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Radial component of normalized magnetic field for a rec- Fig. 10
tangular loop for H = 5.
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Vertical component of normalized magnetic field

for a rectangular loop for H = 5.

Fig. 11
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 Radial component of normalized magnetic field Fig. 12
for a rectangular loop for H = 5.
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PROPAGATION OF RADIO WAVES IN A
COAL SEAM IN THE PRESENCE OF A CONDUCTING CABLE

by

David C. Chang and James R. Wait

ABSTRACT

The trhansmission of electromagnetic waves Lin an idealized coal seam
on slab 48 analyzed forn the case where an adfacent conductorn L4 present.
It 48 shown that the resuliant attenuation is Less than for the mode
Ain a conductor-gree seam. The approximations made are apphropriate for

Low and medium frequencies.



I. INTRODUCTION

In mine communication at médium frequency range (IMHz or below), it
has been observed that the attenuation of guided radio signals in a coal
seam is substantially reduced in the presence of conducting rails and
cables in the adjacent tunnel [Austin, 1978]. This fact is certainly consis-
tent with the analysis by Wait and Hill [1974] for an axial conductor located
anywﬁere inside a circular tunnel with lossy walls. A related analysis was
carried out by Mahmoud and Wait [1974, 1976] for a rectangular tunnel wall.
Such a phenomenon was also discussed by Lagace and Emslie [1978] in terms
of the excitation éfficiency of the induced current on a conducting rail or
cable due to a vertical loop, but they did not actually éalculate the propa-
gation characteristics.

In this work, we consider the mathematical model of a thin wire (cable

or rail) located inside é lossy dielectric slab tunnel (coal seam) of

permittivity El and conductivity Gl’ and widthl h. The slab is then

surrounded by a highly conducting medium (rock or slate bed) of
permittivity €y and conductivity 02, as depicted in Figure 1. For a signal
frequency of w = 2nf, ;he wave number of the tunnel medium is given by

kl = [—iwuo(ol +iw€l)]% and that of the surrounding medium, k2 o (-iwuooz)%
= (l-i)d;1 where dS is defined as the skin depth. The complex propagation
constant of the fundamental slab mode [Wait, 1971; Wait, 1976] in the

absence of cables for nonzero h, is known to have a rather simple form
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Figure 1

Basic slab configuration showing location
of axial conductor, cable, pipe or rail in
seam or tunnel.



when the condifions that|k2l2 >> ]kllz and.klh <<1 are invoked.
Provided that the width of the slab is small compared with the skin depth
of the surrounding medium, thé attenuation and propagation constants for
this mode ére found explicitly from (1) as TS =a  + iBS, where

1

a d Z B d_\?
S . 1 S . .__§_ o~ -3 2
= 8( ), &%( ) (2)

\VZh K1 Y2 h

on the assumption that kq ’is effectively real. Aétually, (2) are rather
.crude approximations, but they illustrate very simply the functional de-
pendence of the two parameters dS énd h. A more detailed discussion is
given elsewhere [Wait, 1976], including the case where the slab width h
approaches zero. The field distribution of this mode resembles that of a
TEM-mode of a parallel-plate waveguide, with the exception that a significant
amount of leakage into the surrounding medium may be possible when the width
h is small compared to the skin-depth. Thus, the attenuation constant of
this mode depends to a large extent on the penetration depth of the surroun=-
ding medium as indicated by (2).

The insertion of cables in the slab certainly will complicate the si-
tuation, since the field now has to redistribute itself in order to mateh
the boundary conditions not only at the slab interface with the surrounding
med{ium, but also on the Cabie surfaces. Depending onn the proximity of
the caBie to the slab, the amount of penetration into the surrounding medium
can be very different, at least in principle. The purpose of this work is to

investigate this specific problem.



IT. AVERAGE AXIAL ELECTRIC FIELD ON A THIN-WIRE SURFACE

Our objective is to derive an expreséion for the attenuation and pro-
pagation constants, o and B, of a slab mode in the presence of a thin-
wire which has a radius a and is at a distance x, from the center (or
a distance £ below the upper interface, as indicated in Figure 1). We
first need to know the average axial field on the wire due to an equivalent
current of the form I, exp(iwt - I'z) uniformly distributed on the wire surface.
Later the comélex propagation constant I'=qo + iB is to be determined.

Provided that we can invoke the thin-wire approximation, 1i.e. 22 >> a2
and Iklal2 << 1, the formal expression for the average axial field on the

wire, as shown in Appendix A, consists of a primary field wp and a

secondary field wS .
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—ul(h—2x5) 9 —ul(h+2xo)

{1+ Rm(k) e e R (5)
2 2
. kiu, - kTu u, - u .
1 2
R () =—21 12 . goy-2+_—2 | (6)
e k2 + k2 m u1 + u2
2Y1 1%2
' 1
v = a2 -r1? - k§)2 and Re uy > 0 for § =1,2. (1)

The first term in the integrand of ws , in the sgectrél
domain, represents exactly the contribution of the partial
image due té a line sdurce located at a distance '2 = h/2 - X
above the upper surface. Together with the actual source, they yield
a train of iméges (as a result of multiple reflections between the
upper and lower interface), having a total contribution of the form
given by the second term in the integrand.

Equation (5) as it stands obviously is too complicated to yield
any physical insight regarding the behavior of ws. However, simpli-
fication to the integral is possible with the assumption that the width
of the coal seam 1is small compared with the skin-depth of the sur-

rounding medium, i.e.,

2 .2

02 < . |? b2

|k " << 1 (8)

1! 2|

This is because the contribution to the integral in this case comes
mainly from large A where the two reflection coefficients Re and

Rm can be approximated by
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The corresponding integral under this approximation is then given by

‘ oo -u, (h-2x )
lpz-_-rzReOJ.@el o
o1
—ul(h—Zx ) 2
-u, (h+2x ) [1 - R e °
1 o] eo
+ e (10)

5 -Zulh
1 -R" e
eo

which is evaluated analytically in Appendix B. From (B. 3 ), it is
clear that wi ‘has only a rather weak, logarithmic dependence on h.
Thus, unless the slab width is exceedingly small, one needs to retain
the next higher order term in wS , which is independent of h. To do
that, we first subtract and add wz from the expression of uﬁ in

(5). The difference of the two is then evaluated at h = 0, so that

ws = wi + § and

§ = 1im @° - wg)A
b0
} 2{“ 22 S 22 g 1
0 1 1+ Re 1 1 T‘Rm >\2 _ FZ
R
_ P2 eo dA



Interestingly, the integral actually can be carried out analytically

once the relationship that

2
R R u.k
22 e 2.2 m - 2 2, rp2 _ 2 171 2 2
2[I“u1 TF R -l-klk ————1_R] -1 [T k] + 2(k2+T)]
: e m u.k
22
is recognized. ,Substitution of this expression into the integrand
yields immediately
b
2.2 2,2 I g
§ = [k5T° + k2)/k.] &n (11)
1 2 2 2 2
‘ ™ 4 kl

which can then be combined with the expression for wS in (B.3) and
0
wP in (4) to give a delightfully simple result for the axial field on

the cable surface. as

-il

~ 2 2 2h 2
<g > = Q0 + T £
Ez - 2TWE * {(kl 1) Ao a + T Qo
p=a 1
ki 2 2 Y
- &+ T7) In[(x2 + T2) h] +i%+ c]}

k
2

where the parameter Qo' is given by (B.4) as

2m-1

Q =R _fnA+ ] R
eo eo

o [&n(m - A) - ZReo fnm’
m=1

FR, fa@+ A)] 3 A=/ | | (13)
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and, therefore, involves only the geometric ratio of £ and h, and

Reo' It is of interest to note that the derivation leadihg to (12) so
2

far only involves the assumption of lkzlzhz <<'1 and 2230’a . In

: )
actual application, the additional condition that Ik i“>>$kﬂ2 also

2
applies so that (12) and (13) can be further simplified to

-i1 2%

~ o) 2 2 e 2 . :
<Ez>p _n  2mwel {(kl I A == -k (k) + Cl% (14)
+iIO 2 28 9
= mei‘ {—T on —ée' + kl [,Qn(ikza/Z) + C]} (15)
with the effective height %, defined as
90  o mi _ A2’
Qe = he =23 exp E n —
: m=1 m
2,2
~ mA .
- 9 exp (-— 3 ); A= zQ//h . (16)

The result, as given by (14), is identical in form with the case of a
thin—wire'located at a distanée Re above a conducting half-space [Chang

and Wait, 1974]. Since the actual distance to the upper interface is £ and
Re/l = exp(—ﬂzAz/G) < 1 according to (16), one might conclude that

the net effect of the interaction between upper and lower interfaces

is to bring the cable a little closer to the upper interface. Obvious-

ly, the periodic natﬁre of the partial "images" in the spectral do-

main is insignificant in the spatial domain when the tunnel width is

small compared with the skin-depth.



