∶ABx
(f = g) → (f ∼ g)

We can define this by path induction. We set happly(1f) ∶≡ refl-htpyf . When working with

happly, we leave the f and g implicit. The base type theory, MLTT, is not strong enough to

prove that happly is an equivalence. But we can assume as an axiom that we have a term

15

Honors Thesis 2022/12/18

fe ∶ is-equiv(happly). So now we have (happly, fe) ∶ (f = g) ≃ (f ∼ g). We engage in the usual

abuse of notation and write fe for the inverse function f ∼ g → f = g.

1.4.2 Homotopies

Since homotopies serve as paths in function types, it is important to develop some basic the-

ory of homotopies. We will show that we can concatenate and invert homotopies analogous

to how we can concatenate and invert paths.

Lemma 1.4.1 (H ● h H ′). Given functions f, g, h ∶ ∏x∶ABx and homotopies H ∶ f ∼ g and

H ′
∶ g ∼ h, we can construct a homotopy H ● h H ′

∶ f ∼ h.

Proof. Let x ∶ A. We want to construct a term (H ● h H ′
)x ∶ fx = hx. Since Hx ∶ fx = gx

and H ′x ∶ gx = hx, we set (H ● h H ′
)(x) ∶≡Hx ● H ′x.

Lemma 1.4.2 (H−1). Given H ∶ f ∼ g, we can construct a term H−1
∶ g ∼ f

Proof. Let x ∶ A. Since Hx ∶ fx = gx, we can define (H−1
)(x) ∶≡ (Hx)−1.

1.4.3 Functions are Functors

Now we turn our attention to proving that every function is a functor. The proofs are

considerably more straight forwards, and highlight the conceptual aspects better, when we

restrict our attention to non-dependent functions f ∶ A → B. So we first prove the results

for a regular functions, then generalize to dependent functions.

Non-Dependent Functions

In this section, unless otherwise specified, we use A,B ∶ U with f, g ∶ A → B. If f really

behaves as a functor, it ought to send paths in A to paths in B.

16

Honors Thesis 2022/12/18

Lemma 1.4.3 (Action on Paths, ap). For each x, y ∶ A, we have a function ap(f) ∶ (x =

y) → (fx = fy).

Proof. We can define this function by path induction. So it suffices to assume y ≡ x and

specify the value of ap(f)(1x) ∶ fx = fx. Thus we may set ap(f)(1x) ∶≡ 1fx

As is customary with functors, we will abuse notation and usually write f(p) instead of

ap(f)(p). There are a few cases where this may be confusing. For instance, if we have a

function f ∶ ∏x,y∶A x = y → B. It is important not to confuse f(p) for p ∶ x = y and f(α) for

α ∶ p = p′, since there are coherence theorems that apply to the latter but not the former.

In these cases, where it is important to disagmiguate, we may write the extra ap or simply

state which we are using.

To show that ap really behaves like the action on paths of a functor, we need to show it

preserves the operations on paths. First we show that ap of the identity function id is also

the identity function.

Lemma 1.4.4 (ap of idA, ap-id). For any type A and p ∶ x = y in A, we have a term

ap-id ∶ idA(p) = p.

Proof. By path induction it suffices to specify ap-id(1x) ∶ idA(1x) = 1x. But idA(1x) ≡ 1idA(x) ≡

1x. Thus we set ap-id(1x) ∶≡ 12
x.

Lemma 1.4.5 (Action on paths on concatination of paths, ap-comp). For f ∶ A → B with

p ∶ x = y and q ∶ y = z in A, we have a term ap-compf,p,q ∶ f(p ● q) = f(p) ● f(q).

Proof. We can use path induction on both p and q (since they are not parallel). Since

1x ● 1x ≡ 1x, our goal reduces to 1f(x) = 1f(x). Thus, we set ap-comp ∶≡ 12
f(x). .

Lemma 1.4.6 (Action on paths on inverses, ap-inv). For f ∶ A → B and p ∶ x = y, we have

a term ap-invf,p ∶ f(p−1
) = f(p)−1.

17

Honors Thesis 2022/12/18

Proof. By path induction on p our goal reduces to 1f(x) = 1f(x). So we may set ap-inv ∶≡

12
f(x).

We can also show that f preserves the coherence paths in A.

Lemma 1.4.7 (ap-ru and ap-lu). For f ∶ A → B and p ∶ x = y in A, we have the following

two commutative diagrams:

f(p ● 1y) f(1x ● p)

f(p) ● 1f(y) 1f(x) ● f(p)

f(p) f(p)

ap-concat(f)p,1y

f(r-unitp)

r-unitf(p)

ap-concat(f)1x,p

l-unitf(p)

f(l-unitp)ap-rup ap-lup

Proof. By path induction on p, everything reduces to a trivial path.

We can derive similar coherences fo l-inv, r-inv and all other coherences in 1-paths. But we

will only need the two already given and the coherences for l-inv and r-inv.

Though these lemmas do not suffice to prove that a function is a functor, they are essentially

all of the functorial structure we need for this thesis (some lemmas are saved for latter

sections). For a genuine proof that functions are functors, one needs to look at the semantics

of HoTT.

18

Honors Thesis 2022/12/18

1.4.4 Dependent Functions

There is an anlouge of ap for dependent functions, though it takes a bit more care to make

sense of it. Suppose we have a function f ∶ ∏x∶ABx and a path p ∶ x = y in A. In lieu of this

path, we want to relate the values of fx and fy. But, it does not make sense to ask for a

path fx = fy since fx ∶ Bx and fy ∶ By and Bx need not be the same type as By! However,

we know that p induces an equivalence trBp ∶ Bx ≃ By and we can ask that, under this

equivalence, fx equals fy. That is, we can ask for a dependent path f(x) =Bp f(y).

Lemma 1.4.8 (Dependent action on paths, apd). Given f ∶ ∏x∶ABx and p ∶ x = y in A, we

have a term apd(f)(p) ∶ f(x) =Bp f(y). That is, for each f and x, y ∶ A, we have a function

apd(f) ∶ ∏p∶x=y trB(p)(fx) = fy.

Proof. By path induction on p, it suffices to assume y ≡ x and p ≡ 1x. Thus we need to

specify specify apd(f)(1x) ∶ trB(1x)(fx) = fx. But trB(1x)(fx) ≡ fx. Thus we may define

apd(f)(1x) ∶≡ 1fx.

Just like with the non-dependent action on paths, we will abuse notation and write f(p) for

apd(f)(p). Of course apd has coherences analgous to those of ap. However, more care is

necessary in formulating these coherences since they require working with dependent paths.

We will delay formulating these coherences until we have developed some machinery for

working with dependent paths.

1.4.5 Homotopies are natural transformations (apd of homotopies)

Lets return our attention to the task of showing that non-dependent functions behave like

functors. We have already shown that functions have an induced action on paths and co-

herences like that of a functor. But if functions really behave like functors, then homotopies

ought to behave like natural transformations. Consider two functions f, g ∶ A → B and a

homotopy H ∶ f ∼ g ≡ ∏x∶A fx = gx. Since H is a dependent function, it has an induced

19

Honors Thesis 2022/12/18

apd(H) ∶ ∏p∶x=yH(x) =λfx=gxp H(y). In its current, apd(H) is unenlightening. But, due to

the specific structure of the type family λ(x).f(x) = g(x), we can give a nice characterization

of the type of dependent paths.

Theorem 1.4.1 (dependent paths in λ(x).f(x) = g(x)). Let p ∶ x = y with q ∶ f(x) = g(x)

and r ∶ f(y) = g(y). Then we have (q =λfx=gxp r) ≃ (q ● g(p) = f(p) ● r)

Proof. By path induction on p, it suffices to establish an equivalence between q = r and

(q ● g(1x) = f(1x) ● r). But g(1x) ≡ 1g(x) and f(1x) ≡ 1f(x). Thus we can use the equivalence

that sends t ∶ q = r to l-unitt ● t ● r-unitt.

Thus, the type of apd(H)(p) is equivalent to g(p) ● H(y) = f(p) ● H(x). This can be

readily recognized as a commutative square expressing the naturality of H. It will be helpful

to have a function that takes us directly from paths to in A to naturality squares

Theorem 1.4.2 (naturality of homotopies, nat-htpy). Given f, g ∶ A → B and a homotopy

H ∶ f ∼ g, we have a function nat-htpy(H) ∶ ∏p∶x=y g(p) ● H(y) = f(p) ● H(x). That is, for

each p ∶ x = y, we have a commutative diagram:

f(x) f(y)

nat-htpy(H)(p)

g(x) g(y)

H(x)

g(p)

f(p)

H(y)

Proof. We define nat-htpy by using apd and then applying the equivalence between the two

types mentioned above.

Again, we will abuse notation and write H(p) for nat-htpy(H)(p). Since we will never have

a reason to use apd(H)(p), this will not cause us any problems in general. However, it

is possible for that, for some previously defined homotopy H, the notation H(p) is already

20

Honors Thesis 2022/12/18

meaningful (an example of this will arise later with l-unit). In this case, we will either use the

longer notation or introduce something specific to the homotopy H. Thus, we will normally

write diagrams of the above form with just H(p) as a filler. Before moving on, we give the

analog of nat-htpy for dependent functions. Similar to the issues we ran into with apd for

dependent functions, we cannot ask directly for a commutative square involving H(x) and

H(y) since H(x) ∶ Bx and H(y) ∶ By. But we can use the induced equivalence trB(p) and

its action on paths.

Lemma 1.4.9. For f, g ∶ ∏x∶ABx and a homotopy H ∶ f ∼ g, we have a term nat-htpyd(H) ∶

∏p∶x=y f(p) ● H(y) = trB(p)(H(x)) ● g(p). That is, for each p ∶ x = y, we have a commutative

diagram:

B(x) f(x) f(y)

trB(p)(f(x)) trB(p)(g(x))

B(y) nat-htpy(H)(p)

f(y) g(y)

f(p)

H(y)

trB(p)(H(x))

g(p)

H(x)

Here, f(p) and g(p) are the dependent action on paths. But trB(p)(H(x)) is the non-

dependent action on paths of the equivalence trB(p) ∶ Bx ≃ By. Again, we will from here on

out abuse notation and simply write H(p) for nat-htpyd(H)(p). We can use these results

for a great many things. Many of our definitions take the form of homotopies. For example,

pretty much every idenity and coherence path we have defined can be viewed as a homotopy

between two different ways of composing functions. We will use this perspective later when

working with higher paths.

21

Honors Thesis 2022/12/18

1.4.6 Functions of Two Variable Functions and ap

Here we have brief interlude on the action on paths of a function in two variables. In

HoTT, two variable functions A×B → C are quite frequently defined by currying a function

A → B → C. Thus it is worthwhile to understand the behavior of the action on paths of a

binary function in terms of its curried counterpart. Consider a curried two variable function

function f ∶ A→ B → C and two paths p ∶ a0 = a1 and q ∶ b0 = b1. These paths correspond to a

path (p, q) ∶ (a0, b0) = (a1, b1) in A×B. This should determine a path f(a0)(b0) = f(a1)(b1).

But we cannot directly apply ap to f and a path in A×B. We can only apply ap to f and p

to get f(p) ∶ f(a0) = (a1), a path in a function space. Thus, the following variant of action

on paths will also be helpful.

Lemma 1.4.10 (Binary Action on Paths, bin-ap). For f ∶ A → B → C, and each a0, a1 ∶ A

and b0, b1 ∶ B, we have a function bin-ap ∶ (a0 = a1) × (b0 = b1) → f(a0, b0) = f(a1, b1).

Proof. By path induction in each argument, it suffices to set bin-ap(f)(1a0 ,1b0) ∶≡ 1f(a0,b0).

There are of course coherences for bin-ap anlogous to ap. First we prove that bin-ap is the

action on paths of a function defined by currying.

Lemma 1.4.11. Let f ∶ A → B → C and f̂ ∶ A ×B → C denote its uncurried counterpart.

Let p ∶ a0 = a1 and q ∶ b0 = b1. Then bin-ap(f)(p, q) = ap(f̂)(p, q).

Proof. By path induction on p and q, both sides reduce to the identity.

