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Lewis, Ryan D. (Ph.D., Applied Mathematics)

Nonlinear Approximations in Filter Design and Wave Propagation

Thesis directed by Prof. Gregory Beylkin

This thesis has two parts. In both parts we use nonlinear approximations to obtain accu-

rate solutions to problems where traditional numerical approaches rapidly become computationally

infeasible.

The first part describes a systematic method for designing highly accurate and efficient infinite

impulse response (IIR) and finite impulse response (FIR) filters given their specifications. In our

approach, we first meet the specifications by constructing an IIR filter, without requiring the filter

to be causal, and possibly with a large number of poles. We then construct, for any given accuracy,

an optimal IIR version of such filter. Finally, also for any given accuracy, we convert the IIR filter to

an efficient FIR filter cascade. In this FIR approximation, the non-causal part of the IIR filter only

introduces an additional delay. Because our IIR construction does not have to enforce causality,

the filters we design are more efficient than filters designed by existing methods.

The second part describes a fast algorithm to propagate, for any desired accuracy, a time-

harmonic electromagnetic field between two planes separated by free space. The analytic formu-

lation of this problem (circa 1897) requires the evaluation of the Rayleigh-Sommerfeld integral. If

the distance between the planes is small, this integral can be accurately evaluated in the Fourier

domain; if the distance is large, it can be accurately approximated by asymptotic methods. The

computational difficulties arise in the intermediate region where, in order to obtain an accurate

solution, it is necessary to apply the oscillatory Rayleigh-Sommerfeld kernel as is. In our approach,

we accurately approximate the kernel by a short sum of Gaussians with complex exponents and

then efficiently apply the result to input data using the unequally spaced fast Fourier transform.

The resulting algorithm has the same computational complexity as methods based on the Fresnel

approximation. We demonstrate that while the Fresnel approximation may provide adequate ac-

curacy near the optical axis, the accuracy deteriorates significantly away from the optical axis. In

contrast, our method maintains controlled accuracy throughout the entire computational domain.
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of the IIR QMF E80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Computational cost as a function of propagation distance . . . . . . . . . . . 70



x

List of Figures

Figure

2.1 Frequency response of the lowpass filters Hd, H, and H̃ . . . . . . . . . . . . 30

2.2 Poles of the sub-optimal lowpass filter Hd and the equivalent near-optimal

filter H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 The “staircase” filter Hd and the approximation H . . . . . . . . . . . . . . 38

2.4 Poles of the sub-optimal “staircase” filterHd and equivalent near-optimal filter

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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Chapter 1

Introduction

1.1 Filter Design

1.1.1 Historical Introduction to Digital Filter Design

In order to place Chapter 2 (see also [BLM12]) in its proper context, we give a brief

historical account of digital filter design methods. In the mid-1960s Charles Rader and his

collaborators at Lincoln Labs, including Bernard Gold and Joseph Levin, used discrete signal

processing techniques, and recursive filters in particular, to simulate analog telecommuni-

cations equipment (vocoders) that could be modeled by a system of ordinary differential

equations [Rad06].1 That experience, and the encouragement of Allen Oppenheim from

the Massachusetts Institute of Technology, persuaded Gold and Rader to publish what is

considered to be the first monograph devoted to discrete signal processing in 1969 [GR69].

In that book, Gold and Rader describe methods to design digital recursive filters by adapting

existing design algorithms for analog filters. The resulting filters have an infinite impulse

response, and are therefore known as IIR filters. It is interesting to note that the filter design
1 Discrete signal processing far predates the digital computer. For example, Sir Isaac Newton described

finite difference methods for operating on sequences in his Principia in 1687 [New87, Book III]. In the
1750s, Jean d’Alembert, Leonard Euler, Daniel Bernoulli, and Joseph-Louis Lagrange used what today we
would call a trigonometric series, a notion intimately connected with discrete signal processing, to study the
motion of a vibrating string. Famously, this did not prevent the judges at the Paris Academy, including
Lagrange, from giving a lukewarm reception to Jean Baptiste Joseph Fourier’s 1807 paper [Fou07] suggesting
that an arbitrary function could be decomposed into such a trigonometric series. Two year earlier, in an 1805
unpublished manuscript, Carl Friedrich Gauss derived a version of what is now known as the fast Fourier
transform to process samples of the position of the asteroid Pallas [HJB84].
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problem they considered was a reformulation of an optimal uniform rational approximation

problem solved by E. I. Zolotarjov in 1877 [Zol77].

An important contribution to the development of digital filters occurred in 1971 when

Thomas Parks of Rice University, and his student James McClellan, published their famous

Parks-McClellan algorithm for the optimal design of polynomial (i.e., non-recursive) digital

filters [PM72]. Such filters have a finite impulse response and are therefore known as FIR

filters. In effect, their filter design method specialized the so-called Remez algorithm for

optimal uniform polynomial approximation to the filter design problem (see, e.g., [Rem69]).

Later, Larry Rabiner from Bell Labs conducted extensive tests on the algorithm, and conse-

quently it is often called the Parks-McClellan-Rabiner algorithm [MP05]. This polynomial

approximation approach marked a major departure from the rational approximation ap-

proach of Gold and Rader in [GR69].

Since 1971, many new algorithms to construct FIR and IIR filters have appeared,

but it is probably correct to say that the filters most commonly used in applications are

FIR filters designed using the Parks-McClellan-Rabiner algorithm. At least one reason for

this is the availability of a reliable and efficient computer implementation of the algorithm

[Dig79]. A second reason, perhaps equally important, is that the trade-offs engendered by

certain practical considerations—viz., the requirements of causality, stability, and a linear

phase—often make FIR filters appear more desirable than IIR filters (see §1.1.3).

In Chapter 2 we first show that the practical design constraints mentioned above

(causality, stability, and a linear phase) can be relaxed in an essential way. This eliminates

the factors that had made IIR filters appear less desirable than FIR filters, and therefore

significantly alters the trade-offs between the two types of filters. Next, in situations where

an FIR filter is desirable, we show how to convert an IIR filter into an equivalent and effi-

cient FIR filter. By combining these observations with a recently-discovered algorithm for

near-optimal rational approximation [BM05], we obtain a new filter design algorithm and

use it to construct FIR filters that are considerably more computationally efficient than their
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equivalent “optimal” Parks-McClellan-Rabiner counterparts.

1.1.2 Preliminaries

This section may be skipped by readers already familiar with discrete signal processing.

We collect results and terminology used in Chapter 2. The material presented here may be

found in any introductory discrete signal processing textbook (e.g., [OS89]).

A discrete signal x ∈ `∞ (Z), x (n) ∈ C, for n = . . . ,−1, 0, 1, . . ., is a bounded, bi-

infinite sequence of complex numbers. From now on, we will will drop the term “discrete”

and simply write “signal.” We will also refer to the index n as “time,” although this is not

really correct since x may represent, e.g., a spatial process. For our purposes, we define a

filter T , T : `∞ → `∞, as a bounded, linear, shift-invariant operator defined on the space of

signals, i.e., there exists some M ≥ 0 such that for all x, y ∈ `∞, α, β ∈ C, and k ∈ Z,

‖Tx‖∞ ≤M ‖x‖∞ (bounded)

T (αx+ βy) = αTx+ βTy (linear)

Tx (· − k) = (Tx) (· − k) (shift-invariant).

Although there are other interesting classes of operators, the class of bounded, linear, shift-

invariant operators is by far the most common, and is the only class we consider here. As is

well known, the action of all such operators on a signal x may be expressed as a convolution,

Tx (n) =
∞∑

k=−∞

h (k)x (n− k) , (1.1)

for some bi-infinite complex sequence h ∈ `1, which is called the impulse response of the

operator T . For the remainder of this section, we will call such an operator T a filter.

The goal of a filter design problem is to construct a filter T possessing certain desired

properties. Generally, these properties are of two distinct classes:

(1) Properties concerning the action T has on input signals. For example, we may require

the Fourier transform (defined below) of the sequence h associated with the filter to
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possess certain desirable characteristics, such as attenuating some frequencies while

leaving other frequencies undisturbed.

(2) Properties concerning the computational cost of applying T to an input signal x.

Often, these two classes of properties conflict, and it is necessary to strike a balance between

accuracy (i.e., properties of the first class) and efficiency (i.e., properties of the second class).

Optimizing this balance is one of the most important aspects of typical filter design problems.

1.1.2.1 The z-Transform and the Discrete-Time Fourier Transform

Given a complex bi-infinite sequence g, we define its z-transform by the formal series

G (z) =
∞∑

n=−∞

g (n) z−n, z ∈ C. (1.2)

An important special case of the z-transform is the discrete-time Fourier transform, defined

by the formal series

G
(
eiω
)

=
∞∑

n=−∞

g (n) e−iωn, ω ∈ R, (1.3)

which is simply G (z) evaluated on the unit circle. When there is no risk of confusion between

the continuous-time Fourier transform of a function and the discrete-time Fourier transform

of a sequence, we will follow convention and simply call the 2π-periodic function G (eiω) the

Fourier transform of the sequence g.

Let us now consider the convergence of (1.2). If g is the impulse response of a filter

G, then (1.2) converges absolutely for all z on the unit circle (since we have stipulated that

G operates on `∞ and therefore g ∈ `1).2 Because g ∈ `1, we may recover the impulse

response g from its Fourier transform by the inversion formula

g (n) =
1

2π

∫ 2π

0

G
(
eiω
)
eiωn dω. (1.4)

2 In certain applications, it is more appropriate to consider signals as elements of `2, and therefore the
impulse responses of bounded, linear, shift-invariant operators on such signals are also elements of `2.
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It is common to refer to the filter as “the filter G,” to the sequence g as “the impulse response

of G,” to the function G (z) as “the transfer function of G,” and to the Fourier transform

G (eiω) as “the frequency response of G.”

The convergence of (1.2) and (1.3) is more complicated if g /∈ `1. If we now assume

that g is a signal, then g ∈ `∞ and its Fourier transform (1.3) is a generalized function (for

a suitable space of test functions—the precise choice does not matter here). We will never

attempt to compute the value of a Fourier transform of a sequence g ∈ `∞, and so we will

not need the full machinery of generalized functions. Therefore, we omit further details and

simply state two facts that are sufficient for our needs: if g ∈ `∞, then

(1) the sequence g may be recovered from its Fourier transform, the generalized function

G (eiω), by a proper interpretation of (1.4), and

(2) if g ∈ `∞ is a signal and h ∈ `1 is the impulse response of a filter, and G (eiω) and

H (eiω) are their respective Fourier transforms, then the inverse Fourier transform

of the product G (eiω)H (eiω) is the convolution

∞∑
k=−∞

g (n− k)h (k) , n ∈ Z,

which is simply the result of applying the filter H to the signal g.

1.1.2.2 Classes of Filters

Given a filter H with impulse response h, where by definition, h ∈ `1, we say that

H is a finite impulse response (FIR) filter if h has a finite number of nonzero elements.

Otherwise, H is an infinite impulse response (IIR) filter. The distinction is important: if H

is FIR, then we can apply it to an input sequence x by a direct evaluation of the convolution

(1.1). On the other hand, if H is IIR, then we must use a more sophisticated method to

apply it to input sequences. Observing that h ∈ `1 implies that |h (n)| → 0 as |n| → ∞,

it may appear tempting to truncate the infinite sum (1.1) once the elements of h become
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sufficiently small, essentially discarding the small elements of h to construct a new FIR filter

H̃ with impulse response h̃. However, a direct implementation of this strategy is generally

not advisable, since the decay of h will be quite slow when H (eiω) contains sharp transitions

or is highly peaked, as is often the case in applications. In such cases, either the truncation

error resulting from discarding the small elements of h will be unacceptably large, so that

H̃ is a poor approximation of H, or so many elements must be retained that the calculation

of the convolution (1.1) using h̃ will be computationally prohibitive. We note that one

component of our new filter design method may be interpreted as a technique to truncate

the impulse response of an IIR filter in such a way that the resulting FIR filter is both

accurate and computationally efficient.

Let us distinguish between two other important classes of filters. We say that a filter

H is causal if h (n) = 0 for all n < 0, and noncausal otherwise. If H is causal, then the

output signal y that results from applying H to an input signal x may be written as

y (n) = Hx (n) =
∞∑

k=0

x (n− k)h (k) ,

so that the n-th element of y only depends on elements of x that have arrived by time n.

In many applications, such as telecommunications, causality is essential, though there exist

some applications, e.g., those involving spatial data, where noncausal filters are acceptable.

Observe that if H is simply a right-sided sequence, meaning that there exists some N such

that h (n) = 0 for all n < N , then if H is noncausal (i.e., N < 0) we can obtain a causal

filter H ′ from H by setting h′ (n) = h (n−N). It is straightforward to verify that the z-

transforms of H and H ′ are related by H ′ (z) = z−NH (z). Such a transformation is called

“introducing a pure delay.” Clearly, any FIR filter can be transformed into a causal FIR

filter by the introduction of such a delay.

Finally, we define the concept of a linear phase filter. If we factor the Fourier transform

of a filter H as

H
(
eiω
)

= A (ω) eiφ(ω),
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where A (ω) is a real-valued function and φ (ω) is a real-valued continuous function on the

interval ω ∈ (−π, π], then we say that H has a linear phase if φ (ω) = −αω + β, for

some α, β ∈ R, and a nonlinear phase otherwise. (In fact, we have given the condition

for a generalized linear phase, which is often more useful in practice.) If a filter has a

nonlinear phase, then it is dispersive. Dispersion is undesirable in many applications, and

it is therefore common to require a filter to have a linear, or at least approximately linear,

phase. For example, the presence of dispersion in a telecommunications system will distort

voice quality and must therefore be controlled.

1.1.2.3 Rational Filters

We now restrict our attention to filters whose z-transforms are rational functions of z,

continuous on the unit circle,

H (z) =
P (z)

Q (z)
=

∑NP

k=0 pkz
−k∑NQ

k=0 qkz
−k
, Q

(
eiω
)
6= 0. (1.5)

This form of filter is by far the most common, though other useful forms exist (e.g., splines

are not of this form). The roots of P are called zeros of the filter H, and the roots of Q are

called the poles of H. We assume for simplicity that NP = NQ, that all the roots of Q are

distinct, and that P and Q have no common factors. Expand (1.5) in partial fractions to

obtain

H (z) = c0 +

NQ∑
k=1

sk

1− γk/z
.

By assumption, |γk| 6= 1 since Q does not vanish on the unit circle, so we may partition the

poles γk into the sets γin
k , k = 1, . . . ,M in, and γout

k , k = 1, . . . ,Mout, where
∣∣γin

k

∣∣ < 1 and

|γout
k | > 1. We now multiply terms involving poles outside the unit circle by z/z and rewrite

them as
sout

k

1− γout
k /z

= sout
k +

−sout
k

1− z/γout
k

.

This transformation introduces an extra pole-zero pair at the origin, but does not disturb

the value of H (z) on the unit circle. With this rearrangement, the rational filter H may be
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written as

H (z) = c′0 +
M in∑
k=1

win
k

1− γin
k /z

+
Mout∑
m=1

wout
k

1− z/γout
k

, (1.6)

where c′0 = c0 + sout
1 + · · · sout

Mout and wout
k = −sout

k . The impulse response of H is

h (n) =


c′0 +

∑M in

k=1 w
in
k +

∑Mout

k=1 wout
k , if n = 0,∑M in

k=1 w
in
k

(
γin

k

)n
, if n > 0,∑Mout

k=1 wout
k (γout

k )
n
, if n < 0.

(1.7)

We see that H is, in general, a noncausal IIR filter and that its impulse response h is a linear

combination of decaying exponentials. The filters we study in Chapter 2 have the form (1.6).

Let us apply the rational filter H in (1.5) to an input signal x to obtain the output

signal y,

y (n) = Hx (n) =
∞∑

k=−∞

x (k)h (n− k) ,

and then compute the z-transform of both sides of this equation, yielding

Y (z) = X (z)
P (z)

Q (z)

or, for z on the unit circle,

Y (z)Q (z) = X (z)P (z) , |z| = 1, (1.8)

where it is understood that X and Y are generalized functions. Apply the formula for the

inverse Fourier transform (1.4) to (1.8) to obtain

NQ∑
k=0

qky (n− k) =

NP∑
k=0

pkx (n− k) , n ∈ Z, (1.9)

which expresses the output y as the solution of an order NQ constant coefficient difference

equation. This formula explains the interest in rational filters: with an appropriate set of

initial conditions, we may run the recursion forwards (or occasionally backwards) in time

to efficiently compute the output y resulting from applying an IIR filter to an input signal

x—provided the recursion is stable in the direction we select.
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Finally, observe that if Q (z) = 1, then (1.9) simplifies to

y (n) =

NP∑
k=0

pkx (n− k) ,

so that H is simply a polynomial, and is therefore a causal FIR filter.