ITT. ATTENUATION AND PROPAGATION IN A CABLE-TUNNEL SYSTEM

For the case of a cable which is located inside a coal seam, hav-
ing a known series impedance Zi’ the complex propagation constant ' of the
fundamental mode can be obtained by enforcing the boundary condition on
the cable surfaée. "Because we have assumed the cable radius is small, we
cén‘répiacé equiyaieht éurreﬁt Io by 2ma times the average angular ﬁagnetic
fiéld, <H,>. The use ofvthe impedance condition; <Ez> = 2ﬂazi<H¢> and (15)

¢

then provides an appropriate expression for I as follows:

2% kY _ -
len-——g + iwe¥ [1wy  (Lnik,a/2 + C) + 2wZ.] = 0O
a 1 o) 2 i
* : (16)
or '
2
' =Yz (17)
where , -1
Y = i2meeflen2e /a] (18)
and -1 '
7 = _iwuo(zﬂ) [gn(ikza/Z) + Cc] + zZ; (19)

Equation (17) resembles that for a iossy transmission-line system, with
Z,Y being the distributed series impedance and shunt admittance, respectively.
Since we have assumed that the slab (coal seam) width is very small compared
with the skin-depth, it is not surprising to see that the series impedance
Z consists mainly of thé self-inductance of the cable immersed in the ambient
medium'(slate), and the surface impedance Zi' On thé other hand, because of
the high conductivity éontraSt between the slate and the coal seam, the shunt
admittance is essentially that of a wire located in a perfectly-conducting
parallel-plate region. Ag we mentioned before, the series of images produced
by the multiple reflection between the two plates results in an apparent image
at a distance ZQe away from the cable itself. For a conducting rail, Zi =0

so that
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. ' .
T ) Qn(lkza/Z) + C . -(WR/h)2/6)
kl 22 3 Mg T M€ ; (20)
A e
In ==

Comparison of (20) with (1) now enables us to assess the importance
of the conduiting rails and cables in mine communication. It is clear that,
in the absehce of these conductors, waves are guided by the upper and lower
surfaces'of the coal seam with the surrounding medium. Thus, the width of
the slab compared with the skin-depth determines the extent of penetration.
into the surrouhding;medium, and hence the attenuation as well as the phase
constants. With the preseﬁée of a parallel conductor, however, the field con-
centration is 1érgely controlled by tﬂe siée'of the conductor because a sub-
stantial amount of iongitudinal current can now flow on the conductor surface
and the surrounding medium acts more like a return path, As an extreme case,
the propagation constant approaches to the value corresponding to the wave
number of the medium in the immediate vicinity of the conductor in the limit
of a vanishingly‘small radius. As is evident by the dependence of h in (20)
the width of‘the slab also becomes a relatively less important parameter in
determining the attenuation and phase constants. Instead it is the ratio of
the radius énd height of the conductors. Dependence on height compared with
the skin depth of the surrounding medium is also rather weak because of the

logarithmic nature of this dependence. In fact, the attenuation and propa-

gation constants can be explicitly derived from (20) as T = o, + ch , with

\
: z
% _ ﬂ_2¢2 . Be L
Poemane b B o (1)
1 Q(LaLb) 1 b
where L_ = —(inkzlalz + C), L, = 2n(2£e/a), and k, = Ikzl exp(-i¢2) where

¢2 is a phase angle. Again kl is assumed real.
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To illustrate the nature of the resuits, we show in’Fig: 2 a comparixon
for the case with and without the conductor. . The attenuation constant is
plotted as a function of frequency for a special case where the seam width
h = 3m, and the conducfor is distance £ = Im from the seam sgrface, the radius
of the conductor a = 0.02m. The conductivity oé of the bounding material
(i.e., slate) is 2 x lszmhos/m. The dashed line is for the case when the
conductor is'aBsent as computed from (2), and the solid line is‘when the
conductor is present as computed from (20). For the latter case, the values
based upoﬁ a numerical evaluation of the exact expression as given in (3)-(5)
are also included. From the figure, it is clear that for frequencies of prac-
tical interest,v&ttenuationbof the guided electromagnetic waves is indeed
substantially reduced as a result of the conducting rail's presence.

Actually, for the results shown in Fig. 2, the seam was replacéd by free
space but the results apply qualitatively for an effectively lossless seam
of any permittivity if distances are scaled accordingly, e.g., kld and,kzd are
fixed. Of course, the théory presented is valid for a dissipative seam where

oy is comparable with the displacement. term €W but we do not show such results

here.
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APPENDIX A

Derivation of Axial Field Expressions

Here we derive an expression for the axial electric field at the surface
of a thin wire carrying a filamental current Ioexp(—Fz). The relevant geo-
metry is indicated in Fig. 1. Following an earlier formulation for a similar
problem [Wait, 1977], it is a fairly simple matter to derive explicit expres-
sions for the x directed electric and magnetic Hertz vectors within the slab
"region. These sd;called electric and magnetic Hertz potentials ﬂe and ﬂm

must be of the respective forms:

-iTl m +u;, (x-x ) u.x SUX sy d

. °,<J(1el o iael spe eV L
e 4ﬁwel e e . Ae-T

-0
ir +u. (x-x ) u. X “ulX L d
T o= -9 { (e 1 o . Ame 1 + Bme 1 Je 1)\}7__)\__%___2_ (A.2)
m 47 ul(k -T9)
-0

where €% = ¢

¥ - i(ol/w) and where (¥) designates the region x S x_; A_, B

1 e} e e

and Am, Bm are as yet undetermined constants. However, since in the region

X > X5 Be’ B, are part of the incoming wave that are incident onto the upper

interface and Ae’ An are the reflected wave, we have

u,h/2 u.x -u.h/2
A e 1 - R (-e 170 , g Je 1 (A.3)
e e €

u. h/2 ' u, X -u h/2
, 1 170 1 (A.4)
Am e + Bm) e

]
s
E]
—
o

where Re and Rm are as defined by (6).

Likewise, for the lower interface

ulh/z -u_X —ulh/z

B e + Ae (A.5)
e

€

1
o
o
™
(¢}

ulh/2 Co-u.X -u.h/2

B e + AJe 1 (A.6)

m

1)
o]
Py

(¢]



16

Using (A.3) to (A.6), we solve for the A's and B's:

B -u. X u, (x_+h)
-2ulh Re o € Lo, e 1o W
Ae,m - Re,m © 2 ~2ulh (A.7)
1-R e
L e,m -
i u. X u. (h-x )]
—Zulh * Re n € Lo, e 1 °
B = R e 2 (A.8)
e,m e,m 1 - R2 e-2u1h ,
L ,m .J

Substitution of (A.7) and (A.8) into (A.3) to (A.6) then yield the

expression for T, and Mo To obtain the axial electric field, we only

need to use the relationship

to obtain from (A.3) to (A.6) the following expression

1 o Tu (X— )
— &kz [ e 17T cidy da
z  4Twe 1 2
1 o 1
1 ‘[ +T2u§Re -2u;h -u;h
+ 2 j 22 ) i [Ree cosh ul(x—xo)~e coshul(x+xo)]
A-IT o Te
. ‘ .
kf >\2Rm -2u.h -u.h
7 [R e cosh u, {x-x_) + e cosh u, (x+x )¢ | 3
(A.9)
where 5 —Zulh
Ay p=L1-R, e | (A.10)
e,m e,m

2.2

2 2
In deriving (A.9), the identity Tzui + A k1 = (kz —T2)(kl +T7) was used

. . ) 2 .23
in obtaining the first integral which is known to be 2§J1r[T +kl]§);

1
r = [(x -xo)z + yz}E and KO is the modified Bessel function of the
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second kind. On the wire surface, the average axial field is then
obtained by setting r =a, x =X and y =0: <
il

__ o 2. .2 . n2 . 29%
,<EZ> . = 2ww€o J;kl+ T )KO( 1aﬂ‘+k1] )

AZR -u_h

R -u.h k 1
mn (R e
m

+T"u
+ L} [—72:——f— (Ree - cosh 2u1x0) + -
dA
(2 1

2
1
A (A.11)

—ulh
+ cosh 2u.x {]e
170

Provided the radius is small, KO can be approximated by -4&n] E(T2+k§)%].
On the other hand, the terms inside the square bracket can be rearranged

according to

-ulh -ul(h-2xo)
Re,m(Re,m e + cosh 2u1x0) =% Re,m e
-u (h+2X')
e,m ' ° _ul(h—zxo) ?
- [1-R._ e ] (A.12)
1 —R2 e -2huy e,m
e,m

where the upper sign is for the Re and lower sign for Rm' Substitution of

(A.12) into (A.11) yields immediately the expressions given in (3) - (5).

