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Abstract.
We study the dynamics of the three-dimensional quadratic diffeomorphism using a concept first introduced thirty

years ago for the Frenkel-Kontorova model of condensed matter physics: the anti-integrable (AI) limit. At the
traditional AI limit, orbits of a map degenerate to sequences of symbols and the dynamics is reduced to the shift
operator, a pure form of chaos. Under nondegeneracy conditions, a contraction mapping argument can show that
infinitely many AI states continue to orbits of the deterministic map. For the 3D quadratic map, the AI limit that we
study is a quadratic correspondence whose branches, a pair of one-dimensional maps, introduce symbolic dynamics
on two symbols. The AI states, however, are nontrivial orbits of this correspondence. The character of these orbits
depends on whether the quadratic takes the form of an ellipse, a hyperbola, or a pair of lines. Using contraction
arguments, we find parameter domains for each case such that each symbol sequence corresponds to a unique AI
state. In some parameter domains, sufficient conditions are then found for each such AI state to continue away
from the limit becoming an orbit of the original 3D map. Numerical continuation methods extend these results,
allowing computation of bifurcations to obtain orbits with horseshoe-like structures and intriguing self-similarity. We
conjecture that pairs of periodic orbits in saddle-node or period doubling bifurcations have symbol sequences that
differ in exactly one position.

1. Introduction. In this paper we explore the chaotic behavior of three-dimensional quadratic
diffeomorphisms by constructing a limit in which the dynamics is simple, though essentially fully
chaotic: the anti-integrable (AI) limit. As shown in [LM98, LLM99], the general quadratic diffeo-
morphism L : R3 → R3 with quadratic inverse can be written in the form

(1.1)
L(x, y, z) = (δz +G(x, y), x, y),

G(x, y) = α+ τx− σy + ax2 + bxy + cy2.

Here G is an arbitrary quadratic polynomial with the six parameters (α, τ, σ, a, b, c) and δ = detDL,
the Jacobian determinant of the map. This map is also the quadratic normal form near a saddle-
center bifurcation with a triple-one multiplier [DM08]. The orbits of (1.1) are sequences {(xt, yt, zt) :
t ∈ Z} that satisfy

(xt+1, yt+1, zt+1) = L(xt, yt, zt).

The volume-preserving case, δ = 1, is of interest as an idealized model for the motion of particles
in an incompressible fluid. Studying the dynamics of such maps is important in understanding
Lagrangian mixing problems, with many applications [Hal15]. The volume-contracting case, |δ| < 1,
arises as a normal form near homoclinic bifurcations of 3D maps [GMO06] and can give rise to
discrete Lorenz-like attractors [GGKS21].

Anti-integrability was first introduced for discrete-time Hamiltonian systems by Aubry and
Abramovici [AA90] in contradistinction to integrability, where the system has a full set of invariants
and the phase space is foliated by invariant tori. A perturbation of an integrable system gives

∗Submitted to the editors July 14, 2021.
Funding: This work was funded by the U.S. National Science Foundation under grant DMS-181248

†University of Colorado, Department of Applied Mathematics, Boulder, CO 80309-0526, USA
Amanda.Hampton@colorado.edu

‡University of Colorado, Department of Applied Mathematics, Boulder, CO 80309-0526, USA James.Meiss@colorado.edu

1

mailto:Amanda.Hampton@colorado.edu
mailto:James.Meiss@colorado.edu


2 A. E. HAMPTON AND J. D. MEISS

dynamics that can sometimes be described by KAM theory: many tori are preserved under smooth-
ness and nondegeneracy conditions. By contrast, anti-integrability corresponds to non-deterministic
dynamics: in the simplest case AI dynamics can be described by a full-shift on a set of symbols.

The anti-integrable limit was originally introduced for area-preserving maps through the action,

Sε({xt}) =
∑
t

εK(xt − xt+1)− V (xt),

which is a sum of discrete Lagrangians or generating, along a sequence {xt : t ∈ Z} of the config-
uration spatial variables [Aub95, BT15]. Each critical point of the action corresponds to an orbit.
Physically, K represents the kinetic energy (in discrete time) and V the potential energy. The
resulting dynamics is integrable when the potential energy vanishes. In contrast, the AI limit can
be interpreted as the kinetic energy, or equivalently ε, going to zero. In this case critical points of
the action become arbitrary sequences of critical points of the potential energy, and therefore the
“dynamics” is non-deterministic. When the AI limit is “nondegenerate” then each AI state continues
to nonzero ε, becoming a true orbit of the original system. This theory and methodology has proved
useful for analyzing two-dimensional systems [AA90, Aub95, BT15] as well as higher-dimensional
symplectic maps [MM92].

Although anti-integrability was formulated in the context of variational principles, to apply
the idea more generally one can reformulate a map as an implicit equation on a sequence {xt}.
This technique has been used to study the 1D logistic map [Che06] and—as we will recall below—
Hénon’s 2D map [Aub95, SM98, SDM99, DMS05, Che06]. Results of this analysis give an alternative
argument to that of Devaney and Nitecki [DN79] for the existence of a Smale horseshoe in a domain
of parameter space, which implies the existence of a set of hyperbolic orbits conjugate to a Bernoulli
shift on two symbols. In addition one can find parameter sets for which there are specific sub-
shifts, study the first bifurcations away from ε = 0, and—for the area-preserving case—find the
correspondence between symbol sequences and orbits of a given rotation number [DMS05].

The theory has been generalized to higher-order scalar difference equations [DLM06, LM06,
JLM08, LM10] and has been used to extend [MM92] to more general multi-dimensional cases [CL15].
As we will review in §2, some of these results give AI limits for special cases of three-dimensional
diffeomorphisms like (1.1).

To be more specific, consider a family of maps f : M → M on a phase space M so that the
corresponding orbits are sequences Z = {zt : t ∈ Z} determined by zt+1 = f(zt). The general idea
of an AI limit is to rewrite the dynamics as an implicit relation Lε(Z) = 0 with a parameter ε.
An AI limit corresponds to a singular limit of this implicit relation. For example, suppose that for
ε = 0, L0(Z) = 0 degenerates to a set of equations that depends only upon individual points along
the orbit, say L0(zt) = 0. If this equation has multiple solutions then the dynamics degenerates
to symbolic dynamics: an element zt of the sequence can be chosen to be any of the solutions of
L0(zt) = 0 for each t. Under an implicit function style result, it can be possible to continue these
symbolic orbits so that they become true orbits of the original map when ε ̸= 0.

As an example, the Hénon map [H7́6] H : R2 → R2 can be written

(1.2) (x′, y′) = H(x, y) = (y − k + x2,−δHx),

with Jacobian |DH| = δH and parameter k. Instead of considering the implicit form of the map on
R2, it is more convenient to rewrite (1.2) as a second difference equation: let (xt+1, yt+1) = H(xt, yt)
and note that yt = −δHxt−1, so that (1.2) is equivalent to

(1.3) xt+1 + δHxt−1 = x2t − k.
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An AI limit corresonds to k → ∞. Defining ε = 1√
k

and rescaling ξ = εx, (1.3) can be written as
the implicit relation

Lε(ξt+1, ξt, ξt−1) = ξ2t − 1− ε(ξt+1 + δHξt−1) = 0.

At the AI limit, ε → 0, this second difference equation degenerates to the relation

ξ2t = 1.

This limit is singular in the sense that the implied dynamics are no longer deterministic; indeed,
orbits now correspond to any bi-infinite sequence with ξt = ±1 for all t ∈ N. Given such a sequence,
the dynamics can be represented by the shift on two symbols, {−,+}. We think of these as “AI
states” as they are no longer “orbits” of a deterministic map. These AI states continue to orbits of
(1.3) for small enough ε, as was proven using a contraction mapping argument [SM98].

