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ABSTRACT 

Plant-herbivore-natural enemy interactions can vary markedly in space and time. Yet, most 

studies assessing changes in plant defensive traits, and their consequences for higher trophic 

levels, have been conducted at single host plant developmental stages. The goal of this study 

was to assess the extent to which resource allocation constraints throughout plant development 

(i.e. ontogeny) influence the expression of plant constitutive and herbivore-induced defensive 

traits and their effects on plant-herbivore-natural enemy interactions. A series of experiments 

using multiple developmental stages of Plantago lanceolata (Plantaginaceae), and a specialist 

herbivore, the Buckeye butterfly, Junonia coenia (Nymphalidae), were performed. Results 

showed that investment in constitutive chemical (iridoid glycosides) and physical defenses 

significantly increased, while leaf water and nitrogen concentrations decreased with plant age. 

Moreover, plant age significantly influenced the ability of P. lanceolata to tolerate or induce 

defenses after damage. Ontogenetic changes in plant growth rate and allelochemical synthesis 

helped to explain why induction was mostly achieved earlier during plant development, whereas 

compensatory growth showed the opposite pattern. In contrast, extrinsic factors such as 

frequency and intensity of damage failed to modify age-dependent responses to leaf damage. 

Finally, ontogenetic patterns in P. lanceolata defensive traits significantly influenced tri-trophic 

interactions. Oviposition tests showed that Buckeye butterflies significantly preferred younger 

ontogenetic stages, laying 60% more eggs on juvenile than on reproductive plants. In turn, 

caterpillars feeding on juvenile plants showed faster growth and increased digestive efficiency, 

yet they acquired two to five times less sequestered defenses, suggesting that J. coenia 

predation risk should decrease with host plant age. However, higher sequestered iridoid 
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glycosides decreased larval immunocompetence by up to 30%, suggesting higher susceptibility 

to parasitoid attack as host plants age increases. Thus, I demonstrated for the first time that 

ontogenetic patterns in plant defensive traits, mediated by caterpillar performance and 

palatability, can alter the strength of the top-down control of herbivores. This study improves our 

understanding of the role of ontogenetic variation in plant quality and defenses for tri-trophic 

interactions, providing a framework for testing hypotheses related to the evolution of plant 

defenses and the context dependency of bottom-up and top-down controls shaping herbivore 

population dynamics.   
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CHAPTER 1 

INTRODUCTION 

 

1.1. Research Rationale and Goals 

Plant-animal interactions, ranging from mutualistic (e.g. pollination, seed dispersal) to 

antagonistic (e.g. herbivory, parasitism) relationships, have been shown to vary markedly in 

space and time (e.g. Herrera 1988, Horvitz and Schemske 1990, Brody 1997, Thies et al. 2003, 

Kolb et al. 2007). However, studies assessing changes in the direction and magnitude of these 

interactions have traditionally examined the role of spatial variation more than the role of 

temporal change (e.g. Travis 1996, Polis et al. 1997, Thies and Tscharntke 1999, Irwin and 

Maloof 2002, Fedriani et al. 2004, McGeoch and Price 2005, Thompson 2005, Andrew et al. 

2007, Morales and Vazquez 2008; but see Irwin and Maloof 2002). Despite the fact that multiple 

traits known to influence species interactions change over the course of an organism’s ontogeny 

(i.e. throughout their development), ontogeny has been little studied as an intrinsic factor able to 

influence plant-animal interactions. In particular, empirical studies that evaluate both the 

patterns and mechanisms explaining changes in plant-animal interactions throughout plant 

growth and development are still limited (Boege and Marquis 2005). Therefore, the overall aim 

of my dissertation research was to assess the extent to which variation in plant traits throughout 

plant ontogeny can modify tri-trophic interactions between herbivores, their host plants, and 

their natural enemies.  

As plants develop from seedling to senescent stages, termed ontogeny, many 

morphological and physiological traits vary continuously, reflecting the underlying variation in 

resource acquisition, allocation and functional priorities (e.g. growth vs. reproduction). For 

instance, the transition between seedling and juvenile stages encompasses a shift in relative 

growth rate and often a transition of nutrient dependency from internal to external sources. In 

other words, once seedlings reach their maximum relative growth rate and, in many cases, 
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become functionally independent of their own stored nutrient supplies, it is believed that they 

have ended their seedling stage (Hanley et al. 2004). Alternatively, the transition between 

juvenile and mature life stages encompasses the allocation of resources into not only growth 

and maintenance, but also to the formation of reproductive tissues (Poethig 1990).  

Consequently, it is not surprising that the expression of numerous plant traits relevant to 

herbivores, such as nutritional content (Kozlowski 1971, Mattson 1980), physical defenses 

(Hanley et al. 2007), and chemical defenses (Boege and Marquis 2005) also vary throughout 

plant ontogeny. In some cases, empirical studies have reported that changes in plant defenses 

from one developmental stage to the next can sometimes rival the magnitude of differences 

observed among plant genotypes and/or species (e.g. Lawrence et al. 2003, Donaldson et al. 

2006, Holeski et al. 2009). These shifts in phenotypic expression of plant defenses as plants 

age can be the result of dramatic changes in the levels of herbivory plants experience and/or 

internal resource allocation constraints. Nevertheless, while knowledge regarding ontogenetic 

patterns in plant constitutive and induced defenses has improved in the last three decades 

(reviewed in Boege and Marquis 2005, Barton and Koricheva 2010), less attention has been 

given to investigating the mechanisms that explain such patterns, such as variable costs and 

benefits of these defenses as plants develop (Ohnmeiss and Baldwin 2000, Van Dam et al. 

2001, Boege et al. 2007, Orians et al. 2010).  

These documented ontogenetic patterns in plant defenses should also be expected to 

play a significant role in mediating plant-herbivore-natural enemy interactions. Changes in plant 

defenses and nutritional value are known to influence tri-trophic interactions by directly altering 

herbivore host selection and performance, and/or indirectly altering herbivore predation risk 

(reviewed in Awmack and Leather 2002). In the last decade, a few studies have suggested an 

effect of plant ontogenetic stage on differential herbivore damage (Boege 2005a, Fonseca et al. 

2006, Thomas et al. 2010), herbivore performance (Wallace and Eigenbrode 2002, Barrett and 

Agrawal 2004), and herbivore predation risk (Van Bael et al. 2003, Boege 2005a, Boege and 
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Marquis 2006). However, because most studies of plant-herbivore interactions have been 

traditionally focused on a single plant developmental stage (Boege and Marquis 2005), relatively 

little is known about how variation in plant defenses throughout the life-span of a plant may alter 

herbivore preference, performance and herbivore-predator interactions.   

This dissertation explores how resource allocation constraints throughout plant ontogeny 

influence the magnitude of expression of plant constitutive and herbivore-induced defensive 

traits leading to significant changes in plant-herbivore and herbivore-natural enemy interactions 

(Figure 1.1). Specifically, using multiple plant developmental stages,  the primary goals of my 

dissertation research were: (1) to provide a better understanding of the mechanisms that explain 

the often non-linear ontogenetic patterns in plant constitutive defenses, (2) to examine the 

influence of intrinsic (i.e. plant vigor) and extrinsic (i.e. variation in intensity and frequency of 

damage) factors mediating herbivore-induced responses following leaf damage, namely induced 

chemical defenses and compensatory growth, over plant ontogeny, and (3) to investigate the 

extent to which ontogenetic patterns in plant quality and defenses can influence the direction 

and magnitude of tri-trophic interactions: directly via herbivore host selection and performance, 

and/or indirectly via herbivore susceptibility to predation risk by predators and parasitoids.  

  

Figure 1.1. A conceptual model describing the variables I will explore to assess the influence of 
plant ontogeny on plant-herbivore-natural enemy interactions. 
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1.2. Plant Ontogeny and Defense Strategies 

Plants have evolved a number of traits that reduce the negative impacts of herbivory on plant 

fitness. These defensive traits may decrease plant susceptibility to damage: (i) by repelling 

herbivores from ovipositing and/or feeding on plant tissues, and/or (ii) by decreasing 

consumption via reduction of herbivore survival, growth, or reproduction. Traits conferring 

repellent functions include chemical volatile cues and physical defenses such as leaf hairs, 

spines, trichomes, and toughness or hardness of leaf and stem surfaces (Fernandes 1994). 

Once herbivores bypass these initial barriers, production of toxic chemical compounds, called 

plant secondary metabolites or allelochemicals, may further limit damage by non-specialist 

herbivores (Hadacek 2002). 

 A wide array of plant allelochemicals, including but not limited to phenolics, terpenes, 

iridoids, alkaloids, tannins, furanocoumarins, glucosinolates, cardenolides and defensive 

proteins, have been described (Bennett and Wallsgrove 1994, Ayres et al. 1997, Dobler et al. 

2011); usually lessening herbivore performance at very low concentrations or showing dosage-

dependent effects. All plant species, even in the absence of damage, express baseline levels of 

certain suites of physical and chemical defenses, called constitutive defenses (Karban and 

Baldwin 1997). Since Fraenkel (1959) highlighted the role of plant secondary compounds in 

governing plant-herbivore interactions, the study of plant-herbivore-predator dynamics has 

become more tightly associated with plant chemical defenses (Berenbaum and Zangerl 2008, 

Hartmann 2008). Today, an overwhelming body of evidence has demonstrated extensive 

qualitative and quantitative variation in constitutive defenses within and among plant species 

and their importance in mediating plant-herbivore interactions (Hartmann 1996, Hadacek 2002). 

Therefore, identifying the environmental, genetic, and ecological factors responsible for 

explaining variation in plant defense strategies has become a central goal in ecological research.  

 Phenotypic variation in constitutively expressed defensive traits is typically due to three 

main factors: genotypic variation, resource availability and plant ontogeny. Interspecific genetic 
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variation accounts for a large portion of variation in plant qualitative and quantitative defenses 

(Massad et al. 2011). In addition, intraspecific variation can be substantial across clones or 

populations within a species. For example, estimated salicin concentrations in willow clones 

(Salix oristera, Salicaceae) vary as much as 100-fold (i.e. 0.05 - 5% dry weight) across the 

Sierra Nevada mountains of California (Smiley et al. 1985). In turn, several hypotheses have 

been proposed to explain how variation in resource availability can alter patterns of defense 

investment within and among plant species, such as the plant apparency hypothesis (Feeny 

1976), the growth rate hypothesis (Coley et al. 1985), the carbon-nutrient balance hypothesis 

(Bryant et al. 1983), and the growth-differentiation balance hypothesis (Herms and Mattson 

1992). In the last 35 years, empirical tests of these hypotheses, via altering environmental 

conditions such as soil nitrogen or phosphorus, water and light availability, CO2 enrichment, and 

ozone exposure, have supported or refuted these hypotheses and their predictions (reviewed in 

Koricheva et al. 1998, Endara and Coley 2011, Massad et al. 2011). In contrast, while genotypic 

variation and resource availability have received considerable attention, our knowledge of how 

plant defenses change during ontogeny remains more limited (Boege and Marquis 2005, Hanley 

et al. 2007).  

Ontogeny is the process that encompasses the origin and development of an individual 

organism from embryo to adulthood. In plants, this process is characterized by continuous or 

abrupt changes in plant anatomy and physiology, but due to the indeterminate growth of apical 

meristems (Jones 1999), it is often difficult to define distinctive developmental stages. However, 

in general, it is accepted that plants progress through at least four stages: seed, seedling, 

juvenile (non-reproductive plant) and adult (reproductive plant). The transition from one 

ontogenetic stage to the next is usually accompanied by shifts in several plant traits, including 

gradual to abrupt changes in leaf morphology and anatomy (Sylvester et al. 2001, Niinemets 

2005, Zotz et al. 2011), architectural complexity (Barthelemy and Caraglio 2007), root:shoot 

ratios (Gedroc et al. 1996, McConnaughay and Coleman 1999), photosynthesis rates (Ishida et 
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al. 2005, Jaya et al. 2010), hormone production (Farnsworth 2004), and carbon and nitrogen 

metabolism (Wiedemuth et al. 2005). Furthermore, as plants’ tissues form and differentiate, their 

access to environmental resources also varies. For instance, intrinsically regulated by the 

production of hormones such as auxins, roots grow through reiteration and elongation of organs, 

from primary to secondary roots, to tertiary, quaternary and/or adventitious roots (Malamy 2005), 

altering access to water and nutrients. Therefore, even if environmental conditions remain the 

same, changes in resource acquisition throughout ontogeny can shape variation in resources 

allocation to growth and differentiation.  

As a function of the above mentioned shifts and constraints in resource acquisition, 

allocation, and functional priorities (i.e. growth vs. reproduction), several constitutively 

expressed physical and chemical defenses can also vary considerably over plant ontogeny. 

Indeed, specific predictions have been proposed regarding how plant ontogeny should influence 

plant defenses. The plant-age hypothesis (Bryant et al. 1992), which has been mainly supported 

by data from boreal woody plants (Swihart and Bryant 2001), argues that herbivore selective 

pressures will shape ontogenetic trajectories in plant defenses, leading to high levels of 

defenses in juvenile plants  that decrease as they reach adult stages (i.e. as tissues become 

less accessible to mammalian browsers). In contrast, the growth-differentiation balance 

hypothesis (Herms and Mattson 1992) proposed that intrinsic forces, namely resource 

acquisition and allocation constraints, limit the expression of plant defenses, thereby predicting 

an increase in plant defenses as plants age. Expanding the idea of resource allocation 

constraints as a pivotal trait shaping plant defenses and using empirical data, Boege and 

Marquis (2005) proposed a detailed model encompassing all stages from cotyledon to 

senescent plants at the whole plant level. This model predicts that multiple resource allocation 

and architectural constraints throughout plant development will lead to a non-linear relationship 

between plant age and defenses. Specifically, the model predicts an early decline in plant 

defenses during the seedling stage, explained by the diminishing of stored resources in 
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cotyledons and seeds; followed by a significant increase from juvenile to mature stages as 

photosynthesis rates exceed growth rates and root:shoot ratios decrease. Finally, when plants 

reach reproductive maturity, allocation of resources to reproduction may again result in 

decreased levels of defenses or they may remain constant depending on the plant’s 

reproductive strategy (Boege and Marquis 2005).  

In support of this non-linear model, a recent meta-analysis conducted by Barton and 

Koricheva (2010), expanding previous reviews on this subject (Swihart and Bryant 2001, Boege 

and Marquis 2005), but increasing their scope by considering a wide array of studies (i.e. 116 

studies and 153 plant species) across all plant life forms and defensive traits, concluded that 

plant defenses tend to show non-linear patterns across ontogeny. Yet, despite this generality, 

the shape of the relationship seems to significantly vary as a function of plant life form (i.e. 

woody plants, herbs or grasses) and defensive traits (i.e. constitutive or induced physical and 

chemical traits, and tolerance) (Barton and Koricheva 2010). Therefore, notwithstanding the 

increased interest in this subject, much remains to be studied. In particular, for any single plant 

species, we have a poor understanding of complete ontogenetic patterns (i.e. contrasting more 

than two developmental stages) in suites of constitutive defenses (i.e. as opposed to single 

traits) across multiple tissues (but see Williams and Ellis 1989, Bellostas et al. 2007, Mcarthur et 

al. 2010). Moreover, only a few empirical studies have assessed the potential mechanisms 

driving these previously observed shifts in the expression of defensive traits, such as resource 

allocation constraints (e.g. Bryant and Julkunentiitto 1995), architectural constraints (e.g. Brouat 

and McKey 2001), and age-dependent costs of investment in defenses (e.g. Briggs and Schultz 

1990, Orians et al. 2010).   

In addition to constitutive defenses, plants can also alter the quality and/or quantity of 

synthesized and released defenses following damage, called induced defenses. Plants deploy 

two basic types of induced defenses: (i) resistance traits that aim to reduce subsequent 

herbivore damage, by generally increasing baseline levels of physical and chemical defenses, 
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and (ii) tolerance traits that intend to minimize the negative effects of damage on plant fitness, 

by replacing the tissues lost to herbivores (i.e. compensatory growth) and/or allowing shifts in 

phenology (Karban and Baldwin 1997). These induced defensive traits can be achieved by 

enhancing photosynthesis rates, nutrient uptake or utilization of stored reserves (Tiffin 2000). 

Because the ability of a plant to up- or down-regulate these physiological processes will also 

depend on resource allocation constraints during plant development, strong age-dependent 

induced responses to herbivory should be expected.  

Contrasting trends have being predicted for resistance and tolerance traits. Induced 

chemical defenses, usually considered a cost-saving strategy for plants, are associated with 

scenarios where resource allocation constraints limit constitutive defenses or are dependent on 

actively growing and differentiating tissues (Karban and Baldwin 1997, Cipollini et al. 2003). 

Because younger plant stages are often more susceptible to herbivory, have lower levels of 

constitutive defenses, and proportionally more undifferentiated and actively growing tissues than 

older plant stages, the ability of plants to induce defenses is predicted to be greater in younger 

developmental stages and lessen as plants mature (Karban and Baldwin 1997). In support of 

this prediction, Barton and Koricheva (2010) showed that, at least for herbaceous plants, 

induced resistance considerably decreased as plants progressed from seedling to senescent 

stages. Alternatively, compensatory growth that aims to restore the tissue lost to damage 

requires the reallocation of resources stored in undamaged tissues as well as enhancement of 

photosynthetic rates and nutrient uptake from the soil. Therefore, tolerance to herbivory is 

predicted to increase with plant age due to greater capacity to acquire resources and/or higher 

probability of having already stored reserves (Strauss and Agrawal 1999, Haukioja and 

Koricheva 2000). However, current evidence suggest that a plant’s ability to tolerate damage for 

both woody and herbaceous plants did not differ throughout plant development (Barton and 

Koricheva 2010). Hence, concentrating on the relative importance of various intrinsic (i.e. 

growth rate and metabolic rate) and/or extrinsic (i.e. herbivore identity and frequency of damage) 
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factors driving these ontogenetic trends in resistance and tolerance to herbivory will help us 

improve theoretical predictions relating plant age and induced defenses.  

Lastly, the extent of these increases or decreases in qualitative and quantitative changes 

as plants age can also be remarkable. For example, constitutive production of sesquiterpenes in 

leaf and root tissues of maize (Zea mays L., Poaceae) showed an overall dramatic decrease of 

97%, whereas volatile blend complexity increased in leaves but decreased in roots as plants 

developed from seedling to mature plants (Kollner et al. 2004). Similarly, concentrations of 

condensed tannins and phenolic glycosides increased as much as 300% and 600%, 

respectively, in as little as six weeks during seedling development in two species of Salix 

(Salicaceae) (Fritz et al. 2001). In many cases, developmental variation in defense traits mirrors 

or even surpasses the variation described among populations (i.e. due to genetic or 

environmental factors) (Bowers and Stamp 1993, Lawrence et al. 2003, Donaldson et al. 2006, 

Barton 2007, Holeski et al. 2009). For instance, in clonal Aspen (Populus tremuloides, 

Salicaceae), while the expression of condensed tannins and phenolic glycosides varied from 

two to four times among mature clones, variation within a clone as ramets aged was found to 

increase (condensed tannins) or decrease (phenolic glycosides) 4 to 14 times between 1 and 

25+ year old ramets (Donaldson et al. 2006). In other cases, plant age can interact with 

genotypic variation in plant defenses by modulating the expression of those defensive traits. For 

instance, Thyme (Thymus vulgaris L., Lamiaceae) genotypes carrying the most susceptible 

chemotype, linalool, against both specialist and generalist herbivores, do not express their 

linalool phenotype until after they reach three months of age. Prior to that age, they exhibit the 

least preferred phenol chemotype, probably increasing their chances of survival during the most 

vulnerable stage of development (Linhart and Thompson 1999). Given these ecologically 

relevant qualitative and quantitative changes in plant defenses as plants age, addressing the 

mechanisms driving these ontogenetic patterns, their interactions with other intrinsic and 
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extrinsic sources of variation, and the consequences for species interactions, especially at 

higher trophic levels, should be a priority of future research.   

 

1.3. Plant Ontogeny and Insect Herbivore Preference and Performance 

Empirical evidence suggests that changes in plant quality and defenses throughout plant 

ontogeny can significantly affect herbivore host selection. In general, invertebrate herbivores, in 

contrast to vertebrates, show a consistent preference for young rather than mature plant stages 

(reviewed in Fenner et al. 1999, Boege and Marquis 2005). Such preference is usually inferred 

by observations of greater insect herbivore damage (Price 1991, Spiegel and Price 1996, 

Albrectsen et al. 2004, Fonseca et al. 2006), or higher insect density and diversity (Waltz and 

Whitham 1997, Cuevas-Reyes et al. 2004, Boege 2005a, Thomas et al. 2010), on younger over 

older plant stages. While in several cases, higher herbivore damage in a certain developmental 

stage is associated with higher herbivore preference for those tissues (e.g. Pires and Price 2000, 

Del Val and Dirzo 2003, Lawrence et al. 2003, Cuevas-Reyes et al. 2004, Johnson and Zalucki 

2005, Heckel et al. 2010), ontogenetic patterns in tissue damage may not necessarily reflect 

herbivore host selection. Rather, these patterns may arise as a consequence of (i) higher 

survival, due to superior herbivore performance and/or lower predation rates, or (ii) higher 

feeding rates, if herbivores need to ingest larger quantities of tissue to meet their nutritional 

needs, on younger versus mature plants. In most insect herbivores, although immature larvae 

can potentially disperse long distances as early as the neonate stage (Zalucki et al. 2002), it is 

common that larvae often feed upon the plant on which they hatched (Mayhew 1997). Thus, 

patterns of herbivory may often depend on female oviposition choice. Hence, more research is 

needed to directly evaluate the effect of plant ontogeny on patterns of herbivore host selection, 

especially at the levels of both female oviposition and larval feeding choice.  

Studies assessing insect herbivore performance on different host-plant developmental 

stages, although scarce, also suggest that changes in plant quality and defenses as a function 
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of plant ontogeny can strongly influence herbivore performance (i.e. growth rate, developmental 

time, fitness, etc). Nonetheless, the pattern here is less clear. Herbivore performance has 

shown both patterns: to decrease as host plant age increases (e.g. Price et al. 1987, Diawara et 

al. 1994, Karban and Thaler 1999, Campos et al. 2003), or to increase as host plant age 

increases (e.g. Wallace and Eigenbrode 2002, Barrett and Agrawal 2004, Liu et al. 2010). 

Discrepancies in overall patterns of insect performance as a function of plant ontogeny should 

not be surprising given that several defensive strategies show non-linearity as plants age (see 

section 1.2). In fact, in most cases, this variation in herbivore performance throughout plant 

development tightly matches ontogenetic patterns in plant defenses (but see Barton and 

Koricheva 2010), with herbivores decreasing performance on those stages that are more highly 

defended. In addition, differential herbivore performance on different host plant developmental 

stages may be explained by differences in herbivore guild and/or degree of specialization. For 

instance, while the gall-forming aphid Pemphigus betae was 70 times as common on mature as 

on juvenile narrowleaf cottonwood trees (Populus angustifolia, Salicaceae), the leaf-feeding 

beetle Chrysomela confluens (Chrysomelidae) exhibited the opposite distribution, with densities 

400 times as high on juvenile as on mature trees (e.g. Kearsey and Whitham 1989).  

In summary, ontogenetic patterns in plant quality and defenses can lead to changing 

attractiveness and resistance to different suites of herbivores, generating non-overlapping 

herbivore distributions. Despite the increased interest in reporting trends of insect herbivore 

damage, richness and abundance across host plant development, there is still a lack of 

observational or manipulative experiments that aim to address the mechanisms underlying 

these patterns. Thus, expanding our knowledge of the behavioral (i.e. oviposition and/or feeding 

choice) and physiological (i.e. growth rate, digestibility and fitness) mechanisms that lead to 

differential patterns of herbivory across plant ontogeny may have key implications for 

understanding temporal shifts in herbivore population dynamics and community structure.  
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1.4. Plant Ontogeny and Herbivore-Natural Enemy Interactions 

Variation in plant traits throughout plant ontogeny can influence the relationship between 

herbivores and their natural enemies in two ways: (i) directly by altering plant indirect defenses 

that promote the effectiveness of predators and parasitoids to locate prey on plant tissues, or (ii) 

indirectly by modifying predators’ choice or performance among different quality prey.  

In the first scenario, several studies have shown that plant indirect defenses, such as 

plant rewards (i.e. provision of extrafloral nectaries, food bodies and domatia), volatile organic 

compounds, and plant architectural traits (Price et al. 1980), can vary considerably as plants 

develop. For example, obligate ant-plant species (i.e. myrmecophytes) that provide both food 

and shelter to ants have consistently shown two main trends: (i) an initial lack of indirect 

defenses during the seedling and/or sapling stage until architectural constraints allow for the 

development of functional domatia (reviewed in Brouat and McKey 2001), followed by (ii) an 

ontogenetic increase in all plant rewards such as food body production (Heil et al. 1997, Itino et 

al. 2001, Webber et al. 2007), extrafloral nectaries (Young et al. 1997), and domatia abundance 

and size (Fonseca 1999, Brouat and McKey 2001, Fonseca and Benson 2003). Because, 

several plant species rely on these indirect defenses in order to decrease damage via facilitating 

the recruitment and/or residence of carnivorous natural enemies on plant tissues, ontogenetic 

changes in plant indirect defense traits can alter the predation risk of herbivores (Van Bael et al. 

2003, Boege 2005a, Trager and Bruna 2006). Indeed, ontogenetic trends in plant rewards, for 

instance, have been shown to significantly alter the identity and abundance of mutualistic ants 

(e.g. Fonseca 1999, Feldhaar et al. 2003, Fonseca and Benson 2003, Djieto-Lordon et al. 2004, 

Dejean et al. 2008), which, in turn, mediates herbivore pressure (e.g. Djieto-Lordon et al. 2004, 

Izzo and Vasconcelos 2005, Trager and Bruna 2006) and, ultimately, plant fitness (e.g. Miller 

2007, Palmer et al. 2010).   

In the second scenario, changes in nutritional value and chemical defenses as plants 

age can also scale up to influence herbivore-natural enemy interactions by modifying the quality 
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of herbivores as prey. However, no empirical data to date have tested this assumption. Several 

possible scenarios can be predicted depending on the identity of both the herbivore and the 

natural enemy interacting throughout the development of their host plant. For example, in the 

case of specialist herbivores that employ plant allelochemicals as feeding stimulants and/or 

sequester these compounds as defenses against their own enemies (Nishida 2002, Opitz and 

Muller 2009), shifts in plant constitutive or inducible defenses as they develop can translate into 

temporal shifts in herbivore performance and palatability. Because higher levels of sequestered 

defenses often deter predators (Opitz and Muller 2009) but have shown to decrease herbivore 

immune defenses against parasitoids (Smilanich et al. 2009a), the selective pressure of natural 

enemies on specialist herbivores during plant ontogeny may differ between parasitoids and 

predators. In the case of generalist herbivores, similar plant-mediated effects on higher trophic 

levels can also be expected. For instance, increases in plant defenses as plants age can 

directly translate into lower growth rate and extended larval development time, potentially 

increasing mortality due to a prolonged exposure to natural enemies (e.g. Benrey and Denno 

1997), or decreasing it if poor quality prey subsequently decreases the performance of their 

parasitoids and predators (e.g. Havill and Raffa 2000, Gols et al. 2008a, Gols et al. 2008b).   

In summary, while it is likely that variation in plant traits during development can 

influence herbivore performance and palatability and thus, indirectly affect the behavior, prey 

selection, and fitness of natural enemies, the outcome of these tri-trophic interactions 

throughout plant ontogeny can be hard to predict. Yet, the complexity of outcomes mediated by 

ontogenetic changes in plant defenses offer a challenging opportunity to study the evolution of 

complex phenotypes, as well as their implications for understanding temporal variation in tri-

trophic interactions. Moreover, uncovering patterns in ontogenetic trajectories in plant-herbivore-

natural enemy interactions, and their underlying mechanisms, can shed light on why bottom-up 

and top-down controls of herbivore populations are often context dependent (temporally variable 

in direction and strength) or even hard to find.   
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1.5. Study System 

Plantago lanceolata 

Plantago lanceolata L., narrowleaf or ribwort plantain, (Plantaginaceae) is a common short-lived 

polycarpic herbaceous plant (annual or facultative perennial) that germinates in fall and spring 

and flowers in midsummer, retaining a green rosette year round (Roach et al. 2009). Originally 

native to Eurasia, it has become a species of cosmopolitan distribution, thriving in recently 

disturbed areas such as roadsides and mown fields (Cavers et al. 1980). In North America, it 

was introduced approximately 200 years ago (Cavers et al. 1980), being currently naturalized in 

all states (http://www.plants.usda.gov/java/profile?symbol=PLLA). In its vegetative form, it 

consists of a green rosette formed by alternate lanceolate-shaped leaves with three to five 

strong parallel veins and attached to the base by a narrowed short petiole. Based on the 

position that leaves occupy in the rosette and their physiological status, these leaves can be 

easily categorized into three leaf-age classes: new, intermediate and old leaves. Tough, fully 

expanded leaves located in the basal part of the rosette and showing some degree of 

discoloration are usually classified as old leaves. Tender and yet not fully expanded leaves 

found in the center of the rosette are new leaves, while fully expanded but still quite tender and 

not discolored leaves in between are typically classified as intermediate leaves (Bowers and 

Stamp 1992, 1993). As seen in other short-lived perennials, temporally variable environments 

can produce dramatic differences in optimal reproductive timing in P. lanceolata, showing a high 

degree of plasticity in reproductive output and number of potential reproductive seasons (i.e. 

one to six reproductive events, Shefferson and Roach 2010). However, in general, Shefferson 

and Roach (2010) reported that over 45% of the reproducing individuals only reproduced once 

and did so mostly in the first or second year of life. When plants reach maturity, they produce 

few to several leafless scapes (10–40 cm in length) ending in an oblong inflorescence that 

contains several small self-incompatible wind-pollinated or insect-pollinated flowers (4mm), 
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each with a pointed bract. Each flower can produce up to two seeds. Thus, reproductive output 

has been shown to fluctuate between 30 and 10,000 seeds per plant (Cavers et al. 1980).  

Plantago lanceolata produces, in addition to iridoid glycosides (Ronsted et al. 2000), a 

number of bioactive phenolic compounds such as flavonoids and phenylethanoid glycosides 

(Chiang et al. 2003, Galvez et al. 2005). However, iridoid glycosides are the primary 

allelochemicals found in large concentrations across vegetative and reproductive tissues (i.e. up 

to 10-12% dry weight) and influencing feeding preferences of insect herbivores and pathogens 

(e.g. Bowers and Puttick 1989, Biere et al. 2004, De Deyn et al. 2004). Thus, in my research, I 

specifically focused on variation in constitutive and induced iridoid glycosides throughout plant 

ontogeny.   

Iridoid glycosides (hereafter IGs) are a group of cyclopentanoid monoterpene-derived 

compounds that occur in over 50 families of plants (Bowers 1991, Jensen 1991). They are bitter 

compounds that consist of an 8-, 9- or 10-carbon skeleton with an attached monosaccharide at 

C-1, normally β-D-glucose (Boros and Stermitz 1991). Similar to several other plant secondary 

compounds, iridoids have deterrent effects and/or act as digestibility reducers on non-adapted 

insects (Bowers 1991, Dobler et al. 2011). For example, several of the over 1,700 IGs described 

to date (Elnaggar and Beal 1980, Boros and Stermitz 1990, 1991, Dinda et al. 2007b, a, 2009, 

2011) have demonstrated detrimental post-ingestive effects that can increase larval mortality, or 

decrease relative growth rate and biomass gained (Dobler et al. 2011). These detrimental 

physiological effects may vary as a function of IG quality and quantity. For instance, differential 

effects were observed among various individual iridoid glycosides depending on their chemical 

structure and the presence or absence of functional groups, some of them showing dose-

dependent effects (Puttick and Bowers 1988, Bowers and Puttick 1989). Although we lack 

specific knowledge regarding IG production sites (i.e. shoots vs. roots), these carbon-based 

defenses are synthesized through the isoprenoid biosynthetic pathway and are usually stored in 

cell vacuoles (Croteau 1987). They are also likely phloem mobile (Gowan et al. 1995, Beninger 
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et al. 2007) and concentrations across plant tissues have shown to be positively correlated (e.g. 

De Deyn et al. 2009).  

