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Satellite observations deliver essential information on clouds and aerosols and their 

radiative effects on a global scale, complemented by local and regional aircraft observations with 
a level of accuracy and detail that is often inaccessible from space. To obtain irradiances and 
radiative effects, satellite-derived cloud, aerosol and surface properties are fed into radiative 
transfer calculations, which can be validated with direct aircraft measurements. Often, this is only 
done for a fraction of the available observations, either because of the effort involved in analyzing 
large amounts of data, or because many real-world scenes are too complex for satellite retrievals 
to adequately capture. Examples include spatially inhomogeneous clouds that lead to significant 
biases in heritage imagery retrievals, thin clouds over bright and inhomogeneous surfaces that 
elude detection, and aerosols co-occurring with clouds that cannot be separately characterized 
without significant assumptions. The current frontier in radiation science is to embrace such 
challenging conditions, and confront satellite-derived radiative effects with aircraft observations 
systematically, rather than selectively. The Education and Research 3D Radiative Transfer 
Toolbox (EaR3T), developed in this thesis, serves this goal. It automatically acquires data from a 
variety of user-selectable sources and computes irradiance and radiance fields for entire aircraft 
flight patterns, satellite orbits, or simulated cloud databases. It facilitates the direct comparison 
with independent data, enables radiative closure studies at a large scale, and provides complex 
synthetic training data for machine learning algorithms. The thesis showcases findings for complex 
atmospheric conditions that arise from a systematic use of aircraft observations with automated 
processing methods: (1) a third of the clouds as observed above bright surfaces during an Arctic 
mission were not detected by state-of-the-art satellite algorithms, and the surface variability is a 
more significant modulator of the shortwave cloud radiative effects than the cloud properties 
themselves; (2) cloud transmittance derived from geostationary imagery is biased low by 10% 
against aircraft observations during a tropical mission due to coarse imager resolution and cloud 
inhomogeneity biases; (3) regional aerosol radiative effects can be obtained from a combination 
of aircraft and satellite observations with fewer assumptions than in satellite algorithms. The thesis 
closes with a way to put novel machine learning algorithms on a physical footing, opening the 
door for the mitigation of complexity-induced biases in the near future. 
  



 iii 

Dedication 

 

To  

Father: Chen, Kuanlong (陈宽⻰) 

& 

Mother: Yang, Hedi (杨荷娣) 

  



 iv 

Acknowledgement 

 

First and foremost, I would like to express my highest gratitude to my advisor – 

Prof. Sebastian Schmidt, for his invaluable guidance and support, unparalleled patience and trust 

throughout the pursuit of my PhD. I will treasure the passion and enthusiasm he shared with me in 

science, and carry them with me throughout my life. My appreciation of his kindness and 

compassion outside scientific research is beyond what I can express in words. I will always 

remember his words to “be a human, have a heart” as they have been fueling me with confidence 

and strength to live through challenging times. 

I would like to thank my former advisor – Prof. Xiaolei Zou, who lit up my passion for 

science and expanded my horizons during my graduate studies at Florida State University. I would 

also like to thank Steven Massie for his co-mentorship and generous offer of collaborative 

opportunities to work on various exciting research projects. My appreciation also goes to the past 

and present members of the atmospheric radiation group at the University of Colorado Boulder: 

Prof. Peter Pilewskie, Michael King, Odele Coddington, Bruce Kindel, Jeffery Drouet, Shi Song, 

Logan Wright, Sabrina Cochrane, Scott Kittelman, Steffen Mauceri, Julia Kent, Matthew Norgren, 

Vikas Nataraja, Yu-Wen Chen, Ken Hirata, and Katey Dong; all of my committee members: 

Prof. Peter Pilewskie, Michael King, Prof. Jennifer Kay, and Prof. Brian Toon; as well as other 

research professionals who have offered support to my graduate research: Prof. Hironobu Iwabuchi, 

Rintaro Okamura, Graham Feingold, Jake Gristey, Prof. Ming Cai, Yongjun Zheng, Zhengkun 

Qin, Xu Chen, Yifang Ren, Cheng Da, and Xiaoxu Tian. 

During my PhD, I was fortunate enough to participate in the NASA ORACLES and 

CAMP2Ex aircraft field campaigns. These special and valuable experiences made me appreciate 

the extensive resources and efforts contributed from a wide collection of research groups to 

successfully operate an airborne mission. I would like to express my appreciation to everyone 

involved in the mission projects. 

