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Abstract

Barrier algorithms are central to the performance of numerous algorithms on scalable, high-performance
architectures. Numerous barrier algorithms have been suggested and studied for Non-Uniform Mem-
ory Access (NUMA) architectures, but less work has been done for Cache Only Memory Access
(COMA) or attraction memory [2] architectures such as the KSR-1.

In this paper, we present two new barrier algorithms that offer the best performance we have
recorded on the KSR-1 distributed cache multiprocessor. We discuss the trade-offs and the per-
formance of seven algorithms on two architectures. The new barrier algorithms adapt well to a
hierarchical caching memory model and take advantage of parallel communication offered by most
maultiprocessor interconnection networks. Performance results are shown for a 256-processor KSR-1
and a 20-processor Sequent Symmetry.

1 Introduction

Barriers are a synchronization tool for parallel computers, including shared and distributed (message-
passing) address-space architectures. No processor may pass the barrier until all processes have
arrived at the barrier; this synchronization tool is used in many algorithms, and is central to the
data-parallel programming model [5].

There are numerous barrier algorithms for message-passing and shared-address space computers.
Some architectures, such as the Thinking Machines CM-5, provide special hardware support for
barrier synchronization. On architectures lacking such hardware support, scalable barriers must be
implemented in software, using the underlying communication network. In many ways, the design of
scalable barrier algorithms for message-passing machines is easier than than that of shared-address
space computers, because communication on such machines is explicitly under programmer control.
By comparison, the shared-address space computers rely on caches, prefetching and invalidation to
provide the view of a single shared address space, complicating algorithms that rely on exacting
analysis of communication patterns.



In this paper, we describe several existing barrier implementations, propose two new barrier al-
gorithm and describe the performance of each algorithm on a Cache Only Memory Access (COMA)
architecture, the KSR-1, and a shared-bus cache-consistent architecture (the Sequent Symmetry).
We show that conclusions drawn in previous studies of barriers [8] are not necessarily true on
COMA architectures, highlighting the need for a formal model to predict the performance of bar-
rier algorithms.

2 Previous Barrier Algorithms

As computer architectures have evolved, numerous barrier algorithms have been proposed. A central
barrier suffices for small-scale cache-coherent multiprocessors with 2-10 processors. As the promise
of larger-scale systems including tens and hundreds of processors was realized, it was noted that
centralized barriers limited system performance. Concentrated communication to a single memory
location can induce a hot spot [9] in the network. Both hardware solutions, including combining
networks, and software solutions [11] have been proposed to alleviate hotspots. Several barrier
algorithms have been described that distribute the communication, either over different cache
locations, network connections or processor clusters. Most of these algorithms use some tree-based
structure to distribute the communication. In the remainder of this section we describe several
such algorithms.

We assume a barrier algorithm has three important components. The data structure for the
barrier must created — many barrier algorithms use a data structure (typically a P x log P matrix
for P processors) to guide the processors during arrival. This matrix is created when the barrier is
created, and is typically reused during each barrier rendezvous.

Each rendezvous (i.e. each time the barrier is used) consists of an arrival, wakeup notification
and reinitialization. Processors must inform each other that they have arrived at the barrier; when
all processors have arrived, processors must be alerted (wakeup) so they can continue execution.
Once the barrier has been reached, the barrier is reinitialized so that it can be reused; note that this
does not involve recomputing the information generated when the barrier was created. Algorithms
differ in the design and use of arrival, wakeup and reinitialization mechanisms.

2.1 Central Barrier

The most obvious implementation of a barrier is an accumulating counter. The counter is initialized
to zero. Processors arrive at the barrier by atomically incrementing the counter; they receive
wakeup notification by waiting until until the counter reaches the number of expected processors.
The waiting is usually implemented by busy-waiting, or “spinning”. Once the rendezvous has been
achieved, the counter is reset to zero for the next rendezvous.

There are two disadvantages to this approach. First, the counter must be updated atomically,
either via explicit locking or hardware operations such as fetch_and ¢ [3]. Second, all processes
must contend with each other to read and write a single memory location. As mentioned, this
causes hot-spots, or points of high traffic congestion. Consequently, this barrier is not scalable
since each read and a write involves serialized actions. The hotspot problem can be somewhat
alleviated in cache coherent machines because a copy of the counter is copied to local memory and
updated via broadcasts; this reduces the amount of network communication. Various centralized



barrier and lock designs make effective use of local caches [1]. However, processors writeing to the
barrier contend between themselves, and arrival still requires O(N) time.