Our goal here is to use a similar approach for a large subset of the full seven-dimensional
parameter space of the family of maps (1.1). We obtain a number of possible AI limits in §2 and
discuss previous research that has been applied to special cases of (1.1). In §3 we specify the
particular AI limit on which this paper focuses. A key feature of this case is that the AI limit
corresponds to iteration of a quadratic correspondence, thus introducing symbolic dynamics. In
§4, we find parameters such that orbits exist for every symbol sequence at the AI limit. In §5, we
find parameters so that orbits at the AI limit can be continued away from the limit for sufficiently
small ε > 0. Numerical methods are used in §6 to continue orbits beyond the analytical bounds for
several examples.

2. Anti-Integrable Limits of 3D Quadratic Maps. Here we formulate possible AI limits of the
3D quadratic map (1.1). This map can be treated as a five parameter family. Indeed, it was shown
in [LM98] that whenever a+ b+ c ̸= 0 and 2a+ b ̸= 01 an affine coordinate transformation allows
one to to set

(2.1) a+ b+ c = 1, and τ = 0.

We adopt this simplification so the map only depends on say (α, σ, a, c), in addition to the Jacobian
δ. To mimic the analysis for the Hénon map, first rewrite (1.1) as a third-order difference equation
for {xt : t ∈ Z} upon noting that yt+1 = xt and zt+1 = xt−1,

(2.2) xt+1 − δxt−2 = G(xt, xt−1).

There are a number of ways to scale parameters to get an anti-integrable limit. We will assume
that a, b, c are “structural” parameters that remain finite and that |δ| ≤ 1 so that the map is not
volume expanding. Following the Hénon example in §1, we introduce ε by scaling the phase space
variables, defining ξt = εxt. Then using (2.1), (2.2) becomes

(2.3)
0 = Lε(ξt+1, ξt, ξt−1, ξt−2)

= Q(ξt, ξt−1) + ε2α− ε(ξt+1 + σξt−1 − δξt−2),

where we define the quadratic form

(2.4) Q(x, y) ≡ ax2 + bxy + cy2.

1If one of these is violated, other scaling transformations can be found to eliminate two of the parameters.
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The discriminant of Q,

(2.5) ∆ ≡ b2 − 4ac,

will play a crucial role in the analysis below.
We can categorize different AI limits by scaling the remaining parameters α and σ with ε so

that the third-order difference equation (2.3) degenerates to a lower-order system at ε = 0. There
are four potential cases:

(0) α, σ finite: In this case the AI limit corresponds simply to setting ε = 0 in (2.3) to obtain
Q(ξt, ξt−1) = 0. The only nontrivial case is then a pair of lines through the origin when
∆ > 0.

(1±) α → ±∞: Define ε by α = ±ε−2, then (2.3) becomes

(2.6) ε(ξt+1 + σξt−1 − δξt−2) = Q(ξt, ξt−1)± 1.

As ε → 0, the map degenerates to Q(ξt, ξt−1) = ∓1, which defines a quadratic curve. The
character of the possible AI states depends on the value of the discriminant (2.5).

(2±) σ → ±∞: Set σ = ±ε−1 so that (2.3) becomes

(2.7) ε(ξt+1 − δξt−2 − εα) = Q(ξt, ξt−1)∓ ξt−1,

which yields the AI limit Q(ξt, ξt−1) = ±ξt−1, a shifted quadratic curve.
(3±) α, σ → ±∞: Let α = ±ε−2, and assume that σ = rε−1, so that σ2/α = ±r2 is finite, to

obtain
ε(ξt+1 − δξt−2) = Q(ξt, ξt−1)− rξt−1 ± 1,

leading to the AI limit Q(ξt, ξt−1) = −rξt−1 ∓ 1, again a shifted quadratic curve.
Some of these AI limits have been studied elsewhere. Juang et al. [JLM08] consider multidi-

mensional difference equations, Lε(xt, . . . , xt+n) = 0 that reduce to L0(xt, xt+k) = 0 when ε = 0.
They assume this implicit equation has a branch xt+k = f(xt) so that the one-dimensional map f
is piecewise analytic and has an invariant set with positive topological entropy. In this case, there
exists an ε0 > 0 such that these AI states become orbits of the difference equation Lε = 0, and
depend continuously on ε ∈ [0, ε0) in the uniform topology. This gives a set of orbits of positive
topological entropy for the original difference equation.

These ideas generalize those in [DLM06] which had applications to Arneodo-Coullet-Tresser
maps and to the map (1.1). For the quadratic map, this analysis corresponds to case (2+) above,
σ → ∞. They suppose that b = 0 (or more generally that b = O(ε)) to obtain the AI limit
associated with (2.7). Solving this equation for ξt and choosing a branch gives the map

ξt = f+(ξt−1) =

√
1

a
(ξt−1 − cξ2t−1),

when 1 > a = 1− c > 0, on the domain [0, 1/c]. This has maximum f+(
1
2c) =

1
2
√
ac

, so the map has
an escaping interval if c/a > 4, or c ∈ (45 , 1). They note that this map has a compact invariant set
with positive topological entropy when c > 0.791, and consequently obtain a persistence result for
the range c ∈ (0.791, 0.8).

A related result was obtained in [LM06] where it was assumed that L0(xt) depends only on one
variable and has at least two simple roots. Under this assumption, the AI limit is similar to that of
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the Hénon map discussed in §1. The limit studied in [LM06] corresponds to case (1−), α → −∞,
assuming that b = c = 0 (or more generally b, c = O(ε)). Under these assumptions the AI limit
associated with (2.6) reduces to

ξ2t = 1,

so that the AI states are {ξt : t ∈ Z} ⊂ {−1, 1}Z, and the “dynamics” at the AI limit becomes a full
shift on two symbols. This is a special case of the analysis presented in §3 below.

Another case in which L0 depends only on a single variable was studied as an application of the
results in [CLP16]. Their limit corresponds to case (2−) assuming a = b = 0 (or more generally
a, b = O(ε)), where the AI limit associated with (2.7) simplifies to

ξt−1(ξt−1 + 1) = 0,

which again has two possible solutions and the AI states are {0,−1}Z.

3. Quadratic Correspondences at the Anti-integrable Limit. Below we will consider the AI
limit corresponding to case (1) of §2 where α → ±∞. Note that when α → ∞, the only nontrivial
case occurs when ∆ > 0, since then the set Q(ξt, ξt−1) = −1 has nonzero solutions. In the alternative
case, however, i.e., when α → −∞, the set Q(ξt, ξt−1) = 1 can have nontrivial solutions for any
value of ∆. Thus we will exclusively consider this latter case.

In this case, α → −∞, we define the difference equation

(3.1) Lε(ξt+1, ξt, ξt−1, ξt−2) = Q(ξt, ξt−1)− 1− ε(ξt+1 + σξt−1 − δξt−2),

so that L0 = 0 corresponds to

(3.2) Q(ξt, ξt−1) = 1.

We generalize the study of [LM06] to allow for arbitrary values of the discriminant (2.5). In this
case the “dynamics” at the AI limit is not deterministic, but rather a quadratic correspondence
[Bul88, McG91].

The relation (3.2) defines the quadratic curve

(3.3) E =
{
(u, v) : av2 + buv + cu2 = 1

}
⊂ R2.

Sequential points on a valid AI trajectory must lie on the curve (ξt−1, ξt) ∈ E . As sketched in Fig. 1,
E is either a pair of parallel lines when ∆ = 0, an ellipse when ∆ < 0, or a hyperbola when ∆ > 0.
Note that E is reflection symmetric through the origin and, since a + b + c = 1, always intersects
the two points (1, 1) and (−1,−1).