I would also like to extend my gratitude to all the faculty, staff, and students from the 

ATOC department, especially Laurie Conway for her dedicated efforts of supporting graduate 

students both academically and personally. 

Finally, I would like to express my deep love and sincere appreciation to my family and 

friends. It is all of you that make me who I am today.  



 v 

Contents 

INTRODUCTION ........................................................................................................................ 1 

1.1 FIELD CAMPAIGNS .............................................................................................................. 11 

1.2 AIRBORNE INSTRUMENTATION .......................................................................................... 13 

1.3 CLOUD RETRIEVAL ............................................................................................................ 14 

1.4 EAR3T ................................................................................................................................. 17 

1.5 CNN COT RETRIEVAL FRAMEWORK ............................................................................... 19 

THE EFFECT OF LOW-LEVEL THIN ARCTIC CLOUDS ON SHORTWAVE 
IRRADIANCE: EVALUATION OF ESTIMATES FROM SPACEBORNE PASSIVE 
IMAGERY WITH AIRCRAFT OBSERVATIONS ............................................................... 22 

2.1 BACKGROUND ..................................................................................................................... 22 

2.2 DATA AND METHODS .......................................................................................................... 26 

2.2.1 BroadBand Radiometer System (BBR) ....................................................................... 28 

2.2.2 Solar Spectral Flux Radiometer (SSFR) ...................................................................... 29 

2.2.3 Imagery from Downward-Looking Video Camera ...................................................... 32 

2.2.4 C-130 Thermometer and Hygrometer and Modern-Era Retrospective analysis for 
Research and Applications version 2 (MERRA-2) ............................................................... 34 

2.2.5 Radiative Transfer Calculations based on MODIS Cloud Products ............................ 37 

2.3 ANALYSIS AND RESULTS ..................................................................................................... 39 

2.3.1 Spectral Surface Albedo .............................................................................................. 39 

2.3.2 Broadband Irradiance Comparison .............................................................................. 42 

2.3.3 Spectral Irradiance Comparison ................................................................................... 51 

2.4 CONCLUSIONS ..................................................................................................................... 57 

THE EDUCATION AND RESEARCH 3D RADIATIVE TRANSFER TOOLBOX (EAR3T) 
– TOWARDS THE MITIGATION OF 3D BIAS IN AIRBORNE AND SPACEBORNE 
PASSIVE IMAGERY CLOUD RETRIEVALS ...................................................................... 62 

3.1 BACKGROUND ..................................................................................................................... 62 

3.2 FUNCTIONALITY AND DATA FLOW WITHIN EAR3T .......................................................... 66 

3.2.1 Overview ...................................................................................................................... 66 

3.2.2 Data .............................................................................................................................. 71 



 vi 

3.2.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS) ............................... 73 
3.2.2.2 Orbiting Carbon Observatory 2 (OCO-2) ............................................................. 74 
3.2.2.3 Advanced Himawari Imager (AHI) ...................................................................... 76 
3.2.2.4 Spectral Sunshine Pyranometer (SPN-S) .............................................................. 77 
3.2.2.5 Airborne All-Sky Camera (ASC) .......................................................................... 78 

3.3. EAR3T PROCEDURES ......................................................................................................... 79 

3.4. EAR3T AS A 3D SATELLITE RADIANCE SIMULATOR ........................................................ 85 

3.4.1 OCO-2 (APP1) ............................................................................................................. 85 

3.4.2 MODIS (APP2) ............................................................................................................ 87 

3.5. EAR3T AS 3D AIRCRAFT IRRADIANCE SIMULATOR (APP3) ............................................ 89 

3.6. EAR3T FOR MITIGATING 3D CLOUD RETRIEVAL BIASES (APP4) .................................. 95 

3.7 SUMMARY AND CONCLUSION ........................................................................................... 100 

DIURNAL DIRECT AEROSOL RADIATIVE EFFECTS ABOVE CLOUDS AND CLEAR 
SKY FROM AIRCRAFT MEASUREMENTS DURING ORACLES 2016-2018 .............. 104 

4.1 BACKGROUND ................................................................................................................... 104 

4.2 INSTRUMENTS AND DATA ................................................................................................. 111 

4.2.1 SSFR .......................................................................................................................... 112 

4.2.2 4STAR and HSRL-2 .................................................................................................. 113 

4.2.3 SEVIRI ....................................................................................................................... 114 

