
REFINING THE COMPOSITION OF CESM-ECT

ENSEMBLES

by

DANIEL J. MILROY

B.A., University of Chicago, 2006

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Computer Science

2015

This thesis entitled:
REFINING THE COMPOSITION OF CESM-ECT ENSEMBLES

written by DANIEL J. MILROY
has been approved for the Department of Computer Science

Elizabeth Jessup

Allison Baker

Dorit Hammerling

Thomas Hauser

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

MILROY, DANIEL J. (M.S., Computer Science)

REFINING THE COMPOSITION OF CESM-ECT ENSEMBLES

Thesis directed by Prof. Elizabeth Jessup

Complex, modular codes such as climate simulations are in a constant state of development,

requiring frequent verification. Historically, this process has been computationally expensive and

dependent on the interpretation of a climate scientist. In this research, we utilize the recently

developed Community Earth System Model (CESM) Ensemble Consistency Test (CESM-ECT)

to provide an objective measure of consistency for new CESM simulation runs. This tool relies

on the creation of an ensemble of simulations that represent the same climate system, and whose

statistical distribution embodies the innate variability of the climate model. A CESM ensemble

is created by perturbations to the initial temperature; in this work we investigate whether such

perturbations are adequate for characterizing the variability of a consistent climate. To this end

we develop a systematic method for introducing minimal changes to the Community Atmospheric

Model (CAM) component of CESM which are not expected to modify the climate, and measure

the resultant numerical differences and their effects on the output ensemble with CESM-ECT.

These minimal changes include mathematically identical reformulations (e.g. order of operation

alteration and exchanging division with multiplication by inverse), compiler groups and versions,

levels of compiler optimization, and substitution of the random number generator. Modifications to

CAM modules are selected to be minimal in the sense that 1: the number of lines of modified code

is minimized (i.e. limited to one distinct code block or math kernel), and 2: the alteration should

not be climate-changing. These types of changes should translate to a CESM-ECT pass, and we

examined the CESM-ECT ensemble in that context. In fact, the primary objective of this research

was to ensure that the constituents of the CESM-ECT ensemble provide sufficient variability to

represent a consistent climate, in effect verifying the CESM-ECT ensemble composition.

In this thesis, we demonstrate that the current CESM-ECT ensemble does not contain ade-

iv

quate variability to capture such minimal changes, and we suggest means of improvement to reach

the desired false positive rate.

v

Acknowledgements

Much credit and gratitude are due Allison Baker and Dorit Hammerling for their assistance

with this thesis, coaching me through mock presentations, and for the considerable time they spent

teaching me. Their patient instruction on the details of the inward workings of CESM and the

statistics of ensemble consistency are deeply appreciated. I wish to thank Thomas Hauser and

Elizabeth Jessup for their support throughout the course of the Masters program. Thanks are also

due to Youngsung Kim for fruitful discussions on assembly code instructions.

This research used computing resources including Yellowstone (ark:/85065/d7wd3xhc) pro-

vided by the Climate Simulation Laboratory at the NCAR Computational and Information Systems

Laboratory (CISL), sponsored by the National Science Foundation and other agencies.

vi

Contents

Chapter

1 Introduction 1

1.1 CESM-ECT Approach . 3

1.2 Focus of this work . 3

2 Background 5

2.1 CESM . 5

2.2 CESM-ECT background . 6

2.2.1 CESM-ECT: Principal Component Analysis 7

2.2.2 CESM-ECT: Determining pass and fail . 8

2.2.3 pyCECT . 9

2.2.4 CESM-ECT: Examples of pass and failure . 11

3 Verification of ensemble validity 14

3.1 Experimental process . 14

3.2 Software tools . 15

4 Ensemble member experiments 17

4.1 Self-tests . 17

4.2 Random selection experiments . 19

4.3 Aggregate ensembles . 21

4.4 Effect on variability of compiler and CAM temperature initial temperature conditions 24

vii

5 Code modification experiments 26

5.1 Test cases . 26

5.1.1 Preliminary modifications . 26

5.1.2 Modifications representing different coding styles 29

5.1.3 Modifications representing optimization strategies 31

5.1.4 Modifications representing performance enhancement 33

5.1.5 Results . 35

6 Does an ensemble need 453 members? 38

7 Mira and Blue Waters 40

7.1 Excluding CAM variables . 40

8 Conclusions 45

9 Future directions 47

10 Software 50

Bibliography 51

viii

Tables

Table

2.1 CESM modifications expected to produce same climate 12

2.2 Modifications expected to change the climate . 13

2.3 Modifications with unknown outcome . 13

4.1 Exhaustive testing failure rates of 30 randomly excluded simulations 20

4.2 EET failure rates of random selection experiments against sz150 ensembles 21

4.3 EET failure rates of random selection experiments against sz453 ensembles 22

5.1 Assembly code instruction counts for MG1 . 27

5.2 Call frequencies relative to ADV1 . 37

6.1 EET failure rates of code modification experiments 38

6.2 EET failure rates of rand experiments versus three different sizes of compiler aggre-

gate CESM-ECT ensembles . 39

ix

Figures

Figure

2.1 pyCECT workflow . 10

4.1 EET failure percentage by experiment for “self-tests” 18

4.2 EET failure rates of random selection experiments 23

4.3 ANOVA Mean Squares Ratio . 25

5.1 EET failure percentages of code modification experiments 36

7.1 EET failure rates of three CESM-supported supercomputers 41

7.2 Stacked histogram of Mira failures by excluded CAM variable 43

9.1 Effects of initial CAM temperature perturbation . 49

Chapter 1

Introduction

Modeling the Earth’s climate is a formidable task, requiring considerable human resources to

devise and encode correct mathematical representations of physical processes. These processes typ-

ically cover spatial extents of less than a millimeter to thousands of kilometers, with a comparable

range of time scales. The code base for these models can be millions of lines and represent decades

of software development time for teams of engineers and scientists. A correspondingly complex

range of machinery can be required to execute the code and produce results in a timely manner.

Concomitant to vastly different execution scales, runtime hardware, and development is the

question about validity and veracity of the results. The great assortment of platforms on which

Global Climate Models (GCMs) run and the vast number of available parameters and configura-

tions used to tune their behavior (Pipitone and Easterbrook, 2012) translate to a corresponding

difficulty in detecting simulation error. Easterbrook and Johns (2009) provide a detailed overview

of identifying incorrect implementations of physical phenomena and algorithms in GCMs via Veri-

fication and Validation strategies. They highlight one such mechanism, the bit-for-bit (BFB) test,

which determines whether the outputs of two simulations are BFB identical. Such tests performed

over short simulation time spans can be indicators of reproducibility over longer time intervals and

gross errors in formula implementation (Easterbrook and Johns, 2009).

However, results in general will not be BFB identical, even if they represent the same climate.

Small perturbations (within established tolerances) to initial conditions can result in non-BFB re-

sults, despite representing nearly identical climates. Given that the modularity of some GCMs,

2

such as NCAR’s Community Earth System Model (CESM), facilitate runs on varied hardware and

architectures, they are doubtless run on machines without hardware error correction. In the pres-

ence of persistent hard or intermittent soft errors, identical runs on the same machine could result

in different climates. These errors are not typically a concern for machines comprised of enter-

prise hardware, but may affect personal machines and commercial, off-the-shelf (COTS) clusters.

Moreover, the increasing prevalence of heterogeneous execution environments which employ GPUs

or Xeon Phi coprocessors working in concert with CPUs increases the importance of defining an

objective measure of consistency between non-BFB simulation outputs. For example, adapting a

GCM to run on a new machine which may feature new compilers and hardware drivers can be a

tremendously involved process. Until very recently, when CESM was ported to a new machine or

architecture, a simulation of 400 years typically was run (Baker and Hammerling, 2015: hereafter

designated BH2015). The output data were then compared to an identical run on a trusted ma-

chine, and the results were run through a diagnostics package and given to a senior scientist for

approval- a time-consuming and largely subjective process.

Furthermore, the code base is in constant development in terms of bug fixing, algorithm

and performance improvement, and feature introduction. A key component of verification is a

procedure for identifying software bugs, akin to quality control. Clune and Rood (2011) delineate

the challenges of assessing the software quality of GCMs, highlighting the extraordinary difficulty

of the undertaking. A CESM codebase that correctly represents the evolution of the global climate

may contain bugs, even in equation solving subroutines. Many elements of the time evolution of a

climate are highly nonlinear, and introducing or eliminating modules (for example, by running on

a single node versus a cluster) that represent different physical processes could conceivably cause

an otherwise identical set of simulations (or components) to diverge or converge to a valid true

climate depending on their stability properties. Any change in CESM code, hardware, compiler

version, or the supporting software stack can alter the simulation output at least equivalent to

truncation or round-off errors. We will demonstrate that even mathematically equivalent alterations

to subroutines can produce numerically distinct output. The challenge is to distinguish non-BFB

3

results that are consistent and a consequence of a valid change, from non-BFB outputs that result

from error.