The quadratic curve (3.3) can be thought of dynamically as a relation or correspondence. Thus,
assuming a ̸= 0, an AI state is defined by a sequence {ξt : t ∈ Z} that satisfies

(3.4) ξt = fst(ξt−1) =
1

2a

(
−bξt−1 + st

√
∆ξ2t−1 + 4a

)
, st ∈ {−,+}.

Provided that ∆ξ2t−1 + 4a > 0, either choice st = ± is valid, and the quadratic curve is represented
by the two branches f± of (3.3). Therefore, each valid AI state is associated with a sequence of
symbols,

(3.5) s = {. . . s0, s1, s2 . . .} ∈ Σ = {−,+}∞,
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so that st represents the branch of the function implicitly defined by (3.2) that is chosen at time t.
Examples of the iteration of (3.4) for three cases are shown in Fig. 1. When st = −, the point

(ξt−1, ξt) lies on the lower, negative branch of the quadratic curve, and when st = +, it lies on the
upper, positive branch of the curve. The red loop in the figure is the iteration corresponding to the
period-four orbit, {−,−,+,+}.

Figure 1. Three examples of the curve (3.3) and iteration of the relation (3.4): (a) parallel lines, ∆ = 0,
with (a, b, c) = 1

9
(25,−20, 4) (b) ellipse, ∆ < 0, with (a, b, c) = (3,−2.75, 0.75), and (c) hyperbola, ∆ > 0, with

(a, b, c) = (2,−1, 0). The curve E is black and the diagonals ξt = ±ξt−1 are dashed blue. The red loop shows the orbit
{−,−,+,+}: vertical segments from (ξt−1, ξt−1) to a branch of the curve Q = 1 at (ξt−1, ξt) followed by a horizontal
segments to (ξt, ξt). The vertical direction depends on the symbol: the orbit moves up if st = + and down if st = −.
The interior of the green box is the set B2, (4.3), a forward invariant set on which (3.4) is a contraction.

Of course, the map represented by the third-order difference equation Lε = 0 is three-dimensional.
Indeed (3.1) can be thought of as determining ξt+1 as a function of three preceding points. Thus
the curve (3.3) becomes a surface in R3. Since this relation must hold for all t, AI states must lie
on the intersection of the two surfaces Q(ξt, ξt−1) = 1 and Q(ξt+1, ξt) = 1, labeling the axes by
(ξt−1, ξt, ξt+1) ∈ R3. An example is shown in Fig. 2 for the elliptic case, when ∆ < 0.

4. Existence of Orbits at the AI Limit. In this section, we will use (3.2), which is equivalent
to the pair of maps (3.4) when a ̸= 0, to prove the existence of AI states in subsets of the (a, c)
parameter space. The analysis will depend upon the sign of the discriminant (2.5) of the quadratic
curve (3.3). Using the normalization (2.1), the set ∆ = 0, where E is a pair of parallel lines,
corresponds to a parabola in the first quadrant of the (a, c) plane that divides the plane into regions
with ∆ ≷ 0, as shown in Fig. 3(a). As we will see in §4.1 below, in the ∆ = 0 case it is convenient
to parameterize (a, b, c) with respect to the slope m of the lines:

(4.1) (a, b, c) =
1

(1−m)2
(1,−2m,m2), (∆ = 0),

for m ̸= 1.
The correspondence Q(ξt, ξt−1) = 1 defines an AI state {ξt : t ∈ Z} provided that all pairs

(ξt−1, ξt) ∈ E . First note that fixed points always exist: indeed, since a+ b+ c = 1, then Q(ξ, ξ) = 1
when ξ = ±1. Such period-one sequences thus correspond to s = (+)∞ and (−)∞, with ξt = st.
Similarly, period-two orbits correspond to points Q(ξ1, ξ0) = Q(ξ0, ξ1) = 1, which if a ̸= c implies
that

(4.2) ξ0 = −ξ1 =
1√

1− 2b
,
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Figure 2. AI states of the 3D map must lie on the intersection of two quadratic surfaces Q(ξt, ξt−1) = 1 (orange)
and Q(ξt+1, ξt) = 1 (blue). Pictured is the elliptic example of Fig. 1(b). Valid AI states must lie on the intersection
of these two surfaces, i.e., the two curves that are highlighted in red.

b = 0

c

a

Δ > 0

Δ < 0

Δ =
0

(a)

Δ > 0

R+

R– Δ < 0

Δ =
0

a

c

(b)

Figure 3. (a) Classification of the curve (3.3) depending upon a and c, for b = 1−a−c: the blue region corresponds
to ellipses, ∆ < 0, the tan region to hyperbolae, ∆ > 0 and the red curve to parallel lines, ∆ = 0. On the blue dashed
line b = 0; b is positive below the line and negative above. (b) Regions in the (a, c)-plane that result in a contraction
at the AI limit in either forward (R+) or backward (R−) time. These sets are constructed in §4.1-§4.3.

providing b < 1
2 < a + c. Thus in this domain, there is a unique period-two state with symbol

sequence s = (+,−)∞, so that sign(ξt) = st. For the special case a = c, every point on E \ {(x, x)}
has a corresponding period-two point. Note however, unlike the Hénon case of §1, the period-two
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states are not simply given by their symbol sequences.
More generally, we will use contraction arguments to find a set of parameters for which there

is a unique orbit for each symbol sequence. In the following subsections, we will separately analyze
the three ∆ cases. The first step is to find parameter domains so that f± : B → B for some closed
interval,

(4.3) B = [−x∗, x∗] ⊂ R,

where x∗ depends upon (a, c). In Fig. 1, this interval is shown as the green box, B2, in (ξt−1, ξt)-
space. The second is to require that both maps are contractions on B (i.e., have slopes with
magnitude less than one). Suppose that

(4.4) R+ = {(a, c) : ∃x∗(a, c) > 0, f±(B) ⊂ B, |f ′
±(x)| < 1, ∀x ∈ B}

is a subset on which both of these conditions are true (we will construct this region in the subsections
below). Letting B = B∞, a simple application of the contraction mapping theorem gives:

Lemma 1. Given (a, c) ∈ R+ and ξ ∈ B, there is a one-to-one correspondence between each
sequence s ∈ Σ and state {ξ} ⊂ B satisfying (3.4).

Proof. Consider any sequence ξ = {ξt : t ∈ Z} ∈ B and η = {ηt : t ∈ Z} ∈ B where B ⊂ R∞ is
the countable product of the closed interval B. Given some s ∈ Σ, define F : B → B by

(4.5) Ft(ξ) = fst(ξt−1),

such that fixed points of F are orbits of the map (3.4). The closed interval B is a compact subset
of R, and thus B is complete in the ℓ∞ norm. Then

∥F(ξ)−F(η)∥∞ ≤ sup
x∈B

|f ′
±(x)| ∥ξ − η∥∞.

When (a, c) ∈ R+ and x ∈ B, then |f ′
±(x)| < 1, and F is a contraction in the ℓ∞ metric with

a unique fixed point. Therefore each symbol sequence has a unique corresponding orbit of (3.4).
Additionally, by construction the conditions (a, c) ∈ R+ and x ∈ B guarantees the radical of (3.4)
is strictly positive, giving that every orbit of (3.4) has a unique symbol sequence s ∈ Σ. Therefore,
there exists a one-to-one correspondence between symbol sequences and orbits of (3.4).

Examples are shown in Fig. 4 for an arbitrarily chosen symbol sequence of period 1000. These
AI states are obtained by simply iterating the contraction (3.4) for a point ξ ∈ B until a convergence
tolerance of 10−12 is reached. In the following subsections, we will construct the interval B and
subset (4.4) for the three cases: ∆ = 0, and ∆ ≷ 0.