APPENDIX B

Evaulation of f
z0

The integral given in (10) is evaluated in this appendix. Recog-
nizing that ’Reo exp(—2u1h)| < 1, we can first expand the denominator

in series to obtain
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—ul(h-2x ) 9 .
-u, (h+2x ) [1-R e ° o -2mu.h
1 o] eo _ 2m 1
e i = Z R e
2 —2u1h -0 eo
1 -R e m
eo
-u, (h+2x ) ~u.h -u. (3h-2x )}
e 1 ° - 2R e 1 + R2 e 1 °
eo eo

J
so that each term in the series can be integrated analytically accor-

ding to the identity

1 ® =y X
K [T26%1%) = J e 14t
o 1 0 uy

Consequently, we obtain from (10) the alternative expression

s .2 _ = 2
b= TR K (g [h-2x 1) + ) R

m
b o 1Ky (L (2mt+1yheb2x Tz, )

2
- 2ReoKo(2[m+1]hC1) + ReoKo([(2m+3)h—2xo]?;l)ﬂ (B.1)

where Clz i(F2+k?)€. Now since we have assumed the seam = size is
small Compared with the guided wavelength as well as the wavelength of

the medium, lclfh generally is much smaller than 1. A small-argument

expansion of Ko then yields approximately,

s 2 2
Ezo =T Reo (l-i-Re

-
)[zn 2h(1"2+k§)211r/2 +c - 2,n2] + ga(h = 2x,) /2
L
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+ 7 RO o on-1)htox 1/20°- 2R fn m
m=1 ©° ° =

+‘R§o£n[(2m+1)h—2x6]/2h%J | (B.2)

' 1 % .
2/h = ( 37',;f') as the ratio of the distance to the upper

~Defining A
boundary and the tunmel width and using the explicit expression of

Reo in (9), &e have from (B.2) the simplified result

2 .2
s 2 k7%, 225 2
E = -T" |——=|[fn2h(I"“+k Y2+im/2+ C - n2] - T™Q (B.3)
zo k2 1 o

2

S 2m-1 | 2 |
R, nd+ ] R,  [Ra(m-2) - 2R, fnm+ R An(wth)] (B.4)

where
o e
m=1

Expression (B.3) can then be used with the expression O6E derived in
(11), and Ez in (4) to obtain the total axial electric field expres-

sion given in (12).
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CaLcuLATED EsTIMATE oF R.F. CoupLING FROM A TROLLEY WIRE
AND BrasTing Cap CIrculT |

by
D.A. Hill and J.R. Wait

' Fol]bwing a query from the sponsor, we have considered an idea]ized
.mode1'pf the radio frequency coupling from the tfol]ey wire to an adjacent
circuit. Our objective is to deduce the current‘ Ia that could be in-
Jjected into a parallel wire of length & grounded throﬁgh resistors R
at the end points. Such a current Ia could constitute a hazard.if such
a circuit. is part of an electric detonator system.

The model we adopf is depicted in Fig. 1; The tunnel cross-section
is semi-circular with radius a, and is bounded by homoageneous rock of
conductivity Ué and by a around p1ahe which is taken to be perfect]y conduct-
ing; The trolley wire I0 is located at (po’¢§) in terms of cylindrical
coordinates while the detonator circuit is 1ocatéd at (pa,¢é),

In the absence of fhe detonator circuit, we can employ a previous
formulation [1] to determine the fields everywhere within the tunnel for a
specified current on the trolley wire of radius ¢ and conductivity o, of
special interest here is the transmission-line type mode in which we have
the Towest attenuation, although the formulation coufd be used for other modes
that may be important at V.H.F. |

The axial electric field Eoz at point A is thus given by

+ + - S
= - [K,(vey) - S™ - K (vog) + $7Je™7

where

[1] D.A. Hi11 and J.R. Wait, "Analysis of radio frequency transmission along
a trolley wire in a mine tunnel", IEEE Trans. Electromagn. Compat., Vol.
EMC-18, No. 4, pp. 170-174, Nov. 1976.
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. K (va) . i
§ = r% R 1) I, (Vo) I (vo Jexpl-im(¢ %4 )]
and
_— : - \k L
pg = L[pg + o) - 200p, cos(6,¥6,)1" and v = (y2-r%)%

The notation is identical to that given in the referenced paper [1].

We can actually invoke the quasi-static approximation

| 2y(m| .
K (va.) , (Oopa/ao) ;o m7 0
m 2 1 (vo )1 (vp.) =
I (va m' VPo/ tm\ VP =
m' O
- Qn(vao) ; m=0

Here we are assuming that the current is I0 amps at the reference point
z = 0. Also, T 1is the (complex) propagation constant of the desired
mode, énd Yo and no' are the propagation constant and the intrinsic
impedance of free space.

Now, the parallel detonator cfrcuit has a length 2 small compared

with |r]"1

; thus it is a very good approximation to say that the driving
voltage in the secondary circuit is zEaz evaluated at z = 0. Then the
resulting current Ia = ZEOZ/ZR where R is the value of the terminating
resistofs. This neglects the self inductance of the circuit which s
justified in the present context.

| A se1ectionvof parameters were made that would seem to encompass most
cases of practical interest. Using these parameters (indicated in Table

I), the axial field |E__| in milli-volts/m and the driven current |1,

in milli-amps are shown for a driven current IO of 1 amp.
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The driven current values can, of course, be easily re—céltu]ated
for any other grounded resistance R. The 10 ohm vafue indicated is
"nominal”. |

As 04 become small, the field diminishes in roughly linear propor-
tion. In fact, it is really the area traced out by the detonator wire and
its image in the ground plane that should be minimized. Correspohding]y;
if the detonator circuit is fu]]y closed (i.e. not grounded), the Hazard
éurrént Ia will be aﬁﬁroximate]y proportional to the total'eﬁc1osed'area;

Also, it is evident that, for everything else held constant, the

hazard current Ia is roughly proportional to frequency.



TABLE 1 |
Trolley Line Field (Eaz).and Hazard Current (Ia),

<

Frequency %a Py IE,,] 1.1
(kiz) (m) (mV/m) (mamp)
50 45° 0.1 2.33 1.17
" " 0.2 4.50 2.24
. " 0.5 10.04 5.02
" " 1.0 16.45 8.23
" 90° 0.1 3.42 L7
" " 0.2 6.83 3.41
! ! 0.5 16.94 8.47
" " 1.0 32.93 16.47
" 135° 0.1 2.50 1.25
" " 0.2 5.19 2.59
" ‘! 0.5 14.34 7.17
" " 1.0 33.45 16.73
100 45° 0.1 4.66 2.33"
y " 0.2 8.98 4.49
" " 0.5 20.05 10.03
" " 1.0 32.85 16.43
" 90° 0.1 6.83 3.41
" " 0.2 13.64 6.82
" " 0.5 33.84 16.92
" " 1.0 65.79 32.89
. 135° 0.1 5.00 -2.50
! " 0.2 - 10.36 5.18
" " 0.5 28.66 14.33
" " 1.0 66.86 33.43
200 45° 0.1 9.28 4.64
" . 0.2 17.90 8.95
" " 0.5 39.95 - 19.97
" ! 1.0 65.42 32.71
" 90° 0.1 13.60 6.80
" " 0.2 27.17 “ 13.59
! " 0.5 67.42 33.71
" " 1.0 131.07 65.54
" 135° 0.1 9.97 4.98
" " 0.2 20.65 10.32
! " 0.5 57.12 - 28.56
" " 1.0 - 133.27 66.64

1073

o}
n

2m, ee/eo =10, o mho/m, ¢o = 135°, Py = 1.8m, ¢ = 1.5cm,

i

@]
"

5.7 x 1O7mho/m, Io 1 amp, £ = 10m, R =10 ohms.'
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1

Fig.

Semi-circular tunnel model showing location of axial trolley wire,

and parallel detonator circuit of length £.

Io’

carrying a current
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Abstract - The two-dimensional model of intersecting tunnels

with impedance walls is analyzed by a three-region mode matching

technique. The numerical solqiion is found to converge smoothly,

and numerical checks on power conservation, reciprocity, and the
edge condition are well satisfied. A general result is that the
lowest order mode is efficient in exciting the higher order mode

in the crosscut tunnel, but is not efficient in exciting the lowest

order mode.

INTRODUCTION

Underground coal mines are typically extensive labyrinths of parallel tun-
nels and right angle crosscuts [Murphy and Parkinson, 1978]. Consequently,
tunnel junctions can have a significant effect on radio communication in mines.

EM propagation in straight tunnels and around corners has been studied by Emslie

.

Lagace and Strong [1975]. They employed an ingenious approximate approach that
lumped all the higher order waveguide modes into a single 'diffuse" component.
Here we employ rigorous modal expansions for the fields, and the higher order
waveguide modes are considered ekplicitly. However, the price we pay is that

the model, by necessity, is highly idealized.




We adopt two-dimensional geometry with a single tunﬁel junction of two
infinitely-long tunnels as shown in ?igure 1:' The.geometry is similar to that
encountered in some‘waveguide_junction probleéé'except'that,we éllow ﬁhe tun-
nel walls to have nonzero surface impedances. VThus,>the attenuation of the wave-
guide modes is allowed for. A sepafate eﬁpamsion in terms of cavity modes is

ST utilized in the junction region. Then matching is employed at the cavity-

_wavegﬁide boundariési? The coefficients of the cavity modes are eliminated analy-

tically, and the coefficients of the waveguide modes are obtained numerically"

through matrix inversion.