In virtue of this lemma, we will use the notation f(p, q) to denote either bin-ap(f)(p, q) or

ap(f̂)(p, q), depending on what the domain of f is. We will also generally write f(a, b) for

what should be written as f(a)(b).

Many of the coherences for bin-ap play an essential role in the Eckmann-Hilton argument,

since (− ● −) is a function (x = y) → (y = z) → (x = z). Each proof is an easy path induction.

22

Honors Thesis 2022/12/18

A theme in HoTT is that stament of a lemma is fairly intricate, while the proof the lemmas

is quite simple.

Lemma 1.4.12 (Binary action on concatination of paths, bap-concat). For f ∶ A → B → C

with p ∶ a0 = a1 and p′ ∶ a1 = a2 in A and q ∶ b0 = b1 and q′ ∶ b1 = b2 in B, we have a term

bap-comp ∶ f(p ● p′, q ● q′) = f(p, q) ● f(p′, q′)

Proof. Since none of the paths are parallel, we may path induct on each path. Thus our goal

reduces to providing a path bap-comp ∶ f(1a0 ● 1a0 ,1b0 ● 1b0) = f(1a0 ,1b0) ● f(1a0 ,1b0). But

each side reduces to 1f(a0,b0). Thus we set bap-comp ∶≡ 12
f(a0,b0).

Lemma 1.4.13 (Binary action on paths on inverses, bap-inv). For f ∶ A → B → C with

p ∶ a = a′ and q ∶ b = b′, we have term bap-inv ∶ f(p−1, q−1
) = f(p, q)−1.

Proof. We use path induction on p and q. Since 1−1
a ≡ 1a (and likewise for b), our goal reduces

to 1f(a,b) = 1f(a,b).

bin-ap and ap

The rest of the coherences that feature into the Eckmann-Hilton proof establish certain

relations between bin-ap and ap. Given f as in the definition of bin-ap and p ∶ a0 = a1 and

q ∶ b0 = b1, we of course have f(p, q) ∶ f(a0, b0) = f(a1, b1). But, we also have f(p) ∶ f(a0) =

f(a1), which is a path in the function type B → C. Thus happly(f(p)) ∶ f(a0) ∼ f(a1).

We can apply this homotopy to b0 to obtain a path f(a0, b0) = f(a1, b0). Now consider the

function f(a1), of type B → C. We have f(a1)(q) ∶ f(a1, b0) = f(a1, b1). We can concatinate

these two paths to get a path in f(a0, b0) = f(a1, b1), parallel to f(p, q). Additionally, we

could have carried out our factorization in the opposite order, i.e., conisdering f(a0)(q) and

happly(f(p))(b1). We can put this all together to get the following two diagrams:

23

Honors Thesis 2022/12/18

f(a1, b0)

f(a0, b0) f(a1, b1)

f(a0, b1)

f(a0, b0) f(a1, b1)

happly(f(p))(b0) f(a1)(q)

bin-ap(f)(p,q)

f(a0)(q)

bin-ap(f)(p,q)

happly(f(p))(b1)

Lemma 1.4.14 (Binary Action on Paths Coherence , cohbin-ap). The above diagrams com-

mute. That is, we have terms r-cohbin-ap,ap ∶ happly(f(p))(b0) ● f(a1)(q) = bin-ap(f)(p, q)

and l-cohbin-ap,ap ∶ f(a0)(q) ● happly(f(p))(b1) = bin-ap(f)(p, q)

The choice of which coherence path gets the left versus right marker is a little bit arbitrary

here. We choose right for the first since, in the composition of paths, the action on paths

f(a1)(q) appears on the right. We choose left for the second for similar reasons.

Proof. Let us first construct r-cohbin-ap,ap. We do so by path induction on p and q. Essen-

tially both sides reduce to trivial paths. In particular, f(p) ≡ f(1a0) ≡ 1f(a0). We also have

that happly(1f(a0))(b0) ≡ refl-htpyf(b0) ≡ 1f(a0,b0). Lastly f(a1)(q) ≡ f(a0)(1b0) ≡ 1f(a0,b0).

Thus, the left hand side of the equation becomes 1f(a0,b0) ● 1f(a0,b0) ≡ 1f(a0,b0). Since

bin-ap(f)(1a0 ,1b0) ≡ 1f(a0,b0), we can set r-cohbin-ap,ap ∶≡ 12
f(a0,b0) when p and q are trivial.

This completes the definition of r-cohbin-ap,ap

The construction of l-cohbin-ap,ap is similar. By path induction, our goal reduces to 1f(a0,b0) =

1f(a0,b0), which we inhabit with 12
f(a0,b0).

We can paste these two triangle together along their common diagonal to obatin a com-

24

Honors Thesis 2022/12/18

mutative square with filler (l-cohbin-ap,ap) ● (r-cohbin-ap,ap)
−1
∶ f(a0)(q) ● happly(f(p))(b1) =

happly(f(p))(b0) ● f(a1)(q):

f(a0, b0) f(a1, b0)

(l-cohbin-ap,ap) ● (r-cohbin-ap,ap)
−1

f(a0, b1) f(a1, b1)

f(a0,q)

happly(f(p))(b1)

happly(f(p))(b0)

f(a1)(q)

This path will be important in the Eckmann-Hilton argument, so we will give it a name.

We’ll call this filler bap-swapp,q. Note that we can also apply nat-htpy to happly(f(p)) to

obtain the follow commutative diagram directly:

f(a0, b0) f(a1, b0)

happly(f(p))(q)

f(a0, b1) f(a1, b1)

f(a0,q)

happly(f(p))(b1)

happly(f(p))(b0)

f(a1)(q)

In fact, these two fillers are equal.

Lemma 1.4.15 (Coherence between happly(f(p))(q) and (l-cohbin-ap,ap) ● (r-cohbin-ap,ap)
−1).

We have a term cohhapply(f(p))(q) ∶ nat-htpy(happly(f(p))) = (l-cohbin-ap,ap) ● (r-cohbin-ap,ap)
−1.

Proof. We use path induction on p and q. By definition, both (l-cohbin-ap,ap) and (r-cohbin-ap,ap)

reduce to 1f(a0,b0) on trivial paths. But happly(f(1a0))(1b0) ∶≡ happly(1f(a0))(1b0) ≡ refl-htpyf(a0)(1b0).

But, by lemma ??, refl-htpyf(a0)(1b0) = r-unit1f(b0)
● l-unit−1

1f(b0)
≡ 12

f(a0,b0)
● 12

f(a0,b0) ≡ 12
f(a0,b0).

Thus, when p and q are the trivial paths, we can set cohhapply(f(p))(q) ∶≡ 13
f(a0,b0).

So why define bap-swap as we did? Our definition has the virtue of definitionally factoring

25

Honors Thesis 2022/12/18

through f(p, q), which will serve to our benefit when proving Eckmann-Hilton.

This concludes our in depth look at functions. These results play a foundational role it the

proofs to come.

1.5 Sigma Types

In this section we discuss ∑-types. The ∑ construction behaves like a functor U → U , which

takes as an input a base type A ∶ U and a type family B ∶ A → U and spits out “the total

space of B ∶ A → U”, denoted ∑x∶AB(x). The main result of this section is show that the

construction ∑ behaves like the Grothendieck construction and the type ∑x∶AB(x) behaves

like a fibration over A.

The type ∑x∶AB(x) is defined as the type of “dependent pairs” of point a ∶ A and points

u ∶ B(a). We can construct a term (a, u) ∶ ∑x∶AB(x) from such an a and u. To construct

a map (∑x∶AB(x)) → X, we can instead construct a map B(x) → X for each x ∶ A (i.e., a

term of type ∏x∶AB(x) →X). This lets us define a projection onto A:

Theorem 1.5.1 (pr1 , pr2). We have a canonical function (∑x∶AB(x)) → A that sends a

pair (x,u) to x. There is also a canonical dependent function pr2 ∶ ∏z∶∑x∶AB(x)B ○pr1(z) that

sends (x,u) to u.

Proof. We may define pr1 by constructing the curried version of type ∏x∶AB(x) → A. Let

x ∶ A and u ∶ B(x). We define pr1(x,u) ∶≡ x. We similarly define pr2 by sending (x,u) to

u.

Lemma 1 (lift). For A ∶ U , x, y ∶ A , B ∶ A → U , u ∶ Bx and a path p ∶ x = y, we have path

liftB(u, p) ∶ (x,u) = (x, trB(p)(u)) in ∑x∶ABx such that pr1(liftB(u, p)) = p.

Proof. We define lift(u, p) by path induction on p. When y ≡ x and p ≡ 1x our goal becomes

constructing a path (x,u) = (x, trB(1x)(u)). But trB(1)(u) ≡ u. Thus we can inhabit our

26

Honors Thesis 2022/12/18

goal with lift(u,1x) ∶≡ 1(x,u). This completes the definition of lift.

To complete the proof, we need to show pr1(liftB(u, p)) = p. By path induction, it suffices to

show that pr1(lift(u,1x)) = 1x. But lift(u,1x) ≡ 1(u,x) and pr1(1(u,x)) ≡ 1pr1(x,u) ≡ 1x. Thus we

may inhabit our goal with 12
x.

Though we have not proven the full path lifting property required of fibrations, we can see

why we should expect pr1 ∶ (∑x∶AB(x)) → A to behave like a fibration over A. This leads

us to our next important result. The ∑-construction takes something that behaves like a

copresheaf and spits out a fibration. This is reminiscent of the Grothendieck construction.

The simpliest verison of the Grothendieck construction arieses in 1-categories and, in this

context, is often called the category of elements. Denoted ∫ , the Grothedieck construction

takes a set valued functor F ∶ C → Set, and spits out a category with projection (∫ F) → C.

The objects of ∫ F are pairs (c, x), with c ∈ C and x ∈ Fc. The arrows (c, x) → (c′, x′) in ∫ F

are arrows f ∶ c → c′ such that Ff(x) = x′. We already can see the parallel between objects

of ∫ F and the terms of ∑x∶ABx, since a term of the latter is equal to one of the form (a, b)

with a ∶ A and b ∶ Ba. To see the analogy between arrows in ∫ F and paths in ∑x∶ABx, we

require a lemma:

Theorem 1.5.2 (Paths in ∑-types). For z, z′ ∶ ∑x∶ABx, we have

(z = z′) ≃ (∑

p∶pr1(a)=pr1(a′)
pr2(z) =

B
p pr2(z

′
))

Proof. We can construct the forwards map by sending p ∶ z = z′ to (pr1(p),pr2(p)), where

there latter function applications denote the action on paths and dependent action on paths,

respectively. We can define the inverse function (∑p∶pr1(z)=pr1(z′) trB(p)(pr2(z)) = pr2(z
′
)n) →

(z = z′) by ∑-induction. Thus we need a function ∏p∶pr1(z)=pr1(z′)(trB(p)(pr2(z)) = pr2(z
′
)) →

z = z′. By further inducting on z and z′, we can assume z ≡ (a, u) and z′ ≡ (a′, u′). This

allows us to use path induction on p and the path in the second argument. So it suffices to

27

Honors Thesis 2022/12/18

specify the image of (1a,1u). The obvious choice is 1(a,u).

Verifying that these maps define an equivalence is a straight forwards application of induction

principles.

This is a practically important theorem, since it provieds a convnient way to prove that

two terms in a ∑-type are equal. But it also makes the analougy between ∑-types and the

category of elements more salient. We will have to return to the claim from section 1.3 (that

type families behave like fiber bundles). Our brief discussion about ∑-types tells us that

every type family B ∶ A → U induces a fibration pr1 ∶ (∑x∶AB(x)) → A. In fact, we will

be able to prove that a type family over A is equivalent to a fibration over A (in a sense

to be made precise). This, however, requires a few lemmas and some constructions not yet

introduced. We will prove this claim in section 3.2.

1.6 Dependent Paths

Dependent paths have already shown up in a couple of different place. We now turn our

attention to fleshing out their structure. Let A ∶ U and B ∶ A→ U and consider a path in the

base space p ∶ x = y in A and points u ∶ B(x) and v ∶ B(y) over x and y. A dependent path

k ∶ u =Bp v over p can be thought of in a few different ways. We can think of k as establishing

that, under the canonical equivalence trB(p), u is made equal to v. But, our discussion of

∑-types suggests another fruitful perspective: a dependent path k ∶ u =
B
p v is a path from

u to v that “lies over p”. We can make that precise with the following theorem (which is

essentially a helpful rephrasing of theorem 1.5.2).