Note that a similar argument can be used when the maps f± are expanding, simply by reversing
time. More conveniently, define the inverse maps by solving Q(ξt, ξt−1) = 1 for ξt−1. By symmetry,
this simply switches the coefficients a and c and gives the map

ξt−1 = gst(ξt) =
1

2c

(
−bξt + st

√
∆ξ2t + 4c

)
,

whenever c ̸= 0. When these “backwards” functions are contractions on common domains, they
will also give a correspondence between symbol sequences and AI trajectories. This is equivalent to
simply swapping the parameters (a, c).2 We will call the subset of parameters (a, c) for which the
sequence g± is a contraction R−, and the union R = R+ ∪R−.

2Note that continuation away from the AI limit in this case would also be equivalent if we transform (1.1) to
eliminate the parameter τ by requiring b+ 2c ̸= 0.
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Figure 4. Orbits of period 1000 for an arbitrarily chosen symbol sequence at the AI limit (black points) for (a)
parallel lines, (b) ellipse, and (c) hyperbola. Also shown are the diagonal ξt = ξt−1 (red) and the quadratic curve
(3.3) (blue). Refer to Fig. 1 for parameters.

4.1. Parallel Lines. When the discriminant vanishes, the curve E becomes a pair of parallel
lines, recall Fig. 1(a). This occurs on the parabola shown as the red curve in Fig. 3(a). Using the
parameterization (4.1), the map (3.4) becomes

fst(ξt−1) = mξt−1 + st(1−m),

where m = −b/2a is the slope. Thus this pair of maps are contractions when |m| < 1, which
corresponds to the black half of the ∆ = 0 parabola in Fig. 3(b) with the boundary point |b| = 2a
at the vertex a = c = 1

4 . Similarly, the inverse map becomes a contraction when |m| > 1, which
corresponds to the red half of the parabola in Fig. 3(b).

We now find a minimal interval (4.3) so that compositions of (3.4) have common domains
that are mapped into themselves. This occurs for the square centered at origin whose height is the
maximum magnitude of the intersection of f± with the diagonal ξt = ξt−1 at 1 and the anti-diagonal
ξt = −ξt−1 at the period-two orbit (4.2). This gives an interval (4.3) with

(4.6) x∗ =

{
1, b ≤ 0

1√
1−2b

, 0 < b < 1/2
, ∆ = 0.

4.2. Elliptic. When ∆ < 0, the curve E is an ellipse centered at origin; this corresponds to the
blue region in Fig. 3(a). In order that (3.4) map an interval into itself, the height of the ellipse must
be no more than its width (i.e., the range is a subset of the domain). From (3.4), the domain of f±
is the interval

|ξt−1| ≤ 2

√
a

|∆|
,

and, by symmetry, the range is

|ξt| ≤ 2

√
c

|∆|
.

Hence the range is a subset of the domain whenever 0 < c < a. Thus in this case we can restrict
(3.4) to the range, defining

(4.7) x∗ = 2

√
c

|∆|
, ∆ < 0.

The map (3.4) will be a contraction whenever the magnitude of its derivative is less than one.
This results in an interval in ξt−1 for each branch of the curve, (see Appendix A.1). Constraining
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the intersection of these two intervals to be a subset of the range gives

(4.8) a− 2
√
a+ 1 < c <

{
1
7(1− a+ 2

√
16a2 − 11a+ 2) 1

4 < a < 1
2(
√
5− 1)

a+ 3− 2
√
a+ 2 a > 1

2(
√
5− 1)

,

resulting in the blue region in R+, seen in Fig. 3(b).
Similarly, the inverse map becomes a contraction on the tan portion of R−, which is obtained

from the formulas above by simply exchanging a and c.

4.3. Hyperbolic. When the discriminant is positive, E is a hyperbola. In this case, the smallest
interval for which the range is a subset of the domain is the interval (4.3) with x∗ given by (4.6),
the same as for parallel lines.

As before, (3.4) is a contraction when the magnitude of its slope is less than one. This is true
everywhere if the magnitude of the slopes of the asymptotes,

(4.9) m± =
−b±

√
∆

2a
,

is less than one. To find the resulting parameter domain, first observe that m+m− = c
a . Thus if

|m±| < 1 then necessarily |c| < |a|. Additionally, note that the condition |m±| < 1 requires the
existence of the intersection of the hyperbola with the anti-diagonal ξt = −ξt−1 at the period-two
point (4.2), implying that b < 1/2. Elimination of b and imposing ∆ > 0 then gives the region

(4.10) 1
2 − a < c < a− 2

√
a+ 1,

which is shown as the green portion of R+ in Fig. 3(b). The argument for the inverse map is
obtained by, again, exchanging c and a to give the red portion of R−.

5. Persistence of Orbits Away From the AI Limit. We showed in §4 that there is a one-to-one
correspondence between symbol sequences and orbits of the map (1.1) at the anti-integrable limit,
provided that (a, c) ∈ R and ξ ∈ B. In this section we will show that these orbits persist for small
enough ε > 0 by reformulating the third-order difference equation (3.1) as a a map

T (·; s) : BM → BM ,

on sequences ξ ∈ BM ⊂ R∞ for each symbol sequence s ∈ Σ so that a fixed point, ξ = T (ξ; s),
corresponds to Lε = 0. The simplest form of such a map is obtained by formally solving (3.1) for
ξt:

(5.1) Tt(ξ; s) =
1

2a

(
−bξt−1 + st

√
∆ξ2t−1 + 4a [1 + ε(ξt+1 + σξt−1 − δξt−2)]

)
.

The operator is constructed so that the AI limit (3.4) is reproduced when ε = 0. Here—without
loss of generality—we have assumed that (a, c) ∈ R+, since one can find a similar operator that
applies in R− by solving the quadratic terms for ξt−1 which is essentially (5.1) under a ↔ c.

To show that this map has fixed points, we will again use the contraction mapping theorem.
Thus we must show that for small enough ε, there is a compact set BM ∈ R∞, effectively an
M -expansion of the cube defined using the interval (4.3), such that

∥DT (ξ; s)∥∞ < 1.
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We will see that DT (ξ; s) is an infinite matrix with a finite number of non-zero elements in each
row, so its infinity norm is the supremum of the absolute row sums.

When T (·, s) is a contraction on BM then the unique fixed point of T is an orbit of the map
(3.1) with AI-limit defined by the symbol sequence s. For our analysis, it is convenient to define
the parameter

(5.2) γ ≡ |ε|(1 + |σ|+ |δ|),

that measures the size of the ε dependent terms in (5.1), and to let

R+
M ⊂ {(a, c, γ,M) ∈ R4}

denote the generalization of R+, a parameter region on which T will be a contraction. This set will
be constructed for two special cases in the next two subsections. Given this region, we can easily
prove:

Lemma 2. Given (a, c, γ,M) ∈ R+
M and ξ ∈ BM , there is a one-to-one correspondence between

each symbol sequence s ∈ Σ and orbit {ξ} ⊂ BM satisfying (5.1).

We omit a formal proof, as it is the same as Lem. 1. Again, this argument also applies in a
region R−

M obtained by exchanging a ↔ c.
As a result of Lem. 2, orbits will not undergo any bifurcations when parameters lie in RM =

R+
M ∪R−

M . This “no-bifurcations” concept is a simple consequence of uniqueness [SDM99].
In the next two subsections, we consider two special cases and construct the region RM so that

T is indeed a contraction. While these cases are clearly not exhaustive, they provide insight into
the utility of the AI approach and demonstrate the nontrivial nature of the problem. In §5.1 we set
b = 0, and treat the elliptic, hyperbolic and parallel lines cases together. In §5.2 we set ∆ = 0, so
that the set E , (3.3), corresponds to a pair of parallel lines. In both cases, we will demonstrate that
simple iteration of the contraction T (ξ; s) with parameters chosen appropriately, will give orbits of
the map (1.1) to any desired precision.