1.1 CESM-ECT Approach

The difficulty of obtaining BFB identical results suggests an approach that utilizes relation-

ships between members of a set of simulations to quantify consistency rather than verisimilitude

or correctness. In BH2015 the CESM ensemble consistency test (CESM-ECT) was developed for

measuring the consistency of an ensemble of CESM simulations. Given an ensemble of simulations

from the original configuration, newly generated simulation output is designated “accepted” if it is

statistically indistinguishable from the ensemble’s distribution. Hereafter the original configuration

is taken to mean accepted in that it is produced on a trusted machine with an accepted software

stack. CESM-ECT is designed to accomplish three objectives: determine whether the new output

is consistent with the original configuration, return a false positive rate, and provide ease-of-use

and lack of computational expense (BH2015). CESM-ECT adheres to the coarse-grained approach

in that its purpose is not to identify the cause of the discrepancy, but to identify that a discrepancy

exists. An additional benefit of the CESM-ECT approach is that it allows for a measurement of the

natural variability in the ensemble, which is studied here to the end of improving the ensemble’s

constituents and classification power.

1.2 Focus of this work

The basis of the work presented here is BH2015 which established the foundation of ensemble-

based consistency testing. The selection of a representative or original configuration is critical to

the accurate determination of whether new simulations pass. An improperly chosen ensemble,

which in this context signifies that it is unrepresentative of the natural variability present in a

consistent climate, will result in misleading CESM-ECT results. One implication of “improper” is

that an ensemble could contain too much variability; that is not our focus, and coarse testing in

BH2015 suggested this is not the case. As a consequence of the study’s novelty, the properties of

4

CESM-ECT original configurations were not explored in depth in BH2015. Such examination is

the principal charge of this thesis. Further, exploring the response of the Community Atmospheric

Model component of CESM output under minimal code alterations as tested by CESM-ECT serves

to quantify the concept of “minimal, non-climate changing modifications.” Put another way, mini-

mal code modifications that do not alter the mathematical structure of CESM, but that produce a

measureable difference in CESM-ECT output should be classified as consistent. CESM-ECT should

return a failure when, for example, a code modification, machine porting, or change of compiler

encompasses a mathematical, coding, or hardware error that produces a distinct climate. This the-

sis presents examples of minimal, mathematically identical code changes, and includes a successful

identification of numerical instability on a Leadership Class supercomputer that was discovered

with the assistance of the refined CESM-ECT.

Chapter 2

Background

In this section we present information on which the contributions of this thesis are based.

2.1 CESM

The Community Earth System Model (CESM), principally developed at NCAR, is an open

source global climate model that is available to the global climate research community. CESM can

be configured to run on a laptop or occupy every core of a large-scale supercomputer.

CESM is composed of multiple geophysical models: atmosphere, ocean, land and sea ice,

rivers, and others. These models exchange data via a coupling mechanism which can be tuned.

Compilation templates exist for machine type (execution supercomputer) which include details

of the machine’s hardware configuration (cores per socket, memory per core, fabric interconnect

and topology, etc. . .) and choose sensible settings for runtime. At runtime, CESM writes restart

files at user-specified time intervals which contain double-precision floating point values. Output

data for analysis are written in time slices to NetCDF history files, by default in single-precision

floating point format. This point will be revisited in detail in the section discussing Community

Atmospheric Model (CAM) modifications. The CESM-ECT project focuses on the CAM module

due to the relatively short time scales for propagation of changes or perturbations in the atmosphere.

The corollary of this is that shorter runtimes are needed to ensure sufficient data collection for the

comparison. Additionally, CAM variables represent a diverse set, numbering approximately 130.

Due to the coupling mechanism, it is assumed that changes propagate through the interface to

6

other models, but this does not imply that if CAM variables pass CESM-ECT then other models’

variables will pass as well. Given the chaotic nature of the system, representing the inherent

variability of CESM with a single simulation is difficult (BH2015).

2.2 CESM-ECT background

The CESM-ECT ensemble is a set of CESM simulations with identical parameters, differing

only in initial atmospheric temperature conditions (BH2015). The ensemble members are run,

evolving in time at the same rates for the same amount of time, and the initial temperature

perturbations guarantee the creation of unique trajectories through the global models’ phase space,

in turn generating a distribution of output variables that can be analyzed for consistency. Both in

BH2015 and our work in the later sections, perturbations of the initial atmospheric temperature field

are generated in the closed interval
[
−8.5× 10−14, 8.5× 10−14

]
, and the members of the ensemble,

as in the experimental sets of this work, are run for 12 months. One year is chosen as it is short

enough to permit ensemble generation in a reasonable amount of time, and sufficient to generate a

representative statistical distribution. The O(10−14) perturbation is selected because it permits a

divergence of the phase-space trajectories, but is expected to preserve the variables’ distributions

(BH2015). An ensemble of 151 members is chosen due to a lower-bound constraint imposed by the

primary analytical technique: Principal Component Analysis (PCA- discussed in Section 2.2.1).

PCA stipulates that the number of data points (i.e. ensemble members) be larger than the number

of variables.

In summary, the CESM-ECT ensemble consists of Nens = 151 one-year climate
simulations, denoted by E = {E1, E2, . . . , ENens}, and is produced on a trusted
machine with an accepted version, model, and configuration of the climate code.
The data for these one-year ensemble runs consists of annual temporal averages at
each grid point for the selected grid resolution for allNvar variables, which are either
two or three-dimensional. [. . .] We denote the dataset for a variable X as X =
{x1, x2, . . . , xNx}, where xi is a scalar that represents the annual (temporal) average
at grid point i and NX is the total number of grid points in X[. . .]. (BH2015)

7

2.2.1 CESM-ECT: Principal Component Analysis

Excluding redundant variables and those with zero variance results in a set with the number

of variables Nvar = 120. In BH2015 a correlation analysis was performed, which concluded that “52

variables are highly correlated [>0.9].” Determining criteria such as false-positive rates required a

projection of these variables into a space where the data are linearly independent.

Principal Component Analysis (PCA) is a common tool for dataset dimensionality reduction.

As a linear operator, PCA is an orthogonal transformation (rotation) of data from an original space

to a subspace. Although there are several precise methods of deriving the projection operator,

it involves solving the eigenvalue problem for the covariance matrix of the original data. The

eigenvectors can be sorted in descending order of their eigenvalues, forming an n×m matrix, where

n is the number of dimensions selected for the subspace and m is the number of original variables.

Typically, the choice of n is the result of a subjective optimization problem: what is the minimum

number of linearly independent components in the transformed space that explains the maximum

original dataset variance? Slightly more formally, given j eigenvalues {λ1, λ2, . . . , λj}, we seek the

smallest n such that 100×
∑n

i=1 λi∑j
i=1 λk

≥ α where α is some minimum acceptable percentage of variance

explained.

In CESM-ECT, PCA is applied to the global means data. First, the Nvar×Nens data matrix

is standardized in the usual way: subtract the ensemble mean, and scale by the ensemble standard

deviation (unit variance), denoting the output Vgm. This is performed due to the data differing

in scale by many orders of magnitude. Next, the eigenvalue problem of the covariance matrix of

Vgm is solved, yielding the transformation matrix, or “loadings” Pgm. Note that this matrix is of

size Nvar ×Nvar - superfluous components can be discarded after subspace projection. Finally, the

matrix Vgm is rotated (projected) onto the subspace: Sgm = Pᵀ
gmVgm. Note that Sgm is of size

Nvar × Nens. The standard deviation of the ensemble scores is calculated and denoted σSgm . In

summary, these quantities are calculated and written to the CESM-ECT summary file:

• Nvar means of global mean values (µVgm)

8

• Nvar standard deviations of ensemble global mean values (σVgm)

• Nvar ×Nvar loadings Pgm

• Nvar standard deviations of ensemble global mean scores (σSgm)

The distribution of global mean scores from the ensemble, represented by the
standard deviations in σSgm , can be used to evaluate data from a new simulation.
Note that most of the variance in the data is now largely represented by a few PCs.
In fact, the coefficients on the first PC explain about 21% of the variance and the
coefficients on the second explain about 17% of the variance. In this work we use
NPC = 50, as little additional variance is explained by the final 70 PCs. (BH2015)

2.2.2 CESM-ECT: Determining pass and fail

CESM-ECT seeks to determine whether given an “original ensemble” run on an accepted

machine like Yellowstone and a small number of runs on a new machine, the results obtained from

the new machine are statistically indistinguishable from the original ensemble. CESM-ECT then

reports a pass or fail based on the consistency of the new runs with the ensemble.