Theorem 1.6.1. A dependent path k ∶ u =
B
p v determines a path k̄ ∶ (x,u) = (y, v) in

∑x∶AB(x) such that pr1(k̄) = p (where this latter function applications is the action on

paths).

Proof. By theorem 1.5.2, we have an equivalence e ∶ ∑t∶x=y u =
B
t v) ≃ ((x,u) = (y, v)). Thus, a

28

Honors Thesis 2022/12/18

dependent path u =Bp v determines a path e(p, k) ∶ (x,u) = (y, v). Further, the inverse of the

equivalence e is given by taking the action on paths of pr1 and pr2. Thus, (pr1 ○ e(p, k),pr2 ○

e(p, k)) = (p, k). Applying theorem ?? to this type implies that pr1 ○ e(p, k) = p.

In virtue of the preceeding theorem and theorem 1.5.2, we from here on out implicitly imply

the equivalence of theorem 1.5.2. Thus, when we speak of paths in a sum type, we will

be speaking about a dependent pair of paths. Now we want to define some operations on

dependent paths that are suggested by their status as paths in a ∑-type. First we translate

the concatination of paths in a sum type to an operation on dependent paths, which we call

“dependent concatenation” of paths.

Theorem 1.6.2 (Dependent Composition). Consider points x, y, z ∶ A in the base space with

paths p ∶ x = y and q ∶ y = z. Now we take points u ∶ B(x), v ∶ B(y) and w ∶ B(z) over A.

Then we have a function (− ● d −) ∶ u =Bp v → v =Bq w → u =Bp ● q w

Proof. Given h ∶ u =
B
p and k ∶ v =Bq w, we want to construct a term h ● d k ∶ u =

B
p ● q w. We

have the following diagram:

(p ● q)∗(u) q∗ ○ p∗(u) q∗(v) w
tr-concatp,q ap(q∗)(h) k

So we define h ● d k to be the comoposite.

We now wish to define the dependent unit path. There are two choices here: (i) we could

define the dependent unit so that for each x ∶ A and u ∶ Bx, we have 1u ∶ u =
B
1x
u, or (ii) we

could define the dependent unit so that for each p ∶ x = y and u ∶ Bx, we have 1p∗u ∶ u =
B
p u.

It may be tempting to choose the second definition, since it encompases the first. However,

the second definition leads to certain problems. For one, 1p∗u ● d h is not well typed!

Definition 0.1 (Dependent Unit). We have family ∏x∶A∏u∶Bx u =
B
1x
u.

29

Honors Thesis 2022/12/18

Proof. We define the family of dependent unit paths ∏x∶A∏u∶Bx u =
B
1x
u by send x and u to

1u. This is well typed since 1∗u ≡ u.

We now need to verify that these paths behave like inverses under dependent composition.

Consider 1u ● h ∶ u =
B
1u ● p w. We cannot directly construct a path 1u ● d h = h, since the

left and right hand side are not in the same type. However, we construct a dependent path

1u ● d h =B
2

l-invp
h.

Lemma 0.1 (Dependent Unit Laws). We have a term l-unitdh ∶ 1u ● d h =
B2

l-invp
h. We also

have r-unitdh ∶ h ● d 1v =B
2

r-invp
h.

Proof. Each of these identities are easy to see by writing out the definition of − ● d − with

1x or 1y in the requiste spots.

Now we want to define the depndent inverse.

Definition 0.1 (Dependent Inverse). We have a function (−)
−1d

∶ u =Bp v → v =B
p−1 u.

Proof. Given h ∶ u =Bp v, we want to construct a term h−1d
∶ v =B

p−1 u. We have the following

diagram:

p−1
∗ (v) p−1

∗ ○ p∗(u) (p ● p−1
)∗(u) trB(1x)(u) ≡ u

ap(p−1∗)(h−1) tr-concat−1
p,p−1 tr(B)

2
(r-invp)(u)

We define h−1d
to be the composite.

Now we need to verify that h−1d
behaves like a dependent inverse. If we consider the com-

position h ● d h−1d
∶ u =

B
p ● p−1 u, it is not well typed to ask if this is equal to 1u ∶ u =

B
1x
u.

However, we can ask for a dependent path r-invdh ∶ h ● d h−1d
=
B2

r-invp
1u.

Lemma 0.1. We have a term r-invdh ∶ h ● d h−1d
=
B2

r-invp
1u.

30

Honors Thesis 2022/12/18

Proof. By definition our goal is h ● d h−1d
= tr(B)

2
(r-invp)(u). By looking at the diagram

defining h ● d h−1d
(i.e. replacing q with p−1 and k with h−1d

the diagram in definition 1.6.2 ,

we can see that see that all paths but tr(B)
2
(r-invp)(u) cancel.

We can also prove the left dependent inverse law without path induction, but the proof is

a bit more tedious since things do not cancel directly. But we will not need an explicit

description of l-invdh, so we can convince ourselves that it exists with path induction.

Lemma 0.1. We have a term l-invdh ∶ h−1d
● d h ∶=B

2

l-invp
1v

Proof. By path induction on p.

There are of course dependent analougs of all other identities (e.g., associativity and inverse

distributing over concatenation). Again, we will not need explicit descriptions of these paths,

so I ommit the proofs. ???????Add THE LEMMA STATEMENTS?

Now we want to define the dependent horizontal composition of dependent 2-paths. This

will take the form of a function h =B
2

p h′ → k =B
2

p k′ → h ● d k =B
2

p ● q h
′

● d k′. Though this is a

bit more laborious than than defining the previous dependent operators, it can still be done

without path induction. This is a worthwhile endevor because it gives us better reduction

behavior. It is also a nice example of “a diagram chase” in HoTT.

Definition 0.1 (Dependent Horizontal Composition, γ ⋆d θ). We have a function (− ⋆ −) ∶

h =B
2

α h′ → k =B
2

β k′ → h ● d k =B
2

α⋆β h
′

● d k′.

Proof. Given γ ∶ h =B
2

α h′, and θ ∶ k =B
2

β k′, we want to construct a term γ ⋆d θ ∶ h ● d k =B
2

p ● q

h′ ● d k′. We will construct this term by considering a sequence of diagrams (i.e., a diagram

chase). First consider the following diagram:

31

Honors Thesis 2022/12/18

(p ⋅ q)∗(u) (p′ ⋅ q′)∗(u)

bin-ap(tr-concatB)(α,β)

q∗ ○ p∗(u) q′∗ ○ p
′
∗(u)

?

q∗(v) q′∗(v)

θ

w

tr-concatp,q

ap(q∗)(h)

k

tr-concatp′,q′

ap(q′∗)(h′)

tr(B)
2
(α⋆β)(u)

bin-ap(λ(p,q).q∗○p∗(u))(α,β)

tr(B)
2
(β)(v)

h

Recall our convention for commutative squares is that the filling path has type left ● bottom =

top ● right. We take the filling path of the commutative triangle to have type left = base ● right

(though this could be infered from the type of θ). Now note that the left leg of the diagram

is definitionally h ● d k. Similarly, the right leg is definitionally h′ ● d k′. Thus, a path filling

the whole diagram will have type h ● d k =B
2

α⋆β h
′

● d k′. So to complete the definition of γ ⋆d θ,

it suffices to fill the middle square marked with “?” and paste the diagram.

In order to fill the middle square we turn to another diagram:

32

Honors Thesis 2022/12/18

q∗ ○ p∗(u) q′∗ ○ p∗(u) q′∗ ○ p
′
(u)

ap(tr(B)
2
(β))(h) ap2

(q∗)(γ)

q∗(v) q′∗(v) q′∗(v)

tr(B)
2
(β)(p∗(u)) ap(q′∗)(tr(B)

2
(α)(u))

tr(B)
2
(β)(v) 1q′∗(v)

ap(q∗)(h) ap(q′∗)(h) ap(q′∗)(h′)

bin-ap(λ(p,q).q∗○p∗(u))(α,β)

tr(B)
2
(β)(v)

We fill the top hole of the diagram with r-coh−1
bin-ap,ap from lemma 1.4.14. We fill the bottom

hole with r-unit−1

tr(B)2(α)(v). This completes the definition of γ ⋆d θ.

1.7 Higher Inductive Types

Here we discuss higher inductive types. Though higher inductive types are novel to HoTT,

the idea they capture behind is famaliar. A higher inductive type is simply a type freely

generated by constructors, exactly how N is freely generated by a point and an endomor-

phism. The only difference between HITs and ordinary inductive types is that the we allows

for “higher constructors”, which let us postulate a type freely genererated by paths. The

most basic example as a type generated by a point b1 and a loop loop ∶ b1 = b1.

The circle, S1 is thus defined by the universal property that maps out of the circle S1
→X are

equivalent to a pair of a point x ∶X and a loop l ∶ x = x at x. We can similarly define S2 and

S3 and freely generated by a 2 and 3-loop, respectively. In general, classifying the behavior

and path spaces of higher inductive (like we did for the previous type) is an extremely hard

problem. Attempting such a classification is called synthetic homotopy theory, and it is the

project that will occupy our attention for the rest of the thesis.

33

Chapter 2

Higher Paths

In this chapter we outline some of the essential mechanics for working with higher paths in

HoTT. We will restrict our attention primarily to 2-paths and 3-paths. We begin by taking

a closer look at the algebra of 2-paths and some more intricate coherence paths.

2.1 Horizontal Composition

We will prove some more coherences for the horizontal composition of 2-paths. We will also

then show how many of these coherences specialize to 2-loops. These latter coherences play

an essential role in the Eckmann-Hilton argument. First conisder arbitrary 2-cells. We want

to consider two adjacent 2-cells like so:

x y z

p q

p′ q′

α β

In the type theory, this amounts to working in a context

34

Honors Thesis 2022/12/18

(A ∶ U) (x, y, z ∶ A) (p, p′ ∶ x = y) (q, q′ ∶ y = z) (α ∶ p = p′) (β ∶ q = q′)

We have previously defined α ⋆ β as bin-ap(− ● −)(α,β) ∶ p ● q = p′ ● q′, where (− ● −) ∶

x = y → y = z → x = z is the concatenation of paths. Much of the Eckmann-Hilton argument

comes from characterizing the behavior of (−⋆−), and then applying these characterizations

to 2-loops. Since we have defined (− ⋆ −) using binary action on paths, it does not reduce

unless both 2-paths are trivial. Thus our first task is characterizing the behavior of (− ⋆ −)

when one path is trivial. A horizontal composite with one trivial term, such as (α ⋆ 1q) or

(1p ⋆ β), is called a right or left whiskering, repsectively (the side of the whiskering is the

side of the lower dimensional path).

Lemma 1 (cohap(1x ● −), cohap(− ● 1y)). For any p, p′ ∶ x = y with α ∶ p = p′and s ∶ z = x, we

have a term cohap(s ● −) ∶ (s ● −)(α) = (1s ⋆ α). For s ∶ y = z we have a term cohap(− ● s) ∶

(− ● s)(α) = (α ⋆ 1s).

Here we are using (1x ● −)(α) to denote ap(1x ● −)(α).

Proof. We prove this by path induction on α. For the first, both sides reduce to 1(q ● p) when

α is trival. So we set cohap(q ● −) ∶≡ 12
(q ● p) when α ≡ 1p.

Similarly we can set cohap(− ● q) ∶≡ 12
p ● q when α is trivial.

If we whisker by the trivial 2-path, i.e., (α ⋆ 12
y), we can further describe the behavior of

(−⋆−). The reader famliar with category theory may recall that 12
x ⋆α ≡ α in the 2-category

Cat. But the same is not true in HoTT. The two terms are not even in the same type! The

term (12
x ⋆ α) is of type (1x ● p) = (1x ● p′). But (1x ● p) is not definitionally the same as

p. However, we do have a canonical equivalence between these two types induced by l-unit.