2.2 Software Combining Trees

Yew et al. [11] proposed a combining tree barrier to reduce the occurence of hot spots. A software
combining tree spreads the congestion over a tree of variables. Arriving processors are divided into
pre-determined groups. During a rendezvous, the processor arriving last in a given group becomes
the group representative and advances to next level in the tree. The group representatives now
wait for other group representatives, forming a new group at the next level. This procedure is
repeated until one processor reaches the root. Software barriers are initialized by creating the tree
data structure and initializing each node with the count of processors expected to report to that
node. Processors that are not group leaders busy-wait, awaiting wakeup notification of the barrier
completion.

A number of methods can be used for wakeup notification. In broadcast cache-coherent archi-
tectures (such as the KSR or Sequent), a central busy-flag can be used [8]. On architectures where
non-local memory references must use the network, a tree-based wake-up algorithm is used. The
counters at each node are reset when the barrier is reinitialized.

This presents a design choice exercised in different ways by the various barrier algorithms —
decreasing hot spot contention wvs. increasing the critical path for arrival and wakeup notification.
In the simple accumulating counter, the critical path is one operation; however, P writers must
contend for a serialized resource. At the expense of increasing the critical path to log P, the various
combining tree algorithms increase the amount of parallelism and therefore the number of (mild)
hot spots. We will later discuss a method to increase the parallelism in the barrier algorithm; this
increases the number of “hot-spots” in the interconnection network, but reduces the contention at
each hot-spot.

2.3 Dissemination Algorithm

The Combining Tree barrier shares two disadvantages with the simple accumulating counter. First,
both require atomic operations when updating the counters, such as compare and swap, locking
or fetch_and ¢. Second, both methods spin at a remote memory location, leading to unnecessary
contention for the interconnection bandwidth on machines that are not broadcast-based and lack
cache-coherency.

To alleviate these problems, Brooks described the butterfly barrier [6]; this communication
pattern is similar to the ezchange-swap operation used in hyper-cube interconnection networks.
Hensgen et al [4] improved the butterfly-network for situations where the number of processors
accessing the barrier are not a power of two. Their dissemination barrier uses the communication
structure shown in Figure 1.

Unlike the software combining tree barrier, the role of each processor at each round is staticly
pre-determined, and there is no need for atomic locking or fetch_and ¢ instructions. The barrier
is created for P processors by creating a P X log, P matrix containing flags and pre-determining
the processes that should receive (wait for the flag) and the processes that should send (set the
flag) at each of the logsP rounds. In the dissemination barrier, arrival and wakeup notification
are combined into log, P rounds for P processors. For round k, processor ¢ signals its “partner
processor” (j =17+ 2% mod P) thereby indicating the arrival of processor ¢ and all processors that
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Figure 1: Communication Structure for Tournament and the Dissemination Algorithms

have synchronized with processor ¢ in previous rounds. During each synchronization ‘round’, each
processor either waits on a locally available flag or signals the partner via writing the flag. The
flags are reinitialized by sense-reversing the flag after each round.

In a previous study [8], the dissemination algorithm achieved the best performance of a variety
of barrier algorithms on non-uniform memory shared-address machines without cache-coherency
and broadcasting, such as BBN Butterfly. On such architectures, the ‘local spinning’ provides an
advantage for this algorithm. This is a less of a factor in COMA architectures, since there are
no fixed homes for any memory locations. Without the advantage of the local spinning, but with
the disadvantage of incurring O(P log, P) distinct network transactions, this algorithm does not
perform as well as others on COMA architectures.

The dissemination algorithm does not adapt well to hierarchical memory model machines such
as the KSR-1, where the cost of communication is not constant between all processors. In these
systems, processors are partitioned into clusters of processors (e.g., into distinct rings on the KSR).
Figure 1 demonstrates that there is no way to map the virtual processors to physical processors
while reducing inter-cluster communication. We believe the communication structure of a barrier
algorithm must match the physical interconnection network for best performance.



2.4 Tournament Algorithm

To counter the additional communication in the dissemination algorithm, Hensgen et al also de-
veloped the tournament algorithm, apparently at the suggestion of Lubachevsky [7]. As with
the dissemination algorithm, the tournament algorithm avoids special hardware by using a pre-
determined communication structure; however, the tournament algorithm incurs only O(log, P)
total network transactions, as illustrated by the communication structure shown in Figure 1. As
with the dissemination algorithm, communication is broken into log P rounds, such that at round
k processor i sets the flags for itself and it’s ‘partner processor’, processor j = i — 2.