As in the summary file computation, CESM-ECT calculates the weighted area global means

for each variable in all the new runs (number of new runs = Nnew). These means are standardized

using the mean and standard deviations in the Yellowstone summary file (µVgm and σVgm). Next, the

standardized means are rotated into the PC space of the original ensemble via the transformation

matrix Pgm in the summary file. Third, the tool determines if the first N Principal Components

(NPC) of the new runs are within Mσ standard deviations of the original mean (zero in PC space),

also using the standard deviation in PC space (σSgm). Finally, for each member of the new runs,

CESM-ECT labels each PC score outside Mσ as a fail (BH2015). Let P be the set of sets of failing

PCs, grouped by new run (P = {Xi}, i ∈ {1, . . . , Nnew}). CESM-ECT then performs the following

computations to determine an overall failure:

⋃
(Nnew
NRunFails

)

(
⋂

NRunFails

Xi); i ∈ {1, . . . , Nnew}

9

If |S| ≥ NpcFails the new runs are designated as a failure. In words, if at least NpcFails

PCs fail at least NrunFails, CESM-ECT returns a failure. The parameters Mσ, Nnew, NpcFails,

and NrunFails are chosen to obtain a particular false positive rate. The false positive rate is the

frequency at which the test returns a failure when the set of new runs should pass. In BH2015 an

empirical study was performed to find values of the CESM-ECT parameters to yield a false positive

rate of 0.5%. These parameters were chosen with the following values: Mσ = 2 (95% confidence

level), Nnew = 3, NpcFails = 3, and NrunFails = 2. Let P = {A,B,C} be the set of sets of failing

PCs, then the above set S is expressed as:

SAB = A ∩B,SAC = A ∩ C, SBC = B ∩ C (2.1)

S = SAB ∪ SAC ∪ SBC (2.2)

Thus the new runs fail if |S| ≥ 3. The false positive rate of 0.5% is selected to hedge

“against the possibility that our ensemble may not be capturing all the variability that we want to

accept” (BH2015). Also, “while perturbing the initial temperature condition is a common method

of ensemble creation for studying climate variability, other possibilities exist, and we are currently

conducting further research on the initial ensemble composition and its representation of the range

of variability, particularly in regard to compilers and machine modifications” (BH2015). This is

the interface between our research and BH2015.

2.2.3 pyCECT

The Python CESM Ensemble Consistency Tool (pyCECT) codifies the testing procedure

defined above in a portable platform that can be used from any operating system. It is designed

to be user-friendly and computationally inexpensive, and to yield clear, conclusive results. Broadly

speaking, the workflow of consistency testing amounts to generating accepted output, generating a

comprehensive and quantitative description of the accepted distribution, and determining whether

the new data conform to the accepted data. See Figure 2.1 below.

10

Figure 2.1: Typical workflow for CESM-ECT, including two of its constituents. Appears in BH2015.

Summary
File

new CAM
output 1

new CAM
output 3

new CAM
output 2

pyEnsSum

pyCECT

151 CAM
output files

Pass/Fail

CESM-user

CESM-software engineers

(provided in CESM release)

11

2.2.4 CESM-ECT: Examples of pass and failure

BH2015 performed three groups of tests to determine how CESM-ECT classifies different

types of modifications. The first test consisted of modifications that were not expected to change

the climate, the second likely climate-changing, and the third unknown. The results are discussed

in the sections below. The results in this work were obtained from the 1.3 release series of CESM,

using a current F compset (active atmosphere and land, data ocean, and prescribed ice mode) and

CAM5. In BH2015 120 out of 134 CAM variables were examined, as some variables are redundant

or possess no variance. Of the 120 variables, 78 are two-dimensional and 42 are three-dimensional.

CAM5 uses an approximately one-degree resolution, which contains 48,602 horizontal gridpoints

and 30 vertical levels. Simulations were run with 900 MPI processes and two OpenMP threads per

process on the Yellowstone machine at NCAR. The default compiler on Yellowstone for our CESM

version is Intel 13.1.2 with O2 optimization (BH2015).

2.2.4.1 Modifications not expected to be climate-changing

The following tests (Nnew = 3) on Yellowstone produce non-BFB changes in output, but

should not be climate changing:

NO OPT: changing the Intel compiler flag to remove optimization (-O0)

INTEL-15: changing the Intel compiler version to 15.0.0

NO-THRD: compiling CAM without threading (MPI-only)

PGI: using the CESM-supported PGI compiler (13.0)

GNU: using the CESM-supported GNU compiler (4.8.0)

(BH2015)

Each test is comprised of simulations whose initial atmospheric temperatures are perturbed with a

random value in the range used to create the original ensemble. Table 2.1 depicts the results.

12

Table 2.1: CESM modifications expected to produce same climate. Appears in BH2015.

Test name CESM-ECT Results Number PCs failing at least 2 runs
NO-OPT PASS 1
INTEL-15 PASS 1
PGI PASS 0
GNU PASS 2

2.2.4.2 CAM parameter modifications, expected to be climate-changing

To test whether CESM-ECT correctly classifies modifications expected to result in a different

climate, scientists provided a list of CAM input parameters that should produce a different climate

under time evolution when substantially perturbed. The test results are included in Table 2.2

below. A complete explanation of the test variables can be found in BH2015. Noteworthy is the

conclusiveness of failures in this test.

2.2.4.3 Modifications with unknown outcome

This group of tests considers each machine to be a modification. Note that the failures

exhibit NpcFails only slightly greater than the classification threshold of two (Table 2.3); these are

all borderline cases. Of these failures, Blue Waters and Mira are selected for further discussion

in Section 7. Borderline cases such as these raise questions as to the composition of the accepted

ensemble: does it contain enough variability that these two machines justifiably fail CESM-ECT?

13

Table 2.2: Modifications expected to change the climate. Appears in BH2015.

Test name CESM-ECT Results Number PCs failing at least 2 runs
DUST FAIL 9
FACTB FAIL 36
FACTIC FAIL 43
RH-MIN-LOW FAIL 44
RH-MIN-HIGH FAIL 30
CLDFRC-DP FAIL 27
UW-SH FAIL 24
CONV-LND FAIL 33
CONV-OCN FAIL 45
NU-P FAIL 35
NU PASS 1

Table 2.3: Modifications with unknown outcome. Appears in BH2015.

Test name CESM-ECT Results Number PCs failing at least 2 runs
HOPPER PASS 1
EDISON PASS 1
TITAN PASS 0
MIRA FAIL 5
JANUS PASS 1
BLUEWATERS FAIL 5
EOS FAIL 4
GOLDBACH-INTEL PASS 0
GOLDBACH-PGI PASS 0

Chapter 3

Verification of ensemble validity

Our contribution to CESM-ECT begins with a consideration of additional means of ensemble

generation. This study endeavors to determine if the accepted ensemble contains sufficient variabil-

ity that experiments which are not climate-changing are classified as such by CESM-ECT, in effect

improving the constituents of the tool and its accuracy. As described in Section 2.2.4 a preliminary

investigation into variability in CAM outputs under change of compiler, optimization order, and

machine was performed in BH2015. Since generated object code depends greatly on the compiler

type, version, and optimization order, it is difficult to predict program output differences given

any such change. Moreover, detecting meaningful differences in object code generated from source

code in excess of a million lines is a fearsome prospect. In particular, optimization order performs

source code alterations to improve program performance. Examples of automatic code optimiza-

tion include replacing power function calls with multiplication (x**2 becomes x*x), vectorization,

and unroll-and-jam. These changes are similar to those that a programmer could make during the

engineering or optimization of code. This raises the question as to the impact of mathematically

identical code changes on the statistical properties of CAM variable outputs.

3.1 Experimental process

The first stage of this research consists of testing the ensembles against themselves, meaning

that members of the ensemble (of various compositions and total sizes: 150, 151, 300, and 453) are

passed to pyCECT and tested against summary files generated from all of the ensemble members.

15

Inter-ensemble tests are also included in this initial testing. The second stage of experimentation is

concerned with determining minimal modifications and discerning their effects on the output CAM

variables via CESM-ECT.

While initial temperature perturbations to CAM have been discussed and are familiar to

scientists, the results of an order of operation change by a software engineer, or the automatic

function substitution by a compiler had not been studied. Motivated by the need to understand the

relationship between the effects of temperature perturbation, machine, different compilers, and code

modification, we first performed a search for a “small” code change that would induce a difference

in CAM single-precision output. More directly, we investigate this relationship to determine if

perturbations to initial conditions such as temperature are sufficiently large to capture legitimate

code changes, and can be considered components of the variability of a consistent climate. In an

effort to minimize core hours consumed during testing, we adopted the strategy of running modified

cases for 5 simulated days to determine if there was a measurable double-precision difference, and

to run an initial simulation with 64 cores (threading disabled) before scaling up to the 900 MPI

process, two thread-per-process simulation if preliminary outputs warranted it. If the CAM logs files

differed from the control, a 12 month simulation was run. Code modification experiments consist

of 30 simulations, and 24 members for Blue Waters and Mira machine tests so that the number is

divisible by three, which is the preferred number of runs to compare per execution of pyCECT. We

identify three categories of code modification experiments: those representative of coder preference,

those representing optimization strategies, and subroutine substitution for potential performance

improvement.