Plantago lanceolata produces primarily two IGs: aucubin and catalpol (Figure 1.2), and 

amounts of these compounds may be as high as 10-12% dry weight (Bowers and Stamp 1992, 

1993). As seen in several other plant species, levels of IGs vary among tissues, with the highest 

content being reported in reproductive tissues and the lowest in roots, with intermediate levels in 

leaf tissues (Darrow and Bowers 1999). In the case of leaves, there is also significant variation 

among leaf-age classes, with newer leaves containing higher nitrogen concentrations and two to 

three times more IGs and a higher proportion of catalpol than older leaves (Bowers and Stamp 

1992, 1993). Because aucubin is the biosynthetic precursor of catalpol (Ronsted et al. 2000), 

high concentrations of IGs, especially of catalpol, indicate not only a greater biosynthetic 

investment by the plant, but also may result in a higher unpalatability and/or toxicity to 

herbivores and pathogens (Bowers and Stamp 1993). Finally, in addition to IGs, P. lanceolata 

also invests in physical defenses such as tough leaves (Schippers and Olff 2000) and glandular 

and non-glandular trichomes (de la Fuente 2002). Although we have considerably less 

information regarding within plant variation in physical defenses, a few studies have reported 

that as leaf age increases trichome density generally decreases (de la Fuente 2002), while leaf 

toughness increases (Schippers and Olff 2000). 

 

 

Figure 1.2. Structural conformation of two 

iridoid glycosides (IGs), aucubin and catalpol, 

commonly found in P. lanceolata tissues. 
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Multiple intrinsic and extrinsic factors may influence constitutive and induced levels of 

IGs in P. lanceolata, such as plant genotype (Marak et al. 2002, Barton 2007, Reudler Talsma 

et al. 2011), resource availability and temperature (Fajer et al. 1992, Darrow and Bowers 1999, 

Jarzomski et al. 2000, Tamura 2001), herbivore damage or identity (Bowers and Stamp 1993, 

Wurst and van der Putten 2007), and mutualistic associations with arbuscular mycorrhizal fungi 

(Bennett et al. 2009). In addition, plant age has also been identified as an important intrinsic 

factor affecting P. lanceolata expression of IGs (e.g. Bowers and Stamp 1993, Fuchs and 

Bowers 2004, Barton 2007); and these ontogenetic patterns in IG production significantly vary 

among both maternal families and populations (Bowers and Stamp 1993, Barton 2007).   

Specifically,  earlier empirical studies looking at constitutive levels of IGs across two or more 

developmental stages demonstrated that, in general, IG content increases as plants age (e.g. 

Bowers and Stamp 1993, Fuchs and Bowers 2004, Barton 2007). However, these previous 

studies were limited in scope, only considering a few developmental stages at a time and/or 

limited their ontogenetic trajectories to only leaf tissues. Thus, a more comprehensive study is 

required to assess the overall patterns as well as the mechanisms explaining these ontogenetic 

trajectories.  

Similarly, plant age has also been identified as an intrinsic factor that may alter a plant’s 

ability to induce IGs and/or tolerate damage (e.g. Fuchs and Bowers 2004, Hanley and Fegan 

2007, Barton 2008). Yet, no consistent trends illustrating how plant ontogeny alters defensive 

strategies following insect attack have emerged. For instance, previous evidence for induction of 

IGs after insect attack in P. lanceolata has ranged from no detectable induction (Adler et al. 

1995, Fontana et al. 2009), to induced resistance (Bowers and Stamp 1993, Darrow and 

Bowers 1999, Marak et al. 2002) or induced susceptibility (Barton 2008). Furthermore, 

ontogenetic changes in other plant traits also known to mediate the interaction between P. 

lanceolata and specialists and generalist herbivores, such as nutritional content and physical 

defenses (see below) have been more rarely explored. Accordingly, how plant age influences 
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both constitutive and induced chemical and physical defenses, nutritional quality, and 

compensatory growth, throughout most of the life span of P. lanceolata, needs further 

investigation.  

Finally, P. lanceolata has been incorporated into the diet of many native North American 

insect herbivores and thus, multiple specialist and generalist herbivores in both the introduced 

and native range can affect and be affected by IG content in this species. For example, high IG 

concentrations usually deter generalist herbivores and pathogenic fungi  feeding on shoot or 

root tissues (e.g. Bowers and Puttick 1989, Biere et al. 2004, De Deyn et al. 2004, Harvey et al. 

2005, Wurst and van der Putten 2007). Yet, several specialist herbivores use IGs as feeding 

and/or oviposition stimulants (e.g. Bowers 1983, 1984, Pereyra and Bowers 1988, Reudler 

Talsma et al. 2008b), and some have the ability to sequester these compounds from leaves and 

roots and use them for their own protection against natural enemies (e.g. Bowers and Puttick 

1986, Baden and Dobler 2009, Opitz et al. 2010). Furthermore, although most herbivores 

associated with this species primary eat either leaves or roots, there is at least one example of a 

species of Longitarsus (Chrysomelidae) flea beetle that feeds on and sequesters IGs from both 

roots and leaves, as larvae and adults (Willinger and Dobler 2001, Baden and Dobler 2009). As 

a result, ontogenetic patterns of shoot and root IGs in this species can have profound 

consequences on the identity, abundance and performance of the herbivore community 

associated with it throughout its lifetime.  

 

Junonia coenia 

The buckeye butterfly, Junonia coenia Hubner (Nymphalidae) is a New World butterfly that can 

have one to three broods per year under temperate conditions, or more in the tropics where it 

can breed year-round (http://www.nearctica.com/butter/plate17/Jcoenia.htm). This species has 

been described as a specialist herbivore of plants containing IGs (Bowers 1984), P. lanceolata 

being one of its more frequent host plants (Graves and Shapiro 2003 and references therein). 
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Adult female butterflies use IGs as oviposition stimulants (Pereyra and Bowers 1988), choosing 

host plants or tissues within plants with higher IG concentrations, in particular catalpol (Pereyra 

and Bowers 1988, Klockars et al. 1993, Prudic et al. 2005). In addition, other host plant traits 

may also influence oviposition choice, although to a lesser extent; and thus, need to be taken 

into account. For instance, while adult Buckeye butterflies tend to choose plants higher in foliar 

nitrogen concentrations (Prudic et al. 2005), leaf trichome density does not seem to significantly 

influence Buckeye oviposition choice (de la Fuente 2002).  

Buckeye larvae are oligophagous herbivores that have been documented to feed on 

members of four plant families: Cornaceae, Plantaginaceae, Scrophulariaceae and 

Verbenaceae (Bowers 1984). Buckeye caterpillars not only use IGs as feeding stimulants 

(Bowers 1984), but they are also able to sequester aucubin and catalpol in their hemolymph. 

Sequestration begins as soon as larvae start feeding, but when larvae reach their last instar, 

they begin to metabolize them before pupation, eventually eliminating them in the meconium 

just after adult eclosion (Bowers and Collinge 1992). Therefore, while immature larvae are 

highly unpalatable, sequestering IGs as a function of their concentration in host plant tissues 

(Camara 1997a), adult butterflies do not contain iridoids (Bowers and Collinge 1992) explaining 

their high palatability to birds (Bowers and Farley 1990). Levels of IGs in buckeye caterpillars, 

usually concentrating two to three times the levels of IGs found in their diet, vary normally from 

less than 5% to over 20% dry weight, and can reach up to 25% dry weight (Camara 1997a, 

Theodoratus and Bowers 1999).  

The process of sequestration of ingested plant secondary compounds involves three 

main steps: (i) the resorption of plant allelochemicals through the gut wall, (ii) their transportation 

to the hemolymph, and (iii) their deposition in a particular site of the body (Nishida 2002); all of 

which can be energetically costly. In the case of J. coenia, while higher levels of IG 

concentrations on diets have shown to, in general, increase larval performance, some 

physiological costs associated with sequestration were also reported (Adler et al. 1995, Camara 
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1997a, Smilanich et al. 2009a). For instance, Camara (1997a) demonstrated that J. coenia 

reared on diets rich in IGs (~10% dry wt.) tend to experience a reduction in the efficiency of dry 

matter incorporation due to reduced digestibility and a decrease in sequestration efficiency due 

to decreased post-digestive efficiency. Thus, this study suggested that sequestration of high 

concentrations of IGs may come at a cost to growth. Furthermore, it has been proposed that 

insect herbivores that invest energy into plant allelochemical detoxification and/or sequestration 

may divert energy from other functions such as immune defenses (Moret and Schmid-Hempel 

2000). Relevant to this, Smilanich et al. (2009a) recently demonstrated that high levels of IGs in 

J. coenia diets, leading to high IG content in their hemolymph, may enhance larval susceptibility 

to parasitoid attack. Nevertheless, caterpillars feeding on higher IG diets have decreased 

mortality by generalist herbivores such as ants, stink bugs, spiders, and predatory wasps (see 

below).  

Natural Enemies 

The importance of the third and higher trophic levels on interactions between herbivores and 

host plants has been acknowledged for several decades (Price et al. 1980), and few systems 

have been as intensely studied as those including IG-producing host plants, their herbivores, 

and natural enemies (i.e. predators and parasitoids) (reviewed in Bowers 1991, Dobler et al. 

2011). Bottom-up interactions among IG-producing plants, herbivores and predators have been 

demonstrated repeatedly, as consumption of IG-producing plants by sequestering herbivores 

not only significantly decreases their predation risk but also confers a physiological cost to 

predators that consume sequestering prey (see below). Parasitoids may also be affected by 

changes in host quality, if the herbivores themselves experience lower performance or acquire 

higher levels of sequestered defenses. These effects on herbivores can then affect parasitoid 

oviposition choice, clutch size, development time and fitness (Ode 2006). Nevertheless, recent 

evidence demonstrated that the relationship between IGs and parasitoids may be opposite to 
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the one reported for generalist predators, with herbivores feeding on rich IGs diets showing only 

minimal effects on parasitoid fitness or higher parasitism rates (Smilanich et al. 2009a, Lampert 

and Bowers 2010b, Lampert et al. 2010, Reudler Talsma et al. 2011, Smilanich et al. 2011).  

Sequestration of IGs by larvae and/or adult stages reduces the palatability of several 

herbivorous species to various vertebrate and invertebrate predators.  For instance, a number of 

laboratory feeding experiments have shown that varying concentrations of IGs in adult 

butterflies and moths contributes to their unpalatability to birds and bats (Bowers 1980, 1981, 

Bowers and Farley 1990, Hristov and Conner 2005). On the other hand, species such as 

Junonia coenia (Nymphalidae) and Ceratomia catalpae (Sphingidae) that lack these defenses 

during their adult stages (Bowers 1991), were highly palatable as adults to Gray jays, 

Perisoreus canadensis (Corvidae) (Bowers and Farley 1990). Nevertheless, in these latter 

examples, larvae of these two species have warning coloration and sequester high 

concentrations of IGs, showing decreased larval mortality under field conditions (Camara 

1997b). In general, sequestration of IGs by herbivore larvae serves as an effective defense 

against generalist invertebrate predators, including hymenopterans, hemipterans, coleopterans, 

and spiders (reviewed in Bowers 1991).  

Choice- and non-choice tests between palatable and IG-sequestering lepidopteran 

larvae have consistently shown that sequestering species are consumed less than palatable 

species by such predators as jumping spiders, wolf spiders, and stinkbugs (Strohmeyer et al. 

1998, Theodoratus and Bowers 1999). In addition, some invertebrate predators may also show 

dose-dependent responses to IG content in prey tissues. For example, while J. coenia larvae 

with high IG concentrations were more likely to be rejected and escape attacks by ants than 

those containing low levels of sequestered IGs (de la Fuente et al. 1995, Dyer and Bowers 

1996), no concentration threshold differences were observed for Phidippus audax (Araneae: 

Salticidae) preying on J. coenia of varying IG content (Strohmeyer et al. 1998). Finally, social 

vespid wasps, considered major predators of lepidopteran larvae (Richter 1990, 2000), not only 
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have shown a reduced preference for IG sequestering prey, but also, colonies perform poorly 

when forced to consume them (Stamp 2001, Stamp and Meyerhoefer 2004). Specifically, two 

studies assessing the effect of J. coenia consumption by the social paper wasp Polistes 

fuscatus (Vespidae) demonstrated that IGs can have major negative fitness effects on the 

wasps by decreasing number of eggs produced, mean weight of female workers, and proportion 

and size of males (Stamp 2001, Stamp and Meyerhoefer 2004). Therefore, substantial evidence 

indicates that, for several specialist herbivores and in particular for Buckeye butterflies, 

consumption of plants containing IGs not only significantly decreases their predation risk but 

they may also confer physiological costs to predators that consume them. 

Parasitoids, because they consume and utilize another animal as the sole source of 

nutrition and microhabitat throughout development, are also particularly sensitive to the quality 

of their host. Therefore, it is not surprising that plant allelochemicals in herbivore diets may 

translate into negative effects on the survival, development, size, and fitness of these 

antagonists (Ode 2006). Negative effects of IGs on endoparasitoids’ prey choice and 

subsequent fitness would be expected in this system, as specialist herbivores that sequester 

IGs have been reported to contain high amounts of IGs in their hemolymph (i.e. up to 25 or 50% 

dry wt. Theodoratus and Bowers 1999, Bowers 2003), and generalist herbivores tend to show 

decreased performance in response to increasing IG content in their diets (Bowers and Puttick 

1988, Puttick and Bowers 1988, Biere et al. 2004, Harvey et al. 2005, Beninger et al. 2008, 

Reudler Talsma et al. 2011). However, in contrast to predators, recent studies assessing the 

bottom-up effects of plant IGs on parasitoid survival and performance indicate neutral to only 

minimal or positive effects. Neutral to minimal effects have been reported for both generalist 

(Lampert and Bowers 2010b, Reudler Talsma et al. 2011, Smilanich et al. 2011) and specialist 

herbivores (Lampert et al. 2010, Reudler Talsma et al. 2011). In the case of the generalist 

Trichoplusia ni (Noctuidae), lack of negative effects on parasitoid fitness were explained in part 

due to metabolizing of IGs in the insect gut and a lack of IGs in the hemolymph; thus the 
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parasitoids did not directly contact IGs in hemolymph (Lampert and Bowers 2010b). In the other 

examples, although some detrimental effects of IGs on herbivore development time or pupal 

weight were observed, parasitism rate was mostly unaffected due to a slightly lower to no 

change in caterpillar immune responses (Reudler Talsma et al. 2011, Smilanich et al. 2011, 

respectivelly).  

Decreased immunocompetence due to high levels of IGs in herbivore diets has shown 

more pronounced effects on specialist sequestering lepidopterans, leading to the previously 

mentioned positive effects of IGs on parasitoid fitness. In particular, Smilanich et al. (2009a), 

using caterpillars reared on diets varying in their IG concentrations and challenged by implanted 

glass beads, demonstrated that Buckeye larvae reared on diets rich in IGs are more likely to 

have their immune response compromised than those feeding on diets low in these compounds, 

suggesting a potential increase in parasitoid survival, performance and fitness as plant IGs 

increase. Nevertheless, natural variation in field parasitism rates as a function of varying levels 

of plant allelochemicals and sequestered IGs may be system specific. For example, while 

parasitism rates under field conditions did not correlate with levels of sequestered catalpol in 

Ceratomia catalpa (Sphingidae) (Lampert et al. 2010), Nieminen et al. (2003) demonstrated that 

parasitism rates decreased in Melitaea cinxia (Nymphalidae) caterpillars feeding on host plants 

with high levels of IGs. In summary, the patterns described above suggest that predators and 

parasitoids can exert different selective pressures on herbivore species feeding on IG-

containing plant species, suggesting that optimal herbivore feeding choice may depend on the 

spatiotemporal variation of their natural enemy community.  

 

1.6. Research Overview 

This dissertation examined how variation in host plant defensive traits throughout plant 

ontogeny can modify the direction and magnitude of tri-trophic interactions, using the model 

system Plantago lanceolata (Plantaginaceae), the specialist sequestering herbivore Junonia 
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coenia (Nymphalidae), and the natural enemies of this herbivore (i.e. predators and parasitoids). 

In particular, my main objective was to assess the extent to which ontogenetic changes in host 

plant defenses and nutritional quality can alter plant-herbivore interactions via three main 

mechanisms: (i) varying plant ability to respond to herbivore damage (i.e. tolerance and 

resistance traits), (ii) varying herbivore host selection and performance, and (iii) varying 

herbivore predation risk from predators and parasitoids.  

In Chapter 2 of my dissertation, I present the results of a greenhouse study describing 

ontogenetic patterns in several traits relevant to insect herbivores in P. lanceolata. Specifically, 

using seven plant age classes, I report variation in plant biomass, root:shoot ratios, nutritional 

quality (i.e. water and nitrogen concentrations) and constitutive levels of chemical defenses (i.e. 

iridoid glycosides) for both above- and below-ground tissues. In addition, I also present data 

evaluating whether resource allocation constraints, namely root:shoot ratios, would allow me to 

explain whole-plant investment in chemical defenses over time.  In Chapter 3, I present the 

results of a related greenhouse experiment that examined how herbivore-induced plant 

responses to herbivory (i.e. tolerance and resistance traits) change as a function of plant 

developmental stage. This study, using four juvenile age classes, also provides evidence on the 

mechanisms that can explain the often complex responses observed, specifically assessing the 

role of plant vigor in tolerance and resistance traits as plants age. Furthermore, even though in 

most natural systems herbivore attack is seasonal, surprisingly little is known about how plant 

responses to herbivory change with successive damage events, and even less about how that 

might interact with age-dependent herbivore responses to herbivory. Thus, in Chapter 4, I 

studied the combined role of ontogenetic changes in plant growth and defenses with variation in 

the frequency and/or intensity of damage over a season. Finally, in order to assess whether 

these ontogenetic patterns in constitutive and induced defenses in P. lanceolata can 

significantly alter interactions with higher trophic levels, I explored in Chapter 5 the bottom-up 

effects of ontogenetic changes in plant traits on: J. coenia adult butterfly oviposition choice, 
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caterpillar performance, and caterpillar defensive chemistry to investigate susceptibility to 

generalist predators as well as to parasitoid attack. Lastly, in Chapter 6, I summarized the main 

conclusions of my dissertation research.  

This work documents some of the complex ecological consequences of temporal 

variation in plant traits for plant-herbivore-natural enemy interactions. Despite the longstanding 

interest in understanding temporal variation in herbivore damage, the direct and indirect 

mechanisms that could explain these patterns have been rarely investigated.  Here, results from 

my experiments support previous assessments that plant age can strongly shape plant 

constitutive and inducible defenses. Moreover, my results reveal that ontogenetic patterns in 

plant resistance and/or susceptibility to damage can have strong effects on adult oviposition 

choice, larval performance and larval susceptibility to predators and parasitoids. Furthermore, I 

illustrate that bottom-up effects on higher trophic levels may vary among functional groups with 

the direction and magnitude of the interaction varying between predators and parasitoids. 

Hence, this research provides a framework for testing hypotheses related to the evolution of 

plant defenses and the context dependency of bottom-up and top-down controls of herbivore 

populations.   
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CHAPTER 2 

CHANGES IN PLANT CHEMICAL DEFENSES AND NUTRITIONAL QUALITY AS A 

FUNCTION OF ONTOGENY IN PLANTAGO LANCEOLATA (PLATAGINACEAE) 1 

 

ABSTRACT 

Numerous empirical studies have examined ontogenetic trajectories in plant defenses but only 

few have explored the potential mechanisms underlying those patterns. Furthermore, most 

documented ontogenetic patterns in plant defenses have generally concentrated on 

aboveground tissues; thus, our knowledge regarding whole-plant trends in plant defenses 

throughout development or potential allocation constraints between growth and defenses is 

limited. Here, I document changes in plant biomass, nutritional quality and chemical defenses 

for below- and aboveground tissues across seven age classes of Plantago lanceolata 

(Plantaginaceae) to evaluate: (1) partial and whole-plant ontogenetic trajectories in constitutive 

chemical defenses and nutritional quality, and (2) the role of resource allocation constraints, 

namely root:shoot ratios, in explaining whole-plant investment in chemical defenses over time.  

Overall investment in iridoid glycosides (IGs) increased significantly, while water and nitrogen 

concentrations in shoot tissues decreased with plant age. Significant variation in IG 

concentrations between shoot and root tissues across development was observed: allocation of 

IGs into root tissues linearly increased from younger to older plants, while non-linear shifts in 

allocation of IGs during ontogeny were observed for shoot tissues. Finally, root:shoot ratios only 

weakly explained overall allocation of resources into defenses, with young stages showing a 

positive relationship, while older stages showed a negative relationship between R:S ratios and 

IG concentrations. Ontogenetic changes in plant quality and defenses within and among plant 

tissues can strongly influence insect herbivores’ performance and/or predation risk; thus, they

26 
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are likely to play a significant role in mediating species interactions. 

 

INTRODUCTION 

Plant susceptibility to herbivory, as well as the impact that herbivore damage has on plant 

fitness, vary markedly over a plant’s lifetime. For example, variation in herbivore damage from 

the seedling stage to senescence can change by several orders of magnitude for the same 

plant-herbivore interaction (e.g. Pires and Price 2000, Fonseca et al. 2006, Loney et al. 2006), 

and may even involve considerable changes in the composition of the herbivore community 

inflicting damage throughout plant ontogeny (Waltz and Whitham 1997, Boege 2005a, Thomas 

et al. 2010). Similarly, the impact of herbivore damage on plant fitness also depends on the 

ontogenetic stage being attacked, ranging from complete compensation by the host plant to 

long-lasting reductions in flower production and fruit set (Warner and Cushman 2002, Boege et 

al. 2007, Hanley and Fegan 2007). As a result, the selective pressure that herbivores exert on 

plant traits that confer resistance should vary with plant ontogeny, leading to qualitative and/or 

quantitative changes in plant resistance traits during plant development. Despite the relevance 

that assessing developmental changes in plant defenses may have for the improvement of plant 

defense theories, as well as our understanding of ecological interactions, relatively little is 

known about how allocation of resources to plant defenses varies throughout plant development 

(Boege and Marquis 2005, Hanley et al. 2007).   

 Numerous models have been proposed to explain patterns of variation in plant 

constitutive chemical defenses as a function of plant development. With the exception of boreal 

woody plants, where the ontogenetic trajectories in plant defenses have been proposed to 

strongly reflect the selective pressure exerted by mammalian herbivores (Bryant et al. 1992), 

most arguments propose that intrinsic forces, namely resource acquisition and allocation 

constraints, are responsible for ontogenetic variability in plant defenses (Bryant et al. 1991, 

Herms and Mattson 1992, Boege and Marquis 2005). Among these, the theoretical model 
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proposed by Boege and Marquis (2005) is the more comprehensive and detailed model, 

encompassing all stages from cotyledon to senescent plants at the whole plant level. This 

model predicts that multiple resource allocation and architectural constraints throughout plant 

development will lead to a non-linear relationship between plant age and defenses. Specifically, 

the model predicts relatively higher levels of defenses in younger over older seedlings until 

resources stored in cotyledons and seeds are depleted, followed by a decrease in defenses in 

response to large root:shoot ratios and a disproportional allocation of resources to the 

production of photosynthetic area. Once root:shoot ratios start to decrease, growth rate might 

be more limited than photosynthetic rate allowing for a significant increase in defenses 

throughout juvenile stages. Finally, when plants reach reproductive maturity, constraints due to 

reproduction may again result in decreased levels of defenses or they may remain constant 

depending on the plant’s reproductive strategy (Boege and Marquis 2005). A recent meta-

analysis conducted by Barton and Koricheva (2010), including 116 studies and 153 plant 

species, concluded that ontogenetic trajectories in plant defenses tend to show non-linear 

patterns.  However, while non-linearity appears to be the norm, the shape of the relationship 

seems to depend on plant life form (i.e. woody plants, herbs or grasses) and defensive traits (i.e. 

physical traits, chemical traits, tolerance) (Barton and Koricheva 2010).   

 The absence of a generalized pattern describing the ontogeny of plant defenses 

suggests that allocation constraints and costs of defenses through plant development are not 

consistent across all plant life forms and defensive traits. Nevertheless, despite the large 

number of studies documenting ontogenetic patterns in plant defenses, only a few have tested 

the potential mechanisms driving these patterns, such as those looking at age-specific 

allocation costs and trade-offs between growth and defenses (e.g. Goodger et al. 2006, Barton 

2007, Boege et al. 2007, Orians et al. 2010).  Hence, the potential of differences in allocation 

constraints among grasses, herbs and woody plants, as well as among different kinds of 

defensive traits, as the source of discrepancies in ontogenetic patterns of defenses remains 
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unclear. Furthermore, inconsistency among results from investigations of ontogenetic patterns 

of plant defense might reflect the lack of studies assessing ontogenetic trajectories at the whole 

plant level. Most studies to date concentrate on aboveground tissues, especially leaves, while 

ontogenetic patterns in root defenses have been largely ignored. However, the few studies that 

have explored ontogenetic changes in below- and aboveground tissues have consistently 

documented dissimilar ontogenetic patterns of defenses among tissues (Hartmann and Zimmer 

1986, Williams and Ellis 1989, Bellostas et al. 2007, Beninger et al. 2009). Therefore, without a 

complete assessment of defensive traits at the whole plant level, meaningful variability within 

and among tissues during plant development may obscure overall patterns of plant investment 

in defenses over time, as well as potential trade-offs between growth and defenses.    

 In summary, in the last two decades, numerous attempts to predict theoretical patterns 

and drivers of ontogenetic variation in constitutive plant defenses have been made; yet, few 

studies to date have empirically tested the relationship between plant development and 

defenses across multiple developmental stages and plant tissues; and/or tested the 

mechanisms driving these patterns. In this study, I used seven pre-reproductive age classes of 

Plantago lanceolata L. (Plantaginaceae) to investigate ontogenetic variation in below- and 

aboveground constitutive plant chemical defenses (iridoid glycosides), and the role of resource 

allocation constraints as the potential mechanism driving these ontogenetic trajectories. In 

addition, I assessed ontogenetic variation in other plant traits relevant to herbivores, including 

leaf water and nitrogen concentration, as well as below- and aboveground biomass. Because 

my interest was to assess overall variation in constitutive trajectories at the whole plant level, I 

did not assess here within-tissue variation (e.g. young, intermediate and old leaf ages) which 

may add considerable variation in levels of defenses and nutritional quality for herbivores (e.g. 

Bowers and Stamp 1992, 1993). In particular, I addressed the following three questions: (1) 

How do plant traits relevant to herbivores, including constitutive chemical defenses and 

nutritional quality, change throughout plant development?; (2) Do plant chemical defenses in 
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below- and aboveground tissues follow similar ontogenetic trajectories?; and (3) Can root:shoot 

ratios help to predict the allocation of resources to constitutive chemical defenses at the whole 

plant level?   

 

MATERIALS AND METHODS 

Study system 

Plantago lanceolata is a cosmopolitan, short-lived perennial herb with a rosette growth form 

introduced to North America from Eurasia more than 200 years ago (Cavers et al. 1980). This 

plant species produces, in addition to iridoid glycosides (Ronsted et al. 2000), a number of 

bioactive phenolic compounds such as flavonoids and phenylethanoid glycosides (Tamura 2001, 

Galvez et al. 2005).  However, iridoid glycosides are the primary allelochemicals found in large 

concentrations in both below- and aboveground tissues and influencing feeding preferences of 

generalist and specialist rhizophagous and folivorous herbivores (e.g. Bowers and Puttick 1989, 

Biere et al. 2004, De Deyn et al. 2004); thus, here I specifically focused on the ontogenetic 

changes of these compounds.  

 Iridoid glycosides (IGs) are a group of cyclopentanoid monoterpene-derived compounds 

that occur in over 50 families of plants (Bowers 1991, Jensen 1991). Plantago lanceolata 

produces primarily two IGs: aucubin and catalpol, and amounts of these compounds may be as 

high as 10-12% dry weight (Bowers and Stamp 1992, 1993). High concentrations of IGs, 

especially of catalpol, indicate not only a greater biosynthetic investment by the plant, but also 

may result in a higher unpalatability and/or toxicity to generalist herbivores (Bowers and Stamp 

1993). Although we lack specific knowledge regarding IG production sites (i.e. shoots vs. roots), 

these carbon-based defenses are synthesized through the isoprenoid biosynthetic pathway and 

are usually stored in cell vacuoles (Croteau 1987). They are also likely phloem mobile (Gowan 

et al. 1995, Beninger et al. 2007) and concentrations in leaves and roots in P. lanceolata were 

found to be positively correlated (Beninger et al. 2009). Previous studies have identified plant 
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age as an important intrinsic factor affecting P. lanceolata chemistry (e.g. Bowers and Stamp 

1993, Fuchs and Bowers 2004, Barton 2007); and these ontogenetic patterns in IG production 

significantly vary among both maternal families and populations (Bowers and Stamp 1993, 

Barton 2007).   

 In addition, P. lanceolata has been incorporated into the diet of many North American 

insect herbivores and thus, multiple specialist and generalist herbivores can affect and be 

affected by IG content in this species. For example, high IG concentrations usually deter 

generalist herbivores feeding on shoot or root tissues (e.g. Bowers and Puttick 1989, Biere et al. 

2004, De Deyn et al. 2004, Wurst and van der Putten 2007). Yet, several specialist herbivores 

use IGs as feeding and/or oviposition stimulants (e.g. Bowers 1984, Pereyra and Bowers 1988, 

Reudler Talsma et al. 2008b), and some have the ability to sequester these compounds from 

leaves and roots and use them for their own protection against natural enemies (e.g. Bowers 

and Puttick 1986, Baden and Dobler 2009, Opitz et al. 2010). Furthermore, although most 

herbivores associated with this species are either rhizophagous or folivorous, there is at least 

one example of a species of Longitarsus (Chrysomelidae) flea beetles that feeds on and 

sequesters IGs from both tissues, as larvae and adults (Willinger and Dobler 2001, Baden and 

Dobler 2009). As a result, ontogenetic patterns in constitutive variation of shoot and root IGs in 

this species can have profound consequences on the identity, abundance and performance of 

the herbivore community associated with it throughout its lifetime.  

 

Ontogenetic variation in plant traits 

In order to evaluate the effect of plant ontogeny on plant quality and chemical defenses, seven 

distinct age classes of Plantago lanceolata (3, 5, 8, 10, 12, 15, and 18 weeks old since 

germination) were grown at the University of Colorado greenhouse during the summer of 2008. 

The first two stages (3 and 5 wk-old) correspond to two distinctive seedling stages, the next 

three stages (8, 10 and 12 wk-old) correspond to juvenile stages, and the last two age classes 
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(15 and 18 wk-old) to pre-reproductive stages. All age classes were harvested simultaneously in 

order to control for confounding environmental factors that could influence plant performance 

such as photoperiod and temperature. Synchronization among ontogenetic stages occurred by 

germinating seeds at intervals of 15-30 days from March to July. In this way, although average 

environmental conditions from sowing to harvest varied among age classes, I ensured that all 

individuals were exposed to the same conditions at harvest time. Since IG concentrations in this 

as well as other IG containing plant species, can vary substantially over days and even hours 

(Hogedal and Molgaard 2000, Fuchs and Bowers 2004), or be influenced by temperature 

(Tamura 2001), simultaneous harvest across all age classes should minimize variables other 

than plant age that could influence IG content.  

 Seeds were collected from >20 maternal plants from a population in Boulder County, 

Colorado, mixed, and randomly assigned to treatments. Seeds were germinated in Fafard mix 

and transplanted to a growth medium of equal parts Metro Mix 350, sterilized sand, and turface 

after 15 days. Plants were grown in extra-deep 13 liter pots in order to minimize root-binding 

effects. I grew 20 plants in each age class, for a total of 140 plants. Replicates were randomly 

placed on a single 1.2 x 8m greenhouse bench, exposed to natural day light, and watered daily. 

Fertilizer was supplied to all plants every three to four days throughout the length of the 

experiment. The fertilizer solution was the standard solution used in the University of Colorado 

greenhouses, which was Scotts Peter’s Excel (Scotts-Sierra Horticultural Products Company, 

Marysville, Ohio) mixed on a ratio of 15-5-15 N-P-K which also provided trace amounts of 

micronutrients. Temperatures fluctuated over the course of the season but greenhouse 

temperatures did not exceed 32°C or fall below 15°C at any time. Extra-deep pots were used in 

order to ensure natural growth rate of root as well as shoot tissues and to prevent pot-binding, 

which can affect plant secondary metabolite production (Baldwin 1988). However, I believe that 

the combination of abundant resources and nutrient availability together with moderate 
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greenhouse temperatures delayed the onset of flowering (usually recorded at 15wks after 

sowing under greenhouse conditions, pers. obs.) during this first growing season.   

 At harvest, plants were separated into roots and shoots. Shoot tissues represented 

mostly leaves but in few of the oldest plants (N = 14) these also contained immature 

inflorescences accounting for less than 1% of the total shoot biomass. Statistical analyses with 

and without these fourteen individual plants yielded similar results; thus, I present the results for 

the complete data set. All plant tissues were weighed fresh immediately following their harvest, 

oven-dried at 50°C for 48hrs to a constant mass and weighed again to the nearest 0.01g. The 

ratio between root and shoot dry biomass was calculated for each individual plant.  