1.1.3 Contribution of this Thesis

From the preceding discussion in §1.1.2, it is clear that IIR and FIR filter design

requires constructing either a rational or polynomial function H (z), respectively, to satisfy

certain design constraints. It would seem that IIR filters have a clear advantage, since it is

well known that a complicated function can be approximated by a rational function using

far fewer terms than would be required by an equivalent approximating polynomial. On the

other hand, a rational filter by definition has an infinite impulse response, and so it would

appear that we must use the recursive formula (1.9) to apply such a filter to input signals.

Assuming that we want to to compute the recursion in the forward direction, then for this

recurrence to be stable we must require that all the roots of Q lie inside the unit circle.

But this restriction has a severe side effect: such a filter cannot have a linear phase! In

fact, it can be shown that a necessary condition for a filter to have a linear phase is that its

impulse response h (n) be symmetric about some value n = s, which is clearly impossible if

all the roots of Q lie in the unit circle (cf. (1.7)). (Technically, the point of symmetry s need

not be an integer—observe that (1.4) is defined for all real n.) Moreover, classical results

from approximation theory show that the best uniform rational approximation to many

important functions requires poles both inside and outside the unit circle. For example,

in 1877 Zolotarjov [Zol77] used the Jacobi elliptic functions to construct the best uniform

rational approximation on the interval x ∈ [−1, 1] to the function

f (x) =


1, if |x| < t− ε,

0, if |x| > t+ ε,
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where the parameters t and ε satisfy t < 1 and ε < min (t, 1− t), and the behavior of f in

the intervals |x| ∈ [t− ε, t+ ε] is unspecified. The resulting optimal rational approximation

of this function, which corresponds to a lowpass filter with linear phase, is known explicitly

and requires poles both inside and outside the unit circle.

Roughly speaking, this state of affairs could be summarized as follows: many of the

results from the theory of optimal rational approximation could not be directly applied to

filter design problems because, typically, the resulting filters would contain poles outside

the unit circle, and therefore could not be applied to input signals in a stable manner.

If a rational filter were designed with all its poles inside the unit circle, then it would

usually be sub-optimal and could not posses a linear phase. The algorithm we describe

in Chapter 2 alters this state of affairs. Our key observation is that terms in the partial

fraction expansion (1.6) corresponding to poles outside the unit circle may be accurately

transformed into polynomials. Although these polynomials have a high degree, they are

computationally efficient because the number of operations needed to apply them to input

signals is proportional to the logarithm of their degree. Therefore, we are free to design

IIR filters with poles both inside and outside the unit circle. We then use this new freedom

to adapt recent results in near-optimal rational approximation [BM05] to the filter design

problem. Since we do not constrain the poles of our IIR filters to be inside the unit circle, we

obtain a simple method for constructing linear phase filters if the specifications so require.

The result is a new method to construct highly accurate and efficient digital filters.

1.2 Light Propagation

In Chapter 3 of this thesis (see also [LBM13]), we describe an algorithm to propagate,

for any user-specified accuracy, a time-harmonic electromagnetic field between two parallel

planes separated by a linear, isotropic, and homogeneous medium. As is well known, in such
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a medium Maxwell’s equations simplify to the scalar Helmholtz equation,

(
∆ + k2

)
u = 0, (1.10)

where the wavenumber k = 2π/λ, λ is the wavelength, and u (x, z) is the complex amplitude

of one component of the vector-valued electric field at a point (x, z) ∈ R3. For simplicity,

we measure all distances in wavelengths and therefore set λ = 1.

In 1897 Lord Rayleigh described a formula for a solution u of (1.10). Given the

boundary data

u (x, 0) = f(x),

Rayleigh’s formula expresses u as the convolution

u (x, z) = − 1

2π

∫
R2

f (y)
∂

∂z

(
ei2πR

R

)
dy, z > 0, (1.11)

where

R =

√
z2 + ‖x− y‖2

[Ray97, Bou54, BWB99]. This formula is surprising because (1.10) is a second order PDE,

yet the solution to the boundary value problem appears only to depend on the value of u

on the boundary, and not on its normal derivative. In fact, (1.10) has two solutions—one

solution consisting of outgoing waves, and the other solution consisting of incoming waves.

In many physical situations, including the one we study here, the incoming solution may be

rejected on physical grounds. It turns out that Rayleigh’s formula (1.11) gives the outgoing

solution, which was demonstrated in 1912 by Arnold Sommerfeld when he introduced his

celebrated radiation condition. This condition states that a necessary and sufficient condition

for a solution u of (1.10) to be an outgoing solution is that it satisfy [Som12, Som49]

lim
s→∞

s

(
∂u

∂s
− i2πu

)
= 0, where s = ‖(x, z)‖ and z > 0.

It can be shown that Rayleigh’s solution (1.11) satisfies this condition, and therefore (1.11)

is known as the Rayleigh-Sommerfeld formula.
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There are only a few examples of boundary data f where (1.11) can be evaluated

analytically, so it is usually necessary to employ numerical methods to compute u. It turns

out to be difficult to construct a numerical scheme to accurately and efficiently evaluate

(1.11) in a large region of space. To see why, we rewrite (1.11) as

u (x, z) =

∫
R2

f (y)Kz (‖x− y‖) dy, (1.12)

where the Rayleigh-Sommerfeld kernel Kz (r) is given by

Kz (r) =
ei2πz

√
1+(r/z)2

iz

 1

1 + (r/z)2 +
i

2πz
(
1 + (r/z)2) 3

2

 , r ≥ 0. (1.13)

Denoting the Fourier transform of the boundary data as

f̂ (p) =

∫
R2

f (x) e−i2πx·p dx,

we write (1.12) via an integral in the Fourier domain,

u (x, z) =

∫
R2

f̂ (p) K̂z (‖p‖) ei2πx·p dp, (1.14)

where the Fourier transform of the Rayleigh-Sommerfeld kernel is given by (see [She67] and

references therein)

K̂z (ρ) = ei2πz
√

1−ρ2
, ρ ≥ 0. (1.15)

It is clear that Kz (r) is a highly oscillatory function of r when z is small and that K̂z (ρ)

is a highly oscillatory function of ρ when z is large. For many physically interesting choices

of the distance z in the intermediate region, Kz (r) and K̂z (ρ) are both highly oscillatory,

making the direct numerical computation of u using either (1.12) or (1.14) impractical.

Let us mention a few existing numerical schemes to compute u. One popular method

[Syp95] uses (1.14) to propagate the field via calculations in the Fourier domain. To eliminate

the rapid oscillations of the kernel K̂z, the total propagation distance z is divided into M

smaller steps, z = z1 + · · · + zM , and a zero-padding operation is performed in the spatial
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domain between each propagation step. This has the effect of attenuating the rapidly-

oscillating portions of the solution so that the computational problem remains tractable, but

it has the numerical side effect of introducing M − 1 artificial apertures into the problem.

Each of these apertures introduces diffraction artifacts that combine to significantly degrade

the final accuracy of the computed solution. An alternative Fourier propagation method

[MS09] does the propagation in a single step, but first uses a heuristic argument based on

geometric optics to lowpass filter the boundary data prior to propagation. This method

resolves many of the computational difficulties associated with the oscillatory kernel K̂z;

however, because of the lowpass filtering operation, it offers only limited accuracy.

A different class of methods attempt to compute u using (1.12), i.e., by evaluating an

integral in the spatial domain. The most straightforward of these is to replace the Rayleigh-

Sommerfeld kernel Kz by the Fresnel approximation,

Kz (‖x− y‖) ≈ Fz (x,y) =
ei2πzei π

z
‖x‖2

iz
ei π

z
‖y‖2e−i 2π

z
x·y,

so that (1.12) becomes

u (x, z) ≈ ei2πzei π
z
‖x‖2

iz

∫
R2

f (y) ei π
z
‖y‖2e−i 2π

z
x·y dy, (1.16)

which can be evaluated using the discrete Fourier transform (see, e.g., [Goo05]). Unfortu-

nately, the Fresnel approximation is only accurate for points x close to the optical axis, and

the accuracy of (1.16) degrades rapidly as x moves away from the optical axis. In [SW06],

Shen and Wang describe a method to discretize the integral (1.12) using a quadrature formula

and then evaluate the resulting summation using the discrete Fourier transform. However,

for their method to maintain accuracy, many samples of the boundary data f are required

if the desired output region is not very close to the optical axis, so the computational cost

of their method is prohibitive when seeking an accurate solution in a large output region.
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1.2.1 Contribution of this Thesis

In Chapter 3 we present a fast algorithm to evaluate, for any user-specified accuracy,

the Rayleigh-Sommerfeld integral (1.12) in the spatial domain. In our approach, for a given

accuracy ε > 0, we approximate the kernel Kz by a short sum of Gaussians with complex

exponents. The resulting approximate kernel is then efficiently applied to input data using

the unequally spaced fast Fourier transform [DR93, Bey95b].

Our approach may be viewed as a generalization of the Fresnel approximation. While

the Fresnel approximation replaces the Rayleigh-Sommerfeld kernel with a single Gaussian

with a purely imaginary exponent, we use a nonlinear algorithm to approximate the kernel,

for any user-selected accuracy, as a short linear combination of Gaussians with complex

exponents.

We demonstrate that while the Fresnel approximation, as it is currently used, may

provide adequate accuracy near the optical axis, the accuracy deteriorates significantly away

from the optical axis. In contrast, our method maintains controlled accuracy throughout the

entire computational domain of interest.



Chapter 2

On the Design of Highly Accurate and Efficient IIR and FIR Filters

This chapter contains a reprint of

[BLM12] G. Beylkin, R. D. Lewis, and L. Monzón, On the design of highly
accurate and efficient IIR and FIR filters, IEEE Trans. Signal Process.
60 (2012), no. 8, 4045–4054.

ON THE DESIGN OF HIGHLY ACCURATE AND
EFFICIENT IIR AND FIR FILTERS

GREGORY BEYLKIN, RYAN D. LEWIS, AND LUCAS MONZÓN

Abstract. We describe a systematic method for designing highly accurate and

efficient infinite impulse response (IIR) and finite impulse response (FIR) filters

given their specifications. In our approach, we first meet the specifications by

constructing an IIR filter with, possibly, a large number of poles. We then construct,

for any given accuracy, an optimal IIR version of such filter (with a minimal number

of poles). Finally, also for any given accuracy, we convert the IIR filter to an efficient

FIR filter cascade (either serial or parallel). Since in this FIR approximation the

non-causal part of the IIR filter only introduces an additional delay (as a function of

the desired accuracy), our IIR construction does not have to enforce causality. Thus,

we obtain a simple method for constructing linear phase filters if the specifications

so require. All of these procedures are accomplished via robust, fast algorithms.

We provide several illustrative examples of our method.
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2.1 Introduction

In his 2006 paper “The Rise and Fall of Recursive Digital Filters,” [Rad06] Rader

gives a brief history of filter design methods. He describes how the perceived pros and cons

of recursive and non-recursive filters changed over time as new design and implementation

techniques were discovered. The goal of our paper is to offer an addendum to this history

by providing a new systematic method of designing both types of filters. Our approach is

based on a combination of several approximation algorithms and a few observations. We cite

algorithms for constructing near-optimal rational approximations [BM05, BM09], a new high

accuracy reduction algorithm [HB12], and a somewhat obscure short note [Bey95a]. Our key

observation is that it is relatively easy to construct an accurate but sub-optimal (with a large

number of poles) rational filter that satisfies the design criteria. We describe an effective

approach for the sub-optimal construction well suited for the optimization algorithm. We

then rely on robust nonlinear algorithms for optimal rational approximation to minimize the

number of poles for a desired accuracy.

We first construct an infinite impulse response (IIR) filter that satisfies the design

criteria without attempting to make the design optimal. We next find an equivalent (vis-

à-vis the specifications) IIR filter with a near-minimal number of poles. We then convert,

for any given accuracy, the IIR filter to an efficient finite impulse response (FIR) filter. It

is well known that approximating a rational function with a polynomial for a set accuracy

may require a polynomial of high degree. Despite the high degree of our FIR filter, its

implementation cost is low and requires only O (log ε−1) operations, where ε is the desired

accuracy. This efficiency is achieved by expressing the FIR filter as a cascade (either serial

or parallel) where each factor is computationally inexpensive. Importantly for the many

applications that require linear phase filters, we may easily design IIR filters with exact

linear phase. In our method, the non-causal part of the IIR filter results in a finite delay in

the FIR approximation that does not disturb the phase of the filter.



17

The combination of these design steps leads to a robust, nearly automatic, method for

filter design. We believe that our approach contributes to the state-of-the-art of filter design

as summarized in the conclusion of Rader’s paper.

2.2 Preliminaries

In this section, we introduce notation and present the algorithms used in our filter

design method. Given a filter, we identify its impulse response h(n) with its z-transform,

H(z) =
∞∑

n=−∞

h(n)z−n, (2.1)

where the sum in (2.1) converges on the unit circle. To recall, if h(n) contains only a finite

number of nonzero terms, then H(z) is an FIR filter. Otherwise, H(z) is an IIR filter. If

h(n) = 0 for all n < 0 then H(z) is causal (and non-causal otherwise).

We introduce two filter design algorithms whose origins may be traced to the work

of Adamjan, Arov, and Krein (AAK theory) [AAK68a, AAK68b, AAK71]. The algorithm

in §2.2.1 is often adequate but may require extended precision arithmetic for intermediate

computations. The reduction algorithm in §2.2.2 (see [BM05, BM10]) is significantly more

efficient and its new version in [HB12] achieves high accuracy using only the standard double

precision arithmetic. Finally, following [Bey95a], we describe an algorithm to convert IIR

filters to efficient FIR filters while maintaining arbitrary finite accuracy.

2.2.1 Designing IIR Filters From a Desired Impulse Response

Our first algorithm constructs an IIR filter H(z) whose impulse response h(n) agrees

with some desired impulse response hd(n), up to some finite but arbitrary accuracy ε > 0

over a certain range of the index n ∈ Z.

Our solution makes use of an algorithm in [BM05, BM10]. Given a sequence

hd(n), 1 ≤ n ≤ 2N + 1
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and a target accuracy ε > 0, we determine the optimal (minimal) number of nodes γm and

weights wm such that ∣∣∣∣∣hd(n)−
M∑

m=1

wmγ
n
m

∣∣∣∣∣ < ε, 1 ≤ n ≤ 2N + 1. (2.2)

We now describe the steps of the algorithm to obtain this approximation.

Algorithm 1:

• Build the N + 1×N + 1 Hankel matrix

Hk` = hd(k + `+ 1), k, ` ∈ [0, N ]. (2.3)

• Find a vector u = (u0, . . . , uN)T satisfying

Hu = σu, (2.4)

with positive σ close to the target accuracy ε, where u = (u0, . . . , uN)T denotes the

element-wise complex conjugate of the vector u. A problem of this form is known

as a con-eigenvalue problem (see, e.g., [HJ90, §4.6]), u is a con-eigenvector, and σ

is a con-eigenvalue. In our case, H is a Hankel matrix and hence symmetric; the

existence of a solution (σ,u) follows from Takagi’s factorization (see, e.g., [BM05,

pp. 22]), as does the fact that we may take σ to be a singular value of H and u to

be a specific singular vector.

• Given singular values σ0 ≥ σ1 ≥ . . . ≥ σN , we select a sufficiently small σM , which

determines the accuracy of approximation, and the corresponding singular vector

u = (u0, . . . , uN)T .

• Compute the roots γm of the con-eigenpolynomial u(z) =
∑N

n=0 unz
n whose coeffi-

cients are the entries of the vector u from the previous step.

• Obtain the weights wm by solving the least-squares Vandermonde system
N∑

m=1

wmγ
n
m = hd(n), 1 ≤ n ≤ 2N + 1. (2.5)
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Typically, only M weights wm have absolute value larger than the target accuracy

ε. We then retain only those nodes γm that correspond to the significant weights

and solve the corresponding Vandermonde system (2.5) again. For cases of practical

interest in digital filtering, the sequence hd(n) exhibits decay as n becomes large. As

a result, the nodes of interest lie inside the unit disk, |γm| < 1.

Remark 1.

• Typically, singular values decay rapidly so the number of terms M in the approxi-

mation (2.2) satisfies M = O(log ε−1).

• To approximate a sequence

hd(n), −2N − 1 ≤ n ≤ −1,

by a sum

hd(n) ≈
M∑

m=1

wmγ
n
m, − 2N − 1 ≤ n ≤ −1,

we simply re-index n 7→ −n and use Algorithm 1. In this case the nodes γm lie

outside the unit disk, |γm| > 1, provided hd(n) decays as n becomes large and

negative.

• We note that we may formulate this algorithm in terms of the singular value decom-

position (SVD) without invoking the con-eigenvalue problem. However, Algorithm 3,

which may be derived from Algorithm 1, requires this formulation. For a detailed

analysis we refer to [BM05, BM10].

• The nodes γm turn out to be the poles of the transfer function H(z) that we construct

via the next algorithm.