The incident field can be any one of the waveguide modes, and the result-
ing transmitted and reflected mode'coefficientS'define a scattefing matrix
(Kerns and Beatty, 1967) for the juné;ion. 'Checks on the numerical solution

are obtained by examining power conservation, reciprocity, and the edge condi-

tion.
WAVEGUIDE MODE FORMULATION

The tunnei junction cénfiguration shown in Figure 1 is symmetric in both
x and y. Consequently by employing either symmetric or antisymmetric exci-
tation, we can reduce the analysis to one quadrant which is bounded either by
electric or magnetic walls. The case where the fields are symmetric in both
x and y 1is of greatest interest because the lowest order symmetric mode has
the lowgst attenuation. Thus, we replace thé geometry in Figure 1 by the equi-
valent geometry in Figure 2. In order to actually handle the most general
excitation, it would be necessary to solve four geometries similar to that in
Figure 2 and use superposition of the four solutions.

The.geometry in Figure 2 is invariant in the =z direction, and the magne-

tic walls in the yz "and xz planes ensure the even symmetry in y and =x.
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The tunnels are of half-widths a " and b;. and the tunnei‘walls‘have surface
- impedances Z; and Zy. The region ﬁounded'by the tunnel walls and the mag—
netic walls has free Spacempermittivity € a;d permeability V.. The elec-
tric field is chosen to have only a =z component from which'the magnetic field
components can be determined. Thus; we are solving a scalar'problem, and E,
satisfies the scalar wave equation in all three regions

(V2 +x2E, =0, 1)
Whefe AkZ-;_mZﬁoeo and elWt  time dependence is assumed. We choose the E,
polarization because no TEM modes are then supported by the waveguide regions
1 and 2. Thus the resul£s are more representative of the three dimensional
problem. [Emslie, Lagace and Strong, 1975] where no TEM modes whatsoever are
‘possibie. s .

We designate three regions in Figure 2 because the waveguide mode expan-
sions which are valid in regions 1 and 2 cannot be continued analytically into
the cavity region 3 [Lewin, 1970]. Thus, we employ.a general expansion in rec-
tangular cavity modes in region 3. This is simiiar to the approach for wave-
guide circulators where a circular cavity region accommodates arbitrary wave-
guide intersection angles [Copplestone, 1979].

We assume an arbitrary mode m of unity strength for the incident field

in region 1 and an infinite series of reflected modes of unknown strength

Rn,m’ Thus, the total electric field in region 1, E{3, can be written

(o]
E;, = cos(kCpx)cos (kSpy) + len,mcos(kCnx)e‘lkSny , (2)
n:

where C and S are determined from the modal equation for an infinite

n n

guide. We may visualize the incident field cos(kS;y) as the superposition
of incoming and outgoing modes, exp(ikS_y) and exp(-ikS,v), as required for

symmetric excitation.
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In any region the magnetic field components Hk and , are determined
from E, - by . ;vt;itiéE' . ) :.332 (3)
X diwgg 9y an 4 Mmoax

From (2) and (3), the magnetic field compoments in region 1 are given by

Hyg = Fio [Sp cos(kCpx) sin(kSpy) + niliSan,m cos (kCqx) exp (~1KS_y)]  (4)
andh’?{lX = lwuo 1cp Sln(kax) cos(ksmy) + . Z Cn 51n(kax)exp( 1kSny)] (5)

Note.that Hly' is zero at x = 0 as required by the boundary condition at
the magnetic wall. Also in order to satisfy the scalar wave equation we have
2 2 -
Ch+sy=1. (6)

At X = a, we apply the impedance Boundary condition

=2 =z . W

This condition results in a modal equation for C_. whose solution is discussed

n
in Appendix A.
In region 2 we have oniy outgoing modes of unknown strength Qn,m’ and

the field components can be written

T ~
Egz = 1 Qn,m cos(kCpy)exp(-ikSpx) , (8)
kK ¥4 R _ R
Hox = T nilchn’m sin(kC,y)exp (-ikS x) , , ©)
and .
Hyy = wu Z SnQn ,m cos(kcny)exp( 1kSnx) , (10)
o SRR | | 1)

| -“‘—‘l = Zb . (12)
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. .
This condition again results in a mode equation for C, as discussed in

- Appendix A.

3

CAVITY MODE FORMULATION
In region 3, we require a gemeral cavity mode expansion which yields
Hy3y, =0 at 'y =0 and H3y =0 at x = 0. By generalizing the expansion for

a magnetic wall cavitj*with one open side as given by Morse and Feshbach [1953]

to the case of two open sides, we obtain

o

Ey, = nlOAn cos.<32§> cos (kyy) +'n=ZOBn cos <E%X> cos (kypx) , (13)

| . , (14)
+ .2 (%?) B, sin4<2%2)'cos(kxnx)} ;
n=0
_ =1 ¥ /om . nmx\ . .. ... < ‘Y | .
o = i [ 1) 0 e (22) continr + T m0 con (5] a9
where 2 1/2
ym = [12 - (%) ] | (16)

ERC.

and An and B, are unknown coefficients.

kyn

Note that each term in (13) - (15) satisfies the scalar wave equation.
Also, the A, coefficients can be determined from H3x at v = b, and the

B, coefficients can be determined from H3v at x = a.
BOUNDARY CONDITIONS

The boundary conditions are that the tangential electric and magnetic
fields are continuous at the interfaces between the cavity region and the wave-

guide regions:
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(Hix - H3p)| -=0, (18)
7 oeb
(Hyy = H3y-)i’=é =9, (19)
(Eyz - 1‘?32))'7=b =0, (20)
| (‘Ez'z - 332).}]{:& =0. | | (21)

By substituting'the'fiel&_expansions-into,(18) (21), we obtain the following

kSp cos(kCyx)sin(kSyb) + ] ikS_R, p cos (kCyx)exp(~ikS,b)

o 8

. (22)
K nmx

- 'nZOI%’nAnv céé (T) sin(k_y.nb) =0

) ® A C o " T ' '
1kn§lSnQnsm cos(kCny)exp(—lkSna) + n; kynB, cos (—Ez> sin(ky,a) = 0 (23)

0

[= 0]
cos(kcmx)cos(ksmb) + Z,Rn m cos(kCnx)exp(—ikSnb)
l b

n:
(24)
£ nmx T . B
- nZOAn cos <—§f> Cos(kynb) - nZO B, cos(nm)cos(kypx) = 0
[ee] ~ ~ o
z Qn.m cos(kCy)exp(-ikSya) - XOAH cos(nﬂ)cos(kyny)
D=l ’ . n=
- (25)
- E B_ cos (EEZ> cos( a) =0
LA b kXn
n=0
Although (22) - (25) represent four equations in four sets of unknowns,

we can solve for A, in terms of Rn in (22) and for B in terms of

m n

Qn,m in (23). 1If we multiply (22) by cos(pTx/a) and integrate on ’x from

o

0 to a, we obtain
L @0

Ap =G

where . =»€pk8m sin(kSmb)Ipm (27
P;m kypa sin(kypb) .
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_ ikSpepTyyexp (~ikSyb)

F . s 28
n,p kypa 51n(kypb) v.( )
I - a‘[é:in‘(;pn'.;,kéna) "vsir{'(‘PTT“-.*; kCna)] : (29)
Pn 2 |7 (pm - kCpa) (pm + kCpa) >
41, p=20 ’
and €p = (30)
2, p#0

Similarly, if we multiply (23)by cos(pTy/b) and integrate on y from 0 to b,

we obtain A
Bp = ) Fn,pQn,m > E (31)
n=0

where ~ A ’ PN
~ ik8pep I pexp (-ikS,a) .
Fa,p = kypb sin(kypa) , (32)
and . b [sin(pﬂ<—»kanb) sin(pm + kﬁnb)] (33)
= e ~ + B ~ . 3

P20 (om = kCob) (p7 + kCpb)

Thus we can analytically eliminate the cavity coefficients, Ap and Bp, in

terms of the desired waveguide coefficients, Rn,m and Qn’m.
MODE MATCHING

In order to derive a set of linear equations from (24), we multiply (24) by
the waveguide mode field, cos(kcpk), and integrate on x from ‘O‘ to a.
Because . of the orthogonality of the waveguide modes, only one term in the Rn,m
summation remains, and the result is

oo

Rp,m = Ep,m + nZO[Hn,pAn + Ln,pBal (34)

where _ —Spp cos(kSpb)
p,m exp(—ikspb) ?

]
I
e
Lo
w
N

cos (kypb) Inp ~

Hn,p = Np exp(-ikSpb) ° | (36)

-1 Jpn
m.P N, exp(-ikSpb) °




' Sin(2kC.2) - L |
—-[l | sin(2kCya) ], . (38)

a
¥ =3 2kCpa
s [sinlome - K0pe) | sinlime + kCpe) T €
an'_kE' (kyna - kCpa) (kypa + kCp2) ] 9)
and 1, m=p
. 4
Smp {O, m#p (40

In a similar manner, we multiply (25) by the waveguide mode field, cos(kapy),

and integrate on y from O to b to obtain

Qp,m = zo(ﬁnpA:[l + I:han) s (41)
n=

”~

where S (.-'.:l)'n J

~

Hp = ————F—, | | (42)
Np exp(—ikspa)‘

N - cos(kya)L A
Lap = = =R WP (43)
Np exp(—lkspa) :

and N sin(2kCpb) ' : :
Np=%[l+~——————A =1, (44)
2kCyb
and A A
~ b | Sin(kgpb - kCpb) sin(kypb + kCpb)
Jop = % ~ + — , (45)
(kypb - kCpb) (kypb - kCpb)

In order to obtain two sets of equations for the two sets of waveguide co-
efficients, Rp,m and Qp,m we substitute (26) and (31) into (34) and (41)

with the following result

» v T ® & co
"o qu{ﬁZOPannp]Rq’m ) qzl[nZOFannp]Qq>m = Fpm ¥ L Fopbom (46)
and ' ©r o o o ) .
Q,m = qzl[nZOFannp}Qq,m - qzl[nzopqthp}Rq’m = ngoanGnm - (£7)

A doubly infinite set of equations is obtained by letting p take on integer
values from 1 to o in (46) and (47). 1In order to solve the system, we retain
only a finite number PR of ‘Rp m coefficients and a finite number Po of

Qp m coefficients. This results in the following matrix form
b
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PR+ Pql |Ri,m |  |Pqt PR
R .
P+ T2 ©
by Rot.= by , (48)
Ql,m
-PR -+ PO— LQPQ,m_ B 1 _

The matrix in (48) can be inverted to solve for the Ry p and Qpp values.