4.3 METHODOLOGY – DEVELOPMENT OF REFLECTANCE-TO-ALBEDO MAPPING ................ 115 

4.3.1 Radiative Transfer Calculations ................................................................................. 117 

4.3.2 Parameterization ........................................................................................................ 119 

4.4 RESULTS ............................................................................................................................ 120 

4.4.1 Diurnal DARE for a Select Flight Track Segment .................................................... 121 

4.4.2 Statistics for Single Grid Box .................................................................................... 124 

4.4.3 Diurnally integrated DARE for Single Grid Box ...................................................... 126 

4.4.4 Filled-in Single Grid Box........................................................................................... 127 

4.4.5 Statistics from a Full Transect ................................................................................... 129 

4.5. CONCLUSIONS .................................................................................................................. 134 

CONCLUSIONS ....................................................................................................................... 138 

BIBLIOGRAPHY ..................................................................................................................... 146 



 vii 

APPENDIX ................................................................................................................................ 160 

2.A DIFFUSE/DIRECT CORRECTION FOR THE POLAR ANGLE RESPONSE ............................... 160 

2.B AZIMUTH RESPONSE ........................................................................................................ 161 

2.C ADAPTIVE THRESHOLDING .............................................................................................. 162 

2.D UNCERTAINTY ESTIMATION ............................................................................................ 162 

2.E ATMOSPHERIC CORRECTION ........................................................................................... 167 

2.F EXTENDING SPECTRAL SURFACE ALBEDO ....................................................................... 167 

3.A CLOUD DETECTION/IDENTIFICATION ............................................................................. 169 

3.B TWO-STREAM APPROXIMATION ..................................................................................... 169 

3.C PARALLAX CORRECTION ................................................................................................. 170 

3.D WIND CORRECTION ......................................................................................................... 170 

4.A REFLECTANCE AND ALBEDO ........................................................................................... 172 

  



 viii 

Tables 

Table 3.1. Data variables contained in the output HDF5 file from EaR3T for radiance and 
irradiance calculations. The radiance is simulated with a user-specified sensor geometry at a 
given altitude using forward photon tracing. The data variables listed under Metadata are 
included for both radiance and irradiance calculations. N_x, N_y, and N_z are the number of 
pixels along x, y, and z direction, respectively. N_g is the number of g, explained in Section 
3.3.......................................................................................................................................... 71 

Table 3.2: RT parameters for APP1, APP2, APP3, and APP4. ........................................... 84 

  



 ix 

Figures 

Figure 1.1. Albedo at 860 and 1630 nm at solar zenith angle of 35° with (red) and without 
aerosol (blue) included in the RT calculations. The solid lines (near-orthogonal) are albedos 
calculated with the same cloud optical thickness (COT). The dashed lines (near-horizontal) 
are albedos calculated with the same cloud effective radius (CER). .................................... 15 

Figure 1.2. (a) BOL (red) and TOL (blue) flight tracks overlaid on MODIS RGB imagery 
from NASA WorldView on August 13, 2017. (b) Cloud optical thickness and (c) cloud 
effective radius retrieved from SSFR, MODIS, and SEVIRI along the two flight tracks. ... 17 

Figure 1.3. 3D reflectance calculations for (a) a LES cloud field only, (b) the same LES cloud 
field with overlying aerosol layer at 532 nm. The reflectance along the white dashed line is 
shown in (c) and the histograms for the reflectance calculations are shown in (d). ............. 19 

Figure 1.4. Illustrations of 64x64 tiles of (a) cloud optical thickness from LES data and (b) 
calculated 3D radiance from EaR3T for CNN training. ........................................................ 21 

Figure 2.1. ARISE flight tracks overlaid on MODIS false color imagery (0.65 𝜇𝑚 for red, 11 
𝜇𝑚  for blue, and 3.7-11 𝜇𝑚  for green) from NASA Langley Research Center on 11 
September and 13 September 2014. The focus region if these two research flights was [136 º 
W, 130 º W, 72.5 º N, 74.5 º N] in the marginal ice zone. .................................................... 27 

Figure 2.2. (a) An example of the snow fraction along with its uncertainty estimated from 
the nadir camera imagery at 20:03:32 UTC on 13 September, at a location of [132.95ºW, 
73.85ºN]. The flight altitude was 134 m. The left panel is the nadir camera imagery. The 
radius of the field of view was about 380 m. The right panel uses yellow and purple to indicate 
bright and dark pixels as detected by the adaptive thresholding method. The snow fraction is 
derived from the abundance of yellow pixels. (b) The upwelling and downwelling irradiance 
from SSFR-BBR at the same time. ....................................................................................... 34 