Let us now describe how to use Algorithm 1 to solve a filter design problem. Given a desired

impulse response hd(n) for n ∈ [−N2, N1] and target accuracy ε > 0, construct an IIR filter
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H(z) with a (nearly) minimal number of poles whose impulse response h(n) satisfies

|hd(n)− h(n)| < ε, n ∈ [−N2, N1]. (2.6)

In the special case that N2 = 0, H(z) is a causal filter.

Algorithm 2:

• Determine poles γin
m and weights win

m such that∣∣∣∣∣∣hd(n)−
M in∑
m=1

win
m

(
γin

m

)n∣∣∣∣∣∣ < ε, 1 ≤ n ≤ N1,

where
∣∣γin

m

∣∣ < 1 using Algorithm 1.

• Determine poles γout
m and weights wout

m such that∣∣∣∣∣hd(n)−
Mout∑
m=1

wout
m

(
γout

m

)n∣∣∣∣∣ < ε, −N2 ≤ n ≤ −1,

where |γout
m | > 1 again using Algorithm 1.

• Compute the constant w0 as

w0 = hd(0)−
M in∑
m=1

win
m −

Mout∑
m=1

wout
m .

• The resulting IIR filter H(z), with impulse response h(n), has M in +Mout poles and

is given by

H(z) = w0 +
M in∑
m=1

win
m

1− γin
m/z

+
Mout∑
m=1

wout
m

1− z/γout
m

. (2.7)

It may not be immediately obvious why this algorithm should work. Indeed, it is rather sur-

prising that the poles of an optimal IIR filter are related to the roots of a con-eigenpolynomial

of a Hankel matrix constructed from the filter’s impulse response. The theory underlying

our method may be found in [BM09] and traced back to the work of Adamjan, Arov, and

Krein (AAK theory) [AAK68a, AAK68b, AAK71]. In this sense, our algorithm is related

to algorithms in [GST83] and [CPC92]. But while those algorithms suggest that the input
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sequence hd(n) be windowed in some fashion—thereby modifying (perhaps substantially) the

desired frequency response Hd(e
jω)—ours does not. Also, our algorithm leads to a way to

reduce the number of poles in a sub-optimal IIR filter, which we describe below. First, let

us make a few remarks about typical filter design problems.

Remark 2. In many cases of practical interest, some type of symmetry exists between hd(n)

and hd(−n). In such cases a corresponding symmetry is induced between poles inside and

outside the unit disk and their corresponding weights. For example, it is quite common for

the impulse response to be real and symmetric,

hd(n) ∈ R and hd(−n) = hd(n),

in which case it is not difficult to show that poles appear at conjugate-reciprocal locations

and the corresponding weights are complex conjugates, so that with a suitable reordering

M in = Mout, win
m = wout

m , and γin
m = 1/γout

m .

Additionally, poles inside the unit disk appear in conjugate pairs, so that for each m ∈

[1,M in], either both win
m and γin

m are real, or there exists a m′ ∈ [1,M in] such that

win
m = win

m′ and γin
m = γin

m′ .

If such symmetries are present, then it is not necessary to approximate the negative half

of the sequence hd(n). Instead, we approximate only the positive half, which gives us the

poles and corresponding weights inside the unit disk, and then use the appropriate symmetry

relations to obtain the poles and weights outside the unit disk.

Remark 3. If we are given a frequency response Hd(e
jω), we may use or design an appropriate

quadrature rule to compute the impulse response hd(n). We need to compute a sufficient

number of terms so that hd has decayed to a level substantially smaller than ε for both

negative and positive indices. This may lead to a rather large matrix H; the algorithm we

describe next in combination with the construction in §2.3 allows us to avoid computing

with large matrices.
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2.2.2 Reduction of the Number of Poles

The filter design algorithm in §2.2.1 is simple to implement and produces excellent

filters. As input, it requires a portion of the desired impulse response, hd(n). For the output

filter H(z) to be satisfactory—i.e., for |Hd(e
jω)−H(ejω)| to be less than the target accuracy

ε—the portion of hd(n) provided as input should have decayed to a level smaller than ε.

If Hd(e
jω) contains sharp transitions or is highly peaked, then the sequence hd(n) decays

slowly, resulting in a large Hankel matrix H in (2.3). Computing the SVD of this matrix

can be time consuming and may require extended precision arithmetic. In this section we

present an alternative approach: by reducing the number of poles in a sub-optimal (but easy

to obtain) IIR filter, we bypass a costly SVD.

In §2.3 we demonstrate how to obtain a sub-optimal (with a large number of poles) IIR

filter satisfying a particular set of filter design requirements. We now describe an algorithm

that takes such a sub-optimal filter as input and produces a near-optimal filter as output.

We write the sub-optimal filter as

T0(z) +H0(z) = T0(z) +

M in
0∑

m=1

sin
m

1− pin
m/z

+

Mout
0∑

m=1

sout
m

1− z/pout
m

,

where |pin
m| < 1 and |pout

m | > 1. We separate the Laurent polynomial T0(z) in the filter

description to make H0(z) a proper rational function. A Laurent polynomial T0(z) is a finite

linear combination of positive and negative integer powers of z. The important property

is that the poles of T0(z) (if any) be located at the origin. In many cases T0(z) is simply

a constant; for example, in (2.7) T0(z) = w0. We also assume that the poles of H0(z) are

simple.

Given a target accuracy ε, we find a filter H(z) of the form

H(z) =
M in∑
m=1

win
m

1− γin
m/z

+
Mout∑
m=1

wout
m

1− z/γout
m

,

such that ∣∣H0(e
jω)−H(ejω)

∣∣ < ε,
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with M in < M in
0 and Mout < Mout

0 . This process, which we call reduction, is performed

separately on the poles inside and outside the unit disk. Let us describe the procedure for

reducing the interior poles; the procedure for reducing exterior poles is completely analogous.

For simplicity of notation, we drop superscripts and let sm = sin
m, pm = pin

m, and M0 = M in
0 .

Algorithm 3:

• Write each weight sm in polar form, sm = ρme
jθm , and compute the square roots

cm = ρ
1
2
mej θm

2 .

• Construct the M0 ×M0 positive definite matrix A, where

Amn =
cmcn

1− pmpn

.

• Find a vector u = (u1, . . . , uM0)
T satisfying the con-eigenproblem

Au = σu, (2.8)

with positive σ = σM close to the target accuracy ε, where the con-eigenvalues are

ordered, σ0 ≥ σ1 ≥ . . . ≥ σM0−1. The matrix A is not necessarily symmetric, so the

con-eigenvalue σ need not be a singular value of A, but it may be shown that σ2 is

an eigenvalue of AA [HJ90, §4.6].

• Use the elements of the con-eigenvector u = uM from the previous step to build the

con-eigenfunction u(z),

u(z) =
1

σ

M0∑
m=1

smum

1− pmz
.

AAK theory guarantees that u(z) has exactly M roots γ1, γ2, . . . , γM inside the unit

disk.

• Obtain the weights w1, w2, . . . , wM as the unique solution of the M×M linear system

M∑
m=1

1

1− γmγn

wm =

M0∑
m=1

1

1− pmγn

sm.
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The resulting IIR filter

H(z) =
M∑

m=1

wm

1− γm/z

is near-optimal and satisfies∣∣∣∣∣
M0∑

m=1

sm

1− pm/z
−

M∑
m=1

wm

1− γm/z

∣∣∣∣∣ < kε, |z| = 1,

for k ≈ 1.

We do not derive this algorithm here (see [HB12] for details) and note that it can

be obtained from the discussion in [BM05, §6] or justified using results from AAK theory

[AAK68a, AAK68b, AAK71]. We note that several significant improvements to this algo-

rithm which use the Cauchy structure of A appear in [HB12]. The key improvements in

[HB12] are the speed of the algorithm and a relative accuracy of computed con-eigenvalues

resulting in accurate computations using the standard double precision arithmetic.

2.2.3 Efficient FIR Approximation of IIR Filters

In many situations the straightforward recursive realization of an IIR filter may be

inconvenient. For example, an IIR filter with linear phase requires poles both inside and

outside the unit disk. The data must then be accessed in reverse-time order to obtain a stable

recursive realization. Also, recursive realizations implemented using fixed-point arithmetic

may allow errors to accumulate, potentially reducing the filter accuracy to an unacceptable

level. For these reasons, it is desirable to find FIR approximations of IIR filters.

The traditional approach to this problem uses some optimization criterion to find a

fixed-length FIR filter (see, e.g., [KBG92]); efficiency is obtained by requesting a short filter.

Instead, we use the approach in [Bey95a]: we specify the target accuracy ε, but do not fix

the order of the FIR filter. We obtain a factored FIR filter where each factor is particularly

simple, resulting in an efficient cascade realization. We briefly present this approximation

method and refer to [Bey95a] for the details.
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In our method, the problem of finding an FIR filter amounts to approximating a rational

function with a polynomial for some prescribed accuracy ε. The construction is based on the

simple identity
1

1− z
=

∞∏
n=0

(
1 + z2n)

, |z| < 1. (2.9)

We adapt the approach in [Bey95a] to IIR filters expressed as partial fractions as constructed

by Algorithms 2 and 3. The following Lemma shows how to approximate a single term in

the partial fraction expansion (2.7) by an FIR filter.

Lemma 4. Let γ, w be complex-valued with |γ| < 1, and let N be a positive integer. Then,

for both causal and anti-causal partial fractions, we have the bound∣∣∣∣∣ w

1− γ/z
− w

N∏
n=0

[
1 +

(γ
z

)2n
]∣∣∣∣∣ ≤ |w| |γ|2

N+1

1− |γ|
(2.10)

and ∣∣∣∣∣ w

1− γz
− w

N∏
n=0

[
1 + (γz)2n

]∣∣∣∣∣ ≤ |w| |γ|2
N+1

1− |γ|
(2.11)

for all |z| = 1.

Proof. From (2.9) it follows that

N∏
n=0

[
1 + (γz)2n

]
=

1− (γz)2N+1

1− γz
=

2N+1−1∑
k=0

(γz)k , (2.12)

for |z| = 1. Apply (2.12) to the identity

w

1− γz
= w

∞∑
k=0

(γz)k

to obtain (2.11). The proof of (2.10) is identical.

Even though the sum on the right hand side of (2.12) contains 2N+1 terms, the sum

is represented by only N + 1 factors in the product on the left. Given the desired accuracy

ε, inequalities (2.10) and (2.11) show that the number of factors N + 1 depends only sub-

logarithmically on ε−1. The next proposition shows how to approximate the entire IIR filter

(2.7) by an FIR filter with a bounded absolute error. We omit the proof since it is an

immediate consequence of Lemma 4.
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Proposition 5. Given an IIR filter in the form (2.7), define the FIR filter

H̃(z) = w0 +
M in∑
m=1

win
m

N in
m∏

n=0

[
1 +

(
γin

m

z

)2n]
+

Mout∑
m=1

wout
m

Nout
m∏

n=0

[
1 +

(
z

γout
m

)2n
]
, (2.13)

where N in
m , m = 1, 2, . . . ,M in and Nout

m , m = 1, 2, . . . ,Mout satisfy

M in∑
m=1

∣∣win
m

∣∣ ∣∣γin
m

∣∣2Nin
m+1

1− |γin
m |

+
Mout∑
m=1

∣∣wout
m

∣∣ |γout
m |−2Nout

m +1

1− |γout
m |−1 < ε. (2.14)

Then the FIR approximation H̃(z) in (2.13) satisfies∣∣∣H(z)− H̃(z)
∣∣∣ < ε, |z| = 1.

Remark 6. If the IIR filter H(z) is non-causal, then the FIR filter (2.13) is also non-

causal (viz., H̃(z) contains positive powers of z). The highest positive power of z that

appears in H̃(z) depends on the desired accuracy and determines the non-causal delay as-

sociated with the FIR filter. By introducing a pure delay, z−2Nmax+1+1H̃(z), where Nmax =

max
{
Nout

1 , Nout
2 , . . . , Nout

Mout

}
, we obtain a causal FIR filter. Hence, both causal and non-

causal IIR filters yield efficient causal FIR approximations.

2.3 Filling the Gaps

We now combine the algorithms of §2.2 to produce a systematic method for designing

near-optimal filters with which we create remarkable filters not obtainable (as far as we

know) by other techniques. We describe lowpass filter design as a model problem. Although

in this case it may be possible to obtain an equivalent design by other means, this example

allows us to compare with filters designed using alternative methods. However, for the

more complicated filter design problems addressed in §2.5, we are not aware of alternative

constructions with comparable efficiency.

Our method comprises three steps. We first create a sub-optimal IIR filter to satisfy

the design criteria. Next, we use the reduction algorithm of §2.2.2 to find an equivalent

(vis-à-vis the filter specifications) near-optimal IIR approximation of this filter. Finally, we
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use the FIR approximation algorithm of §2.2.3 to obtain an efficient FIR filter. Each step in

this process introduces some approximation error, so we will allocate a portion of the total

allowable error, as given in the filter specifications, to each of the three steps.

Consider the following lowpass filter specification:∣∣H(ejω)− 1
∣∣ < 10−4, |ω| < 80

140∣∣H(ejω)
∣∣ < 10−4, |ω| > 81

140
,

(2.15)

where ω ∈ (−π, π). The combination of a relatively wide passband and a narrow transi-

tion region make this a challenging problem. For example, a multirate approach utilizing

decimate-by-two stages would offer only marginal improvement over a single stage approach

since decimation could only be performed twice. Furthermore, the passband error specifi-

cation requires the phase argH(ejω) to be nearly zero throughout the passband. Such a

requirement, equivalent to requesting approximately linear phase, is challenging for many

IIR filter design techniques.

A straightforward method of using the algorithms of §2.2 to obtain an IIR filter is to

begin with the piecewise linear function Hp(e
jω), where

Hp(e
jω) =


1, if |ω| < 80

140

81− 140 |ω| , if |ω| ∈ [ 80
140
, 81

140
]

0, if |ω| > 81
140
.

However, approximating this function allocates too many poles to the sharp corners of the

transition region. Instead, we will follow an approach inspired by Butterworth digital filter

design (see, e.g., [PB87, §7.2]) and begin with an an infinitely differentiable rational function

that is optimally flat in the passband and the stopband. We define the function F (w) by

F (w) = F (w; δ,N) =
1

1 +
(

w
δ

)4N
, (2.16)

where δ > 0 and N is a positive integer parameter to be specified later. F (w) is infinitely
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differentiable on the real axis of the w-plane, and we associate the real axis with analog

frequency.

For real w, the function F (w) has the partial fraction expansion

F (w) = 2Re
2N−1∑
n=0

r

1− γnw
,

where r = (4N)−1 and

γn = δ−1ejπ 2n+1
4N , n = 0, 1, . . . , 2N − 1.

Applying the Möbius transform

w = α(z) = j
1− z

1 + z
, (2.17)

we map the unit disk |z| < 1 onto the upper half plane Imw > 0, and obtain the IIR filter

Hd(z) = F (α(z)) = c+ 2Re
2N−1∑
n=0

sn

1− pnz
,

where

pn =

(
γn − j

γn + j

)
and sn =

(
2jrγn

γ2
n + 1

)
for n = 0, 1, . . . , 2N − 1, and

c = 2Re
2N−1∑
n=0

jr

j − γn

.

For |z| = 1 on the unit circle, we write Hd(z) as

Hd(z) = c+
2N−1∑
n=0

sn

1− pn/z
+

sn

1− pnz
(2.18)

describing a lowpass non-causal IIR filter with linear phase (in fact, Hd(e
jω) is real and

nonnegative). The filter consists of 4N poles appearing as points with conjugate-reciprocal

symmetry. The factor of 4 in the denominator of (2.16) was chosen to produce this 4-fold

symmetry. Observe that (2.18) is in the proper form for the reduction algorithm of §2.2.2,

a fact we will use momentarily.
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We now choose δ and N to obtain our preliminary sub-optimal IIR filter Hd(z). In

choosing these parameters we only concern ourselves with the accuracy of the approximation.

Setting δ = 0.295686 and N = 393 produces a filter with a maximum error of 3.3 × 10−5

in both the passband and stopband. This filter—which has 1572 poles—is obviously far

from optimal. We now apply to Hd(z) the reduction algorithm from §2.2.2 to obtain a near-

optimal IIR filter H(z). For the con-eigenvalue controlling the approximation error in (2.8),

we select σ ≈ 3.7× 10−5. After applying the algorithm, the resulting IIR filter has only 30

poles, 15 inside the unit disk and 15 (conjugate-reciprocal poles) outside the unit disk. Like

Hd(z), the frequency response of H(z) is real-valued. It has a maximum error of 8.5× 10−5

in the passband and stopband.