 

Analyses of plant water, nitrogen and iridoid glycoside concentrations 

To assess variation in plant quality throughout development, I measured plant water and 

nitrogen concentrations. Percent water was calculated as [(wet weight –dry weight) / wet weight] 

x 100. Nutritional quality was measured as total leaf nitrogen, and quantified by Micro-Dumas 

combustion on a NA1500 C/H/N analyzer, using a sample size of 10 plants per age class.  Due 

to the low biomass of plants at the 3wk stage, I was unable to measure leaf nitrogen 

concentrations for those plants.   

 To assess concentrations of IGs, roots and shoots were separately ground into a fine 

powder, and 2-50mg subsamples (entire above- and/or belowground tissue for some seedlings) 

were processed for IG extraction and analyzed by gas chromatography following previously 

described methods (Bowers and Stamp 1993, Barton 2007). Briefly, samples were extracted 

overnight in 95% methanol, the methanol extract was filtered to remove the plant material and 

the residue evaporated to dryness. Phenyl-β-D-glucose (PBG) was added as an internal 

standard and the samples were then partitioned between water and ether to remove 

hydrophobic compounds. An aliquot of the remaining solution was removed, evaporated, and 

derivatized with Tri-Sil-ZTM (Pierce Chemical Company) and injected into a HP 7890A gas 
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chromatograph (Agilent Technology) using an Agilent DB-1 column (30m, 0.320mm, 0.25µm 

particle size). Amounts of aucubin and catalpol were quantified using ChemStation B-03-01 

software and they are presented as percent dry weight for comparative purposes (e.g. Fuchs 

and Bowers 2004, Barton 2007, Wurst and van der Putten 2007). 

  

Statistical analyses 

Developmental variation in root and shoot biomass, Root:Shoot ratios (hereafter R:S), and 

percentage of water and nitrogen in aboveground tissues were analyzed using one-way 

ANOVAs, followed by Bonferroni post-hoc tests to distinguish mean differences among age 

classes if overall significant differences were found. Variation in production of IGs across plant 

ontogeny was first assessed simultaneously for both plant tissues, shoots and roots, and both 

iridoids, aucubin and catalpol. Because aucubin and catalpol are correlated and their 

concentrations are also potentially correlated between shoot and root tissues, I used 

multivariate analysis of variance (MANOVA) to examine variation in these four variables due to 

plant age. When significant effects were detected by MANOVA, I followed up with univariate 

ANOVAs for each of the four variables. Bonferroni post-hoc tests were used to assess 

significant differences among the seven age classes. Lastly, I did a repeated measures ANOVA 

in order to test overall variation in total IGs  (aucubin + catalpol) among age classes, between 

plant tissues (shoots vs. roots; the repeated measure), and their interaction. Water, nitrogen, 

and IG concentrations as well as R:S ratios were arcsine square-root transformed to meet 

assumptions of normality. Biomass measures did not require transformation. 

 To assess whether investment in chemical defenses at the whole plant level as well as 

for below- and aboveground tissues showed a linear or non-linear increase with plant age, I 

regressed the concentration of total IGs (aucubin + catalpol) at the whole plant level (shoots + 

roots), as well as at the shoot and root tissue level separately, on plant age and tested whether 

the linear and quadratic slopes associated with age differ significantly from zero. Because age is 
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treated as a continuous variable, for these analyses I first needed to center this predictor 

variable (Judd et al. 2009).  Then, to evaluate whether the shape of the curve of total IG 

concentrations as a function of plant age differ between shoot and root tissues, I first computed 

a new dependent variable that describes the difference in chemical defenses between tissues 

(i.e. within-subject difference variable IGdiff = IGs shoots – IGs roots) and regressed it on plant 

age. When a within-subject difference is regressed on a between-subject predictor, the resulting 

slopes will be testing for an interaction between the within-subject independent variable (tissue) 

and the between-subject one (age). Thus, the linear and quadratic term in this case will assess 

whether the linear or quadratic effect of age on plant defenses interacts with plant tissue (i.e. 

whether the linear and quadratic slopes for shoot and root tissues differ from each other) (Judd 

et al. 2009).  

 Finally, in order to assess whether R:S ratios can help to explain total IG production 

across developmental stages, I performed a linear regression to test the prediction of a negative 

relationship between R:S ratios and plant investment in defenses as proposed by Boege and 

Marquis (2005). In addition, in order to test whether the relationship between R:S ratios and IG 

concentrations shifts with plant age, I performed an analysis of covariance with total plant IG 

levels as a function of age using R:S ratios as a covariate and testing for an age by R:S ratio 

interaction. For the first regression I used all seven plant stages (N = 140), then after I 

confirmed a significant interaction between age and R:S ratios (see Results), I performed two 

separated linear regressions for younger life stages (age classes 3, 5, and 8wk-old, N = 60) and 

older life stages (age classes 10, 12, 15, and 18wk-old, N = 80).  

 

RESULTS 

There were pronounced differences in plant biomass, nutritional quality and chemical defenses 

among the seven Plantago lanceolata age classes. Plant age significantly influenced total plant 

biomass (F6,132 = 103.4, P<0.0001) and R:S ratios (F6,132 = 8.9, P<0.0001) (Figure 2.1a, b). As 
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expected, overall biomass of both shoot and root tissues increased with plant age; however, 

some exceptions can be observed such as lower biomass in shoots of the 15wk-old class and in 

roots of the 18wk-old class than previous age classes (Figure 2.1a). Given my experimental 

design, this unexpected variation is unlikely to be the result of potential genetic biases or limited 

resources altering growth rates. Furthermore, because I did not follow individual plants during a 

growing season but rather harvested all age classes simultaneously from cohorts germinated at 

different times from March to July, these changes in biomass cannot be interpreted as loss of 

biomass. Instead, they may have emerged as a result of differential average environmental 

conditions (i.e. day length and temperature) shaping developmental trajectories in biomass 

partitioning, as seen in other systems (McConnaughay and Coleman 1999, Moriuchi and Winn 

2005). Nevertheless, after performing all statistical analyses with and without these age classes, 

because overall patterns remained the same (except where indicated), I present here the results 

of the complete data set.   

 Plant age significantly influenced shoot nutritional quality measured as percentage of 

water (F6,133 = 85.5, P<0.0001) (Figure 2.1c), and nitrogen (F5,54 = 34.2, P <0.0001) (Figure 2.1d), 

both of which declined as plants aged. Mean water (Figure 2.1c) and nitrogen (Figure 2.1d) 

concentrations were significantly higher for seedling and young juvenile stages (i.e. 3 to 8 wk-

old) than older juvenile and pre-reproductive plants (i.e. 10 to 18wk-old). In contrast, constitutive 

production of total IGs (aucubin + catalpol) increased over time, ranging from as low as 0.003 to 

as high as 8.86% dry weight from seedling to pre-reproductive plants, respectively.  Aucubin 

and catalpol in shoot and root tissues varied considerably throughout plant development as 

shown by the MANOVA (Wilks’ λ = 0.229, F4,126 = 9.67, P < 0.0001) (Figure 2.2). Univariate 

ANOVAs also demonstrated a significant effect of plant age on shoot aucubin and catalpol 

concentrations (F6,129 = 43.31, P < 0.0001 and F6,129 = 11.63, P < 0.0001, respectively) as well as 

on root aucubin and catalpol concentrations (F6,129 = 16.44, P < 0.0001 and F6,129 = 5.26, P < 

0.0001, respectively).  
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Figure 2.1. Plantago lanceolata ontogenetic variation (Mean ± 1SE) in a) shoot and root 

biomass, b) Root:Shoot ratios, and leaf nutritional quality measured as c) percentage water, 

and d) percentage nitrogen across seven age classes. Except for biomass, original data were 

arcsine-square root transformed for statistical analyses; actual values are shown for 

illustrative purposes only. Letters indicate mean group differences as tested by a Bonferroni 

post-hoc test (p<0.05). In panel a) capital letters were used to represent group mean 

differences for shoot biomass and lower-case letters were used to represent group mean 

differences for root biomass. 
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 In turn, repeated measures ANOVA demonstrated that total IG concentration was 

significantly influenced by plant age (F6,129 = 38.6, P < 0.0001) and plant tissue (F1,129 = 104.3, P 

< 0.0001), with higher IG concentrations in shoot compared to root tissues and overall increase 

in IGs as plants aged, although in a non-linear fashion (Figure 2.2).  Furthermore, there was a 

significant interaction between plant age and tissue (F6,129 = 26.02, P < 0.0001), indicating that 

differences in IG concentrations between shoot and root tissues changed throughout plant 

development. Thus, three main trends emerged from these data. First, concentrations of IGs in 

shoot tissues were, on average, three times higher than were concentrations in root tissues. 

Second, mean group differences in aucubin and catalpol among all seven age classes followed 

similar trends for both shoot (Figure 2.2a) and root tissues (Figure 2.2b). Third, aucubin 

concentrations in shoot tissues drive most of the changes in total IGs throughout plant ontogeny.  

 Regression models demonstrated that constitutive variation in total IGs increased non-

linearly with plant age for shoots and linearly for roots, indicating that ontogenetic patterns in 

defenses between tissues were dissimilar (Figure 2.3). At the whole plant level, ontogenetic 

patterns in constitutive IG production were also non-linear (Table 2.1, Figure 2.3a). This non-

linear trend was mostly driven by shoots since partial investment in defenses for shoot tissues 

also showed a significant linear and quadratic term (Table 2.1, Figure 2.3b); but roots, with 

significantly less variation across age classes than shoots, showed a significant linear increase 

in IGs with plant age, but not a significant quadratic trend (Table 2.1, Figure 2.3c). Furthermore, 

the shape of the curves describing IG concentrations as plants age differed between tissues, 

demonstrated by a significant interaction between plant tissue and the linear or quadratic effect 

of age on plant defenses (for IGdiff linear t = 7.72, P <0.0001; IGdiff quadratic t = 6.37, P <0.0001). 

Specifically, I found that the linear and quadratic effect is significantly stronger in shoots than in 

roots, indicating that, as plants age, more abrupt differences in IG concentrations can be 

observed for shoots than for roots (see Figure 2.3).    
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Figure 2.2. Plantago lanceolata ontogenetic variation (Mean ± 1SE) in constitutive defenses 

measured as proportion of aucubin and catalpol in a) shoot and b) root tissues. Original data 

were arcsine-square root transformed for statistical analyses, percentage data are shown for 

illustrative purposes only. Letters indicate mean group differences among age classes as tested 

by Bonferroni post-hoc tests (p<0.05). Capital letters were used to represent group mean 

differences for aucubin and lower-case letters were used to represent group mean differences 

for catalpol.   
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Table 2.1. Total IG concentrations at the whole plant level, as well as separately for shoots and roots, 

regressed as a function of plant age in Plantago lanceolata, from 3 to 18wks-old plants. Parameter 

estimates (β) for the constant and the linear and quadratic slopes are presented. Slopes significantly 

different from zero are highlighted in bold type.   

 Whole plant Shoots Roots 

 β t p β t p β t p 

Constant 0.060 12.4 0.0001 0.063 11.1 0.0001 0.048 14.1 0.0001 

Age          

   Linear 0.008 12.6 0.0001 0.010 12.1 0.0001 0.003   6.7 0.0001  

   Quadratic 0.001   7.8 0.0001 0.001   7.2 0.0001 0.000   0.9  0.33 
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Figure 2.3. Proportion of total IGs (arcsine sqrt transformed dry weight) for each individual plant measured (N=140, 20 per age class) 

at the a) whole plant level as well as separated for b) shoot and c) root tissues regressed across seven pre-reproductive age classes 

of Plantago lanceolata. Lines of best fit for linear (solid) and quadratic (dashed) models are graphed for illustrative purposes.    
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Finally, variation in R:S ratios across all age classes did not follow the negative 

association predicted by Boege and Marquis (2005) to explain plant allocation of resources to 

chemical defenses (slope = -0.09, R2 = 0.001, P = 0.29). Similarly, the ANCOVA showed that 

total IG concentrations at the whole plant level were not explained by R:S ratios once age was 

included in the model (R:S ratio: F1,120 0.03, P = 0.85; plant age: F6,120 28.4, P <0.0001); but a 

significant age by R:S ratio interaction was observed (F1,20 5.61, P <0.0001), indicating that the 

relationship between R:S ratios and IGs varied among age classes. Because seedling R:S 

ratios were not higher than R:S ratios of older age classes (Figure 2.1d) and a significant age by 

R:S ratio interaction was detected, two separate linear regressions were run on the 3 to 8 wk-

old individuals and the older 10 – 18 wk-old individuals. In this case, although much of the 

variation in IGs across plant age classes is still poorly explained by differences in R:S ratios, an 

interesting pattern arose. For seedling and young juvenile stages, contrary to predictions by the 

non-linear model, larger R:S ratios had a weak but significant positive relationship with 

proportion of total IGs (slope = 0.31, R2 = 0.08, P = 0.02) (Figure 2.4a). In contrast, for older 

juvenile and pre-reproductive stages, the decrease in R:S ratios as plants grew showed a 

significant negative relationship with plant investment in defenses (slope = -0.47, R2 = 0.22, P < 

0.0001) as predicted by the model (Figure 2.4b). However, this negative relationship is mostly 

driven by the older pre-reproductive age class (18wk-old), as removal of this stage leads to a 

non-significant relationship between R:S ratios and IG concentrations in older stages (slope 

=0.04, R2 = 0.002, P = 0.74).  

        



 

 

 

 

Figure 2.4. Linear regression between R:S ratios and proportion of total IGs production across a) young life stages (3, 5 and 8wk-old 

plants), and b) older life stages (10, 12, 15 and 18 wk-old plants). Proportion of total IGs at the whole plant level were arcsine-square 

root transformed.  
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DISCUSSION 

Plant defense theories predict that defenses should be allocated to plant tissues as a function of 

the value of those tissues for plant fitness and their susceptibility to damage by natural enemies 

(Feeny 1976, McKey 1979). Although both the value and the susceptibility to damage of a tissue 

change as plants develop, few studies to date have explored changes in chemical defenses of 

different plant tissues across multiple developmental stages. Here, I showed that the defensive 

chemistry of shoot and root tissues significantly varies during plant development and that this 

variation is mostly non-linear, as predicted by Boege and Marquis (2005). Thus, my data add to 

the growing number of empirical studies supporting non-linear trends in ontogenetic trajectories 

of plant defenses (Barton and Koricheva 2010 and references therein). These ontogenetic 

trajectories in plant defenses indicate that population level demographics may contribute to the 

observed spatiotemporal variation in plant defenses, and may help to explain ecological 

interactions among plants and herbivores (Lawrence et al. 2003, Boege 2005a, Fonseca et al. 

2006, Thomas et al. 2010).  

 In this study, the youngest seedling stage (3wk-old plants), consisting of the cotyledons 

and up to two true leaves, had twice as much total concentration of IGs than older seedling and 

young juvenile plants with six to 10 leaves (5 and 8wk-old). Similar to these results and 

supporting the proposed model by Boege and Marquis (2005), a few other empirical studies 

reported decreases in plant allelochemicals during early seedling development (Wallace and 

Eigenbrode 2002, Orians et al. 2010). However, this trend does not seem to apply across taxa 

(see Barton and Koricheva 2010), and is slightly different from a previous study showing 

positive ontogenetic trajectories in IGs in P. lanceolata seedlings (Barton 2007). Following this 

initial decrease, my study showed that allocation of resources to defenses during the juvenile 

stages (from 8 to 18wk-old) increased almost exponentially, from an average of less than 0.4% 

to over 4% dry weight (Figure 2.2). This result agrees with the well documented trend of 
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increases in plant defenses during immature plant stages (Barton and Koricheva 2010), also 

supporting the Boege and Marquis (2005) model.  

 Given that plant secondary compounds are differentially synthesized and stored among 

plant tissues, whole-plant assessment of defenses is needed for understanding plant partial and 

total investment of defenses over time. In this system, concentration of IGs were three times 

larger in shoot as compared to root tissues across all developmental stages, suggesting that 

resource allocation to defenses in aboveground tissues may prevail over belowground tissues 

during P. lanceolata development. Furthermore, although not as pronounced as in other 

systems, the pattern of variation in total IGs in leaves and roots differed, indicating that IG 

concentrations changed differently in shoot and root tissues throughout plant development. 

Specifically, allocation of IGs into root tissues constantly increased from younger to older plants 

while non-linear shifts in allocation of IGs during ontogeny were observed for shoot tissues 

(Table 2.1, Figure 2.3). Differential ontogenetic patterns between below- and aboveground 

tissues were also observed in other systems (Hartmann and Zimmer 1986, Williams and Ellis 

1989, Bellostas et al. 2007, Beninger et al. 2009), but no consistent trends can be described. 

For example, in two IG containing plants, Linaria vulgaris and Antirrhinum majus, Beninger et al. 

(2009) reported a linear decrease as well as a lack of variation in root iridoids from seedling to 

reproductive plants, respectively, while defenses in aboveground tissues of both species 

seemed to vary in a non-linear fashion. In contrast, total alkaloid concentrations in Papaver 

somniferun reported by William and Ellis (1989) showed significant non-linear trends in both 

shoot and root tissues, although maximum and minimum peaks did not necessarily match (see 

also Hartmann and Zimmer 1986). This disparity in ontogenetic trajectories between shoot and 

root tissues highlights the need to consider all plant tissues available at any stage to accurately 

test for overall plant investment in defenses throughout development.     
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Changes in resource allocation among plant tissues during ontogeny reflect variation in 

growth rate, physiological and anatomical constraints, as well as changing priorities (e.g. growth 

vs. reproduction) of an organism during the course of its development. Thus, researchers have 

used these allocation patterns, such as R:S ratios, to predict resource allocation to plant 

defenses (e.g. Boege and Marquis 2005). Here, I demonstrate that R:S ratios can partially help 

to predict ontogenetic changes in plant defenses. While juvenile to pre-reproductive plants 

follow the predicted trend of a negative relationship between R:S ratios and constitutive 

defenses (Figure 2.4b), allocation of defenses in early ontogenetic stages showed the opposite 

trend (Figure 2.4a). The early decrease in IGs as well as R:S ratios from young seedling to 

young juvenile stages may reflect a trade-off between investment in photosynthetic area versus 

defenses or simply a dilution effect due to higher growth rate compared to biosynthetic 

synthesis of chemical defenses. Following this initial positive relationship, the decrease in R:S 

ratios was associated with an increase in IGs, which is consistent with an increase in synthesis 

of defenses as growth rate becomes more limiting than photosynthetic rate (Herms and Mattson 

1992). Furthermore, this shift in the relationship between R:S ratios and IG concentrations may 

suggest potentially transient costs of defenses, as recently demonstrated by Orians et al. (2010). 

Nevertheless, these trends need to be interpreted with caution since the amount of variation in 

constitutive levels of IGs explained by R:S ratios was very low and some trends may be driven 

by a single age class, indicating that production of IGs depends on several other factors besides 

the allocation of biomass to different tissues. Alternatively, lack of strong correlations between 

R:S ratios and IG concentrations may be due to partial assessment of P. lanceolata overall 

investment in defenses. Because P. lanceolata also invest in phenolic compounds (Galvez et al. 

2005) as well as in physical defenses such as leaf toughness and trichomes (Schippers and Olff 

2000, de la Fuente 2002) I cannot rule out the potential predicted value of R:S ratios in overall 

defenses.     
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 Whatever the mechanism, the ontogenetic variation in IGs described here, 

encompassing four to five-fold increases in shoot and root tissues, can have important 

consequences for plant-herbivore interactions. Laboratory and field experiments have shown 

that specialist butterflies prefer to oviposit on P. lanceolata tissues with higher IG concentrations 

(Prudic et al. 2005, Reudler Talsma et al. 2008b), and that larvae of these herbivores grew 

better on diets with higher amounts of IGs (e.g. Bowers and Puttick 1989, Harvey et al. 2005, 

Saastamoinen et al. 2007). In contrast, generalist herbivores and pathogenic fungi damaging 

below- or aboveground tissues are usually deterred by high IG concentrations (Strohmeyer et al. 

1998, Biere et al. 2004, De Deyn et al. 2004, Harvey et al. 2005, Wurst and van der Putten 

2007). As a consequence, the relative palatability of P. lanceolata to below- and aboveground 

herbivores and pathogens will significantly vary through the season, and may determine the 

impact of these antagonists on plant fitness. Lastly, for sequestering specialist herbivores, 

ontogenetic changes in plant defenses can, in turn, modify herbivore unpalatability and thus, 

can indirectly mediate tri-trophic interactions (e.g. Strohmeyer et al. 1998, Harvey et al. 2005, 

Baden and Dobler 2009, Smilanich et al. 2009a). Thus, mainly for specialist herbivores that 

consume and sequester IGs from single or multiple tissues, these ontogenetic patterns in plant 

constitutive defenses may impact herbivore population dynamics and community structure 

through seasonal changes in host selection, herbivore performance, and levels of resistance to 

natural enemies.   

 Ontogenetic patterns in leaf nutritional quality were also evident, but the trend was 

opposite to the one described for chemical defenses, showing a decrease in leaf water and 

nitrogen concentration as plants aged. Similar decreases in nutritional quality have been 

observed in numerous plant taxa (e.g. Bowers and Stamp 1993, Gaudet et al. 2001, Goodger et 

al. 2006, Merilo et al. 2009), directly influenced by plant age or indirectly mediated through their 

correlation with other ontogenetic shifts in leaf anatomy and physiology (Apple et al. 2002, 

Ishida et al. 2005). In this study, ontogenetic variation in nutritional quality encompassed an 
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average decrease of 10% in percentage water and 30% in nitrogen concentration from 3wk to 

18wk-old plants (Figure 1a, b). This variation can also have important implications for plant-

insect interactions since diets with low water and nitrogen concentrations typically have negative 

impacts on herbivore host selection, growth rates, and fitness (Mattson 1980, Awmack and 

Leather 2002). Specifically for this system, similar variation in leaf nitrogen concentrations 

(~30%) among individuals of P. lanceolata resulted in a significant effect on oviposition 

preferences of the specialist Buckeye butterfly (Junonia coenia, Nymphalidae), with females 

showing preference for high-nitrogen plants (Prudic et al. 2005). Thus, the ontogenetic patterns 

in nutritional quality showed here may also help to explain temporal variation in species 

interactions as seen in other systems (e.g. Gaudet et al. 2001, Barrett and Agrawal 2004).  

 In summary, developmental variation in chemical defenses across Plantago lanceolata 

ontogeny appears to be similar, and sometimes greater, in magnitude than genetic or 

environmental variation in a single age class (Bowers et al. 1992, Bowers and Stamp 1993, 

Barton 2007). Recent empirical studies have shown similar patterns in other systems (e.g. 

Lawrence et al. 2003, Donaldson et al. 2006, Holeski et al. 2009). Thus, these studies highlight 

the importance of separating the proportion of variation in plant defenses that has a 

developmental basis from strict genetic or environmentally dependent variation, in order to 

improve our understanding of the evolution of plant defenses. Furthermore, these ontogenetic 

patterns in plant defenses and nutritional quality are likely to influence below- and aboveground 

herbivores alike, providing a potential mechanism to explain temporal variation in herbivore 

community composition and species interactions over time.  
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CHAPTER 3 

PLANT ONTOGENY AND HERBIVORY: INFLUENCES ON                                     

TOLERANCE AND RESISTANCE TRAITS 

ABSTRACT   

Plants can minimize the negative impact of herbivory via two well-recognized mechanisms: 

tolerance and resistance. Such herbivore-induced responses can be influenced by numerous 

extrinsic and intrinsic factors such as resource availability, herbivore identity, plant genotype, 

and plant developmental constraints. Among these, plant ontogeny has been the less well 

explored, and the mechanisms underlying the potential age-dependent induced responses are 

still poorly understood. Here, I assessed how plant ontogeny can alter tolerance and resistance 

traits in Plantago lanceolata (Plantaginaceae), and associated this variation with intrinsic 

changes in plant relative growth rate (RGR) and allelochemical synthesis rate throughout plant 

development. Four juvenile age classes of P. lanceolata were simultaneously damaged by the 

specialist herbivore, Junonia coenia (Nymphalidae), until ~30% of the available leaf tissue was 

consumed. Short- and long-term responses in compensatory growth (i.e. tolerance) and 

induction of iridoid glycosides (= IG) (i.e. resistance), were assessed one, three and five weeks 

after damage. Plant age significantly influenced the ability of P. lanceolata to tolerate or induce 

defenses after damage. In terms of compensatory growth, intermediate juvenile stages showed 

a higher compensatory growth capability as compared to younger or older juvenile stages; and 

this variation seems to be explained, at least in part, by ontogenetic changes in plant RGR. In 

terms of induced chemical defenses, results showed a complex pattern. While young juvenile 

plants showed no significant differences in IG concentrations between damaged and control 

plants, older juvenile stages showed responses ranging from no induction to induced 

susceptibility or induced resistance. However, the use of graphical vector analyses (GVA) 

demonstrated that IG synthesis was reduced more, compared with growth rate, in older juvenile 
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stages, while the opposite was observed for younger juvenile stages. Thus, compensatory 

growth and induced synthesis of IGs showed constantly fluctuating patterns as plants aged, with 

some stages being able to employ both strategies, while others employed only one or neither of 

them. These results demonstrate that shifts in defensive strategies as a function of plant 

ontogeny can be very complex, but that intrinsic RGR and metabolic rates (i.e. IG synthesis rate) 

can help predict under which conditions different responses to herbivory should be favored. 

Furthermore, these results suggest that the outcome of plant-herbivore interactions may 

significantly vary depending on the timing of herbivory.  

 

INTRODUCTION  

Plants can minimize the negative impact of herbivory via two well-recognized mechanisms: 

resistance traits that aim at reducing subsequent herbivore damage and tolerance traits that 

minimize the negative effects of damage on plant fitness (Karban and Baldwin 1997). These 

responses are typically achieved by enhancing photosynthesis rates, increasing nutrient uptake, 

up-regulation of defense compound synthesis, more efficient utilization of stored reserves, and 

activation of dormant meristems, among others (Tiffin 2000). As plants age, several 

morphological and physiological traits often change from one developmental stage to the next. 

For instance, while architectural complexity, resource acquisition (i.e. access to water and 

nutrients) and storage capacity typically increase (Poethig 1990, Malamy 2005, Barthelemy and 

Caraglio 2007, Niinemets 2010), photosynthesis and growth rate, root:shoot ratios, and 

hormone production and metabolic activity usually decrease as plants develop (Gedroc et al. 

1996, West et al. 2001, Farnsworth 2004, Ishida et al. 2005, Wiedemuth et al. 2005). Hence, it 

is not surprising that plants’ ability to induce chemical defenses and/or tolerate damage vary as 

plants age (Boege and Marquis 2005, Barton and Koricheva 2010). However, despite the 

increasing interest in describing ontogenetic trends in plant induced defenses, the mechanisms 
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that explain the variation observed in tolerance and resistance traits as plants age are still 

poorly understood.  

 Tolerance has been defined as the reaction norm of the fitness response of a given 

genotype to a gradient of herbivore damage (Stowe et al. 2000). However, when genotypes are 

unknown, the replacement of damaged tissues, termed compensatory growth, represents the 

most commonly studied plastic response to damage (Mcnaughton 1983, Strauss and Agrawal 

1999, Stowe et al. 2000). In terms of plant ontogeny, the capacity to replace the tissue lost to 

herbivores is predicted to increase as plants age (Strauss and Agrawal 1999, Haukioja and 

Koricheva 2000), due to a greater number of available meristems, smaller root to shoot ratios, 

greater capacity to acquire resources, and higher probability of mobilization of stored reserves 

at older developmental stages. Support for this prediction comes from both woody (e.g. Warner 

and Cushman 2002, Hodar et al. 2008) and herbaceous plants (Stout et al. 2002, Boege et al. 

2007, Tucker and Avila-Sakar 2010, Gruntman and Novoplansky 2011).  

 Alternatively, there are also numerous cases where higher tolerance or compensatory 

growth was achieved at younger, compared to older, life stages (e.g. Maschinski and Whitham 

1989, Gedge and Maun 1992, Weltzin et al. 1998, Boege 2005b). Decreases in tolerance traits 

throughout ontogeny may be linked to the decline in metabolic rate and growth rate as plants 

age. During growth, the resources acquired to fuel metabolism can be allocated to the 

production of new tissue or to the maintenance of existing ones (West et al. 2001). Thus, as 

plants age and individual size increases, more carbon needs to be allocated to the maintenance 

of photosynthetic and non-photosynthetic structural tissues (Enquist et al. 1999, West et al. 

2001), resulting in a decrease in relative growth rate (hereafter RGR); and thus, tolerance 

capabilities. Additionally, higher compensatory growth early during plant development may be 

due to the lack of induction of resource sequestration. Induced resource sequestration refers to 

an increase in export of existing or newly acquired resources from attacked tissues into storage 

organs, in such a way that these resources become unavailable for growth or defense (reviewed 
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in Orians et al. 2011). Because there are costs associated with resource sequestration, Orians 

and coworkers (2011) predicted that resource sequestration should be less beneficial at 

younger developmental stages, where susceptibility to herbivores and fitness costs are higher, 

while it should be favored in mature stages, where export of resources to short-term storage 

pools may later benefit reproduction or overwintering strategies.  

 Given these conflicting ontogenetic changes in plant physiology, architecture and 

functional priorities (i.e. growth vs. defense vs. reproduction), it is unlikely that a single overall 

increase or decrease in tolerance capabilities will be observed as plants age. Indeed, when 

more than two developmental stages were tested, trajectories often varied in a non-linear 

fashion (Hare 1980, Lennartsson et al. 1998, Ohnmeiss and Baldwin 2000, Del-Val and Crawley 

2005). Moreover, a recent meta-analysis summarizing ontogenetic patterns across multiple 

plant life histories and developmental stages illustrated that, on average, the ability of both 

woody and herbaceous plants to tolerate damage did not differ as plants aged (Barton and 

Koricheva 2010). Therefore, the simultaneous assessment of both patterns and mechanisms 

will help to better understand and predict under which conditions a positive or negative change 

in tolerance capabilities should be expected as plants age.  

 Induced defenses, defined as the increase in chemical and morphological defense traits 

which may deter current and/or subsequent herbivores, also vary throughout plant ontogeny. 

Induced chemical defenses, usually considered a cost-saving strategy, are associated with 

scenarios where resource allocation constraints limit constitutive defenses or are dependent on 

actively growing and differentiating tissues (Karban and Baldwin 1997, Cipollini et al. 2003). 

Because younger plant stages are often more susceptible to herbivory, have lower levels of 

constitutive defenses, and have proportionally more undifferentiated and actively growing 

tissues than older plant stages; the ability of plants to induce defenses is predicted to be greater 

in younger developmental stages and lessen as plants mature (Karban and Baldwin 1997). In 

support of this prediction, Barton and Koricheva (2010) showed that, at least for herbaceous 
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plants, induced defenses considerably decreased as plants progress from seedling to 

senescent stages. However, there are also examples where higher induction in defensive traits 

was attained at later developmental stages (Mattiacci et al. 2001, Zhu and Park 2005, Du et al. 

2008, Santos and Fernandes 2010). Higher induction in defensive traits at older life stages may 

be common in species where metabolic costs of defense production are high, such as those 

that depend on the previous development of  biosynthetic machinery and/or complex storage 

structures (i.e. resin ducts and glandular trichomes; Gershenzon 1994). Furthermore, although 

induced defenses can vary with plant ontogeny, the result can be a decrease in levels of 

defenses as compared with undamaged plants, termed ‘induced susceptibility’ (e.g. Barton 

2008). Hence, while age-related changes in concentration of plant allelochemicals beyond 

constitutive levels can be useful to predict subsequent herbivory events, this approach may not 

necessarily reflect changes in plant resource allocation to defenses.   

 Changes in allelochemical concentrations can reflect variation in synthesis rates and/or 

biomass accumulation (Koricheva 1999). Adaptive defense strategies, such as the increased 

synthesis of plant allelochemicals following damage, involve the production of new molecules 

(quantities) rather than concentrations (= content/biomass). Consequently, to better understand 

how plant ontogeny directly mediates allocation of resources to the production of plant 

allelochemicals, we need to be able to separate whether changes in concentration are primarily 

due to concentration-dilution effects (changes in biomass) or synthesis effects (changes in 

content). A technique that allows separating these confounding effects is graphical vector 

analyses (Haase and Rose 1995, Koricheva 1999). This technique is particularly important in 

studies assessing induced defenses throughout plant development, as significant changes in 

both growth and production of defenses are expected.   

 Here, using four juvenile stages of the herbaceous weed, Plantago lanceolata L. 

(Plantaginaceae), I examine ontogenetic variation in the expression of tolerance and resistance 

traits following leaf damage by the specialist caterpillar, the Buckeye (Junonia coenia, 
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Nymphalidae). Tolerance traits were assessed as compensatory growth ability (Mcnaughton 

1983), and resistance traits were assessed as induction of iridoid glycosides, the main 

allelochemicals synthesized by P. lanceolata (Ronsted et al. 2000). To explain ontogenetic 

variation in compensatory growth, I assessed the role of plant RGR, under the assumption that 

higher rates of growth should increase the ability of a plant to recover the tissue lost to 

herbivores (Hilbert et al. 1981, Anten et al. 2003). In addition, I used graphical vector analyses 

(GVA) to assess whether changes in concentrations of plant allelochemicals reflect changes in 

synthesis rates and/or indirect changes in biomass accumulation as plants develop (Haase and 

Rose 1995, Koricheva 1999).  