Figure 2.3. Vertical profiles of temperature and water vapor from MERRA-2 and from the 
climatology (AFGL) for (a) 11 September and (b) from the C130 for 13 September 2014. On 
11 September, MERRA-2 data at 21:00 UTC was averaged over the region of [135 º W, 
130.625 º W, 72.5 º N, 74 º N] to represent the atmospheric profile there. The vertical cloud 
distribution was unavailable from the in-situ data. On 13 September, aircraft data from a 
descending leg (19:31 UTC to 19:50 UTC at 133.8 º W, 74.1 º N) was used for the 
atmospheric profiles. Based on the water vapor profile, the cloud was likely located below 
1.0 km (indicated in grey). Since hygrometer measurements were not available on 11 
September, the cloud top height (1.1 km) was obtained from the MODIS L2 product), and the 
geometric thickness was set to 0.2 km (just like on September 13). The flight level range is 
also shown. The solid lines for both days represent the temperature and water vapor profiles 
that went into the radiative transfer calculations. ................................................................. 36 

Figure 2.4. Estimated snow fraction from nadir imagery versus SSFR-BBR measured surface 
albedo at 640 nm, 1240 nm, and 1630 nm. The surface albedo and snow fraction uncertainties 
are indicated as vertical and horizontal error bars. The solid lines show linear regression fits, 
and the shaded region indicates their uncertainties. .............................................................. 41 



 x 

Figure 2.5. Spectral surface albedo derived from SSFR-BBR measurements for SF=100% 
(black) and SF=0 (gray), along with their uncertainties. In addition, different albedos from 
the literature are shown for comparison. ............................................................................... 42 

Figure 2.6. Spectral surface albedo (black) along with their uncertainties used in the RTM 
for the 2014-09-11 calculations. The spectral albedo uses the SSFR-BBR derived albedo with 
SF=76.4% (red) except for the wavelength ranges marked (1) in green: replaced by scaled 
modeled snow albedo (blue); (2) in red (gas absorption bands): linear interpolation; and (3) 
in yellow (1800nm to 1900nm): polynomial fit using SSFR-BBR derived albedo from 
1650nm to 1800nm. .............................................................................................................. 44 

Figure 2.7. Broadband (a) downwelling and (b) upwelling irradiance from SSFR-BBR, BBR, 
and MODIS-COPs (Terra MODIS at 22:00) based RTM calculations on 11 September 
(above-clouds) along with their uncertainties (c) and (d) the histograms. The observed 
irradiances include a horizontal error bar (indicating the size of the SSFR-BBR FOV) in 
addition to the vertical error bar (indicating the uncertainty of SSFR-BBR irradiance). The 
cloud optical thickness from MODIS is indicated in green. The average cloud optical 
thickness is 6.03. The forward camera images are provided at (1) 21:46:39, (2) 22:01:53, and 
(3) 22:31:05. The nadir camera images are provided at (i) 21:18:15, (ii) 21:49:22, (iii) 
22:03:28, and (iv) 22:41:18 UTC. The time differences between aircraft measurements and 
MODIS granule are indicated in the axis labels. The average flight altitude was 7 km and the 
average aircraft ground speed was 150 m/s. ......................................................................... 45 

Figure 2.8. Histograms of broadband (a) downwelling and (b) upwelling irradiance from 
SSFR-BBR (red), BBR (blue), and MODIS-COPs (black, Terra MODIS at 22:00) based RTM 
calculations on 11 September (above-clouds). Only “cirrus free” data (marked in green in 
Figure 2.7 (a)) is included. For (a), the mean values of BBR, SSFR-BBR, and RTM 
calculations are indicated by the colored dashed lines. For (b), the mean is calculated for each 
of the two modes separated by the green line and indicated by the colored dashed lines. ... 48 

Figure 2.9. Broadband (a) downwelling and (b) upwelling irradiance from SSFR-BBR, BBR, 
and MODIS-COPs (Aqua MODIS at 22:10) based RTM calculations on 13 September 
(below-clouds). The time difference between aircraft measurements and MODIS granule is 
indicated in the axis labels. In addition, the field of cloud optical thickness and radiance at 
860 nm from MODIS are provided in (c) and (d). On the map, the black line indicates the 
flight track studied in (a) and (b). The average flight altitude was 235 m, and the average 
aircraft ground speed was 106 m/s. ....................................................................................... 50 