3.2 Software tools

To establish whether a modification had a measurable effect to single-precision, and merit

extension to a full 30-member experiment, we used two common tools for comparing the NetCDF

(single-precision) output: cprnc and nccmp, and GNU “diff” for the double-precision CAM log

files. In generating CESM-ECT test results, the default behavior of pyCECT is to accept three

16

CAM output files and a desired summary file as input, read a single time slice (single-precision

output after 12 months), rotate the global means of the three CAM files into the PC space of the

summary file, and return the number of failing PCs (outside of two standard deviations from the

summary file mean) from each experiment. If three or more PCs fail in two or more of the input

CAM files, pyCECT returns an overall failure. Performing the consistency testing for the minor

code modification experiments, as well as the machine experiments on ALCF Mira and NCSA Blue

Waters, initially entailed feeding the members of the experiment set, three random examples at a

time, to pyCECT. In the 30 member experiments this results in 10 total tests, and for the machine

experiments, eight. This is a small sample of the total number of tests that can be performed with

Nmembers, selecting Nnew at a time; for example, two failures out of 10 is inconclusive. However,

since running pyCECT on 30 members takes minutes, running all
(
30
3

)
= 4060 tests (or 2024

for the 24 member experiments) would be prohibitively time-consuming. By using pyCECT to

provide the PC failures per experiment member, we developed a computationally efficient script

(CESM Ensemble Exhaustive Test: EET) to read its output sets of failing PCs and perform

all
(
Nmembers

3

)
tests, rendering exhaustive testing feasible. Employing Python sets of dictionaries

facilitates consistency testing between full ensembles as well. Indeed, performing 4060 tests takes

a fraction of one second, and all 562,475 tests of a 151 member ensemble takes less than two

seconds.

Chapter 4

Ensemble member experiments

The first phase in verification of the accepted ensemble is to perform consistency testing on

its members. These members should pass, as they are consistent by definition. Tests performed

on members against summary files generated from the same members (i.e. Intel members tested

against the Intel summary file) are expected to manifest error rates approximately equal to our

desired false-positive rate (0.5%).

4.1 Self-tests

Empowered by EET, we were able to fully test all four Yellowstone original ensembles (Intel,

GNU, PGI, NO-OPT) from BH2015 against themselves. Each of these 151 member ensembles is

named for the compiler or optimization used to build it. The NO-OPT ensemble was built with

the Intel compiler, disabling optimization (O0). The Intel CESM-ECT ensemble summary is the

accepted CESM-ECT ensemble used throughout BH2015 and in current CESM testing. We also

include a fifth ensemble, labeled Intel-GNU-PGI, which was created by combining the 151-member

Intel, GNU, and PGI ensembles into a single 453 member aggregate. The distribution represented

by the Intel-GNU-PGI ensemble should be wider as it includes the variability due to each compiler

as well as the variability introduced by perturbations to the initial conditions. The results are

presented in Figure 4.1.

The y-axis denotes the percent failure of all possible tests as calculated by EET. The first four

experiments’ elements are simulations whose executables were built against the designated compiler,

18

Figure 4.1: EET failure percentage grouped by experiment. Colors indicate ensemble summary file
used in comparison, “ys” abbreviates Yellowstone. “Intel” is the CESM-ECT accepted ensemble
in BH2015.

 0

 2

 4

 6

 8

 10

 12

 14

ys-intel ys-gnu ys-pgi ys-noopt ys-intel-ex30

P
er

ce
nt

 F
ai

lu
re

Experiment Name

Intel
GNU
PGI

Intel-GNU-PGI
NOOPT

19

and run on NCAR’s Yellowstone supercomputer. The “ys-intel-ex30” experiment is discussed in

section 4.2.

Note the failure percentages of the 151 member ensembles. For the corresponding numerical

values, consult the link to data in Section 10. As expected, the failure percentages are low (<1%)

when the ensemble is tested against its own summary file, but are typically order <10% between

compilers. Interestingly, NO-OPT (Intel O0) tested against Intel (O2 optimization) exhibits a

similar failure rate to between-compiler tests. Because the GNU and PGI compilers on Yellowstone

are CESM-supported configurations, they are expected to pass. Note that the results from BH2015

(Table 2.1) test only one random selection of three runs from PGI and GNU, both of which passed.

The EET capability was needed to expose the true failure rate. However, note the lower failure

rates of the ys-intel, ys-gnu, and ys-pgi tests against the size 453 Intel-GNU-PGI summary. Testing

against this new summary is intended to be an overall assessment against the accepted Yellowstone

configuration, by including the variability of the Intel, GNU, and PGI compilers.

The self-tests were intended as a first-order assessment for CESM-ECT. The limitation of

self-testing is that the files used to generate the ensemble summaries (thus PCs) are used in the

test itself. Furthermore, this is true for the size 453 Intel-GNU-PGI summary, which obfuscates

the effectiveness of the added variability via the reuse of the test files for ensemble generation. This

aliasing effect is dispelled in the ys-noopt and ys-intel-ex30 experiments.

4.2 Random selection experiments

The so-called yellowstone-intel-extra30 experiment (rightmost experiment in Figure 4.1) presents

a remarkable anomaly- the 13.0% failure rate against the Intel ensemble summary. The “extra30”

experiment consists of 30 members removed from an ensemble of 181 Intel simulations, yielding

the yellowstone-intel 151 ensemble used by CESM-ECT. Extra30 is selected from the maximal and

minimal elements of the set of initial temperature perturbations, namely the set of values in the

disjoint intervals
[
−9.9× 10−14,−8.5× 10−14

)
,
(
8.5× 10−14, 9.9× 10−14

]
. Extra30’s 13.0% failure

rate against the Intel CESM-ECT ensemble is very high in comparison with the 0.5% false-positive

20

rate, given that it should not be climate-changing.

Therefore, for a more rigorous test of mutual-exclusivity of ensemble summary composition

and experimental set, we created more ensemble summary files by randomly excluding 30 simula-

tions from the 181 Yellowstone simulations available to us for each compiler (Intel, GNU, and PGI).

We randomly selected three sets of 30 (labeled rand1, rand2, and rand3) to exclude from the 181,

and these new ensemble summaries are labeled by the set of randomly excluded simulations, e.g.

I-rand2 which corresponds to 151 Intel runs resulting from excluding the rand2 set from the 181

element Intel set. Note that the “rand2” label is consistent across summaries: P-rand2 excludes

the same 30 simulations as I-rand2 and G-rand2. Exhaustive tests of the 30 randomly excluded

simulations per compiler were run against these nine summary files, resulting in 81 tests (Table

4.1).

Table 4.1: Exhaustive testing failure rates of 30 randomly excluded simulations from 181 member
ensembles (rand1, rand2, rand3) against summary files generated by excluding the corresponding
simulations. For the experiment names, “ys” = Yellowstone, “i” = Intel, “g” = GNU, “p” = PGI.

Experiment I-
rand1

I-
rand2

I-
rand3

G-
rand1

G-
rand2

G-
rand3

P-
rand1

P-
rand2

P-
rand3

ys-i-e30-rand1 5.9 0.2 1.8 11.1 4.1 6.2 5.4 3.2 6.7
ys-i-e30-rand2 0.1 3.9 1.0 6.2 13.7 6.7 5 1.9 7.8
ys-i-e30-rand3 0.1 0.5 8.8 11.9 7.8 9.9 4.4 6.5 12.2

ys-g-e30-rand1 6.8 7.1 1.7 7.0 1.2 0.1 7.4 3.1 5
ys-g-e30-rand2 6.6 6.7 6.9 0.1 7.2 0.5 18.5 8.6 11.7
ys-g-e30-rand3 4.7 4.6 4.3 1.0 0.8 6.2 3.2 8.0 9.4

ys-p-e30-rand1 8.6 5.9 9.5 7.2 8.3 8.2 5.1 0.1 0.6
ys-p-e30-rand2 3.8 9.3 11.8 5.6 14.0 11.8 0.2 5.9 0.7
ys-p-e30-rand3 7.8 13.3 15.2 9.4 9.7 3.3 0.3 0.7 8.4

The failure rates of experiments against the summary files with corresponding excluded sets

(e.g. ys-i-e30-rand1 versus I-rand1, or the highlighted diagonal of Table 4.1 are significantly higher

than off-diagonal failures when testing experiments against summaries formed from the same com-

piler. This outcome is consistent with the Extra30 result in Figure 4.1, as the intersection of the

sets of simulations that form the I-rand1 summary and the ys-i-e30-rand1 experiment is zero. This

is further evidence that 151 member ensembles are variationally deficient. Accordingly, testing the

ys-i-e30-rand1 experiment against the I-rand2 summary file results in a “partial self-test” in the

21

sense that the experimental set is a subset of the simulations that comprise the summary file. Also

significant are the off-diagonal blocks of Table 4.1, or inter-compiler tests. For example, the ys-g-

e30-rand versus P-rand block: in these experiments there is no evident relationship between failure

rates, excluded sets, and compilers, signifying that the inter-compiler tests lose their dependence

on the initial conditions.

4.3 Aggregate ensembles

In keeping with the previous results in Figure 4.1 demonstrating uniform, relative lower failure

rates of experiments against the combined-compiler summary (Intel-GNU-PGI), we ran similar

exhaustive tests of the “rand” experiments against combined-compiler summaries to determine

if an ensemble composed of 150 simulations from the three compilers (50 each) would form a

suitable accepted ensemble. Three new summaries were created from subsets of the size 151 rand

ensembles from section 4.2. Then three random selections of 50 simulations from each ensemble

were made such that the corresponding CAM initial temperature perturbations form a disjoint cover

(mathematically precise: exact cover) of the 150 (zero perturbation was excluded) perturbations

(Table 4.2). The three new summary files are labeled sz150.IGP-rand1, sz150.IGP-rand2, and

sz150.IGP-rand3 to designate the randomly excluded set.