 

MATERIALS AND METHODS 

Study system  

Plantago lanceolata L., narrowleaf or ribwort plantain, (Plantaginaceae) is a common, short-

lived, herbaceous plant (annual or facultative perennial) introduced to North America around 

200 years ago (Cavers et al. 1980). This plant species produces, in addition to iridoid glycosides 

(Ronsted et al. 2000), a number of bioactive phenolic compounds such as flavonoids and 

phenylethanoid glycosides (Tamura 2001, Galvez et al. 2005). However, iridoid glycosides 

(hereafter IGs) are the primary allelochemicals found in large concentrations across tissues and 

influencing feeding preferences of insect herbivores and pathogens (e.g. Bowers and Puttick 

1989, Biere et al. 2004, De Deyn et al. 2004). Thus, here I focused on variation in constitutive 

and induced IGs throughout plant ontogeny. Specifically, P. lanceolata produces primarily two 

IGs: aucubin and catalpol, and amounts of these compounds can reach up to 10-12% dry 

weight in leaf tissues (Bowers and Stamp 1992, 1993). Because aucubin is the biosynthetic 

precursor of catalpol (Ronsted et al. 2000), high concentrations of IGs, especially of catalpol, 

indicate a greater biosynthetic investment by the plant. In addition, high concentrations of IGs 

deter several generalist herbivores and pathogenic fungi (Bowers and Puttick 1989, Strohmeyer 
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et al. 1998, Biere et al. 2004, De Deyn et al. 2004, Harvey et al. 2005, Wurst and van der Putten 

2007). Therefore, enhanced concentrations of IGs, especially of catalpol, may result in higher 

unpalatability and/or toxicity to most generalist antagonists (Bowers and Stamp 1993). In 

contrast, high IG concentrations may potentially increase damage by specialist herbivores that 

use IGs as oviposition and feeding stimulants  (Bowers 1983, 1984, Reudler Talsma et al. 

2008a), although some negative physiological and ecological consequences were reported for 

specialist herbivores as well (Adler et al. 1995, Camara 1997a, Smilanich et al. 2009a).  

 Earlier studies have identified plant age as an important intrinsic factor affecting P. 

lanceolata constitutive defenses, showing that, in general, IG content increases as plants age 

(Bowers and Stamp 1993, Fuchs and Bowers 2004, Barton 2007, Quintero and Bowers 2011a). 

Similarly, plant age also has been identified as an intrinsic factor altering the ability of P. 

lanceolata to induce defenses and/or tolerate damage. For example, Hanley and Fegan (2007) 

showed that following cotyledon damage, seedlings incur in both short- and long-term reduction 

in biomass and/or number of inflorescences when damaged earlier (1 and 2wk-old plants) but 

not later (3wk-old plants) in their development. In contrast, Barton (2008) found that 2 and 4wk-

old seedlings suffering 50% leaf damage did not statistically differ in terms of compensatory 

growth capabilities. Nevertheless, older stages (4wk-old plants) showed lower compensatory 

growth, or, if they achieved compensation, it was at the expense of root biomass, while younger 

seedlings showed higher or complete compensation during the same period (Barton 2008). 

Similarly, in terms of induction, while lack of induced defenses was reported for young seedlings 

(2wk-old plants, Barton 2008), juveniles (5, 6 or 7wk-old plants, Fuchs and Bowers 2004) and 

mature stages (14wk-old plants, Quintero and Bowers 2011b), some juvenile stages 

demonstrated induced susceptibility (4wk-old plants, Barton 2008) or resistance (9wk-old plants, 

Quintero and Bowers 2011b) following 50% damage. These previous studies demonstrated that 

the ontogenetic stage at which damage occurred plays a critical role in P. lanceolata induced 

defenses. Nevertheless, it is still unclear whether contrasting patterns among studies may be 
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due to variation in environmental conditions, type (mechanical vs. herbivore) and amount of 

damage, time elapsed following damage, or to intrinsic variation in plant vigor. Furthermore, 

previous studies only reported changes in overall biomass and/or concentrations of IGs; and 

therefore, were unable to evaluate whether those changes reflected variation in plant IG 

synthesis or concomitant changes in biomass. By assessing short- and long-term responses to 

herbivory across four age classes and controlling for multiple factors that may alter plant 

responses to herbivory, this study attempts to relate age-dependent induced responses to 

herbivory with intrinsic variation in plant growth rate and IG synthesis rate as plants age.  

 The buckeye butterfly, Junonia coenia Hubner, (Nymphalidae) is a New World butterfly 

that can have one to multiple broods per year under natural conditions (Brock and Kaufman 

2003). This species is a specialist herbivore of plants containing IGs (Bowers 1984). Adult 

female butterflies use IGs as oviposition stimulants, choosing host plants or tissues within plants 

with higher IG concentrations (Pereyra and Bowers 1988, Klockars et al. 1993). Buckeye larvae 

also use IGs as feeding stimulants and are documented to feed on members of four plant 

families: Cornaceae, Plantaginaceae, Scrophulariaceae and Verbenaceae (Bowers 1984).  

Furthermore, buckeye caterpillars are able to sequester these compounds as a function of their 

concentration in host plant tissues (Camara 1997a). As a result, caterpillar performance and 

predation risk can strongly depend on levels of host plant defenses. For instance, caterpillars 

feeding on higher IG diets are typically avoided by invertebrate predators (Dyer and Bowers 

1996, Strohmeyer et al. 1998, Theodoratus and Bowers 1999, Stamp 2001), but show 

enhanced susceptibility to parasitoid attack (Smilanich et al. 2009a; Chapter 5). In North 

America, Buckeye butterflies have incorporated P. lanceolata into their diet and use this species 

as a preferred host (Graves and Shapiro 2003 and references therein). Because P. lanceolata 

forms natural populations with diverse age structures (Shefferson and Roach 2010) and 

Buckeyes can have multiple generations within a growing season, it is possible that plants can 
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be damaged in nature at any developmental stage making this greenhouse experimental design 

(see below) realistic under natural conditions.   

 

Compensatory growth and induced defenses following leaf damage 

The study was performed at the University of Colorado greenhouse during spring-summer 2008. 

Buckeye larvae used in this study were from a laboratory colony reared at the University of 

Colorado at Boulder. Prior to the experiment, larvae were fed on P. lanceolata leaves and kept 

in growth chambers with a photoperiod of 14hr day: 10 night, and day-night temperatures of 

27°C /22°C.   

 Plant ability to induce defenses after herbivory, measured as the ability of a plant to 

increase chemical defenses (resistance), and/or increase growth rate to compensate for the lost 

tissue (compensatory growth) were evaluated at four juvenile age classes: 3, 6, 10, and 14 

week-old plants from germination (see Table 3.1 for descriptions). To control for potential 

environmental factors that could influence plant responses to herbivory other than plant age (i.e. 

photoperiod and temperature), plants of different age classes were analyzed simultaneously. 

Synchronization among age classes occurred by germinating seeds at intervals of 20-30 days 

from April to July. In this way, although average environmental conditions from sowing to 

harvest varied among the four juvenile age classes, I ensured that all individuals were exposed 

to the same conditions at the time of exposure to herbivore damage, as well as at harvest time. 

Since IG concentrations in this as well as other IG containing plant species, can vary 

substantially over days and even hours (Hogedal and Molgaard 2000, Fuchs and Bowers 2004), 

or be influenced by temperature (Tamura 2001), simultaneous damage and harvest across all 

age classes should minimize variables other than plant age that could influence constitutive and 

induced IG concentrations.  

 Seeds were collected from >20 maternal plants of a population in Boulder County, 

Colorado, and mixed before the experiment started. Sub-groups of seedlings were germinated 
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in Fafard mix and then transplanted after 15 days to a growth medium of equal parts Metro Mix 

350, sterilized sand, and turface. Each time, all seedlings used for this experiment were 

selected to be equivalent in size and number of leaves at the time of transplanting. Plants were 

grown in extra-deep 13 liter pots in order to minimize root-binding effects, which can affect both 

compensatory growth and plant secondary metabolite production (Karban and Baldwin 1997). 

Replicates were randomly placed on four 5m2 greenhouse benches, exposed to natural daylight 

and watered daily. Fertilizer was supplied to all plants every three to four days throughout the 

length of the experiment, using Scotts Peter’s Excel solution (Scotts-Sierra Horticultural 

Products Company, Marysville, Ohio) mixed at a ratio of 15-5-15 N-P-K, which also provides 

trace amounts of micronutrients. Temperatures fluctuated over the course of the season but 

greenhouse temperatures did not exceed 32°C or fall below 15°C at any time.  

 On July 20th, when all age classes were present, 90 plants per ontogenetic stage were 

randomly assigned to one of two herbivore treatments: C = control (no herbivore) and H = 

herbivory by leaf-chewing specialist buckeye caterpillars, Junonia coenia. The herbivory 

treatment consisted of one to six 4th instar larvae added to the plants for a period of a few hours 

to three days, the time in which the caterpillars consumed approximately 30% of the plant 

tissues. To confine caterpillars on the plants during the treatment, control and treatment plants 

were caged using mesh bags constructed of Remay™. As treatment plants reached 30% 

damage, caterpillars and mesh bags from control and treatment plants were removed.  Because 

induction of IGs in P. lanceolata appears to reach its highest point six days after damage (Fuchs 

and Bowers 2004), to test for short-term responses to herbivory (i.e. induction of IGs and 

compensatory growth), a subset of 15 plants per age class/treatment were harvested a week 

after herbivore removal. Furthermore, because the ability of P. lanceolata to induce chemical 

defenses or compensate for lost tissue may vary considerably with time after initial damage 

(Fuchs and Bowers 2004, Hanley and Fegan 2007, Barton 2008), to fully assess the role of 

plant age on induced plant responses I added two additional harvest times: 3 and 5 weeks after



 

 

 

 

Table 3.1. Description of the four juvenile age classes before herbivory treatment started. Values calculated by harvesting a 

subsample of 15 plants per age class the same day that caterpillars where placed on treatment plants (Mean ± 1SE). Constitutive 

defenses (total IGs in percent dry weight) and nutritional quality (percent water and nitrogen concentrations) are reported only for 

aboveground tissues.  

Age class 

(weeks-old) 

Number of 

leaves 

Shoot biomass 

(g) 

Root biomass 

(g) 

R:S ratio Constitutive total 

IGs (% dry wt.) 

Water  

 (%) 

Nitrogen  

(%) 

3 4.01 ± 0.11 0.014 ± 0.001 0.0057 ± 0.0006 0.44 ± 0.06 0.84 ± 0.14 91.54 ± 0.45 5.64 ± 0.13 

6 7.6 ± 0.23 0.088 ± 0.005 0.0198 ± 0.0025 0.22 ± 0.02 0.13 ± 0.04 92.72 ± 0.14 5.23 ± 0.19 

10 23.0 ± 2.5 1.21 ± 0.08 0.54 ± 0.04 0.46 ± 0.03 0.50 ± 0.08 89.88 ± 0.26 4.55 ± 0.11 

14 33.75 ± 3.84 3.03 ± 0.26 1.05 ± 0.14 0.33 ± 0.02 1.71 ± 0.03 87.71 ± 0.27 3.43 ± 0.12 

5
9
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herbivore removal, again using 15 plants per age class/treatment combination. The 3 and 5 

week harvest times, termed here as long-term responses, were selected as a trade-off between 

providing sufficient time for plants to recover from their 30% tissue loss and avoiding the 

considerable changes in photoperiod and temperature at the end of the summer, which may 

further alter plant growth rate and allelochemical synthesis rate as plants prepare to overwinter. 

Total sample size was 360 plants, with 15 replicates per age class, treatment and harvest time 

combination.   

  At harvest, all aboveground tissues from both control and herbivory groups were 

weighed fresh, oven-dried at 50°C for 48hrs to a constant mass and weighed again to the 

nearest 0.01g. To assess variation in concentrations of IGs, all leaves were ground into a fine 

powder, and 10-30mg subsamples (entire available tissue for some seedlings) were processed 

for IG extraction and analyzed by gas chromatography following previously described methods 

(Bowers and Stamp 1993, Barton 2007, Quintero and Bowers 2011a).  

 

Statistical analyses  

Differences in compensatory growth and induced concentrations of IGs following herbivory, as a 

function of plant age (i.e. 3, 6, 10, and 14 weeks-old plants) and harvest time (i.e. 1, 3, and 5 

weeks after damage), was assessed as changes between control and treatment plants (i.e. C vs. 

H) in aboveground biomass, total levels of IGs, and proportion of catalpol/total IGs. Biomass 

data were square root transformed and IG concentrations were arcsine square root transformed 

to meet assumptions of normality. The data were first fitted to an initial full factorial model with 

plant age, treatment (C vs H), harvest time, and their interactions as the main effects.  Then, for 

each of the three dependent variables, non significant variables were progressively removed 

from the model until a minimal appropriate model was obtained (i.e., a simplified model in which 

all terms are significant). Single factors or variables incorporated into significant interactions 

were maintained in the minimum adequate model (Crawley 1993). I compared all alternative 
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models for each comparison using the Akaike Information Criteria (AIC) of the R software 

environment (the R freeware statistical package, R Development Core Team, 2008).   

 Changes in compensatory growth capabilities across plant age class and harvest time 

following damage, measured as differences in aboveground biomass between C and H plants, 

can be the result of differential growth rates among plant developmental stages throughout the 

season (Hilbert et al. 1981, Anten et al. 2003). Thus, to test whether changes in growth rate 

vary over plant ontogeny and following damage, I tested for differences in relative growth rates 

(RGR) between control and damaged plants across plant age classes and harvest times. Since 

changes in biomass as a function of plant age and treatment were calculated using destructive 

sampling, I was unable to use individual plant biomass before and after treatment. Hence, I 

calculated RGR as the increment in total aboveground biomass for each plant age class and 

treatment combination (ωat) between successive harvests (h) divided by the total mean 

biomass at the previous harvest (ῶath-1) and the number of weeks between harvests (t).  

(1) RGR ati1-15 = (ωathi - ῶath-1) ῶath-1-1 t-1  

The only exception was the assessment of RGR of treatment plants at the first harvest (i.e. 

3wks-old plants one week following damage), where mean for the treatment group (i.e. ῶath-1 

of damaged plants) was the mean biomass of control plants before the experiment started 

minus 30% to account for the original lost tissue by caterpillar feeding. RGR values were log 

transform to meet assumption of normality. Finally, a three-way ANOVA was used to assess 

whether changes in RGR depended on plant age, treatment, harvest time and the interactions.  

As before, non significant variables were progressively removed from the model until a minimal 

appropriate model was obtained, and the difference between the full and minimal appropriate 

model was assessed using the Akaike Information Criteria (AIC). 

 To assess whether changes in concentrations of IGs following herbivory, as a function of 

plant age and time elapsed following initial attack (i.e. harvest time), reflect allocation of 
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resources to plant allelochemicals, I used GVA (Koricheva 1999).  Since plant responses to 

herbivory usually encompass a combination of changes in plant growth and allelochemical 

synthesis rate, this method helped to discern whether observed shifts in concentrations of plant 

IGs (mg g-1 dry wt) were due to active changes in IG synthesis rate or to indirect changes in 

biomass accumulation (Haase and Rose 1995). The construction of the vector diagram and the 

application of GVA in plant nutrient and chemical analyses have been previously described in 

detail (see Haase and Rose 1995, Koricheva 1999). Briefly, GVA allows for the simultaneous 

comparison of relative changes in plant biomass (Z), chemical content (X) and concentration (Y) 

of plant chemical defences. Relative changes are calculated based on a reference treatment, 

which in this case was the mean of the control group (undamaged plants). As a result, changes 

between control (C) and treatment group (H) are interpreted based on examination of both the 

direction and length of vectors extending beyond this reference point (relative difference 

between the C and H groups) (see Figure 3.1). 

 

RESULTS 

Plant age and compensatory growth  

Mean aboveground biomass of treatment plants was always lower than that of control plants, 

but statistically significant differences were only found for certain plant age classes and harvest 

times, indicating that some P. lanceolata stages were better than others at compensating for the 

30% lost tissue. Thus, difference in plant biomass significantly varied with plant age class, 

herbivory treatment, and time following damage (Figure 3.2, Table 3.2). Time following damage 

did not interact with the treatment factor and therefore was excluded from the model, as was the 

three-way interaction (Table 3.2).  The significant age by treatment interaction indicated that 

plant ability to tolerate damage depended on plant age at the time of herbivory (Table 3.2).  In 

general, intermediate juvenile stages (6 and 10wk-old) showed a higher compensatory growth 
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Figure 3.1. Graphical vector analysis (GVA) allows for the simultaneous comparison between  
relative changes in plant biomass (Z), chemical content (X), and concentration of plant 
allelochemicals (Y), where concentration=content/biomass. Relative changes are calculated 
based on a reference treatment, which in most cases is the mean of the control group. Then, 
these changes are interpreted based on examination of both the direction and length of vectors 
extending beyond this reference point (relative difference between the control and treatment 
groups). In this way, this technique enables one to distinguish between cases where shifts in 
concentrations are due to changes in compound uptake or synthesis and cases where these 
shifts are simply due to changes in biomass accumulation. Five possible scenarios can be 
expected: (1) Steady state represents a situation where concentrations do not change but both 
content and biomass increase, indicating that allelochemical synthesis matches changes in 
biomass accumulation. (2) A Dilution effect indicates a decrease in concentrations 
accompanied by an increase in content and biomass, which signifies periods of active plant 
growth when allelochemical synthesis cannot keep pace with the high rate of biomass 
accumulation. (3) A Concentration effect, which represents the inverse of the dilution effect,  
occurs when plant growth is reduced more than allelochemical synthesis, and is characterized 
by increased concentrations but a reduced content and biomass. (4) Excess synthesis, in turn, 
represents an increase in concentrations accompanied by corresponding increases in content 
and biomass, indicating that the allelochemical synthesis rate is higher than the biomass 
accumulation rate. (5) Finally, a decrease in concentrations observed together with a decrease 
in content and a decrease or no change in biomass indicates reduced synthesis, where 
allelochemical synthesis is reduced more than biomass accumulation. Figure and legend 
modified from Koricheva (1999).  
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capability as compared to younger (3wk-old) or older (14wk-old) juvenile stages (Figure 3.2). 

This variation is hard to visualize in Figure 3.2 given the scale of the y-axis; however, the 

magnitude of biomass reduction (i.e. ∆ biomass H - C / C) across the three harvest times was 

greater for 3 and 14wk-old age classes (damaged plants were, on average, 37% and 25% 

smaller than control plants, respectively) than for 6 and 10wk-old age classes (damaged plants 

were, on average, 20% and 17% smaller than control plants, respectively) (F3,12 = 4.81, P = 

0.034). Furthermore, the significant age by harvest interaction (Table 3.2), indicated that, 

independently of responses due to damage, changes in plant biomass as plants progressed 

over the growing season also varied among plant age classes. In particular, while younger age 

classes (3, 6 and 10wk-old) showed significant increases in biomass through time, older juvenile 

stages (14wk-old) did not notably increase their aboveground biomass over time (Figure 3.2). 

 Changes in RGR among plant age classes may have partially accounted for the 

variation seen in compensatory growth ability.  RGR significantly varied with plant age class and 

harvest time but did not change with herbivory treatment (Table 3.2). This indicates that 

herbivory treatment did not affect the predetermined growth rate of plants at any developmental 

stage. In contrast, in all cases, RGR showed a consistent decrease over time, with age and 

across harvest time (Figure 3.3). Because the RGR did not change with the treatment factor, 

this result suggests that when both control and treatment groups have greater RGR, damaged 

plants have a more difficult time “catching-up” with the undamaged plants. This can explain why 

compensatory growth capabilities increased from 3 to 10 wk-old age classes, but the 

subsequent decrease at the 14 wk-old stage may be a response to different mechanisms or 

constraints.  

 

 



 

 

 

Table 3.2.  Summary of significant factors of minimal appropriate models assessing changes in aboveground biomass, total levels of 

iridoid glycosides, proportion of catalpol/total IGs, and plant relative growth rate (RGR) as a function of plant age (Age), herbivory 

(Treatment), and time following damage (Harvest), as well as their interactions, in Plantago lanceolata. ∆AIC indicates the difference 

between the full factorial model and the minimal appropriate model using Akaike Information Criteria (AIC).  

  Biomass Total IGs  Prop Catalpol RGR 
 df F

 
p df F p df F p df F p 

             
Model 15 630.89 0.0001 23 458.18 0.0001 12 47.50 0.0001 12 384.29 0.0001 
Age 3 553.53 0.0001 3 339.28 0.0001 3 12.91 0.005 3 324.20 0.0001 
Harvest 2 208.09 0.0001 2 147.29 0.0001 2 12.15 0.002 2 107.15 0.0001 
Treatment  1 35.91 0.0001 1 4.94 0.026 1 10.52 0.001 1 0.006 0.940 
Age*Harvest 6 65.49 0.0001 6 126.91 0.0001 6 14.32 0.026 6 34.43 0.0001 
Age*Treatment 3 10.17 0.017 3 2.98 0.395       
Harvest*Treatment    2 0.50 0.777       
Age*Harvest*Treatment    6 18.45 0.005       
Error 344   336   347   347   
             

∆AIC    12.03   0.11   11.75   17.58 
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Figure 3.2. Plantago lanceolata compensatory growth ability measured as the difference in mean total aboveground dry biomass of 

plants subject to herbivory versus undamaged control plants (mean ± 1SE, N=15 per treatment)  at 1, 3 or 5 weeks following initial 

damage (i.e. harvest time) across four juvenile age classes: (a) 3 week-old plants, (b) 6 week-old plants, (c) 10 week-old plants, and 

(d) 14 week-old plants.  Standard errors are calculated and graphed for all treatments, but some are too small to be visible given the 

size of the symbols. Original data were square root transformed for statistical analyses; untransformed data are shown for illustrative 

purposes only. Asterisks represent mean group differences among herbivore and control treatments as tested by single degree of 

freedom contrasts. Significance is displayed as P < 0.0001 (***), P < 0.01 (**), P < 0.05 (*). 
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Figure 3.3. Changes in relative growth rate (RGR) of control and treatment plants from the 

initial damage event to one, three, or five weeks following damage for all four juvenile P. 

lanceolata age classes.  
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Plant age and induced defenses 

Induced defenses after damage, assessed as changes in total levels of IGs, or proportion of 

catalpol/total IGs, significantly varied as a function of plant age at the time of damage, herbivory 

treatment and time following damage (Table 3.2, Figure 3.4). In addition, in both cases there 

was a significant age by harvest interaction (Table 3.2), indicating that, independently of the 

effect of treatment, changes in IG concentrations during this five week window varies among 

plant age classes. For example, in the case of total IG concentrations, while younger age 

classes (i.e. 3, 6 and 10 wk-old) showed a dramatic increase in defenses from early to late 

harvests, older juvenile plants (i.e. 14 wk-old) showed significantly less variation in total IG 

concentration during the same period (Figure 3.4). Finally, for total levels of IGs, a significant 

three-way interaction was observed (Table 3.2), indicating that, not only the ability of a plant to 

induce defenses changed as a function of plant age at the time of herbivore attack, but also that 

induced defense strategies varied with time following damage (Figure 3.4). For example, in the 

case of 6 and 10wk-old plants, whereas total levels of IGs in damaged plants completely 

matched those of control plants one week following damage (Figure 3.4), total IGs decreased 

when assessed at three weeks (for 6wk-old plants) or five weeks (for 10wk-old plants) after 

damage (Figure 3.4). Thus, plant ability to alter total IG concentrations varied with time following 

damage, but the pattern was not consistent across age classes. Finally, another interesting 

pattern is that while concentration of total IGs in damaged plants sometimes decreased 

compared to control plants, the proportion of catalpol increased (see 6wk-old plants at 3wk 

harvest time and 14wk-old plants and 1 wk harvest time). As aucubin is the precursor of catalpol 

in the IG biosynthetic pathway (Ronsted et al. 2000), shifts between proportion of catalpol and 

total IGs should represent changes in synthesis rate.   

 Graphical vector analyses (GVA) were also useful for elucidating differences in plant 

ability to induce defenses across age classes (Figure 3.5). When responses to the herbivory 

treatment were examined only in terms of total IG concentrations (Figure 3.4), my results 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Plantago lanceolata induced defenses measured as the difference in mean total concentration of IGs (a, b, c, d) and 

proportion of catalpol/total IGs (e, f, g, h) between plants subject to herbivory versus undamaged control plants (mean ± 1SE, N = 15 

per treatment)  at 1, 3 or 5 weeks following initial damage (i.e. harvest time) across four juvenile age classes: (a, e) 3 week-old plants, 

(b, f) 6 week-old plants, (c, g) 10 week-old plants, and (d, h) 14 week-old plants.  Standard errors are calculated and graphed for all 

treatments, but some are too small to be visible given the size of the symbols. Original data were arcsine-square root transformed for 

statistical analyses; percentage data are shown for illustrative purposes only. Asterisks represent mean group differences among 

herbivore and control treatments as tested by single degree of freedom contrasts. Significance is displayed as P < 0.0001 (***), P < 

0.01 (**), P < 0.05 (*). 
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Figure 3.5. Graphical vector analyses showing changes in total concentrations and total amounts of leaf iridoid glycosides (IG) and 

dry weight following 30% tissue removal by specialist caterpillars in P. lanceolata across four developmental stages (3, 6, 10 and 14 

wk-old plants) and three harvest times following initial damage (1, 3 and 5 wks after damage).  In each panel, mean IG concentration 

(y axis) for control and damage treatments is plotted against corresponding mean total IG amount per plant (x axis). Diagonal lines 

correspond to the mean biomass of dried leaves. Concentrations, amounts and biomass are expressed in relative values to allow 

easy comparison of plant responses to herbivory across plant developmental stages and short versus long term responses. Direction 

of vector from control to damaged treatment plants indicates the effect of tissue removal on plant ability to alter concentrations and/or 

amounts of IGs as a function of plant age and time following damage (see Figure 3.1 for interpretation of results). Panel a indicates 

excess synthesis, panels b, h, I and j show concentration effects, and panels c, d, e, f, g, k and l show reduced synthesis. 
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showed a complicated picture. For instance, total IG concentrations varied only slightly between 

control and damaged plants in the case of 3 wk-old plants, which can be interpreted as a lack of 

induction; while older ontogenetic stages (i.e. 6 to 14 wk-old) showed a larger variation in IG 

induction, suggesting all possible outcomes: no-induction, induced susceptibility and induced 

resistance (Figure 3.4). Based on these results, I conclude that, disregarding variation in 

direction (i.e. induced resistance or susceptibility), older juvenile plants showed a more plastic 

response to damage than younger juvenile stages. However, GVA allowed clearer insight into 

the actual changes in IG synthesis rate and growth rate that may underlie ontogenetic variation 

in plant induction of allelochemicals in response to herbivory.  

 As shown in Figure 3.5, IG content increased only in 3 wk-old plants one week following 

damage, indicating that excess IG synthesis (i.e. higher IG synthesis rate than biomass 

accumulation rate) was only a short-term response strategy restricted to very young juvenile 

stages of P. lanceolata.  Although that was the only clear case where I detected excess 

synthesis of IGs in response to damage, short- and long-term responses to herbivory by 

younger plant stages (3 and 6wk-old plants) more often than not showed that plant growth was 

reduced to a larger extent than IG synthesis, indicating a concentration effect (Figure 3.5). In 

contrast, older plant stages (10 and 14wk-old plants) showed an opposite trend, demonstrated 

by the decrease in IG concentration as well as IG content and biomass. Thus, older juvenile 

stages almost exclusively showed a proportionally larger reduction in IG synthesis than biomass 

accumulation, indicating a reduction in IG synthesis (Figure 3.5). Hence, these results indicate 

that variation in IG concentrations following damage, as a function of plant age, was mostly 

driven by changes in biomass between treatments, rather than induced IG synthesis. 

 

DISCUSSION 

Although an increasing number of empirical studies have reported age-dependent induced 

responses to herbivory (reviewed in Barton and Koricheva 2010), few have compared more 
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than two developmental stages (e.g. Hare 1980, Lennartsson et al. 1998, Del-Val and Crawley 

2005), and even fewer have attempted to describe potential mechanisms that may explain the 

patterns observed (e.g. Ohnmeiss and Baldwin 2000, Tucker and Avila-Sakar 2010). Here, I 

found that plant RGR may partially explain the observed changes in compensatory growth 

capabilities across four distinct juvenile stages of Plantago lanceolata, suggesting that 

developmental stages that have intrinsically higher RGRs (i.e. in this study, younger stages) 

were proportionally less able to compensate for their lost tissue. In turn, the combined 

assessment of the relative change between plant growth rate and allelochemical synthesis rate 

using GVA facilitated the interpretation of complex variability in concentrations of IGs between 

treatment and control plants over time, showing that young juvenile plants were the only stage 

where excess synthesis of IGs was observed following damage.  

 

Compensatory growth through plant development 

Compensatory growth has been predicted to increase (Strauss and Agrawal 1999, Haukioja and 

Koricheva 2000) or to decrease (Orians et al. 2011) throughout plant ontogeny. While there is 

support for both predictions, it is becoming evident that the ability of a plant to tolerate damage 

may often fluctuate during ontogeny (Hare 1980, Lennartsson et al. 1998, Ohnmeiss and 

Baldwin 2000, Del-Val and Crawley 2005). In this study, I observed that higher compensatory 

growth in P. lanceolata was achieved at intermediate juvenile stages (6 and 10wk-old plants), 

while younger and older stages (3 and 14wk-old plants, respectively) were unable to fully 

compensate for the 30% tissue removal even after five weeks following damage.  

 Lack of compensation early during plant development has been associated with 

proportionally fewer available meristems, greater root to shoot ratios, and decreased capacity to 

acquire resources or have stored reserves (Strauss and Agrawal 1999, Haukioja and Koricheva 

2000). While decreased compensatory growth or tolerance in younger as compared with older 

juvenile stages has been reported for other systems (Stout et al. 2002, Boege et al. 2007, 
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Tucker and Avila-Sakar 2010, Gruntman and Novoplansky 2011), my results only partially agree 

with previous studies assessing compensatory growth in early life stages of P. lanceolata. For 

instance, Hanley and Fegan (2007) showed that young P. lanceolata seedlings (1 and 2wk-old 

plants) failed to compensate, even after 15 weeks following damage; whereas 3wk-old 

seedlings achieved the same shoot and reproductive biomass as undamaged plants in the 

same period of time. In contrast, Barton (2008) found that, although 2 and 4wk-old plants did not 

statistically differ in terms of compensatory growth capabilities, older stages (4wk-old plants) 

showed lower compensatory growth. Or, if they achieved compensation, it was at the expense 

of root biomass; while younger seedlings showed proportionally higher or complete 

compensation in the same time period. A possible explanation for these differences could be the 

variation in the period of recovery allowed following damage (i.e. a maximum of 5 weeks in the 

present study versus a maximum of 6-8 to 15 weeks in former studies).  Differences can also be 

due to variation in type and amount of tissue damage. For example, while Hanley and Fegan’s 

(2007) study used a fixed amount of artificial damage to only cotyledon tissues, Barton (2008) 

and the present study used a specialist herbivore to inflict a proportionally similar amount of 

damage across stages (50% and 30%, respectively). Thus, the higher tolerance response in 

older seedling stages in the Hanley and Fegan (2007) study may be due to the proportionally 

lower damage received in older, as compared with younger, seedling stages. Finally, because I 

only evaluated aboveground biomass, I cannot neglect the possibility that in young stages 

resources were allocated to root biomass following damage. Allocation of resources to root 

tissues in order to enhance nutrient uptake needed for the production of new photosynthetic 

tissue has been previously reported (reviewed in Orians et al. 2011), potentially explaining the 

lack of aboveground compensatory growth observed here for young juvenile stages.  

 The observed increase in compensatory growth from 3 to 10wk-old juvenile stages can 

be explained by the intrinsic ontogenetic patterns in plant RGR. Contrary to what I found, in 

general, previous research predicts that plants with higher RGR should achieve greater 
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compensation (Hilbert et al. 1981, Anten et al. 2003). However, this should be true if the RGR of 

damaged plants was greater than that of undamaged plants (i.e. due to induced-RGR following 

damage). In the present study, because damage treatment did not interact with the plants’ 

aboveground RGR at any point in time, I believe that intrinsically higher RGR would impose a 

greater challenge, as damaged plants will be unlikely to “catch-up” with their undamaged 

counterparts. Had the experiment continued for longer, when RGR would begin to decrease, it 

is likely that all these stages may have achieved full compensation as previously seen in this 

species (Hanley and Fegan 2007, Barton 2008). Alternatively, as mentioned above, lack of 

belowground biomass data does not allow determination of whether changes in resource 

partitioning between below- and aboveground biomass may further explain the observed 

ontogenetic patterns in aboveground RGR and compensation.  