5.1. Vanishing b. As shown in Fig. 3(b), a portion of the line b = 0, where a+ c = 1, is in R+.
This line intersects all three ∆ cases: parallel lines, elliptic, and hyperbolic. Setting b = 0 in (5.1)
gives

(5.3) ξt = T 0
t (ξ; s) = st

√
1

a

[
1− cξ2t−1 + ε(ξt+1 + σξt−1 − δξt−2)

]
, (b = 0).

Note that

T 0
t (ξ; s)|ε=0 = fst(ξt−1) = st

√
1

a
(1− cξ2t−1),

reproduces the map (3.4) for this case.
Since a = 1− c > 0, the fixed points at this AI limit are simply ξt = st. The expansion of B by

M ∈ [0, 1) is then defined to be the cube

(5.4) B0
M (s) ≡ {ξ ∈ R∞ | ∥ξ − s∥∞ ≤ M}, (b = 0),

for each s ∈ Σ. Given ξ ∈ B0
M and some algebra (see Appendix A.2), T 0(ξ; s) ∈ B0

M when

(5.5) γ ≤ 1

1 +M
min

[
a(1 +M)2 − 1, 1− a(1−M)2

]
− |1− a|(1 +M).
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Additionally, requiring ∥DT 0(ξ; s)∥∞ < 1 leads to the condition

(5.6) γ < 2a(1−M)− 2|1− a|(1 +M).

These conditions imply that T 0 : B0
M → B0

M is a contraction when parameters lie within a region
in (γ,M, a)-space, pictured in Fig. 5. Thus, given appropriately chosen parameters, every AI orbit
continues uniquely to a fixed point of T 0, which is an orbit of the map (1.1).

(a)

a M

γ

(b)

a

γ

Figure 5. (a) The region R+
M in (a,M, γ) where T 0 is guaranteed to be a contraction on B0

M , and (b) the projection
of this region to the (a, γ)-plane. The red points show the parameters used in Fig. 6(a) and (b) when ε = 0.15.

Two examples are shown in Fig. 6. The blue curves are the AI limit curve (3.3), which in
panel (a) is an ellipse, and in panel (b) is a hyperbola. In both cases, an arbitrarily chosen symbol
sequence of period-250 and sequence ξ ∈ B0

M is iterated under T 0 until a convergence tolerance of
10−12 is reached to obtain the orbits. Orbits with three ε-values are shown; at the smallest value,
ε = 0.01, the orbit essentially lies on the four points (ξt−1, ξt) = (st−1, st), and as ε grows the
orbits move away from these values. The largest value, ε = 0.15, in the figure corresponds to (a)
γ = 0.2625 and (b) γ = 0.2375. The (a, γ)-values for both of these examples are shown as the red
points in Fig. 5(b), thus in either case the map T 0 is indeed a contraction.

5.2. Parallel Lines. When ∆ = 0, the quadratic curve (3.3) is a pair of parallel lines and the
coefficients (a, b, c) can be parameterized with the slope m = − b

2a , recall (4.1). Rewriting the
difference equation (3.1) with this parameterization gives

ε(ξt+1 + σξt−1 − δξt−2) =
1

(m− 1)2
(ξt −mξt−1)

2 − 1.

The operator T from (5.1) then has the form

(5.7) ξt = T
∥
t (ξ; s) = mξt−1 + st(1−m)

√
1 + ε(ξt+1 + σξt−1 − δξt−2), (∆ = 0),
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-0.5

0

0.5

1

1.5

2

(b)

ξt-1

ξt

Figure 6. An arbitrarily chosen sequence s of period-250 is iterated under the contraction T 0 to obtain orbits of
(1.1) for two cases with b = 0: (a) (a, c, σ, δ) = (0.9, 0.1, 1

2
, 1
4
) and (b) (a, c, σ, δ) = (1.1,−0.1, 1

4
, 1
3
). Three ε-values

are shown, ε = 0.01 (yellow), 0.075 (red), and 0.15 (blue). An initial sequence ξ ∈ B0
M , was chosen at random,

setting M = 0.4 in (a) and 0.6 in (b). These sequences are iterated until they converge within an error of 10−12. The
orbits are shown in the (ξt−1, ξt)-plane with the quadratic curve (3.3) (blue), the space BM (four black boxes), and
the diagonal ξt = ξt−1 (red). The red points in Fig. 5(b) show the (a, γ)-values when ε = 0.15 for these examples.

for any s ∈ Σ. This reduces to (3.4) for ∆ = 0 when ε = 0. Using the bound x∗ in (4.6), which is
appropriate for ∆ = 0, we define the cube

(5.8) B∥
M = {ξ ∈ R∞ | ∥ξ∥∞ ≤ x∗ +M}, (∆ = 0).

After some algebra (see Appendix A.3), we see that T ∥ maps B∥
M into itself when

(5.9) γ ≤ (1− |m|)2(x∗ +M)2 − (1−m)2

(1−m)2(x∗ +M)
.

The bound ∥DT ∥(ξ; s)∥∞ < 1 requires

(5.10) γ2(1−m)2 − 4(1− |m|)2(1− γ(x∗ +M)) < 0.

Combining these inequalities gives a region in (γ,M,m)-space shown in Fig. 7. Any set of parameters
chosen within this region results in the operator T ∥ being a contraction on B∥

M , implying the
existence of a unique orbit of (1.1) for any sequence s ∈ Σ.

Similar to above, we show two examples in Fig. 8. In each case we arbitrarily choose an initial
sequence of period-250 and ξ ∈ B∥

M and iterate it under the map T ∥ until a convergence tolerance
of 10−12 is obtained. Orbits with three ε-values are shown. For the smallest value, ε = 0.01, the
orbits essentially fall on the set (3.3), the blue parallel lines, but the orbit is nevertheless nontrivial:
it is not simply the symbol sequence. For the case shown in Fig. 8(b), m is larger and the orbit
stretches out more along the lines, but stays close to them as ε grows. When ε = 0.2, γ = 0.24
in (a) and γ = 0.46 in (b). The corresponding (m, γ)-values, shown as red points in Fig. 7(b), lie
within the region where T ∥ is guaranteed to be a contraction.
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(a)

m

M

γ

m

γ

(b)

Figure 7. (a) The region in (m,M, γ)-space, where T ∥ : B∥
M → B∥

M and ∥DT ∥∥∞ < 1, and (b) the projection of
the region onto the (m, γ)-plane. The red points show the (m, γ)-values used in Fig. 8(a) and (b) when ε = 0.2.

                   -2                     -1                     0                     1                    2
-2.5

-1.5

-0.5

0

1

2

(a)

ξt-1

ξt

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b)

ξt-1

ξt

Figure 8. Orbits of (1.1) of period-250 with parameters (a) (m,σ, δ) = (−0.2, 0.1, 0.1) and (b) (m,σ, δ) =
(0.95, 0.7, 0.6), for ε = 0.01 (yellow), 0.1 (red), and 0.2 (blue). These are obtained from a randomly chosen sequence s

and an initial sequence ξ ∈ B∥
M , setting M = 0.7 in (a) and 0.5 in (b). The sequences are iterated using T ∥ until they

converge within an error of 10−12. The orbits are shown in the (ξt−1, ξt)-plane with the quadratic curve (3.3) (blue),
the space BM (black box; not seen in (b) as the orbit lies in a much smaller interval), and the diagonal ξt = ξt−1

(red). The red points in Fig. 7(b) show the (m, γ)-values when ε = 0.2 for these examples.