Table 4.2: EET failure rates against the designated ensembles. Note the percentages are high
in comparison with the desired false positive rate (0.5%), and their instability. The experiment
nomenclature is identical to Table 4.1.

Experiment sz150.IGP-rand1 sz150.IGP-rand2 sz150.IGP-rand3

ys-i-e30-rand1 10.8 3.8 10.3
ys-i-e30-rand2 1.0 13.0 9.3
ys-i-e30-rand3 6.9 4.6 13.3

ys-g-e30-rand1 4.7 8.3 6.0
ys-g-e30-rand2 6.5 16.1 8.0
ys-g-e30-rand3 5.4 4.4 15.3

ys-p-e30-rand1 6.1 10.7 7.4
ys-p-e30-rand2 3.3 6.1 5.3
ys-p-e30-rand3 4.9 11.8 6.6

22

The failure rates’ large magnitudes in Table 4.2 as compared with the desired false positive

rate (0.5%) suggest that the sample size of 50 from each compiler ensemble is too small. Another

salient feature of Table 4.2 is the high variability of the failure rates (e.g., from 0.8 to 15.8 for ys-i-

e30-rand2) across the summary files. This is also a characteristic of a low sample size- the underlying

distribution is not adequately represented by 50 selections from each compiler ensemble, thus the

distribution characteristics depend too heavily on the random selection.

To verify the suitability of the larger aggregate ensemble from Figure 4.1, we performed

exhaustive tests of the nine experiments in Table 4.2 against three size 453 summaries constructed

by combining the 151 member ensembles (through the rand* exclusion of 30 simulations from

section 4.2) from each compiler. The numerical values are given in Table 4.3, and Tables 4.2 and

4.3 are depicted graphically in Figure 4.2. Since the failure rates are now fairly consistent across

all three summaries in Table 4.3 and the rates are approximately equal to our desired 0.5% false

positive rate, this suggests that these 453 member summaries are providing adequate CESM-ECT

failure rate determination. However, this assessment is examined in greater detail in Section 5

where we consider code modifications, and in Section 6 where an intermediate ensemble of size 300

is created and tested.

Table 4.3: EET failure rates against the designated ensembles. Note the percentages are approx-
imately equivalent to the desired false positive rate (0.5%), and their stability relative to Table
4.2.

Experiment sz453.IGP-rand1 sz453.IGP-rand2 sz453.IGP-rand3

ys-i-e30-rand1 0.3 0.0 0.5
ys-i-e30-rand2 0.5 1.0 0.0
ys-i-e30-rand3 0.5 0.8 1.6

ys-g-e30-rand1 0.5 0.3 0.0
ys-g-e30-rand2 0.2 3.6 0.1
ys-g-e30-rand3 0.8 0.1 1.0

ys-p-e30-rand1 0.3 0.9 0.2
ys-p-e30-rand2 0.0 0.7 0.6
ys-p-e30-rand3 0.5 0.3 2.4

23

Figure 4.2: EET failure rates versus designated experiment. Experiment names are abbreviated,
e.g. yellowstone-intel-extra30-rand1 becomes ys-i-e30-r1 as in Table 4.1 and 4.2. Note that the
failure rates against the 453 member ensemble were comparable to our desired false positive rate
(0.5%).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

ys-i-e30-rand1 ys-i-e30-rand2 ys-i-e30-rand3 ys-g-e30-rand1 ys-g-e30-rand2 ys-g-e30-rand3 ys-p-e30-rand1 ys-p-e30-rand2 ys-p-e30-rand3

P
er

ce
nt

 F
ai

lu
re

Experiment Name

sz453r1
sz453r2
sz453r3
sz150r1
sz150r2
sz150r3

24

4.4 Effect on variability of compiler and CAM temperature initial temper-

ature conditions

To probe the relationship between the effect of compiler and CAM temperature initial con-

ditions on variability, Dorit Hammerling performed an ANOVA study of the Mean Squares ratio

(sum of mean squares divided by degrees of freedom) of compiler to CAM temperature initial con-

ditions. The plot (Figure 4.3) indicates that the compiler effect is generally more influential on

variability than the temperature initial conditions due to the mean ratio of 6.6 and median ratio of

1.3 (compiler to CAM temperature initial conditions), however, note that the ratio varies greatly

by variable.

25

Figure 4.3: Courtesy Dorit Hammerling. The ANOVA Mean Squares Ratio is determined
by the ratio of the sum of the mean squares of the compiler divided by the compiler degrees of
freedom (two) divided by the sum of the mean squares of the initial conditions divided by the initial
condition degrees of freedom (180). The mean ratio is 6.6, while the median is 1.3. If the effects
were equal, these two values would be 1.

Chapter 5

Code modification experiments

Our goal for the modification experiments was to perform a “minimal” change to CAM code

that, when propagated through the year-long simulation, would result in a difference in single

precision output in the CAM history file. In this section, we describe preliminary attempts at code

modification and the lessons learned which were applied to later experiments. We then describe

three categories of code modifications selected for exhaustive testing in Section 5.1.2, 5.1.3, and

5.1.4.

5.1 Test cases

This subsection contains preliminary modifications, those representing different coding styles,

optimization strategies, and subroutines and performance. In the code blocks provided in this

subsection green text signifies code added, red deleted, and black unchanged.

5.1.1 Preliminary modifications

The first attempt was a plausible change a software engineer would make for optimization:

exchanging a division with a multiplication by the inverse. We modified the CAM micro mg1 0.F90

(Morrison-Gettelman microphysics) module with the following changes, referred to as MG1:

gamma(pgam(k)+4. r8)/ &

gamma(pgam(k)+3. r8)/lamc(k)/2. r8*1.e6 r8

0.5e-6 r8*gamma(pgam(k)+4. r8)/ &

27

gamma(pgam(k)+3. r8)/lamc(k)

This is not a power-of-two change, so it was expected to result in a rounding error, which

propagated over many calls to micro mg1 0, would result in a measurable difference in CAM out-

put. After running a simulation with this code change for 12 months, there were no measurable

differences in either the double-precision CAM log files, or in the single-precision yearly outputs

from our unmodified control case. To investigate this unexpected outcome, we wrote two short

programs in FORTRAN that perform exactly the same steps using the same constants as the MG1

original and modified lines. The programs populate variables pgam and lamc with random values,

calling the gamma function identically as in the example. It is important to replicate the MG1

code as faithfully as possible to account for the possibility that the compiler is sensitive to the

“context” of the code, such as the lines being encapsulated in a loop, and variables inside function

calls. We compiled the two programs with the identical compiler version and flags as CESM used

to build the module originally. The assembly code of the original was carefully compared against

the modified version, and the important instructions corresponding to the MG1 modification are

detailed in Table 5.1.

Table 5.1: Assembly code instruction counts for original and modified MG1 module simulation
code.

Instruction Original count Modified count
vmulsd 2 1
vdivsd 2 2
vmovsd 7 6
mov 10 10

That each version of the code contains 2 divisions indicates that the compiler has replaced

lamc(k)/2. r8*1.e6 r8 with a multiplication by the inverse of 2. r8*1.e6 r8. The addi-

tional vmulsd and vmovsd likely are a result of the original code needing one additional step to

evaluate the multiplication of the two constants. The compiler has rearranged the operations in

such a way that it is numerically identical to the modification.

28

Next we experimented with a subroutine (preq hydrostatic) in prim si mod.F90 and made

three different modifications. The first modification was the following:

hkk = dp(i,j,nlev)*0.5d0/p(i,j,nlev)

hkl = 2*hkk

hkk = dp(i,j,nlev)/p(i,j,nlev)

hkl = hkk

hkk = hkk/2

This alteration also did not result in a measurable double or single-precision floating-point

difference in CAM logs, or the output file, respectively. To determine if the lack of an observable

difference in the output was due to a low frequency of modified code execution or a lack of rounding

error (change of a multiplication to division by 2), we multiplied and divided the hkk variable by

3. The double-precision logs differed, confirming the propagation of the change and suggesting an

absence of rounding error. Next, to test the effect of call frequency, we performed a modification

to a subroutine in derivative mod.F90, known to be executed often:

gv(i,j,1)=elem%metdet(i,j)*(elem%Dinv(1,1,i,j)*v(i,j,1) +

elem%Dinv(1,2,i,j)*v(i,j,2))

gv(i,j,2)=elem%metdet(i,j)*(elem%Dinv(2,1,i,j)*v(i,j,1) +

elem%Dinv(2,2,i,j)*v(i,j,2))

gv(i,j,1)=elem%metdet(i,j)*elem%Dinv(1,1,i,j)*v(i,j,1)

gv(i,j,1)=gv(i,j,1) + elem%metdet(i,j)*elem%Dinv(1,2,i,j)*v(i,j,2)

gv(i,j,2)=elem%metdet(i,j)*elem%Dinv(2,1,i,j)*v(i,j,1)

gv(i,j,2)=gv(i,j,2) + elem%metdet(i,j)*elem%Dinv(2,2,i,j)*v(i,j,2)

This indeed produced a measurable difference in the double-precision logs, but the high

frequency of the execution of the change meant that this example was not the “minimum” code

change that we desired from the outset. These examples demonstrate that code changes small

enough for a compiler to perform and sensitivity to call frequency are two primary constraints for

29

future modification experiments.