 Finally, lack of compensatory growth in the older juvenile age class assessed here (i.e. 

14wk-old plants) may contradict previous predictions suggesting that older plants should be 

better at tolerating damage than younger life stages (Strauss and Agrawal 1999, Haukioja and 

Koricheva 2000). However, decreased compensatory growth as plants age may not be 

surprising, since older plants are probably prioritizing resources to be put into flowers and/or 

roots for overwintering. Indeed, sequestration of resources from already damaged or vulnerable 

photosynthetic tissues into short-term storage pools has recently been suggested to be common 

in older as compared with younger ontogenetic stages (Orians et al. 2011). This strategy was 

predicted to be more common in (i) perennial species where resources are mostly stored in 

leaves as compared with roots and stems, and in (ii) mature stages that have passed their leaf 

expansion period but are just before the onset of reproduction. Older juvenile stages of the 

short-lived, facultative perennial, P. lanceolata, satisfy all these requirements. Thus, although 

this study does not provide the root biomass data to assess this potential outcome (but see 

Ilmarinen et al. 2005), such a strategy may explain the lower intrinsic RGR and the decrease in 

compensatory ability observed at this later juvenile stage.  
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Induced defenses through plant development  

In those studies where age-dependent induced chemical defenses have been assessed using 

more than two developmental stages, complex non-linear patterns were observed (e.g. Santos 

and Fernandes 2010). Here, changes in IG concentrations between control and damaged plants 

varied from no significant differences in young juvenile stages (3wk-old plants) to high variation 

in older juvenile stages, ranging from no induction to induced resistance or susceptibility. 

Furthermore, herbivore-induced chemical defenses significantly changed with time following 

damage. One week following caterpillar damage, all stages showed comparable responses by 

maintaining similar levels of total IGs but increasing the proportion of catalpol/total IGs in shoot 

tissues (although it was significantly higher only for 10wk-old plants, Figure 3.4). In contrast, 

three and five weeks after damage only a few developmental stages at a time showed some 

degree of induced susceptibility or resistance as compared with control plants.  

These results agree with previous empirical studies that demonstrated a complex pattern 

of age-dependent induced IGs in P. lanceolata. In particular, lack of induced defenses was 

reported across multiple developmental stages of P. lanceolata such as young seedlings (2wk-

old plants, Barton 2008), juveniles (5, 6 or 7wk-old plants, Fuchs and Bowers 2004) and mature 

stages (14wk-old plants, Quintero and Bowers 2011b). Nevertheless, variable induced defenses 

as a function of plant age was reported for this species. In particular, one week following 50% 

damage by the specialist caterpillar J. coenia, Barton (2008) showed that while 2wk-old 

seedlings did not vary in IG concentrations, 4wk-old plants showed induced susceptibility; and 

Quintero and Bowers (2011b) showed that induced resistance was restricted to juvenile (9wk-

old plants) and was not evident in  mature stages (14wk-old plants). Although previous studies 

in this species failed to detect trade-offs between constitutive IG and plant growth (Darrow and 

Bowers 1997, Barton 2007), this complex pattern in herbivore-induced defenses may reflect 



76 

 

shifts in age-dependent costs of defense, as seen in other systems (e.g. Briggs and Schultz 

1990, Boege et al. 2007, Orians et al. 2010).   

Lack of changes in IG concentrations may not necessarily imply that metabolic patterns 

were unaffected. Sutter and Muller (2011) recently revealed that although concentrations of IGs 

and verbascoside in P. lanceolata changed minimally following mechanical damage, herbivory 

or treatment with phytohormones, metabolic fingerprinting revealed pronounced chemical 

changes beyond these targets. Thus, only focusing on variation in concentration of plant 

defenses may not be appropriate for assessing age-dependent resource allocation constraints 

to defenses.  

Here, by using graphical vector analyses (GVA), I was able to illustrate that IG synthesis 

was reduced more than growth rate in older juvenile stages, while the opposite was observed 

for younger juvenile life stages. This trend is consistent with predictions that induced defenses 

should be greater in younger developmental stages, given their high susceptibility to herbivory, 

lower constitutive defenses, and proportionally higher undifferentiated and actively growing 

tissues (Karban and Baldwin 1997). However, a significant increase in synthesis rate was only 

observed in 3wk-old plants a week following damage, indicating that excess IG synthesis was 

only a short-term response strategy restricted to very young juvenile stages of P. lanceolata. In 

addition, the two youngest juvenile stages (i.e. 3 and 6wk-old plants) showed strong temporal 

variation in IG synthesis following damage, as represented by shifts between increased 

synthesis of IGs one week after damage, followed by reduced synthesis at three weeks, and a 

subsequent increase in IG synthesis at five weeks post damage (Figure 3.5). In contrast, older 

juvenile stages (i.e. 10 and 14wk-old plants) showed a consistent decrease in IG synthesis rate 

throughout the whole period. These results are also consistent with the patterns reported for 

plant RGR. Synthesis of terpenoids, in particular IGs, has been associated with actively growing 

tissues (Bowers and Stamp 1992, 1993, Gershenzon 1994, Fuchs and Bowers 2004). Hence, it 

is not surprising that younger life stages, with higher RGR, showed the highest allocation of 
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resources to synthesis of defenses. However, it is important to note that this pattern was 

unapparent when I compared overall concentrations between damaged and undamaged plants, 

due to concomitant changes in plant biomass between treatments.  

 Regardless of the combination of factors explaining these complex patterns, shifts in the 

expression of defense traits can greatly influence higher trophic levels. Changes in 

concentrations of total IGs, or in the relative abundance of aucubin and catalpol, can render 

plants more or less susceptible to a wide change of herbivores and pathogens (reviewed in 

Dobler et al. 2011). As a result, the differences in IG concentrations reported here, as a function 

of P. lanceolata age and time following damage, can strongly influence plant fitness and the 

arthropod community associated with this plant species over its lifetime. Yet, as previously 

reported for this (Fuchs and Bowers 2004, Barton 2008, Quintero and Bowers 2011b) and other 

systems (Ohnmeiss and Baldwin 2000, Van Dam et al. 2001), constitutive variation in plant 

biomass and defenses across plant stages was as much as three orders of magnitude larger 

than differences between control and damaged plants at any single stage. This trend may be 

particularly common in annual and short-lived perennial plant species, where the transition 

through key developmental stages may occur relatively quickly, overriding herbivore-induced 

responses. Thus, these results imply that constitutive ontogenetic trajectories in plant growth 

and defenses may play a more significant role in mediating multitrophic interactions than 

changes following previous damage events. 

 

Conclusions 

In summary, both strategies, compensatory growth and induced synthesis of allelochemicals, 

showed complex patterns as plants aged, with some stages being able to employ both 

strategies (some 6wk-old stages), while other employed only one (3wk and 10wk-old stages) or 

neither of them (14wk-old stages). To uncover the complexity of ontogenetic patterns in P. 

lanceolata’s induced defenses, further research should explore the role of several factors such 



78 

 

as age-dependent costs of tolerance and resistance traits, biomass partitioning between shoots 

and roots, variation between local and systemic induction of chemical defenses, and the 

consequences for overall plant fitness. Nonetheless, here I illustrated how the assessment of 

plant RGR and IG synthesis rate (appraised through GVA), was central for detection and 

comprehension of herbivore-induced response patterns as plants age. Future studies, explicitly 

testing the mechanisms underlying ontogenetic patterns in plant defensive traits, especially 

those that incorporate more than two developmental stages, will better predict the potential 

constraints on the expression of resistance and tolerance traits throughout ontogeny.   
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CHAPTER 4 

PLANT INDUCED DEFENSES DEPEND MORE ON PLANT AGE THAN PREVIOUS HISTORY 

OF DAMAGE: IMPLICATIONS FOR PLANT-HERBIVORE INTERACTIONS 2 

 

ABSTRACT 

Herbivore-induced plant responses can significantly change as a function of plant 

developmental stage and previous history of damage. Yet, empirical tests assessing the 

combined role of multiple damage events and age-dependent constraints on the ability of plants 

to induce defenses within and among tissues are scarce. This question is of particular interest 

for annual and/or short-lived perennial plant species, whose responses to single or multiple 

damage events over a growing season are likely to interact with ontogenetic constraints in 

affecting a plant’s ability to respond to herbivory. Using Plantago lanceolata and one of its 

specialist herbivores, Junonia coenia, I examined the effect of plant ontogeny (juvenile vs. 

mature developmental stages) and history of damage (single and multiple damage events early 

and/or late in the season) on plant responses to leaf damage. Plant responses to herbivory 

were assessed as induced chemical defenses (iridoid glycosides) and compensatory growth, in 

both above- and belowground tissues. I found that constitutive concentration of iridoid 

glycosides markedly increased as plants matured, but plant ability to induce chemical defenses 

was limited to juvenile, but not mature, plant stages. In addition, induced defenses observed 

seven days following herbivory in juvenile plants disappeared five weeks after the first herbivory 

event, and mature plants that varied considerably in the frequency and intensity of damage 

received over five weeks, did not significantly differ in their levels of chemical defenses.  Also, 

only small changes in compensatory growth were detected. Finally, I did not observe changes in 

belowground tissues’ defenses or biomass a week following 50% removal of leaf tissues at

79 
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either age class or history of damage. Together, these results suggest that in P. lanceolata and 

perhaps other systems, ontogenetic trajectories in plant growth and defenses leading to strong 

age-dependent induced responses may prevail over herbivore-induced indirect interactions. 

 

INTRODUCTION 

Herbivore-induced plant responses that lead to changes in localized or systemic nutritional 

quality, physical and chemical defenses, growth, physiology and phenology are common and 

widespread in plants (Karban and Baldwin 1997). As a result, conspecific and/or heterospecific 

herbivores that share the same host may compete with or facilitate each other by altering plant 

traits for future herbivores (Ohgushi 2005, Kaplan and Denno 2007) or by altering the ability of a 

plant to respond to subsequent damage (Thaler et al. 2002, Viswanathan et al. 2007). Even 

though in most natural systems herbivore attack is seasonal, surprisingly little is known about 

how plant responses to herbivory change with successive damage events. Furthermore, short- 

and long-term plant responses to herbivory throughout a season occur concurrently with a 

plant’s natural development. Thus, ontogenetic trajectories in plant constitutive defenses can 

interact with herbivore-induced defenses leading to changes in the occurrence and strength of 

induction in unpredictable ways. This question is of particular interest for annual and/or short-

lived perennial plant species, whose responses to single or multiple damage events over a 

growing season are likely to interact with ontogenetic constraints in affecting a plant’s ability to 

respond to herbivory. Yet, empirical tests assessing the combined role of multiple damage 

events and age-dependent constraints on the ability of plants to induce defenses are scarce.  

Constitutive defenses have been shown to vary as a function of plant development, with 

defensive traits increasing or decreasing over time as resource allocation constraints and plant 

functional priorities change (Boege and Marquis 2005). Furthermore, dissimilar ontogenetic 

patterns in constitutive chemical defenses have been reported among plant tissues, such as 

between above- and belowground tissues (Williams and Ellis 1989, Bellostas et al. 2007). 
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These ontogenetic trajectories can encompass small to large qualitative and quantitative 

changes in defensive traits, which may in turn influence the identity of herbivores associated 

with different plant developmental stages (Waltz and Whitham 1997, Thomas et al. 2010). 

Despite the increasing interest in documenting developmental variation in constitutive defenses, 

the role of plant age in explaining herbivore induced defenses within and among tissues 

continues to be largely unexplored. Yet, in those systems where age-dependent induction of 

defenses was assessed, the ability of plants to resist or tolerate herbivory has been shown to 

strongly depend on plant developmental stage (Van Dam et al. 2001, Warner and Cushman 

2002, Boege et al. 2007, Muola et al. 2010).  

Physiological and morphological constraints during plant ontogeny can lead to strong 

age-dependent induced responses to herbivory, with opposite trends being predicted for 

resistance and tolerance. Induced chemical defenses, usually considered a cost-saving strategy 

for plants, are associated with scenarios where resource allocation constraints limit constitutive 

defenses or are dependent on actively growing and differentiating tissues (Karban and Baldwin 

1997, Cipollini et al. 2003). Because younger plant stages are often more susceptible to 

herbivory, have lower levels of constitutive defenses, and proportionally more undifferentiated 

and actively growing tissues than older plant stages, the ability of plants to induce defenses is 

predicted to be greater in younger developmental stages and lessen as plants mature (Karban 

and Baldwin 1997). Alternatively, secondary growth that aims to compensate for lost tissue 

requires the reallocation of resources stored in undamaged tissues as well as enhancement of 

photosynthetic rates and nutrient uptake from the soil. Therefore, tolerance to herbivory is 

predicted to increase with plant age due to greater capacity to acquire resources and/or higher 

probability to have already stored reserves (Strauss and Agrawal 1999, Haukioja and Koricheva 

2000). While there is some support for such patterns (Boege and Marquis 2005, Barton and 

Koricheva 2010), this is mostly based on comparisons of single herbivore damage events during 
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plant development, and as such, do not reflect potential plant responses due to natural variation 

in multiple and successive damage events over the course of development.  

 Sequential damage over a growing season can alter age-dependent induced responses 

to herbivory in two ways. First, repeated damage events by an herbivore species can induce an 

enhanced response as compared to a single damage event (e.g. Ruuhola et al. 2007, Roitto et 

al. 2009), as a result of what has been called ‘immunological memory’ (Baldwin and Schmelz 

1996). Alternatively, plant responses to a previous damage event may reduce the ability of a 

plant to defend itself against a later attacker (e.g. Viswanathan et al. 2007, Poelman et al. 

2008a). This pattern, usually termed ‘priority effect’, can arise as a consequence of 

physiological limitations such as negative cross-talk between pathways elicited by different 

herbivores (Verhage et al. 2010) or due to resource limitations if resources used during an initial 

response are unavailable for use in later responses. Thus, history of damage over a season or 

throughout plant development can strongly enhance or diminish expected age-dependent 

induced responses, potentially altering key plant-herbivore interactions.  Furthermore, because 

allocation patterns and synthesis of chemical defenses may vary within and among tissues over 

time as a response to plant development and history of damage (Williams and Ellis 1989, Van 

Dam et al. 2001, Bellostas et al. 2007, Kaplan et al. 2008), it is essential that we incorporate 

both above- and belowground plant responses to current and past damage to fully understand 

the complexity of factors shaping plant defenses and, as a consequence, plant-mediated 

herbivore interactions.  

Here, using Plantago lanceolata L. (Plantaginaceae) and one of its specialist chewing 

herbivores, Junonia coenia Hübner (Lepidoptera: Nymphalidae), I examine the effect of plant 

ontogeny (two developmental stages) and history of damage (single and multiple damage 

events early or late in the season) on plant responses to herbivory in both above- and 

belowground tissues. I specifically ask the following questions: 1) Do levels of constitutive 

defenses, as well as induced defenses and compensatory growth following leaf damage by a 
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specialist chewing herbivore, vary with plant age?, 2) For mature plants, does variation in 

frequency and intensity of herbivory early during a growing season influence plant induced 

chemical defenses and compensatory growth later in the season?, and 3) To what extent do 

changes in aboveground plant responses to leaf chewing damage, due to plant age or previous 

history of damage, translate into changes in belowground biomass and defenses?   

 

METHODS AND MATERIALS 

Study System  

Plantago lanceolata L., narrowleaf or ribwort plantain, (Plantaginaceae) is a common short-lived 

weed (annual or facultative perennial) introduced to North America from Eurasia ca. 200 years 

ago (Cavers et al. 1980). This plant species forms natural populations with diverse age 

structures (Shefferson and Roach 2010) and thus, herbivore communities are naturally exposed 

to a wide diversity of host age classes in wild populations. Plantago lanceolata produces iridoid 

glycosides (IGs) (Ronsted et al. 2000) as its primary allelochemicals influencing feeding 

preferences of generalist and specialist rhizophagous and folivorous herbivores. For example, 

several laboratory and field experiments have shown that specialist lepidopterans use IGs as 

oviposition and feeding stimulants (Bowers 1983, 1984, Reudler Talsma et al. 2008b), and that 

larvae of these herbivores grew better on diets with higher concentrations of IGs (e.g. Bowers 

and Puttick 1989, Harvey et al. 2005, Saastamoinen et al. 2007). In contrast, generalist 

herbivores and pathogenic fungi damaging below- or aboveground tissues are usually deterred 

by high concentrations of IGs (Bowers and Puttick 1989, Strohmeyer et al. 1998, Biere et al. 

2004, De Deyn et al. 2004, Harvey et al. 2005, Wurst and van der Putten 2007).  Plantago 

lanceolata produces primarily two IGs: aucubin and catalpol, and amounts of these compounds 

may be as high as 10-12% dry weight (Bowers and Stamp 1993). Because aucubin is the 

biosynthetic precursor of the more toxic catalpol (Ronsted et al. 2000), high relative 

concentrations of catalpol indicate not only a greater biosynthetic investment of the plant but 
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also may be important in determining how generalist and specialist herbivores respond to the 

plant. Finally, constitutive concentrations of IGs have been shown to increase non-linearly 

during plant ontogeny (Fuchs and Bowers 2004, Quintero and Bowers 2011a) leading to 

significant seasonal variation. The variation in constitutive defenses in both above- and 

belowground tissues can be as much as an order of magnitude, even during relatively short 

periods of time (Bowers and Stamp 1993, Fuchs and Bowers 2004, Barton 2007, Quintero and 

Bowers 2011a), which can lead to significant variation in a plant’s ability to induce chemical 

defenses within and among tissues.  

The common buckeye butterfly (Junonia coenia Hübner, Nymphalidae) is a New World 

butterfly that can have one to three broods per year under temperate conditions, or more in the 

tropics where it can breed year-round (http://www.nearctica.com/butter/plate17/Jcoenia.htm). 

The larvae have been documented to feed on members of four plant families: Cornaceae, 

Plantaginaceae, Scrophulariaceae and Verbenaceae, and this species is considered a specialist 

on plants containing IGs (Bowers 1984).  In P. lanceolata the two major IGs, aucubin and 

catalpol, serve as feeding and oviposition stimulants for buckeyes (Bowers 1984, Pereyra and 

Bowers 1988). In addition, buckeye larvae not only sequester IGs from their hosts, but also 

larval IG content is positively correlated with plant IG content (Camara 1997a); and thus, 

caterpillar performance and predation risk can strongly depend on levels of host plant defenses 

(e.g. Dyer and Bowers 1996, Theodoratus and Bowers 1999).  Nevertheless, high 

concentrations of IGs may also have some detrimental effects by decreasing larval performance 

(Adler et al. 1995, Camara 1997a) and/or enhancing larval susceptibility to parasitoid attack 

(Smilanich et al. 2009a).   

 

Plant and Caterpillar Colony Maintenance  

The study was performed at the University of Colorado during spring-summer 2006. Seeds were 

collected from >20 maternal P. lanceolata plants from several populations in Boulder County, 
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Colorado, and mixed before the experiment started. Seedlings were germinated in Fafard mix 

on April 26th and transplanted after 15 days to a 1.5 L plastic pots containing growth medium of 

equal parts Metro Mix 350TM, sterilized sand, and turface. These extra-deep pots were used in 

order to ensure natural growth of root as well as shoot tissues and to prevent pot-binding, which 

can affect both compensatory growth and plant secondary metabolite production (Karban and 

Baldwin 1997). All seedlings used for this experiment were selected to be equivalent in size and 

number of leaves at the time of transplanting. Buckeye larvae used in this study were from a 

laboratory colony reared at the University of Colorado at Boulder. Larvae were fed on a mix of P. 

lanceolata leaves and kept in growth chambers with a photoperiod of 14hr day: 10 night, and 

day-night temperatures of 27°C /22°C.   

 

Plant Age and Responses to Herbivory 

To assess the effect of plant age on plant induced responses to herbivory, juvenile and mature 

P. lanceolata plants were damaged by J. coenia caterpillars when plants reached 9 and 14wk-

old, respectively. I chose five weeks as a meaningful period between age classes because this 

is a good approximation of the average generation time of J. coenia (personal observation). In 

addition, 9 and 14-wk-old age classes were a priori selected to represent two distinct but still 

comparable developmental stages. These stages are comparable in the sense that both are 

already independent from reserves stored in the seed, contain several new and intermediate 

leaves but lack mature leaves, and from previous research they have shown to do not 

considerably vary in terms of nutritional quality and physical defenses (i.e. < 1% difference in 

nitrogen concentrations, <4% difference in percent water, and <10% difference in leaf 

toughness; unpublished data). However, while 9 wk-old plants, designated juvenile plants, still 

have a high relative growth rate and lower constitutive levels of IGs, 14 wk-old plants, 

designated mature plants, are usually reaching the onset of flowering, have started to decrease 
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their vegetative growth rate and constitutive defenses are often double those of juvenile stages 

(see results).  

At both age classes, 40 previously undamaged plants were randomly assigned to one of 

two treatments: no herbivore (C: control) or damage by J. coenia caterpillars (H: herbivore). In 

order to account for potential differences between treatments before the experiment started, 

initial plant size of all plants at the beginning of the herbivory treatments was measured as the 

product of the length of the longest leaf and the total number of leaves, which provides a good 

index of plant size (Jarzomski et al. 2000). To confine caterpillars on the plants, control and 

treatment plants were caged using mesh bags constructed of Remay™. For juvenile plants, two 

newly molted 4th instar larvae per plant were placed in the center of the plants in the herbivory 

treatment. For mature plants, I applied from four to seven 4th instar caterpillars per plant in order 

to reach approximately 50% damage during an equivalent period of time. In both cases, two 

days after larvae were placed on plants or when larvae had eaten approximately 50% leaf tissue, 

all caterpillars and mesh bags were removed.  Since induction of IGs was estimated to reach its 

highest point six days after damage (Fuchs and Bowers 2004), to test for short-term plant 

induced defenses as a function of plant age, all plants per treatment per age class were 

harvested seven days after herbivore removal.   

Harvested plants were separated into above- and belowground tissues. Aboveground 

tissues consisted of new and intermediate leaf age classes (see Bowers and Stamp 1993) for 

both juvenile and mature stages. Thus, although I did not asses variation in plant defenses 

within different leaf age classes, I kept equal representation of leaf ages classes across plant 

developmental stages. Root tissues were washed until roots were totally clean from remaining 

soil material. Due to time constraints, root tissues from only half of the plants were processed (N 

= 10 per treatment). Harvested tissues were weighed fresh, oven-dried at 50°C for 48hrs to a 

constant mass and weighed again to the nearest hundredth of a gram. By the time plants 

reached their mature stage (14wk-old plants), few plants per treatment had started flowering. 
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However, because inflorescence biomass was usually <10% of the total aboveground biomass 

and because the proportion of plants flowering did not vary among treatments (P > 0.05), I 

added reproductive tissue data to leaf data in order to report overall aboveground (i.e. shoot) 

values for biomass and chemical defenses.  Furthermore, I ran all analyses for the complete 

data set as well as separately, using just flowering or non-flowering individuals; but because 

trends were not significantly different (data not shown) I present here the results for the 

complete data set.   

To assess variation in concentrations of IGs, dried shoots and roots were ground into a 

fine powder, and subsamples of 25 to 50mg were processed for IG extraction and analyzed by 

gas chromatography following previously described methods (Bowers and Stamp 1993, 

Jarzomski et al. 2000). Briefly, samples were extracted overnight in 95% methanol, and then 

partitioned between water and ether to remove hydrophobic compounds, using Phenyl-β-D-

glucose (PBG) as the internal standard. An aliquot of the solution was derivatized with Tri-Sil-

ZTM (Pierce Chemical Company) and injected into a HP 7890A gas chromatograph (Agilent 

Technology) using an Agilent DB-1 column (30m, 0.320mm, 0.25µm particle size). Amounts of 

aucubin and catalpol were quantified using ChemStation B-03-01 software and they are 

presented as percent dry weight for comparative purposes (e.g. Fuchs and Bowers 2004, 

Barton 2007, Wurst and van der Putten 2007). 

Independent sample t-tests were used to test for possible differences in initial plant size 

between treatments of 9 or 14wk-old plants before the herbivory treatments were applied. Plant 

responses to herbivory (C vs. H) at juvenile or mature plant stages were assessed as changes 

in shoot and root biomass (dry mass), total concentration of IGs (% dry weight), and proportion 

of catalpol/total IGs, using a series of two-way analyses of variance (ANOVA) with age and 

treatment as the main effects and an interaction term included. Iridoid glycoside concentration 

data were arcsine-square root transformed for statistical analyses, but biomass did not required 

transformation. Separate two-way ANOVAs were performed for shoot and root tissues since 
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root tissues were available for only half of the plants (N = 10 for roots and N = 20 for shoots for 

each herbivory: age treatment combination). When the herbivory treatment effect was significant, 

I followed with single degree of freedom contrasts to assess differences between treatments (C 

vs. H) at the two different age classes.  

 

History of Damage and Plant Responses to Herbivory 

To determine how variation in the frequency and intensity of damage might affect plant 

performance and IG concentration, plants received a combination of damage and non-damage 

events early and later in the season. First, 80 juvenile plants (i.e. 9wk-old) were divided in two 

treatments: control and herbivory (N = 40 for each) as described above. Five weeks following 

the first damage event to juvenile plants (50% damage), 14 week-old plants (40 undamaged 

and 40 previously damaged plants) were exposed to a second generation of Buckeye 

caterpillars (50% damage). Thus, for this experiment there were four treatments: 1) plants that 

were never damaged (control-control: CC), 2) plants damaged by the first generation of 

Buckeyes but not by the second generation (herbivory-control: HC), 3) plants not damaged by 

the first generation of Buckeyes but damaged by the second generation (control-herbivory: CH), 

and 4) plants damaged by both generations of buckeyes (herbivory-herbivory: HH), with 20 

replicates per treatment.  As before, when caterpillars achieved 50% damage during both first 

and second damage events, all caterpillars and exclusion cages from control and treatment 

plants were removed. Seven days after the last damage event all plants per treatment were 

harvested and separated into shoot and root tissues to assess differences in plant biomass and 

induced defenses as explained above.  

To assess the effect of previous herbivory on subsequent plant responses to damage, 

one week after the second generation of damage, differences in biomass, total concentration of 

IGs, and proportion of catalpol/total IGs in shoot and root tissues were evaluated using one-way 

ANOVAs.  Because sample sizes were different between root and shoot tissues (see above) 
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these data were analyzed separately. In all cases, when significant effects were detected by 

ANOVAs, I followed up with a priori contrasts comparing (1) control vs. herbivory treatments 

(CC vs. HC + CH + HH), (2) plant responses to damage received early vs. late in the season 

(HC vs. CH), and (3) mature plant responses to a single herbivory event vs. multiple events (CH 

vs. HH).  

 

RESULTS 

Plant Age and Responses to Herbivory 

At the beginning of the experiment, aboveground size of plants in the two herbivory treatments 

(C and H) were not significantly different from each other for either juvenile plants (t1,38 -0.07; P 

= 0.51), or for mature plants (t1,38 5.6; P = 0.13). Based on the subset of plants harvested the 

same day that treatments started, juvenile plants at the beginning of the experiment had, on 

average, 12 leaves, their average aboveground biomass (dry weight) was 0.5 ± 0.04g, and their 

belowground biomass was 0.13 ± 0.01g. Mature plants had, on average, 56 leaves, their 

aboveground biomass was 6.05 ± 0.29g, and their belowground biomass was 4.14 ± 0.24g (dry 

weight).  

One week following the first generation of damage, aboveground plant responses to 

herbivory were strongly influenced by plant age (Table 4.1, Figure 4.1). Aboveground biomass 

was significantly higher in control plants and older plants, but no interaction was observed 

(Table 4.1). Thus, one week following 50% tissue removal, damaged plants in both age classes 

were unable to compensate for the lost tissue (Figure 4.1a), with damaged plants being on 

average 46% and 24% smaller than control plants for juvenile and mature plants, respectively 

(juvenile: F1,76 6.5, P = 0.013; mature: F1,76 24.5, P<0.001). Therefore, although there was no 

significant interaction between age and herbivory, mature plants were better than juvenile plants 

at compensating for the lost tissue one week following damage. In turn, induced defenses after 

herbivory in aboveground tissues were observed only for proportion of catalpol but not for total  



 

 

 

 

 

 

TABLE 4.1.  Summary of two-way ANOVA’s comparing plant responses in shoot and root tissues one week after herbivory 

treatments for juvenile and mature plants. Plant responses to first damage event (50% tissue removal) was assessed as changes in 

biomass (dry mass), total concentration of iridoid glycosides (% dry weight IGs), and proportion of catalpol/total IGs.  

 Shoot tissues  Root tissues 

  Biomass Total IGs  Prop Catalpol   Biomass Total IGs  Prop Catalpol 

 df F P F P F P  df F P F P F P 

                
Plant age 1 452.1 <0.001 541.7 <0.001 43.3 <0.001  1 124.1 <0.001 20.2 <0.001 12.5 <0.001 

 
Herbivory  1 28.2 <0.001 0.2 0.67 17.0 <0.001  1 1.9   0.17 0.01   0.95 1.1   0.30 
 
Age*Herbivory 

  
1 
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  0.095  
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0.80 
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Figure 4.1. Plant responses to herbivory in P. lanceolata’s above- and belowground a) biomass, b) total concentration of iridoid 

glycosides (IGs), and c) proportion of catalpol/total IGs for control (C; white bars) and herbivore damaged plants (H; gray bars) 

during juvenile or mature plant stages. Original data were arcsine-square root transformed for statistical analyses, percentage data 

are shown for illustrative purposes only. Asterisks represent mean group differences among treatments as tested by single degree of 

freedom contrasts. Significance is displayed as P < 0.0001 (***), P < 0.01 (**), P < 0.05 (*). 
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levels of IGs (Table 4.1). Total levels of IGs were 16 times greater in mature plants when 

compared to juvenile plants; but they did not significantly vary between control and herbivory 

treatments in either age class (Figure 4.1b). In contrast, the proportion of catalpol not only 

varied with plant age, showing an average decrease of 47% from juvenile to mature plants, but 

also the ability of a plant to induce aboveground chemical defenses depended on host plant age 

(Table 4.1). Single degree of freedom contrasts showed that one week following 50% tissue 

removal, damaged juvenile plants showed a significant 45% increase in their levels of 

catalpol/total IGs (F1,76 9.7, P = 0.003), while mature plants did not significantly differ from 

control plants in the proportion of catalpol (Figure 4.1c) (F1,76 0.3, P = 0.58). This difference is 

illustrated by a significant interaction between plant age and treatment in aboveground 

proportion of catalpol (Table 4.1).  

In contrast, although belowground tissues followed similar patterns to the ones seen for 

aboveground tissues, ANOVA results showed only a significant effect of plant age on root 

biomass and defenses; but leaf damage by Buckeye caterpillars did not translate into changes 

in root biomass or chemical defenses between control and herbivory treatments one week 

following damage (Table 4.1, Figure 4.1).  

 

History of Damage and Plant Responses to Herbivory 

One week following the second generation of damage by Buckeye caterpillars, ANOVA results 

showed that herbivory treatment had a significant negative effect on shoot biomass (F3,76 = 

21.46, P< 0.001) and a negative nearly significant effect on root biomass (F3,36 2.77, P = 0.056) 

(Figure 4.2a). Therefore, compensatory growth was not achieved a week or even five weeks 

following herbivore damage. Single degree of freedom contrasts showed that a significant 

decrease in shoot biomass was observed between undamaged control plants and damaged 

plants (CC vs. HC + CH + HH): F1,76 44.9, P<0.001), as well as between mature plants damaged 

once versus those damaged twice (CH vs. HH: F1,76 18.7, P<0.001) (Figure 4.2a). However, no  



 

 

 

 

 

 

 

 

Figure 4.2. Effects of herbivory on P. lanceolata’s above- and belowground a) biomass, b) total concentration of iridoid glycosides 

(IGs), and c) proportion of catalpol/total IGs one week after second generation of damage. Bars represent the combination of first 

and second damage events, leading to four treatments: 1) plants that were never damaged (CC), 2) plants damaged by the first 

generation of Buckeyes but not by the second generation (HC), 3) plants not damaged by the first generation of Buckeyes but 

damaged by the second generation (CH), and 4) plants damaged by both generations of Buckeyes (HH), with 20 replicates per 

treatment. Original data were arcsine-square root transformed for statistical analyses, percentage data are shown for illustrative 

purposes only. Lowercase letters represent mean group differences among treatments as tested by Bonferroni post-hoc tests 

(p<0.05).  
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significant difference in shoot biomass was observed between plants with one single damage 

event early versus late in the season (HC vs. CH: F1,76 2.1, P = 0.15) (Figure 4.2a).  