Figure 2.10. Histograms of broadband (a) downwelling and (b) upwelling irradiance from 
SSFR-BBR (red), BBR (blue), and MODIS-COPs (black, Aqua MODIS at 22:10) based RTM 
calculations on 13 September (below-clouds). The mean value of the SSFR-BBR and BBR 
data is calculated and indicated by red and blue dashed lines. For the RTM calculations, the 
mean value is calculated for each of the two modes separated by the green solid line and 
indicated by the black dashed lines. ...................................................................................... 51 

Figure 2.11. Spectral upwelling irradiance at 860nm (panel a) and 1640nm (panel b) from 
SSFR-BBR (red) and MODIS-COPs based RTM calculations using “13 September surface 
albedo” with SF=76.4% (black) on 11 September. In addition, calculations with 
climatological snow albedos are shown in panel (a) (Arctic wet season: 0.75; Arctic dry 
season: 0.85).The time periods where clouds were not detected are marked in green in panel 



 xi 

(b). The clear-sky period that was used to determine the snow fraction is highlighted in blue 
in panel (b). The uncertainties of the spectral irradiances are indicated as vertical error bars, 
and the horizontal error bars correspond to the radiometer FOV as in Figure 2.7. Both need 
to be considered to identify undetected clouds. .................................................................... 52 

Figure 2.12. (a) Spectral upwelling irradiance from SSFR-BBR (black) and MODIS-COPs 
based RTM calculations with atmospheric profiles from MERRA-2 (red) and with AFGL 
subarctic summer climatology (blue) at 21:24 UTC on 11 September. (b) Irradiance 
difference between RTM and SSFR-BBR. The uncertainty of the SSFR-BBR irradiance is 
indicated as error bars (for one spectrum only). ................................................................... 55 

Figure 2.13. Ratio (RTM/SSFR-BBR) of upwelling broadband irradiance as a function of 
cloud optical thickness from MODIS “1621” cloud product on 11 September. The time 
differences between aircraft measurements and MODIS granule (unit: hour) is color-coded. 
The black curve is an exponentially fitted line using 𝑟 = 𝑎 − 𝑒𝑏 ⋅ 𝐶𝑂𝑇 + 𝑐 , where 𝑎 =
1.0093, 𝑏 = −0.5464, and 𝑐 = −2.3954. .......................................................................... 56 

Figure 2.14. The spectrum of ratio when 𝐶𝑂𝑇 = 0 (red, indicating cloud free) and when 
𝐶𝑂𝑇 =∞ (blue, indicating surface free) for wavelengths range from 350 nm to 1800 nm. 
The gas absorption bands are indicated in gray. Ratios at the gas absorption bands are 
excluded. ............................................................................................................................... 57 

Figure 3.1. Flow charts of EaR3T applications for (a) OCO-2 radiance simulation at 768.52 
nm (data described in Section 3.2.2.1 and 3.2.2.2, results discussed in Section 3.4), (b) 
MODIS radiance simulation at 650 nm (data described in Section 3.2.2.1, results discussed 
in Section 3.4), (c) SPN-S irradiance simulation at 745 nm (data described in Section 3.2.2.3 
and 3.2.2.4, results discussed in Section 3.5), (d) all-sky camera radiance simulation at 600 
nm (data described in Section 3.2.2.5, results discussed in Section 3.6), and (e) radiance 
simulation at 600 nm based on LES data for CNN training (not included in this paper). The 
data products and their abbreviations are described in Section 3.2.2. .................................. 67 

Figure 3.2. OCO-2 measured radiance (units: Wm-2nm-1sr-1) at 768.52 nm, overlaid on 
MODIS Aqua RGB imagery over southwestern Colorado (USA) on 2 September, 2019. The 
inset shows an enlarged portion along the track, illustrating that OCO-2 radiances co-vary 
with MODIS-Aqua radiance observations. ........................................................................... 72 

Figure 3.3. (a) Cloud optical thickness derived from MODIS L1B radiance at 650 nm by the 
two-stream approximation (Equation 3.A2), (b) cloud effective radius (units: 𝜇m), and (c) 
cloud top height (units: km) collocated from the MODIS L2 cloud product. The locations of 
the cloudy pixels were shifted to account for parallax and wind effects. The parallax 
correction ranged from near 0 for low clouds and 1 km for high clouds (10 km CTH). The 
wind correction was around 0.8 km, given the average wind speed of 2 m/s to the east. .... 75 