5.1.2 Modifications representing different coding styles

In this subsection, we describe code modifications that are mathematically equivalent formu-

lations that could arise from two software engineers solving the same problem in different ways.

5.1.2.1 DYN3

The first code change in CAM that matched our criteria for low frequency of execution and

minimal alteration, and brought about an observable single-precision difference from the control

was to the preq omega ps subroutine of prim si mod.F90 (referred to as DYN3):

ckk = 0.5d0/p(i,j,1)

term = divdp(i,j,1)

omega p(i,j,1) = vgrad p(i,j,1)/p(i,j,1)

omega p(i,j,1) = omega p(i,j,1) - ckk*term

omega p(i,j,1) = (vgrad p(i,j,1) - 0.5d0*divdp(i,j,1))/p(i,j,1)

This is effectively a single line change. Note that we verified that the difference in single and

double precision output was not due to a “catastrophic cancellation” of vgrad p(i,j,1) and

0.5d0*divdp(i,j,1).

5.1.2.2 DYN3b

Another characteristic of DYN3 is that it constitutes a reduction in the number of lines of

code via the elimination of temporary variables. To test the effect of increasing the number of lines

by the addition of a temporary variable, we created the DYN3b experiment:

ckk = 0.5d0/p(i,j,1)

term = divdp(i,j,1)

tmpvar = 1.0d0/p(i,j,1)

30

omega p(i,j,1) = vgrad p(i,j,1)/p(i,j,1)

omega p(i,j,1) = vgrad p(i,j,1)

omega p(i,j,1) = omega p(i,j,1)*tmpvar

omega p(i,j,1) = omega p(i,j,1) - ckk*term

5.1.2.3 DYN4

Another successful modification was to the preq hydrostatic subroutine of prim si mod.F90

(denoted DYN4 hereafter). Three successive and similar changes centered on the creation of a new

variable tt real (e.g. the first):

phii(i,j,nlev) = Rgas*T v(i,j,nlev)*hkl

phi(i,j,nlev) = phis(i,j) + Rgas*T v(i,j,nlev)*hkk

phii(i,j,nlev) = T v(i,j,nlev)*hkl

phii(i,j,nlev) = Rgas*phii(i,j,nlev)

tt real = T v(i,j,nlev)*hkk

phi(i,j,nlev) = phis(i,j) + Rgas*tt real

5.1.2.4 DYN4a

Similarly to DYN3b, DYN4a seeks to test the effect of the removal of temporary variables

and hence lines of code. The experiment denoted DYN4a removes the changes to the phii array,

alters the definition of tt real to be consistent across all three “do loops” in preq hydrostatic,

but the changes to phi persist, e.g.:

phii(i,j,nlev) = Rgas*T_v(i,j,nlev)*hkl

phi(i,j,nlev) = phis(i,j) + Rgas*T v(i,j,nlev)*hkk

tt real = Rgas*T v(i,j,nlev)

phi(i,j,nlev) = phis(i,j) + tt real*hkk

31

5.1.2.5 DYN4a3

This experiment takes the reduction of scope of modification of the base DYN4 experiment

to its logical conclusion: isolating the temporary variable to the third (thus the “3” suffix) “do

loop” in preq hydrostatic.

phi(i,j,1) = phis(i,j) + phii(i,j,2) + Rgas*T v(i,j,1)*hkk

tt real = Rgas*T v(i,j,1)

phi(i,j,1) = tt real*hkk + phis(i,j) + phii(i,j,2)

5.1.3 Modifications representing optimization strategies

The code changes in this subsection were targeted at improving the performance of existing

code via optimization of mathematical expression, for example reducing the number of expensive

division operations.

5.1.3.1 ADV1

ADV1 designates the modification to the euler step subroutine of prim advection mod.F90.

The original version of this subroutine includes an operation that divides by a spherical mass

matrix spheremp. The modification to this kernel consisted of declaring a temporary variable

(tmpsphere) defined as the inverse of spheremp. Multiplication is substituted for division to

complete the modification. Note that creation of this temporary variable removes an assignment

operation from an inner loop, speeding up the qtens biharmonic evaluation.

tmpsphere(:,:) = 1.D0/elem(ie)%spheremp(:,:)

qtens_biharmonic(:,:,k,q,ie) = &

-rhs viss*dt*nu q*dp0*Qtens biharmonic(:,:,k,q,ie) /

elem(ie)%spheremp(:,:)

-rhs viss*dt*nu q*dp0*Qtens biharmonic(:,:,k,q,ie) * tmpsphere(:,:)

32

5.1.3.2 EDG1

EDG1 is a permutation of the evaluation of an MPI receive buffer unpacking subroutine,

the edges of which are boundaries between Galerkin domains. Changing the order of buffer un-

packing has implications for performance, as traversing the buffer sub-optimally can prevent cache

prefetching. However, it also results in non-BFB results:

do k=1,vlyr

do i=1,np

v(i ,1 ,k) = v(i ,1 ,k)+edge%buf(kptr+k,is+i)

v(np ,i ,k) = v(np ,i ,k)+edge%buf(kptr+k,ie+i)

v(i ,np ,k) = v(i ,np ,k)+edge%buf(kptr+k,in+i)

v(1 ,i ,k) = v(1 ,i ,k)+edge%buf(kptr+k,iw+i)

end do

end do

do k=1,vlyr

! South

do i=1,np

v(i ,1 ,k) = v(i ,1 ,k)+edge%buf(kptr+k,is+i)

end do

! West

do i=1,np

v(1 ,i ,k) = v(1 ,i ,k)+edge%buf(kptr+k,iw+i)

end do

! East

do i=1,np

v(np ,i ,k) = v(np ,i ,k)+edge%buf(kptr+k,ie+i)

end do

33

! North

do i=1,np

v(i ,np ,k) = v(i ,np ,k)+edge%buf(kptr+k,in+i)

end do

end do

5.1.4 Modifications representing performance enhancement

This set of code modification experiments is characterized by more substantial, performance

oriented changes that are small enough not to be considered climate-changing. The modifications

are limited to substitution or alteration of a single subroutine.

5.1.4.1 RAND

The default (pseudo) random number generator used by CESM is KISSVEC. However, should

a scientist want to use a different random number generator with superior performance, it is neces-

sary to determine the response of CESM-ECT. In this experiment we substituted CESM’s alternate

generator, Mersenne Twister (MT), whose properties are well-established and can even be made

adequate for cryptography. In the initial trial, we simply changed a parameter to select MT rather

than KISSVEC, e.g. in mcica subcol gen lw.f90:

! Set random number generator to use (0 = kissvec; 1 = mersennetwister)

irnd = 0

irnd = 1

This resulted in a resounding failure in CESM-ECT: not a single test passed. Interpreting

this as an indication of a bug, we inspected the code in more detail. Indeed, the seed passed to

MT was uninitialized, which exhibits undefined behavior. On Yellowstone with the default Intel

compiler, it is likely that the same value (zero) is passed as a seed. It appears that MT responded

by returning a single random number which substantially affected the climate’s properties. This

34

issue prompted the utilization of the same method of seeding MT as that used for KISSVEC- in

short, seeding with a vector rather than a single integer. The code to pass the seed vector to MT

was modified as follows:

seed1(i) = (pmid(i,nlay) - int(pmid(i,nlay))) * 1000000000

seed2(i) = (pmid(i,nlay-1) - int(pmid(i,nlay-1))) * 1000000000

seed3(i) = (pmid(i,nlay-2) - int(pmid(i,nlay-2))) * 1000000000

seed4(i) = (pmid(i,nlay-3) - int(pmid(i,nlay-3))) * 1000000000

enddo

iseed = seed1 + seed2 + seed3 + seed4

randomNumbers = new RandomNumberSequence(seed = changeSeed)

randomNumbers = new RandomNumberSequence(seed = iseed)

Note that this change was expected to be minimal not in the number of lines of code modified,

but that interchanging two widely-used pseudo random number generators which exhibit desirable

properties (such as long periods) is not expected to result in a different climate.