As a final step, we use the approach in §2.2.3 to obtain an FIR approximation H̃(z) of

H(z). We construct the filter H̃(z) in the form (2.13), where we expand each pole so that

the error of approximation in (2.14) does not exceed 1.5 × 10−5. The resulting FIR filter

satisfies the filter specifications (2.15), has linear phase, and its implementation requires

312 real additions and 161 real multiplications per output sample (we discuss the operation

count in §2.4). For comparison, the FIR filter that satisfies (2.15) designed by the Parks-

McClellan-Rabiner (PMR) algorithm [Dig79, §5.1] requires 4057 taps and needs 4056 real

additions and 2029 real multiplications per output sample. Alternatively, if we were to use

the PMR algorithm to produce a filter with the same passband and stopband requiring 161

multiplications per sample, the resulting filter would achieve a stopband attenuation of only

0.21, compared with 10−4 for our filter.

The frequency responses of Hd(z), H(z), and H̃(z) are shown in Fig. 2.1. The poles

of the sub-optimal filter Hd(z) and the poles of the near-optimal filter H(z) are displayed in

Fig. 2.2, where only poles inside the unit disk are shown. The poles of H(z) inside the upper

half of the unit disk are listed in Table 2.1. The table also lists how many factors each pole

requires in its FIR approximation H̃(z).

A different approach to efficient FIR filter design is to decompose the frequency range
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Figure 2.1: Frequency response of the lowpass filters Hd (dash-dot line), H (solid line),
and H̃ (dashed line) in the passband (top) and the stopband (bottom). H̃ is an excellent
approximation of H, making their graphs almost indistinguishable.

Table 2.1: Poles and weights of the lowpass filter H in §2.3, and the number of factors
required for each pole in H̃. The constant term is w0 = −0.18305.

Pole zm Weight wm Factors
0.83828 + 0.54323j 6.1855e-7− 3.5136e-4j 14
0.83610 + 0.54180j 3.6497e-6− 5.5533e-4j 12
0.83131 + 0.53862j 2.5683e-5− 1.4427e-3j 11
0.81892 + 0.53003j 1.7411e-4− 3.8056e-3j 9
0.78836 + 0.50650j 1.2072e-3− 9.9390e-3j 8
0.72188 + 0.44108j 7.9194e-3− 2.4407e-2j 7
0.62320 + 0.27635j 4.0707e-2− 4.1560e-2j 5

0.57310 8.2954e-2 5
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Figure 2.2: Poles of the sub-optimal lowpass filter Hd (small dots) and the equivalent near-
optimal filter H (open circles). The poles of Hd are so closely spaced that they appear to
form a solid arc.
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ω ∈ (−π, π) into subbands and design an efficient FIR filter for each subband [MMS93].

Efficiency is generally obtained by designing sparse FIR filters. Although our method is

entirely different, the structure of the resulting FIR filters in (2.13) also has a subband

interpretation. Each pole γm within the unit disk represents a subband: the subband is

centered at the pole’s argument arg γm, and its bandwidth depends on the pole’s proximity

to the unit circle. The formula (2.9) yields an efficient FIR filter for each subband. Thus,

one may view our near-optimal IIR filters as near-optimal subband decompositions of desired

frequency responses.

A few remarks are in order.

Remark 7. Many existing IIR design algorithms (see [CJ82] for an early example or [TCHR01]

for a more recent one) contain a computationally expensive step to ensure that the IIR filter

is causal (i.e., all poles lie within the unit disk), which obviously precludes a filter with lin-

ear phase. Our FIR approximation algorithm shows that such restrictions are not necessary,

since a non-causal IIR filter may be efficiently approximated by an FIR filter to any desired

accuracy. The emphasis, then, should be on minimizing the number of poles rather than

ensuring that all poles lie within the unit disk.

Remark 8. Approximation by splines is another excellent method of producing sub-optimal

IIR filters. They are especially useful for producing more complicated frequency responses.

Splines have accurate and efficient rational approximations, so it is easy to obtain a sub-

optimal IIR filter Hd(z) given a sequence of spline coefficients. We ensure our reduced filters

H(z) are efficient by choosing splines of sufficiently high degree, so they have many continuous

derivatives. Finally, we note that the spline expansion coefficients may be obtained rapidly

using the algorithm in [BC02] and [JBB10, Appx.], which makes use of the Fast Fourier

Transform.

Remark 9. By combining the “building block” function F (w; δ,N) with the standard fre-

quency transformations used to construct IIR filters from the classical analog filters (see,
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e.g., [PB87]), our method generates the common frequency selective filters (viz., lowpass,

bandpass, highpass, and bandstop). We demonstrate further uses of F (w; δ,N) in §2.5.

Remark 10. Many desired impulse responses, such as those requiring linear phase, are two-

sided; they decay to the left and right of a central maximum. Conceptually (and sometimes

numerically) a causal IIR approximation is obtained by windowing, truncating, and shifting

the desired two-sided impulse response to the right, which (in most cases) puts the maxi-

mum amplitude significantly to the right of the origin. Directly applying this approach, as in

[GST83, CPC92], produces serious numerical difficulties effectively precluding the optimality

implied by the underlying AAK theory. For example, to obtain the same quality approxima-

tion as in our approach, a causal IIR filter must have a similar number of accurate impulse

response coefficients as in the causal FIR filter z−2Nmax+1+1H̃(z) (see Remark 6). Thus, for

high accuracy, the central peak of the impulse response would be located far away from

the origin. This would cause serious numerical difficulties in approximating such sequence

by an efficient causal IIR filter. This may explain why examples in the literature for such

approximations only deal with low accuracy filters.

2.4 Filter Implementations

There are several possible implementations of our FIR approximations of IIR filters.

The choice depends on the implementation medium (hardware vs. software), on the purpose

of the filter, and on the filter itself. For example, if we have an IIR filter of the form

H(z) =
P (z)

Q(z)
, (2.19)

then [Bey95a] shows how to replace 1/Q(z) by a cascade of FIR factors, where the application

of each factor requires only a single multiplication and addition. Alternatively, we may begin

with an IIR filter expressed in partial fractions,

H(z) = w0 +
M in∑
m=1

win
m

1− γin
m/z

+
Mout∑
m=1

wout
m

1− z/γout
m

,
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which is the form produced by the algorithms in ß2.2.1 and 2.2.2. One implementation

path is to rewrite this filter in the form (2.19), then realize the FIR approximation as a

single cascade. An alternative is to approximate each term in the partial fraction expansion

separately, obtaining an FIR approximation of the form (2.13). In this way, each pole may

be applied in parallel. Such an implementation is especially advantageous for software-

based realizations given the current prevalence of multiprocessors. We will discuss this

type of parallel realization in some detail, then conclude with several remarks about other

implementation considerations.

As mentioned in §2.2.3 and demonstrated by the lowpass filter H(z) constructed in

§2.3, the poles of IIR filters with real valued, even- or odd-symmetric impulse responses

either have non-zero imaginary part and appear with 4-fold symmetry (conjugate-reciprocal

pairs inside and outside the unit disk) or are purely real and have 2-fold reciprocal symmetry.

A similar symmetry exists for the weights. With this in mind, we pick representative poles

inside the upper half of the unit disk or on the real axis, and write our IIR filter as

H(z) = w0 +
Mreal∑
m=1

am

1− pm/z
+

am

1− pmz

+
Mcpx∑
m=1

αm

1− ρm/z
+

αm

1− ρm/z
+

αm

1− ρmz
+

αm

1− ρmz
, (2.20)

where w0, am, pm are real and |pm| < 1; αm, ρm are complex, |ρm| < 1 and Im ρm > 0. For

the real terms in the first sum, we use (2.9) to write

a

1− p/z
+

a

1− pz
=
[
2a− ap(z + z−1)

] ∞∏
n=0

[
1 + p2n+1

+ p2n (
z2n

+ z−2n)]
.

The infinite product may be truncated with bounded error using Proposition 5. For the

complex terms in the second sum, we write

α

1− ρ/z
+

α

1− ρ/z
+

α

1− ρz
+

α

1− ρz
=
[
b0 + b1(z + z−1) + b2(z

2 + z−2)
]

×
∞∏

n=0

[
c0,n + c1,n

(
z2n

+ z−2n)
+ c2,n

(
z2n+1

+ z−2n+1
)]
,
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where the real coefficients are given by

b0 = 4
(
Reα+ |ρ|2Reα+Re

(
ρ2α
))

b1 = −2
(
Re (ρα) + 2Re (ρα) + |ρ|2Re (ρα)

)
b2 = 2 |ρ|2Reα

c0,n = 1 +
(
2Re

(
ρ2n))2

+ |ρ|2
n+2

c1,n = 2Re
(
ρ2n) (

1 + |ρ|2
n+1
)

c2,n = |ρ|2
n+1

.

Just as for the real poles, Proposition 5 may be used to truncate the infinite product.

In this way, each real pole is approximated as a cascade where each factor requires

2 additions and 1 multiplication (we factor out the terms 1 + p2n+1), followed by a factor

requiring 2 additions and 2 multiplications. Each complex pole is approximated as a cascade

with factors requiring 4 real additions and 2 real multiplications (where we factor out the

terms c0,n) followed by a factor requiring 4 real additions and 3 real multiplications. Let N real
m

denote the number of factors needed to approximate the real pole pm, and N cpx
m denote the

number of factors needed for the complex pole ρm (see (2.13)). Then the total computational

cost of a parallel implementation is

#Adds = 4N cpx + 5M cpx + 2N real + 3M real

#Mults. = 2N cpx + 3M cpx +N real + 2M real + 1,

where

N cpx =
Mcpx∑
m=1

N cpx
m and N real =

Mreal∑
m=1

N real
m ,

which includes the costs of the constant term w0 and combining the output of each parallel

component. We emphasize that these are real additions and multiplications, even though

the poles and weights are generally complex.

We conclude this section with a series of remarks.
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Remark 11. For software-based realizations, the parallel structure of our FIR approximations

is simple to implement and yields fast codes. For hardware-based realizations, the serial

cascade structure in [Bey95a] may also be considered.

Remark 12. A non-causal filter lacking a symmetric impulse response does not possess sym-

metry of poles inside and outside the unit disk. In this situation, the poles inside the unit

disk may be applied using the standard recursive equations and the poles outside the unit

disk using an appropriate FIR approximation.

Remark 13. Lowpass filters used in downsampling applications, such as digital tuning or

sigma/delta A/D conversion, are an important special case. These filters are characterized

by a narrow passband, narrow transition band, and tight error tolerances. Lowpass FIR

filters designed by our method are especially convenient in these situations. Since factors in

the cascade have terms z2n , we can apply a factor then decimate by two prior to applying

the next factor. This approach dramatically reduces the memory and number of arithmetic

operations required to implement the filter. We note that strategically interlacing decimation

and filtering stages has been used with great success in the field of multirate signal processing

(see [CR83] and references therein).

2.5 Design Examples

2.5.1 Frequency Selective Filters

We now turn to a more complicated sub-optimal filter, and thereby obtain a near-

optimal filter that could not easily be obtained by other means. Let us consider a “staircase”

filter Hd(z) constructed by using the Möbius transform (2.17) together with the function

1

2
F

(
w;

3

8
, 25

)
+

1

2
F

(
w;

5

8
, 25

)
,

where F (w; δ,N) is defined in (2.16) (see Fig. 2.3). The sub-optimal filter Hd(z) is a real-

valued IIR filter with 200 poles. We reduce their number by choosing a con-eigenvalue of
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Table 2.2: Poles and weights of the “staircase” filter H in §2.5.1, and the number of factors
required for each pole in H̃. The constant term is w0 = 0.60057.

Pole zm Weight wm Factors
0.73729 + 0.64330j 2.6451e-5− 3.7663e-3j 9
−0.21254 + 0.94461j 7.2305e-6− 5.5944e-3j 8
0.67809 + 0.59327j −4.3178e-4− 1.1810e-2j 7
−0.18571 + 0.83540j 6.8318e-4− 1.7861e-2j 6
0.44780 + 0.42670j −1.3985e-2− 7.0914e-2j 4

−8.7442e-2 + 0.42165j −2.9205e-2− 0.16703j 4
−0.50671 −1.4759e-2 3

σ ≈ 4.6×10−4 in Algorithm 3 to obtain a new filter H(z) with 26 poles, of which 13 are inside

the unit disk and 13 are outside. The approximation error |Hd(e
jω)−H(ejω)| is shown in

Fig. 2.3. The error displays almost exact equioscillation, consistent with our claim that IIR

filters produced by our method are near-optimal. The pre- and post-reduction pole locations

are shown in Fig. 2.4, where only poles inside the unit disk are displayed. The pole pattern is

complicated enough that it is not clear how one would produce these poles by other means.

The poles, weights, and number of factors required in an FIR approximation with error less

than 10−3 are shown in Table 2.2 (only poles inside the upper part of the unit disk are listed).

2.5.2 Quadrature Mirror Filters

Our approach allows us to widen the range of useful properties in the design of FIR

Quadrature Mirror Filters (QMFs). The perfect reconstruction condition requires the low-

pass filter of the QMF pair to satisfy

H(z)H(z−1) +H(−z)H(−z−1) = 1. (2.21)

Such filters give rise to filter banks, and, with simple additional constraints, to orthonormal

wavelet bases. Filter banks provide methods for efficiently applying operators to signals, in

particular, operators that in the standard representation result in very long filters, such as

fractional derivatives or the Hilbert transform (see, e.g., [Bey92]). Filter banks have proven
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useful for applications in signal processing, numerical analysis, and data compression (see,

e.g., [JMR01]).

Depending on the application, we may request different properties of the filter (2.21).

Algebraically, many of these properties are interrelated and several are mutually exclusive.

For example, no FIR QMF can be symmetric but nothing prevents the design of symmetric

IIR QMFs. We note that many such restrictions on properties of QMFs are fragile; i.e., for

any finite accuracy these restrictions disappear, and we use this fact as a tool for the design

of approximate QMFs with the desired properties. Some examples may be found in [Bey95a]

and here we construct approximate IIR and FIR QMFs that are symmetric (i.e., have linear

phase), efficient, and have attractive flatness and subband isolation properties.

In [Mon99] a particularly interesting family of symmetric IIR QMFs is introduced,

E4N(z) =
(1 + z)2N

(
(1 + z)2N + (−1)N

√
2(1− z)2N

)
(1 + z)4N + (1− z)4N + (−1)N

√
2(1− z2)2N

, (2.22)

where the positive integer parameter N simultaneously controls the flatness of the passband

and stopband and the width of the transition region. It may be that the value N required

to achieve a sufficiently narrow transition band results in a filter that is excessively flat. We

show how to use our method to obtain an efficient FIR approximation of the original QMF

that retains the desired sharpness but gains efficiency by reducing the excessive flatness. An

example of such a QMF frequency response is illustrated in Fig. 2.5.

The filter flatness is controlled by the root of order 2N at z = −1 of E4N(z). To obtain

a more efficient, but less flat, IIR filter, we factor our a portion of this high-order root and

apply the reduction algorithm from §2.2.2 to the remaining terms. Observing that E4N(z)

is real-valued on the unit circle, we select some integer S < N (which controls the flatness

of the new filter) and rewrite E4N(z) as

E4N(z) =

(
1 + z

2

)S (
1 + z−1

2

)S
[
c+

2N∑
n=1

sn

1− pn/z
+

sn

1− pnz

]
. (2.23)

We may now reduce the expression in brackets and construct an FIR approximation of the
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result. For example, we choose N = 20, yielding an IIR filter with 40 poles inside the unit

disk and 40 poles outside. This filter has an appealingly narrow transition band, but the

passband is flatter than may be required for many filter bank applications. We select S = 3

in (2.23) and apply the reduction algorithm of §2.2.2 to obtain a new IIR filter with only 17

poles inside the unit disk and 17 outside. Finally, we use the FIR approximation algorithm

of §2.2.3 to obtain an FIR filter Ẽ80(z) that approximates E80(z) on the unit circle with an

error bounded by 10−8. Because Ẽ80(z) approximates E80(z) so closely, it (approximately)

inherits the same properties as E80(z). In particular, Ẽ80(z) is symmetric and approximately

satisfies the perfect reconstruction condition (2.21) with an error that does not exceed 10−8

on the unit circle. It is also very flat because of the root of order 6 at z = −1. The

approximate QMF Ẽ80(z) and the perfect reconstruction error

Ẽ80(z)Ẽ80(z
−1) + Ẽ80(−z)Ẽ80(−z−1)− 1

are shown in Fig. 2.5. The poles, weights, and number of factors in the FIR approximation

are shown in Table 2.3 (only the poles in the upper half of the unit disk are listed).

Remark 14. We note that the order of the zero, 2S, yields an approximate interpolating

property for the filter bank [Dau93, MBH99]. Directly constructing FIR QMFs with this

property leads to the so-called Coiflets (design of which which is difficult, see, e.g., [Dau93,

MBH99]) and the resulting filters cannot be symmetric. In comparison, our construction is

simple and provides additional properties.

2.6 Conclusion

We have described a new method of designing accurate and efficient IIR and FIR filters.