Arrival notification involves log, P communication rounds for P processors, where “winning”
processors wait for “losing” processors and “losing” processors set the flag for the “winning pro-
cessors.” The “winners” and “losers” are determined during barrier creation, and each processors
role is stored in a P X log, P matrix The “losers” do not participate in the remaining rounds and
wait for the wakeup notification. Wakeup notification is done using either a global wakeup flag for
broadcast-based machines or a tree-wakeup algorithm. Reinitialization is done by sense reversing
the flags.

2.5 MCS-Tree Algorithm

Mellor-Crummey et al [8] proposed a variation on the tournament algorithm called the MCS-Tree
barrier. Figure 2 depicts the communication structure for the MCS-Tree barrier algorithm, and
Figure 3 presents an alternate view for a larger number of processors. In this algorithm readers
(parents) and writers(children) are statically pre-determined during barrier creation.

When a child arrives at the barrier, it writes to the parents memory; parents spin until all
children have arrived. The flags written by the children are packed into a single word, reducing
the time for the parent to check that all children have arrived. During barrier creation, processor 2
selects processor L%J as its parent, and will write to byte (¢ — 1) mod 4 of the parents flag. The
four-fold fan-in was selected because Yew et al [11] reported this resulted in the best speedup in their
software combining tree and four bytes are easily packed into a 32-bit word. During notification,
each processor spins on its flag-word until all bytes are cleared by the arriving children and then
informs its own parent. Again, wakeup notification is done using either a global wakeup flag for

broadcast-based machines or a tree-wakeup algorithm. Reinitialization is done by sense reversing.

3 New Barrier Algorithms

3.1 Static f-Way Tournament

The Static f-Way tournament algorithm is, as implied by the name, a variation of the tournament
algorithm using a f-way fanin rather than the 2-way fanin in the original tournament algorithm.
Figure 4 illustrates the communication structure for the Static f-way Tournament algorithm when
f is 4. In the MCS-Tree algorithm, the tree is constructed top down. As a consequence, the tree
is only balanced if the total number of processors participating at the barrier is a power of the
fanin. The f-way tournament builds the tree bottom up with all the processors starting at the
leaves which leads to a tree that is balanced if the number of processors in the barrier is a multiple
of the fanin. The actual value for f is determined by the processor architecture and the number
and physical placement of processors participating in a given stage of the barrier, and may vary



Figure 2: Communication Structure Used in MCS-tree Algorithm
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Figure 4: Communication Structure Used in the f-way Tournament Algorithm

across different levels of the synchronization tree. The fanin, f, is varied such that each level of the
synchronization tree is balanced as much as possible while reducing inter-cluster references. This
reduces the critical path length for this algorithm to logs P for P processors. The parameter f
varies between two and the number of bytes in memory word.

As with other algorithms, a P X log; P matrix is used to hold pre-determined scheduling in-
formation about the réle of each processor in the barrier. As with the prior algorithms, child
processors contact their parents. Due to the pre-determined schedule, some processors may not
participate in a particular round. Parents continue execution, becoming a parent again or turning
into a child. Children await the wakeup notification; we use a global variable for wakeup, although
a tree-based wakeup could also be used.

Barrier creation and initialization of the data structures is more complicated than in other
algorithms we have examined. We use a function, fanin, shown in Figure 5, that computes the
approriate fanin based on the current fanin and number of remaining processes to synchronize at
any level in the tree. The choice of fanins and this function will be discussed fully later.

At each level of the tree, processors record the information needed to contact their parent
processor in that round of synchronization. In practice, the algorithm uses pointers to shared data
structures for efficiency. As in the M CS-Tree barrier algorithm, we use a packed data structure to
simplify checking for the arrival of children.



procedure fanin(num_procs_left : in Integer)
returns Integer

begin
best_fanin := MAX_FANIN;
best_measure := 0;
while (current_fanin > MIN_FANIN) do
remainder := num_procs_left

mod current_fanin;
if (remainder = 0) then
remainder := current_fanin;
end if;
measure = remainder div current_fanin;
if (measure > best_measure) then

best_measure := measure;
best_fanin := current_fanin;
end if;
current_fanin := current_fanin - 1;

end while;
if (MIN_FANIN > 2)
MIN_FANIN = MIN_FANIN -1;
MAX_FANIN = MAX_FANIN -1;
end if;
return best_fanin;
end fanin;

Figure 5: Computing the Fanin For the f-way Barriers



3.2 Dynamic f-Way

The Static f-way Tournament, MCS-tree and the Tournament algorithms are all static — the role
of each processor is predetermined during barrier creation.