We can think of l-unit as a homotopy l-unit ∶ (λ(p).1x ● p) ≃ idx=y. Thus our results on the

functorial of homtopies applies to l-unit. So

35

Honors Thesis 2022/12/18

Lemma 1 (nat-l-unitα, nat-r-unitα). We have terms coh12x⋆− ∶ (1
2
x ⋆ α) ● l-unitp′ = l-unitp ● α

and coh−⋆12y
∶ (α ⋆ 12

y)
● r-unitp′ = r-unitp ● α.

Proof. Applying nat-htpy to l-unit, and our previous coherence paths lends the following

commutative diagrams:

1x ● p p

coh−1 nat-l-unitα ap-idα

1x ● p′ p′
l-unitp′

l-unitp

id(α)12x⋆α α(1x ● −)(α)

Here coh denotes cohap(1x ● −) from the preceeding lemma. We paste this diagram to define

coh12x⋆−. From r-unit we obtain:

p ● 1y p

coh−1 nat-r-unitα ap-idα

p′ ● 1y p′
r-unitp′

r-unitp

id(α)α⋆12y α(− ● 1y)(α)

Here coh denotes cohap(− ● 1y) from the previous lemma. We paste this diagram to define

36

Honors Thesis 2022/12/18

coh−⋆12y
.

From here on out we will abuse notation a bit and identify (− ● 1y)(α) with α ⋆ 12
y. Thus

we will write nat-r-unitα for the path (α ⋆ 12
y)

● r-unitp′ = r-unitp ● α. Similarly for the left

unit law. This is our first example of a “two dimensional coherence law”. This law is a

two dimensional since it only applies to 2-paths and makes essential use of the structure of

2-paths

We can see how this coherence law further simplifies on 2-loops. If α is a 2-loop, then

p ≡ p′ ≡ 1x. But l-unit1x ≡ 12
x. Thus, our path l-unitα has type (12

x ⋆ α) ● 12
x = 12

x
● α. But

this type is equivalent to (12
x ⋆α) = α. We can obtain a similar result for the right hand side.

This leads us to the following lemma.

Lemma 1. For a 2-loop α ∶ Ω2X, we have l-unit-Ω2
α ∶ 1

2
x ⋆ α = α and r-unit-Ω2

α ∶ α ⋆ 12
x = α.

Proof. This follows from the above considerations.

We can obtain a similar coherence path for inverses. First we need to introduce the “hori-

zontal inverse” of a 2-path.

Definition 0.1 ((−)ap(−1)). We have function (−)
ap(−1)

∶ p = q → p−1
= q−1 for any paths p

and q.

Proof. We use ap((−)−1
).

Lemma 1. For α ∶ p = q, we have

37

Honors Thesis 2022/12/18

p ● p−1 1x p−1
● p 1y

nat-r-inv nat-l-inv

q ● q−1 1x q−1
● q 1y

α⋆αap(−1)

r-invq

r-invp

12x αap(−1)⋆α

l-invq

l-invp

12y

Proof. We think of r-inv as a homotopy r-inv ∶ (−)−1
∼ const1x and apply nat-htpy, noting that

the action on paths of a constant function is always the trivial path. Similarly for l-inv.

Now we turn our attention the coherence on 2-paths that is at the heart of Eckmnan-Hilton.

This coherence follows from the definition of (−⋆−) in terms of bin-ap. Due to how it will be

used later down the road, we repackage it. We can apply bap-swap to obtain the following

diagram:

p ● q p′ ● q

bap-swapα,β(− ● −)

p ● q′ p′ ● q′

(p ● −)(β)

happly((− ● −)(α))(q′)

happly((− ● −)(α))(q)

(p ● −)(β)

But we have previously proven that happly((− ● −)(α))(q) = (α⋆1q) and (p ● −)(β) = (1p⋆β).

This leads us to the next lemma.

Lemma 1 (path-swap). For any 2-paths α and β, we have a commutative diagram

38

Honors Thesis 2022/12/18

p ● q p′ ⋆ q

path-swapβ,α

p ● q′ p′ ● q′

α⋆1q

1p′⋆β1p⋆β

α⋆1q′

Note that we have reversed the order of variables α and β. This will be convenient later

on.

Proof. This follows from piecing togther the above two coherence paths and diagram, using

bap-swapα,β

Since we defined bap-swap to factor through (− ● −)(α,β) ≡ (α⋆β), so does path-swap.

2.2 Higher ap

In this section we discuss some of the coherences between functions and higher paths. Each

of the functorality properties we proved about a function can be formulated as homotopies.

For example, ap-concat can be thought of as a homotopy

(x = y) × (y = z) (fx = fy) × (fy = fz)

x = z fy = fz

f×f

(− ● −)(− ● −)

f

ap-concat(f)

As such, it comes with a functorial action on paths, i.e., the function nat-htpy. This functo-

riality leads to the following theorem.

Lemma 0.1 (nat-ap-concat). Paths fom (p, q) = (p′, q′) in (x = y) × (y = z) are equivalent

39

Honors Thesis 2022/12/18

to pairs of paths (p = p′) × (q = q′). For a pair (α,β) we have the following commutative

diagram

f(p ● q) f(p) ● f(q)

nat-ap-concat(f)α,β

f(p′ ● q′) f(p′) ● f(q′)

f(α⋆β)

ap-concat(f)p′,q′

ap-concat(f)p,q

f(α)⋆f(β)

Proof. This follows from considering ap-concat as a homotopy of (λ(p, q).f(p ● q)) ∼

(λ(p, q).(f(p) ● f(q))) and applying nat-htpy. The filler can also be defined directly by

path induction on α and β.

Lemma 1. For α ∶ p = p′ in A we have

f(p−1
) f(p)−1

nat-ap-inv

f(q−1
) f(q)−1

f(αap(−1))

ap-invq

ap-invp

f(α)ap(−1)

Proof. This follows from thinking of ap-inv as a homotopy and applying nat-htpy.

In the section on horizontal composition, we proved some higher dimensional coherences

between two paths, such as nat-l-unit and nat-l-inv. We can show that these coherences too

are preserved every function, though we will not write out full proofs of this.

40

Chapter 3

Certain Types, A Closer Look

In this chapter we take a closer look at certain types that we will have to work with in

the main proof of the thesis. This includes specific constructions, such as taking the fiber

of a map, as well as certain type families, like families of functions, and higher inductive

types like the spheres. To keep things short, many of the theorems will be stated with-

out proof. However, any omitted proof will be rather trivial, usually relying on just path

induction.

3.1 Higher Homotopies

Here we give some lemmas describing how homotopies act on paths. We also give some

lemmas describing higher homotopies, that is, homotopies of homotopies.

In our first foray into homotopies (subsection 1.4.5), we gave a characterization of the action

on paths of homotopies in terms of a naturality condition. But, since we are working with

infinite dimensional structures, homotopies will have an induced naturality condition for each

dimension of path. We now turn our attention to unwinding some of the higher naturality

conditions of homotopies. Let H ∶ f ∼ g. Now suppose we have a 2-path α ∶ p = q. Both p

41

Honors Thesis 2022/12/18

and q induce their own naturality condition:

f(x) f(y) f(x) f(y)

g(x) g(y) g(x) g(y)

H(x)

g(p)

f(p)

H(y)

f(q)

H(y)H(x)

g(q)

H(p) H(q)

The induced naturality condition of α can be seen as giving a cohence between the above

two naturality conditions.

H(x) ● g(p) H(x) ● g(q)

f(p) ● H(y) f(q) ● H(y)

H(p)

1H(x)⋆g(α)

f(α)⋆1H(y)

H(q)H(α)

Lemma 3.1.1. The above diagram is equivalent to apd2
(H)(α).

We can repeat this process for a 3-paths γ ∶ α = β. We derive the following diagram.

H(p) ● (f(α) ⋆ 1H(y)) H(p) ● (f(β) ⋆ 1H(y))

(1H(x) ⋆ g(α)) ● H(q) (1H(y) ⋆ g(β)) ● H(q)

H(α)

(1H(y)◻g(γ))⋆H(q)

1H(p)⋆(f(γ)◻12
H(y))

H(β)H(γ)

Here, ◻ denotes the 3-dimensional composition of 3-paths.

Lemma 3.1.2. The above diagram is equivalent to apd3
(H)(γ).

42

Honors Thesis 2022/12/18

3.2 Fibers of Maps

In this section we take a look at important construction called the homotopy fiber of a map.

Consider types A and B and a map f ∶ A → B. Fix a point b ∶ B. It is natural to wonder

what in A gets mapped to b. The answer to this question is provided by the fiber of f over

b.

Definition 3.2.1. The fiber of f over b, denoted fibf(b), is defined as

fibf(b) ∶≡ ∑
a∶A
f(a) = b

.

So, the fiber of f over b consists of pairs of a point a ∶ A and a path from f(a) to b. The

rest of this section investigates some properties of fibers.

3.2.1 Paths in the fiber

First we characterize paths in the fiber.

Lemma 3.2.1. Let (a, p), (a′, p′) ∶ fibf(b). Then there are three equivalent descriptions of

the paths space (a, p) = (a′, p′):

∑

q∶a=a′
p =

λ(x).f(x)=b
q p′

∑

q∶a=a′
p = hpf(q) ● p′

fibap(f)(p ● (p′)−1
) ≡ ∑

q∶a=a′
f(q) = p ● (p′)−1

We will refer to these characterizations as the standard characterization, the commuting

triangle characterization, and the fiber of ap characterization.

43

Honors Thesis 2022/12/18

Proof. The standard characterization follows directly from theorem 1.5.2 applied to fibf(b).

The commuting triangle characterization follows from the first by computing trλ(x).f(x)=b(q)(p)

as f(q)−1
● p (using path induction) and rearranging inverses. The fiber of ap characterization

follows from the second by moving p′ to the other side.

By using the third characterization, we can recursively characterize 2-paths, 3-paths, and so

on. Unless otherwise specified, we will implicitly using the commuting triangle characteriza-

tion of paths in the fiber. The above lemma gives a useful condition for when a loop in the

fiber is trivial.

Lemma 3.2.2. Let (a, p) ∶ fibf(b) and (l, s) ∶ (a, p) = (a, p). Then (l, s) = 1(a,p) if s is in the

image of f , i.e., there is a path α ∶ l = 1a such that f(α) = s.

Proof. This follows from applying the fiber of ap characteriziation to the space of 2-paths.

3.2.2 The family fib

Now we turn our attention to constructing fiber bundles and returning to some claims from

sections 1.3 and 1.5. Any map f ∶ A → B induces a type family over B such that the

total space of this family is equivalent to A. This fact is classically known as “every map is

equivalent to a fibration”. This is the family of fibers of f , which sends a point b ∶ B to the

type fibf(b). Now we characterize some of the higher dimensional data in the family fibf . It

is easy to compute transport on a 1-path.

Lemma 3.2.3. For q ∶ x = y in B and (z, p) ∶ fib(x), we have trfib
(q)(z, p) = (z, p ● q). I.e.,

we have a homotopy trfib
(q) ∼ λ(z, p).(z, p ● q).

Proof. By path induction on q, we need to construct a term (z, p) = (z, p ● 1x). We can use

(1z, r-unit−1
p).

Now we wish to characterize transport on a 2-path.

44

Honors Thesis 2022/12/18

Lemma 3.2.4. For a 2-path α ∶ q = q′ in B we have a commutative square of homotopies

trfib
(q) λ(z, p).(z, p ● q)

trfib
(q′) λ(z, p).(z, p ● q′)

tr(fib)2(α) λ(z,p).(1z ,1p⋆α)

where the horizontal homotopies are from the above lemma.

Proof. We prove this by path induction on α. But tr(fib)2
(1q) ≡ refl-htpy. Additionally, since

we have assumed q ≡ q′ in the path induction, the horizontal homotopies cancel. Thus our

goal is equivalent to constructing a term refl-htpy ∼ λ(z, p).(1z,1p ⋆1q), which is clearly true.

The next lemma characterizes the naturality condition of the homotopy λ(z, p).(1z,1p ⋆ α).

This lemma plays a fundamental role in our construction of the Hopf fibration.

