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Abstract	

Portable	near	infrared	(NIR)	spectroscopy	is	a	fast,	dependable,	and	cost-

effective	method	for	assessing	nutritional	chemistry	in	different	plant	species.	

Portable	NIR	can	streamline	analysis	and	investigation	within	ecological	field	

settings,	allowing	researchers	to	evaluate	significant	nutritional	variation	for	

among	populations	and	species	of	plants.	The	use	of	NIR	in	agriculture	is	

common,	but	the	application	of	portable	NIR	in	fieldwork	is	still	new	in	ecology.	

NIR	in	field	settings	has	the	potential	to	open	new	avenues	of	research,	and	can	

also	save	time	and	money	when	used	in	more	traditional	projects.		To	test	the	

applicability	of	portable	NIR	spectroscopy	in	the	field,	I	used	nutritional	data	

from	South	African	savanna	plant	samples	generated	using	wet	chemistry,	and	

NIR	spectra	of	the	same	samples,	to	create	regression	models	to	predict	plant	

nutritional	properties	from	spectral	data.	I	created	regression	models	to	predict	

crude	fat,	crude	protein,	and	acid	detergent	fiber	(ADF)	of	all	plant	organs	(root,	

leaf,	inflor,	fruit,	rhizome,	and	stem)	and	also	specifically	for	leaf.	My	findings	

indicate	that	portable	NIR	can	be	used	to	predict	crude	protein	and	acid	

detergent	fiber	of	South,	African	savanna	plant	samples.	My	findings	also	indicate	

that	portable	NIR	is	valuable	for	researchers	in	field	settings,	providing	them	with	

instant	access	to	information.		
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Chapter	I:	Introduction		

Wet	Chemistry	as	a	Traditional	Method	

Wet	chemistry	has	been	used	in	agricultural	settings	and	field	biology	

research	to	determine	the	nutritional	contents	of	samples.	Wet	chemistry	uses	

different	chemical	washes	to	extract	the	nutrient	from	a	sample,	making	this	an	

invasive	approach.	Once	a	sample	is	put	through	the	process	of	wet	chemistry,	it	

is	destroyed,	limiting	further	studies	using	the	same	sample.	Wet	chemistry	has	

been	used	to	analyze	the	nutritional	chemistry	for	the	macronutrient	content	of	

agricultural	food	samples	(Norris	et	al.	1976;	Shenk	et	al.	1979);	this	method	has	

become	the	standard	for	analyzing	nutrient	content.	

Near	Infrared	Spectroscopy	and	Portable	NIR	in	the	Field	

Near	infrared	spectroscopy,	in	comparison	to	wet	chemistry,	assesses	

nutritional	values	quickly	and	non-invasively.	A	sample	is	irradiatated	using	near	

infrared	light	and	spectra	are	reflected	based	on	the	chemical	bonds,	creating	

spectral	peaks.	The	spectral	peaks	of	the	tested	sample	allow	an	estimation	of	

different	spectral	properties	determined	by	the	specific	chemical	characteristics	

of	the	tested	sample	(Coates	2000;	Rothman	et	al.	2009).	NIR	is	a	derived	method,	

as	the	assessments	and	calculations	are	based	on	a	previous	calculation	relating	

the	value	of	a	primary	analytical	technique	(in	this	case	traditional	wet	

chemistry)	to	a	calibration	set	from	the	spectra.		

Portable	NIR	spectroscopy	is	more	efficient	and	less	costly	than	wet	

chemistry	as	it	requires	less	time	for	analysis	and	less	sample	preparation.	
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Portable	NIR	can	be	used	to	analyze	many	samples	in	the	amount	of	time	it	would	

take	someone	to	prepare	a	few	samples	using	the	traditional	wet	chemistry	

method.	NIR	can	predict	crude	protein	and	fiber	across	many	different	plant	

species	and	can	be	used	broadly	across	many	ecological	environments	(da	Costa	

et	al.	2005;	Lawler	et	al.	2006;	Locher	et	al.	2005;	Rothman	et	al.	2009;	

Woolnough	and	Foley	2002).	

Agricultural	and	primatological	field	work	have	used	NIR	spectroscopy	in	

nutritional	research	to	better	understand	how	nutritional	properties	such	as	

crude	protein,	acid	detergent	fiber,	and	moisture	affect	animal	ecology	within	

given	ecosystems	(Batten	et	al.	1998;	Foley	et	al.	1998;	McIlwee	et	al.	2001;	

Moore	and	Foley	2005).	Near	infrared	spectroscopy	has	been	used	to	analyze	and	

predict	feeding	rates	of	folivorous	marsupials	(McIlwee	et	al.	2001).	NIR	has	also	

been	used	to	understand	reproductive	success	in	herbivores	based	on	the	amount	

of	food	intake	from	quality	food	resources	(DeGabriel	et	al.	2008;	DeGabriel	et	al.	

2009).	To	understand	digestibility,	scientists	have	predicted	the	botanical	and	

nutritional	composition	of	different	animal	diets	using	the	spectra	of	feces	

(Glasser	et	al.	2008;	Parveen	et	al.	2008;	Steen	et	al.	1998).	NIR	has	been	used	to	

study	the	quality	of	diet	for	donkeys,	deer,	ostriches,	and	cattle	(Kidane	et	al.	

2008;	Landeau	et	al.	2006;	Lyons	and	Stuth	1992;	Showers	et	al.	2006).		