There are two weaknesses with such static algorithms: the latency in detecting the arrival of
all the children in a group is slightly longer, and these algorithms require that the pre-determined
parent poll the arrival of the pre-determined children. On COMA memory systems such as
the KSR-1, or distributed cache consistent architectures, this may cause many unnecessary cache
faults. These architectures typically use an invalidation write-allocate policy for cache replacement
with write-back updating. In the case of the KSR, there is no updating, since all memory in the
system acts like a cache. A memory write by one processor invalidates references on all other
processors and the item is allocated on the writing processor.

Since the order of the arrival of processes at a barrier is non-deterministic, it is possible for the
parent to arrive before its children. The children (writers) arriving after the parent(reader) will
suffer a cache miss to bring the shared-line to their local memory. At this point, the parent polling
this invalidated cache-line has another cache fault, drawing the word back to the local memory.
Because of this effect, the expected number of cache faults at an internal synchronization point in
the Static f-way Tournament is not f — 1, the theoretical minimum, but MT_Z

For example in the Tournament algorithm, where f is fixed at 2, the expected number of cache
faults is 2. For MCS-Tree, we expect the number of cache faults at an internal synchronization
point to be no better than 3f2-|—1’ because the parents in this algorithm start polling at the internal
synchronization points immediately after entering the barrier, instead of starting at the leaves
and climbing up the tree. This increases the chance of the parent arriving before its children,
exacerbating the cache invalidations.

If the synchronization point at each internal node involves processes from different rings, these

cache faults can be very expensive; for example, communication within a ring on the KSR-1 takes
~ 150 cycles, while communication between rings requires ~ 600 cycles. Other architectures,
such as the Convex SPP have similar access latencies. Dynamic algorithms such as the Software
Combining tree and the Central algorithm avoid this problem by not mixing polling and writing to
the same memory location. Not counting the cache fault incurred to acquire the lock, the worst case
is only f writes, the theoretical minimum. As mentioned earlier however, the Software Combining
algorithm, as originally proposed, suffers from two problems: it requires special hardware and it
does not adapt well to hierarchical memory models.

Recognizing these problems, we now propose a new algorithm called the Dynamic f-way. This
algorithm has some of the same benefits as the Static f-way Tournament, such as adaptability
to hierarchical memory model, freedom from special hardware instructions, and a high-degree of
parallelism — yet does not induce as many cache faults.

Like the Software Combining Tree, the last process to arrive at a node goes on to participate at
higher level node(s). Like the f-Way Tournament, communication between neighboring processors
(again assuming that virtual process id ¢ is mapped to physical process 7) is done before commu-
nication with distant processes — in fact the communication structure is the same. Also, as in the
f-way Tournament, a variable fanin maybe used each process writes to one dedicated byte in a
word of to allow its parent to efficiently note the childs arrival.

This last analogy is not quite true. We actually use a sense-reversing mechanism to note the
arrival of children. Using a simple count introduces a race condition into the algorithm. To show



procedure barrier_rendezvous() is
var node : “treenode_t := my_leaf;
begin

*my_place = local_sense;

for k :=1 to LOGN do begin
if (node->so_far not all false)

while (central_sense != local_sense);
goto EXIT;
end if

node->so_far = node->expected;
if (node->type = ROOT) begin
central_sense := local_sense;
goto EXIT;
end if
node"myPlace := local_sense;
node := node“parent;
end for;
EXIT:
(* Invert sense to reinitialize barrier *)
local_sense := not local_sense;
end barrier_rendezvous;

Figure 6: An Incorrect Rendezvous Code For the Dynamic f-way Barrier

‘ Time ‘ Process Id | Epoch | Event ‘ Line ‘ Expected ‘ So_Far ‘
0 - — | Tnitial - [1,1,1,0] | [L,1,1,0]
1 I K Clear Flag 04 [1,1,1,0] | [0,1,1,0]
2 I+1 K Clear Flag 04 [1,1,1,0] | [0,0,1,0]
3 142 K Clear Flag 04 [1,1,1,0] | [0,0,0,0]
4 1+2 K Copy Flag Word | 10 [1,1,1,0] | [1,1,1,0]
5 I+1 K Achieve Barrier 21 [1,1,1,0] | [1,1,1,0]
6 I K Achieve Barrier 21 [1,1,1,0] | [1,1,1,0]
7 I K+1 | Clear Flag 04 [1,1,1,0] | [0,1,1,0]
8 T+1 K+1 | Clear Flag 04 | [1,1,1,0] | [0,0,1,0]
9 I+1 K Copy Flag Word | 10 [1,1,1,0] | [1,1,1,0]