Figure 3.4. (a) Surface reflectance from the OCO-2 L2 product in the Oxygen A-band (near 
760 nm), overlaid on the surface reflectance from the MODIS MYD09 product at 860 nm. 
(b) OCO-2 surface reflectance at 760 nm versus MODIS surface reflectance at 860 nm, along 
with linear regression (y=ax) as indicated by the red line (slope a=0.9337). ...................... 76 

Figure 3.5. Latitudinally averaged (0.01° spacing) radiance calculations from EaR3T (red: 
3D, blue: IPA) and OCO-2 measured radiance at 768.52 nm (black). The solar zenith angle 
for the radiance simulation case is 33.75°. ........................................................................... 86 



 xii 

Figure 3.6. (a) MODIS measured radiance in channel 1 (650 nm). (b) Simulated 3D radiance 
at 650 nm from EaR3T. The solar zenith angle for the radiance simulation case is 34.42°. 88 

Figure 3.7. Heatmap plot of EaR3T simulated 3D radiance vs. MODIS measured radiance at 
650 nm. ................................................................................................................................. 89 

Figure 3.8. (a) Flight track overlay HIMAWARI AHI RGB imagery over the Philippine Sea 
on 20 September, 2019. (b) Measured downwelling irradiance from SPN-S at 745 nm and 
calculated 3D and IPA irradiance from EaR3T for the highlighted flight track in (a). ......... 92 

Figure 3.9. Histogram of measured transmittance from SPN-S at 745 nm (black) and 
calculated 3D (red) and IPA (blue) transmittance from EaR3T for all the below-cloud flight 
tracks during CAMP2Ex in 2019. The mean values are indicated by dashed lines. The yellow 
shaded area represents the relatively low transmittance region where the probability density 
of the observed transmittance (black) is greater than the calculations. Vice versa for the green 
shaded area. ........................................................................................................................... 93 

Figure 3.10. (a) RGB imagery of nadir-viewing all-sky camera deployed during CAMP2Ex 
for a cloud scene centered at [123.392°E, 15.2744°N] over the Philippine Sea at 02:10:06 
UTC on 5 October, 2019. The lines indicate the axis of the aircraft (yellow) and wing to wing 
(across, black). The yellow circle shows the approximate field of view that is geolocated for 
(b); the dots denote various directions from the nadir point. (b) Gridded radiance for the 
square area indicated by solid black lines in (a) with a pixel size of 64x64 and spatial 
resolution of 100 m. Later for the comparison of COT and RT calculations, only the data from 
the red square box (50x50) is used. The solar position (azimuth) is indicated by the yellow 
arrow. .................................................................................................................................... 96 

Figure 3.11. Cloud optical thickness for the gridded radiance in Figure 3.10b (a) estimated 
by IPA and (b) predicted by CNN. ....................................................................................... 97 

Figure 3.12. 3D radiance calculations from EaR3T at 600 nm based on cloud optical thickness 
field (a) estimated by Two-Stream approximation and (b) predicted by the CNN. The 
calculations were originally performed for the 64x64 domain. Then 7 pixels along each side 
of the domain (contoured in gray) were excluded, which resulted in a 50x50 domain. ....... 97 

Figure 3.13. Scatter plot overlays 2D histogram of 3D radiance calculations at 600 nm based 
on cloud optical thickness (a) estimated by Two-Stream approximation and (b) predicted by 
the CNN vs. measured red channel radiance from all-sky camera. ...................................... 98 

Figure 3.14. Histograms of cloud radiative effects derived from 1) 3D irradiance calculations 
based on COTCNN (solid black), 2) IPA irradiance calculations based on COTIPA (solid red), 
3) IPA irradiance calculations based on COTCNN (dashed blue), and 4) 3D irradiance 
calculations based on COTIPA (dashed green) both (a) at the surface and (b) above the clouds. 
The mean values are indicated by vertical lines. ................................................................ 100 

Figure 4.1. ORACLES flight tracks overlaid on MODIS RGB imagery obtained from NASA 
WorldView for 2016-09-20, 2017-08-13, and 2018-09-30. P-3 and ER-2 flight tracks are 
indicated in red and blue, respectively. ............................................................................... 106 