Our method has several advantages. First, the FIR filters it produces are more efficient than

FIR filters constructed by other methods, when such constructions are even possible. Second,

many properties (such as symmetric filters satisfying the perfect reconstruction condition)

can only be obtained by IIR filters. Our method produces FIR filters that, with any finite
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Figure 2.5: Approximate QMF Ẽ80 (top) and its perfect reconstruction error (bottom).

Table 2.3: Poles, weights, and number of factors required in the FIR approximation Ẽ80 of
the IIR QMF E80 in §2.5.2. The constant term is w0 = −1.24533870508.

Pole zm Weight wm Factors

1.614962028091702e-8 + 0.9427643190768825j 0.1156203491819011− 8.058245848823418e-2j 9

1.523267607493497e-8 + 0.9063478708933764j −6.602258562520147e-2 − 0.1235199582810649j 8

9.452755533145547e-4 + 0.8038059179307812j 0.1435760298523706− 5.972837054722412e-3j 7

2.385100189342754e-3 + 0.7758181038788966j −8.466685108153214e-3 − 0.1405348047690257j 7

−4.287984710863575e-3 + 0.6711924419976365j 0.1673367117011427− 4.488479171905594e-2j 6

1.654221356678399e-2 + 0.5487007195130383j 0.1691065050219905 + 4.884707929391815e-2j 5

3.826740048904385e-2 + 0.4009109376978119j 9.267944965286919e-2 + 0.1068308245943145j 5

4.944326086546647e-2 + 0.2253118851038638j 8.840369128305046e-3 + 6.662132497247104e-2j 4

0.5130884721438124 −1.582530456670174e-6 4
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accuracy, approximately possess these properties. Third, our filters have a straightforward

parallel implementation. Finally, by approximating IIR filters with FIR filters, we can

consider IIR filters with properties, such as linear phase, not obtainable by causal IIR filters.



Chapter 3

Fast and Accurate Propagation of Coherent Light

This chapter contains a preprint of

[LBM13] R. D. Lewis, G. Beylkin, and L. Monzón, Fast and accurate
propagation of coherent light, 2013, to be submitted.

FAST AND ACCURATE PROPAGATION OF COHERENT LIGHT

RYAN D. LEWIS, GREGORY BEYLKIN, AND LUCAS MONZÓN

Abstract. We describe a fast algorithm to propagate, for any user-specified accu-

racy, a time-harmonic electromagnetic field between two parallel planes separated

by a linear, isotropic, and homogeneous medium. The analytic formulation of this

problem (circa 1897) requires the evaluation of the so-called Rayleigh-Sommerfeld

integral. If the distance between the planes is small, this integral can be accurately

evaluated in the Fourier domain; if the distance is very large, it can be accurately

approximated by asymptotic methods. In the large intermediate region of practical

interest, where the oscillatory Rayleigh-Sommerfeld kernel must be applied directly,

current numerical methods can be highly inaccurate without indicating this fact to

the user. In particular, we demonstrate that while the often-used Fresnel approxi-

mation may yield adequate accuracy near the optical axis, the accuracy deteriorates

significantly away from the axis. In our approach, for any user-specified accuracy

ε > 0, we approximate the kernel by a short sum of Gaussians with complex-valued

exponents and then efficiently apply the result to the input data using the
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unequally spaced fast Fourier transform. The resulting algorithm has computational

complexity O
(
N2 log N log2 ε−1 + M2 log4 ε−1

)
, where we evaluate the solution on

an N × N grid of output points given an M × M grid of input samples. Our

algorithm maintains its accuracy throughout the entire computational domain.

3.1 Introduction

A measurement system can be no more accurate than the least accurate of its con-

stituent parts. A critical part of many computational optical systems is a numerical algorithm

to propagate a time-harmonic electromagnetic field between two parallel planes separated

by a linear, isotropic, and homogeneous medium. Within the experimental community, it is

well understood that algorithms used for this purpose give approximate solutions. However,

virtually none of the current algorithms provide a mechanism to control or estimate their

error and, for this reason, may generate inaccurate results without indicating this fact to

the user. This state of affairs is somewhat surprising since one might expect that in the

computer age, of all the sources of error in an optical system, numerical error ought to be

the easiest to eliminate.

At the end of 19th century, Lord Rayleigh [Ray97] described wave propagation via the

integral

u (x, z) = − 1

2π

∫
R2

f (y)
∂

∂z

(
ei2πR

R

)
dy, z > 0, (3.1)

where R =
√
z2 + ‖x− y‖2 (see also [Bou54, BWB99]). Given the field f (y) in the plane

z = 0, (3.1) describes the field u (x, z), z > 0, that satisfies the Sommerfeld radiation

condition. Expressing all distances in wavelengths, we note that if the propagation distance

is small, then the kernel of this integral operator is highly oscillatory, but the computation

can then proceed in an accurate manner in the Fourier domain. On the other hand, if the

distance is very large, then application of this kernel asymptotically reduces to a scaled
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Fourier transform. The computational difficulties arise in the intermediate region where, in

order to obtain an accurate solution, it is necessary to apply this oscillatory kernel as is.

Currently, the standard practice is to replace the kernel in this intermediate region by its

Fresnel approximation. We show that this approximation yields only limited accuracy even

near the optical axis, and that the accuracy deteriorates significantly away from the optical

axis. Perhaps what is most troubling is that the accuracy of approximation is not controlled.

In this paper we present a fast algorithm to evaluate the Rayleigh-Sommerfeld integral

(3.1) with any user-specified accuracy. We approximate the kernel by a short sum of Gaus-

sians with complex-valued exponents. The number of terms in our approximation is nearly

minimal for a given accuracy ε. The resulting approximate kernel is then efficiently applied

to input data using the unequally spaced fast Fourier transform (USFFT) [DR93, Bey95b],

yielding an algorithm of computational complexityO
(
N2 logN log2 ε−1 +M2 log4 ε−1

)
, where

we evaluate the solution on an N × N grid of output points given a grid of M ×M input

samples, the same order of complexity as algorithms based on the Fresnel approximation.

Our approach also increases significantly the size of the output region where the evaluation

of (3.1) is accurate.

Our approximation of the kernel may be viewed as a generalization of the Fresnel

approximation. The Fresnel approximation replaces the Rayleigh-Sommerfeld kernel with

a single Gaussian with a purely imaginary exponent, whereas we use a nonlinear algorithm

to approximate the kernel as a short linear combination of Gaussians with complex-valued

exponents (for any user-specified accuracy).

The need for an accurate propagation algorithm arises in areas such as computational

holography, optical component design, and antenna design. A particularly interesting appli-

cation area is X-ray diffraction microscopy, and related techniques, where one attempts to

form an image of a microscopic sample from measurements of the magnitude of its diffraction

pattern. These inverse problems are usually solved by iterative methods that include a light

propagation algorithm. Therefore, the accuracy of the propagation algorithm ultimately
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limits the accuracy of the reconstructed image. The speed of a propagation algorithm is

obviously also of critical importance for applications employing iterative methods.

The numerical algorithms that we use are designed to yield any user-specified accuracy.

This includes controlled accuracy in the rapid computation of integrals. The methods that

we employ for this purpose (specifically the USFFT and generalized Gaussian quadratures

for band-limited functions) can significantly improve the performance and accuracy of even

the standard methods for light propagation, as we observe in Appendices A and B (§§3.7

and 3.8).

The paper is organized as follows. We begin by reviewing the necessary mathematical

preliminaries in §3.2. We describe our new algorithm in §3.3, then discuss its region of

validity in §3.4. In §3.5 we provide several numerical examples, then summarize our results

in §3.6. By introducing this new algorithm, we hope to stimulate accuracy improvements in

computational optical systems by essentially eliminating numerical errors.

3.2 Preliminaries

3.2.1 The Rayleigh-Sommerfeld Formula

The behavior of a time-harmonic electromagnetic field in a linear, isotropic, and ho-

mogeneous medium is described by the scalar Helmholtz equation,

(
∆ + k2

)
u = 0, (3.2)

where the wavenumber k = 2π/λ, λ is the wavelength, and u (x, y, z) is the complex ampli-

tude of one component of the vector-valued electric field at a point (x, y, z) ∈ R3. We may

consider each component of the field separately since their governing equations decouple in

an isotropic homogeneous medium, allowing us to work with the scalar form of the Helmholtz

equation instead of its vector form.

It is convenient to associate one coordinate of the three-dimensional Cartesian system

with the optical axis—we choose the z-coordinate for this purpose, and will often represent a
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point (x, y, z0) ∈ R3 as (x, z0), where x ∈ R2 lies in the plane z = z0 transverse to the optical

axis. We find it natural to measure distances in the units of wavelengths and therefore, for

the remainder of this paper, set the wavenumber k = 2π.

The Rayleigh-Sommerfeld integral (3.1) yields the solution u (x, z) of the Dirichlet

problem (3.2) in the half-space z > 0 that satisfies the Sommerfeld radiation condition

[Som12, Som49],

lim
s→∞

s

(
∂u

∂s
− i2πu

)
= 0, where s = ‖(x, z)‖ and z > 0.

Given the boundary data u (x, 0) = f(x), we rewrite (3.1) as

u (x, z) =

∫
R2

f (y)Kz (‖x− y‖) dy, (3.3)

where the Rayleigh-Sommerfeld kernel Kz (r) is given by

Kz (r) =
ei2πz

√
1+(r/z)2

iz

 1

1 + (r/z)2 +
i

2πz
(
1 + (r/z)2) 3

2

 , r ≥ 0. (3.4)

Denoting the Fourier transform of the boundary data as

f̂ (p) =

∫
R2

f (x) e−i2πx·p dx,

we write (3.3) in the Fourier domain as

u (x, z) =

∫
R2

f̂ (p) K̂z (‖p‖) ei2πx·p dp, (3.5)

where the Fourier transform of the Rayleigh-Sommerfeld kernel (cf. [She67] and references

therein) is given by

K̂z (ρ) = ei2πz
√

1−ρ2
, ρ ≥ 0. (3.6)

Our goal is to evaluate (3.3) in such a way that the computational cost does not

increase with the distance z. It is clear that the spatial kernel Kz (r) is a highly oscillatory

function of r when z is small, and that the Fourier domain kernel K̂z (ρ) is a highly oscillatory
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function of ρ when z is large. For many physically interesting choices of the distance z in

the intermediate region, Kz (r) and K̂z (ρ) are both highly oscillatory, making the direct

numerical computation of u using either (3.3) or (3.5) impractical. In §3.3 we will show how

to approximate (3.4) with controlled error and then describe a fast and accurate algorithm to

apply the resulting approximate Green’s function to boundary data. Our algorithm mainly

addresses the propagation problem for intermediate and large values of z—for small values of

z, it is well known that the problem may be solved using Fourier methods, which we discuss

briefly in Appendix A (§3.7), and for very large values of z, the problem may be solved using

asymptotic methods, as discussed in Appendix B (§3.8).

Remark 15. Given the normal derivative of the boundary data

∂

∂z
u(x, z)

∣∣∣∣
z=0

= g (x) ,

Rayleigh’s formula for the Neumann problem reads

u (x, z) = − 1

2π

∫
R2

g (y)
ei2πR

R
dy, z > 0. (3.7)

With minor modifications, the approach of this paper is also applicable to evaluating (3.7).

3.2.2 Slepian Functions

All physically realistic fields must eventually decay in space and, at the same time, are

essentially band-limited in the Fourier domain. An appropriate mathematical description of

such fields was initiated by Slepian et al. in [SP61, LP61, LP62, Sle64, Sle78] by considering

a space-limiting and band-limiting integral operator and using its eigenfunctions to identify

a class of functions that have controlled concentration in both the space and the Fourier

domains. Slepian et al. showed that this integral operator commutes with the differential

operator of classical mathematical physics describing the prolate spheroidal wave functions,

i.e., both operators share the same eigenfunctions.
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For our purposes, we use eigenfunctions with controlled concentration in a square in

the spatial domain and band-limited to a disk in the Fourier domain. The construction of

such eigenfunctions is described in [BKM07]; it differs from the traditional construction since

there is no differential operator available in this case.

Denoting a square in the spatial domain by A =
[
−a

2
, a

2

]2 and selecting a disk of radius

c in the Fourier domain, following [BKM07] let us define the space-limiting and band-limiting

operator Q : L2 (A) → L2 (A),

Q [f ] (x) =

∫
A

f (y)
cJ1 (2πc ‖x− y‖)

‖x− y‖
dy,

where J1 is the first order Bessel function of the first kind. It is shown in [BKM07] that,

similar to the classical case, the eigenvalues of this operator,

Qψj = µjψj, j = 0, 1, . . . ,

allow us to quantify the proportion of the L2-norm of the corresponding eigenfunctions

outside of A,

1− µ2
j =

∫
R2\A |ψj (x)|2 dx∫

R2 |ψj (x)|2 dx
.

The eigenvalues satisfy 0 < µj < 1 and we order them in decreasing order, µ0 > µ1 ≥ µ2 ≥

· · · > 0. Since they have a sharp transition from being nearly one to being nearly zero (see

[BKM07]), for a user-specified accuracy ε, we select a linear subspace of the eigenfunctions,

span {ψj}J
j=0 , with corresponding eigenvalues µj ≥ 1−ε. Given boundary data f , we project

f onto this subspace, where the choice of parameters, i.e., the domain A and the bandlimit

c, is described in §3.2.3 below.

Identifying this subspace allows us to accurately evaluate integrals involving the bound-

ary data. Following [BKM07, BM02] (see also [XRY01]), we have

Theorem 16. Let W =
[
−w

2
, w

2

]2 be a square output window and fix the positive integer J .

Then for any target accuracy ε there is a (nearly optimal) tensor product grid of quadrature
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nodes ymm′ = (ym, ym′) ∈ A, m,m′ = 1, . . . ,M , and corresponding weights τmτm′ > 0 so that

for all functions f ∈ span {ψj}J
j=0, we have∣∣∣∣∣∣

∫
A

f (y) eix·y dy −
M∑

m,m′=1

τmτm′f (ymm′) eix·ymm′

∣∣∣∣∣∣ ≤ ε ‖f‖1 , x ∈ W.

These quadratures are known as generalized Gaussian quadratures for band-limited functions.

3.2.2.1 The Unequally Spaced Fast Fourier Transform

We need to evaluate trigonometric sums of the form
M∑

m,m′=1

τmτm′f (ymm′) eix·ymm′

at output points xnn′ = (xn, xn′), where n, n′ = 1, . . . , N . Such sums can be evaluated

rapidly, for any user-specified accuracy ε, using the USFFT (see [DR93, Bey95b, LG05])

with computational complexity O
(
N2 logN +M2 log2 ε−1

)
.

3.2.3 Band-Limiting the Boundary Data

For a given accuracy ε, there exists some square region A = A (ε) =
[
−a

2
, a

2

]2 such that

the values of the boundary data f in (3.3) outside of A may be neglected,∫
x/∈A

|f (x)|2 dx ≤ ε2 ‖f‖2
2 . (3.8)

In this paper, we refer to the region A where the field is concentrated as an aperture.

Let us determine the highest spatial frequency c that must be propagated in order

to accurately evaluate (3.3). It follows from (3.6) that evanescent waves corresponding to

spatial frequencies above ρ = ‖p‖ > 1 are attenuated exponentially fast as a function of the

propagation distance z. This implies that, for a given distance z and accuracy ε, there exists

some bandlimit ce > 1 such that frequencies greater than ce may be neglected,∣∣∣∣∣∣∣u (x, z)−
∫

‖p‖≤ce

f̂ (p) K̂z (‖p‖) ei2πx·p dp

∣∣∣∣∣∣∣ ≤ ε ‖f‖2 .
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A good estimate of this bandlimit is obtained by setting e−2πz
√

c2e−1 = ε so that

ce =

√
1 +

(
log ε−1

2πz

)2

. (3.9)

It may happen that the boundary data f has a bandlimit much larger than ce. In such

cases, we set cf = 2ce and replace f by its band-limited version,

f̃ (x) =

∫
‖p‖≤2ce

f̂ (p)h (‖p‖) ei2πx·p dp,

where the window function h (ρ) satisfies |h (ρ)− 1| ≤ ε for 0 ≤ ρ ≤ ce and drops smoothly to

zero in the interval ρ ∈ (ce, 2ce]. The function f̃ will be band-limited to the disk of radius cf

and concentrated in a square aperture Ã that is somewhat larger than the original aperture

A. This spreading can be controlled by an appropriate choice of h—one convenient choice

is a linear combination of shifted Gaussians. We use this new, larger, aperture in place of

the original aperture and therefore set A = Ã. It may also happen that the bandlimit cf

of boundary data is known a priori and is less than ce, so it is not necessary to propagate

spatial frequencies with magnitudes ρ = ‖p‖ ∈ [cf , ce]. In either case, we set the highest

spatial frequency that must be propagated to c = cf , where cf is defined as just described.