Table 1: Race Condition in the Incorrect Algorithm
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| | Central | Combining | Dissem. | Tourn. | MCS-Tree | Stat. f-way | Dyn. f-way |

Special
Hardware Yes Yes No No No No No
Critical
Path 1 [log; P] [log, P] | [log, P] | [log; P] [log; P] | [log; P]
Network
Trans. P-1 [#=11f | P[log, P P-1 P-1 P-1 F=uki
Network
Trans.(COMA) | P-1 [F511F | 2P[log, P | 2(P—1) | [BFH1%50 | [F11°57 | (541
Number of
Wiriters P f 1 1 f -1 f
Hierarchical
Memory No Yes No Yes No Yes Yes
Comm.
Schedule Dynam. Dynam. Static Static Static Static Dynam.
Space 1 P Pllog, P] % [logs P P ? [log; P ? [log; P

Table 2: A comparison of barrier algorithms. For the Static f-way Tournament and Dynamic
f-way, the fanin may vary across different levels of the tree. We have assumed a fixed fanin for the
table above in order to compare these two algorithm with the others

why this is necessary, consider the algorithm without the use of the reversal (as in the MCS-
tree and the Static f-way Tournament). Table 1 shows the race condition that can occur at an
internal node of the tree. The columns labeled expected and so_far are words that contain the
information on what children are expected and what children have arrived at a particular node of
the synchronization tree. The actions of the processors spans two barrier rendezvous’, denoted as
K and K + 1. At time step 9, process I + 1 is is still in rendezvous K. Process I + 1 re-copies the
the word flag, corrupting the information about the arrival of processes I and I + 2, both of which
are in epoch K + 1.

Even with the reversal of the ‘expected’ field in the correct algorithm, it is still possible that
more than one child acts as the parent of any given branch and continues to climb up the tree.
However, this is not a problem because any two consecutive epochs of the barrier-rendezvous run
in two distinct flag spaces i.e. two separate trees of flags.

3.3 Comparison of Expected Performance

A comparison of the expected performance of this algorithm with the previously discussed algo-
rithms is summarized in Table 2. For the Static f-way Tournament and Dynamic f-way, the fanin
may vary across different levels of the tree. In order to compare these two algorithms with the oth-
ers, we used a fixed fanin in Table 2. The first row indicates whether special hardware instructions
other than atomic read and write are required. The second list the expected critical path length.
The third and fourth rows of network transactions for each barrier algorithm, the later being the
ezpected number of network transactions on COMA machines. In general, the total number of
network transactions can be computed as the product of the number of internal synchronization

11



[P-1

= ) and the number network transactions at each internal synchronization
point. The latter is simply the number of writers at an internal synchronization point on non-
COMA architectures. On COMA architectures, the number of network transactions at a node
depends on the order of the arrival of writers and readers: the fourth row shows the probabilistic

points in the tree (

estimate of the total number of transactions. For example, the number of network transactions
at an internal node for the Static f-way Tournament is (f — 1) 4+ 1 in the best case but 2(f — 1)
in the worst case, giving an average of MT_2 Hence we expect [%1 MT-H network transactions
for this algorithm. The fifth and the sixth rows indicate the contention at a “hot spot” and type
of scheduling used by that algorithm. The seventh row indicates whether the algorithms are well
suited to hierarchical memory architectures, i.e. whether there is a simple mapping between vir-
tual and physical processors such that communications between distant processors are minimized.
Finally the last row shows the shared-memory space required by the each algorithm.

The fourth and fifth row suggest that the static algorithms (Dissemination, Tournament, MCS-
Tree, Static f-way Tournament) incur more network transactions and cache faults on COMA archi-
tectures than in other architectures. This implies that dynamic algorithm will have an advantage
on the KSR-1. Among the dynamic algorithms, Table 2 indicates that Dynamic f-way improves
upon both the Central and Software Combining Tree. Among the static algorithms, Static f-way
Tournament improves upon Dissemination, Tournament, and the algorithm previously known to be
best for cache-coherent machines, the MCS-Tree. We note that Tournament is identical to Static
f-way Tournament with f fixed to 2. Static f-way Tournament improves on MCS-Tree because
there are fewer writers for any given memory location, resulting in less contention for that memory
location. For P processors and a critical path of log; P, only f — 1 writers and 1 reader contend
for a given memory location.