Primatologists	use	NIR	rapid	assessment	of	food	resources	to	examine	

what	nutritional	properties	drive	primate	food	choice	(Felton	et	al.	2009;	

Ortmann	et	al.	2006;	Rothman	et	al.	2009).	The	analysis	of	protein	and	fiber	has	

proven	particularly	important	for	assessing	the	nutritional	quality	of	primate	
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diets	(Chapman	et	al.	2002;	Milton	et	al.	1979;	Rothman	et	al.	2009).	The	ratio	of	

protein	to	acid	detergent	fiber	in	primate	foods	affects	folivorous	primate	diet	

choices	based	on	the	variation	of	seasonal	food	resources	(Chapman	et	al.	2002;	

Ganzhorn	1992;	Oates	et	al.	1990).	Hohmann	et	al.	(2006)	reviewed	the	

ecological,	physiological,	and	behavioral	aspects	of	nutrition	within	primate	diets	

while	Janmaat	et	al.	(2006)	observed	spatial	memory	of	wild	mangabeys	as	the	

animals	tried	to	remember	where	successful	procurement	of	fruit	had	previously	

taken	place.	Altmann	(1991	and	1998)	observed	nutrition	in	the	context	of	

primate	reproductive	lifespan	and	the	probable	number	of	infants	that	would	

survive.	Other	studies	consider	food	as	a	selective	force	in	primates,	focusing	on	

primate	ecology	and	the	nutritional	effects	food	choice	has	on	primate	

development	(Chapmann	et	al.	2012;	Clutton-Brock	1977;	Dunham	et	al.	2016;	

Milton	1980).	Variation	in	food	quantity	and	quality	requires	species	of	animals	

to	modify	their	diets	to	meet	nutrition	requirements	(Rothman	2006).		Seasonal	

fluctuations	influence	the	availability	of	certain	species	of	foods,	affecting	the	

density	and	distribution	of	primate	populations	(Kay	et	al.	1997;	Milton	1990;	

Rothman	et	al.	2006;	Van	Schaik	et	al.	1993;	Worman	and	Chapman	2005).	Other	

studies	found	that	varying	seasonal	resources,	and	the	nutritional	quality	of	these	

resources,	affect	female	and	male	primates	differently	(Ganzhorn	2002;	Koenig	et	

al.	1998;	Rothman	2006;	Watts	1998;	Worman	and	Chapman	2006).	The	

nutrition	of	the	foods	used	by	primate	mothers	strongly	affects	the	future	health	

of	their	juvenile	primates	(Altman	1991;	Altman	1998;	Rothman	2006).		
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Main	Purpose	of	this	Thesis	
	

Understanding	how	nutrition	affects	primate	biology	and	behavior	is	

significant	for	future	research	in	primatology	and	physical	anthropology.	Portable	

NIR	has	the	ability	to	make	this	research	more	efficient	and	cost	effective.	There	

is	a	remarkable	amount	of	nutrient	variation	among	plant	species	depending	on	

the	ecological	season.	This	requires	the	analysis	of	many	samples	(Rothman	et	al.	

2009;	Rothman	et	al.	2012),	typically	examined	using	traditional	wet	chemistry.	

Wet	chemistry	is	extremely	time-consuming,	taking	days	of	preparation	for	a	set	

of	samples.	For	example,	preparing	the	plant	samples	I	used	in	this	study,	took	

one	to	three	hours	per	session.	During	each	session	I	sorted	the	samples	by	organ	

and	ground	them.	This	process	took	one	to	two	hours	of	loading	the	samples	into	

bags,	and	less	than	an	hour	for	each	machine	to	process	the	samples	for	specific	

nutrients.	I	repeated	this	process,	multiple	times	a	week,	over	numerous	sessions	

between	2014	to	2016.	The	data	for	this	study	were	generated	using	wet	

chemistry	and	took	several	hundred	hours.	Generating	the	NIR	spectra	for	an	

equal	number	of	316	samples	took	me	three	hours.	Portable	near	infrared	

spectroscopy	(NIR)	will	create	monumental	change	for	researchers	in	the	field.	

Portable	NIR	allows	researchers	the	ability	to	expand	on	discoveries	immediately	

after	sample	analysis.	Results	found	using	NIR	spectroscopy	are	available	

immediately	(Coates	2000).	Portable	NIR	makes	it	possible	for	researchers	to	

gather,	analyze,	and	synthesis	results	in	the	same	location	where	they	originally	

collected	samples.	NIR	spectroscopy	is	also	safer	and	more	cost	effective	than	

traditional	wet	chemistry,	requiring	no	lab,	no	hazardous	chemicals,	(Conklin-
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Brittain	et	al.	1998;	Rothman	et	al.	2012;	Wrangham	et	al.	1998)	or	the	cost	for	

acquiring	those	dangerous	chemicals	(Van	Soest	et	al.	1991).	Infrared	technology	

consists	of	exposing	a	sample	to	infrared	light	and	observing	the	reflectance	

peaks	that	characterize	molecular	bonds	showing	different	macro	and	

micronutrients	(Dunham	et	al.	2016;	McKelvy	et	al.	1996).	However,	NIR	will	

never	be	as	accurate	as	wet	chemistry	because	wet	chemistry	is	the	standard	for	

measuring	nutrients	while	NIR	compares	spectral	wavelengths	to	referential	

data.	I	therefore	ask:	Is	portable	NIR	a	reliable	field	method	for	the	assessment	of	

crude	protein,	crude	fat,	and	acid	detergent	fiber	in	South,	African	savanna	plant	

matter?	My	findings	suggest	that	there	is	preliminary	evidence	to	support	that	it	

is.	I	argue	that	portable	near	infrared	spectroscopy	has	considerable	promise	for	

use	in	field	settings.	