3.2.4 Approximation of Functions by Linear Combinations of Exponentials

and Gaussians

We use an algorithm in [BM05] (see also [BM10]) to approximate, for a target accuracy

ε, a smooth function f (x) by a nearly optimal linear combination of Gaussians. Since the

algorithm in [BM05] finds a nearly minimal number of exponential terms, we apply it to

the function g (t) = f
(√

t
)
. Changing variables back, t 7→ x2, yields an approximation by

Gaussians with the (nearly) minimal number of complex-valued weights w` and exponents

η`, such that ∣∣∣∣∣f (x)−
L∑

`=1

w`e
−η`x

2

∣∣∣∣∣ ≤ ε, x ∈ [0, 1] . (3.10)
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For completeness, we recall this algorithm for approximation by exponentials in Appendix C

(§3.9).

For the functions f (x) considered in this paper, the number of terms L in approxima-

tion (3.10) satisfies L = O (log ε−1). This behavior is typical and occurs for a wide variety

of functions encountered in applications.

3.2.5 Decompositions of Low-Rank Matrices

In order to compute the singular value decomposition (SVD) of a low-rank matrix

S ∈ CN×M , where S has numerical rank k for a given accuracy ε, we use algorithms

described in [CGMR05, HMT11]. The computational complexity of these algorithms is

O (MN log k + (M +N) k2) (cf. with O (MNk) for the direct approach utilizing a rank-

revealing QR factorization).

3.2.6 The Approximations of Fresnel and Fraunhofer

Our method of approximating the kernel (3.4) resembles the approach that leads to

the Fresnel approximation, which we now recall. If the propagation distance is significantly

larger than both the spatial extent of the input field and the desired output region, so that

r = ‖x− y‖ < z, it is common to use this assumption to make the (rather dramatic)

approximations in (3.4)

1

1 + (r/z)2 +
i

2πz
(
1 + (r/z)2) 3

2

≈ 1 (3.11)

and

ei2πz
√

1+(r/z)2 ≈ ei2πzei π
z

r2

. (3.12)
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The Fresnel approximation uses this approximate kernel in place of the Rayleigh-Sommerfeld

kernel in (3.3), yielding

u (x, z) ≈ ei2πz

iz

∫
R2

f (y) ei π
z
‖x−y‖2 dy

=
ei2πzei π

z
‖x‖2

iz

∫
R2

f (y) ei π
z
‖y‖2e−i 2π

z
x·y dy (3.13)

(see, e.g., [Goo05, §4.2]). Since the latter integral can be computed using the fast Fourier

transform (FFT), this approximation is widely used despite its potentially low accuracy

(it turns out that the poor approximation of the kernel’s phase in (3.12) is especially

deleterious—see §3.5.2).

When z is much larger than the spatial extent of f (y), it is common to make the

further approximation ei π
z
‖y‖2 ≈ 1, which, when used in (3.13), leads to the Fraunhofer

(sometimes called far-field) approximation

u (x, z) ≈ ei2πzei π
z
‖x‖2

iz
f̂
(x

z

)
(3.14)

(see, e.g., [Goo05, §4.3]). The Fraunhofer approximation, which relates the output field

to the scaled Fourier transform of the input field, is especially common in antenna design

and X-ray diffraction microscopy. In §§3.4 and 3.5 we demonstrate that the accuracy of

the Fresnel approximation rapidly deteriorates away from the optical axis. We discuss the

Fraunhofer approximation further in Appendix B (§3.8).

3.3 A New Algorithm for Fast and Accurate Light Propagation

In this section we describe a fast algorithm to compute, for a fixed propagation distance

z and any user-specified accuracy ε > 0, the field u (x, z) in a square output window W =[
−w

2
, w

2

]2. We assume that the boundary data f has already been replaced with its space-

limited and band-limited version, as described in §3.2.3. Hence, f is band-limited with some

bandlimit c and concentrated in a square aperture A =
[
−a

2
, a

2

]2 so that, according to (3.3),
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we need to compute

u (x, z) =

∫
A

f (y)Kz (‖x− y‖) dy, x ∈ W, (3.15)

where Kz is the Rayleigh-Sommerfeld kernel (3.4). Our algorithm comprises three steps.

First, in §3.3.1, we accurately approximate the Rayleigh-Sommerfeld kernel by a linear

combination of Gaussians using the algorithm briefly described in §3.2.4. Second, in §3.3.2,

we use the resulting approximation in (3.15) and accurately discretize the ensuing integrals

using the generalized Gaussian quadratures for band-limited functions from Theorem 16.

Finally, in §3.3.3, we use the algorithms referred to in §3.2.5 for computing the SVDs of

low-rank matrices to rearrange the resulting sums for rapid and accurate evaluation via the

USFFT (see §3.2.2.1).

3.3.1 Approximation of the Kernel with Controlled Error

The key observation behind the Fresnel approximation is that the phase of the kernel

(3.4) is approximately quadratic, cf. (3.12), at least for small values of r/z. We also use this

observation but, in addition, exploit the fact that the rest of the phase can be accommodated

via an approximation with controlled error, valid throughout a large computational domain.

Due to the finite sizes of the output window W and input aperture A, it is only

necessary to approximate the kernel Kz (r) on the interval 0 ≤ r ≤ (a+ w) /
√

2. In fact, for

any user-specified accuracy εK > 0, we demonstrate how to obtain an approximation K̃z (r)

such that ∣∣∣Kz (r)− K̃z (r)
∣∣∣ ≤ εK

z
, r ∈

[
0,
a+ w√

2

]
. (3.16)

We emphasize that in (3.16) the desired accuracy εK is scaled by the propagation distance

z since the magnitude of the kernel decays like z−1 along the optical axis.

Inspired by the Fresnel approximation, we rewrite the kernel as

Kz (r) =
ei2πzei π

z
r2

iz
Az (r) ,
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where

Az (r) =

 1

1 + (r/z)2 +
i

2πz
(
1 + (r/z)2) 3

2

 e
i2πz

“√
1+(r/z)2−1− 1

2
(r/z)2

”
. (3.17)

Having removed the factor ei π
z

r2capturing most of the oscillatory behavior of the kernel, the

function Az is non-oscillatory over a large region of space. We use the algorithm in §3.2.4 to

compute, for a desired accuracy εK > 0, complex-valued weights w` and exponents η` such

that ∣∣∣∣∣Az (r)−
L∑

`=1

w`e
−η`r

2

∣∣∣∣∣ ≤ εK , r ∈
[
0,
a+ w√

2

]
, (3.18)

leading to the approximation

K̃z (r) =
ei2πz

iz

L∑
`=1

w`e
−(η`−i π

z )r2

, (3.19)

satisfying (3.16). We define ũ (x, z) to be the result of using the approximate kernel K̃z (r)

in (3.15),

ũ (x, z) =
ei2πz

iz

L∑
`=1

w`

∫
A

f (y) e−(η`−i π
z )‖x−y‖2 dy. (3.20)

The following proposition bounds the absolute error of the approximation and is an imme-

diate consequence of the preceding discussion.

Proposition 17. Let ũ be the function defined in (3.20), with weights w` and exponents η`,

` = 1, . . . , L, as in (3.18). Then

|u (x, z)− ũ (x, z)| ≤ εK ‖f‖1

z
, x ∈

[
−w

2
,
w

2

]2
, (3.21)

where the field u (x, z) is given by (3.15).

3.3.2 Discretization of Integrals

Letting α` = Re η` and β` = Im η` − π
z
, where η`, ` = 1, . . . , L, are as in (3.18), we

rearrange (3.20) as

ũ (x, z) =
ei2πz

iz

L∑
`=1

w`e
−(α`+iβ`)‖x‖2

∫
A

f (y) e−(α`+iβ`)‖y‖2e2α`x·yei2β`x·y dy. (3.22)
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A straightforward estimate of the bandlimit of the integrands (see §A.2) may be bounded

(for each term, independently of `) by

c′ = c+
a2

2
√

2z
+
πaw√

2z
,

where c is the bandlimit of the input function f . Given bandlimit c′, we discretize the

integrals in (3.22), for a desired accuracy εQ, using the quadratures from Theorem 16. Let

ymm′ = (ym, ym′) ∈ A, m,m′ = 1, . . . ,M , be the M ×M tensor product grid of quadrature

nodes with the corresponding quadrature weights τmτm′ .

Let us consider an N ×N grid of user-selected output locations xnn′ = (xn, xn′) ∈ W ,

n, n′ = 1, . . . , N . We apply the quadrature from Theorem 16 to the integrals in (3.22) and

obtain an approximation to the output field at the desired locations as

unn′ =
ei2πz

iz

L∑
`=1

w`

M∑
m,m′=1

τmτm′T
(`)
nn′mm′f (ymm′) ei2β`xnn′ ·ymm′ . (3.23)

In (3.23) the N ×N ×M ×M fourth-order tensors T(`), ` = 1, . . . , L, are given by

T
(`)
nn′mm′ = e−(α`+iβ`)‖xnn′‖

2

e−(α`+iβ`)‖ymm′‖2S(`)
nmS

(`)
n′m′ , (3.24)

where n, n′ = 1, . . . , N and m,m′ = 1, . . . ,M , and the N×M second-order tensors (matrices)

S(`), ` = 1, . . . , L, are given by

S(`)
nm = e2α`xnym , (3.25)

where n = 1, . . . , N and m = 1, . . . ,M . From Theorem 16 we obtain the bound

|ũ (xnn′ , z)− unn′| ≤
εQ ‖f‖1

z
, (3.26)

where ũ (xnn′ , z) is given by (3.20) and unn′ is given by (3.23).

3.3.3 Rapid Evaluation of the Field

In the Fresnel approximation of the kernel, the exponent in the quadratic phase factor

is purely imaginary, making it easy to compute (3.13) via either the FFT or the USFFT.
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In our approach, the exponents in approximation (3.19) are complex-valued, although the

magnitude of their real parts is small relative to the aperture and output window sizes (we

describe below how to ensure that this is the case). This observation allows us to develop a

fast algorithm to evaluate (3.23).

We want to evaluate the inner summations in (3.23) rapidly using the USFFT. Towards

this end, we look for an approximation of S
(`)
nmS

(`)
n′m′ in a form where the output indices n, n′

are split from the input indices m,m′. As the first step, we use the SVD to write the matrices

in (3.25) as a sum of outer products,

S(`)
nm =

min(M,N)∑
q=1

σ(`)
q U(`)

nqV
(`)
mq, (3.27)

where the singular values σ(`)
1 ≥ σ

(`)
2 ≥ · · · ≥ 0 are arranged in decreasing order and the

columns of matrices U(`) and V(`) are orthonormal. By properly selecting parameters as

described below in §3.3.4, we ensure that the N ×M matrices S(`) have a low numerical

rank (typically less than 25). We then use the algorithms described in §3.2.5 to rapidly

compute these SVDs and apply the result to approximate S
(`)
nmS

(`)
n′m′ by a low-separation-

rank tensor with indices n, n′ split from the indices m,m′. The error estimate is provided

by (see §A.1 for the proof)

Lemma 18. Let σ(`)
q , U

(`)
nq , and V

(`)
mq, where ` = 1, . . . , L, q = 1, . . . ,min (M,N), n =

1, . . . , N , and m = 1, . . . ,M , be as in (3.27). For a desired accuracy εR > 0, let I(`),

` = 1, . . . , L, be the smallest integer such that

min(M,N)∑
q=I(`)+1

σ(`)
q ≤ εR.

Then for ` = 1, . . . , L, n = 1, . . . , N , and m = 1, . . . ,M , we have the approximations∣∣∣∣∣∣S(`)
nmS

(`)
n′m′ −

I(`)∑
q,s=1

σ(`)
q σ(`)

s U(`)
nqU

(`)
n′sV

(`)
mqV

(`)
m′s

∣∣∣∣∣∣ ≤ εR2e
|α`|
2

aw.
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Using Lemma 18, we approximate T(`) in (3.24) as
∑R(`)

r=1 P
(`)
nn′rQ

(`)
mm′r, with ` = 1, . . . , L,

n, n′ = 1, . . . , N , and m,m′ = 1, . . . ,M , where we have re-indexed the resulting double

summation using a single index and, also, have collected terms that depend on the output

coordinate xnn′ as the N × N × R(`) tensors P(`) and terms that depend on the input

coordinate ymm′ as the M ×M ×R(`) tensors Q(`). Lemma 18 implies that∣∣∣∣∣∣T(`)
nn′mm′ −

R(`)∑
r=1

P
(`)
nn′rQ

(`)
mm′r

∣∣∣∣∣∣ ≤ εR2e
|α`|
2 (a2+w2+aw). (3.28)

We define ũnn′ to be the result of using approximation (3.28) in (3.23),

ũnn′ =
ei2πz

iz

L∑
`=1

w`

R(`)∑
r=1

P
(`)
nn′r

M∑
m,m′=1

τmτm′Q
(`)
mm′rf (ymm′) ei2β`xnn′ ·ymm′ . (3.29)

It follows from (3.28) that

|unn′ − ũnn′| ≤
εR ‖f‖1

z
2

L∑
`=1

|w`| e
|α`|
2 (a2+w2+aw), (3.30)

where unn′ is given by (3.23) and we estimated

M∑
m,m′=1

τmτm′ |f (ymm′)| ≈ ‖f‖1 .

From the bounds given in §A.2, we have

2
L∑

`=1

|w`| e
|α`|
2 (a2+w2+aw) ≤ b,

where b is a small constant that we incorporate into εR so that the bound (3.30) becomes

|unn′ − ũnn′| ≤
εR ‖f‖1

z
. (3.31)

Combining the error bounds (3.21), (3.26), and (3.31), we obtain

Theorem 19. The error of computing the field u from (3.15) using (3.29) is bounded by

|u (xnn′ , z)− ũnn′| ≤
(εK + εQ + εR) ‖f‖1

z
. (3.32)
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Formula (3.29) allows us to compute the field ũnn′ rapidly. We first apply Q
(`)
mm′r as a

pre-factor to the input samples f (ymm′), then compute the inner sums using the USFFT,

and finally apply P
(`)
nn′r to the result as a post-factor.

In our presentation, we used three different accuracies, εK , εQ, and εR, in the three

steps of deriving the final approximation of the field in (3.29) in order to emphasize these as

separate steps. In practice, we choose these accuracies to be the same, and set εK = εQ =

εR = ε/3 to achieve the final accuracy of ε.

Remark 20. It is not necessary for the aperture and output window to be square. Indeed,

the USFFT allows us to place the output coordinates at arbitrary locations in the output

window. We have used a tensor product grid here for simplicity—with minor modifications,

our algorithm may be used to compute the field anywhere in the output window with the

same computational cost. The input aperture may also have any shape, provided that

accurate quadrature rules are used to discretize the integrals in (3.22). We note that near

optimal quadratures for circular apertures are described in [BKM07].

Remark 21. Simplifications for separable boundary data. As with the Fresnel approx-

imation, our approach simplifies in the case of boundary data that are separable in Cartesian

or polar coordinates. For example, suppose the function f is separable in Cartesian coordi-

nates, viz.,

f (x) = f (x1, x2) =
S∑

s=1

f
(s)
1 (x1) f

(s)
2 (x2) (3.33)

for some functions f (s)
1 and f

(s)
2 , s = 1, . . . , S. In such cases the application of the ap-

proximate kernel (3.19) simplifies to the calculation of several one-dimensional USFFTs.

Substitute (3.33) into (3.22) and rearrange to obtain an approximation for the field u in a

separated form,

ũ (x1, x2, z) =
ei2πz

iz

L∑
`=1

w`

S∑
s=1

u
(`,s)
1 (x1)u

(`,s)
2 (x2) ,

where the functions u(`,s)
1 and u

(`,s)
2 , ` = 1, . . . , L, s = 1, . . . , S, are obtained in a manner

completely analogous to the method described above except that they may be evaluated by



60

one-dimensional integrals. We obtain similar formulae if the boundary data are concentrated

in a disk and separable in polar coordinates.

3.3.4 Computational Cost

It can be shown (see §A.2) that the number of terms in (3.18) may be estimated as

L = O (γ4 log ε−1), where

γ =
a+ w
√

2z
3
4

. (3.34)

In order to control the number of terms L, we restrict the parameter γ by the empirically-

determined constant

γ ≤ 2.62. (3.35)

This, in turn, limits the domain where our approximation is valid, although this domain is

significantly larger than that of the Fresnel approximation. We discuss this further in §3.4.

Moreover, this bound also implies that the ratio |α`| / (aw) is small, causing the matrices

S(`) in (3.25) to have a low numerical rank.

We now estimate the computational cost of our algorithm. The cost of evaluating

(3.29) depends on the number of USFFTs that must be computed, viz., R = R(1)+ · · ·+R(L),

estimated as R = O
(
log2 ε−1

)
, and on the cost of each USFFT (see §3.2.2.1). Hence, the

overall computational cost of our algorithm isO
(
N2 logN log2 ε−1 +M2 log4 ε−1

)
. For actual

computing times see §3.5.3.