If in turn the incident mode number m is varied, the R, p @and Qu.m values
‘ . ) e . ' 3 ’
~essentially define a scattering matrix for a two-port waveguide junction. [Kerns
and Beatty, 1967]. The cavity mode coefficients, A, and B,, were eliminated
analytically to reduce the number of unknowns. Generally the cavity-fields are

of little interest, but if desired, A, and B, could be computed from (26)

and (31).
NUMBERICAL RESULTS

In this section we present numerical results for frequencies from 50 MHz
to 200 MHz. In all cases we take a = b = 2m and &zlso Z5 = Zb' For the wall

impedances, we use the following expression [Mahmoud and Wait, 1974]:
: y 1/2
. SRR
Za = Zp = [s - g - ic/w] (49)

where $' and O are the rock permittivity and conductivity. Here we treat
'both the case of perfectly conducting walls ‘(Za = Zp = 0) and imperfect walls
(e/eg = 10 and o = lO"-2 mho /m) .
Before presenting the corner results, we show the attenuation rates of
the lowest order modes for the straight guide és obtained from (A-8) in Fig. 3.
For perfectly conducting walls, the cutoff frequencies are 37.5 MHz for mode 1,
112.5 MHz for mode 2, and 187.5 MHz for mode 3; As shown in Fig. 3, the finite

wall conductivity produces attenuation above cut off and smooths out the transi-

tion near cut off. However, in either case the attenuation rate is very high
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P

below cutéff.‘.ThusAwe show~§n1y results fpr.the first:tﬁrée mﬁdes in the
following curves.

| A computer program was written for-the‘métriévsolution’of (48). The per-
fectly conducting case (Zy = Zy = 0) was first examined because the checks on
power conservation, feciprocity, ana the edge condition are most easily per-
formed for perfectly conducting walls: Ihe'COnvergencebbf the magnitude and
phése;Of Rl,l and 'Ql;l.'is.shown in‘Figs. 4 -and S; In general it was foupd
that convergence was reached with abéut twelve modes for any frequency below
200 MHz. Conservatibn of power as discussed in Appendix B was typically
satisfied with a relativé error of less than 10'6; A‘further check, using
the edge conditioﬁ as discussed in Appendiﬁ D, revealed that both Qn,m and
Rn,m have the proper asymptotic behébior for large n;

In Figs. 6 and 7;'the magnitudes of the Q's and R's are shown from 50 MHz
to 200 MHz for perfectly conducting walls;"The values of IQl,lt’ IQZ,ll’
and lQ3’1| are representétive of’the strengths of the three modes transmitted
into the side tunnel for the lowest order mode ‘l incident. The phases are
also available, but are of less interest. Similarly the R values represent
the three reflected mode amplitudes for the lowest order mode incident. Both
the Q's and R's are only shown above their cutoff frequenéies where the
modes are propagating. The amplitudes of the higher order evanescent modes
are also available, but they are of little interest. The results in Figs. 6
and 7 show rapid variation near the cutoff freguencies, but the power conser-
vation and edge condition checks are still well satiéfied at all frequencies.

An additional check of reciprocity is also available for the results of
Figs. 6 and 7 by letting mode 2 or 3 be the incident mode. From the results

in Appendix C, the following reciprocal relations must hold
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R2,152=R1,2 81, Q18,=0Q>58

R3,1 83 =Ry 351, Q3,153=0Q1,35; (50)
and

R3,2 83 =Ry 387, Q3,253=0Qy 38, °

k4

All the above relationships were found to be satisfied to five figures in both
amplitude and phase. The reciprocity condition has been noted as a particularly
useful test-in'rqughfsurface scattering [Whitman and Schwering, 1979] because
it checks both amplitu&é and phase:'

In Figs. 8 and 9, analogous results are shown for imperfect walls. The
results are similar to thdse in Figs. 6 and 7, but the sharp resonant peaks are
reduced. Again the mode quantities, which are always finite, are shown only
above cutoff. An interesting featureﬁof thé»transmission‘ (Qn’m) amplitudes
is that the higher order modes are more strongly ekcited than the lowest order
mode for the lowest order mode incident. By reciprocity we could also expect
the higher order modes to be more efficient in exciting the lowest order mode
in the crosscut tunnel. This behavior is qualitatively consistent with the

"diffuse" mode treatment of Emslie, Lagace and Strong [1975].
CONCLUDING REMARKS

The model of intersecting tunnels with imperfectly conducting walls has
~been analyzed by a three-region mode matching technique. The numerical solu;
tion is found to converge smoothly, and checks on power comnservation, recipro-
city, and the edge condition are well satisfied.

The frequency dependence of both the reflected and transmitted modes shows
rapid variation near the cutoff frequencies. A general result is that the
lowest order mode incident on the intersection is more efficient in ekciting
the highef order modes in the cross cut. By reciprocity, higher order modes

are also more efficient in exciting the lowest order mode {wvhich is the mode
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of lowest attenuation) in the créss cut.  Those same genérél remarks would
. apply:to the case of odd mode ekcitation that needs to be dome e%plicitly for
a general study of the problem. )

A Qorthwhile e%tension would be to treat a more generzl tunnel model with
finitely conducting top and bottom Walls;‘ Also, both horizontal and vertical
polarization should be considered; including the numerous hybrid modes that
would be negded}in'a~general formulation. Here one can still eiploit the iq—
heréﬁtxéymmgtry‘propertieé éf'the’waveguide junction and suitably superimpose
even and odd'exditations.

The effect of'tunnei non—uniformities on mode conversion between the
higher order and lowest order mode could be important in a realistic communica-
tion environment. We have not considered that éspect here. For e%ample,
energy in a low order mode in‘'the main tunnel can be transferred to higher
order modes via mode conversion when the tunnel walls are non—uniforﬁ. These
converted higher order modés; in turn, would be transformed efficiently into
low order modes in the cross tunnel regions. Thus a comprehensive analysis

of the tunnel junction problem should incorporate all such refinements. What

we have done here is to point the way for further work in the field.
APPENDIX A - MODAL EQUATION

The modal equation for the y-directed guide is obtained by substituting

(2) and (5) into (7). Each mode must then satisfy the following

Z
2 sin(kCpa) . (A-1)

k
cos(kCna) = inO

By replacing the cos and sin terms in (A-1) by their exponential forms the
following form is obtained

& - sty

E;—:_I7Z; exp(—iZkaCn) -1=20, (A-2)
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where ‘A, = Za/(ﬂoleo)l/zf This form agrees with the more general modal equation

. for a parallel plate guide as given b& Wait [1962].

3

An approkimate éolution for 'Cn can be obtained by making the following
approiimation g . , ‘.
| % =~ (1 - 204A,) = —exp(-2C,A,) (A-3)
Thus, an approéimate:modél eqution is '

e%p[—Cﬁ(ZAa + 2ika)] = -1 = e%p[—i(Zn'; 1)m] (A-4)
Now (A-4) is easily solved for Cp:
o

‘n % 20a = 18, (4

Actually (A-5) is exact for the case of a pérfectly conducting wall (A, = 0).
When A, 1is not zero, we use (A-5) as a starting value for a numerical solution
of (A-5) by Newton's method [Hamming, 1973].