For example, given 125 processors, the f-way tournament can achieve a rendezvous with 4
writers per memory location and a critical path of 3. By comparison, the MCS algorithm could
only synchronize 64 processors using the same path length and number of writers. The Static
f-way Tournament algorithm builds the tree from bottom up, in contrast to the top down tree
construction in MCS-Tree. This means that the tree in Static f-way Tournament is balanced if
the number of processors (the leaves) are a multiple of the fanin. The fanin may be varied at
different levels of the tree, leading to more balanced tree. In the MCS-tree, a balanced tree is only
achieved if number of processors is a power of the fanin. Balanced trees lead to a greater degree of
parallelism, which can be adequately supported by machines like the KSR-1.

4 Choice of fanin

The fanin has has a significant impact on the speed of tree algorithms. If the fanin is small, then

the critical path from leaf to root is increased. If the fanin is large, however, more processors must

write to a single memory location, increasing the contention for a particular synchronization point.
We can approximate the desired fan-in using the following simplifying assumptions:

1. The number of processors, P is power of the fanin, f.

2. Processors (writers) arriving at an internal node must report their arrival sequentially i.e. if
there are f writers and each write takes c timei.e. the total timeis fc. This assumption is not
true for example if we use hardware implemented Fetch & Add as means of synchronization
at an internal node.

12



3. The time required to execute the instructions for climbing the tree after the arrival of processes
in a group is not significant.

The total time to complete a single rendezvous is the critical path, logs P, times the time
required at each internal node, which we have assumed to be fc. We can then solve for f and
minimize the total time by taking the derivative of this expression with respect to the fanin.

T(f) = felog, P = feie
, B 1 InP, InP
T'(f) = C(f(o—lﬂp(?)) m)—c(m—lﬂp)

As in most ‘optimal’ tree algorithms, T'( f) is zero when f = e, or approximately 3. Because our
assumptions are not always true, and more importantly, because the communication networks in
many architectures do not adequately support the degree of parallelism offered by a lower fanin,
the optimal fanin in many machines is closer to 4. Also as shown in Table 2, a larger fanin also
reduces the total number of network transactions on COMA architectures.

The right choice of fanin is further complicated by the number of inter-cluster communications
in hierarchical memory architectures, which is a function of the fanin. A larger fanin, particularly
at higher levels of the tree, would force many inter-cluster communications. Yet another factor
influencing the choice fanin is the balance of the tree. Figure 5 shows a way of choosing fanin for
Static f-way Tournament and Dynamic f-way that we used on the KSR-1.

5 Experimental Results

Our implementation of the various barriers discussed in this paper on KSR-1, Sequent Symmetry
and BBN-TC2000 is available in the publicly accessible ftp site, cs.colorado.edu in the directory
/pub/distribs/Awesime/barriers.

5.1 KSR-1

Figure 8 shows the timing measurements comparing six previous algorithms and the two new ones.
Results are average of 10 separate runs, each run consisting of 30,000 barrier redenvous’ with an
empty critical section. For all the tree-based algorithms, we used a central global flag that is
broadcasted to the waiting processes during the wakeup phase of the algorithms. This method was
shown to be more appropriate in a previous study [8] for cache-coherent machines that provide fast
broadcast operations.

On the KSR, we implemented the broadcast using the _pstsp (post-store subpage) instruction.
In theory, we can use this instruction to update the contents of the modified word in a single tour of
the network. If we did not use this mechanism, we would invalidate those copies, possibly causing
caches misses on those processors.

However, we found that this mechanism does not significantly improve the speed on the Dynamic
f-way and Static f-way Tournament algorithms. Because we wanted to keep these algorithm free of
special hardware instructions, we have abstained from using pstp. For the algorithm that require
locks (Software Combining Tree and Central Barrier), we used acquire-subpage and release-subpage

13



operations on the KSR. There are two versions of acquire-subpage on the KSR-1: one that waits
until the lock is free and the other that simply returns failure if the lock belongs to another process.
We used the latter with polling, as recommended by KSR.

For all the algorithms we bind virtual process 7 to physical processor 7 such that consecutive
virtual processor numbers map to proximate physical processors. This mapping minimizes cross-
ring communication for the Tournament, Static f-way Tournament, Dynamic f-way algorithms and
to a lesser degree for other algorithms. By default, the KSR-1 maps consecutive virtual processors
to contiguous physical processors when there are sufficient processors available in the system.

Better mappings from virtual to physical processors exist for Software Combining Tree and
MCS-Tree for a given number of processors participating at the barrier. As shown in Figure 3, in
the MCS-Tree algorithm, child ¢ communicates with its parent, processor L%J This implies that
the distance between the child and parent increases with the number of processors. For example,
on a 64-processor KSR machine, each of the blackened nodes shown in the barrier in Figure 3
must communicate across processor clusters. However, the general algorithm for the computing
this mapping is complex and moreover, the default mapping by the KSR-1 operating system does
not favor these two algorithms.