Lemma 3.2.5. For a path (1z, β) ∶ (z, p) = (z, p′) in the fiber (using the stardard character-

ization, so that β ∶ p = p′), we have that the naturality condition of above homotopy induced

by β is

(z, p ● q) (z, p′ ● q)

path-swapα,β

(z, p ● q′) (z, p′ ● q′)

(1z ,1p⋆α)

(1z ,β⋆1q)

(1z ,1p⋆α)

(1z ,β⋆1q′)

Proof. By path induction on β.

45

Part II

Eckmann-Hilton and The Hopf

Fibration

46

Honors Thesis 2022/12/18

Now we turn our attention to the main result of the thesis: showing that the Eckmann-Hilton

argument can be used to construct a generator of Ω3
(S2

) (up to sign). We will show this

by constructing a map hpf ∶ S3
→ S2 such that: (i) the fiber of hpf is S1 and (ii) the image

Ω3
(hpf)(surf3) of the generating loop of S3 is a path induced by Eckmann-Hilton. Before

diving into the proof, we first give a conceptual sketch for how the proof will proceed and

how this part of the thesis is organized.

In our construction of the Hopf fibration, there are three essential parts of the proof:

(i) constructing a fibration over S2, (ii) proving that the total space of this fibration is S3, and

(iii) proving that the fiber over one of the poles of S2 is S1. All results related to homotopy

groups and loop spaces follow from considering the fiber sequence of the Hopf fibration.

Clearly one ought to optimize their construction of the fibration to make characterizing

its total space and fibers as pain free as possible. Thus there are two main strategies for

constructing the fibration: either construct it so that its obvious the fiber is S1 or construct

it so that its obvious that the total space is S3.

The HoTT book’s construction of the Hopf fibration, the authors take the first route.

They construct the Hopf fibration by defining a type family H ∶ S2
→ U with H(N2) ∶≡ S1.

From this construction it is immediate that the fibration induced by H has fiber S1. The rest

of the HoTT book’s proof consists in showing that ∑x∶S2H(x) ≃ S3. Once this equivalence is

constructed, they define the map S3
→ S2 as the composite S3

≃ ∑x∶S2H(x) → S2.

Our construction of the Hopf fibration goes the opposite route. We will construct the

Hopf fibration by first constructing a term eh ∶ Ω3
(S2

) using the Eckmann-Hilton argument.

We will call this term the Eckmann-Hilton 3-loop. Then we can use the suspension loop space

adjunction, specifically the equivalence Ω3
(S2

) ≃ (S3
→ S2

), to obtain a map hpf ∶ S3
→ S2

with hpf(N3) ≡ N2 and hpf(surf3) = eh. Thus it is immediate from our construction of the

Hopf fibration that its total space is S3. So the bulk of the proof lies in characterizing the

fibers of the map hpf.

47

Honors Thesis 2022/12/18

It is sufficent to prove that the fiber of hpf over either of the poles is S1. However,

we instead prove something slightly stronger. We will characterize the entire type family

fib ∶≡ (λ(x).fibhpf(x)) ∶ S2
→ U . That is, we will construct a fiberwise equivalence between

the total spaces of fib and another family over S2. This is indeed a stronger result since it

will also give an equivalence between the higher dimensional data in each family. The reason

we choose to prove a stronger claim is not solely to get a stronger result. In fact the reason

we prove a stronger claim is a familiar one: it is often easier to prove a more general claim

in HoTT since this may allow us to use more induction principles.

The characterization of fib naturally breaks up into four sections. First we will flesh

out some of the properties of the type family fib. The goal of this section is to gain enough

understanding of the behavior of fib so that we can motivate the construction of the type

family H in the second section. Then we will construct a fiberwise equivalence ∑x∶S2H(x) ≃

∑x∶S2 fib(x). This will imply that the fiber of hpf over the pole of S2 is S1, providing everything

necessary for the analysis of the fiber sequence of hpf.

The construction of the fiberwise equivalence will itself be broken up into three sections:

(i) the construction of the forwards map g ∶ ∏x∶S2H(x) → fib(x), (ii) construction of the

backwards map f ∶ ∏x∶S2 fib(x) → H(x), and (iii) proving these maps are fiberwise inverses

of each other.

We begin by reviewing the Eckmann-Hilton argument and constructing the Eckmann-Hilton

3-loop.

48

Chapter 4

Eckmann-Hilton

The Eckmann-Hilton argument is often first introduced in one of two ways. The first way

states that any monoid object in the category of monoids is a commutative monoid. The

second states that the composition of paths in any double loop space is commutative. The

second version of the Eckmann-Hilton argument, the verison we will be concerned with,

usually shows up when proving that all higher homotopy groups are abelian. The proof

usually proceeds taking two 2-loops in a space X and constructing a homotopy of paths

between p ● q and q ● p in the space. Then we conlude that [p] ∗ [q] = [q] ∗ [p] in

the homotopy group. The second version of Eckmann-Hilton is also often a theorem in a

first course on category theory: given a category C, the vertical composition of natural

transformations in Cat(C,C)(1C ,1C) is commutative.

Of course the two versions of Eckmann-Hilton are essentially the same. We can see

the second version of the Eckmann-Hilton argument as a special case of the first. Sticking

with the category theory example, the idea behind the proof is that we naturally have two

different types of composition operations on natural transformations, veritical and horizon-

tal composition. In general, these two types of composition take different forms of pasting

diagrams as their input. But, when we fix a category C and consider the natural trans-

49

Honors Thesis 2022/12/18

formations 1C ⇒ 1C , both types of composition define operations from pairs 1C × 1C → 1C .

Further, the composition laws on natural transformations imply that vertical composition

is a monoid homomorphism of horizontal composition. We can also see the first version

of the Eckmann-Hilton argument as a special case of the second since any commutative

monoid lends a 2-category with one object and one 1-morphism. Since the two versions of

the argmuent can rightly be considered the same, we will from here on out only consider the

second version and refer to it simply as “the Eckmann-Hilton” argument.

Certain aspects of the Eckmann-Hilton argument become more salient in Homotopy

Type Theory. In the context of HoTT, the Eckmann-Hilton argument states that, for any

type X ∶ U , given 2-loops α,β ∶ Ω2
(X) we have that α ● β = β ● α. But we cannot simply

assert equality in HoTT; really we need to specify a 3-path EH(α,β) ∶ α ● β = β ● α. We do

not have to worry about this in the world of 2-categories since all 3-cells are trivial.

In this chapter we will review the Eckmann-Hilton argument and prove some properties of

EH. Then we will be able to use this to construct a 3-loop eh in S3 by taking EH(surf2, surf−1
2) ∶

surf2 ● surf−1
2 = surf−1

2
● surf2 and applying inverse laws. We will then prove some properties

of eh.

4.1 The Eckmann-Hilton Argument

Now we give the Eckmann-Hilton argument. Our goal is to construct a term EH(α,β) ∶

α ● β = β ● α, for any 2-loops α and β. We cannot do so by path induction on α and β since

we are not proving something about all paths, but about solely loops. In other words, α

and β have both of their endpoints stuck so we can cannot contract them away. So the way

we construct EH is by considering lemmas about arbitary 2-paths and showing how these

lemmas specialize to 2-loops.

We have already seen all the lemmas necessary for EH, we need only apply them to 2-loops

50

Honors Thesis 2022/12/18

and piece them together.

Lemma 4.1.1 (Eckmann-Hilton, EH). Let A ∶ U and a ∶ A. Consider two 2-loops α,β ∶

Ω2
(A,a). Then we have a path EH(α,β) ∶ α ● β = β ● α. In other words, we have a

homotopy EH ∶ (λ(α,β).α ● β) ∼ (λ(α,β).β ● α).

Proof. Let α,β ∶ Ω2
(A,a). We can apply path-swap to α and β to obtain

12
x

● 12
x 12

x
● 12

x

path-swapα,β

12
x

● 12
x 12

x
● 12

x

(12x⋆α)

(β⋆12x)

(β⋆12x)

(12x⋆α)

Of course 12
x

● 12
x ≡ 12

x. Now we can use our paths l-unit-Ω2
β ∶ 1

2
x⋆β = β and r-unit-Ω2

α ∶ 1
2
x⋆α = α

to obtain

12
x

● 12
x 12

x
● 12

x

12
x

● 12
x 12

x
● 12

x

α

β

β

αEH(α,β)

We can write out the explicit formula for EH(α,β) as:

51

Honors Thesis 2022/12/18

α ● β

(12
x ⋆ α) ● (β ⋆ 12

x)

(β ⋆ 12
x)

● (12
x ⋆ α)

β ● α

(l-unit-Ω2
α)−1⋆(r-unit-Ω2

β)
−1

path-swapα,β

(r-unit-Ω2
β)⋆(l-unit-Ω2

α)

This completes the Eckmann-Hilton argument.

Since path-swapα,β factors through α⋆β, we can easily extract from our above proof a proof

that α ● β = α ⋆ β.

4.1.1 Properties of EH

Before moving on, we will prove a few lemmas about the construction EH.

Suppose we have a α,β ∶ Ω2
(A,a) and a function f ∶ A → B. It is natural to wonder how

f(EH(α,β)) relates to EH(f(α), f(β)). The two terms are not of the same type, since the

first has type f(α ● β) = f(β ● α) and the second has type f(α) ● f(β) = f(β) ● f(α),

so we cannot ask for the two terms to be equal. But we have canonical equivalence between

these two types via ap-concat(f)α,β. Thus we can sensibly ask for the following diagram

commute:

52

Honors Thesis 2022/12/18

f(α ● β) f(α) ● f(β)

?

f(β ● α) f(β) ● f(α)

ap-concat(f)α,β

EH(f(α),f(β))f(EH(α,β))

ap-concat(f)β,α

In order to prove this, we first need one lemma.

Lemma 4.1.2. For arbitary 2-paths α and β, the following diagram commutes:

f((α ⋆ 1q) ● (1p′ ⋆ β)) f(α ⋆ 12
x)

● f(12
x ⋆ β))

f((1p ⋆ β) ● (α ⋆ 1q′)) f(12
x ⋆ β) ● f(α ⋆ 12

x))

f(bap-swapα,β)

ap-concat(α⋆1q),(1p′ ⋆β)

ap-concat(1q⋆β),(α⋆1p′)

bap-swapf(α),f(β)

Proof. We may induct on α and β. Then everything reduces to the trivial path.

Now we prove that functions preserve EH.

Lemma 4.1.3. We have a term ap-EH ∶ f(EH(α,β)) ● ap-concat(f)β,α = ap-concat(f)α,β ●

EH(f(α), f(β))

Since EH(α,β) is composite of paths, ap-concat twice lend a path:

f(α ● β)

f((α ⋆ 12
x)

● (12
x ⋆ β))

f((12
x ⋆ β) ● (α ⋆ 12

x))

f(β ● α)

f((r-unit-Ω2
α)−1⋆(l-unit-Ω2

β)
−1)

f(path-swap)

f((l-unit-Ω2
β)⋆(r-unit-Ω2

α))

f(EH(α,β))

53

Honors Thesis 2022/12/18

Thus our goal is equivalent to making the following diagram commute:

f(α ● β) f(α) ● f(β)

f((α ⋆ 12
x)

● (12
x ⋆ β)) (f(α) ⋆ 12

x)
● (12

x ⋆ f(β))

f((12
x ⋆ β) ● (α ⋆ 12

x)) (12
x ⋆ f(β)) ● (f(α) ⋆ 12

x)

f(β ● α) f(β) ● f(α)

f((r-unit-Ω2
α)−1⋆(l-unit-Ω2

β)
−1)

f(path-swapα,β)

f((l-unit-Ω2
β)⋆(r-unit-Ω2

α))

(r-unit-Ω2
f(α))

−1⋆(l-unit-Ω2
f(β))

−1

path-swapf(α),f(β)

(l-unit-Ω2
f(β))⋆(r-unit-Ω2

f(α))

ap-concatβ,α

ap-concatα,β

The right side of the diagram is definitionally EH(f(α), f(β)). This diagram naturally splits

up into three subdiagrams (along the dotted lines, though we have yet to construct these

dotted paths). We will make the whole diagram commute by constructing a filler for each

subdiagram and pasting.