6. Continuation from the AI Limit. In this section, we implement a continuation algorithm to
find periodic orbits of (1.1) as ε grows from zero by reformulating the rescaled difference equation
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(3.1) to use a predictor-corrector method. An orbit of period-n, i.e., a sequence

ξ ∈ {ξ ∈ R∞ | ξt+n ≡ ξt, ∀t ∈ Z} ≃ Rn,

must be a zero of the function G : Rn × R → Rn defined by

G(ξ, ε) = (Lε(ξ1, ξ0, ξn−1, ξn−2),Lε(ξ2, ξ1, ξ0, ξn−1), . . . ,Lε(ξ0, ξn−1, ξn−2, ξn−3)) ,

where Lε is defined in (3.1). Given a point (ξk, εk) such that G(ξk, εk) = 0 and ℓ a predetermined
arclength step size, we use a standard pseudo-arclength continuation algorithm [KOGV07, Sec.
1.2.3], to solve the system

(6.1)
G(ξk+1, εk+1) = 0,

ξ̇k(ξk+1 − ξk) + ε̇k(εk+1 − εk) = ℓ,

for orbit ξk+1 at parameter εk+1.
At each step, a hyperplane orthogonal to the direction vector (ξ̇k, ε̇k) is set at a distance ℓ

from (ξk, εk) to ‘predict’ the location of (ξk+1, εk+1). Then, to ‘correct’ we use a quasi-Newton
method [AG90] that uses Broyden’s iterative formula to approximate the Jacobian of (6.1) and a
QR-decomposition to find its inverse.

The algorithm is initialized with the orbit at the AI limit, (ξ0, 0), and direction vector (ξ̇0, 0.005)
so that ξ̇0 solves the first n rows of

(6.2)

(
∂ξG(ξk, εk) ∂εG(ξk, εk)

ξ̇k
T

ε̇k

)(
ξ̇k+1

ε̇k+1

)
=

(
0
1

)
.

Subsequently, each new direction vector (ξ̇k+1, ε̇k+1) is found by solving the full system (6.2) to
obtain a normalized tangent vector.

Other inputs include the parameters a, b, c, σ, δ and an initial arclength step size ℓ, which varies
depending on the period n and values of the parameters. We allow for adjustments in ℓ: if a solution
jumps ‘too far away’ (i.e., converges to another solution), the step is decreased by a factor of two.
After each successful step, ℓ is reset to the original predetermined value. The continuation runs
until ε leaves a predetermined interval, typically ε ∈ [0, 2], and the Broyden iteration stops when
either ∥G∥∞ < 10−12 or after a maximum number of steps is reached; here set to 150.

Below we consider four examples with the parameters given in Table 1; one has parallel lines,
∆ = 0, and three have b = 0. These cases are labelled by the symbols listed in the first column of
the table, and will be referred to by these symbols throughout the rest of our discussion.

In the case labeled (Hé) the map (1.1) has Jacobian δ = 0 and is effectively a two-dimensional
map (see Appendix A.4). For the parameters in Table 1, the resulting dynamics of this case is
equivalent to the standard Hénon map (1.2), with the 2D Jacobian δH = σ = −0.3, so we call it an
“embedded Hénon” map. When ε ≈ 0.845 this map has the strange attractor originally studied in
[H7́6].

Results of the continuation for the four cases of Table 1 are shown in Figs. 9-12.
The first figure shows bifurcation diagrams for all orbits up to period five (a total of 14 orbits).

Each orbit is labeled by its AI symbol sequence. Note that for each case there is a bifurcation-free
region that contains 0 < ε < εN , where εN (the last column in Table 1) is the upper bound, obtained
in §5, so that (5.1) is guaranteed to be a contraction. For the first three cases, all of the orbits shown
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Case a b c ∆ σ δ εN
(∥) 25/9 -20/9 4/9 0 0.1 0.1 0.5416
(E) 0.9 0 0.1 -0.36 0.5 0.25 0.2143
(Hé) 1 0 0 0 -0.3 0 0.4122
(VP) 1.25 0 -0.25 1.25 0.1 1 0.0481

Table 1
Parameters for the four cases followed in §6, henceforth referred to by their symbols, listed in the first column.

The first has an AI limit with parallel lines, ∆ = 0 (∥). The remaining three have b = 0: an elliptic AI limit (E),
an embedded Hénon map (Hé), and a hyperbolic AI limit that is volume-preserving (VP). The last column, εN , is an
upper bound for which Lem. 2 guarantees ‘no bifurcations’, i.e., all AI states uniquely continue to orbits for ε < εN .

in Fig. 9—except the fixed points—undergo saddle-node or period-doubling bifurcations within the
range εN < ε < 2, with the exception of the (VP) case, where both period-three orbits, {− − +}
and {− + +}, continue beyond ε = 2, as can be seen in Fig. 9(d). These two orbits eventually
undergo a saddle-node bifurcation at ε ≈ 10.89. Note that the two fixed points are given by

{±}∞ : ξ = 1
2

(
(1 + σ − δ)ε±

√
4 + (1 + σ − δ)2ε2

)
.

Thus they will collide in a saddle-node when the radicand is zero, or equivalently when α = −1/ε2 =
1
4(1 + σ − δ)2. Therefore this bifurcation will not occur for the assumed range α < 0.

Recall that when b = 0 the AI state corresponds to ξt = st, so all of the orbits in these
cases emerge from these two points in Fig. 9. For the parallel lines case the AI state is nontrivial.
Nevertheless, since this case has slope m = −b/2a = 0.4 < 1, we iterate the contraction (3.4)
starting with ξ = s to give the AI state to start the continuation at ε = 0.

Bifurcations for the four cases for all orbits up to period six are summarized in Table 2.3 Note
that all of these bifurcation values lie beyond εN , as given in Table 1. For the case (Hé), these results
are consistent with bifurcations of the 2D Hénon map. In particular, it was shown in [SDM99] that
there are no bifurcations below ε ≈ 0.4999 (see Appendix A.4), and indeed the earliest bifurcation
we observe for the (Hé) case is a doubling of the period-three orbit at ε ≈ 0.6126.

Notice that there appears to be a pattern in the symbol sequences for orbits that bifurcate:
the symbol sequences of bifurcating orbits differ in only one symbol. Indeed, we list the two orbits
involved in a saddle-node in Table 2 as a single symbol sequence, denoting the sole symbol that
differs by ±. This pattern is also observed for a number of other parameter sets and periodic orbits
with periods up to 75. Since these are the two generic codimension-one bifurcations, we propose
the following conjecture.

Conjecture 3. Codimension-one bifurcations of periodic orbits continued from the AI limit of the
map (1.1) only occur between orbits with exactly one differing symbol.

Note that this conjecture also appears to hold for the Hénon map [SDM99], but we are unaware
of a proof even in this case.

To gain more intuition on the behavior of orbits under continuation, an orbit with period
n = 2500 for an arbitrarily chosen symbol sequence is shown in Fig. 10 for each of the four cases
in Table 1. Each orbit is shown projected onto the (ξt−1, ξt)-plane for four values of ε. When ε is

3The {−} → {−,+} period doubling occurs at ε = 2(a−c)√
(1+σ+δ)(a(3+3σ−δ)+b(1+σ+δ)+c(−1−σ+3δ))

. This reproduces

the results in the first line of Table 2.
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Figure 9. Points ξt on periodic orbits with periods one to five as ε varies for the four examples of Table 1. Each
orbit is labeled by its AI symbol sequence.

small, the orbits lie close to the curve (3.3), like the AI states shown in Fig. 4. As ε grows they
move away from the curve and form clusters and clusters of clusters. In each case, the maximum
ε shown is the largest value for which the continuation converged. The self-similar behavior in the
clusters becomes more apparent in Fig. 11, where we enlarge the first quadrant of Fig. 10 and only
show these orbits for the maximum ε.