Figure 8 shows our empirical results, measured on a 256-processor KSR-1; these results confirm
the expected performance. The “system” algorithm is the native barrier implementation provided
with the KSR Pthreads library; we do not know the underlying algorithm. Note that the dissemi-
nation barrier suffers a sharp increase in the time to rendezvous between 32 and 33 processors; this
is when inter-cluster communication occurs in the KSR-1 interconnection network.

Previous studies [8] have shown that the MCS algorithm was faster than other algorithms such
as the tournament algorithm. However, there is a greater degree of parallelism in the tournament
algorithm, and that parallelism can be supported on the KSR-1. This was also recently noted
by Ramachandran et al [10]. Furthermore, the tournament algorithm involves less inter-cluster
communication, which is very important on the KSR-1 — intra-cluster memory references take 150
machine cycles, while inter-cluster references take ~ 600 cycles.

Recall that we speculated that ‘dynamic’ algorithms incurr fewer cache faults than ‘static’
algorithms. incurred by individual processors, and Figure 9 shows the total number of cache
faults incurred after 30,000 iterations of some of the algorithms. We used the pmon performance
monitoring hardware provided on each processor of the KSR-1 to obtain these measurements. As
expected, the dynamic algorithms (Software Combining Tree and Dynamic f-way) incurred fewer
cache faults than the static algorithms. It is worth noting that the number of cache faults is
different from the number of network transactions as calculated in Table 2. The former can be a
much smaller number as shown in Figure 7. Processor A validates memory location X living in
processor C by pulling it to its’ local cache and also invalidates the cache line in processor B. In
the diagram, there are two transactions in the diagram but only A suffers the cache fault.

5.2 BBN-TC2000
5.3 Sequent Symmetry

As noted by Mellor-Crummey et al, the central barrier algorithm out-performs other algorithms
on broadcast bus-based architectures such as the Sequent Symmetry for a reasonable (< 16 — 18)
number of processors. Since the Dynamic f-way requires more network transactions for non-COMA
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Figure 7: Validation of a cache line on the KSR-1

architectures like the Sequent Symmetry, we do not expect its performance to be competitive with
Static f-way Tournament, and have not included this algorithm in the results.

6 Conclusions & Future Work

We have demonstrated, using both static analysis and empirical measurements that our variants
on the Tournament algorithm, the Static f-way and the Dynamic f-way algorithm, out-perform
currently proposed algorithms. We also showed that for COMA machines such as the KSR-1,
the Dynamic f-way algorithm is superior to Static f-way. For other cache coherent machines
with ‘fixed’ memory locations (i.e., non-COMA architectures), we recommend the Static f-way
algorithm, which was shown to perform the best in Sequent Symmetry.

We are currently considering the interaction of the barrier algorithms with operating system
rescheduling; this will necessitate the recomputation of the pre-determined information associated
with the different processors.

This work was funded in part by NSF grant No. ASC-9217394 and used resources provided by
the National Consortium for High Performance Computing (NCHPC) located at the University of
Colorado and the Army Research Lab. We would like to thank Harry Jordan, Gary Nutt, Michael
Scott, and Dave Wagner for comments on earlier versions of this paper.
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const

NPROCS = 64;

LOGP = 6;

MAX_FANIN = 8;
type

Role = (LEAF, CHILD, PARENT, ROOT, FINISHED, NONE);
Round = record

my_role ¢ Role;
expected : packed array[0..MAX_FANIN - 1 ] of Integer;
not_reporting : packed array[0..MAX_FANIN - 1 ] of Integer;
my_place : Integer; (* How to contact my parent *)
my_parent : Integer;

end record Round;

var

rounds : shared array[NPROCS][LOGN + 11; (* Processor p waits on rounds[k|[i] in round k*)
me : private Integer;

procedure barrier_rendezvous() is
var parent, place;
begin
for k:=1 to LOGN do begin
case rounds[me] [k].role of
CHILD:
parent := rounds[me][k].my_parent;
place := rounds[me] [k].my_place;
rounds [parent] [k] .not_reporting[place] := FALSE; (* Tell my parent I have arrived *)
while (root_sense != local_sense); * Spin *

goto EXIT; (* Exit the barrier *)
end;

PARENT or ROOT:
repeat until ( rounds[me] [k].chidrenNotReporting all False);
rounds [me] [k] .not_reporting = rounds[me] [k].expected;

end case;

end for;