The middle subdiagram commutes by our previous lemma. So we only have to con-

truct fillers for the top and bottom subdiagrams. We construct the filler of the top subdia-

gram and ommit the proof for the bottom, since it is very similar. We can split up the top

diagram up as

54

Honors Thesis 2022/12/18

f(α ● β) f(α) ● f(β)

f((α ⋆ 12
x)

● (12
x ⋆ β)) f(α ⋆ 12

x)
● f(12

x ⋆ β) (f(α) ⋆ 12
x)

● (f(12
x) ⋆ β)

f((r-unit-Ω2
α)−1⋆(l-unit-Ω2

β)
−1)

ap-concat

f((r-unit-Ω2
α)−1)⋆f((l-unit-Ω2

β)
−1)

ap-concat

(r-unit-Ω2
f(α))

−1⋆(l-unit-Ω2
f(β))

−1

The left square commutes via nat-ap-concat. Now we will construct the dotted path and

filler for the triangle. To make this trange commute we will construct two commutative

triangles:

f(α) f(β)

f(α ⋆ 12
x) (f(α) ⋆ 12

x) f(12
x ⋆ β) f(β) ⋆ 12

x

f((r-unit-Ω2
α)−1)

(r-unit-Ω2
f(α))

−1
f((l-unit-Ω2

β)
−1)

(l-unit-Ω2
β)

−1

The commutativity of the original triangle will follow from the commutativity of these two

triangles the functoriality of (− ⋆ −). The commutativity of each triangle follows from some

simple lemmas about the preservation of nat-r-unit and nat-l-unit under the image of a func-

tion. Thus the top subdiagram commutes. Constructing the filler of the bottom subdiagram

is exactly analgous.

4.2 The Eckmann-Hilton Loop

In this section we use Eckmann-Hilton to contruct a 3-loop and prove some properties of

this 3-loop. Let α ∶ Ω2X be a 2-loop. Then we can apply EH to α and its inverse. This lends

55

Honors Thesis 2022/12/18

a path α ● α−1
= α−1

● α. We can use inverse laws to tie off the ends an obtain a loop one

dimension above α. Thus, we define

ehα ∶≡ r-inv−1
α

● EH(α,α−1
) ● l-invα

Explicitly, we have:

12
x

α ● α−1

(12
x ⋆ α) ● (α−1

⋆ 12
x)

(α−1
⋆ 12

x)
● (12

x ⋆ α)

α−1
● α

12
x

(l-unit-Ω2
α)−1⋆(r-unit-Ω2

α−1)
−1

path-swapα,α−1

(r-unit-Ω2
α−1)⋆(l-unit-Ω2

α)

r-inv−1α

l-invα

We will call a 3-loop of this from an Eckmann-Hilton 3-loop and may denote it by ehα.

4.2.1 Properties

Now we show that the eh construction is preserved by functions.

Lemma 4.2.1. Let f ∶X → Y and α ∶ Ω2
(X). Then f(ehα) = ehf(α).

56

Honors Thesis 2022/12/18

Proof. This follows from our previous lemma constructing ap-EH and some simple lemmas

demonstrating the preservation of r-inv and l-inv under functions.

4.2.2 Eckmann-Hilton in S2

Now we introduce the Eckmann-Hilton 3-loop that will occupy our attention for the remain-

der of the thesis. Since we have surf2 in Ω2
(S2

), we have an induced ehsurf2 ∶ Ω3
(S2

). Since

we are now concerned with only one Eckmann-Hilton loop, we will drop the subscript and

denote this by just eh. We can write out eh as

12
N2

surf2 ● surf−1
2

(12
x ⋆ surf2) ● (surf−1

2 ⋆ 12
x)

(surf−1
2 ⋆ 12

x)
● (12

x ⋆ surf2)

surf−1
2

● surf2

12
N2

(l-unit-Ω2
surf2
)−1⋆(r-unit-Ω2

surf−1
2

)−1

path-swap
surf2,surf−1

2

(r-unit-Ω2

surf−1
2

)⋆(l-unit-Ω2
surf2
)

r-inv−1surf2

l-invsurf2

57

Chapter 5

The Hopf Fibration

In this chapter we use eh ∶ Ω3
(S2

) to construct a fibration hpf ∶ S3
→ S2. The construction

is immediate from the suspension loop space adjunction. Thus most of the chapter is spent

investigating and characterizing the fiber of hpf. The proof that the fiber of hpf is S1 is in

the next chapter.

5.1 The map hpf ∶ S3
→ S2

First we define the map hpf ∶ S3
→ S2 and engage in a preliminary investigation of its fiber.

The definition of hpf is short and sweet.

Definition 5.1.1 (The Hopf Fibration, hpf). We define a map hpf ∶ S3
→ S2 such that

hpf(surf3) = eh

Proof. By the universal property of S2, we have that (S3
→ S2

) ≃ Ω3
(S2

). We choose

eh ∶ Ω3
(S2

) to define hpf. Thus it is immediate from the definition that hpf(surf3) = eh.

58

Honors Thesis 2022/12/18

5.1.1 The Fiber of hpf

Now we turn our attention to investigating the fiber of hpf and setting the stage for the rest

of the proof. In this section we will draw heavily on section 3.2 on the fibers of maps. The

reader not familiar with the homotopy fiber of a map, or the incarnation of this construction

in HoTT, is advised to at least skim that section over before reading on. But we will make

an effort to reiterate enough of the information of 3.2 so that a reader already familiar with

the fiber of a map can get by just reading this section. First we review some results from

that section and make some remarks specific to hpf. The fiber of hpf over a point x ∶ S2

consists of pair of a point z ∶ S3 and a path hpf(z) = x. This is defined as

fibhpf(x) ∶≡ ∑
z∶S3

hpfz = x

By our characterization of paths in the fiber in 3.2.1, we have three equivalent forms for the

path space in the fiber (z, p) = (z′, p′), namely

∑

q∶z=z′
p =fib

q p′

∑

q∶z=z′
p = hpf(q) ● p′

fibhpf(p ● (p′)−1
)

We will refer to these as the transport characterization, the commuting triangle character-

ization, and the fiber of ap characterization, respectively. Usually one ought to use one of

the last two characterizations of paths in a fiber. But, in the course of characterizing fib,

we will find that we only ever have occasion have to work in the fiber fibhpf(N2) and with

59

Honors Thesis 2022/12/18

paths of the form (1N3 , α), i.e., whose first compent is 1N3 . In this case, it is best to work

with the first characterization since the the second component definitionally simplifies to

p = p′. Thus, unless otherwise specified, we will be implicitly using the first characterization

throughout the proof. We will also have to work with 2-paths in the fiber, to which similar

remarks apply. To avoid confusion, it is worth pointing out that a 1-path in the fiber involves

a 2-path in S2 and a 2-paths in the fiber involves a 3-path in S2. This is because points in

the fiber involve a 1-path in S2.

Lets take a brief look at some points and paths in the fiber of hpf to see why one might expect

that the fiber is S1. By definition, hpf(N3) ≡ N2. Thus we have a canonical point (N3,1N2) in

fibhpf(N2). In fact, we can’t really scrounge up another point; this is the only point we can

construct in an empty context (i.e., without other assumptions). We can picture this point

as

N3

hpf(N3) ∶≡ N2

N2

1N2

Now consider a loop at this point. A loop has the form

∑

q∶N3=N3

1N2 =
fib
q 1N2

But S3 doesn’t have any interesting paths of type N3 = N3. Thus we are almost forced to fix

q ≡ 1N3 . Now we only need a path 1N2 = 1N2 . The canonical choices are of the form surfn2 , for

each n ∶ Z. Of course, we want to pick a generator, thus we should limit out attention to surf2

60

Honors Thesis 2022/12/18

and surf−1
2 . Choosing the first for now, we can picture this loop in the fiber as follows:

N3 N3

hpf(N3) ∶≡ N2

N2

1N2
1N2

1N3

surf2

Of course, just because we can define a loop does not mean its non-trivial. We can ask if

this loop is trivial by asking for a 2-path in the fiber (1N3 , surf2) = (1N3 ,1
2
N2

). But, using the

fiber of ap characterization of paths in the fiber, such a path must be a term of fibhpf(surf2).

Thus, asking for the loop (1N3 , surf2) to be trivial is equivalent to asking for surf2 to be in

the image of hpf. Since surf2 is not in the image of hpf (or, at least, so we expect to be the

case), indeed the loop we have selected should be non-trivial. Similar reasoning will lead us

to believe that (1N3 , surf2
2), and (1N3 , surfn2) for any n ∶ Z, are all non-trivial. This is just a

special case of some reasoning from lemma 3.2.2 on the conditions for when a loop in the

fiber is non-trivial. This gives us a reason to expect (not just hope) that the fiber of hpf is

equivalent to S1.

But this does not suffice to characterize the fiber, of course. We will actually have to exhibit

an equivalence between the fiber and S1. As we mentioned, we will not be constructing an

equivalence between fibhpf(N2) and S1 directly, but will instead give a fiberwise equivalence

between fib and a yet to be constructed H. Thus, it is in our best interest to have a good

understanding of the family fib, and not just fibhpf(N2). This will help us in our selection of

H, as well as in the construction of the fiberwise equivalence.

Since fib is a family over S2, it is uniquely determined by its descent data. This data comprises

where fib sends N2 and the structure surf2 induces, i.e., tr(fib)2
(surf2) ∶ id ∼ id. Thus, to

61

Honors Thesis 2022/12/18

get good enough understanding of fib, we need only focus on understanding fibhpf(N2) and

tr(fib)2
(surf2). We have just given a preliminary characterization of fibhpf(N2). So now we

need to characterize tr(fib)2
(surf2). We already have a general characterization of tr(fib)2

from section 3.2 on fibers of maps. In particular, lemma 3.2.4 gives a commutative square

relating tr(fib)2
(surf2) and λ(z, p).(1z,1p ⋆ surf2). Since surf2 ∶ 1N2 = 1N2 , there are some

further simplifications we can make. We can package them into the following commutative

square:

id ≡ trfib
(1N2) λ(z, p).(z, p ● 1N2)

id ≡ trfib
(1N2) λ(z, p).(z, p ● 1N2)

tr(fib)2(surf2)

λ(z,p).(1z ,r-unitp)

λ(z,p).(1z ,r-unitp)

λ(z,p).(1z ,1p⋆surf2)

We can write the explicit values for the horizontal homotopies since they were defined by

path induction and reduce on 1N2 . On a point (z, p) in the fiber, we can picture the action

of tr(fib)2
(surf2) as follows:

z

hpf(z)

N2

N2

1N2

p

1N2

p p

surf2

Thus we arrive at the following characterization of the desencent data of fib.

Lemma 5.1.1 (descent data in fib). We have that fib(N2) ∶≡ fibhpf(N2) and tr(fib)2
(surf2) ∼

λ(z, p).(1z, r-unit−1
p

● (1p ⋆ surf2) ● r-unitp).

62

Honors Thesis 2022/12/18

Proof. This follows from the above considerations.

In virtue of this lemma, we will work directly with fibhpf(N2) and λ(z, p).(1z, r-unit−1
p

● (1p ⋆

surf2) ● r-unitp). We will also use the shorthand (fib)2 to refer to the latter homotopy. It is

important to note that we should expect (fib)2 to be non-trivial since surf2 lends a non-trivial

loop in the fiber.

Since (fib)2 is a homotopy, it has a naturality condition induced by paths in the fiber of hpf.

We want to characterize this naturality condition. We will use the characterization of the

naturality condition of λ(z, p).(1z,1p ⋆ surf2) and the homotopy in lemma 5.1.1 to derive a

characterization for (fib)2.

For a path (1z, β) ∶ (z, p) = (z, p′), lemma 3.2.5 tells us that the naturality condition of

λ(z, p).(1z,1p ⋆ surf2) is given by

(z, p ● 1N2) (z, p′ ● 1N2)

(12
z,path-swapsurf2,β)

(z, p ● 1N2) (z, p′ ● 1N2)

(1z ,1p⋆surf2)

(1z ,β⋆12N2
)

(1z ,1p⋆surf2)

(1z ,β⋆12N2
)

Now, the naturality squares of composites of homotopies can be computed as a pasted

composite of each naturality condition. This lets us compute the naturality of (fib)2 on

(1z, β) with the following diagram.