	

	

	

	
	 	



	 10	

Chapter	II:	Methods	
Preparation		

Over	a	two-year	period	(2014-2016)	I	assisted	Oliver	Paine,	a	doctoral	

student	at	the	University	of	Colorado	Boulder,	analyze	plant	samples	he	collected	

from	the	Cradle	Nature	Reserve,	Cradle	of	Humankind,	South	Africa	from	both	dry	

and	wet	seasons.	We	used	wet	chemistry	to	analyze	whole	plant	samples	

collected	in	South	Africa.	These	had	been	dehydrated	and	labeled	in	the	field,	

stored	in	brown	paper	lunch	bags,	and	returned	to	the	United	States,	where	they	

were	kept	at	room	temperature	on	shelves	in	a	lab	in	the	Cristol	chemistry	

building	at	the	University	of	Colorado	Boulder.	The	bags	were	labeled	with	the	

plant	species,	the	season	(wet	or	dry),	the	year	the	sample	was	collected,	and	the	

bag	number	labeling	how	many	of	the	same	type	of	sample	were	collected.	Under	

Paine’s	guidance,	I	took	each	individual	bag	and,	with	scissors,	divided	the	plant	

by	organ:	root,	leaf,	inflor,	fruit,	rhizome,	and	stem	with	assistance	from	Karen	

Hillson,	Kendall	Abady,	and	Garrett	Heidrick.	We	put	the	dehydrated	sections	

through	an	industrial	grinder,	the	Retsch®	ZM	200	(see	image	1),	one	plant	organ	

at	a	time.	The	Retsch®	ZM	200	uses	centrifugal	technology	to	reduce	the	size	of	

fibrous	material.		This	process	is	a	standard	in	agriculture	and	chemical	

industries.			

	

	

	

For	a	diagram	of	the	methods	used,	please	refer	to	Appendix	7.	
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Image 1. Retsch®	ZM	200.		
Retsch	ZM	200.	Available	from:	Pictures	from	http://www.retsch.com/products/milling/rotor-

mills/zm-200	
 

The	powdered	plant	samples	were	then	split	into	two	groups,	one	to	be	

tested	using	wet	chemistry,	the	second	to	be	tested	with	portable	NIR.	The	first	

sample	set	was	placed	in	plastic	containers,	(1x1½	inch	around)	and	were	to	be	

used	for	the	wet	chemistry	analysis.	The	second	sample	set	was	placed	in	glass	

jars	(about	2	inches	tall	with	a	1	inch	diameter).	Each	glass	jar	and	plastic	

container	was	labeled	with	the	same	information	as	the	bag	containing	the	

original	samples.		The	glass	jars	were	then	stored	in	a	drawer	in	the	lab	until	they	

were	to	be	used	for	portable	NIR	spectroscopy	analysis.		
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Analysis	Using	Wet	Chemistry		

The	labeled	plastic	containers	containing	the	samples	were	placed	on	

racks	in	an	Excalibur ®	food	dehydrator	to	remove	water	content	until	the	

samples	were	ready	to	be	tested	using	wet	chemistry.	Concentrations	of	the	

sample’s	ADF,	crude	fat,	and	crude	protein	were	determined	using	an	ANKOM2000	

Fiber	Analyzer,	ANKOMXT15	Extractor,	and	Leco	FP-528	respectively.		

To	analyze	fiber	and	fat	concentrations,	suggested	amounts	of	each	sample	

were	placed	into	ANKOM	F57	Fiber	Filter	Bags	and	XT4	Fat	Filter	Bags.	To	

calculate	fiber,	the	suggested	sample	amount	was	0.5g	to	1g	while	the	suggested	

amount	to	calculate	fat	was	1g	to	3g.		These	bags	were	labeled	with	a	Sharpie®.	

The	season,	the	year,	an	abbreviation	of	the	plant	species,	the	type	of	plant	organ,	

the	number	of	the	bag	the	organ	was	from,	and	the	batch	number,	were	noted	on	

the	bag.	For	example,	if	the	sample	contained	Paspalum	urvillei	leaves	from	the	

wet	season	in	2015	from	Bag	2	and	the	batch	number	was	17,	the	bag	would	be	

labeled	“Wet	2015	TR	P.urv.	Leaf	2	B17.”		

We	then	created	a	table	to	record	the	analysis	information	for	each	

sample.	The	columns	included	the	batch,	the	sample	ID	(listed	in	the	example	

above),	the	filter	bag	weight,	the	sample	weight,	and	the	sample	weight	after	the	

process	analysis.	We	first	used	the	Sartorius	mechatronics	CPA1245	laboratory	

scale	to	find	the	weight	of	the	fiber	bag	without	the	sample	and	recorded	the	

information.	After	recording	the	weight	of	the	bag,	the	Sartorius	CPA1245	was	

tared	so	the	sample	could	be	added.	The	sample	was	added	into	the	bag	with	

small	metal	scoops,	while	the	bag	was	held	open	in	a	small	black	cylinder	(Bag	
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Weight	Holder)	sold	by	ANKOM.	The	suggested	amount	of	sample	was	added	into	

the	specific	analysis	bag	depending	on	the	nutrient	we	were	analyzing.	Once	

enough	of	the	sample	was	added	to	the	bag,	the	ANKOM	Heat	Sealer	was	used	to	

seal	the	bag	and	encapsulate	the	sample.	We	recorded	the	weight	of	the	contents	

of	the	bag.	The	weight	of	the	bag	by	itself	was	subtracted	from	the	weight	of	the	

bag	with	the	added	contents,	to	give	the	exact	weight	of	the	sample	that	had	been	

added.	The	samples	were	stored	in	a	Moisture	Stop	pouch	with	desiccant	packs	to	

absorb	moisture	until	the	samples	were	ready	to	be	analyzed.	