Finally, Fig. 12 shows the three-dimensional structure of the orbit in Fig. 10 for each of the
cases of Table 1. Also shown in the figure are the two quadratic surfaces Q(ξt, ξt−1) = 1 and
Q(ξt+1, ξt) = 1. Recall that in 3D, AI states must fall on the intersection of these surfaces, as
illustrated in Fig. 2. For the first three cases, the structure in three-dimensions resembles the
standard folded horseshoe shape of the Hénon attractor; indeed all three of these maps are volume-
contracting, with δ < 1, and of course, the (Hé) case is indeed a 2D Hénon map embedded in
3D. The fourth case, which is volume-preserving, exhibits a much more complex three-dimensional
structure, though it still appears to be related to a fold in the (ξt+1, ξt) plane, which is equivalent
to the (x, y) plane in (1.1).
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Parent Type Child Case
(∥) (E) (Hé) (VP)

{−}∞ pd {−,+}∞ 1.75 0.63 1.65 1.34
{−,+}∞ pd {−,−,−,+}∞ 1.39 0.49 1.05 0.71

{−,+,+}∞ pd {−,−,+,+,−,+}∞
{−,−,+,−,+,+}∞

1.68
−

1.09
−

0.61
−

−
1.20

sn {−,±,+}∞ 1.72 1.33 0.61 10.89
sn {−,±,+,+}∞ 1.63 0.81 0.62 0.71

sn {−,−,±,−,+}∞
{−,−,−,±,+}∞

1.27
−

0.64
−

−
0.81

0.73
−

sn {−,±,−,+,+}∞
{−,+,−,+,±}∞

1.13
−

0.43
−

−
0.66

0.47
−

sn {−,±,+,+,+}∞ 1.60 0.71 0.61 0.52
sn {−,−,−,±,−,+}∞ 1.32 0.52 0.97 0.70

sn {−,±,−,+,+,+}∞
{−,+,−,+,+,±}∞

1.10
−

0.44
−

−
0.70

0.54
−

sn {−,±,+,+,+,+}∞ 1.59 0.72 0.61 0.56

sn
{−,−,±,−,+,+}∞
{−,±,−,−,+,+}∞
{−,−,−,±,+,+}∞

1.14
−
−

0.62
−
−

−
−

0.83

−
0.55
−

Table 2
Parameter, ε, for period-doubling (pd) and saddle-node (sn) bifurcations for all orbits up to period six for the four

examples of Table 1. Orbits are identified by their symbol sequences in the first and third columns. For saddle-node
bifurcations, the symbol sequences of the two colliding orbits are listed together: the ± indicates the single symbol that
differs. A dash indicates the bifurcation does not occur with that pair for that case.

7. Conclusions. Previous research on anti-integrable limits for quadratic 3D maps has been
limited to the case that the AI limit corresponds to either a deterministic 1D map or to a full
shift on two symbols. We have argued that the AI limit more generally corresponds to a quadratic
correspondence, like (3.2). Now the symbolic dynamics arises from the choice of branch at each
iteration. In previous studies, either only one branch of the correspondence was used, or it was
simplified by assuming AI states are identical to their symbols, e.g., the case b = c = 0. In this paper,
the AI states are still nondeterministic—as in the original work on anti-integrability [AA90]—but
now each symbol sequence determines a sequence of one-dimensional maps whose orbits correspond
to the AI states. For the cases that we study, this 1D map sequence is a contraction for any given
symbol sequence; thus, just as in [AA90], we still get a collection of AI states that has the dynamics
of a full shift on two symbols.

Here we limited our study to only one of the possible AI limits listed in §2, namely α → −∞.
This case, however, does have the main feature of the AI limit for cases (2) and (3): a quadratic
correspondence. In a follow-up paper, we plan to generalize these results to include other cases. For
example, it would be interesting to understand how the various AI limits connect as the parameters
vary from one sector at ∞ in the (α, σ) plane to another. It would also be interesting to investigate
AI limits that allow the coefficients a, b, c of Q to approach infinity as well.

Both the analysis at the AI limit and continuation away from the limit took advantage of
the contraction mapping theorem to prove the existence and uniqueness of orbits for each symbol
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Figure 10. Continuation of a period-2500 orbit with an arbitrarily chosen symbol sequence for the parameters of
Table 1 and four values of ε, as shown in the legends. The quadratic curve (3.3) is shown in blue and the red line is
the diagonal ξt = ξt−1.

sequence. In §4, we studied the three types of quadratic curves and found a region R of parameters
for which the map F (4.5) is a contraction on B. In §5 we limited the study to two fairly simple
cases, where one can easily show the map T (ξ; s) (5.1) with parameters (a, c, γ,M) ∈ RM remains
a contraction for some ε > 0 on a domain BM , recall (5.4) and (5.8), for a bound M . Nevertheless,
numerical results from a standard predictor-corrector continuation algorithm shown in §6 indicate
that our analysis could be extended to larger parameter and phase space regions.

For the 2D, area-preserving Hénon map, [DMS05] found that the rotational periodic orbits, those
that encircle the elliptic fixed point, are the continuation of AI states with symbol sequences of a
particular “rotational” class. It is interesting to speculate that there could be a similar correlation
between special symbol sequences at the AI limit and rotational orbits in the 3D volume-preserving
case. For example, [DM08] found parameter regimes in which the map has an invariant circle
surrounded by a (Cantor) family of nested invariant tori.

The continuation algorithm in §6 showed that orbits can be followed from the AI limit beyond
the theorem-limited results for a maximum ε-value. This suggests that our analysis can indeed be
used to better understand structural development of orbits as parameters vary. We propose that
these ideas could be used to prove the existence of cantori and understand the resulting formation
of tori, i.e., to understand how chaotic structures undergo bifurcations to regularity.
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Figure 11. An enlargement of the period-2500 orbit for the largest ε of Fig. 10 near the point (1,1) showing
approximately self-similar structures. The quadratic curve (3.3) is shown in blue and the red line is the diagonal
ξt = ξt−1.

An example of such a regular structure is shown in Fig. 13, projected onto the (ξt−1, ξt)-plane for
(a, c, σ, δ) = (0.5, 0.5,−0.3, 0.5). For these parameters, the map (1.1) appears to have an attracting
invariant circle—the set of blue points in Fig. 13—when α = −1 (or equivalently when ε = 1). Can
we find this orbit using continuation from the AI limit? When ε = 0, these parameters lie outside of
R, so Lem. 1 does not guarantee a unique orbit for each symbol sequence. Indeed, since a = c and
b = 0 the curve (3.3) is a circle centered on the origin. So while the correspondence Q(ξt, ξt−1) = 1
is well-defined for any symbol sequence on the domain |ξ| <

√
2, it is not a contraction and therefore

each symbol sequence need not correspond to a unique orbit. To obtain an approximately periodic
orbit that reproduces that seen in Fig. 13, we iterate the point (x, y, z) = (0.1022,−1.4040,−0.7222)
on the invariant circle until it returns within a distance of 0.005 of itself; this first happens at
t = 1089. We then find a symbol sequence by solving (5.1) for st to give a sequence {s0, s1, . . . , s1088}
associated with this nearly periodic orbit. This is taken to represent a period-1089 AI state with
ξt = st (since b = 0), at ε = 0. The method discussed in §6 continues this to a periodic orbit of
(1.1) up to ε ≈ 0.2721; the resulting orbit (now in the scaled ξ coordinates) is shown as the black
points in Fig. 13.