EXIT:

(* Invert sense to reinitialize barrier *)

local_sense := not local_sense;

if rounds[me] [LOGN].role = ROOT then
root_sense := not root_sense;

end if;

end barrier_rendezvous;

Figure 12: Data Structures and Rendezvous Code for the Static f-way Barrier
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procedure barrier_initialization(me : in Integer) is

var
num_proc_left : integer := NPROCS;
child_distance : Integer := 1;
fanin : Integer := get_next_fanin(MAX_FANIN, num_proc_left);
begin

rounds [me] [0] := LEAF;
for k:=1 to LOGN do rounds[me] [k].role := FINISHED; end for;

for k:=0 to LOGN-1 do
if me mod (child_distance * fanin) = O then
firstChild := me + child_distance
if (firstChild < NPROCS) then
rounds [me] [k+1] := PARENT;
else
rounds [me] [k+1] .parent :
if me = O then
rounds [me] [k+1] .role := ROOT;
goto EXIT;
else
rounds [me] [k+1] .role
end if

NULL;

NONE;

end if

else if ((rounds[me] [k] = PARENT) OR (rounds[me] [k] = LEAF))
(* Otherwise, if I was a PARENT or LEAF in the previous round *)
rounds [me] [k+1] .role = CHILD;

my_parent := ((me div child_distance) div fanin) * child_distance - 1;
my_place := (me - my_parent) div child_distance - 1;

rounds [my_parent] [round] .childrenExpected [my_place] = TRUE;

rounds [my_parent] [round] .childrenNotReporting[my_place] = TRUE;

goto EXIT;
end if;
child_distance := fanin * child_distance;
num_procs_left := num_procs_left / fanin;
fanin := get_next_fanin(fanin,numProcsLeft);
end for;

EXIT:
end barrier_initialization;

Figure 13: Barrier Initialization for Static f-way Barrier
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const
NPROCS = 256;
LOGN = 3;
MAX_FANIN = 8;
type
treenode_t = record
type : Type;
expected : packed array[0..MAX_FANIN-1] of Integer;
so_far : packed array[0..MAX_FANIN-1] of Integer;
my_place : Integer; (* How to contact my parent *)
my_parent : Integer;
end record treenode_t;
var
tree : shared array[NPROCS/MIN_FANIN] [LOGN];
me : private Integer;
my_leaf : private “treenode_t;
my_place : private “Integer;
central_sense : shared Integer;
local_sense : private Integer;

procedure barrier_rendezvous() is
var node : “treenode_t := my_leaf;
begin

*my_place = local_sense;

for k :=1 to LOGN do begin
if (node->so_far ! = node->expected[local_sense]) begin
while (central_sense != local_sense);
goto EXIT;
end if
if (node->type = ROOT) begin
central_sense := local_sense;
goto EXIT;
end if
node"myPlace := local_sense;
node := node“parent;
end for;
EXIT:
(* Invert sense to reinitialize barrier *)
local_sense := not local_sense;
end barrier_rendezvous;

Figure 14: Data Structures and Rendezvous Code for the Dynamic f-way Barrier
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procedure get_next_fanin(current_fanin : in Integer)
returns Integer
begin
if (current_fanin == 8)
return(4);
return(current_fanin);
end get_next_fanin;

procedure barrier_initialization(numCpus, me : in Integer) is
var

num_proc_left : Integer;

fanin : Integer := FANIN;

parentIndex : Integer;

node : "treenode_t;
begin

my_leaf := &tree[me div fanin] [0];
my_place := my_leaf so_far[me mod fanin];
node := my_leaf;

rounds [me] [0] := LEAF;
for k:=1 to LOGN do rounds[me][k].role := FINISHED; end for;

for k:=0 to LOGN-1 do begin
node“type := NULL;
node ~expected[0] [me mod fanin]
= {false,false,false,false,false,false,false,false};
node~expected[1] [me mod fanin] := TRUE;
node”so_far.parts[me mod fanin] := TRUE;
parentIndex := me div fanin;
fanin := getNextFanin(fanin);
node~parent := &tree[parentIndex div fanin] [k+1];
num_proc_left := ceil(num_proc_left div fanin);
if (num_proc_left <= 1) begin
node“type = ROOT;
return;
end if
node"my_place := &((node"parent)->so_far[parentIndex mod fanin];
node := node”parent;
me = parentIndex;
end for
end barrier_initialization;

Figure 15: Barrier Initializafibn for Dynamic f-way Barrier