In contrast, I did not observe any significant changes in plant IGs as a response to 

different histories of damage: production of total IGs and proportion of catalpol/total IGs did not 

vary with history of damage either for aboveground tissues (F3,76 = 0.99, P = 0.40 and F3,76 = 

2.39, P = 0.08, respectively) or belowground tissues (F3,36 = 0.13, P = 0.94 and F3,36 = 0.59, P = 

0.63, respectively). Thus, mature plants varying in intensity and frequency of herbivory, had very 

similar levels of defenses across all four history of damage treatments, and induction of 

defenses was not observed (Figure 4.2b and c). 

 

DISCUSSION 

This study revealed novel patterns regarding the extent to which plant age and history of 

damage over a growing season can modify Plantago lanceolata’s ability to respond to herbivory. 

Most notably, I showed that while constitutive concentration of IGs markedly increased as plants 

matured, plant ability to induce chemical defenses was limited to juvenile, but not mature, plant 

stages. In addition,  induced defenses observed seven days following herbivory in juvenile 

plants disappeared five weeks after the first herbivory event, and mature P. lanceolata plants 

that varied considerably in the absolute amount and frequency of damage received over five 

weeks, did not significantly differ in their levels of chemical defenses.  Finally, contrary to what I 

expected, I did not observe changes in belowground tissues’ defenses or biomass a week 

following 50% removal of aboveground tissues at either age class or history of damage. 

Together, these results suggest that in Plantago lanceolata and perhaps other systems, 

ontogenetic patterns in plant growth and defenses can play a stronger role in mediating plant-

herbivore interactions than history of damage.  

Plant ontogeny strongly influenced plant defenses in both above- and belowground 

tissues. Synthesis and accumulation of constitutive IGs increased 13 times in aboveground 
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tissues and doubled in belowground tissues from juvenile to mature stages. In addition, plant 

allocation patterns also varied considerably from almost equal investment in total IG 

concentrations between shoot and root tissues during the juvenile stage to a large increase in 

plant total IGs in shoots as compared with roots during the mature stage (i.e. ratio of total levels 

of IGs between shoot and root tissues varied from roughly 1:1 in juveniles to 8:1 ratio in mature 

plants) (Figure 4.1). Comparable trends in constitutive defenses within and among tissues as 

plants age have been reported previously for P. lanceolata (Darrow and Bowers 1999, Fuchs 

and Bowers 2004, Quintero and Bowers 2011a) as well as for other IG-containing plants 

(Hogedal and Molgaard 2000, Beninger et al. 2007, Jamieson and Bowers 2010). These shifts 

suggest that, even in the absence of damage, plant palatability can dramatically change in a 

short period of time with strong implications for plant-herbivore interactions and plant fitness.  

For instance, even smaller differences in concentration of IGs in P. lanceolata as the ones 

reported here have shown to significantly decrease leaf consumption and growth rate of 

generalist herbivores and pathogens as IG increases (Biere et al. 2004). As a result, herbivore 

pressure may be higher on younger developmental stages, decreasing their chances of survival 

or future reproductive output (e.g. Shefferson and Roach 2010).     

While the role of ontogenetic trajectories in constitutive defenses has received 

considerable attention, our knowledge regarding the role of plant age in explaining herbivore 

induced defenses is still limited. A recent meta-analysis summarizing ontogenetic patterns in 

plant defense traits illustrated that, in the case of herbaceous plants, ability to induce defenses 

after damage usually decreased with plant age while no significant differences in tolerance were 

observed across plant development (Barton and Koricheva 2010). In accordance with this trend, 

I show that a week following damage, juvenile P. lanceolata plants were significantly more 

capable of induction (i.e. 45% increase in the proportion of catalpol/total IGs) than mature plants, 

but no significant differences were observed for compensation to herbivory. Nevertheless, lack 

of differences in compensatory growth between age classes should be interpreted carefully 
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since I only assessed changes in biomass between treatment and control plants a week 

following 50% damage and thus, these short-term responses may not reflect long-term 

compensatory growth strategies nor be indicative of potential fitness consequences. In terms of 

induction, because the defensive properties of IGs have been well documented (reviewed by 

Bowers 1991), my data suggest that increased ability to induce defenses at the juvenile stage is 

likely to increase plant resistance to generalist herbivores. Increased levels of IGs, especially 

catalpol, usually deter generalist herbivores and/or decrease consumption rate (e.g. Bowers and 

Puttick 1989, Biere et al. 2004, De Deyn et al. 2004, Wurst and van der Putten 2007), potentially 

allowing induced juvenile plants to decrease subsequent damage by generalist herbivores. 

However, this increase in defenses may also enhance P. lanceolata susceptibility to specialist 

herbivores such as Buckeye butterflies (e.g. Bowers 1984, Pereyra and Bowers 1988, Prudic et 

al. 2005, Reudler Talsma et al. 2008b). Therefore, whether a high induction capability at 

younger life stages in P. lanceolata is adaptive remains to be tested, but may strongly depend 

on the community structure of antagonist species present in the habitat. Alternatively, mature 

plant stages with already 16 times more constitutive defenses than juvenile stages may not 

benefit by investing in induced defenses. Thus, as seen in other plant species, age-dependent 

induced defenses in P. lanceolata may respond to variable cost and benefits of these defensive 

strategies as plants develop (Ohnmeiss and Baldwin 2000, Van Dam et al. 2001, Boege et al. 

2007, Orians et al. 2010).  

Plant responses to sequential damage over a growing season may depend on and/or 

interact with age-dependent induced responses to herbivory. Two alternative scenarios can be 

expected, one where age-dependent induced responses can prevail over plant responses to 

sequential damage or, the opposite, where herbivore-induced indirect interactions alter plant 

defenses beyond the expected age-dependent induced response. To my knowledge, we 

currently lack empirical data testing these opposite scenarios. On one hand, recent empirical 

studies have shown strong age-dependent induced responses to herbivory (Van Dam et al. 
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2001, Boege et al. 2007, Barton 2008, Tucker and Avila-Sakar 2010), but these studies usually 

lack a consideration of the role of multiple and successive damage events over the course of 

plant development. Alternatively, studies assessing the effects of previous history of damage on 

plant responses to herbivory have shown both that previous damage events can increase plant 

induced responses after subsequent damage (Ruuhola et al. 2007, Roitto et al. 2009), or 

decrease plant ability to mount a localized or systemic induced response following subsequent 

damage (Van Zandt and Agrawal 2004, Viswanathan et al. 2007, Poelman et al. 2008a, Erb et 

al. 2011). Although these latter studies assess the role of history of damage over extended 

periods of time, where plant ontogeny may interact with herbivore-induced indirect interactions, 

conclusions on the independent or combined effects of these factors on plant induced 

responses are hard to draw. Most of these studies vary widely in terms of plant life form (i.e. 

annual or perennial), herbivore-mediated indirect interactions (i.e. conspecific or heterospecific 

interactions), and time elapsed between initial and subsequent damage (i.e. from 48hrs to >5 

years); making it difficult to assess whether changes in plant defense phenotypes and/or 

subsequent herbivore communities are the product of immunological memory and/or priority 

effects, age-dependent induced responses, or a combination of both. My results show, that a 

week following the second damage event, mature plants with diverse frequency and intensity of 

damage (i.e.CC, CH, HC, HH) had all similar levels of defenses. Thus, for this plant-herbivore 

system and considering potential conspecific interactions occurring over successive generations 

(i.e. five weeks), plant age seems to influence plant allocation of resources to defense more 

than past history of damage.  

Evaluating changes in plant induced responses within and between above- and 

belowground tissues as a function of plant age or history of damage is essential to understand 

temporal variation in plant-herbivore interactions. Herbivore-induced defenses not only may 

change the palatability and nutritional quality of a tissue for future herbivores, but also may lead 

to altered phytochemical expression across multiple plant tissues (Ohgushi 2005, Kaplan et al. 
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2008). However, in this study, P. lanceolata’s short-term responses to 50% aboveground tissue 

removal by a specialist caterpillar did not translate into significant changes in root biomass or 

defenses (as also found in Darrow and Bowers 1999). In accordance with these data, a recent 

meta-analysis of plant induced defenses within and across tissues following leaf and root 

herbivory demonstrated that herbivore damage to aboveground tissues usually results in 

stronger induced responses in leaves than in roots (Kaplan et al. 2008). Thus, if these observed 

short-term responses hold true throughout the growing season, then we should expect stronger 

temporal changes in aboveground herbivore population and/or community structure following 

leaf damage (especially in the case of juvenile plants) than in belowground communities. 

Nevertheless, it is important to emphasize that the patterns described here may be system-

specific. Here, I only assessed P. lanceolata responses to variable timing and severity of 

damage by a single specialist leaf-chewing herbivore, larvae of the Buckeye butterfly. It is the 

case for P. lanceolata that induced defenses within and across tissues can vary considerably as 

a function of herbivore identity. For instance, Bowers and Stamp (1993) showed that P. 

lanceolata damaged by the specialist J. coenia induced higher levels of IGs than plants 

damaged by the generalist Spilosoma congrua (Arctiidae). Similarly, Wurst and van der Putten 

(2007) demonstrated not only that induction of IGs depends on herbivore identity but also that 

herbivore-induced indirect interactions can vary as a function of initial and subsequent above- 

and belowground herbivore species. Therefore, the patterns reported here may differ for 

different herbivore species and/or a combination of multiple antagonists damaging above- and 

belowground tissues over time. Hence, future studies assessing the ecological consequences of 

history of damage and plant age-dependent induction within and across tissues for a wide 

diversity of above- and belowground antagonists as well as more plant developmental stages 

will shed light on the ubiquity of the patterns observed here.  

In summary, these results suggest that plant ontogeny not only dictates important shifts 

in plant investment in constitutive defenses, but it can also influence the ability of a plant to 
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respond to herbivory, making ontogenetic trajectories a key feature in mediating plant-herbivore 

interactions. In contrast, variable frequency and intensity of damage in mature plant stages did 

not affect plant investment in defenses within as well as between tissues; suggesting that plant-

mediated herbivore interactions throughout a season may strongly depend on plant age during 

initial and subsequent damage. For example, age-dependent induced resistance may shift the 

relative abundance or performance of generalist and specialist herbivores following initial 

damage to juvenile stages but not mature plant stages. Thus, in P. lanceolata and perhaps 

other systems, it is possible that ontogenetic patterns in plant growth and defenses leading to 

strong age-dependent induced responses may prevail over herbivore-induced indirect 

interactions. Yet, because herbivore-induced indirect interactions also vary as a function of 

herbivore identity and the lag of the localized and/or systemic induced response over time (Van 

Zandt and Agrawal 2004, Muola et al. 2010), more studies addressing the effect of sequential 

damage by multiple shoot and root herbivores on plant defense phenotype and subsequent 

herbivore community structure throughout plant development are needed.  
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CHAPTER 5 

PLANT ONTOGENY MEDIATES TRITROPHIC INTERACTIONS BETWEEN PLANTS, 

HERBIVORES, AND NATURAL ENEMIES 

 

ABSTRACT 

Plant-herbivore-natural enemy interactions may vary markedly in space and time. However, 

studies assessing changes in the direction and magnitude of these interactions have 

traditionally examined the role of spatial variation more than the role of temporal change. 

Physiological and anatomical constraints during plant ontogeny affect the expression of 

numerous plant traits relevant to higher trophic levels, such as nutritional content and physical 

and chemical defenses. Yet, we know little about how these sources of temporal variation can 

directly and/or indirectly mediate tri-trophic interactions. Using four distinct ontogenetic stages of 

Plantago lanceolata (Plantaginaceae) and the specialist herbivore Junonia coenia 

(Nymphalidae), I evaluated: butterfly oviposition choice, caterpillar performance (survival rate, 

relative growth rate and nutritional indices), caterpillar sequestration, and caterpillar immune 

defenses. Plant defensive traits changed significantly as P. lanceolata developed, with leaf 

tissues increasing in toughness and concentration of plant allelochemicals (iridoid glycosides), 

while decreasing in nutritional quality (water and nitrogen concentrations) as plants aged. These 

ontogenetic changes significantly influenced plant-herbivore-natural enemy interactions both 

directly and indirectly. Buckeye butterflies significantly preferred younger developmental stages 

of P. lanceolata over older stages, laying on average 60% more eggs on juvenile plants than on 

reproductive stages. In accordance with the preference-performance hypothesis, caterpillars 

feeding on juvenile P. lanceolata plants showed faster relative growth rate and increased 

digestive efficiency compared with those feeding on plants in the reproductive stage. In contrast, 
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caterpillars feeding on younger developmental stages acquired lower levels of sequestered 

chemical defenses, which may increase their susceptibility to predation. Finally, host plant age 

also altered the ability of a caterpillar to mount an immune response against simulated 

parasitoid eggs, with caterpillars reared on older life stages, and thus having higher levels of 

sequestered iridoid glycosides, showing a compromised immune response compared to those 

feeding on younger plant age classes. These results demonstrate that ontogenetic variation in 

plant defenses and nutritional quality can alter tri-trophic interactions both directly and indirectly, 

emphasizing the importance of plant ontogeny in regulating temporal shifts in herbivore 

population dynamics and community structure.  

 

INTRODUCTION 

Plants can minimize the damage caused by herbivores via the expression of traits that diminish 

the ability of herbivores to locate and consume plant tissues (i.e. bottom-up forces) or via traits 

that enhance herbivore predation risk by predators and parasitoids (i.e. top-down forces) (Price 

et al. 1980). As plants develop, all major traits that influence their quality as food for herbivores 

such as secondary metabolites (Boege and Marquis 2005), physical defenses (Hanley et al. 

2007), and water and nutrient content (Kozlowski 1971, Mattson 1980), change from seedling to 

mature stages. In addition, plant traits that influence the strength of top-down forces on 

herbivore population dynamics, such as volatile organic compounds, architectural traits and 

shelter or food rewards, have also demonstrated considerable variation as plants develop 

(Quintero et al. in prep.). Thus, it is not surprising that several studies have reported 

considerable variation in herbivore diversity, abundance and damage as host plants develop 

(Kearsley and Whitham 1989, Hanley et al. 1995, Fenner et al. 1999, Pires and Price 2000, 

Swihart and Bryant 2001, Fonseca et al. 2006, Thomas et al. 2010). However, only a few 

studies have explored whether these patterns are shaped primarily by bottom-up forces, such 

as plant traits that alter herbivore host selection and performance (e.g. Lawrence et al. 2003, 
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Albrectsen et al. 2004, Johnson and Zalucki 2005, Heckel et al. 2010), or by top-down forces 

such as prey vulnerability to natural enemies (e.g. Van Bael et al. 2003, Riihimaki et al. 2006, 

Bohm et al. 2011). Furthermore, with few exceptions (Stein and Price 1995, Pires and Price 

2000, Del Val and Dirzo 2003, Boege 2005a, Fonseca et al. 2006), most studies have only 

assessed one of these forces at a time, failing to consider potential synergisms or trade-offs. 

The goal of this study was to evaluate how ontogenetic variation in plant defenses and 

nutritional quality might affect tri-trophic interactions: (i) directly, through changes in butterfly 

oviposition choice and caterpillar performance, or (ii) indirectly, through changes in caterpillar 

vulnerability to natural enemies.  

One way in which changes in insect herbivore diversity, abundance and damage over 

the course of plant development can arise is if herbivores select different developmental stages 

of their host due to species-specific feeding needs. This selection can occur trough either 

female oviposition choice or larval/adult foraging choice. Empirical evidence shows that, in 

general, invertebrate herbivores cause greater damage (Price 1991, Spiegel and Price 1996, 

Albrectsen et al. 2004, Fonseca et al. 2006), or reach higher density and diversity (Waltz and 

Whitham 1997, Cuevas-Reyes et al. 2004, Boege 2005a, Thomas et al. 2010) on younger 

compared to older plant stages. While this pattern can indeed reflect herbivore preferences, it 

may also result from higher herbivore performance or lower predation rates. Thus, to tease 

these possible mechanisms apart, more studies explicitly assessing host selection across host 

plant ontogeny are needed. Empirical studies so far have revealed highly species-specific 

responses. For instance, there are cases in which females or free living larvae prefer to feed on 

younger (e.g. Pires and Price 2000, Del Val and Dirzo 2003, Cuevas-Reyes et al. 2004) or 

mature host plant stages (e.g. Lawrence et al. 2003, Johnson and Zalucki 2005, Fernandes et al. 

2010, Heckel et al. 2010). These examples emphasize that herbivore host selection cannot be 

the sole mechanism driving the general pattern described for insect herbivore diversity and 

damage across host plant ontogeny.  
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The ontogenetic stage of the host plant may also affect herbivore growth rate, 

development time and feeding efficiency, leading to differences in the rate or absolute amount 

of tissue lost to herbivores. For example, upon consumption of plant tissues, plant 

allelochemicals can inhibit digestive proteases in the insect gut, affect membrane permeability 

to primary nutrients, and inhibit DNA synthesis (Schmeller et al. 1997, Howe et al. 2005, 

Constabel and Barbehenn 2011), all of which can critically reduce growth. Alternatively, 

herbivorous insects can compensate for suboptimal nutritional quality or higher levels of 

physical defenses by increasing food consumption or extending development time (Hagele and 

Rowell-Rahier 1999, Clissold et al. 2009). Because plant nutritional and defensive traits are 

known to vary as plants age (Kozlowski 1971, Mattson 1980, Boege and Marquis 2005, Hanley 

et al. 2007), their overall effect on herbivore performance will depend on whether the effects are 

synergistic, antagonistic or neutral. In several plant species, when more than one trait was 

assessed, contrasting ontogenetic patterns were described within and among both plant 

allelochemicals and nutritional quality (Donaldson et al. 2006, Rehill et al. 2006, Mcarthur et al. 

2010, Quintero and Bowers 2011a). As a result, these complex phenotypic changes can render 

plants more or less susceptible to a diverse suite of generalist and specialist herbivores (e.g. 

Kearsley and Whitham 1989),  

The strength of the top-down control of herbivores is also likely to change throughout 

plant ontogeny, thereby altering herbivore diversity and/or damage. At higher trophic levels, 

ontogenetic changes in plants traits can alter predator-prey interactions in two ways: (i) directly 

by altering plant cues used by natural enemies to find their prey or (ii) indirectly by modifying 

prey quality and thus, predators’ choice and performance among different quality prey.   

Evidence for the former comes from studies demonstrating that the top-down control of 

herbivores can be mediated by ontogenetic changes in plant size and architectural complexity 

(Van Bael et al. 2003, Boege 2005a, Riihimaki et al. 2006), release of volatile organic 

compounds in response to damage (Zhu and Park 2005, Rostas and Eggert 2008, Hare 2010), 
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and changes in the availability of food rewards (Del Val and Dirzo 2003, Miller 2007, Palmer et 

al. 2010). In contrast, although ontogenetic patterns in quality and quantity of secondary 

compounds can also indirectly alter the magnitude of the top-down control through reduced prey 

quality (Hunter 2003), data confirming this assumption are limited.  

Changes in host plant defenses, as well as nutritional quality, may have different effects 

on herbivores and their associated natural enemies (reviewed in Ode 2006, Poelman et al. 

2008b). First, plant quality can influence herbivores and their enemies in the same direction, 

such that highly defended or less nutritious plants decrease the performance of both the insect 

herbivores and their natural enemies (e.g. Reitz and Trumble 1997, Havill and Raffa 2000, 

Teder and Tammaru 2002, Gols et al. 2008b). Alternatively, natural enemies can respond 

differently than herbivores to variation in host plant quality, if, for example, highly defended 

plants increase the performance of specialist sequestering herbivores, but natural enemies 

show decreased performance or fitness due to increased prey toxicity or unpalatability (e.g. 

Fordyce 2001, Ode et al. 2004, Singer et al. 2009, Chaplin-Kramer et al. 2011, Kos et al. 2011). 

Furthermore, natural enemies such as predators and parasitoids may also vary in their 

response to prey quality. For example, while increased levels of plant allelochemicals in insect 

tissues usually decrease predation, they may enhance susceptibility against parasitoids (Gentry 

and Dyer 2002, Lampert et al. 2010, Le Guigo et al. 2011).  

One way in which endoparasitoids may benefit from increased plant defenses is via the 

direct effects of plant defenses on their host’s immune system (Turlings and Benrey 1998). 

Because the ability of insect herbivores to successfully encapsulate and kill their 

endoparasitoids depends on their energetic and physiological resources (Blumberg 1997, Cotter 

et al. 2011), herbivores exposed to high levels of allelochemicals and/or poor nutritional quality 

may experience decreased immunocompetence (e.g. Haviola et al. 2007, Bukovinszky et al. 

2009, Smilanich et al. 2009a, Shikano et al. 2010). Hence, as host plants progress from 

seedling to senescent stages, the changes in nutritional quality and defenses that translate into 
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variation in herbivore performance and quality as prey or host can indirectly mediate the 

selective pressure imposed by predators and parasitoids on herbivore population dynamics.  

Here, I present a series of experiments that assess the extent to which ontogenetic 

variation in plant defenses and nutritional quality might affect (i) butterfly oviposition choice, (ii) 

caterpillar performance (survival rate, growth rate, and digestive efficiency), and (iii) caterpillar 

vulnerability to natural enemies, as mediated by prey quality and palatability. Greenhouse and 

laboratory experiments assessing changes in plant-herbivore-natural enemy interactions as 

plants develop were conducted across four distinctive ontogenetic stages using a model system 

composed of Ribwort or Narrow-leafed plantain, Plantago lanceolata L. (Plantaginaceae), and 

one of its specialist herbivores, the Buckeye butterfly (Junonia coenia Hübner, Lepidoptera: 

Nymphalidae). Significant ontogenetic patterns in P. lanceolata’s traits relevant to herbivores 

have been reported, with previous studies showing an overall increase in plant allelochemicals 

(i.e. iridoid glycosides), but significant decreases in nutritional quality (i.e. water and nitrogen 

concentrations) as plants age (Bowers and Stamp 1993, Fuchs and Bowers 2004, Barton 2007, 

Quintero and Bowers 2011a). Results from this study show that consideration of the combined 

role of direct and indirect effects of plant ontogeny on tri-trophic interactions may have key 

implications for understanding temporal shifts in herbivore population and community structure.  

 

MATERIALS AND METHODS 

Study system 

Plantago lanceolata (Plantaginaceae), Ribwort or Narrow-leafed plantain, is a common short-

lived weed (annual or facultative perennial) introduced to North America from Eurasia ca. 200 

years ago (Cavers et al. 1980).  This plant species forms natural populations with diverse age 

structures (Shefferson and Roach 2010) and, thus, herbivore communities are naturally 

exposed to a wide diversity of host age classes in wild populations. Plantago lanceolata 
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produces iridoid glycosides (IGs) (Ronsted et al. 2000) as its primary allelochemicals influencing 

generalist and specialist herbivores. In general, high levels of IGs deter or decrease damage 

inflicted by generalist herbivores (Bowers and Puttick 1989, Strohmeyer et al. 1998, Biere et al. 

2004, De Deyn et al. 2004, Harvey et al. 2005, Wurst and van der Putten 2007), although 

several insect herbivore species have evolved to overcome, and in some cases sequester, 

those defenses in both their native and introduced range (Bowers 1983, 1984, Reudler Talsma 

et al. 2008a, Baden and Dobler 2009, Opitz et al. 2010). Primarily two IGs are produced by this 

species, aucubin and catalpol, and amounts of these compounds can reach up to 10-12% dry 

weight (Bowers and Stamp 1992, 1993). Besides IGs, P. lanceolata also invests in physical 

defenses such as leaf toughness (Schippers and Olff 2000) and glandular and non-glandular 

trichomes (de la Fuente 2002). Strong ontogenetic patterns in nutritional quality and constitutive 

concentrations of IGs have been previously reported (e.g. Fuchs and Bowers 2004, Quintero 

and Bowers 2011a), suggesting that herbivores are often exposed to significant seasonal 

variation in host plant quality. The variation in constitutive defenses can be as much as an order 

of magnitude, changing over relatively short periods of time (Bowers and Stamp 1993, Fuchs 

and Bowers 2004, Barton 2007, Quintero and Bowers 2011a), and sometimes exceeding the 

variation reported as a function of plant genotype, nutrient availability or herbivore damage 

(Bowers et al. 1992, Bowers and Stamp 1993, Barton 2007, Quintero and Bowers 2011b).   

Junonia coenia Hubner (Nymphalidae), the common buckeye butterfly, is a New World 

butterfly that can have one to three broods per year in temperate regions (Brock and Kaufman 

2003). This species is a specialist on plants containing IGs (Bowers 1984), P. lanceolata being 

a common host plant (Graves and Shapiro 2003 and references therein). Adult female 

butterflies use IGs as oviposition stimulants (Pereyra and Bowers 1988), choosing host plants or 

tissues within plants with higher IG content, in particular catalpol (Klockars et al. 1993, Prudic et 

al. 2005). In addition, J. coenia butterflies lay a single egg at a time 

(http://www.butterfliesandmoths.org/species/Junonia-coenia), and thus, in the oviposition tests 
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(see below), each egg represents an individual choice. Furthermore, buckeye caterpillars not 

only use IGs as feeding stimulants (Bowers 1984), but they are also able to sequester aucubin 

and catalpol in their hemolymph (Bowers and Puttick 1986). Levels of IGs in buckeye 

caterpillars, which are positively correlated with levels of IGs in their diet, vary normally from 

less than 5% to over 20% dry weight (Camara 1997a). Caterpillars reaching higher levels of IGs 

in their tissues benefit from decreased mortality by predators such as ants, stink bugs, spiders, 

and predatory wasps (de la Fuente et al. 1995, Dyer and Bowers 1996, Strohmeyer et al. 1998, 

Theodoratus and Bowers 1999, Stamp 2001, Stamp and Meyerhoefer 2004). Nevertheless, 

some physiological and ecological costs associated with sequestration have also been reported 

(Adler et al. 1995, Camara 1997a, Smilanich et al. 2009a). Most recently, Smilanich et al. 

(2009a) showed that high IG diets, leading to high IG content in caterpillar hemolymph, may 

enhance larval susceptibility to parasitoid attack by weakening cellular immune responses.  

 

Experimental design 

Plants used in these experiments were grown at the University of Colorado greenhouse during 

the summer of 2009 and 2010. In both years, I wanted to expose butterflies (2009) and 

caterpillars (2010) simultaneously to all host plant developmental stages. Therefore, I 

synchronized host plant developmental stages by germinating seeds at intervals of 30 days 

from March to June. In this way, although average environmental conditions from sowing to 

harvest varied among age classes, I ensured that all individual plants were exposed to the same 

environmental conditions prior to exposure to herbivores or harvest. In this way, I reduced 

potential problems associated with serial sowing by reducing the effects of other confounding 

environmental factors such as photoperiod and temperature on plant quality and defenses 

(Hogedal and Molgaard 2000, Tamura 2001, Fuchs and Bowers 2004). Seeds were collected 

from >20 maternal plants from a population in Boulder County, Colorado, and mixed before 

sowing them in seed flats at intervals over the spring-summer season. Seeds were germinated 
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in Fafard mix and transplanted, after 15 days, to a growth medium of Metro Mix 350 and turface 

in 4.5 liter pots. Buckeye larvae used in this study were from a laboratory colony reared at the 

University of Colorado at Boulder. Larvae were fed on a mix of field collected P. lanceolata 

leaves and kept in growth chambers with a photoperiod of 14hr day: 10 night, and day-night 

temperatures of 27°C /22°C.  

In both years, I wanted to compare distinctive developmental stages to assess the effect 

of host plant ontogeny on higher trophic levels. Four age classes were used: J1- which 

represents young juvenile plants soon after they ended their seedling stage (i.e. containing from 

5 to 15 new leaves, and averaging 0.40g dry mass), J2- which represents juvenile plants that 

have reached a complete rosette with new, intermediate and old leaves but have not yet 

developed any reproductive structures (~1.60 to 4.30g dry mass), FL- representing mature 

rosette plants that have started flowering and contain from few to many scapes with buds or 

open flowers (~6 to 11.5g dry mass), and FR- representing mature rosette plants with their 

inflorescences ranging from fruit development to seed release (~14.20g dry mass). I 

simultaneously grew 20 to 180 plants in each of these four age classes per year, to ensure 

sufficient independent replicates for butterfly choice tests (2009) as well as for caterpillar rearing 

(2010). Replicates were randomly placed on four to six 2.5 x 4m greenhouse benches, exposed 

to natural daylight, and watered daily. Scotts Peter’s Excel (Scotts-Sierra Horticultural Products 

Company, Marysville, Ohio) mixed in a ratio of 15-5-15 N-P-K with trace micronutrients fertilizer 

was supplied to all plants every three to four days throughout the duration of the experiment. 

 

Female oviposition choice 

Plant quality and defenses- Immediately following inspection, counting, and egg removal from 

all plant tissues used in butterfly oviposition tests (see below), I measured variation in plant 

nutritional quality (leaf water and nitrogen concentration) and defenses (leaf toughness and 
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concentration of IGs) as a function of plant ontogeny. All aboveground tissues (new, medium 

and old leaves and inflorescences) available per plant were weighed fresh immediately following 

harvest, oven-dried at 50°C for 48hrs to a constant mass, and weighed again to the nearest 

0.01g. Leaf water content was calculated as [(wet weight –dry weight) / wet weight] x 100. Total 

leaf nitrogen concentrations was quantified by Micro-Dumas combustion on a NA1500 C/H/N 

analyzer, using approximately  3mg of finely ground leaf tissue per sample. 

To assess variation in concentrations of IGs, all tissues were ground into a fine powder, 

and 10-30mg subsamples (entire available tissue for some J1 plants) were processed for IG 

extraction and analyzed by gas chromatography following previously described methods 

(Bowers and Stamp 1993, Barton 2007, Quintero and Bowers 2011a). Briefly, samples were 

extracted overnight in 95% methanol, the methanol extract was filtered to remove the plant 

material and the residue evaporated to dryness. Phenyl-β-D-glucose (PBG) was added as an 

internal standard and the samples were then partitioned between water and ether to remove 

hydrophobic compounds. An aliquot of the remaining solution was removed, evaporated, and 

derivatized with Tri-Sil-ZTM (Pierce Chemical Company) and injected into a HP 7890A gas 

chromatograph (Agilent Technology) using an Agilent DB-1 column (30m, 0.320mm, 0.25µm 

particle size). Amounts of aucubin and catalpol were quantified using ChemStation B-03-01 

software and they are presented as percent dry weight for comparative purposes (e.g. Fuchs 

and Bowers 2004, Barton 2007, Wurst and van der Putten 2007).   

To determine leaf toughness, a Wagner Fruit Tester series penetrometer (Model #U0801, 

with a 0.1-mm tip) was used to measure the grams of force (GF) required to fracture the leaf 

lamina. Leaf toughness measurements were taken before leaf tissues were oven dried. 

Specifically, the amount of force needed to fracture foliage (defined here as leaf toughness, 

Sanson et al. 2001) was assessed by randomly selecting 3 to 6 leaves, per tissue category and 

age class, and taking four measures per leaf in between major leaf veins. Mean grams of force 

needed to punch each leaf with a 0.1mm steel rod was used as the dependent variable.  
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Although I recorded all plant traits (i.e. biomass, leaf water and nitrogen concentrations, 

leaf toughness and % dry weight aucubin and catalpol) for each of the four available tissues, 

here I present differences in plant quality and defenses only for new leaves for two reasons. 

First, new leaves are the only tissue category present across all four plant developmental 

stages, allowing comparison across treatments. Second, as previously observed by Klockars et 

al. (1993), Buckeye butterflies preferentially oviposit on new leaves regardless of their 

availability in the plant (see results). Thus, assessing variation in quality traits of new leaves 

across all age treatments should highlight ontogenetic changes relevant for ovipositing 

butterflies.  

Developmental variation in new leaf biomass, leaf toughness, and water and nitrogen 

concentrations was analyzed using one-way ANOVAs, followed by Bonferroni post-hoc tests to 

distinguish mean differences among age classes if overall significant differences were found. 

Multivariate analysis of variance (MANOVA) was used to examine concurrent variation in 

aucubin and catalpol concentrations as a function of plant age, due to correlation between these 

two variables within tissues. When significant effects were detected by MANOVA, I followed up 

with univariate ANOVAs for each IG, and mean group differences among plant age classes 

were assessed using Bonferroni post-hoc tests. Biomass data were square-root transformed 

and percent water, nitrogen, and IG concentrations were arcsine square-root transformed to 

improve normality and homogeneity of variance.  