Although this orbit has not (yet) reached the attracting loop at ε = 1, it is interesting to
note that tests of twenty other randomly generated period-1089 symbol sequences gave orbits that
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Figure 12. The period-2500 orbit of Fig. 10 of the four examples of Table 1 in R3 for (∥) ε ≈ 1.0959, (E)
ε ≈ 0.42434, (Hé) ε ≈ 0.59293, and (VP) ε ≈ 0.46016. Also shown are the surfaces Q(ξt, ξt−1) = 1 and Q(ξt+1, ξt) = 1

continued at most to ε ≈ 0.03, suggesting that the sequence derived from the invariant circle is un-
usually robust. This promising—if incomplete—result shows the potential of our approach of using
anti-integrability to understand more about the development of regular structures as parameters
are varied.
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Figure 13. Two-dimensional projection of an attracting invariant circle (blue points) of the map (1.1) with
parameters (a, c, σ, δ) = (0.5, 0.5,−0.3, 0.5) at α = −1 (ε = 1). The black points show a period 1089 orbit with symbol
sequence obtained by solving (5.1) for st using points on the invariant circle. This sequence is continued from ε = 0
to ε ≈ 0.2721, the maximum for which the continuation algorithm converged. Also pictured are the quadratic curve
(3.3) (blue), and the diagonal ξt = ξt−1 (red).

Appendix A. Appendix.

A.1. Elliptic Contraction. To find the domain, D where the elliptic curve Q(ξt, ξt−1) = 1 has
absolute slope less than one, differentiate (3.4) to obtain

(A.1) f ′
s(ξt−1) = − b

2a
+

s∆ξt−1

2a
√

4a+∆ξ2t−1

.

This implies that |f ′
s| < 1 in an interval for each branch, so that D is the intersection of these

intervals:

D =
1√
|∆|

(
−a+ c− 1,

3a+ c− 1√
2a+ 2c− 1

)
∩ 1√

|∆|

(
−3a− c+ 1√
2a+ 2c− 1

, a− c+ 1

)
= (−Π,Π) for Π =

1√
|∆|

min

(
|a− c+ 1|, |3a+ c− 1|√

2a+ 2c− 1

)
.

For the orbit to exist at the AI limit, the range (4.7) must be be a subset of D, which implies

2
√
c ≤ min

(
|a− c+ 1|, |3a+ c− 1|√

2a+ 2c− 1

)
.

Solving for c and noting the two terms in the min are equal at a = −1+
√
5

2 , we obtain (4.8).
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A.2. Persistence for Vanishing b. Using (5.4) and γ as defined in (5.2), we find the conditions
necessary to guarantee T 0(ξ; s), (5.3), is a contraction. We first bound T 0 from above

∥T 0(ξ; s)∥∞ =

∥∥∥∥∥st
√

1

a

[
1 + ε(ξt+1 + σξt−1 − δξt−2)− cξ2t−1

]∥∥∥∥∥
∞

≤

√
1

|a|
(1 + γ∥ξ∥∞ + |c|∥ξ∥2∞)

≤

√
1

|a|
[1 + γ(1 +M) + |c|(1 +M)2].

Requiring this expression to be no more than 1 +M gives

(A.2) γ ≤ (|a| − |c|)(1 +M)2 − 1

1 +M
.

Recalling that c = 1 − a and taking a > 0 gives the first expression in (5.5). Similarly, bounding
the operator from below gives

∥T 0(ξ; s)∥∞ ≥

√
1

|a|
(1− γ∥ξ∥∞ − |c|∥ξ∥2∞)

≥

√
1

|a|
[1− γ(1 +M)− |c|(1 +M)2].

Requiring this expression be larger than 1−M then gives

(A.3) γ ≤ 1− |a|(1−M)2 − |c|(1 +M)2

1 +M
.

Thus the conditions (5.5) are required for T 0 : BM → BM .
The derivative of T 0 is the matrix

DjT
0
t (ξ; s) =

st
2aT 0

t (ξ; s)
[ε(∆j,t+1 + σ∆j,t−1 − δ∆j,t−2)− 2cξt−1∆j,t−1] ,

where ∆i,j is the Kronecker-delta. When ξ and T 0(ξ; s) ∈ BM , this gives the bound

∥DT 0(ξ; s)∥∞ ≤ γ + 2|c|(1 +M)

2|a|(1−M)
.

Forcing this value to be strictly less than one and substituting c = 1− a gives the condition (5.6).

A.3. Persistence for Parallel Lines. To determine the conditions so that T ∥(ξ; s), (5.7), is a
contraction on (5.8) we first bound

∥T ∥
t (ξ; s)∥∞ = ∥mξt−1 + st(1−m)

√
1 + ε(ξt+1 + σξt − δξt−2)∥∞

≤ |m|∥ξ∥∞ + |1−m|
√
1 + γ∥ξ∥∞

≤ |m|(x∗ +M) + |1−m|
√
1 + γ(x∗ +M),
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where γ is given in (5.2) and x∗ by (4.6). Requiring that this norm is no more than x∗ +M gives

γ(x∗ +M) ≤ (1− |m|)2

(1−m)2
(x∗ +M)2 − 1,

resulting in the condition given in (5.9).
Computing the derivative gives

DjT
∥(ξ; s)t = m∆j,t−1 + stε(1−m)

∆j,t+1 + σ∆j,t−1 − δ∆j,t−2

2
√

1 + ε(ξt+1 + σξt−1 − δξt−2)
,

which yields

∥DT
∥
t (ξ; s)∥∞ ≤ |m|+ γ|1−m|

2
√
1− γ(x∗ +M)

.

Requiring γ(x∗ +M) < 1 for the radical to remain real and bounding so this value is strictly less
than one gives the condition (5.10).

A.4. Embedded Hénon map. When δ = 0 in (1.1), the dynamics of the 3D map becomes essen-
tially two-dimensional, because the system is a semi-direct product of the map (x, y) → (G(x, y), x)
with the map z → y. The (x, y) map has Jacobian σ − bx− 2cy, which generally vanishes along a
line, so the 2D map is not globally invertible. For the Jacobian to be everywhere nonzero, b and c
must necessarily be zero. Since this results in a map that is quadratic and invertible, it must then
be conjugate to the Hénon map (1.2). Under the standard scaling (2.1), (a, b, c) = (1, 0, 0), and the
effective 2D map becomes

(x′, y′) = (α− σy + x2, x).

This is indeed conjugate to (1.2) under the transformation (ξ, η) = (x,−σy) where k = −α and
δH = σ.

The famous strange attractor discovered by Hénon [H7́6] occurs when (k, δH) = (1.4,−0.3)
where the map is contracting and orientation reversing. To replicate this, we choose in Table 1
σ = −0.3 for the case (Hé), giving an “embedded Hénon map”. Using the AI scaling α = −ε−2, the
standard Hénon attractor will occur when ε =

√
1/1.4 ≈ 0.845.

More generally, it was proven in [SDM99] that there are no bifurcations for the Hénon map for

ε(1 + |δH |) < 2

√
1− 2/

√
5 ≈ 0.6498,

a region first found by Devaney and Nitecki [DN79]. The implication is that every orbit at the AI
limit has a unique continuation in this range and there is a hyperbolic horseshoe conjugate to a full
shift on two symbols. For the (Hé) case of Table 1 this implies no bifurcations until ε ≈ 0.4061,
which agrees with observations in Fig. 9 and Table 2.
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