We	used	the	ANKOM2000	Fiber	Analyzer	(See	image	2)	to	analyze	the	fiber	

concentrations	for	the	plant	samples.	24	sample	bags	made	up	one	batch	and	they	

were	placed	in	the	bag	suspender	supplied	by	ANKOM.	Once	the	proper	analytical	

method	was	chosen,	the	machine	introduced	the	suitable	chemicals	to	perform	

each	rinse,	where	the	chemical	solution	was	heated	and	solublization	was	able	to	

occur.	The	remaining	residue	after	the	sample	goes	through	each	detergent	

solution	is	the	fiber	concentration	(Rothman	2009;	and	Van	Soest	et	al.	1991).		
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Image	2.	ANKOM2000	Fiber	Analyzer.		
ANKOM2000	Fiber	Analyzer.	Available	from:	Pictures	from	
http://www.lamviet.com/product/manufacture/ankom-
technology/images/product/limage_7558878559152189839484684_1323704499.png	
	

To	analyze	fat	concentrations	the	ANKOMXT15	Extractor	(see	image	3)	used	

Soxhlet	extraction	technology	to	extract	lipids	from	a	solid	material.	The	machine	

processed	a	batch	of	15	samples	for	a	time	period	between	30	and	60	minutes	at	

90°C. Solvent	was	added	to	the	samples	and	was	then	heated	to	extract	for	crude	

fat.	
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Image	3.	The	ANKOMXT15	Extractor.		
The	ANKOMXT15	Extractor.	Available	from:	Pictures	from	

https://www.ankom.com/sites/default/files/styles/featured_product_-
_zoomin/public/images/zoomable-images/xt15.jpg?itok=H99O-7AC	

	
After	the	machines	finished	processing	the	samples	for	fiber	and	fat,	the	

sample	bags	were	taken	out	to	dry	and	placed	in	the	Precision™	Oven51221126		

(see	image	7)	to	remove	water	content.	Once	the	bags	were	dry,	each	bag	and	

its	contents’	new	remaining	weight	were	again	recorded.	The	new	measurement	

of	the	bag	and	its	contents	was	then	subtracted	from	the	original	measurement	of	

the	bag	and	its	contents	to	give	the	measurement	of	the	crude	fat.		
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Image	4.	Precision™	Oven51221126.	
Precision™	Oven51221126.	Available	from:	Pictures	from	
http://www.americaninstrument.com/imagesfromdatabase/3698C_OVEN.jpg	
	

To	analyze	protein	I	used	the	Leco	FP-528	Nitrogen	analyzer	(see	image	

5).	The	plastic	containers	containing	each	sample	were	removed	from	the	

dehydrator.	Instead	of	putting	the	samples	into	bags,	which	had	been	done	for	the	

calculation	of	fiber	and	fat,	the	samples	were	placed	on	foil	squares	referred	to	as	

sample	holders.	Each	foil	square	can	contain	up	to	250mg	of	a	single	sample.	The	

foil	square	was	folded	up	around	the	sample	and	the	top	of	the	remaining	part	of	

the	foil	was	twisted.	When	the	sample	was	ready	to	be	placed	into	the	Leco	FP-

528	it	resembled	a	raindrop	(see	image	6).	The	sample	holder	was	weighed	

before	the	sample	was	added	and	the	sample,	in	the	holder,	was	again	weighed	

using	the	CPA1245	Laboratory	Scale	and	the	information	was	recorded.	The	

samples	were	then	loaded	into	the	machine	where	atmospheric	gases	were	

removed.	CO2,	H20,	NOn,	and	N2	passed	through	a	furnace	and	thermoelectric	

cooler	and	finally	into	a	ballast	collection	system	where	all	evolved	gasses	were	
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collected.	The	gases	collected	here	were	equilibrated	and	a	small	portion	was	

used	to	convert	the	gases	while	the	thermal	conductivity	cell,	measuring	for	

nitrogen,	reduced	the	rest	of	the	sample.	The	machine	then	communicated	the	

concentration	of	protein	for	each	plant	sample	to	a	PC	computer.		

	

	

	

	

	

	

	

Image	5.	Leco	FP-528.		
Leco	FP-528.	Available	from:	Pictures	from	http://uk.leco-europe.com/product/fp528/	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
Image	6.	Leco	FP-528	Sample.		
Leco	FP-528.	Available	from:	Pictures	from	https://encrypted-
tbn2.gstatic.com/images?q=tbn:ANd9GcQXGt966I3XwMa7VwaKC646R8YqroE-
_IOBACfgojxsZeQwfB36https://encrypted-
tbn2.gstatic.com/images?q=tbn:ANd9GcQXGt966I3XwMa7VwaKC646R8YqroE-
_IOBACfgojxsZeQwfB36	
	



	 18	

Master	Excel	Sheet	

Paine	recorded	all	of	the	nutrient	concentration	information	and	created	a	

sheet	in	Excel	with	all	of	the	data.	Each	row	in	the	sheet	listed	the	lab,	the	field	

season,	the	species,	the	plant	type,	the	transect,	the	habitat,	the	bag	number,	the	

organ,	the	structure,	the	organ	group,	and	then	had	a	variety	of	macro	and	micro	

nutrients	listed	with	the	concentrations.	For	example,	a	row	would	read	as	

follows:	‘CU,	DRY	2014,	Searsia	lancea,	Tree,	DOW,	Open,	1,	Leaf,	Leaf,	Dicot	Leaf,	

NDF	27.22’.	I	later	used	this	Excel	sheet	as	my	reference	point	while	I	created	my	

calibration	models	with	the	NIR.		