63

Honors Thesis 2022/12/18

(z, p) (z, p′)

(12
z,nat-r-unitβ)

(z, p ● 1N2) (z, p′ ● 1N2)

(12
z,path-swapsurf2,β)

(z, p ● 1N2) (z, p′ ● 1N2)

(12
z,nat-r-unitβ)

(z, p) (z, p′)

(1z ,1p⋆surf2)

(1z ,β⋆12N2
)

(1z ,1p′⋆surf2)

(1z ,β⋆12N2
)

(1z ,β)

(1z ,r-unit′p)(1z ,r-unitp)

(1z ,r-unitp) (1z ,r-unit′p)

(1z ,β)

Lemma 5.1.2. For β ∶ p = p′, the above diagram computes nat-htpy((fib)2
)(1z, β).

Proof. By the above considerations.

We can give an even better characterization of (fib)2 when β is a 2-loop. We will essentially

characterize (fib)2
(β) as the Eckmann-Hilton path. When β is a 2-loop (i.e. z ≡ N3 and

p ≡ p′ ≡ 1N2), our digram becomes

64

Honors Thesis 2022/12/18

(N3,1N2) (N3,1N2)

nat-r-unitβ

(N3,1N2
● 1N2) (N3,1N2

● 1N2)

path-swapsurf2,β

(N3,1N2
● 1N2) (N3,1N2

● 1N2)

nat-r-unitβ

(N3, p) (N3, p′)

(1N3
,12N2

⋆surf2)

(1N3
,β⋆12N2

)

(1N3
,12N2

⋆surf2)

(1N3
,β⋆12N2

)

(1N3
,β)

(1N3
,12N2
)(1N3

,12N2
)

(1N3
,12N2
) (1N3

,12N2
)

(1N3
,β)

The obvious equivalence (“compressing” the extra 1N2 ’s) sends the previous diagram to

(z,1N2
● 1N2) (z,1N2

● 1N2)

path-swapsurf2,β

(z,1N2
● 1N2) (z,1N2

● 1N2)

(1z ,12N2
⋆surf2)

(1z ,β⋆12N2
)

(1z ,12N2
⋆surf2)

(1z ,β⋆12N2
)

(1z ,β)

(1z ,β)

r-unit-Ω2
β

r-unit-Ω2
β

It is easy to see that this path, when concatenated on the left by (l-unit-Ω2
surf2

⋆1(1z ,β))
−1 and

on the right by (1(1z ,β) ⋆ l-unit-Ω2
surf2

), lends the path EH(surf2, β).

Lemma 5.1.3. For a 2-loop β ∶ 1N2 = 1N2, we have

(l-unit-Ω2
surf2

⋆ 1(1N3
,β))

−1
● (fib)2

(1N3 , β) ● (1(1N3
,β) ⋆ l-unit-Ω2

surf2
) = EH(surf2, β)

65

Honors Thesis 2022/12/18

Proof. By the above remarks.

As might be expected, this observation is at the heart of our upcoming characterization of

the fiber. We now have all the data we need to make an educated selection of the type family

H.

5.2 The family H ∶ S2
→ U

In this section we will construct the family H ∶ S2
→ U . There are only two conditions we

know H must satisfy: (i) H is familiar enough that proving it is fiberwise equivalent to fib is

actually helpful and (ii) we can actually prove a fiberwise equivalence.

Satisfying (i) is easy. We only need H(N2) ∶≡ S1, since this plus a fiberwise equivalence

implies fibhpf(N2) ≃ S1. Satisfying (ii) is of course the tricky part, but the results of the

previous section are here to help. In particular, lemma 5.1.1 characterizing the descent data

of fib will be our guide. We know that, in order for H to actually be equivalent to fib, the

descent data of the two families must “match”. We have seen that

(fib)2
∶≡ λ(z, p).(1z, r-unit−1

p
● (1p ⋆ surf2) ● r-unitp)

is the 2-dimensional descent data of fib. We expect this to be non-trivial, since surf2 is not

in the image of hpf. From our preliminary look at fibhpf(N2), we saw that it should have

base point (N3,1N2). If we apply (fib)2 to this point, we get

(1N3 , r-unit−1
1N2

● (12
N2
⋆ surf2) ● r-unit1N2

) ≡ (1N3 ,1
2
N2

● (12
N2
⋆ surf2) ● 12

N2
)

= (1N3 , (1
2
N2
⋆ surf2))

= (1N3 , surf2)

66

Honors Thesis 2022/12/18

But, we expect that (1N3 , surf2) is the generating loop of fibhpf(N2). Thus, we should choose

for (H)
2 a non-trivial homotopy that is induced by a generator (or sends the base point of

S1 to a generator).

There are two such homotopies idS1 ∼ idS1 , namely L and L−1. The homotopy L is defined by

sending b1 to loop and choosing the naturality condition 1loop ● loop. The homotopy L−1 is the

inverse homotopy of L. It can also be defined directly by sending b1 to loop−1 and choosing

the naturality condition l-invloop ● r-inv−1
loop. Which choice of homotopy is best depends in

part on how the 3-loop eh is defined. Since we have defined eh in a way that uses surf−1
2 , we

will want to choose L−1.

We are now ready to define H.

Definition 5.2.1. We define a family H ∶ S1
→ U .

Proof. We choose S1 over N2 and L−1 over surf2.

This completes the definition of H. As usual, we will work just with (H)
2
≡ L−1 instead of

tr(H)
2
(surf2). Before moving on, we will prove a few lemmas about H that will be useful

later on.

67

Chapter 6

Eckmann-Hilton and The Hopf

Fibration

This chapter contains the actual result of the thesis. We will prove that the Eckmann-Hilton

3-loop eh generates Ω3
(S2

). We will prove this as a corollary of constructing a fiberwise

equivalence:

∏

x∶S2
H(x) ≃ fib(x)

We will break up the construction of the fiberwise equivalence into constructing a forwards

map

g ∶ ∏
x∶S2
H(x) → fib(x)

constructing a backwards map

f ∶ ∏
x∶S2

fib(x) → H(x)

68

Honors Thesis 2022/12/18

and fiberwise homotopies

∏

x∶S2
g(x) ○ f(x) ∼ id

∏

x∶S2
f(x) ○ g(x) ∼ id

Then, all claims other claims will follow from considering the fiber sequence of hpf and

applying these results.

6.1 The forwards map, g ∶ ∏x∶S2H(x) → fib(x)

We begin with the construction of g. This is the more intresting of the two maps, since

its construction hinges upon our choice of (H)
2 and the fact that hpf(surf3) = eh. By the

universal property of S2, in order to construct g, it suffices to specify g(N2) ∶ S1
→ fibhpf(N2)

and then specify a dependent 2-loop g(surf2) at g(N2). This construction (especially of

the 2-loop) relies on characterization of dependent paths in a family of the form A(x) →

B(x), as well as a characterzation of homotopies between functions with domain S1. Each

characterization is straight forwards and left to the reader.

First we define g(N2). A map out of S1 is equivalent to a loop in the codomain. Since we

want this map to be an equivalence, we need to pick a generating loop of fibhpf(N2). As we

saw in 5.1, there are two candidates for a generating loop (1N3 , surf2) and (1N3 , surf−1
2). It

doesn’t really matter which we choose, but it will make calculations easier if we choose the

inverse. Thus

Definition 6.1.1. We have a map g(N2) ∶ S1
→ fibhpf(N2)

Proof. We use S1-induction and set g(N2)(b1) ∶≡ (N3,1N2) and g(N2)(loop) ∶= (1N3 , surf−1
2).

69

Honors Thesis 2022/12/18

Now we need a dependent 2-loop g(surf2) at g(N2). But a dependent 2-loop in the family

λ(x).H(x) → fib(x) is equivalent to a homotopy

g(surf2) ∶ (fib)2
⋅r g(N2) ∼ g(N2) ⋅l L−1

Thus we have two homotopies (fib)2
⋅r g(N2) and g(N2) ⋅l L−1 of type g(N2) ∼ g(N2) and

we need to show that these homotopies are themselves homotopic to each other. Since the

function g(N2) has domain S1, we can use the characterization of homotopies and higher

homotopies out of the circle. In particular, a homotopy out of S1 is uniquely determined by

its image on the base point and the naturality condition induced by the loop. Thus, defining

the homotopy g(surf2) is equivalent to providing a path

g(N2) g(N2)

((fib)2⋅rg(N2))(b1)

(g(N2)⋅lL−1)(b1)

g(surf2)(b1)

and a commutative square

((fib)2
⋅r g(N2))(b1) ● g(N2)(loop) g(N2)(loop) ● ((fib)2

⋅r g(N2))(b1)

(g(N2) ⋅l L−1
)(b1) ● g(N2)(loop) g(N2)(loop) ● (g(N2) ⋅l L−1

)(b1)

g(surf2)(b1)⋆1g(N2)(loop)

(g(N2)⋅lL−1)(loop)

((fib)2⋅rg(N2))(loop)

1g(N2)(loop)⋆g(surf2)(b1)g(surf2)(loop)

Here the horizontal paths are the naturality conditions of the respective homotopies. We

can compute

70

Honors Thesis 2022/12/18

(fib)2
⋅r g(N2)(b1) ≡ (fib)2

(N3,1N2)

≡ (1N3 , r-unit−1
1N2

● (12
N2
⋆ surf2) ● r-unit1N2

)

≡ (1N3 ,1
2
N2

● (12
N2
⋆ surf2) ● 12

N2
)

= (1N3 , (1
2
N2
⋆ surf2)) , by using unit laws

We also have

(g(N2) ⋅l L−1
)(b1) ≡ g(N2)(loop−1

)

= g(N2)(loop)−1 , by ap-inv

≡ (1N3 , surf−1
2)

−1

= (1N3 , surf2) , by inv-inv

Thus, we can simplify and rewrite the boundary of the desired commutative square as

(1N3 , (1
2
N2
⋆ surf2) ● surf−1

2) (1N3 , surf−1
2

● (12
N2
⋆ surf2))

(1N3 , surf2 ● surf−1
2) (1N3 , surf−1

2
● surf2)

g(surf2)(b1)⋆1g(N2)(loop)

g(N2)(l-inv)⋅g(N2)(r-inv)−1

(fib)2(1N3
,surf−12)

1g(N2)(loop)⋆g(surf2)(b1)

Here we have suppresed many coherence paths to increase the readability of the diagram.

Later it will become important that these coherence paths cancel.

Constructing the path g(surf2)(b1) is easy. Being sloppy and supressing some coherence

71

Honors Thesis 2022/12/18

paths, we can use the computations above and set g(surf2)(b1) ∶≡ (12
N3
, l-unit-Ω2

). Now we

need to provide a commutative square. First we rewrite it boundary as

(1N3 , (1
2
N2
⋆ surf2) ● surf−1

2) (1N3 , surf−1
2

● (12
N2
⋆ surf2))

(1N3 , surf2 ● surf−1
2) (1N3 ,1

2
N2

) (1N3 , surf−1
2

● surf2)

(12N3
,l-unit-Ω2⋆1

surf−1
2
)

(fib)2(1N3
,surf−12)

(1N3
,1

surf−1
2
⋆l-unit-Ω2)

g(N2)(l-inv) g(N2)(r-inv)−1

Note that showing the square commutes is equivalent to showing that the loop starting and

ending at (1N3 ,1
2
N2

) is trivial. We will show this loop is trivial by showing that it is equal to

(12
N3
, eh). Then we will see that this latter path is trivial since hpf(surf3) = eh.

Lemma 5.1.3 tells us that tracing the diagram along the path left-top-right is equal to

EH(surf2, surf−1
2). Now we just need to characterize the bottom two paths. As we should

expect, these will indeed simplify to (12
N3
, r-invsurf2) and (1N3 , l-inv−1

surf2), though it is a bit

tedious (and conceptually uninteresting) to give all the details. So I only give a sketch as to

how to show this. Since functions prelerve inverse laws, we can obtain

g(N2)(l-invloop) = ap-concat(g(N2))loop−1,loop
● (ap-inv(g(N2))loop ⋆ 1) ● l-invg(N2)(loop)

We know that g(N2)(loop) = (1N3 , surf−1
2). Now, l-invg(N2)(loop) = (l-inv1N3

, l-invsurf−12
) ≡ (12

N3
, l-invsurf−12

).