3.4 Size of the Output Region

In §3.3.4 we ensured that our algorithm is efficient by requiring γ from (3.34) to satisfy

(3.35). The practical impact of this requirement is to establish a relationship between the

input aperture side-length a, propagation distance z, and output window side-length w. In

particular, for a fixed aperture size and propagation distance, the largest output window
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that our algorithm can accommodate is

wmax = 3.71× z
3
4 − a, (3.36)

provided that this number is positive. If it is negative, then the propagation distance is small

with respect to the aperture size—in such cases, the propagation problem under consideration

should be treated in the Fourier domain or using near-field methods. We address this case

further in Appendix A (§3.7).

Using the same reasoning, we also define the quantity zmin as

zmin = 0.174× a
4
3 , (3.37)

which, for a fixed aperture size a, gives the minimum propagation distance before our algo-

rithm can be used.

Let us find analogues of (3.36) and (3.37) for the Fresnel approximation (3.13). Recall

that the only mechanism to control the error when using the Fresnel approximation is to

restrict the size of the output region. We first determine the analogue of (3.36), that is,

for a given accuracy ε, let us find w′
max, the largest possible output window where the

Fresnel approximation is guaranteed to achieve accuracy ε. Since the Fresnel approximation

replaces the phase of the Rayleigh-Sommerfeld kernel (3.4) with ei2πzei π
z

r2 , we find, for a

desired accuracy ε, the maximum value of r′max such that∣∣∣e2πz
√

1+(r/z)2 − ei(2πz+π
z

r2)
∣∣∣ ≤ ε, r ∈ [0, r′max] ,

viz., r′max ≈
√

2
(

ε
π

) 1
4 z

3
4 , so that, for a square aperture with side-length a, the largest possible

square output window has side-length

w′
max ≈ 2

( ε
π

) 1
4
z

3
4 − a,

an analogue of (3.36) for the Fresnel approximation. The analogue of (3.37) for the Fresnel

approximation is

z′min ≈
( π

16ε

) 1
3
a

4
3 ,
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which gives, for a desired accuracy ε and aperture size a, the minimum propagation distance

required before the Fresnel approximation can be used.

To illustrate the difference between wmax and zmin for our method and w′
max and z′min

for the Fresnel approximation, let us choose ε = 10−3, so that w′
max = 0.267 × z

3
4 − a. If

a = 5000 wavelengths, then after propagating z = 5× 106 wavelengths, we find that

wmax

w′
max

≈ 16.7,

so the largest side-length of our output window is approximately 17 times larger than that

of the Fresnel approximation. If the propagation distance is only z = 250, 000 wavelengths,

then wmax ≈ 36, 480 wavelengths while w′
max for the Fresnel approximation is negative,

implying that 3-digit accuracy of the Fresnel approximation cannot be guaranteed in any

output window. In fact, for this accuracy, the minimum propagation distance for the Fresnel

approximation is z′max ≈ 497, 000 wavelengths, compared with zmin ≈ 14, 880 for our method.

If we choose the accuracy threshold to be ε = 10−6, then the minimum propagation

distance for the Fresnel approximation increases to z′min ≈ 5× 106 wavelengths, whereas the

minimum distance for our method does not depend on the desired accuracy, and therefore

remains unchanged at zmin ≈ 14, 880.

3.5 Numerical Examples

3.5.1 A Gaussian Beam

To demonstrate the accuracy of our algorithm, we choose boundary data that allows

the field to be accurately computed by an alternative approach. For this purpose, we select

the boundary data with a Gaussian profile given by

f (x) = e−
‖x‖2

σ2 , (3.38)
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where σ determines the width of the beam measured in the units of wavelengths. It can be

shown that the propagating (i.e., non-evanescent) portion of the field is given by (cf. (3.5))

up (x, z) =

∫
‖p‖≤1

f̂ (p) K̂z (‖p‖) ei2πx·p dp

= 4

√
π

2

∞∑
k=0

ikfk jk

(
2πz

√
1 + (‖x‖ /z)2

)
P k

((
1 + (‖x‖ /z)2)− 1

2

)
, (3.39)

where jk is the k-th order spherical Bessel function of the first kind,

P k (s) =
√

(2k + 1) /2Pk (s)

is the normalized k-th degree Legendre polynomial, and the coefficients fk are defined as

fk = π
√

2πσ2

∫ 1

0

se−π2σ2(1−s2)P k (s) ds. (3.40)

These coefficients decay rapidly once k is sufficiently large, so that we may truncate the

sum in (3.39) to obtain a simple formula to compute the non-evanescent portion of the field

to any desired accuracy. The error committed by neglecting the evanescent waves may be

bounded by

|ue (x, z)| =

∣∣∣∣∣∣∣
∫

‖p‖>1

f̂ (p) e−2πz
√
‖p‖2−1ei2πx·p dp

∣∣∣∣∣∣∣
≤ 2 (πσ)2 e−(πσ)2

∫ ∞

1

ρe−2πz
√

ρ2−1 dρ. (3.41)

Provided that (3.41) is less than the accuracy sought, we may disregard the evanescent

portion of the field entirely and regard (3.39) as a formula to compute the field generated

by the boundary data (3.38) for the desired accuracy.

In our example, we choose σ = 5 wavelengths, a square aperture of size a = 50

wavelengths, a propagation distance of z = 1000 wavelengths, a square output window of

size w = 450 wavelengths, and a desired accuracy of ε = 10−6. We then use our algorithm to

evaluate the (axially-symmetric) field at N = 256 points along the x-axis using M ×M =
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Figure 3.1: Propagation of boundary data with a Gaussian profile. The field magnitude,
|u (x, 0)|, (solid line) and its real part, Reu (x, 0) (dashed line) evaluated along the positive
x-axis (a) and the attained accuracy log10 |u (x, 0)− ũ (x, 0)| (b).

512 × 512 input samples. With this choice of parameters, the number of terms needed to

approximate the kernel is L = 8, and the number of USFFTs required to evaluate the field

is R(1) + · · ·+R(8) = 52.

To determine the accuracy of the result, we first compute (3.41) and find that the

evanescent part of the solution is undetectable, viz., |ue (x, 1000)| ≤ 8.7 × 10−113 for all x.

We also find that the coefficients (3.40) decay to |fk| ≤ 10−15 once k ≥ 200, so we truncate

the sum (3.39) after 200 terms and use it to determine the accuracy of our algorithm. We

display the results in Figure 3.1 and note that the obtained accuracy is better than the

accuracy goal 10−6 (the bound in Lemma 18 is not tight).

3.5.2 Focusing Waves and the Fresnel Approximation

Next we compare the field computed by our algorithm to that obtained via the Fresnel

approximation by considering the boundary data

f (x) =


e−i2π

√
z2
0+‖x−r0‖2 , if x ∈

[
−a

2
, a

2

]2,
0, otherwise,

representing a spherical wave restricted to a square aperture and converging to the point

(r0, z0). In Figure 3.2 we show the magnitude of the resulting field, |u (x, z0)|, in the plane z =
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z0 transverse to the optical axis and containing the focal point, for the choice of parameters

r0 = (0, 0), z0 = 100, 000 wavelengths, and a = 2500 wavelengths—as expected, the field

magnitude is approximately a scaled version of the function |sinc (x) sinc (y)|.

Now let us move the focal point away from the optical axis. We fix the propagation

distance to z0 = 100, 000 wavelengths and set the focal point to

r0 = (z0 sin θ, 0) ,

where θ is the angle between the optical axis and the ray from the origin to the focal point

(r0, z0). We select accuracy ε = 10−3 and compare, for several values of θ in the range 0

to 5 degrees, the field computed by our algorithm, ũ (x, z0), and the field computed by the

Fresnel approximation, uf (x, z0), near the focal point x = r0. Results displayed in Figure 3.3

demonstrate that the accuracy of the Fresnel approximation deteriorates rapidly as the focal

point moves away from the optical axis. We also display the diffraction pattern computed

by our algorithm and the pattern computed by the Fresnel approximation for θ = 5◦ in

Figure 3.4. The diffraction pattern obtained by the Fresnel approximation is both shifted

and blurred when compared to the correct pattern.

We compare the two methods in a different manner in Figure 3.5, where we plot the

error of each method at the focal point, i.e., |u (r0, z0)− ũ (r0, z0)| and |u (r0, z0)− uf (r0, z0)|,

as a function of the angle θ (we determined the true value u (r0, z0) by direct numerical

integration). Our method maintains its accuracy for all θ ∈ [0, 5] degrees, while the Fresnel

approximation is accurate to approximately 3 digits for θ = 0◦ but has essentially no accurate

digits for θ > 4◦.

Remark 22. An often-cited paper on numerical light propagation [Syp95] (see also [SPG03])

claims that the Fresnel approximation produces accurate results at angles up to 18 degrees

off the optical axis. Our example demonstrates that this claim is unsustainable.

Remark 23. From Figure 3.3, it may appear tempting to attempt to “correct” the Fresnel

approximation by introducing a change of variable x 7→ g (x), where the function g : R2 → R2
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Figure 3.2: Propagation of a spherical wave restricted to a square aperture and converging
to a point on the optical axis. As expected, the diffraction pattern is approximately a scaled
version of the function |sinc (x) sinc (y)|. We display the magnitude of the field, |u (x, y)|,
(a), and the real and the imaginary parts, Reu (x, 0) (solid line) and Imu (x, 0) (dashed
line) of the field on the x-axis (b).
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Figure 3.3: Comparison of the magnitude of the field evaluated near the focal point on
the x-axis. We display the magnitude |u (x, 0, z0)|, computed by our algorithm (solid line,
correct to 3 digits) and by the Fresnel approximation (dashed line), as the focal point of
a converging spherical wave moves away from the optical axis. The Fresnel approximation
incorrectly computes both the position and the shape of the focal spot, e.g., compare the
nulls between the main lobe and first side lobes in the bottom-right plot.
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Figure 3.4: Comparison of the magnitude of the field for a focal point 5◦ off the optical
axis computed by our algorithm correct to 3 digits (left), and by the Fresnel approximation
(right). To enhance contrast, we plot the square root of the magnitude, |u (x, y)|1/2. The
Fresnel approximation shifts the location of the focal spot, and blurs the boundaries between
the mainlobe and sidelobes. See also the bottom-right plot in Figure 3.3.
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Figure 3.5: Comparison of the error of our method and that of the Fresnel approximation.
We display the error of our method, log10 |u (r0, z0)− ũ (r0, z0)| (solid line), and the error
of the Fresnel approximation, log10 |u (r0, z0)− uf (r0, z0)| (dashed line), at the focal point
(r0, z0) of a converging spherical wave. We note that as the angle θ increases, additional
terms are added to approximation (3.19), improving accuracy by about 1.5 digits each time
and giving the solid line a “sawtooth” shape.
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would be selected with the goal of rescaling the field computed by the Fresnel approximation,

uf (g (x) , z), to more closely match the true field, u (x, z). In effect, the strategy would be to

rescale the x-axis for the dashed lines in Figure 3.3 to better align the peaks of the solid and

dashed lines. Unfortunately, our example shows that this approach could not succeed because

the Fresnel approximation incorrectly computes the shape of the focal spot, in addition to

its position (compare the nulls between the main lobe and side lobes in the bottom-right

plot in Figure 3.3).

3.5.3 Relationship Between Computational Cost and Propagation Distance

The computational cost of our algorithm depends on the number of USFFTs required

in (3.29), i.e., R = R(1) + · · ·+R(L), where L is the number of terms needed to approximate

the kernel in (3.19). As it turns out, R decreases with increasing z, which is expected since

the application of the Rayleigh-Sommerfeld kernel asymptotically reduces to a single scaled

Fourier transform as z →∞ (see Appendix B (§3.8)). On the other hand, for smaller values

of z the field changes rapidly, and many USFFTs are required to accurately compute the

field in these computationally-challenging regions.

Let us fix the aperture size a = 2000 wavelengths, the desired accuracy ε = 10−3, and

set the number of input samples and output samples to M ×M = N ×N = 512× 512. We

now examine the dependence of R on the propagation distance z for two different choices of

output window size:

(1) a fixed output window of size w = 10, 000 wavelengths, and

(2) a variable output window w = wmax, where wmax is defined in (3.36) and is the

largest output window that our method can accommodate for a given propagation

distance z.

In Table 3.1, for several propagation distances, we give the number of terms, L, needed to

approximate the kernel and the number of USFFTs, R, required to compute the field for
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w = 10, 000 w = wmax

z L R Time [s] w L R Time [s]
50, 000 9 486 371 10, 389 10 577 439

100, 000 5 132 101 18, 836 10 440 331
250, 000 3 40 31.4 39, 426 10 306 224

1, 000, 000 2 16 13.6 115, 170 10 189 143
10, 000, 000 1 3 3.46 696, 895 10 112 85.2

Table 3.1: Computational cost as a function of propagation distance. We show the depen-
dence of the number of terms, L, and of the number of needed USFFTs, R, on the propagation
distance, z, as well as the actual computing time. The center section corresponds to the fixed
window size w = 10, 000 wavelengths and the right section to the largest possible window,
w = wmax, where wmax is defined in (3.36).

these two choices of output window size.

In Table 3.1 we also provide timing results for a MATLAB-based implementation of

the algorithm. These timings were obtained on a laptop computer with a 2.1 GHz AMD

N950 processor and 8 GB of RAM. No effort was made made to optimize the code, and we

expect that a careful implementation of the algorithm will be significantly faster. We also

note that all USFFTs in the evaluation of (3.29) may be computed in parallel, so that the

total computational time can be reduced substantially on a multiprocessor computer system.

3.6 Conclusions

We have described a fast algorithm for the propagation of coherent light between

parallel planes separated by a linear, isotropic, and homogeneous medium. Our algorithm

achieves any user-specified accuracy, in contrast to existing algorithms. As a consequence,

our algorithm can rapidly and accurately compute the field in non-paraxial regions, i.e.,

regions far from the optical axis. Importantly for practical applications, the computational

complexity of our algorithm is proportional to that of the FFT.

Conceptually, our approach may be viewed as a generalization of the Fresnel approx-

imation. While the Fresnel approximation replaces the Rayleigh-Sommerfeld kernel with a

single Gaussian with a purely imaginary exponent, we use a nonlinear algorithm to approx-
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imate the kernel, for any user-specified accuracy, as a short linear combination of Gaussians

with complex-valued exponents. We describe an algorithm to rapidly apply this approxi-

mate kernel to input data. The result is a fast algorithm that can achieve any user-specified

accuracy over a large computational domain.

3.7 Appendix A: Accurate Propagation in the Fourier Domain

We observed earlier in §3.2.1 that if the propagation distance z is small, then the prop-

agation problem may be accurately and efficiently solved in the Fourier domain. This is not

a new observation—see, e.g., [SW06, MS09]—so our objective here is simply to demonstrate

how this propagation method (the so-called angular spectrum method) can be implemented

using the quadratures from Theorem 16 to ensure any user-specified accuracy.

Given boundary data f and a propagation distance z, the angular spectrum method

amounts to the numerical evaluation of the integral

u (x) =

∫
‖p‖≤c

f̂ (p) K̂z (‖p‖) ei2πx·p dp, (3.42)

where K̂z is given in (3.6) and

f̂ (p) =

∫
A

f (y) e−i2πy·p dy (3.43)

is the Fourier transform of the boundary data. In (3.42) and (3.43) the boundary data has

already been replaced by its space-limited and band-limited version, as described in §3.2.3,

so that the function f is concentrated in a square aperture A =
[
−a

2
, a

2

]2 and is band-limited

to a disk of radius c for some user-specified accuracy ε.

The numerical evaluation of (3.42) amounts to solving a quadrature problem. That is,

for accuracy ε, we seek quadrature nodes p`, ` = 1, . . . , L, and associated weights ω` such

that for all x ∈
[
−w

2
, w

2

]2,∣∣∣∣∣∣∣
∫

‖p‖≤c

f̂ (p) K̂z (‖p‖) ei2πx·p dp−
L∑

`=1

ω`f̂ (p`) K̂z (‖p`‖) ei2πx·p`

∣∣∣∣∣∣∣ ≤
ε ‖f‖1

z
.
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The construction of such quadrature rules for two-dimensional integrals of space-limited and

band-limited functions, computed over disks and accurate for any user-specified accuracy ε,

was described in [BKM07]. The resulting near-optimal quadrature nodes lie on a polar grid,

so that

p` = pmn = ρm (cosφmn, sinφmn)

for some radial nodes ρm, m = 1, . . . ,M , and angular nodes φmn, m = 1, . . . ,M and n =

1, . . . , Nm. The total number of nodes L = L (c′, ε) is nearly optimal and depends only weakly

on the accuracy ε and quadratically on the bandlimit c′ of the integrand. We estimate c′

as c′ = c (a+ w) /
√

2 + cK , where cK is the bandlimit of K̂z in the domain of integration.