5.1.4.2 PREC

PREC is another performance-oriented modification to the wv sat methods.F90 module which

tests whether recasting a subroutine to perform single-precision floating-point arithmetic results in

a consistent climate. From a performance perspective this could be extremely advantageous and

could present an opportunity for coprocessor acceleration due to superior single-precision computa-

tion speed. To accompish this, we used TotalView to trace which elemental function was called to

compute saturation vapor pressure. After determining that the GoffGratch function was called, we

created a similar elemental function to compute the output in 4-byte floating-point format rather

than typical double-precision:

elemental function GoffGratch svp water r4(t) result(es)

real(r8), intent(in) :: t ! Temperature in Kelvin

35

real(r4) :: es, t4, tboil4 ! SVP in Pa

t4 = real(t)

tboil4 = real(tboil)

es = 10. r4**(-7.90298 r4*(tboil4/t4-1. r4)+ &

5.02808 r4*log10(tboil4/t4)- &

1.3816e-7 r4*(10. r4**(11.344 r4*(1. r4-t4/tboil4))-1. r4)+ &

8.1328e-3 r4*(10. r4**(-3.49149 r4*(tboil4/t4-1. r4))-1. r4)+ &

log10(1013.246 r4))*100. r4

5.1.5 Results

The code modification experiments shown in Figure 5.1 against the size 453 and 150 combined

compiler summaries as well as the default CESM-ECT compiler (labeled Orig-Intel) are illuminating

as well. DYN3, DYN4, and PREC behave much like different compilers, exhibiting very low failure

percentages when tested against the sz453 compiler summaries. While increasing the number of

lines of code for the DYN3 experiment (DYN3b) translates to an increase in EET failure rate,

combining lines for DYN4 (DYN4a, DYN4a3) has little effect. ADV1, EDG1, and RAND fit neatly

between DYN3 and DYN3a, conforming more closely to the behavior of DYN3 (Figure 5.1). The

failure rates of the code modification experiments against the sz150 compiler aggregated summaries

are similar to those of the random selection experiments (Table 4.2). Another salient feature of this

figure is the experiments’ EET failure rates against Intel CESM-ECT ensemble used in BH2015

(Orig-Intel) in comparison with the sz453 compiler-aggregate ensembles.

Another potential source of difference between the behaviors of the code modifications is

function call count. It is possible that code blocks with high call counts during CESM runtime

would propagate their perturbations more extensively to the CESM execution environment. A

study of the relative call count numbers is presented in Table 5.2.

Table 5.2 taken in conjunction with Figure 5.1 indicates that the mechanism by which code

modification perturbations propagate throughout the execution of CESM is more complex than

36

Figure 5.1: Note that the size 453 failure rates are on the order of our desired false positive rate.
The CESM-ECT ensemble from BH2015 is featured (Orig-Intel) for comparison with the compiler
aggregate rand summaries.

 0

 5

 10

 15

 20

 25

DYN3 DYN4 ADV1 EDG1 DYN3b DYN4a DYN4a3 RAND PREC

P
er

ce
nt

 F
ai

lu
re

Experiment Name

sz453-compilers-rand1
sz453-compilers-rand2
sz453-compilers-rand3

sz150.intel-gnu-pgi.rand1
sz150.intel-gnu-pgi.rand2
sz150.intel-gnu-pgi.rand3

Orig-Intel

37

Table 5.2: Courtesy Allison Baker. Call frequencies relative to ADV1.

Experiment name Function CAM module Relative freq.
DYN3 preq omega ps prim si mod 5
DYN4 preq hydrostatic prim si mod 5
ADV1 euler step prim advection mod 1
EDG1 edgeVunpack edge mod 45.5

simply the number of times a modified function is called. It is quite conceivable that while a

modified section of code is only executed once, its perturbation is carried throughout the execution

environment by objects which depend on it. Establishing a causal, weighted relationship between

code line content changes and failure percentages is of interest. In fact, an object dependency

hierarchy may assist in measuring modification propagation. This is of interest as an area for

future study.

Chapter 6

Does an ensemble need 453 members?

In an effort to optimize the number of constituent members of an accepted ensemble, ensem-

bles of 300 members were created in the same way as the size 150 and 453 sets in Section 4.2, but

using three new random selections. We ran exhaustive tests of all experiments against the sz300

ensembles; the results of the modification experiments from Section 5 together with the sz300 re-

sults are shown below in Table 6.1. The size 300 ensembles exhibit failure rates closer to the size

453 ensembles than to those of the 150 member ensembles.

Table 6.1: EET failure rates of code modification experiments versus three different sizes of compiler
aggregate CESM-ECT ensembles. Means are shown per ensemble between experiments, and for
each experiment per ensemble.

Experiment sz150r1 sz150r2 sz150r3 mean sz300r4 sz300r5 sz300r6 mean sz453r1 sz453r2 sz453r3 mean
DYN3 9.3 4.9 6.9 7.0 3.1 1.3 1.4 1.9 1.1 0.3 0.7 0.7
DYN4 9.3 11.3 16.7 12.4 1.0 0.8 1.6 1.1 0.6 0.2 0.7 0.5
ADV1 5.3 9.5 9.7 8.2 1.5 0.4 1.2 1.0 1.0 0.3 1.7 1.0
EDG1 6.3 8.1 10.0 8.1 2.5 2.3 0.7 1.8 1.4 0.9 0.4 0.9
DYN3b 16.2 14.8 10.6 13.9 2.6 1.1 2.1 1.9 2.3 1.3 2.0 1.9
DYN4a 2.3 11.5 6.9 6.9 2.4 3.4 0.1 2.0 0.3 0.5 1.4 0.7
DYN4a3 12.0 12.1 6.1 10.1 1.8 1.3 3.8 2.3 0.7 0.8 0.6 0.7
RAND 4.7 6.0 9.2 6.6 0.4 1.1 1.1 0.9 0.4 2.0 1.6 1.3
PREC 6.4 7.9 7.8 7.4 1.0 0.8 1.6 1.1 0.6 0.2 0.7 0.5
Mean 8.0 9.6 9.3 1.8 1.4 1.5 0.9 0.7 1.1

Now we consider the rand experiments again. In Table 10, results from the size 300 ensembles

are inserted between those of the 150 and 453 ensembles (from Tables 5 and 6, respectively). The

comparative advantage of the size 453 is less distinct here than in Table 6.1, and it appears less

stable (more variation in experiment failures within the same compiler aggregate summary size).

For example, the EET failure rates of ys-i-e30-r2 experiment tested against the sz453 compiler

aggregate summaries: 0.2, 1.8, 0.4, or also ys-g-e30-r2 against sz453: 0.3, 3.3, and 0.8. We expect

39

this to be an artifact of the small sample size (three ensembles), but this will be investigated in an

upcoming formal study of the stability properties of these ensembles. An ensemble of arbitrarily

large size is untenable from the standpoint of computational cost, as the CESM-ECT accepted

ensembles are recreated for climate-changing CESM code releases.

Table 6.2: EET failure rates of code modification experiments versus three different sizes of compiler
aggregate CESM-ECT ensembles. Means are shown per ensemble between experiments, and for
each experiment per ensemble. In the interest of space savings the experiment nomenclature differs
slightly from previous tables: rand1, rand2, and rand3 selections are abbreviated r1, r2, and r3.

Experiment sz150r1 sz150r2 sz150r3 mean sz300r4 sz300r5 sz300r6 mean sz453r1 sz453r2 sz453r3 mean
ys-i-e30-r1 10.8 3.8 10.3 8.3 2.0 0.3 0.5 0.9 0.3 0.0 0.5 0.3
ys-i-e30-r2 1.0 13.0 9.3 7.8 0.4 0.3 0.0 0.2 0.5 1.0 0.0 0.5
ys-i-e30-r3 6.9 4.6 13.3 8.3 0.3 0.8 0.9 0.7 0.5 0.8 1.6 1.0
ys-g-e30-r1 4.7 8.3 6.0 6.3 0.2 0.7 0.4 0.4 0.5 0.3 0.0 0.3
ys-g-e30-r2 6.5 16.1 8.0 10.2 1.3 0.3 0.4 0.7 0.2 3.6 0.1 1.3
ys-g-e30-r3 5.4 4.4 15.3 8.4 0.4 0.3 0.9 0.5 0.8 0.1 1.0 0.6
ys-p-e30-r1 6.1 10.7 7.4 8.1 0.1 0.4 0.9 0.5 0.3 0.9 0.2 0.5
ys-p-e30-r2 3.3 6.1 5.3 4.9 1.6 1.4 0.3 1.1 0.0 0.7 0.6 0.4
ys-p-e30-r3 4.9 11.8 6.6 7.8 0.2 0.7 1.2 0.7 0.5 0.3 2.4 1.1
Mean 5.5 8.8 9.1 0.7 0.6 0.6 0.4 0.9 0.7

Chapter 7

Mira and Blue Waters

The results from CESM-supported machine testing in BH2015 and shown in Table 3 indicate

that the Mira and Blue Waters experiments are only slightly above the failure threshold of NpcFails.

In this section we perform a more detailed analysis of these results with the added insight provided

by EET and knowledge of ensemble composition. First, we re-examine the Mira and Blue Waters

results in the context of the new compiler-aggregate ensembles with CESM-ECT (Figure 7.1). Note

that we include the NERSC Edison results to demonstrate that most CESM-supported machines

exhibit a clear, low failure rate. With the new size 453 aggregate ensembles, the failure rates are still

quite high for Mira and Blue Waters, which raises the question of whether the ensemble distribution

is still too narrow, or whether the failures are true indications of an error in the supercomputers’

software or hardware. In particular, because an upcoming CESM experiment was scheduled on

Mira, an investigation into the validity of its high failure rate was of utmost importance.

7.1 Excluding CAM variables

CESM-ECT is a coarse-grained testing method, and pyCECT simply returns sets of failing

Principal Components. To relate failing PCs to sections of code and perhaps hardware, we needed

to understand which CAM variables were problematic. A systematic elimination of variables was

undertaken, which involved modifying pyCECT to accept a list of CAM variables to be excluded

from the PC calculation. This was done to omit variables one at a time, recording the CESM-ECT

failure rate per excluded variable. Since pyCECT was written to read the PC loadings from a

41

Figure 7.1: Exhaustive testing failure rates of three CESM-supported supercomputers. Mira and
Blue Waters were borderline failures using CESM-ECT (see Table 2.3).