For the x-directed guide, the situation is completely analogous, and the

modal equation is C. .- (1/A4) .
B TTB eup(-i2kbCy) - 1 = 0 (a-6)
Ch + (1/4y)
h
mnere by = Zy/ (up/ex) /2 . (a-7)
The approéimate solution is .
A~ . (@2n - D)7
0 ¥ T = i) (4-8)

The attenuation rate Gn for the y-directed guide is simply given by

cp = -KIn(S,) (mepers/m) = ~8.686kIn(S.) (dB/m) , (4-9)

9 1/2
where S, = (1 - Cf) .
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'APPENDIX B - POWER CONSERVATION

We restrict the derivation to the case of perfectly conductiﬁg walls
(bg = A, = 0) where the waveguide modes have conjugate orthogonality and carry
power iﬁdepéndently. In order to simplify the cazlculation, we first rewrite the

incident fields in (2) and (4) in terms of incoming and outgoing waves:

E;z ?_%'<8XP(%ikSmY> +.e§P(—ikSmY))COS(ka£)

S v ‘ (B-1)
+ . EIRn,m cos (kCyx) exp (-ikS,y)
n-’:
and rs . . ..
__k [5n . _ s
Hiy = Tong [Zi (exp(lksmy) exp ( 1kSmy))cos(kax)
(3-2)

© . S -
+ zliSan,m coé(ksnx}exp(—iksnyil
n:

The power into the cavity region 3, Pijn» 1is due only to the incoming term (posi-

tive exponential):

1 Sm - Spa
P. == _— f cos* (kC x)d> = — . (B-3)
S R T SV 16 (uy /e ) /2

The power out of the cavity region into region 1, Piouts 1s due to the outgoing

portion of the incident field plus a2ll of the outgoing reflected fields:

2 a
Piout -—a z Re (s )an n T35 6, ml . f cosz(kCnx)dx
2(1o/eg) 172 n=0 5

(B-4)
2

e A Pae

Note that the modes which are "cut off" have Re(S,) = 0 and will not contribute
to the power.

The power out of the cavity intc region 2, is given by

P20ut’



40

b

onut = St 1/2 : Z Re(sn) IQn,ml E j COSZ (kCUY)Cy
2(uoleg) n=0 °
(B-5)
....... b [o 0 A~ ) < 2
= ‘_‘——']—-73 —ORQ(_Sn) Qn,ml . .
4(Ho/€g) n= ]
Since the cavity region is lossless, the power in must equal the total

power out: (B-5)

Pin = Piour T Po2out -

A measure of the relative power error in the numerical solution, Ep, is given

CPio e Pree 4 Poss
by E = Vln lout 2o0ut . (B-7)
P Pin
APPENDIX C

Here we treat only the propagating modes for perfectly conducting walls

~

(Aa = Ab'= 0). Thus S, and Sp are real. An extensive treatment of the reci—
procity relations for the scattering matrix has been given by Kerns and Beatty

[1967]. However, for our two-port geometry, the reciprocity relationship for the
reflected modes is simply -
Rp,mSn = Rm,nsm : (c-1)

The S, and S, factors arise from the fact that the power carried by the nth

mode is proportional to S, [Kerns and Beatty, 1967].
In general, we would need to switch the input field to the x-directed guide
in order to check ‘Qn m- However, for the special case of a = b, we can derive
. 2 . :

the following by reciprocity and symmetry:

N ~

Qn,msn = Qm,nsm . (C-2)
Note that (C-1) and (C-2) are completely analogous to the reciprocity rela-
tions for plane wave scattering by periodic surfaces [Whitman and Schwering, 1979].

These relations are useful for supplementing the power conservation check because

both amplitude and phase are involved.



4.1

APPENDIX D - EDGE CONDITION

Again webconsider'onlyuthe'case.of perfectly ﬁonducting %alls (Ag = Ay = 0).
In this case the edge condition is particularly simple [Mittra and Lee, 1971;
Meixner, 1972]. The electric field varies as the distance from the edge to the
two thirds power, and the .radial magnetic field varies as the distance to the
miﬁus one third power. These relationships yield the following proportionalities

for thé waveguide fields near the corner:

NI ' o

Bazl . = (b -3, (D-2)

Hyl = (@ - 0)71/3 (D-3)
y=b

oyl = - y)~L/3 (D-4)

The modal coefficients, Rn,m for Ej, in (2) and Qn,m for E,, in (8),
must vary as a=>/3  for large n in order to satisfy (D-1) and (D-2). Thus,
from (2) and (8), we have the following proportionalities for large n:

Ry.m = n70/3 exp(ikbs,) (D-5)

and . Qn,m « n=5/3 exp(ika§n) (D-6)

This behavior for large n comes naturally out of the solution, but in some
modal treatments the asymptotic behavior has been built into the solution in order

to speed convergence [Zaki and Neurenther, 1968; Howard, 1972; Hill and Wait, 1976].
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Figure 3. Attenuation rates of the lowest order modes for tunnel walls of
finite and infinite conductivity.
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‘FIELDS OF A HORIZONTAL LOOP OF ARBITRARY SHAPE
BURIED IN A Two LAYER EARTH

by
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Boulder, Colorado 80309
Abstract - Expressions have been derive& for the magnetic field
in air produced by.a buried horizontal loop of arbitrary shape. Nu-
‘merical résults are presented for both circular and rectangular loops.
Rectangular loops produce an azimuthal magnetic field component which
is not present in the case of a circular loop. The results have appli-
cation to source location in mine rescue techniques. 1In such cases,

frequencies in the audio range are employed and the assumption of a

uniform current in the source loop is well justified.
INTRODUCTION

In communicating with and/or locating trapped miners, we had earlier sug-
gested that a feasible source would be a wire loop that could be eic;ted by a
portable transmitter. A great deal of effor£ has gonme into the problem by var-—
ious groups in the U;S;.and élsewhere; Ah accessible and very well written
account can be found in the prize-winning paper by Large, Ball and Farstad
[1973].

In & previous analysis, we considered the problem of a small horizonﬁal
loop or vertical magnetic dipole locéﬁed in the bottom region of a two-layer
earth. The results were quasi—statié in the sense that éll significant distan~
ces in the problem were small compared with a free space wévelength. Using
numerical integration; the magnitude of fhe'ratio of the horizontal to the ver-

tical magnetic field was examined for an observer on the earth's surface. This



was shown to have diagnostic features‘that-could be used as the basis of a source
"location technique; in spitg of the fact that‘the curves weré modified to some
extent by the layer structurél [Weit, 1971; Wait and Spies, 1971a}.
Here we ektend the earlier énalysis to allow for the finite extent of the

- source loop. Also, we derive ekplicit eipressions for the fields that are
fvalid everywhére; In order to render the proBlem some generalify,displacement
currents in the air ;ﬁd in the ground are retained at 1eést‘in the'initial
formuiation;

| First of all we deal with a ;ircular loop of radius a. 'When a tends to

zero we then recover the field expressions given earlier for a magnetic dipole.

We then consider a loop of finite size with any specified shape. 1In particular,

we deal with one of rectangular form.

o5
BASIC FORMULATION

The model‘for;thélcircﬁlar.1bop.is,illustrated in Fig:.l; The earth is taken
be‘a-twoﬁlayef'strﬁctﬁre where the upper'layér 5f~slab‘offthibkneééxfb«‘is characte
ized by;electrical“prope;ties~-015 €1,- and ﬁl' ‘The . lower”semi-imfinite region
corresponding properties 02; €9, and #é. With respectbto a po;ar coordinate
system‘(p;¢;z),the'earth's surfacé is z =10 ana the lower interface of the
upper slab is z = -b. The loop of radius"a; ca;rying”a total uﬁiform{turrent

- I, is loéated in the plane 2z = -h "and is csa;iél with the =z axis; The re-
‘  gion 'z > 0 is assumed to be free space ﬁith electrical constants'(eo, ﬁo).

The source Cerent and all asséciéted‘electromagnetic fields are taken to
vary as eip(iwﬁ): |

The source condition for the surface cﬁrrent density 'j¢(p) in the plane
z = -h is given as féllows

jd)(p) = IB(Q - a) (1)



where &(p - a) . is the unit impulse function. Here we find it convenient to

‘apply the Fourier-Bessel transform in order to obtain the desired spectral form

\ 3

for the source field. Thus w; have the pair
JoP) = [£(MI Op)Adh | (2)
o

and

£ = [ 15003, Qe)pcp . (3)
where'“n is.an“integer/to be'éelected and"Jn is a Bessel functipn of’order ‘
n. Cléarly, for the filameﬁtal éurrent model,

£0) = ()= )
By symmetry it is evident that the electromagnetic fields have only non-

vanishing components E¢, Hy and H,. A subscript 1, .2, or 0 1is added

to these.quantities when they refer specifically to the upper slab, lower re-

gion or free space respectively. In particular, we have the source conditions

$ae) O ®)

]

Hyp(-h + 0) - Hyp(-h - 0)

Ep¢(~h + 0) - Epgp(-h = 0) = C (6)
that must be met.
In view of the symmetry of the problem, it is apparent .that the fields in

any of the regions can. be obtained from a magnetic Hertz vector that has only

an axial component II* that we dub the "Hertz potential’. Thus

By = inedl*/3p 7

H, = 3201%/3pdz : ®

H; _ G*Y2+ 32/9z2)mx N (9
where Y2 = iuw(o + icw).

Now because II* satisfies

(a5
(’55-50*-+-—‘—Y2>H* =0 (10)



ob

we easily deduce that solutions, finite at p = 0, have the form

T* = Jo(hp)exp (Fuz) N (11)

where )
u = (Xz + 72)1/2.