Estimating the shortest period of oscillation of K̂z in the disk of radius c yields

cK ≈


z

(c2z2+2z
√

1−c2−1)
1
2−cz

, if c < 1

z2 + z
√
z2 − 1, if c ≥ 1.

(3.44)

Once we specify the location of the desired output samples xn ∈
[
−w

2
, w

2

]2, n = 1, . . . , N , we

compute u rapidly by evaluating

ũ (xn, z) =
L∑

`=1

ω`f̂ (p`) K̂z (‖p`‖) ei2πxn·p` , (3.45)

which requires a single USFFT.

The evaluation of (3.45) requires values of f̂ at the quadrature nodes p`. In most cases,

f̂ is not known explicitly and must be computed by numerically evaluating (3.43). This is

exactly the quadrature problem addressed in Theorem 16, and we obtain a tensor product

grid of quadrature nodes yjj′ = (yj, yj′), j, j′ = 1, . . . , J , and associated weights τjτj′ such

that for each p`, ` = 1, . . . , L,∣∣∣∣∣∣
∫
A

f (y) e−i2πy·p` dy −
J∑

j,j′=1

τjτj′f (yjj′) e
−i2πyjj′ ·p`

∣∣∣∣∣∣ ≤ ε ‖f‖1 . (3.46)

Thus, f̂ (p`) may be computed accurately and rapidly with one USFFT.
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Taken together, formulae (3.45) and (3.46) allow us to evaluate the field with any user-

specified accuracy with only two USFFTs. This method is simple and effective, provided

that the bandlimit cK in (3.44), which increases with the distance z, is moderate. If cK is so

large that the number of quadrature nodes required to accurately compute (3.45) makes its

evaluation infeasible, then the propagation problem should be treated in the spatial domain,

using the method we describe in §3.3.

Remark 24. The dependence of the bandlimit cK in (3.44) on z is nearly linear provided that

c < 1, but it depends almost quadratically on z if c ≥ 1. In the latter case, evanescent waves

are present in the solution, and very fine sampling is required to accurately propagate them.

We note that in virtually all cases of practical interest, the contribution of evanescent waves

may be neglected entirely after only a few wavelengths, so in practice, we may assume that

c < 1 unless z is small, and therefore the bandlimit c = z2 + z
√
z2 − 1 is not impractically

large.

3.8 Appendix B: A Comment on the Fraunhofer Approximation

If the propagation distance z is large with respect to the sizes of the input aperture

and the output window, it is common to estimate the field u (x, z) using the Fraunhofer

approximation (3.14). We note that many optics texts derive this far-field approximation

by approximating the Fresnel approximation. This is unfortunate, because the result is

only valid near the optical axis and, therefore, the size of the output region where the

asymptotics are accurate is severely restricted. In contrast, there is a well known asymptotic

approximation of solutions to the Helmholtz equation that is valid in a much larger output

region, and which may be evaluated with a single USFFT. For completeness, we now recall

this alternative far-field approximation and relate it to the Fraunhofer approximation (3.14).

Recall Rayleigh’s integral formula (3.1) for u (x, z),

u (x, z) = − 1

2π

∫
A

f (y)
∂

∂z

(
ei2πR

R

)
dy, (3.47)
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whereA is the input aperture, f (y) = u (y, 0) is the boundary data, andR =
√
z2 + ‖x− y‖2.

Performing the indicated differentiation gives

∂

∂z

(
ei2πR

R

)
= zei2πR

(
i2π

R2
− 1

R3

)
,

which has the large-R asymptotic approximation

∂

∂z

(
ei2πR

R

)
∼ i2πzei2πR

R2
, R→∞. (3.48)

We now write R as

R =

√
z2 + ‖x‖2

(
1 +

‖y‖2

z2 + ‖x‖2 − 2
x · y

z2 + ‖x‖2

) 1
2

and observe that, since y ∈ A and z is much larger than the size of the aperture A, z � ‖y‖.

Hence, we obtain the asymptotic approximation

R ∼
√
z2 + ‖x‖2

(
1− 2

x · y
z2 + ‖x‖2

) 1
2

∼
√
z2 + ‖x‖2

(
1− x · y

z2 + ‖x‖2

)
, y ∈ A, z →∞. (3.49)

We emphasize that we did not need to assume that ‖x‖ is small, i.e., close to the optical

axis, to obtain this approximation. Following the standard procedure, we substitute (3.49)

into the exponent in (3.48) and R ∼
√
z2 + ‖x‖2 into the denominator, and then use the

resulting asymptotic Green’s function in (3.47) to arrive at

u (x, z) ∼ −ize
i2π
√

z2+‖x‖2

z2 + ‖x‖2 f̂

 x√
z2 + ‖x‖2

 , z →∞. (3.50)

The result in (3.50) relates the far-field diffraction pattern to the rescaled Fourier transform

of the boundary data. We accurately and rapidly evaluate this formula using generalized

Gaussian quadratures for band-limited functions from Theorem 16 and the USFFT, in ex-

actly the same manner as in the evaluation of (3.46).

To obtain the Fraunhofer approximation, we could assume that ‖x‖ � z and make

a further approximation by retaining one and two terms of the expansion
√
z2 + ‖x‖2 =
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z
(
1 + 1

2
‖x‖2
z2 + · · ·

)
in the denominators and exponent of (3.50), respectively, yielding the

standard Fraunhofer approximation (cf. [Goo05, §4.3]),

u (x, z) ≈ e2πizei π
z
‖x‖2

iz
f̂
(x

z

)
. (3.51)

However, this additional approximation is not advisable since, unlike (3.50), the Fraunhofer

approximation is only valid for points close to the the optical axis, i.e., ‖x‖ � z. There

is no computational advantage to be gained by using (3.51), with its restricted region of

validity, instead of (3.50), valid for all x provided that z is sufficiently large, since both of

these formulae may be evaluated at the same cost with a single USFFT.

3.9 Appendix C: Algorithm for Approximation by Exponential Sums

We approximate, for any user-specified accuracy ε, a smooth function f (x), 0 ≤ x ≤ 1,

by a linear combination of exponentials,∣∣∣∣∣f (x)−
L∑

`=1

w`e
−η`x

∣∣∣∣∣ ≤ ε, x ∈ [0, 1] , (3.52)

where the number of complex-valued weights w` and exponents η` is nearly minimal. We

obtain this representation by solving a discrete version of the approximation problem. Given

2N+1 evenly-spaced samples of f (x) and target accuracy ε > 0, we find the (nearly) minimal

number of complex-valued weights w` and nodes γ` such that∣∣∣∣∣f
(
k

2N

)
−

L∑
`=1

w`γ
k
`

∣∣∣∣∣ ≤ ε, 0 ≤ k ≤ 2N. (3.53)

We must choose the number of samples 2N + 1 large enough so that the function can

be accurately reconstructed from its samples. As a result, we obtain the solution to the

continuous problem (3.52) from the solution to the discrete problem (3.53) by setting η` =

−2N log γ`. We now describe the algorithm given in [BM05] (see also [BM10]) to obtain

approximation (3.53).
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• Build the N + 1×N + 1 Hankel matrix

Hjk = f

(
j + k

2N

)
, j, k ∈ [0, N ].

• Find a vector u = (u0, . . . , uN) T satisfying

Hu = σu,

with positive σ close to the target accuracy ε. A problem of this form is known

as a con-eigenvalue problem (see, e.g., [HJ90, §4.6]), u is a con-eigenvector, and σ

is a con-eigenvalue. In our case, H is a Hankel matrix and hence symmetric; the

existence of a solution (σ,u) follows from Takagi’s factorization (see, e.g., [BM05,

pp. 22]), as does the fact that we may take σ to be a singular value of H and u to

be a specific singular vector.

• Given singular values σ0 ≥ σ1 ≥ . . . ≥ σN , we select a sufficiently small σL, which

determines the accuracy of approximation, and the corresponding singular vector

u = (u0, . . . , uN) T .

• Compute the roots γ` of the con-eigenpolynomial u (z) =
∑N

n=0 unz
n whose coeffi-

cients are the entries of the vector u from the previous step.

• Obtain the weights w` by solving the least-squares Vandermonde system

N∑
`=1

w`γ
k
` = f

(
k

2N

)
, 0 ≤ k ≤ 2N. (3.54)

Typically, only L weights w` have absolute value larger than the target accuracy ε.

We then retain only those nodes γ` that correspond to the significant weights and

solve the corresponding Vandermonde system (3.54) again.

The theory underlying this algorithm may be found in [BM05] and may be traced back to

the work of Adamjan, Arov, and Krein [AAK68a, AAK68b, AAK71].
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Appendix A

Technical Details Concerning Light Propagation

A.1 Proof of Lemma 18

Proof. Using (3.27) we have
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|α(`)|

2
aw,

it follows that ∣∣∣∣∣∣S(`)
nmS

(`)
n′m′ −

I(`)∑
q,s=1

σ(`)
q σ(`)

s U(`)
nqU

(`)
n′sV

(`)
mqV

(`)
m′s

∣∣∣∣∣∣ ≤ εR2e
|α(`)|

2
aw,

where we have neglected the termmin(M,N)∑
q=I(`)+1

σ(`)
q

∣∣U(`)
nqV

(`)
mq

∣∣min(J,M)∑
s=I(`)+1

σ(`)
s

∣∣∣U(`)
n′sV

(`)
m′s

∣∣∣
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which has size O (ε2R).

A.2 Rigorous Estimates Relating to Computational Complexity

The key step in the algorithm described in §3.3 is the construction of approximation

(3.19), where, for a fixed distance z and desired accuracy εK , we approximate the Rayleigh-

Sommerfeld kernel Kz (r) as a linear combination of Gaussians with complex exponents.

This approximation must be valid on an interval 0 ≤ r ≤ rmax, where, in the case of a square

aperture of side-length a and square output window of side-length w, rmax = (a+ w) /
√

2.

As described in §3.3.1, we obtain this approximation by removing the most-oscillatory factor

ei π
z

r2 from Kz (r) then approximating the remaining function, viz. Az (r) defined in (3.17),

using Gaussians with complex exponents,∣∣∣∣∣Az (r)−
L∑

`=1

w`e
−η`r

2

∣∣∣∣∣ ≤ εK , 0 ≤ r ≤ rmax.

Three components of this approximation ultimately determine the computational cost of our

algorithm:

(1) The number of terms L.

(2) The number of input samples M2 required to evaluate the integrals in (3.22). This

depends on the maximum bandlimit of the integrands, which in turn is determined

by the bandlimit of the input function and the values of the exponents η`.

(3) For each ` = 1, . . . , L, the number of terms R(`) needed in (3.28) to approximate the

tensors T(`) defined in (3.24).

We now provide estimates of these quantities.
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A.2.1 Number of Terms Needed to Approximate the Kernel

It turns out that, for the values of r of interest here, the behavior of the function Az (r)

closely resembles that of e−i πr4

4z3 , i.e.,

Az (r) ≈ e−i πr4

4z3 , (A.1)

which comes from the Taylor series√
1 +

(r
z

)2

= 1 +
1

2

(r
z

)2

− 1

8

(r
z

)4

+O
((r

z

)6
)
.

Recall that one of our goals is to construct an algorithm whose computational cost does

not increase with z. Approximation (A.1) implies that the number of terms L needed to

approximate Az will depend on the ratio γ = rmax/z
3
4 (and also on the desired accuracy

εK). We can estimate the number of terms required using techniques similar to those in

[BM10], where functions are approximated as linear combinations of complex Gaussians by

manipulating their integral representations. The derivations are somewhat technical, so here

we simply present the bound

L = L (γ, ε) ≤ 2 log ε−1
K

π
×
−B −

√
B2 − 8B

(
log εK + log 2

√
πB
)

B −
√
B2 − 8B log εK

, (A.2)

where

B =
πγ4

4
. (A.3)

The rightmost factor in (A.2) depends approximately linearly on B and only weakly on εK ,

so that L = O
(
γ4 log ε−1

K

)
. Since the number of terms grows rapidly with γ, we require

that γ ≤ 2.62 to ensure that the approximation is efficient. This implies that the maximum

output window is given by (3.36), and we assume that a, w, and z satisfy γ ≤ 2.62 for the

remainder of this section.

The same integral-based techniques that lead to (A.2) also yield the bounds

|α`| ≤
B +D

r2
max

(A.4)
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and

|β`| ≤
π

z
+

D

r2
max

, (A.5)

where

D = D (B, εK) =

√
B2 − 8B

(
log εK + log 2

√
πB
)
.

(Recall from §3.3.2 that α` = Re η` and β` = Im η` − π
z
, where η`, ` = 1, . . . , L, are the

exponents used to approximate the Rayleigh-Sommerfeld kernel in (3.19).) We will use these

bounds below to determine the number of required input samples M2 and the number of

terms R(`) in the approximations (3.28). To simplify the computations that follow, let us

estimate their values. Since γ ≤ 2.62, we have from (A.3) that B ≤ 37. For εK = 10−3 we

have D ≤ 50.1, and for εK = 10−6 we have D ≤ 67.5. Since rmax = (a+ w) /
√

2 is typically

several thousand wavelengths, and often much larger, we can see that

|α`| � aw and |β`| ≈
π

z
.

A.2.2 Number of Input Samples

The number of quadrature nodes (input samples) M2 required in Theorem 16 to evalu-

ate the integrals in (3.22) is determined by the bandlimits of the integrands and the desired

accuracy εQ. We use the bound (A.5) to estimate the number of input samples required to

accurately evaluate the integrals.

We start by rescaling the variables x and y to the unit square by defining x = w
2
x′ and

y = a
2
y′, so that the integrals in (3.22) become

a2

4

∫
[−1,1]2

f
(a

2
y′
)
e−

(α`+iβ`)a2

4
‖y′‖2e

α`aw

4
x′·y′ei

β`aw

2
x′·y′ dy′, ` = 1, . . . , L.

The bandlimit of the integrand is the sum of the bandlimits of each of the factors. Let c be

the bandlimit of the the (rescaled) input function f
(

a
2
y′
)
. We now estimate the bandlimits

of the other factors in the integrands.
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• When estimating the bandlimit of e−
(α`+iβ`)a2

4
‖y′‖2 , we may neglect the influence

of α` since |α`| � a2. We may also use the approximation |β`| ≈ π
z
. Since,

in the unit square, the shortest period of oscillation of the function e−i πa2

4z
‖y′‖2 is

√
2
(√

1 + 4z
a2 − 1

)
≈ 2

√
2z

a2 , we estimate the bandlimit of this term as c2 = a2

2
√

2z
.

• Since |α`| � aw, the factor e
α`aw

4
x′·y′ does not significantly impact the bandlimit of

the integrand, so we neglect it completely.

• Because ‖x′‖ ≤
√

2, the bandlimit of the factor ei
β`aw

2
x′·y′ is c3 = πaw√

2z
, where we used

the approximation |β`| ≈ π
z
.

Thus, the bandlimit of the integrand is approximately

c′ = c+ c2 + c3 = c+
a2

2
√

2z
+
πaw√

2z
. (A.6)

From [BM02], we have that, for a desired accuracy εQ, the number of samples required to

evaluate the integrals (3.22) satisfies M2 = O
(
(c′)2 log2 ε−1

Q

)
.

A.2.3 Number of Terms Needed to Approximate the Tensors

Now let us use the bound (A.4) to estimate the number of terms required in the

approximations (3.28). The tensors S(`) in (3.25) are discrete approximations of the functions

S(`) (x, y) = e2α`xy, x ∈
[
−w

2
,
w

2

]
, y ∈

[
−a

2
,
a

2

]
, and ` = 1, . . . , L,

which have the Chebyshev expansions

e2α`xy = J0 (−iα`ax) + 2
∞∑

n=1

inJn (−iα`ax)Tn

(
2y

a

)
,

where Jn is the n-th order Bessel function of the first kind and Tn is the n-th degree Cheby-

shev polynomial of the first kind. For fixed x, the magnitude of the Bessel functions decay

super-exponentially as n→∞. In fact, using [AS70, (9.1.62)], we have the bound

|Jn (−iα`ax)| ≤
|α`ax|n e|α`ax|

2nn!
.
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Now observe that |α`ax| ≤ D aw
(a+w)2

, where we used (A.4) and the fact that rmax = (a+ w) /
√

2.

For some desired accuracy εR, let P be the smallest integer such that
∣∣∣Jn

(
−iD aw

(a+w)2

)∣∣∣2 ≤ εR

for all n ≥ P . Then we may estimate the number of terms R(`) in (3.28) as

R(`) ≤ (P + 1)2 = O
(
log ε−1

R

)
.

If we assume that the output window is at least as large as the input aperture, i.e., w ≥ a,

then the argument of the Bessel function satisfies∣∣∣∣D aw

(a+ w)2

∣∣∣∣ ≤ D

4
,

and it is easy to verify that the numerical rank R of each matrix S(`) satisfies R ≤ 19 for

εR = 10−3 and R ≤ 28 for εR = 10−6.