	

Near	Infrared	Spectroscopy	

Using	portable	near	infrared	spectroscopy	(NIR),	I	collected	spectra	for	

316	plant	samples	Paine	collected	in	the	Cradle	Nature	Reserve,	Cradle	of	

Humankind,	South	Africa	during	wet	and	dry	seasons	between	2013	and	2015.	I	

combined	the	spectra	and	original	wet	chemistry	data	of	crude	fat,	acid	detergent	

fiber,	and	crude	protein,	running	a	total	of	94	experiments.	I	collected	the	spectra	

for	the	samples	and	compared	the	raw	material	for	crude	protein	and	fiber	using	

the	ASD	LabSpec®	Near	Infrared	Spectrometer	and	the	Indico®	Pro	Spectral	

Acquisition	software.	Data	collection	took	place	over	a	period	of	three	different	

lab	sessions,	each	one	around	two	and	a	half	hours,	collecting	data	for	roughly	

120	plant	samples	each	session.	I	had	help	from	Erin	Smith,	a	graduate	student	at	

the	University	of	Colorado	Boulder.	We	analyzed	the	plant	organ	samples	by	each	

transect:	Dolomite	Open	Woodland	(DOW),	Bloed	veld	(BV),	Kudu	Hill	(KH),	
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Pieter's	Vlei	(PV),	Tick	River	(TR),	Baboon	Food	(BF),	or	No	Transect	(NT).	The	

jars	were	taken	out	of	the	drawers	in	these	subdivisions	and	lined	up	by	transect	

and	plant	species,	to	make	the	recording	process	more	efficient.	We	used	the	ASD	

software	and	checked	the	accuracy	of	the	portable	NIR	by	running	a	spectral	

analysis	on	a	plastic	sheet	provided	by	the	company.	This	sheet	came	with	

information	where	spectral	peaks	should	occur	on	the	sample	analysis.	Coates	

(2002)	argues	that	NIR	results	are	only	as	good	as	the	reference	values	found	in	

the	lab.	Because	of	these	findings,	our	team	decided	it	was	practical	to	take	

multiple	scans	from	the	same	sample,	and	have	multiple	samples	of	the	same	

plant	species	and	organs.	We	analyzed	the	calibration	sheet	three	times	for	the	

most	accurate	reading	and	compared	where	the	spectral	peaks	should	be	to	the	

reference	data.	The	peaks	were	always	correct,	allowing	us	to	take	a	baseline	

reading.	Once	the	baseline	was	taken,	each	sample	was	analyzed	three	times.	One	

person	recorded	the	name	of	the	sample	on	the	lid	of	the	jar	and	on	a	separate	

sheet	of	paper,	the	name	of	the	.asd	file	name	of	the	plant	sample.	Another	person	

handed	the	jars	off	while	the	other	stuck	the	metal	probe	against	the	sample.	Each	

sample	took	30	seconds	to	be	processed.	Each	of	the	three	times	the	sample	was	

analyzed,	the	probe	was	moved	to	a	different	location	on	the	sample.	One	

spectrum	per	plant	sample	was	saved,	which	was	the	average	of	the	three	

analyses,	and	stored	as	an	.asd	file.	A	new	baseline	measure	was	taken	each	time	

10	samples	were	analyzed	to	ensure	the	spectra	were	correct.		
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Image	7.	LabSpec4.		
LabSpec4.	Available	from:	Pictures	from	https://www.asdi.com/getattachment/0f02e97f-ed9c-
40d0-8c38-c252c5331f05/.aspx	

	

Master	Excel	Sheet	and	New	Spreadsheet		

I	added	a	column	containing	the	.asd	file	of	the	NIR	spectrum	to	its	

corresponding	analyzed	plant	sample	using	wet	chemistry	on	the	Excel	sheet.	

This	information	was	recorded	in	the	Microsoft	Excel	sheet	master	file	containing	

the	wet	chemistry	data.	I	coded	the	.asd	file	name	incorporating	the	NIR	spectrum	

file	in	Excel	and	recorded	the	file	next	to	its	matching	plant	sample	on	the	Excel	

sheet.	I	inserted	four	columns	after	the	field	season	and	before	the	specimen	

column.		The	first	column	contained	the	word	‘Spectrum,’	the	second	column	

contained	the	number	of	the	spectrum	file,	the	third	column	contained	the	type	of	

file	name	to	be	used	for	Grams	IQ™	(the	program	with	which	I	created	

chemometric	regression	models	using	partial	least	squares	regression)	and	the	

fourth	column	contained	the	combined	file	name	of	the	spectrum	from	the	

previous	columns.	The	command	I	used	was	=$(the	column	spectrum	was	written	

in	as	well	as	the	number	of	the	row	&TEXT($the	column	the	number	of	the	file	

was	scripted	in,	as	well	as	the	number	of	the	row,	“00000”)&the	column	the	file	
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type	was	scripted	in,	as	well	as	a	the	number	of	the	row.	For	example	row	1050’s	

command	is:		

=$E1050&TEXT($F1050,”00000”)&$G1050		

Once	all	of	the	file	names	were	created,	I	generated	a	new	Excel	spreadsheet.	On	

the	new	Excel	spreadsheet	the	data	were	sorted	by	plant	organ,	with	each	organ	

having	its	own	tab.	