Figure 4.2. Transects used for model-observation comparison for ORACLES 2016 – 2018 
region. ................................................................................................................................. 107 



 xiii 

Figure 4.3. Illustration of the modeled albedo-to-reflectance relationship (gray line), the 
relationship after scaling by scale factor directly obtained from the observations (black dashed 
line), the relationship after scaling by linear-fitted scale factor (shown in Figure 4.2) for two 
selected AOD and SZA bins (indicated by each panel figure title). The colored dots are 
collocated SEVIRI HRV reflectance versus SSFR albedo at 550 nm during ORACLES 2016 
(red), 2017 (blue), and 2018 (green). .................................................................................. 117 

Figure 4.4. Scale factors (concept see previous figure) as a function of SZA. The black line 
is fitted from all the data through polynomial 4th order fit and represents the general 
relationship between scale factor and SZA for all different AOD settings. The size of the dots 
indicates relative abundance of available observations. ..................................................... 120 

Figure 4.5. a) Diurnal reflectance from SEVIRI HRV reflectance (black) sampled at a P-3 
below-cloud flight track from 08:29:27 to 08:37:32 UTC on October 5, 2018. The cloud 
albedo at 550 nm derived from the parameterization is in red, and the DARE derived from 
C21 is indicated in green. The cloud albedo measured by SSFR is shown in blue. Subplots 1-
3 show the SEVRI HRV reflectance domain as well as the collocated SEVIRI HRV 
reflectance along the flight track (only flight track data of every 30 seconds are shown) at 
three times (09:30, 12:00, and 15:00) as indicated by vertical dashed lines in (a). i-iii show 
the associated derived cloud albedo fields. For comparison, i also shows the measured albedo 
from SSFR for the time when the P-3 flew there (offset by –0.035°, blue circles). ........... 122 

Figure 4.6. Albedo (at 550 nm) derived from SEVIRI HRV reflectance (red) and albedo (at 
550 nm) measured by SSFR (blue) at the location of P-3 flight track as indicated in Figure 
4.4-i. .................................................................................................................................... 123 

Figure 4.7. (a) BOL P-3 locations (dots) and TOL locations (stars) for Meridional-2 grid box 
5. (b) Heatmap of AOD at 550 nm measured by 4STAR vs. albedo at 550 nm measured by 
SSFR. (c) and (d) are histograms for albedo and AOD, respectively. The dates of the flight 
tracks are indicated by colors shown in the mid-panel legend for (a), (c), and (d). ........... 125 

Figure 4.8. (a) Heatmap of diurnally integrated DARE vs. diurnally averaged albedo at 550 
nm from SEVIRI for the Meridional-2 grid box 5. (b) The same as (a) except for diurnally 
integrated DARE normalized by AOD (REE). (c) and (d) are histograms for DARE in (a), 
and DARE normalized by AOD in (b), respectively. ......................................................... 127 

Figure 4.9. (a) Histograms of diurnally integrated DARE derived for the whole satellite 
domain (black) and aircraft flight tracks only (gray) for the Meridional-2 grid box 5. (b) The 
same as (a) except for diurnally integrated DARE normalized by AOD. The DARE derived 
for the satellite domain are color-coded for four different combinations of high/low AOD and 
high/low cloud albedo, where the “high” and “low” are above/below the median value. The 
mean values are indicated by the dashed vertical lines. ...................................................... 129 

Figure 4.10. The left panel and the mid panel are the same as Figure 4.9 for all the grid boxes 
of Meridional-2. Additionally, a heatmap of AOD vs. albedo is shown in the right panel for 
each grid box. The AOD vs. albedo plots are divided into four quadrants. The mean value of 
AOD vs. albedo of each quadrant is indicated by star marker. ........................................... 131 

Figure 4.11. Latitudinal trends of averaged (a) diurnally integrated DARE, (b) diurnally 
integrated DARE normalized by AOD, and (c) averaged scene albedo and AOD for 



 xiv 

Meridional-2 grid boxes shown in Figure 4.8. The standard deviations are indicated by the 
vertical error bars. ............................................................................................................... 134 

Figure 2.A1. Ratio between spectrally integrated SSFR downwelling irradiance and 
broadband downwelling irradiance from BBR as a function of reference azimuth angle (solar 
azimuth position with respect to the sensor, 0 degree pointing north) during 1:00 UTC – 1:36 
UTC on 2014-10-03. The relative positions of the sun with respect to the aircraft are indicated 
by different colors. The black curve is a fitted function using a second order Fourier series.
............................................................................................................................................. 162 