Here A is the transverse wave number than can be identified with the variable
A in equ. (2). 1In particular, we note that Hp is made up of linear combina-

. tions of solutions 6f the form Jl(kb)exp(;uz) [on noting that dJy(x)/dx =

—Jl(x)]L' ﬁow it is clearly evident we should choose n 1 in (2), (3), and

(4). Thus, our source current density, in the plane =z -h, should be given

by jp(p) = Ia g Jl(la)Jl(Xp))\dk : (12)

We are now in the position to write down the desired formsfor the Hertz

potentials in the three regiomns:

- : LI 0
Ix = p [ A[e™1% + R “121‘——-——-—-1('3) Jo(hp)d Qs
4 P e o8 s, o (AP )
J -
-. R ' 308
ny, 91
n - p~/f[e-u2|2+h|+ R,e2"2° eu2(z7h) 5l O s
o]
) £y, J10e)
I = p.j/}oe Uo 5 T (15)
]

R and T, are mot yet

where the five functional coefficients p, A, Ry

known. Other multiplicative;factorSghavénbéeﬁ;inserted‘to?simplify the inter-
,pfetation of the final results. |

In order tﬁat (5) and (6) be satisfied, we readily deduce that p = Ia/2;
The other four coefficients can be deduced by insisting.that the tangential
fields E¢ and Hp be continuous at the two interfaces z = 0 and =z = -b.

This algebraic process yields, for the reflection coefficients,

Ry = (Ny = N )/ (¥ + N) (16)



and R, = (Np - ¥7)/(y + Tq) . (17)

where Np = ul/iulw,’ N, = u,/iusw, N, = u /iv,w and Y7 are appropriate

admittances. Here Byp .,l.-.Roe_ZQIb
Yp=-5—] =N : (18)
1¢ 1 + R e~2ujb
o
z=-b

Actually these results are immediately obvious if one bears in mind the trans-
mission line analogy .for such problems.
To relate A and T, we write down the matching equations for continuity

of Hp af z =0 and z = -b:

up (1 - RA = u,T, | a9
up[e%b - R e7U1PI4 = w,[eP2P - R.e"2P]emurh o
Thus , ..Uo o . }  uibg -
T, = 5ol - 2 - R/ (eM1P - r_eT1P) ~uzh (21)
and ' .
A =[(up/u)) @ - RW"2%/(PLP - R e7U1P] TU2D (22)

. which completes our task of.findipg the unknown coefficients.

Now using the identity
l-Re = 2Yl/(N2 + Yl) (23)
it is not difficult to show that

F o N, \/ 2w -1
Co 1 ° 1 -2u1b -ug (h-b) _-ujb-
a0y = e <§l T No)<;2 T Nl) [1 - RoRoe ] e e U1 (24)

where .

The right hand side of (24) can clearly be interpreted as the product of two
'tranémission coefficients (in large parentheses) and a propagation factor
exp[-u,(h-b) - ujb] corresponding to the one way transmission loss from the
source to the bottom of the upper slab and then through the slab to the surface.
The bracketed factor; when expanded, can be interpretéd as the effect of multiple

reflections within the slab, e.g.,
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-1
[1 - RoRpe™2U1P] " = 1 + R Rye” LN (26)

The field quantities of special interest are the magnetic components
and E,, 1in the free space region. These are obtained from
' - 2 % . : .
| B = 3201%/3p0z | (27)
and
Bop = (-¥Z + 32/322)112 o (28)

where Yg = -eouowz.

A special case of particular interest is when all distances are small com-
pared wifh the free space wavelength. Thus, we can say that IYO£| << 1 where
2 is a typical distance. This amounts to setting Yo = 0 in the general
- formulae derived above. Furthermore, to simplify the discussion we set
My o= ﬁz = ﬁé then, for example; Np/N, = u;/uy and Ng/Np = u /uy = Auy.

Using the preceding simplifications, we find without dlfflculty that

P22 -
° " ug T== (29)

"where

/. ék ' 'Zui ’
Nog + 2wy + u2 exp[-uy(h = b) - ub]
T = : — :
. ) _l.f A ui,f.uz
- Ul + A ul + u2 exp[—Zulb]

2
where uy = (AZ + Y%)l/ and U, (Az + 2)1/2. The desired field components

(30)

in the quasi-static approximation can be written

Hép = bP and H_, = b_Q (31)
where b, = I(waz)/(2wh3)
P l%-u/r 21 (A)eAz Jl<xp) ZJI(Xa).dA | (32)
" and |
Q - “1}‘/ NT()eE 5 () zji(ka) ax (33)
. a
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The limiting case of a magnetic dipole is obtained by letting a become

vanishingly small whence ‘ ;ZJl(la)[(Ka) > 1.

in the above expressions. The generalization of (30) to a three-layered carth -
is indicated in the Appendix.

~ HORIZONTAL LOOP OF ANY SBHAPE

it is actually éfveryvsimple matter.tovgeneralize the above results to a
horigbntal loop whose profile is nom-circular. To‘this end we write down the
Hertz potential dzﬂg in the free sp%ce region for a current loop of elemental
area dx'dy' 1located atj“{x;;f',—h)iﬁith reference to the cartesian:system of

coordinates (x,y,z). Thus,

aZmx = lé%%Qlegﬁ T(A)e A2 JO<K[(§f— x") + (v - Y'>2]1/2>§A

for the usual quasi-static approximation wherein Yo = 0 and uy = A.” Then,
of course, L@ '
- A -Az
I = éﬂ.jf T A2 £0)dA (35)
A .
where 1 . 1/2 |
£EQ) = 3 Af (3o M- 202+ 5 - g2 Jax' ay" (36)
rea

and A is the area of the loop.

The desired magnetic field components expressed in cartesian coordinates

are now obtained from

Hoy = 3201%/3x52 (37)

Hyy = 8211%/3ydz ~ : (38)
and - B ‘

Bo, = 3%T%/322 . (39)

- In carrying out these operations we note that



, oU

830 (AB) /3% = -3 (ABIXBB/3x = ~Ty OBIA(x = =')/B

where p = [(é - x')2 + (y -‘y')z]l/z.’ Then we may write
Hox = boPy - (40)
Boy = boPy ' (41)
.Bog = boF, (42)
where o : : .
. . 3m~ .
P = %ljf ZT(A)e'AZ f () ax O 43)
y . .
and
P, = %;—f AT (0e2 £(nyax (44)
o
where b, = IA/(ZWh3)
dere £ = ¢ _/rJl(ko> éx' dy’ e
A A -
and
fy(X) -./Fv/ﬁJl(Ap) ‘———JL- ax' dy (46)
Area

and £(A) 'is given by (36). One may note that

£, 00 = - LaE ) /ox | (47)
and i :
£,00 = xlesy/ay. - (48)
An approach to evaluate (36) is to introduce new variables (r,8) defined
by | %"- X = 1 cos B

1

y - y=171 sin 6

The element of area then becomes rdrd® and

2T 1y Gﬂ .
f f Jo(Ar)rdras (49)
(o]

:«>|o—-' .

£ =



where r = r,(8) 1is the equation for the profile of the loop that is contained
in the plane 2z = -h. Using the Bessel function identity
o , :
i Jo(x)ada = aJq (@) . (50)
oA ‘ :
it follows that 5 .

SRR 27 :
£Q) = D‘i 31 (Ao (8) )z, (8) a8

(51)
0f course, if r, (8) = a, we obtain _
. : ' ) ‘
20 = & 509

_(52)
which is the expected value.

. RENUCTION OF INTEGRALS

Strictly speaking, (39) to (51) are valid only when the projection of the

observation point (x,y) in the plane of the loop (=

-h) lies inside the loop.
When the observation point lies outside the loop, (49) becomes

| ro () o
FO) = ¢ 921 Jo(Ar)rdrds | (53)
elri(@)

where 01 and 6, are the tangent angles and r; 1is the inner radius as shown
in Figure 2. The r integration can again be performed analytically by use of
(50): 1 8 .

£Q) = Hé [Jl(xro(e))ro(e) - 3 (Ary(8)) ry(8) a0 . (54)

1

When the projection of the observation point lies on the loop boundary, (51) and
(54) are equivalent.’

In order to evaluate f_(A) and fy(X), we utilize the following identities
involving p:

9

o)’;o)
"o

- _ 3B S8 _ 3¢
= -5 and ay 3y7

(55)
Thus (47) can be written

£,00 = ;}A'— /f—g? Jo(Ap)dx"dy' . (56)
- Area
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The x' integration can be performed analytically to yield
BN =55 [, om0 = L0R ] 1y, (57)
Yy » x'=xé(y) x'=xi(y)

where yj and yj are the upper and lower limits of y' and x5 and xq]
are the upper and lower limits of x' and are functions of y. In a completely

- analagous manner, fY(A) _can be written
1

L. Xp
£,00) = Hl,{, 00 -30m] e (58)
1 ¥ =y, (x) ¥y =y, &)

Thus, f£(}), £, (A), and fy(k) have all been reduced to a single integral.
- RECTANGULAR LOOf
Another case of some interest is the rectangular loop, since this shape
might be quite feasible for.underground workings. Thus, for é rectangle with
dimensions 2s by 2%, the vertices in the plane z = -h would bg located
at (s,2,), (-s,%), (-s,-2) and (s,-2). 1In the (r,8) system the vertices would

. be located at (r,,6 ),k(r :65), (r4,82) and (r,,0,) where
1:¥1 2272 3*73 4oV 4

=l =02+ - UYL o a (s m2 e (g - 22

- 1/2 o '
t3= [(s+ )2+ 2+ 92 Z ‘and 1, = [(s - x)2 + (& - Y)le/z-

The corresponding angles are defined by

§ - X . : '_ -8 - X . ~ _ s+ x _ 85 =-x
cot 81 f [ ; cot 82 = 7= g cot 83 =3 ¥ and cot 94 :57:7;'
Also we note that ) 9 -
ro(e) = EEE_% for 61 to 82
_ s + x
= - s 8 for 62 to 53,
o (59)
. 2+ '
= -0 for 63 to 94
S"‘

X for 94 to 81
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Thus (51) for the rectangular loop takes the form

- % r -] 8
- : il 4 Rl 4 < _
f(k) AX d/- J1 Ah;sin B ] sin 8 g + é/. Jl[ :
61 ) 2 ,

- .

e

6;
+§[4J1
3

- ;"(2_+'y):}[-'
sin 6

L +y)
sin 8

]

94

8+

s +

(s + x)

cos

»

iE

S

cos B

|«

- xi}ls
cos Bilc

os 6} dd

(60)

- The integrals in (60) can be evaluated either by direct numerical integrations

on 6 or by the following series approach.