	

Software	

I	converted	the	NIR	samples	from	the	.asd	file	to	a	file	suitable	for	the	

Grams	IQ™	Spectroscopy	software.	Once	I	had	converted	the	spectra	to	.cfl	and	

.spc	files,	I	uploaded	them	onto	Grams	IQ™	and	paired	them	with	their	constituent	

reference	information:	crude	protein,	crude	fat,	or	acid	detergent	fiber.	Grams	

IQ™	delivers	multivariate	analysis	for	all	applied	spectra	allowing	me	to	create	

qualitative	and	quantitative	chemometric	calibration	models.		

The	software	came	with	a	Chemometrics	Training	Manual	for	Grams	IQ/IQ	

Predict	v9.1	(ASD	Inc.).	The	manual	explained	how	to	convert	files	and	configure	

training	sets,	set-up	the	experiments	and	the	procedures,	use	the	experiment	

diagnostic	options	and	understand	the	results.	I	grouped	the	spectra	by	plant	

organ:	fruit,	inflor,	leaf,	rhizome,	root,	stem,	stem	base,	and	underground	storage	

organ	(USO).	I	uploaded	the	converted	.spc	files	in	groups	by	plant	organ	to	create	

regression	models	that	analyze	the	relationship	between	the	variables	for	each	

plant	organ	spectra	and	the	corresponding	data	for	wet	chemistry.		
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Regression	Models	

Grams	IQ™	explained	how	to	create	quantitative	models	using	the	training	

manual.	To	produce	the	simplest	predictive	models,	I	tried	to	obtain	the	fewest	

factors,	the	highest	R2	values,	as	well	as	the	lowest	Standard	Error	of	Cross	

Validation	(SECV).	My	organization	process	for	creating	the	regression	models	

consisted	the	three	different	saved	Grams	IQ™	files	for	crude	protein,	crude	fat,	

and	acid	detergent	fiber.	I	uploaded	the	spectral	.asd	files	as	well	as	the	

corresponding	data	from	the	Excel	sheet.	I	separated	experiments	by	individual	

organs	and	I	constructed	an	experiment	for	all	the	organs	combined.	I	ran	each	

experiment	for	crude	fat,	crude	protein,	and	acid	detergent	fiber,	originally	

making	regression	models	in	the	preliminary	experiment	only	for	‘All	Organs.’	

The	Model	Setup	selected	the	calibration	type,	factors,	and	the	diagnostic	type,	

and	I	applied	certain	types	of	preprocessing.	I	chose	to	only	display	the	raw	data	

for	the	spectral	data	type.	

	

Image 8. Experiment	Properties	Plots.	

	

While	initiating	the	Model	Setup,	I	chose	‘PLS-1’	as	the	calibration	type.	

PLS-1	is	Partial	Least	Squares	Regression	combining	the	constituent	information	

(y-axis)	with	the	spectral	information	to	create	a	model	that	can	predict	accuracy.	
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This	model	is	used	when	the	constituents	are	independent	of	one	another.	I	used	

Cross	Validation	as	the	diagnostic	type,	as	it	provides	an	estimate	of	predictive	

error.	The	program	also	suggested	putting	the	samples	in	sequential	order.	

	

	

Image 9. Experiment	Properties	Model	Setup.	

	

For	the	preprocessing,	I	chose	‘Mean	Center’	as	the	data	preparation	

because	it	is	usually	used	for	spectral	modeling.	Mean	center	subtracts	the	

average	spectrum	from	the	sample	set	allowing	the	differences	to	become	more	

visible,	resulting	in	better	models.	I	did	not	adjust	for	baseline,	and	for	the	

pathlength	correlation	option	I	originally	chose	‘Multiplicative	Scatter	Correction’	

(MSC).	I	used	MSC	when	the	spectra	appeared	to	follow	the	same	pattern,	but	the	

spectra	were	on	different	sections	of	the	y-axis.	MSC	creates	an	“idealized	
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spectrum”	using	the	average	of	the	sample	spectra.	The	slope	and	offset	effects	

are	removed	over	the	different	regions	of	the	spectrum.	I	selected	the	option	to	

use	Savitzky-Golay	(SG)	first-order	derivatives	as	it	results	in	less	wavelength	

shift	while	also	showing	the	differences	between	samples.	I	preprocessed	using	

derivatives	when	wavelength	features	were	overlapping	extensively.	I	chose	an	

initial	amount	of	50	smoothing	points	and	included	the	entire	spectral	region	

from	350	nanometers	to	2500	nanometers.	Using	the	factor	loadings	plot	

discussed	below,	I	found	where	noise	was	present	and	removed	the	excess	noise	

from	models	by	changing	the	spectral	regions	(see	Image	18	in	Appendix).	

	

Image 10. Experiment	Properties	Preprocess.	