 0

 10

 20

 30

 40

 50

 60

 70

 80

Edison Mira BlueWaters

P
er

ce
nt

 F
ai

lu
re

Experiment Name

sz453r1
sz453r2
sz453r3
sz300r4
sz300r5
sz300r6
sz150r1
sz150r2
sz150r3

42

summary file, we altered the tool to compute new loadings from the summary file’s global means,

with the designated CAM variable excluded from the calculation. The new experiment’s CAM

output files were then rotated into the summary’s PC space as usual. The results for the Mira

experiment are reported as a stacked histogram in Figure 7.2. The y-axis indicates the number

of EET failures (out of
(
24
3

)
= 2024 tests for each sz453 ensemble, or 6072 total), and the x-axis

records the index of the CAM variable omitted.

The minima of this plot correspond to CAM variables whose elimination results in a decreased

failure rate- suggestive of a causal relationship with Mira’s failure rates. Based in large part on

the data in Figure 7.2, Dorit Hammerling determined that these six variables merited further

investigation: AREL, AWNC, CLDLIQ, FICE, ICWMR, and FSNTOA (numbers 6, 7, 11, 16, 22,

and 74). We repeated pyCECT testing on the Mira experiment with these six variables removed,

and observed nearly five times lower failure rates. With climate scientists’ input, we found that

four of the above six variables (AREL, AWNC, FICE, and ICWMR) are featured prominently in

the Morrison-Gettelman microphysics kernel (MG1).

Once the physics kernel had been targeted for analysis as the primary source of the failures,

Youngsung Kim’s open-source KGEN tool (See Section 10: Software) was used to extract the MG1

kernel from CAM and build it as a stand-alone executable that could be run on a single core in less

than a second. This facilitated the rapid testing of MG1 on several machines passing CESM-ECT

and comparison with Mira. A subset of MG1 variables with larger normalized Root Mean Square

(RMS) errors was found on Mira, and these variables’ values were output and juxtaposed with those

executed on Yellowstone. Given the code lines that compute these variables, software engineers

hypothesized that Fused Multiply-Accumulate (FMA) instructions may have caused the RMS error

values, and the instructions were disabled via compiler switch. A repeat of the KGEN RMS error

testing confirmed that the values were then consistent with those produced on Yellowstone. To

definitively prove that FMA caused the high CESM-ECT failure rates on Mira, CESM was rebuilt

with the FMA instructions disabled (-qfloat=nomaf), which yielded a remarkable 0.7% failure rate

against one sz453 summary file. Beginning with a coarse-grained test like CESM-ECT and ending

43

Figure 7.2: Stacked histogram of Mira failures against the three sz453 summary files, with the
excluded CAM variable indicated on the x-axis. Note that the number of failures is out of 6072
possible failures.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

N
um

be
r o

f f
ai

lu
re

s

Excluded CAM variable

sz453r1
sz453r2
sz453r3

44

with the identification (via a fine-grained test like KGEN) of specific lines of code and corresponding

machine instructions is a resounding success.

While Mira CPUs are Power architecture (PowerPC A2), examining the effect of FMA on the

MG1 kernel running on Intel Haswell CPUs is of considerable interest, as these CPUs are becoming

commonplace. We built and executed the KGEN extracted MG1 kernel on a Haswell Xeon E7-8890,

which failed the RMS error test with FMA enabled, and passed when disabled. We confirmed that

the failing variables were the same as those failing KGEN tests on Mira with FMA enabled. We

intend to continue working with Haswell CPUs to determine if MG1 can be refactored to be less

sensitive to FMA, and identify other sections of code with similar sensitivities.

Chapter 8

Conclusions

In BH2015, a consistency test for CESM was developed to calculate whether a new “config-

uration (e.g., resulting from a code modification, compiler change, or new hardware platform) is

consistent with the original ’accepted’ (or control) configuration.” That paper sought to find an

original configuration that would “capture the natural variability in the modeled climate system.”

In this thesis, we extend the findings of BH2015 by further specifying the characteristics of an

accepted CESM-ECT ensemble. To do so, we adopted the strategy of verifying the components of

an accepted ensemble to ensure that it would contain variability sufficient to represent a consis-

tent climate. Through a tool we developed to perform every possible combination of CESM-ECT

tests (EET), we were able to gauge whether new experiments exhibited failure rates on the order

of CESM-ECT’s desired false positive rate (0.5%). With this tool, the base constituents of the

ensembles used in BH2015 were examined for sufficient variability.

Since it was found that no single compiler-based ensemble indeed possessed enough variabil-

ity, new CESM-ECT ensembles were created by aggregating Yellowstone ensembles of simulations

differing in the compiler used to build CESM. The compiler aggregate ensembles were tested by

devising experiments that introduced minimal code modifications to CAM modules. Since these

modifications were not expected to be climate-changing, their EET failure rates effectively gauged

whether the ensemble contained enough variability to represent a consistent climate. The size 453

compiler aggregate ensembles consistently resulted in false positive order EET failure rates when

testing code modification experiments.

46

Examining two machines manifesting borderline CESM-ECT failures (Blue Waters and Mira)

under EET and the size 453 ensembles resulted in high failure rates in comparison with other CESM-

supported machines. A study of the CAM variables contributing to the high Mira failure rates led

to the identification of Fused Multiply-Add instructions as causative agents. This successful process

involved the coupling of coarse-grained testing facilitated by CESM-ECT with fine-grained testing

provided by KGEN, together with the expertise of scientists and software engineers.

Chapter 9

Future directions

Possible future directions of this research include deeper analysis of the relationship between

test failures, failing PCs, and CAM variable space. Such a study could provide information nec-

essary to improve the composition of the accepted ensemble, with the goal of more accurately

determining runs that should pass or fail. This may require the application of a machine learning

strategy.

Another promising (and possibly related) direction of this research is to explore the prop-

agation of perturbations within the execution of CESM. Figure 9.1 represents our preliminary

investigation on this front. To generate these data we ran two CESM simulations: one with an

initial CAM temperature perturbation of 1×10−14, and another unperturbed. The simulations ran

for 11 time steps including t = 0, and saved CAM variable double-precision floating point values to

disk for each step. With this output data we compared the number of identical significant figures

between the perturbed and unperturbed simulations for the global means of each CAM variable

(x-axis of plot) at each time step (y-axis of plot). This was accomplished by equality testing after

rounding to n significant figures (displayed in the color bar). The plot does not account for the

magnitude of the difference beyond 0 significant figures. Black designates time steps where the

corresponding variable was not output. These variables are sub-cycled, meaning that their values

are not computed at each time step in the figure. This can occur if the variable depends on sub-

cycled variables, or if the function or subroutine is not called. Figure 9.1 illustrates that most CAM

variables are calculated for the zeroth time step, and are at least indirectly dependent on the initial

48

temperature perturbation.

There is high information density in Figure 9.1, and it points us in several interesting direc-

tions. An examination of the perturbation propagation will need to account for differing orders

of magnitude, and the multiple timescales of the model. It may be informative to analyze the

propagation across the spatial field rather than global means, which will require more sophisticated

techniques to detect patterns in such high dimensional data.

49

Figure 9.1: Representation of effects of initial CAM temperature perturbation after 11 time steps
(including t = 0). CAM variables are listed on the x-axis, and the y-axis records the simulation time
step. The color bar designates equality of the corresponding variables between the unperturbed
and perturbed simulations after being rounded to n significant digits (n is the color). Time steps
where the corresponding variable was not computed are colored black.

Chapter 10

Software

Data sets and modifications to CAM modules can be found at https://github.com/milroy/cesm

ensemble mods. KGEN is available at https://proxy.subversion.ucar.edu/pubasap/kgen/trunk.

The Python tools described in Section 2 can be downloaded from the collection of parallel Python

tools available on the NCAR’s Application Scalability and Performance website (https://www2.cisl.ucar.edu/

tdd/asap/application-scalability) or obtained directly from NCAR’s public Subversion repository

(https://proxy.subversion.ucar.edu/pubasap/pyCECT/tags/1.0.0/). CESM simulation data is avail-

able upon request.

Bibliography

[1] A. H. Baker, D. M. Hammerling, M. N. Levy, H. Xu, J. M. Dennis, B. Eaton, J. Edwards,
C. Hannay, S. Mickelson, R. Neale, D. Nychka, J. Shollenberger, J. Tribbia, M. Vertenstein,
and D. Williamson. A new ensemble-based consistency test for the community earth system
model. Geosci. Model Dev., 8:3823–3859, 2015.

[2] T. Clune and R. Rood. Software testing and verification in climate model development. IEEE
Software, 28:49–55, 2011.

[3] S. M. Easterbrook and T. C. Johns. Engineering the software for understanding climate change.
Comput. Sci. Eng., 11:65–74, 2009.

[4] J. Pipitone and S. Easterbrook. Assessing climate model software quality: a defect density
analysis of three models. Geosci. Model Dev., 5:1009–1022, 2012.