These integrals are of two types that can be defined as

. 'eo

1 8 _
v/r cos 6 Jl(cos 6) 8 = C(B,0,)
% :

and
/2 L
1 B -

e“/Psin 8 Jl<sin 8> 6 = S(B,8,)

o

where

Then clearly

and

where

and

'Jl(a> - Z Bm92m+l
m=0

‘1
B_ = (-1)&
= m! (m + l)!22m+l
©(8,8,) = ZOBm32m+1 Cp(Bo)
m=
S(B,eo) = zoBmBZm‘H_»sm(eo)
o= .
N
C_(8.) = -
me ,/( (cos 6)2m+2
0
1'T/z
Sp(80) = 1 a8
e ) J[' (sin 6)2m+2
€

(e}

(6

(61)

(62)

(63)

(64)

-

3)

-

(66)

(67)
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These are integrals of a standard type and we may write

CO(GO) = tan 6 . ' (68)
f.tén3A80 <

Cl(eo) = tan eo + "':—3—— (69)
sin 6, ..,  sin 8
C.(8.) = - ‘0;“_+ LT o + —g-tan 8 ‘ (70)
2 vo 5 3 15 0
5 cos 80 cos” B,
" For higher'order values‘wé have the recurrence férmula
o ' sin 6 ’ '
‘ . 0 - 2m
C_(8,) = + C ©.) (71)
m\Yo -
. (2m + l)cos2m+1 80 2m + 1 o=l :
Similarly '
So(eo) = cot 90 ’ (72)
cot3 80 :
Sl(eo) = cot Bo + ——'5———- : (73)
cos B, .cos © :
: 4 o 8
So(6) = ————F — —— 4 = ot B (74)
2\VYo . co
: 5 sind o ls‘sin3 ) 1> °
o
‘and, for higher values, -
cos 80 om
Sm(B) = 7m + 1 Sp—1(60) (75)

(2m + 1)sin?mtl 6,

In the evaluation of fx(K) and fy(X) for the rectangular loop, (57) and

(58) take the following forms:

- 0B, eyt (76)

=8

oy =L f ol
X - >\A_Z o\P %'=g

and

_}H B8], = 3,08, lay’ Can

£,00)
7 y'=2 y'=-g

In general the evaluation of (76) and (77) requires numerical integration.
NUMERICAL RESULTS

In this section we present numerical results for the fields of both circular
and rectangular buried loops. The half space is taken to be homogeneous (Oi = 0,

and € = 82), and the frequency is sufficiently low that displacement currents
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are negligible (o7 >> wel). The following dimensionless parameters are utilized

-in presenting the numerical results:

/z/h, and ¢ = Arc tan (y/%) ; (78)

Z = z/h, H=h(uopl/2, b= 2+yHt
Although computer programs were written to evaluate the fields at any arbitrary
locationvabove the half-space, all results are presented for the obéerver at
the surface (Z = 0).

The results fbr thefcircular loop were obtained by numerical integration of
(Bé) aﬁd (33). In Figures 3 and 4; we illustrate the vertical and horizontal
magﬁetic fields for various loop sizes for the static case (H = 0); As expected,
the response is stretched out as a/h 1is increased. Of course, the results
are independent of ¢ for circular loops.

The results for rectangular loops Gere obtained by numeriéal integration
of (43) and (44). The results for the horizontal fields are given terms of ra-
dial and azimuthal components Pp and P¢: N

Py=Pycos ¢ +P

o sin ¢ : ’ (79)

y

aﬁd

P¢ Py cos ¢ - Py sin ¢ 7 (80)

The normalized loop dimensions S and L are defined as

S=s/h and L =2/h . (81)

In Figures 5 and 6, [P and [Ppl are shown for various size rectangular

!

°

2 and ¢ = 0°. Due to symmetry, Py 1is zero for ¢ = 0°.

loops for S/L
Note that for S = 0 the results reduce to those of the circular loop for
a/h = 0. This simply confirms the result that a small loop looks like a magnetic
‘dipole regardless of the shape.

In Figures 7 and 8, the ¢ dependence of all three components is shown for
two different size loops: Because of symmetry, Py 1is zero at ¢ = 0° and

90°, and only the range from ¢ = 0° to 90° need be shown. Note that the
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larger loop (8 = é) in Figure é produces a greater ¢. Variafion and ‘a larger
Fo- - - , |

In Figures 9-12, the effect of earth conductivity (H = 2 and R ="5) is
shown for the same loop parameters as in Figures 5 and 6. The primary effect

of increasing H 1is to attenuate the field and to fill in the nulls in P, .
CONCLUDING REMARKS

Ekpressions have.been derived for the magnetic field in air produced by a
bﬁfied horizontal loop of arbitrary shape. In genéral the functibns which char-
acterize the particular loop shape, £(}), fg(k), and fy(A), require a single
numerical integration as indicated by (49), (57), and (58). For the particular
case of a rectangulér source loop, (49), (57), and (58) reduce to the integrals
given by (59), (76), and (77). These forms have been prograﬁﬁed to produce the
numerical results given in Figures 5-12. TFor the special case of a circular
loop, the results simplify in terms of Bessels functions, But a numerical'inteé
gration over the wavenumber X is still required as indicated by (32) and (33).

The numerical results in:Figures 3-6 indicate that small rectangular and
circular loops produce similar surface fields, but that differences appear as
the loop size is increased. In particular the ¢ symmetry, that exists for
circular loops is lost when the loop is rectangular. Also, an azimuthal com-
ponent of magnetic field is produced by the:rectangular loop as shown in Figs.

7 and 8. This field component could present a problem in source location.

An important limitation of the present formulation is that the current in

- the loop is assumed to be uniform. This is justified on. the basis that the loop
wire conductor is covered by insulation and that the circumference of the loop

is extremely small compared with the wavelength in the insulation. At radio
frequencies and higher, this assumption is clearly Violated and another approach;

such as the integral equation technique of Chang (1973) would have to be implemented.
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A wofthwhilg‘further'eitgnSion of the'éresent analysié'is,to allow for

. tilts of the source loop reiative to the air/earth interface.” Tﬁe'formulation
for this case is complicate&‘by‘Ehé‘vertical c;mponents of the source éurrents
but no fundamental difficulty should be encountered. Of couise; the implemen-
tation of the numerical task would not be trivial. This is certainly a valid

subject for further effort. .
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' APPENDIX B

" 'The Three-Layer Case

<

With reference to Fig. 13,it not difficult to :show that the function

T()) analogous to (30) is given by

, 2u, : 2u1 ’ 2 ' h 4
T(A) = p-1 o2 F o3 \oy F ug)\er £ 3 éxp[—U3(h -c) - uz(c -b) - ub] (1)

where ‘ o u o d
' : . 2 7 Y3 2~ 1
D=1- <u2 T u3><;2 T ul) exp[-2up (e ~ b)]
ug - A uy - us
- <;l + k><;l + u2> exp[—Zglb] (2)
fug - A upy = ug :
- <u1 — uy ¥ o exp[-2u;b - 2u2(c - b)]

where wuy = (Az + Y%)I/Z’ Y& = i0pHow for m = 1,2,3. Here 1y Q_po and

all displacement currents are ignored.

The three quantities in large parentheses on the right-hand side of (1)
are the transmission coefficients for the interfaces at z = -¢, =b and 0
respectively. The total complex phase is given by the exponential term in (1).
The total effect of the internal reflections are included in the expression for
D given by (2).

The expression for ‘D was given incorrectiy.in the report by Wait and

Spies [1971b]. I am grateful to Dr. Thurlow W.H. Caffey, who pointed this out.
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Geometry for a loop of arbitrary shape.

Fig. 2
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Vertical component of normalized magnetic field for circular Fig. 3
loops of various sizes.
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Horizontal component of normalized magnetic field for circular

loops of various sizes.

Fig. 4
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Vertical component of normalized magnetic field for rectangular Fig. 5
loops of various sizes.
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Radial component of normalized magnetic field for rectangular Fig. 6
loop of various sizes. :
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The azimuthal dependence of the " Fig. 8
three components of magnetic field
for a larger rectangular loop (S=2)
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