	

For	each	experiment	I	changed	one	variable	at	a	time,	removing	outliers	if	

necessary	or	focusing	on	different	parts	of	the	model	setup.	I	changed	wavelength	

range	frequently	and	used	preprocessing	to	prevent	possible	outliers	so	that	I	
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could	identify	what	changes,	if	any,	contributed	to	the	enhancement	or	

deterioration	of	the	experiment.	I	also	reviewed	different	plots	including:	PRESS,	

Actual	vs.	Predicted,	Spectral	Residuals,	Factor	Loadings,	Score	vs.	Score,	

Concentration	Residuals	vs.	Spectral	Residuals,	Leverage	vs.	Studentized	

Residuals,	and	Standard	Error	Cross	Validation	(SECV).	The	PRESS	and	the	SECV	

plots	note	the	number	of	factors	and	margin	of	error	that	exists	with	each	

experiment.	The	Actual	vs.	Predicted	plot	show	the	R2	value	between	zero	and	

one.	As	the	R2	value	approaches	one,	the	regression	is	stronger,	meaning	the	

calibration	model	can	better	predict	unknowns.	Points	that	did	not	fall	on	the	

trend	line	were	potential	concentration	outliers.	They	were	then	compared	

across	multiple	plots	to	prove	their	status	as	an	outlier.	

	

Image 11. Actual	vs.	Predicted	Plot.		
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The	Spectral	Residual	plot	shows	spectra	that	are	spectrally	different	from	

one	another.	As	the	point	moves	farther	away	on	the	y-axis,	it	has	a	greater	

potential	to	be	an	outlier.		

Image 12.	Spectral	Residuals	Plot.	

The	Leverage	vs.	Studentized	Residuals	plot	shows	how	distinct	the	

independent	variable	values	are	resulting	from	division	of	a	residual	by	standard	

deviation.  

Image 13. Leverage	vs.	Studentized	Residuals	Plot	
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The	‘Factor	Loadings’	plot	shows	areas	along	the	models	where	noise	

occurred.	I	reviewed	important	spectral	regions	and	reevaluated	potential	

region(s)	for	the	next	experiment.	This	plot	identified	areas	that	had	importance	

in	the	model	as	well	as	areas	that	did	not.			
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Image 14. Factor	Loadings	Plot. 

	

The	‘Concentration	Residuals	vs.	Spectral	Residuals’	use	both	x-	and	y-axis	

parameters.	This	plot	creates	a	mean	cluster	with	potential	outliers	farther	up	on	

the	y-axis	and	shifted	farther	on	the	x-axis.		

Image 15. Concentration	Residuals	vs.	Spectral	Residuals	Plot	
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I	evaluated	each	plot	for	potential	outliers	(specifically	focusing	on	y-axis	

outliers)	and	compared	across	all	plots	before	any	samples	were	defined.	This	

allowed	me	to	verify	samples	that	may	have	been	problematic.		

Image 16. Results	Page	Setup. 

	

Once	I	reviewed	the	problematic	points	for	each	plot,	I	cross-referenced	

them	to	the	Master	Excel	Sheet	and	reviewed	the	type	of	organ	and	the	species	to	

verify	whether	they	were	valid	explanations	for	the	outliers.		

	I	named	each	experiment	based	on	the	changes	compared	to	the	previous	

experiment.	For	example:	‘All	Organs	Changing	Spectral	Range:	1850-2500’	(See	

image	17).		
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Image 17. Experiment	Setup.	
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I	ran	a	total	94	experiments	looking	at	crude	protein,	crude	fat,	and	acid	

detergent	fiber	(ADF),	looking	in-depth	at	potential	changes	to	make	each	

regression	stronger.	The	regression	revealed	concentrations	of	each	plant	

sample,	showing	where	the	crude	protein,	crude	fat,	and	acid	detergent	fiber	

contents	were	already	known	to	the	spectra.		This	allowed	me	to	compare	the	

applications	and	identify	the	accuracy	and	applicability	of	portable	NIR.	
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Chapter	III:	Results	and	Analysis	

	
I	compared	the	standard	error	of	cross	validation	(SECV)	and	R2	value	for	

each	experiment.	Aside	from	crude	fat,	the	equations	for	each	nutritional	

attribute	had	high	predictive	power	80-90%	of	the	time.	The	predictive	power	for	

acid	detergent	fiber	in	leaves	was	relatively	high	(R2=	.923);	the	predictive	power	

of	acid	detergent	fiber	for	all	organs	and	the	crude	protein	of	leaves	had	R2	value	

above	.8;	the	predictive	power	of	crude	protein	for	all	organs	was	lower	with	R2=	

.793	(see	Table	1)	In	the	industry,	regression	coefficients	above	.95	are	

considered	excellent.	Crude	fat	had	a	very	low	predictive	power	around	R2=	.001	

(See	Appendix	4).		The	experiments	with	the	highest	predictive	power	and	lowest	

SECV	for	crude	protein	and	acid	detergent	fiber	for	‘leaves’	and	‘all	organs’	are	

bolded	in	Table	1.	The	spectral	display	and	plots	for	these	experiments	are	

located	in	Appendix	2,	Appendix	3,	Appendix	5,	and	Appendix	6.	The	spectral	

display	and	plots	for	crude	fiber	“All	Organs”	are	located	under	Appendix	4.	