From here we use a coherence between on an inverse path to obtain l-invsurf−12
= (inv-inv⋆1) ●

r-invsurf2 .

We can use this to replace g(N2)(l-inv) in the above diagram. Of course we will end up with a

hefty amount of extra coherence paths. But we have been implicitly applying many coherence

paths when simplifying the boundary of the square. As it turns out (and I will leave to the

72

Honors Thesis 2022/12/18

reader to verify this if they so choose), if we write out all the implicitly applied coherence

paths, they we cancel with almost everything, leaving only r-invsurf2 . Similar remarks apply

to the other side of the bottom.

Putting this all together, we see that the loop tracing the boundary of the diagram in question

is equal to

(12
N3
, r-inv−1

● EH(surf2, surf−1
2) ● l-inv) ≡ (12

N3
, eh)

Now we can see why the loop is trivial. We need a path (12
N3
, eh) = (12

N3
,13

N2
). By our fiber of

ap characterization of paths in the fiber, this type is equivalent to fibhpf(eh). We inhabit this

latter type with (surf3,1eh), since we defined hpf(surf3) = eh. This defines g(surf2)(loop).

We can now collect all the above to define g:

Definition 6.1.2. We have a function g ∶ ∏x∶S2H(x) → fib(x)

Proof. We defined g by S2-induction. We defined g(N2) in definition 6.1.1 by choosing

the loop (1N3 , surf−1
2) in the fiber. Then we constructed the homotopy g(surf2). We set

g(surf2)(b1) ∶≡ (12
N3
, l-unit-Ω2

). For the naturality square g(surf2)(loop), we used the fact

that hpf(surf3) = eh.

This concludes the construction of the forwards map.

6.2 The backwards map, f ∶ ∏x∶S2 fib(x) → H(x)

Now we define the backwards map f ∶ ∏x∶S2 fib(x) → H(x). This is a much more trivial affair.

To define f , we first define a helpful function.

Lemma 6.2.1. We have a function diag ∶ ∏z∶S3H ○ hpf(z).

73

Honors Thesis 2022/12/18

Proof. We define this by S3-induction. We set diag(N3) ∶≡ b1, since H ○ hpf(N3) ≡ S1. Now

we need to specify a dependent 3-loop at b1. But a dependent 3-loop is ultimately a 3-path.

Since S1 is a 1-type, every type of 3-paths in S1 is contractible.

In some ways, this lemma partially states that hpf behaves like the projection from∑x∶S2H(x),

the the projection of a fibration followed by the original family necessarily has a section. Now

we can define f .

Definition 6.2.1. We have a map f ∶ ∏x∶S2 fib(x) → H(x).

Proof. Let x ∶ S2. We need a function f(x) ∶ fibhpf(x) → H(x). But fibhpf(x) ≡ ∑z∶S3 hpf(z) =

x. Thus, we can define f(x) by ∑-induction. We can set f(x, z, p) ∶≡ trH(p)(diag(z)). This

definition is well typed since diag(z) ∶ H ○ hpf(z) and p ∶ hpf(z) = x.

This completes the definition of f . But, before we move on, we need to characterize the action

on paths of f . For a path (or 2-path) in S2, the action of f on such a path is uninteresting.

We are interested in characterizing the action on paths of f(x), for some fixed x ∶ S2. As

before, we are only interested in the paths in the fiber of the form (1z, q).

Lemma 6.2.2. For a path (1z, q) ∶ (z, p) = (z, p′) in the fiber, we have that f(x)(1z, q) =

tr(H)
2
(q)(diag(z)).

Proof. By path induction on q, both sides reduce to 1trH(p)(diag(z)).

6.3 The homotopies

Now we are ready to construct the homotopies. We will first construct the fiberwise homo-

topy

K ∶ ∏

x∶S2
f(x) ○ g(x) ∼ idH(x)

74

Honors Thesis 2022/12/18

We do this by S2 induction. Thus, we need to specify a homotopy K(N2) ∶ f(N2)○g(N2) ∼ idS1

and then specify a dependent 2-loop at this homotopy. We can construct the homotopy by

S1 induction. As before, this is equivalent to giving a path

K(N2)(b1) ∶ (f(N2) ○ g(N2))(b1) = b1

and then a naturality square

(f(N2) ○ g(N2))(b1) (f(N2) ○ g(N2))(b1)

K(N2)(b1)

b1 b1

K(N2)(b1)

loop

(f(N2)○g(N2))(loop)

K(N2)(b1)

We can compute

(f(N2) ○ g(N2))(b1) ≡ f(N2)(N3,1N2)

≡ trH(1N2)(diag(N3))

≡ diag(N3)

≡ b1

Thus we can simply set K(N2)(b1) ∶≡ 1b1 . The boundary of our diagram thus simplifies to

showing that (f(N2) ○ g(N2))(loop) = loop. We can compute

75

Honors Thesis 2022/12/18

(f(N2) ○ g(N2))(loop) = f(N2)(1N3 , surf−1
2)

≡ tr(H)
2

(surf−1
2)(diag(N3)) , by lemma 6.2.2

= tr(H)
2

(surf2)
−1
(b1)

= (L−1
)
−1
(b1)

= L(b1)

= loop

This completes the definition of K(N2). Now we need to specify a dependent 2-loop at

K(N2). A dependent 2-loop will be equivalent to a homotopy between two homotopies.

But each of the two homotopies has domain (and so its component paths) in S1. Since S1

is a 1-type, we are gaurenteed to have this homotopy of homotopies. This completes the

definition of K.

Now we need to construct a fiberwise homotopy M ∶ ∏x∶S2 g(x) ○ f(x) ∼ idfib(x). We can

rewrite this as

∏

x∶S2
∏

w∶fib(x)
(g(x) ○ f(x))(w) = w

But, by currying fib(x) ≡ ∑z∶S3 hpf(z) = x, this is equivalent to

∏

x∶S2
∏

z∶S3
∏

p∶hpf(z)=x
(g(x) ○ f(x))(z, p) = (z, p)

But now we can use path induction on p and the free end point x. Thus, it suffices to assume

x ≡ hpf(z) and p ≡ 1hpf(z) and inhabit the type

76

Honors Thesis 2022/12/18

∏

z∶S3
(g(hpf(z)) ○ f(hpf(z)))(z,1hpf(z)) = (z,1hpf(z))

But this definitionally simplify this to

∏

z∶S3
g(hpf(z))(diag(z)) = (z,1hpf(z))

We view can this of this as the type of homotopies between two functions. The functions in

question are

λ(z).g(hpf(z))(diag(z)) ∶ ∏
z∶S3

fibhpf(hpf(z))

and

λ(z).(z,1hpf(z)) ∶ ∏
z∶S3

fibhpf(hpf(z))

We will inhabit this type by S3-induction. On N3, both sides definitionally simplify to

(N3,1N2). Thus we can choose 1(N3,1N2
) at N3. Now we just need to show that the image

of surf3 under the two of these functions is equal. It is rather straight forwards to compute

that the latter functions action on surf3 is equivalent to (surf3,1eh).

It is slightly trickier to compute the action on paths of the first function. Since the com-

putation is long and technical, and has to do mostly with some general facts about func-

tions in HoTT, I will only include a conceptual outline of the computation. First recall that

diag(surf3) is a trival path. This will allow us to compute that (λ(z).g(hpf(z))(diag(z)))(surf3) =

g(hpf(surf3))(b1). Next recall that surf3 ≡ pr1(g(surf2)(l)). Thus, we are essentially trying

to prove that

77

Honors Thesis 2022/12/18

g(hpf(pr1[g(surf2)(l)]))(b1) = g(surf2)(l)

This follows from a general fact about maps into a fiber. Consider a lower dimensional

analogue of this situation. Let x ∶ S2 and consider a path u in H(x). Then g(x)(u) ∶ fibhpf(x).

So hpf(pr1(g(x)(u))) = x. Generalizing this idea to higher dimensions lends that

pr1[g(hpf(pr1[g(surf2)(l)]))(b1)] = pr1(g(surf2)(l))

Computing that the second components match is similar. Giving a fully rigourous calculation

of this in the type theory ends up being quite technical. The reason is that, in order to apply

path induction (which is essentially the only way to prove the claim for paths), we have to

generalize the situation to an arbitary path. This makes the formulae involved far more

complicated than when dealing with loops, as our specific situation does. Thus we ommit

the full computation.

Theorem 6.3.1. We have that ∏x∶S2H(x) ≃ fib(x).

Proof. This follows from piecing together the maps and homotopies we have defined.

6.4 The corollaries

Theorem 6.3.1 implies all intresting results related to homotopy groups. Here we collect

these results.

Theorem 6.4.1. There is a map S3
→ S2 that sends the generating loop surf3 of S3 to eh

and whose fiber is S1.

Proof. Take hpf and apply the equivalence of theorem 6.3.1 to the base point of surf2.

78

Honors Thesis 2022/12/18

Now consider the fiber sequence of hpf:

1 Ωn
(S3

) Ωn
(S2

)

1 Ω3
(S3

) Ω3
(S2

)

1 Ω2
(S3

) Ω2
(S2

)

Z Ω(S3
) Ω(S2

)

S1 S3 S2π hpf

Ω(π) Ω(hpf)

∂

Ω2(π) Ω2(hpf);

Ω(∂)

Ω2(π) Ω3(hpf)

Ω2(∂)

...

Ωn(π) Ωn(hpf)

Theorem 6.4.2. We have an equvalence Ω3
(hpf) ∶ Ω3

(S3
) ≃ Ω3

(S2
).

Proof. This is a general fact about fiber sequences. Since this is a fiber sequence, Ω3
(S3

) is

equivalent to the fiber of Ω2
(∂). Since Ω2

(∂) has codomain 1, we its fiber is equivalent to

its domain.

Corollary 6.4.2.1. The 3-loop eh generates Ω3
(S2

).

Proof. We already know that surf3 generates Ω3
(S3

). By the above theorem, the map

Ω3
(hpf), which sends surf3 to eh, is an equivalence and equivalences preserve generators.

79

Honors Thesis 2022/12/18

Corollary 6.4.2.2. We have that π3(S2
) ≅ Z and is generated by the equivalence class of eh.

Proof. This follows from the above results after applying truncations (somewhat analogous

to quotienting by equivalence relations) and using the fact that π3(S3
) ≅ Z.

It also turns out to be quite easy to show that π is homotopic to the constant map by

using S1-induction. Since this is a fiber sequence, we have that Ω(S2
) ≃ fibπ(N2). But

fibπ(N3) ≃ fibconst(N3) ≡ (∑x∶S1 N3 = N3) ≡ S1
×Ω(S3

).

Theorem 6.4.3. We have an equivalence Ω(S2
) ≃ S1

×Ω(S3
).

80

Bibliography

[1] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations

of Mathematics. Https://Homotopytypetheory.org/Book, 2013.

81

Https://Homotopytypetheory.org/Book

	Introduction
	I Background Theory
	The Types
	Crash Course on Types
	Path Types
	Groupoidal Operations on Paths
	Groupoidal Identities

	Type Families
	Function Types
	Paths in Function Types
	Homotopies
	Functions are Functors
	Dependent Functions
	Homotopies are natural transformations (apd of homotopies)
	Functions of Two Variable Functions and ap

	Sigma Types
	Dependent Paths
	Higher Inductive Types

	Higher Paths
	Horizontal Composition
	Higher ap

	Certain Types, A Closer Look
	Higher Homotopies
	Fibers of Maps
	Paths in the fiber
	The family fib

	II Eckmann-Hilton and The Hopf Fibration
	Eckmann-Hilton
	The Eckmann-Hilton Argument
	Properties of EH

	The Eckmann-Hilton Loop
	Properties
	Eckmann-Hilton in S2

	The Hopf Fibration
	The map hpf: S3S2
	The Fiber of hpf

	The family H: S2U

	Eckmann-Hilton and The Hopf Fibration
	The forwards map, g : x: S2 H(x) fib(x)
	The backwards map, f : x : S2 fib(x) H(x)
	The homotopies
	The corollaries