Oviposition tests - To evaluate butterfly oviposition preference among multiple developmental 

stages of P. lanceolata, two sets of 3-way choice tests were performed from June 16th to 30th, 

2009: (i) J1 - J2 - FL and (ii) J2 - FL - FR. For each test, plants in each of  the three 

developmental stages were placed inside a circular wired cage (1.2 m diameter x 1m height), 

covered with a fine mesh and secured with clothes pins on top. Plants were equally spaced from 

each other, 30cm apart, and a source of sugar water was placed in the center of the cage, 
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equidistant from all plants. One to 3-day-old naïve butterflies, four J. coenia males and one 

female, were placed inside each cage for 72hr, allowing sufficient time for the female butterfly to 

mate and lay eggs. All experiments were performed in the field under natural light and 

temperature conditions; and thus, plants used in this experiment were acclimated to the field 

conditions for a week before the experiment started. The cages were checked every 12 to 24hr 

to refill the food supply and to water plants as needed. After 72hrs, all plants were removed from 

the cages, harvested, and aboveground tissues were separated into four categories: new, 

medium and old leaves, and inflorescences (see Bowers and Stamp 1992, Klockars et al. 1993). 

Number of leaves and inflorescences per tissue per plant were counted as well as the total 

number of eggs laid on each tissue category per plant. Plant tissues were then prepared for 

subsequent assessments of nutritional quality and defenses (see above). Although rarely found, 

eggs deposited on the cage or pot were not included in the analyses.  

Twenty replicates per choice test were completed, but I excluded replicates where 

females laid less than 20 eggs total. Friedman two-way analysis of variance by ranks was used 

to assess female choice across the two sets of 3-way choice tests. When an overall significant 

effect of plant age was found, I followed with Wilcoxon signed-rank tests, with their respective 

Bonferroni adjustment, to test for mean group differences among the three age classes. Total 

number of eggs laid differed widely among individual females (i.e. 60 to 370 eggs); therefore, I 

used the arcsine-square root transformed proportion of eggs laid by each female on each plant 

age class as the dependent variable. In addition, because plants of different developmental 

stages show significant variation in leaf biomass available (see results), I performed the same 

analyses as before with number of eggs over number of available leaves as a more meaningful 

dependent variable. To assess whether butterflies significantly prefer new leaves over other 

plant tissues, the proportion of eggs laid on new leaves versus the proportion of eggs laid in 

medium, old and inflorescences together was assessed, when available, by paired t-tests.  

 



112 

 

Larval performance 

Plant quality and defenses – All larval performance experiments were conducted during 

spring-summer 2010, rearing caterpillars on plants on one of four plant age classes: J1, J2, FL, 

and FR. Experiments assessing caterpillar performance, digestibility, IG sequestration, and 

susceptibility to simulated parasitoid attack were performed under controlled growth chamber 

conditions with a photoperiod of 14hr day: 10 night, and day-night temperatures of 27°C /22°C. 

Individual plants reared at the greenhouse were harvested every two to three days in order to 

supply caterpillars with a constant source of fresh leaves, previously undamaged. At harvest, 

only new and intermediate leaves were saved, and when present, old leaves and inflorescences 

were discarded. New and intermediate leaves from multiple individual plants per age-class per 

week were separated into two categories: (1) fresh material used to rear the larvae assigned to 

each plant age treatment, and (2) material that was weighed fresh, oven-dried at 50°C for 48hrs 

to a constant mass and weighed again to the nearest 0.01g. Variation in nutritional quality 

(water and nitrogen concentrations) and chemical defenses (% dry weight IGs) was assessed 

as before. The only difference was the measurement of leaf toughness, which in this case was 

assessed as specific leaf area (SLA). Specific leaf area was calculated as A/M, where A is the 

area of a disk ~2cm in diameter (cut with a cork borer) and M is the leaf disk dry mass (Milla et 

al. 2008). Twenty leaf disks collected separately from at least 10 leaves per age class were 

used, measuring their dry weight after drying them at 50°C for 48hr in the oven.  SLA has shown 

to inversely correlate with fiber concentration, such that lower SLA indicates higher 

concentrations of fiber and thus, higher leaf toughness (e.g. Choong 1996, Gras et al. 2005).  

Developmental variation in new leaf percent water, percent nitrogen, and SLA was 

analyzed using one-way ANOVAs, followed by Bonferroni post-hoc tests to distinguish mean 

differences among age classes. As before, MANOVA was first used to examine concurrent 

variation in aucubin and catalpol concentrations as a function of plant age. When significant 

effects were detected by MANOVA, I followed up with univariate ANOVAs for each IG, and 
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mean group differences among plant age classes were assessed using Bonferroni post-hoc 

tests. Percent water, nitrogen, and IG concentrations were arcsine square-root transformed to 

improve normality and homogeneity of variance.  

 

Caterpillar performance and fitness - Caterpillar performance from hatching to pupation was 

assessed as a function of host plant ontogeny using the four developmental stages above 

described: J1, J2, FL, and FR. Under growth chamber conditions, neonate larvae in groups of 

ten individuals per petri dish were assigned randomly to feed on a mix of new and intermediate 

leaves from each of these four developmental stages. Twelve replicates were performed for 

each of these non-choice tests for a total of 480 larvae. Larvae were monitored every day and a 

constant supply of fresh leaves was provided. At the beginning of the experiments, as well as 

every three days, all live larvae per petri dish were counted and weighed as a group to the 

nearest 0.01mg. Three measures of caterpillar performance were calculated: mortality rate, 

relative growth rate, and time to pupation. Mortality rate was calculated as the proportion of 

individuals that died over the initial number of larvae per replicate (N = 10). Relative growth rate 

(RGR), dry mass increase per unit dry mass per day, was calculated as [(Wf - Wi)/Wi]/t  where Wf 

is final biomass, Wi is initial biomass and t is the total number of days from neonate to newly 

molted 5th instar. To estimate fitness, once caterpillars pupated, pupae were weighed fresh to 

the nearest 0.01mg. Variation in larval mortality rate, RGR, time to pupation and pupal weight 

were tested by one-way ANOVA followed by Bonferroni post-hoc tests to assess differences 

among the four diet treatments. Time to pupation and pupal weight data were square root 

transformed and proportion data (mortality rate and RGR) were arcsine-square root transformed 

to improve normality and homogeneity of variance.  

Caterpillar feeding efficiency – In a separate experiment, newly molted 3rd, 4th and 5th instar 

caterpillars, previously reared on J1, J2, FL and FR plants from neonates as described above, 
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were separated for detailed assessments of feeding efficiency. Feeding efficiency can be used 

to estimate the metabolic costs of feeding on diets varying in multiple traits such as nutritional 

quality, physical and chemical defenses. Four nutritional indices were calculated according to 

the standard gravimetric method (Waldbauer 1968): consumption index (CI), approximate 

digestibility (AD), efficiency of conversion of ingested food (ECI), and efficiency of conversion of 

digested food (ECD) (see Table 5.1). Briefly, CI provides a measure of the total amount of leaf 

consumed relative to the body mass gained, and AD, or assimilation efficiency, reflects the 

proportion of ingested food that is actually digested. Trade-offs among these indices may also 

arise. For instance, many insects increase food consumption rates in response to low 

concentrations of critical nutrients such as protein. However, increased consumption will 

accelerate passage of food through the gut and thereby reduce AD. In turn, ECI (growth 

efficiency) and ECD (metabolic efficiency) provide a measure of the overall efficiency with which 

the food ingested or digested, respectively, is converted into caterpillar biomass. All 

measurements were gathered over a 24hr interval starting with newly molted 3rd, 4th and 5th 

instar larvae. To obtain these indices, 20 individual larvae per instar (e.g. 3rd, 4th and 5th) per 

treatment diet (e.g. J1, J2, FL and FR) were placed in small sealed containers (160 mm2) and 

provided with sufficient leaf material. Five measurements were collected per replicate: initial and 

final food mass (fresh weight), initial and final larval mass (fresh weight), and final fecal mass 

(dry weight). Prior to this 24hr period, caterpillars were starved for four to eight hours to ensure 

an empty gut before the trials begin. Similarly, after removal of the remaining leaf material 

following the 24hrs, caterpillars were starved for four additional hours before larval fresh weight 

and fecal dry weight were measured. A separate subset of larvae and leaves from each instar 

and treatment diet combination was dried and weighed at the beginning and the end of the 

experiment to obtain dry weight conversion factors. To avoid problems with the statistical 

analysis of ratios, all nutritional indices were analyzed using two-way ANCOVAs (Raubenheimer 

and Simpson 1992). In all cases, except for CI, the numerator of the formula used to calculate
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TABLE 5.1. Formulas used to calculate larval nutritional indices according to the standard 
gravimetric method (Waldbauer 1968). CI = consumption index, AD = approximate digestibility, 
ECI = efficiency of ingested food, and ECD = efficiency of conversion of digested food.  
 

Index Formula 

CI Dry weight of food ingested / (Larval mass gain x Number of days) 

ECI Larval mass gain / Dry weight of food ingested 

AD (Dry weight of food ingested - Dry weight of feces) / Dry weight of food ingested 

ECD Larval mass gain / (Dry weight of food ingested - Dry weight of feces) 
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analysis of ratios, all nutritional indices were analyzed using two-way ANCOVAs (Raubenheimer 

and Simpson 1992). In all cases, except for CI, the numerator of the formula used to calculate 

each nutritional index was the dependent variable, while the denominator was used as a 

covariate (see Table 5.1). In the case of CI, the covariate was initial larval mass. Host plant age 

and larval instar were included as fixed factors. Dependent and covariate variables were square 

root transformed to improve normality and homogeneity of variance. 

Caterpillar sequestration and immune defenses 

Caterpillar IG sequestration – Following the nutritional indices experiment, all 3rd, 4th and 5th 

instar larvae per treatment diet were freeze-killed and later processed for extraction of 

sequestered IGs. Sample size per instar per diet treatment varied between 15 and 20 

individuals. To measure sequestration of IGs, whole caterpillars were ground inside 15ml test 

tubes using sterilized sand and a glass rod, and the mixture was extracted overnight in 95% 

methanol. The methanol extract was subsequently filtered to remove caterpillar tissues and 

sand, and the residue evaporated to dryness. Sample purification and quantification of IG 

extraction using gas chromatography followed previously described methods (see also Bowers 

and Stamp 1993, Barton 2007, Quintero and Bowers 2011a). Variation in sequestration was 

assessed using a two-way MANOVA with percent dry weight aucubin and catalpol as 

dependent variables, and host plant age and larval instar as fixed factors. When a significant 

effect was detected, I followed with univariate ANOVAs for each compound separately. 

Proportion data were arsine square root transformed to improve normality and homogeneity of 

variance. 

Caterpillar immune defenses - To measure the immune response of J. coenia larvae, 

caterpillars previously reared on J1, J2, FL and FR plants from neonates as described above, 

were injected with silica beads (Lavine and Beckage 1996, Lovallo et al. 2002, Rantala and Roff 
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2007, Smilanich et al. 2009a). Previous studies have shown that exposing caterpillars with 

these positively charged glass beads produces a strong encapsulation response, which 

correlates with both immune response against real parasites and pathogens (Rantala and Roff 

2007) and field parasitism rates (Smilanich et al. 2009b). Thus, larval immune response, 

measured as percent melanization, was assessed following previously described methods 

(Smilanich et al. 2009a).  

Newly molted 5th instar larvae, anesthetized by exposure to CO2 for approx. 30 seconds, 

were injected with silica beads. Beads used for injections were DEAE Sephadex-A25 silica 

chromatography beads (40–120 µm diameter), obtained from Sigma-Aldrich (St. Louis, Missouri, 

USA). Prior to injections, beads were dyed with a 0.1% solution Congo Red Dye and allowed to 

dry completely, before storing them in Ringer’s solution. Beads were injected into caterpillar 

hemolymph, at the base of the third proleg, using hand-made fine glass needles, and the wound 

was sealed with New Skin Liquid Bandage (Medtech Products, Jackson, Wyoming, USA). 

Injections were performed under a Leica S6D dissection microscope with 30x magnification, and 

each injection consisted of approx. 5 µL Ringer’s solution, containing 15 ± 10 beads. Following 

injection, larvae were placed back in their individual rearing container with the same treatment 

diet as before (i.e. either J1, J2, FL or FR new leaves) for 24 h. After this period, larvae were 

freeze-killed and later dissected to retrieve beads. Caterpillar dissections were conducted under 

a Leica S6D dissection microscope with 60x magnification to facilitate bead identification and 

removal. Caterpillars were dissected immersed in 2ml 95% methanol to prevent IG breakdown. 

Once the dissection was complete and all beads retrieved, all caterpillar tissues were 

transferred to a 15ml test tube and later processed for extraction of sequestered IGs as 

described above. Beads were stored in Ringer’s saline until photographed.  

A Zeiss Axiocam Vision LE camera mounted onto a Stemi SVII dissection microscope 

with 80x magnification was used to photograph beads. Control (uninjected) beads and 

recovered beads from caterpillars were photographed under the same exposure and white 
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balance, and the encapsulation and melanization strength were quantified by measuring the red 

value (r-value) of each bead. The r-value is a numerical measure of the red saturation of an 

image on a scale ranging from 0 to 255, where 0 = pure grey, and 255 = pure red. R-values 

were obtained for each bead within a caterpillar, using ADOBE PHOTOSHOP version CS2 

(Adobe Systems Inc., San Jose, California, USA), and these values were averaged to provide a 

single r-value score for each individual caterpillar. The mean r-value was transformed into 

percent melanization using the following formula: [1 - (r-value ⁄control r-value)] for ease of 

interpretation. A total of 20 larvae per treatment were injected, but final sample size varied 

between 10 and 16 replicates per treatment. Analyses of Covariance (ANCOVA), with number 

of beads retrieved per caterpillar as a covariate, were used to compare percent melanization as 

a function of host plant developmental stage. Pearson’s correlation coefficients were used to 

examine associations between percent melanization and sequestered IGs (aucubin, catalpol 

and total IGs).  

 

RESULTS 

Female oviposition choice 

Plant quality and defenses- New leaves significantly differed in all plant traits measured 

across plant ontogeny (Figure 5.1). In the case of the J1-J2-FL choice test, a significant 

increase in biomass (F2,48 = 103.6, P < 0.0001), physical (F2,48 = 24.39, P < 0.0001) and 

chemical defenses (MANOVA: Wilks’ λ = 0.504, F4,88 = 9.0, P< 0.0001, ANOVAs aucubin: F2,48 = 

21.02, P < 0.0001, catalpol: F2,48 = 14.74, P < 0.0001) was observed as plants aged (Figure 

5.1a-c). In contrast, nutritional quality of new leaves decreased as plants aged, as observed for 

both water (F2,48 = 68.6, P < 0.0001) and nitrogen concentrations (F2,48 = 91.35, P < 0.0001) 

(Figure 5.1d,e). In addition, it is interesting to note that in the case of both plant defenses I did 

not observe significant differences between J1 and J2 new leaves (Figure 5.1b,c). Thus, leaf 

toughness and percent dry weight aucubin and catalpol in new leaves, although they showed an 
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increase between J1 and J2 stages, did not significantly differ between the two juvenile stages. 

Similar trends were observed for J2-FL-FR choice tests. While biomass (F2,54 = 18.8, P < 

0.0001), physical (F2,54 = 83.81, P < 0.0001) and chemical defenses (MANOVA: Wilks’ λ = 0.326, 

F4,100 = 18.81, P< 0.0001, ANOVAs aucubin: F2,54 = 48.36, P < 0.0001; catalpol: F2,54 = 11.09, P 

< 0.0001) increased in new leaves as plants developed (but note the decrease in aucubin and 

catalpol between FL and FR stages), nutritional quality decreased (% water: F2,54 = 44.98, P < 

0.0001; % N: F2,54 = 147.31, P < 0.0001) (Figure 5.1f-j).   

 

Oviposition tests - Individual J. coenia females laid, on average, 202.5 ± 15.5 SE eggs, across 

all host plant stages. Of the 40 individual females tested, only six laid less than 20 eggs and 

thus, were excluded from the analyses. Overall, in both choice tests, butterflies preferred 

younger plant developmental stages over mature stages, but that choice was clearer when 

correcting for leaf tissue availability (Figure 5.2). Friedman tests, assessing variation in 

proportion of eggs laid among each set of choice tests, demonstrated that butterflies 

significantly prefer J2 and FL plants over J1 in the first choice test (χ22, 16 = 8.59, P = 0.014), and 

J2 plants over FL and FR in the second choice test (χ22, 18 = 19.44, P < 0.0001). Post-

hoc analysis with Wilcoxon signed-rank tests were conducted with a Bonferroni correction 

applied, resulting in a significance level set at P < 0.017. Mean group treatment differences 

demonstrated a significant preference for J2 over J1 (Z = -3.19, P = 0.001), but no differences 

were observed between FL and J1 or J2 stages (Z = -2.15, P = 0.031 and Z = -0.5, P = 0.62, 

respectively) (Figure 5.2a). In the case of the choice test among older age classes, J2 stages 

showed a significantly higher proportion of eggs over both FL (Z = -3.16, P = 0.002) and FR (Z = 

-3.68, P = 0.0001), and no difference was observed between reproductive stages (FL and FR) 

(Z = -1.24, P = 0.21) (Figure 5.2b). Furthermore, butterflies not only showed a preference for 
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Figure 5.1. Ontogenetic variation in new leaves of Plantago lanceolata used in oviposition 
tests (Mean ± 1SE). Left panels are for J1, J2, FL tests (a to e) and right panels are for J2, FL 
and FR tests (f to j). Five traits were measured: biomass, physical defenses measured as leaf 
toughness (i.e. grams of force, GF), chemical defenses measured as percent dry weight IGs: 
aucubin and catalpol, and leaf nutritional quality measured as percentage water and nitrogen. 
Original data were square root or arcsine-square root transformed for statistical analyses, 
actual values are shown for illustrative purposes only. Letters indicate mean group 
differences as tested by a Bonferroni post-hoc test (p<0.05). In panel c) and h) capital letters 
were used to represent group mean differences for aucubin and lower-case letters were used 
to represent group mean differences for catalpol concentrations.  
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Figure 5.2. Junonia coenia oviposition choice across two sets of 3-way choice tests, 
represented as a) proportion of eggs laid across tissues and developmental stages for J1-J2-FL 
(N = 16) and b) J2-FL-FR (N = 18) P. lanceolata stages, or as number of eggs per total 
available leaf tissues for c) J1-J2-FL (N = 16) and d) J2-FL-FR (N = 18) P. lanceolata stages. In 
top panels, asterisks represent significant differences between new leaves and all other tissues 
using paired t-tests. Significance is displayed as P < 0.0001 (***), P < 0.01 (**), P < 0.05 (*). In 
bottom panels, the boxes represent the median and the 25th and 75th percentiles, and bars 
extend to the 5 and 95% values.  
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younger developmental stages (preferentially J2 stages), but also for younger leaf tissues. On 

average, butterflies laid 70-100% of their eggs on new leaves as compared with medium, old 

leaves and inflorescences, and that difference was statistically significant in all cases as 

demonstrated by paired t-tests (see Figure 5.2a,b).  

Correcting for differences in available biomass between plant developmental stages 

revealed an even stronger preference of female Buckeye butterflies for juvenile plants (Figure 

5.2c, d). In the case of the choice test J1-J2-FL, butterflies laid more than twice as many eggs 

per available leaf on juvenile stages than on reproductive stages (χ22, 16 = 13.76, P < 0.001). 

Post-hoc analysis with Wilcoxon signed-rank tests demonstrated that there were no significant 

differences between the J1 and J2 stages (Z = -0.26, P = 0.79), although a small reduction in 

egg number per available leaf was observed from J1 to J2 stages. In turn, there was a 

statistically significant reduction in butterfly preference between J1 and FL (Z = -2.67, P = 0.007) 

and between J2 and FL plants (Z = -3.34, P = 0.001) (Figure 5.2c). In the case of the choice test 

including older plant stages, J2-FL-FR, the differences were also more pronounced. Although, 

on average, females in the J2-FL-FR tests laid considerably fewer total eggs than those 

exposed to J1-J2-FL stages (note the scale difference in Figure 5.1), butterflies laid 5 to 14 

times more eggs per leaf on juvenile plants than on reproductive stages (χ22, 18 = 24.33, P < 

0.0001). Post-hoc analysis demonstrated a significant preference for J2 over FL (Z = -3.46, P = 

0.001) and FR stages (Z = -3.72, P = 0.0001), but no differences were observed between FL 

and FR stages (Z = -1.63, P = 0.102) (Figure 5.2d).  

Larval performance 

Plant quality and defenses – Similar to the patterns described above for the plants harvested 

following butterfly oviposition in 2009, combined new and intermediate leaves used to feed J. 

coenia caterpillars in 2010 also varied in all measured traits as a function of host plant 

ontogenetic stage (Table 5.2). Specifically, while overall nutritional quality decreased, physical 
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and chemical defenses increased as plants developed. However, it is interesting to note the lack 

of variation between the two young juvenile stages (J1 and J2), which show similar levels 

across all variables measured except SLA (Table 5.2), suggesting that an increase in physical 

defenses might be the major difference between new and intermediate leaves in these stages. 

Furthermore, small changes between the 2009 and 2010 harvest can be observed (see Figure 

5.1 and Table 5.2), which may correspond to annual variation in uncontrolled biotic and abiotic 

factors and/or to slight variation in the actual age of plants at the moment of harvest. In this 

regard, it is interesting to note that while in 2009 all plants were harvested within a one-week 

period; in 2010 plants were harvested over four weeks in order to account for variation in plant 

traits during the complete period of caterpillar development (which may also explain the lack of 

variation among the two juvenile stages).  

Caterpillar performance and fitness – Changes in plant quality and defenses as host plant 

developmental stage significantly impacted caterpillar performance but not larval mortality rate 

or pupal weight (a correlate of fitness). While mortality rate of immature larvae did not vary as a 

function of host plant age (F3,44 = 2.21, P = 0.1), RGR significantly decreased two to three times 

for those larvae fed new and intermediate leaves of reproductive stages, as compared with 

leaves of the same age but from juvenile stages (F3,44 = 13.35, P < 0.0001) (Figure 5.3a,b). 

Time to pupation significantly varied as a function of diet (F3,44 = 69.4, P < 0.0001), with larvae 

reared on FR plants taking ~30% longer (i.e. 7-10 days) to reach the pupal stage as compared 

with larvae reared on J1, J2 and FL plants (Figure 5.3c). However, only marginally significant 

differences were detected for pupal weight across host plant treatments (F3,126  = 2.6, P = 0.055), 

suggesting that the extended development time compensated for low quality diets (Figure 5.3d).   



 

 

TABLE 5.2. Nutritional quality, physical and chemical defenses of combined new and intermediate P. lanceolata leaves used to feed 
J. coenia caterpillars during summer 2011. Mean ± 1SE values for all plant traits and plant developmental stages are presented as 
well as the ANOVA results. Letters in parenthesis indicate mean group differences among plant age treatments as tested by 
Bonferroni post-hoc tests (P < 0.05).  

 

Plant traits J1 J2 FL FR df F P 

Water (%) 88.06 ± 0.41 (a) 88.15 ± 0.26 (a) 84.39 ± 0.52 (b) 80.17 ± 0.50 (c) 3,141 79.91 0.0001 

Nitrogen (%) 4.26 ± 0.20  (a) 4.21 ± 0.16  (a) 1.95 ± 0.10  (b) 1.25 ± 0.05  (c) 3,139 79.91 0.0001 

SLA (cm
2
 mg

-1
) 0.47 ± 0.05 (a) 0.24 ± 0.02 (b) 0.21 ± 0.02 (c) 0.17 ± 0.02 (d) 3, 76 417.43 0.0001 

Total IGs (%) 0.99 ± 0.16 (a) 0.87 ± 0.09 (a) 2.78 ± 0.46 (b) 3.86 ± 0.47 (c) 3,141 79.91 0.0001 

Aucubin (%) 0.73 ± 0.13 (a) 0.72 ± 0.08 (a) 1.98 ± 0.31 (b) 2.83 ± 0.36 (c) 3,141 79.91 0.0001 

Catalpol (%) 0.26 ± 0.05 (a) 0.15 ± 0.04 (a) 0.80 ± 0.16 (b) 1.03 ± 0.14 (b) 3,141 79.91 0.0001 
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Figure 5.3. Junonia coenia caterpillar performance and fitness, reared from neonate to pupation, across four host plant 
developmental stages (J1, J2, FL, and FR), measured as a) mortality rate, b) relative growth rate, c) time to pupation, and d) pupal 
weight. Original data were square root or arcsine-square root transformed for statistical analyses, actual values are shown for 
illustrative purposes only.  Letters indicate mean group differences as tested by a Bonferroni post-hoc test (P<0.05), when overall 
ANOVA was significant.  
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Caterpillar feeding efficiency - Feeding efficiency data showed that, in general, the ability of a 

larva to digest leaf tissue varying in nutritional quality and defenses as a function of host plant 

age significantly varied throughout larval development (see significant age*instar interactions in 

Table 5.3), with 3rd instar larvae being the most susceptible to ontogenetic changes in host plant 

leaf quality (Figure 5.4). The consumption index (CI) showed a consistent trend across larval 

stages, with a significant increase of two to four times more leaf material consumed as host 

plant age increased (Figure 5.4a). Approximate digestibility (AD), did not significantly vary 

across larval instars (Table 5.3) and showed little variation across host plant stages (Figure 

5.4c). In contrast, the efficiency of food conversion indices (ECD and ECI) were in general 

significantly higher for larvae feeding on juvenile plants as compared to those feeding on mature 

plants (Figure 5.4b, d).    

Caterpillar sequestration and immune defenses 

Caterpillar IG sequestration - Host plant variation in IGs had a significant effect on caterpillar 

sequestration ability, showing an overall increase in caterpillar IG concentration as host plants 

aged, and thus host plant IG content increased (Figure 5.5). MANOVA and ANOVA results both 

showed a significant effect of host plant age, caterpillar instar and, in most cases, a significant 

plant age by instar interaction (Table 5.4). Therefore, variation in sequestered IGs throughout 

larval development changed as a function of host plant developmental stage. For instance, 

caterpillars feeding on older FR stages always sequestered high levels of IGs without 

substantial variation from 3rd to 5th instars (i.e. total IGs, aucubin + catalpol, from 3rd to 5th instar 

varied from 11 to 11.6% dry wt. respectively), while caterpillars reared on younger host plant 

developmental stages, J1 to FL, more than doubled their levels of sequestered IGs during the 

same period (Figure 5.5).  

 



 

 

 

 

 

 

TABLE 5.3. Summary of two-way ANCOVAs comparing larval nutritional indices as a function of host plant developmental stage 
(caterpillar diet treatment: J1, J2, FL and FR) and larval instar (3rd, 4th and 5th instar). See text and Table 5.1 for description of 
covariate in each case and nutritional indices abbreviation. Significant effects are indicated in bold.  

       CI         ECI      AD   ECD   

Source of 

variation 
df F P  df F    P  df F     P  df F    P 

Covariate  1 70.63 0.0001  1 9.99 0.002  1 280.12 0.0001  1 6.64 0.011  

Plant age 3 63.83 0.0001  3 1.30 0.033  3 2.99 0.032  3 2.33 0.075  

Instar 2 14.03 0.066  2 24.86 0.0001  2 0.99 0.373  2 129.88 0.0001  

Age*Instar 6 16.14 0.0001  6 8.12 0.0001  6 4.9 0.0001  6 10.92 0.0001  

Error 209    209    209    209    
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Figure 5.4. Junonia coenia larval nutritional indices (Mean ± 1 S.E.) for 3rd, 4th and 5th instar feeding for 24 hr on new leaves of four 
host plant developmental stages (J1, J2, FL and FR): a) consumption index (CI), b) efficiency of conversion of ingested food (ECI),   
c) approximate digestibility (AD), and d) efficiency of conversion of digested food (ECD). 
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TABLE 5.4. Summary of two-way MANOVA and ANOVAs comparing larval sequestration rate 
as a function of host plant developmental stage (caterpillar diet treatment: J1, J2, FL and FR), 
larval instar (3rd, 4th and 5th instar) and their interaction.  

 

 

        Source 

of        

variation 

λ df F P 

Aucubin 

and 

Catalpol 

Plant age 0.44 6,418 34.7 0.0001 

Instar 0.74 4, 418 17.3 0.0001 

Age*Instar 0.85 12,418 2.9 0.001 

Aucubin Plant age  3,210 60.86 0.0001 

Instar  2, 210 35.95 0.0001 

Age*Instar  6,210 3.56 0.002 

Catalpol Plant age  3,210 28.1 0.0001 

Instar  2, 210 15.37 0.0001 

Age*Instar  6,210 2.0 0.066 
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Figure 5.5. Junonia coenia IG sequestration (Mean ± 1 S.E.) for 3rd, 4th and 5th instar caterpillars, 
feeding from neonate on new leaves of four host plant developmental stages (J1, J2, FL and 
FR). Percent dry weight aucubin and catalpol was assessed when caterpillars just molted to the 
a) 3rd instar, b) 4th instar and c) 5th instar. Original data were arcsine-square root transformed for 
statistical analyses; actual values are shown for illustrative purposes only. Letters indicate mean 
group differences as tested by Bonferroni post-hoc tests (P <0.05). Capital letters were used to 
represent mean group differences for aucubin and lower-case letters were used to represent 
group mean differences for catalpol concentrations.  
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Caterpillar immune defenses - The ability of 5th instar caterpillars to encapsulate and melanize 

a foreign object significantly varied across host plant age classes (F3,49 = 2.97, P = 0.04), 

showing a decrease in melanization rate as host plant age increases. Specifically, larvae 

feeding on FR plants showed a significant decrease in melanization rate (up to 30% difference) 

as compared to younger host plant stages. These results indicate that J. coenia larvae feeding 

on older host plant stages, and thus on high IG containing plants, might be less efficient at 

defending themselves again parasitoids (Figure 5.6). The number of beads recovered per 

individual caterpillar, used as a covariate, did not affect the melanization response (F1,49 = 1.6, P 

= 0.21), indicating that the ability to mount an immune defense can be independent of level of 

attack. Finally, Pearson correlation coefficients demonstrated a negative correlation between 

caterpillar sequestration rate and melanization rate (total IGs: R = -0.32, P = 0.021, N = 52; 

aucubin: R = -0.29, P = 0.035, N = 52; catalpol: R = -0.31, P = 0.023, N = 52), indicating that 

diets rich in IGs, leading to higher IG larval sequestration, diminish caterpillar immune response 

to parasitoids.     

 

DISCUSSION 

Both direct and indirect species interactions have key roles in structuring communities. For 

example, plants can alter the identity, abundance and performance of invertebrate carnivores 

through their direct impact on the performance and foraging behavior of insect herbivores (Ode 

2006, Inbar and Gerling 2008, Dobler et al. 2011, Unsicker et al. 2011). Similarly, herbivore 

damage that results in a cascade of induced changes in morphological and chemical traits in 

their host plants can result in often asymmetrical competition among herbivore species (Denno 

et al. 1995, Poelman et al. 2008b), and even scale up to alter the outcome of higher trophic 

level interactions (Bukovinszky et al. 2009, Poelman et al. 2011). Despite increasing knowledge 

that multi-trophic interactions vary in both space and time, relatively little is known regarding
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Figure 5.6. Junonia coenia larval immune response to simulated parasitoid eggs measured as 
percent melanization of injected silica beads, in response to host plant developmental stage (J1, 
J2, FL and FR).  Letters indicate mean group differences as tested by a Bonferroni post-hoc test 
(P <0.05).
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how the strength and direction of plant-herbivore-natural enemy interactions vary across host 

plant development. Here, I illustrated that the selective pressure of a herbivore may vary over its 

host plant’s ontogeny, as plants become less preferred and more resistant to this specialist 

herbivore. However, overall levels of herbivore abundance and damage as plants age will 

depend on the community composition of the higher trophic level, as caterpillars feeding on 

younger life stages become more vulnerable to predators, but better defended against 

parasitoids. These results suggest that physiological and morphological constraints during plant 

ontogeny can alter the strength of the bottom-up versus top-down controls on herbivore 

population dynamics, potentially driving the observed changes in insect communities associated 

with a plant species over its lifetime.  

 

Ontogenetic patterns in plant defensive traits 

Changes in plant defensive traits as plants develop, altering the quality of food for herbivores, 

have been repeatedly demonstrated across all plant life forms (reviewed in Barton and 

Koricheva 2010). While it is expected that this temporal variation will impact tri-trophic 

interactions, the direction and magnitude of these changes can be hard to predict. One reason 

underlying this complexity is that, often, ontogenetic patterns encompass shifts in several 

defensive traits at a time, which can show parallel or opposing trajectories (e.g. Donaldson et al. 