	 Other	studies	in	primatology	have	utilized	NIR	to	analyze	nutrients	of	

tropical	plants.	Rothman	et	al.	(2009)	found	that	NIR	had	a	high	predictive	power	

for	herbs	and	trees	eaten	by	gorillas	using	modified	partial	least-squares	

regression.	Neutral	detergent	fiber,	acid	detergent	fiber,	and	crude	protein	had	an	

r2	value	of	.95	or	greater.	The	NIR	results	I	found	for	the	savanna	grasses	had	a	

lower	predictive	power	for	crude	protein	and	acid	detergent	fiber,	but	all	organs	

of	a	plant	sample	were	incorporated	in	this	analysis	while	Rothman	et	al.	(2009)	

strictly	used	tree	leaves,	herbaceous	leaves,	inner	stem	core	and	outer	herb	peel.		
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Overall,	the	models	made	using	portable	near	infrared	spectroscopy	were	

able	to	accurately	predict	crude	protein	and	acid	detergent	fiber	in	savanna	

African	plants,	but	predicting	the	crude	fat	proved	to	be	more	difficult.	After	

running	94	experiments,	removing	outliers	and	changing	variables	within	the	

model	setup	and	preprocessing,	making	predictive	models	for	crude	fat	was	

ineffective.	Of	all	the	data	collected,	some	samples	were	excluded	because	they	

were	labeled	as	duplicate	plants	while	others	did	not	have	reference	data	from	

the	original	wet	chemistry	analysis.	When	I	made	models	for	“All	Organs,”	some	

of	the	plant	samples	had	to	be	discarded	because	they	were	spectral	outliers.	

These	included	samples	such	as	spectral	sample	‘00089’	Plantago,	a	plantain	that	

is	rarely	sampled	within	this	ecosystem.	For	the	experiments	originally	

containing	“All	Organs”	a	total	of	234	plants	were	analyzed	before	the	removal	of	

the	outliers.	For	the	predictive	models	made	for	leaf	plant	organs,	a	total	of	89	

leaf	samples	were	used	before	the	removal	of	the	outliers.	Paine	and	I	analyzed	

the	nutritional	values	of	plant	organs	spanning	over	70	plant	species	and	

examined	spectral	data	for	39	different	plant	species,	finding	organ	specific	

nutrient	properties	for	species	spanning	savanna	South	African	ecology.		

	

Limitations	in	NIR		

Portable	NIR	will	never	be	as	accurate	as	wet	chemistry	as	NIR	is	limited	

to	the	reliability	of	a	sample’s	composition.	If	one	sample	does	not	accurately	

represent	the	species	it	can	provide	inaccurate	information.	It	is	important	to	test	

multiple	samples	of	the	same	species,	continuously	monitoring	and	updating	the	
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sample	information.	When	generating	predictive	equations,	particular	regions	of	

the	spectra	provide	better	predictive	equations.	A	model	containing	the	full	

spectral	region	has	more	variables	than	a	region	specific	model,	which	can	cause	

the	predictive	equation	to	be	less	accurate.	For	this	reason	it	is	important	to	note	

where	there	are	areas	of	importance	on	the	spectra	and	limit	the	regression	to	

those	areas	of	importance.	While	analyzing	samples	and	making	regression	

models,	researchers	should	use	the	most	fitting	analytical	technique	so	the	

predictive	equations	are	more	accurate.		

My	results	indicate	that	portable	near	infrared	spectroscopy	is	applicable	

when	generating	robust	equations	to	predict	nutritional	concentrations	of	crude	

protein	and	acid	detergent	fiber	for	‘all	plant	organs’	and	‘leaves’	in	savanna	

South	African	plants.		
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Chapter	VIII:	Conclusion	and	Recommendation	for	Future	Work	

Portable	near	infrared	spectroscopy	is	an	emerging	technology	with	

potential	in	academia	and	industry.	With	portable	NIR,	researchers	can	gather	

samples	and	get	nutritional	data	on	site.	My	results	indicate	that	portable	near	

infrared	spectroscopy	is	useful	for	predicting	the	nutritional	content	of	certain	

plant	organs	in	South	African	savanna	plants.	The	equations	I	generated	for	the	

South	African	savanna	plant	samples	accurately	predicted	crude	protein	and	acid	

detergent	fiber,	but	proved	less	consistent	when	predicting	crude	fat,	as	the	R2	

value	was	very	low.		

There	have	currently	been	no	studies	that	have	utilized	NIR	to	access	the	

nutritional	properties	of	the	broad	suite	of	savanna	plants	analyzed	here.	This	can	

be	revolutionary	for	scientific	fields	studying	savanna	animals	with	diverse	

herbivorous	diets	because	portable	NIR	broadens	the	ability	to	instantly	access	

information,	making	it	possible	to	expand	on	findings	immediately	and	efficiently,	

negating	the	problem	of	additional	permits	and	sample	storage	and	transport.			

Future	research	using	portable	near	infrared	spectroscopy	ought	to	focus	

on	changes	in	ecological	systems,	tracking	varying	nutrient	changes	in	specific	

plant	species	over	different	seasons	and	years.	Researchers	should	take	tracking	

changes	in	nutrient	further	by	comparing	sexual	dimorphism	in	primates	based	

on	the	diets	they	have	and	the	nutrient	content	within	these	specific	diets	over	a	

longer	period	of	time	(e.g.,	over	one	season	or	multiple	seasons).		

Furthering	this	study,	portable	NIR	allows	researchers	to	increase	sample	

size	and	scope.	For	instance,	researchers	can	take	spectra	of	everything	the	
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baboons	in	the	Cradle	of	Humankind,	South	Africa	eat,	instead	of	relying	on	a	few	

samples	that	can	be	collected	and	shipped	back	to	the	lab.	It	would	also	be	of	

interest	to	use	these	regression	models	and	compare	them	with	savanna	plant	

samples	collected	from	Kenya,	East	Africa	to	understand	the	applicability	of	these	

regression	models	across	different	environments	in	Africa.	Portable	NIR	has	the	

ability	to	transform	the	effectiveness	of	field	research	by	providing	access	to	

nearly	instantaneous	information	once	predictive	models	have	been	produced.	
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Appendix	7.		

Diagram	of	Methods	section.	
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