2006, Rehill et al. 2006, Mcarthur et al. 2010). In this study, for instance, while Plantago 

lanceolata leaf toughness doubled and levels of IGs in new leaves increased up to 16 times 

between juvenile and mature stages (i.e. 0.36 to 6% dry wt.), percent water decreased from 90 

to 75% and nitrogen concentrations decreased from 4.5 to 1.25%, during the same period. This 

pattern is consistent with previous reports describing P. lanceolata increases in IG content and 

physical defenses as plants age (Bowers and Stamp 1993, Fuchs and Bowers 2004, Barton 

2007, Quintero and Bowers 2011a), with concomitant decreases in SLA (Schippers and Olff 

2000) and nutritional quality throughout ontogeny (Bowers and Stamp 1993, Quintero and 
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Bowers 2011a). Nevertheless, it is important to note that the patterns reported here only 

represent constitutive ontogenetic changes in mostly new leaves and excluded any effect of 

plant age on among tissue variation (i.e. new vs. old leaves) (Bowers and Stamp 1992) or 

induced defenses following damage (Fuchs and Bowers 2004, Barton 2008, Quintero and 

Bowers 2011b). Had the experiments been run under field conditions, where herbivores might 

be exposed to multiple sources of variation as plants age, the effect size of ontogenetic patterns 

in host plant constitutive and induced defenses on plant-herbivore-natural enemy interactions 

may be larger than those estimated here.  

 

Plant age and female oviposition choice  

Variation in insect herbivore richness and density on certain developmental stages over others 

may be due to selective female oviposition choice and/or immature herbivore foraging behavior. 

In this study, adult Junonia coenia selectively preferred younger developmental stages of the 

host plant, P. lanceolata, by laying 2 to 14 times more eggs per leaf on juvenile plants than on 

reproductive stages. Because the butterfly choice tests used whole plants, a combination of 

stimulants and deterrents most probably was responsible for the observed female preferences, 

as reported for other lepidopteran species (Honda 1995). Previous studies have demonstrated 

that Buckeye butterflies use IGs as oviposition cues (Pereyra and Bowers 1988), and that often 

higher IG concentrations in leaves, in particular catalpol, increases likelihood of oviposition 

(Pereyra and Bowers 1988, Klockars et al. 1993). In addition, Prudic et al. (2005) suggested 

that female oviposition behavior is also affected by host plant traits other than IG concentration, 

as females laid more eggs on high-nitrogen, low IG plants than on low-nitrogen, high IG plants. 

Lastly, because Buckeyes often select younger leaves over older leaves (Klockars et al. 1993), 

female preference may be driven by the combination of: (i) larger proportion of new leaves, (ii) 

higher proportion of catalpol despite lower total IG concentrations, and (iii) high nutritional 

quality and lower leaf toughness in younger juvenile stages (see Figure 5.1). Thus, although the 
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independent role of each trait on female oviposition choice in this system warrants further 

investigation, this study highlights that adult females can show strong preferences for certain 

host plant developmental stages over others. 

 Whether butterfly oviposition choice leads to optimal or suboptimal conditions for the 

offspring may depend on the relative importance of bottom-up versus top-down forces. The 

preference-performance hypothesis, first proposed by Jaenike (1978), states that female insects 

will preferentially oviposit on plants that maximize the survival and performance of their larvae. 

Over the past 30 years, this hypothesis has received substantial support (Gripenberg et al. 

2010); however, many insects have also been found to make poor oviposition decisions. 

Possible explanations for ‘bad motherhood’ decisions include: optimal foraging, where adult 

insects choose oviposition sites that enhance their own long-term fitness at the expense of their 

individual offspring (Mayhew 2001), and enemy-free space, where females choose oviposition 

sites that decrease larval predation risk over enhanced larval performance (Denno et al. 1990, 

Bjorkman and Larsson 1991, Ballabeni et al. 2001, Sadek et al. 2010). Here, in accordance with 

the preference-performance hypothesis, caterpillars feeding on juvenile P. lanceolata plants, 

which were preferred by ovipositing females, showed faster relative growth rate, shorter 

development time, and increased digestive efficiency compared to those feeding on older, 

reproductive hosts. Nonetheless, these results suggest that this decision provides larvae with 

the best nutrition, but the least defensive compounds, which can render immature larvae more 

susceptible to predators but more resistant to parasitoids. Thus, whether this strategy may 

enhance larval performance in the presence of natural enemies may depend on the identity, 

abundance and behavior of predators and parasitoids in the field. Yet, because larval mortality 

is usually higher earlier during larval development (reviewed in Zalucki et al. 2002), when levels 

of sequestered defenses are quite low, the choice reported for J. coenia in this study suggests 

that increased larval growth rates in early susceptible instars may be more important than 

enemy-free space for enhancing overall herbivore fitness.  
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Plant age and caterpillar performance  

The nutritional quality of forbs is distinguished by its high water (75-95% fresh wt.) and nitrogen 

concentrations (1.5-9.7% dry wt.) as compared with foliage of grasses and trees (Slansky and 

Scriber 1985). This high nutrient availability promotes rapid growth in chewing herbivores 

associated with forbs (Tabashnik and Slansky 1987), but those herbivores may be less adapted 

to high spatiotemporal variation in nitrogen and water content in their diets. Performance indices 

of many herbivorous insects are strongly correlated with both nitrogen and water concentrations 

of the food; but their relative importance is complicated by the fact that both traits tend to covary, 

especially when the proportion of structural carbohydrates increases over tissue development 

(Slansky and Scriber 1985). In general, insects respond to lower nitrogen content by increasing 

food consumption or the efficiency of nitrogen use (Tabashnik and Slansky 1987). Thus, the 

observed ten percent decrease in foliar water content and three fold decrease in nitrogen 

concentrations as P. lanceolata ages from J1 to FL stages (Table 5.2), may explain the higher 

consumption rate (CI) and lower larval relative growth rate (RGR) observed while feeding on 

those tissues. Leaf toughness (higher fiber and cellulose content) may also act in concert with 

lower nutritional quality as plants age, further decreasing larval performance. In particular, leaf 

toughness may decrease insect performance due to its direct effect on limiting the size of meals 

being eaten, slowing gut passage rates, and reducing nutrient supply and efficiency of 

assimilation of nutrients (Hochuli 1996, Clissold et al. 2009). Therefore, the low efficiency of 

conversion of ingested and digested food (ECI, ECD) and the extended development time of J. 

coenia reared on older host plant stages may be due, at least in part, to ontogenetic patterns in 

leaf physical defenses.  

Alternatively, the amount and proportion of energy (e.g. protein, lipids, carbohydrates, 

and vitamins) and allelochemicals can vary greatly within and among forb species (Tabashnik 

and Slansky 1987), leading to varying insect performance and digestive efficiency. In the case 

of IGs, their toxic effects are induced when the compounds are activated by enzymes such as 
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the hydrolytic β-glucosidases (Dobler et al. 2011). The resulting iridoid aglycone can denature 

amino acids, proteins and nucleic acids, act as enzyme inhibitors, and inhibit the formation of 

prostaglandins and leucotrienes, all of which may either affect herbivores directly or may reduce 

the quality of ingested food by rendering proteins undigestible (reviewed in Dobler et al. 2011). 

To date, it is unknown whether these β-glucosidases stem from the food plant or are present in 

the gut as standard digestive enzymes (Dobler et al. 2011). Nevertheless, in either case, if an 

increase in food IG content augments β-glucosidase content in the insect gut, that may help to 

explain the decreased performance previously observed for this specialist herbivore (Adler et al. 

1995, Camara 1997a) and in the current study.  

Because larvae confined to low-quality diets commonly compensate by consuming more 

tissues (Tabashnik and Slansky 1987); such a compensatory strategy would increase J. coenia 

exposure to defensive compounds, which must subsequently be detoxified or sequestered, 

diverting energy that otherwise could be allocated to adding body mass (Smilanich et al. 2009a). 

As a result, a combination of higher levels of physical and chemical defenses and lower 

nutritional quality in leaves of older host plant stages slows the growth of this specialist insect by 

making digestive processes less efficient. Nevertheless, despite considerable variation in larval 

performance, neither larval mortality nor pupal weight varied across plant ontogeny, suggesting 

that overall herbivore fitness may not be strongly impacted beyond the potential effects that 

delayed development time may already confer (e.g. Benrey and Denno 1997).  

 

Plant age and the third-trophic level  

The effects of ontogenetic variation in plant traits on herbivores may also cascade up the food 

chain altering the foraging behavior and performance of higher trophic levels. Consequently, the 

strength of the top-down control of herbivores may change as host plants develop. Most 

research looking at this question has focused on the direct effects of plant traits, such as 

architectural complexity (Van Bael et al. 2003, Boege 2005a, Riihimaki et al. 2006, Obermaier et 



138 

 

al. 2008) or the provision of shelter and food rewards (Djieto-Lordon et al. 2004, Izzo and 

Vasconcelos 2005, Trager and Bruna 2006, Miller 2007) on natural enemies’ foraging behavior. 

In contrast, indirect effects of ontogenetic trends in plant traits on natural enemy performance 

have received less consideration. My results suggest that temporal variation in plant traits may 

lead to opposing effects on predators versus parasitoids, as mediated by caterpillar ability to 

sequester host plant chemical defenses.  

In terms of predator-prey interactions, my results suggest that mortality rate should be 

higher when J. coenia caterpillars feed on younger as compared with older host plant stages. 

Because larval sequestration correlates with IG content in the diet (as previously reported e.g. 

Camara 1997), the observed increase in P. lanceolata IG concentrations, from ~1 to 4% dry 

weight between juvenile and mature stages (Table 5.2), may considerably decrease larval 

predation risk against predators as host plant age increases. Earlier studies showed that 

sequestration of IGs by J. coenia larvae serves as an effective defense against invertebrate 

predators, including predatory wasps (Stamp 2001, Stamp and Meyerhoefer 2004), ants (de la 

Fuente et al. 1995, Dyer and Bowers 1996), stink bugs (Strohmeyer et al. 1998), and spiders 

(Theodoratus and Bowers 1999). In addition to decreasing predation risk, invertebrate predators 

may also show dose-dependent responses to IG content in prey tissues (Dyer and Bowers 

1996), with concomitant decreases in performance and fitness if forced to consume highly 

unpalatable larvae (Strohmeyer et al. 1998, Stamp 2001, Stamp and Meyerhoefer 2004). In this 

study, caterpillar IG concentrations varied considerably with larval instar and host plant age, 

increasing as larvae progress from 3rd to 5th instar and reaching higher IG concentrations when 

larvae are fed on older plants. Moreover, diet-mediated differences were striking, with 

caterpillars reaching two to five times higher IG concentrations when feeding on mature FR 

plants (~10% dry wt. IGs) than on young juvenile stages (2-6% dry wt. IGs). As a result, 

although I did not directly assess the effect of P. lanceolata ontogeny on subsequent larval 

mortality, substantial evidence indicates that the variation I observed in 3rd to 5th instar IG 
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concentrations should scale up to not only decrease larval predation risk, but also confer 

physiological costs to predators that consume them, potentially weakening the top-down control 

of predators as host plants develop. 

In contrast, in terms of parasitoid-prey interactions, this increase in larval sequestration 

ability while feeding in older host plant stages resulted in diminished larval immunocompetence, 

suggesting higher susceptibility of J. coenia against parasitoids and pathogens as their host 

plant develops. In particular, less defended J. coenia larvae reared on juvenile plants achieved 

30% higher levels of melanization compared to larvae reared in older mature stages (Figure 5.6). 

This result agrees with previous evidence that higher levels of IGs in J. coenia diets decreased 

larval ability to mount an encapsulation and melanization response (Smilanich et al. 2009a). 

Because parasitoids are considered one of the most important sources of mortality for many 

caterpillars (Hawkins et al. 1997) and immune response is clearly one of the most effective 

defenses that caterpillars have against parasitism (Smilanich et al. 2009b), a 30% decrease in 

mortality due to enhanced immunocompetence might be ecologically relevant.  

 Decreased immunocompetence has been reported as a consequence of increased 

larval ingestion or sequestration of plant allelochemicals (Haviola et al. 2007, Smilanich et al. 

2009a) or due to poor diet quality (Ojala et al. 2005, Lee et al. 2006, Klemola et al. 2007). In this 

study, I was unable to separate the relative contribution of sequestration and diet quality, and 

thus, both may have played a role in decreasing larval immunocompetence. Nevertheless, it is 

likely that the increase in IGs as host plants aged, from ~1 to 4% dry wt. total IGs, is the primary 

driver of the changes seen in melanization, as previous studies with J. coenia reared on artificial 

diets or using IG supplementation (i.e. same nutritional quality but different IG levels) 

demonstrated that high IG content, principally catalpol, significantly reduced larval immune 

response (Smilanich et al. 2009a). Thus, my results add to the increasing evidence that 

defenses that are effective against predators may render larvae more susceptible to parasitoids 

(Gentry and Dyer 2002, Barbosa and Caldas 2007, Smilanich et al. 2009b).   
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Conclusions 

This research has revealed the degree to which temporal variation in plant defensive traits can 

scale up to higher trophic levels, significantly altering the direction and magnitude of interactions 

between plants, herbivores and their natural enemies. In particular, the observed ontogenetic 

patterns in plant defenses and nutritional quality were shown to: (1) decrease by two to 14 times 

the number of eggs per leaf laid by female butterflies, (2) decrease by three fold larval relative 

growth rate, and (3) increase two to five times sequestered defenses in caterpillar tissues, 

thereby (i) increasing their chances of escaping predation, but (ii) decreasing 

immunocompetence, and thus, the ability to defend against endoparasitoids. What is more 

remarkable is that these differences in J. coenia host selection, performance, sequestration, and 

estimated predation risk on different developmental stages of P. lanceolata can mirror or even 

surpass the variation seen in previous studies due to environmental or genetically mediated 

phenotypic variation in P. lanceolata quality and defenses  (Fajer et al. 1991, Adler et al. 1995, 

Bowers and Stamp 1997b, Prudic et al. 2005) or even due to plant species identity 

(Theodoratus and Bowers 1999, Smilanich et al. 2009a, Lampert and Bowers 2010a).   

While these controlled experiments can help us predict natural variation in J. coenia 

abundance and leaf tissue damage throughout P. lanceolata ontogeny, the outcome of these 

interactions under natural conditions may be harder to forecast (e.g. Hunter and Elkinton 2000). 

For example, the actual strength of the top-down control of J. coenia larvae across host plant 

development may depend on the combination of larval performance and relative abundance of 

natural enemies in the field. For instance, while lower levels of sequestered defenses should 

enhance larval susceptibility to invertebrate predators, faster development times achieved while 

feeding on P. lanceolata juvenile stages (i.e. approx. 10 days faster) may decrease larval 

chances of being found by enemies (Clancy and Price 1987, Benrey and Denno 1997), resulting 

in potentially similar levels of predation risk across host plant ontogenetic stages. Likewise, 

whether caterpillar immune response may predict temporal variation in field parasitism rate is 
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also questionable. Parasitism rates can respond to density-dependent factors such as prey 

abundance (i.e. expected to be higher in younger plant stages due to higher female preference) 

or to trait-mediated factors such as prey defenses and performance (e.g. Bukovinszky et al. 

2008) evening out or enhancing the differences predicted due to larval immunocompetence. 

Furthermore, the role of IGs present in the caterpillar’s hemolymph, beyond their indirect effect 

on encapsulation and/or melanization, may further alter parasitoid success, although current 

evidence only indicates minor negative direct effects to actually positive effects of IGs on 

parasitoid performance (Lampert et al. 2010, Reudler Talsma et al. 2011).  

In summary, this research demonstrated that ontogenetic patterns in host plant traits can 

strongly modify the relative importance of bottom-up and top-down forces on herbivore 

population dynamics. From a more applied perspective, studies focused on economically 

important species should also incorporate field surveys in order to better understand how plant-

herbivore, herbivore-predator and herbivore-parasitoid interactions change as host plants age, 

and how those changes may, in turn, shape overall levels of tissue damage, plant fitness and 

the resulting arthropod community. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

Early empirical studies have improved our knowledge of the direct effects that physiological, 

morphological, and resource allocation constraints during plant development have on shaping 

ontogenetic changes in several plant defensive traits. However, less attention has been given to 

elucidating potential indirect effects of this variation on higher trophic levels. The main focus of 

this dissertation was to explore the bottom-up effects of ontogenetic variation in plant 

allelochemistry and nutritional quality on the strength of tri-trophic interactions between 

herbivores, their host plants, and their natural enemies. Through a series of controlled 

greenhouse and laboratory experiments, this study documented some of the potential ecological 

consequences of temporal variation in plant traits on plant-herbivore-natural enemy dynamics.  

6.1. Defense strategies throughout plant ontogeny  

Many studies have reported ontogenetic patterns in constitutive defensive traits (reviewed in 

Barton and Koricheva 2010), but only a few have simultaneously assessed multiple defensive 

traits across several plant tissues and/or developmental stages. In general, most studies to date 

have focused on describing changes in one defensive trait at a time, typically focusing on leaf 

tissues and considering only two contrasting developmental stages. While these studies 

emphasized the need to incorporate ontogeny as a critical factor shaping plant defensive traits, 

they were limited in their ability to test: (i) partial and whole-plant investment in defenses during 

plant ontogeny, (ii) the overall relationship between plant age and investment in defensive traits, 

and (iii) the potential role of resource allocation constraints, namely root:shoot ratios, in 

explaining whole-plant investment in chemical defenses over time.  
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Here, in chapter 2, I showed that concentration of iridoid glycosides (IGs) were three 

times larger in shoot as compared to root tissues across all developmental stages, suggesting 

that resource allocation to defenses in aboveground tissues may prevail over belowground 

tissues during P. lanceolata development, potentially reflecting their differential susceptibility to 

herbivore damage. Furthermore, although not as pronounced as in other systems (e.g. 

Hartmann and Zimmer 1986, Williams and Ellis 1989, Bellostas et al. 2007, Beninger et al. 

2009), the pattern of variation in total IGs in leaves and roots differed, indicating that IG 

concentrations changed differently in shoot and root tissues throughout plant development. 

Specifically, allocation of IGs into root tissues constantly increased from younger to older plants 

while non-linear shifts in allocation of IGs during ontogeny were observed for shoot tissues. 

Nevertheless, root:shoot ratios only weakly explained overall allocation of resources into 

defenses, indicating that biomass partitioning may not solely explain whole plant investment in 

defenses. In contrast, it may be possible that ontogenetic patterns in defensive traits may be 

driven by other selective forces such as herbivore and pathogen damage, mychorrhizae 

associations, competition, or photoprotection, also varying over time. Finally, in accordance with 

previous studies that have measured more than one trait throughout plant development (e.g. 

Donaldson et al. 2006, Rehill et al. 2006, Mcarthur et al. 2010), contrasting ontogenetic patterns 

were described within and among both plant defenses and nutritional quality. Specifically, 

results from Chapter 2 and 5 demonstrated that, while overall investment in chemical defenses 

(IGs) and physical defenses (leaf toughness) significantly increased, water and nitrogen 

concentrations in shoot tissues decreased as plants aged. These ontogenetic trajectories in 

plant defenses indicate that population level demographics may contribute to the observed 

spatiotemporal variation in plant defenses, and may help to explain ecological interactions 

among plants and herbivores.  

 Nonetheless, it is important to note that in my experiments, with the exception of Chapter 

5, nutritional quality and defensive traits in aboveground tissues were assessed across leaf 
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classes (combined new, intermediate, and old leaf stages, see Bowers and Stamp 1992, 1993). 

Therefore, the ontogenetic patterns described at the whole plant level may be confounded with 

ontogenetic changes in leaf age (e.g. younger developmental stages have a higher proportion of 

new leaves). In consequence, future studies that assess ontogenetic patterns in plant defensive 

traits within as well as across leaf tissues as plants age may shed light on the relative 

contribution of these confounding factors explaining plant allocation of resources to defenses as 

plants develop.  

 In addition to constitutive defenses, plants can also alter the quality and/or quantity of 

synthesized and released defenses (resistance traits) and/or the allocation of resources to 

biomass accumulation to compensate for the lost tissue following damage (tolerance traits).  

These induced defenses often vary during plant ontogeny, as predicted shifts in metabolic rates, 

growth rate, and access to nutrients or stored reserves take place. In the past three decades, 

opposing trends have been predicted for both strategies (Karban and Baldwin 1997, Strauss 

and Agrawal 1999, Cipollini et al. 2003, Orians et al. 2011), and partial support for these 

predictions has been demonstrated (reviewed in Barton and Koricheva 2010). However, 

empirical tests of the underlying mechanisms responsible for modulating age-dependent 

induced defenses are limited (e.g. Boege et al. 2007, Gruntman and Novoplansky 2011). In this 

study, I emphasize that our understanding of the patterns and mechanisms leading to age-

dependent induced responses to herbivory can be critical in several contexts.  

 In terms of plant defense theory, assessing age-dependent induced defenses can shed 

light on the conditionality of trade-offs between constitutive and induced defenses or between 

tolerance and resistance traits. Using four juvenile developmental stages, constantly fluctuating 

patterns in compensatory growth and induced synthesis of IGs as plants aged were found, with 

some stages being able to employ both strategies (some 6wk-old stages), while other employed 

only one (3wk and 10wk-old stages) or neither of them (14wk-old stages) (Chapter 3).  Although 

my experimental design in this case did not allow me to test for potential trade-offs between 
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defensive strategies, these results suggest that possible negative correlations between 

tolerance and resistance traits may be present in some developmental stages (i.e. 3wk and 

10wk-old stages) but not in others (i.e. 6wk and 14wk-old stages). Similarly, because 

constitutive defenses increased constantly as plants age but induced synthesis of IGs was only 

observed early during plant development (Chapter 3 and 4), these results agree with the 

predicted negative correlation between plant investment in constitutive versus induced defenses 

(Morris et al. 2006, Kempel et al. 2011). 

 The highly complex patterns in age-dependent induced defenses in P. lanceolata was 

only uncovered due to the simultaneous assessment of multiple developmental stages (Chapter 

3) and various intrinsic (i.e. growth rate and metabolic rate, Chapter 3) and/or extrinsic (i.e. 

herbivore identity and frequency of damage, Chapter 4) factors driving these ontogenetic trends 

in resistance and tolerance to herbivory. In particular, here I exemplify that the assessment of 

plant relative growth rate (RGR) and IG synthesis rate (appraised through graphical vector 

analyses, GVA), were central to detect and comprehend patterns of resource allocation to 

herbivore-induced responses as plants age (Chapter 3). The traditional approach, measuring 

changes in plant biomass and concentration of IGs between damaged and undamaged plants, 

illustrated a rather complex picture. Compensatory growth was achieved at intermediate stages 

while resistance showed, in general, very low variation in IGs with few intermediate and older 

juvenile stages being able to increase or decrease concentration of IGs as compared with 

undamaged plants (Chapter 3).  However, thanks to the assessment of plant RGR and 

allocation to growth (biomass) versus synthesis of allelochemicals (IG content and 

concentration), using GVA, I was able to highlight key changes in plant allocation to resistance 

and tolerance traits as they develop. Specifically, Chapter 3 demonstrated that, despite 

maintaining equivalent RGRs as undamaged plants, plants invested relatively more in synthesis 

of IGs early during juvenile development than on biomass accumulation, while the opposite was 

observed for older juvenile stages. Furthermore, extrinsic factors such as frequency and 
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intensity of damage failed to modify age-dependent responses to leaf damage (Chapter 4), 

suggesting that intrinsic physiological and anatomical constraints throughout plant ontogeny 

may be more important than extrinsic stressors shaping phenotypic plasticity in herbivore-

induced defensive traits. 

 In terms of plant-herbivore interactions, induced defenses have been shown to play a 

critical role in indirect competition among herbivores with considerable impacts on the structure 

of herbivore-natural enemy communities (reviewed in Kessler and Halitschke 2007, Anderson et 

al. 2009). Therefore, assessing age-dependent induced defenses relative to ontogenetic 

changes in constitutive defensive traits can help us better predict temporal shifts in arthropod 

population dynamics and the selective pressure that they might impose. Research on P. 

lanceolata (Fuchs and Bowers 2004, Barton 2008, and Chapters 3 and 4) has consistently 

shown that constitutive ontogenetic patterns in plant biomass and defenses are considerably 

larger in magnitude than age-dependent induced defenses. This trend may be particularly 

common in annual and short perennial plant species, where the transition through key 

developmental stages may take place relatively quickly, overriding herbivore-induced responses. 

While further research testing this prediction across several herbaceous and woody plants is 

required; at least for P. lanceolata, these results imply that constitutive ontogenetic trajectories 

in plant growth and defenses may play a more significant role in mediating multitrophic 

interactions than changes following previous damage events. 

6.2. Plant ontogeny and higher trophic levels  

Despite the longstanding interest in understanding temporal variation in herbivore damage, the 

direct and indirect mechanisms that could explain these patterns have been rarely investigated.  

Here, data from Chapter 5 reveal that ontogenetic patterns in plant nutritional quality and 

physical and chemical defenses have strong effects on adult oviposition choice, larval 

preference and presumed larval susceptibility to natural enemies. Furthermore, these results 
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suggested that bottom-up effects on higher trophic levels may vary between functional groups 

with the direction and magnitude of the interaction differing between predators and parasitoids.  

 Host selection by adult female phytophagous insects depends on multiple traits such as 

volatile cues, leaf shape, color and surface texture, and qualitative and quantitative 

concentrations of key attractant and deterrent allelochemicals, among others (Honda 1995). 

Given the large and often contrasting ontogenetic trajectories in plant traits, it is becoming clear 

that throughout plant ontogeny host selection can be quite species-specific, partially explaining 

temporal variation in the arthropod community composition associated with a plant species over 

its lifetime. In this study, Buckeye butterflies choose younger over older (especially reproductive) 

plant stages, suggesting that a combination of higher proportion of new leaves, with higher 

nutritional quality but lower leaf toughness and concentrations of total IGs (although a 

considerably higher proportion of catalpol) are important traits during host selection. Yet, 

acknowledging that female choice may be mostly driven by one or a few of these measured 

traits, I am planning to use structural equation models, with a more complete data set than the 

one presented here, to estimate the relative importance of each trait and their autocorrelation in 

explaining female oviposition choice.  

 Whether butterfly oviposition choice leads to optimal or suboptimal conditions for the 

offspring has been largely discussed since the preference-performance hypothesis was first 

proposed (Jaenike 1978). This hypothesis, which states that female insects will preferentially 

oviposit on plants that maximize the survival and performance of their larvae, has received 

substantial support (Gripenberg et al. 2010); however, exceptions are not rare (e.g. Denno et al. 

1990, Bjorkman and Larsson 1991, Ballabeni et al. 2001, Mayhew 2001). Here, in accordance 

with the preference-performance hypothesis, caterpillars feeding on juvenile P. lanceolata plants 

showed faster relative growth rate, shorter development time, and increased digestive efficiency 

compared to those feeding on older, reproductive hosts. Nonetheless, this decision provides 

larvae with the best nutrition, but the least amount of defensive compounds, which can render 
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them more susceptible to predators but more resistant to parasitoids. Altogether, these results 

highlight the fact that the likelihood of supporting or rejecting the preference-performance 

hypothesis may depend on the identity, abundance and behavior of predator and parasitoids in 

the field. In addition, these results suggest that potential mismatches between female 

oviposition choice and offspring performance may depend on the developmental stages 

available for both adults and larvae in natural populations or experimental assays. These 

considerations can be central in conservation biology if decreased availability of preferred 

developmental stages reduces the success of restoration projects or biocontrol strategies to 

manage invasive species. Likewise, knowledge regarding potential mismatches between female 

oviposition choice and offspring performance can help us improve pest management strategies 

for economically important crops.   

 As mentioned before, most studies assessing variation in the strength of the top-down 

control of herbivores during host plant ontogeny have been centered on changes in the foraging 

behavior of natural enemies (Van Bael et al. 2003, Djieto-Lordon et al. 2004, Boege 2005a, Izzo 

and Vasconcelos 2005, Riihimaki et al. 2006, Trager and Bruna 2006, Miller 2007, Obermaier et 

al. 2008). Alternatively, predation risk can be mediated through herbivore quality as prey and/or 

host, but evidence of this potential indirect effect of ontogenetic trajectories in plant defenses on 

higher trophic levels is still lacking. Thus, to my knowledge, I demonstrated here for the first time 

that ontogenetic patterns in plant defenses, as mediated by caterpillar performance and 

palatability, can indirectly alter the strength of the top-down control of herbivores (Chapter 5). 

Although the ability to uptake and store plant allelochemicals is certainly rare, more than 250 

insect species have been shown to sequester plant metabolites from at least 40 plant families 

(Opitz and Muller 2009). Hence, it is certainly possible that temporal variation in the strength of 

top-down control of herbivores, as mediated by herbivore sequestration rate, may be more 

common than previously anticipated. Consequently, the study of indirect interactions among 
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trophic levels altered by ontogenetic patterns in plant defensive traits promises to be a fertile 

area of research.   

 Controlled experiments, like the ones used here to estimate larval vulnerability to natural 

enemies, are critical to elucidate the potential mechanisms driving temporal variation in 

herbivore population dynamics. However, given that numerous factors may alter the outcome of 

predator-prey interactions throughout host plant ontogeny, complementary field studies are 

needed. At least four possible features of herbivore and natural enemy foraging behavior may 

alter the outcome of tri-trophic interactions as predicted by laboratory assays. First, natural 

enemies may rely on a set of cues to locate prey, such as plant biomass, architecture, food 

rewards and volatile profiles, which can also vary as plants develop (Quintero et al. in prep.), but 

may not necessarily match the expected temporal variation in herbivore density, performance 

and palatability. Second, the top-down control of herbivores may be mostly driven by prey 

availability (density-dependent) or by prey quality and behavior (trait-mediated) (Preisser et al. 

2005); in which case, trends predicted given larval unpalatability or performance may over- or 

underestimate actual risks of predation under natural conditions. Third, vulnerability to natural 

enemies can also vary throughout insect development. For example, some predators may be 

more limited by prey size than prey toxicity/quality (Dyer and Floyd 1993, Remmel et al. 2011) 

and/or the ability to encapsulate and melanize an invader may change considerably as larvae 

develop (e.g. Rantala and Roff 2005, Bukovinszky et al. 2009). Finally, the foraging behavior of 

insect prey may change when the perception of predation risk increases (Ives and Dobson 1987, 

Lima 1998, Werner and Peacor 2003). In the case of P. lanceolata-J.coenia interactions, 

previous studies have shown that the presence of two invertebrate predators, Podisus 

maculiventris (stink bugs) and Polistes fuscatus (social paper wasps), often led to a decline in 

larval growth rate due to forcing larvae to forage on lower quality food, cooler microhabitats, or 

by increasing dispersal and time spent hiding (e.g. Stamp and Bowers 1991, 1992, 1993). 

Moreover, although the presence of predators can reduce larval growth rate, it can also 
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simultaneously enhance leaf consumption (Stamp and Bowers 1993) and sequestration rate 

(Bowers and Stamp 1997a). Thus, the selective pressure of natural enemies on herbivore 

populations as plants age may diverge from the patterns predicted based just on larval 

performance and palatability. 

6.3. Closing remarks and future directions 

Considering plant ontogeny as a source of variation in plant-herbivore interactions can offer new 

perspectives for understanding the selective impact of herbivores on plant traits, and the 

conditionality of costs and benefits of diverse defense strategies at each life stage contributing 

to overall fitness. From the point of view of the plant, the optimal defense strategy is to reduce 

damage without impairing fitness. This may depend on the relative benefits of investing in 

constitutive and herbivore-induced allelochemical synthesis and tolerance strategies against the 

metabolic cost of their expression. Because the cost and benefit of investment in plant defenses 

change as plants develop, significant trajectories in defense strategies are expected. In this 

study, I demonstrated that ontogeny has a dramatic impact on P. lanceolata’s expression of 

chemical defenses, both constitutive and induced, as well as on several other traits relevant for 

higher trophic levels. However, future research should assess how these ontogenetic trends in 

defense strategies contribute to optimize overall plant fitness. In particular, I advocate that, if 

possible, future studies will benefit by incorporating multiple developmental stages at a time, 

several resistance and tolerance traits across both above- and belowground tissues, and an 

estimation of the potential intrinsic and extrinsic mechanisms underlying the observed changes 

in defensive traits as plants develop.     

 Ontogeny is a ubiquitous process in all plant life forms, certainly shaping plant traits and, 

as a result, temporal variation in the community structure of higher trophic levels. Understanding 

the forces that shape ontogenetic trajectories in herbivore diversity and damage can have key 

implications for theoretical and applied ecology. From a theoretical perspective, the assessment 
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of how herbivore preference, performance and predation risk vary for a suite of associated 

herbivores on a single plant species over its lifetime may improve our knowledge of the relative 

importance of bottom-up or top-down forces in driving herbivore population dynamics and 

arthropod community structure over time. From an applied perspective, assessing the direct and 

indirect mechanisms driving herbivorous pest abundance and damage in agroecosystems may 

improve pest management strategies. For example, if predators and parasitoids are differentially 

effective throughout host plant ontogeny, such as my data suggest for this system, it may be 

important to vary biocontrol agents over time. Future studies that focus on the relative 

importance of direct and indirect interactions mediating herbivore host selection, performance 

and predation risk will provide key new insights into the role of plant ontogeny at regulating 

temporal shifts in herbivore population dynamics and community structure. 
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