Figure 2.A2. SSFR integrated broadband irradiance versus BBR broadband irradiance (a: 
downwelling; b: upwelling) and the histograms of the ratio of SSFR integrated broadband 
irradiance to BBR broadband irradiance (c and d) for the “0911-above-cloud” case. The mean 
and the full width half maximum of the Gaussian distribution of the ratio are indicated as blue 
and green dashed lines in the histogram plots. The SSFR-BBR data (SSFR after applying the 
scale factor as indicated by the blue dashed line) versus BBR is indicated in green in (a) and 
(b). ....................................................................................................................................... 164 

Figure 3.A1. An illustration of correcting cloud location (red) for parallax effect (blue) and 
wind effect (green) for the black-boxed cloud field in Figure 3.2. ..................................... 171 

 



 1 

Chapter 1 
 

Introduction 

 

Advanced satellite instruments, along with the development of cloud and aerosol retrieval 

techniques, have led to a new era of understanding regional and global cloud and aerosol radiative 

effects over the past two decades. The Moderate Resolution Imaging Spectroradiometer (MODIS, 

King et al., 1992), for example, is a passive multi-spectral imager that provides spectral radiance 

and reflectance measurements, which can be used to retrieve cloud and aerosol optical properties 

(Platnick et al., 2003; 2017; Remer et al., 2005). These optical properties are key parameters for 

deriving cloud and aerosol radiative effects. Satellite observations are widely used to constrain and 

improve numerical weather prediction models, and to advance the understanding of cloud and 

aerosol radiative effects in the context of their climate forcing. Meanwhile, the complexities of 

nature, e.g., heterogenous and bright snow surface in the Arctic, rapidly evolving clouds in the 

Tropics, complicated cloud and aerosol environments over polluted regions of the globe, beg the 

question how accurate the satellite-derived cloud and aerosol radiative effects (CRE and ARE) are 

under these conditions. The answer to this question is extremely important for understanding our 

climate system, which hinges on observations on a range of scales. It also leads to the next question 

how our observational system and algorithms can be improved to account for the complexities of 

nature. 

Significant efforts have been invested into either quantifying the biases or minimizing the 

uncertainties associated with the satellite derived CRE and ARE. Active satellite remote sensing 

instruments such as lidar systems were developed, and used to perform cloud detection over bright 

surfaces in the Arctic (Kay and L’Ecuyer, 2013); in lower latitudes, high resolution geostationary 
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satellite imagers are used increasingly to monitor fast evolving clouds continuously; satellite 

polarimeters are used to uncover the size distribution, horizontal and vertical distribution along 

with many other parameters for an improved characterization of atmospheric aerosols (Dubovik et 

al., 2019). Efforts in this regard extend beyond the advancement in space-borne instruments and 

measurement techniques – many aircraft field campaigns and airborne observations served as an 

important, in-detail observations of CRE and ARE, especially when clouds and aerosols occur in 

close proximity. 

Compared to the space-borne observations, the advantages of airborne observations from 

an atmospheric radiation perspective lie in 1) their capability of providing not only remote sensing 

measurements of radiance but also radiative energy measurements of irradiance that cannot be 

measured by space-borne instruments, along with in-situ observations of cloud and aerosol 

microphysics and optical properties, 2) their superiority of providing observations at a much finer 

temporal and spatial scale, 3) their flexibility of taking measurements above, below, and within 

cloud and/or aerosol layers, providing constraints of radiative forcing that space-borne 

observations cannot deliver. These features of aircraft observations make them suitable for 

validating satellite observations and the associated retrieval-based radiative effects, evaluating 

atmospheric radiation processes at a finer scale such as 3D cloud radiative effects (detailed 

explained in Chapter 3), and developing techniques of directly deriving cloud and aerosol radiative 

effects from observations. 

 In the past, aircraft observations have been used extensively to evaluate satellite-derived 

CRE and ARE, to expand the understanding of CRE and ARE such as quantifying the 3D biases 

affecting cloud and aerosol radiative effects obtained through traditional radiative transfer 

approach, and to generally advance the development in algorithms for deriving CRE and ARE. 
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This was mostly done based on select cases, usually referred to as “golden cases”, e.g., cases where 

aircraft flew during a particular satellite overpass or over a ground or ship instrument. These 

“golden cases” usually consist of one or a few flight track segments that are coordinated with the 

other space/ground/ship instrument. For example, Schmidt et al. (2007) studied two particular 

cases from the Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus 

Experiment (CRYSTAL-FACE) that utilized aircraft measurements of spectral irradiance from the 

Solar Spectral Flux Radiometer (SSFR) to validate legacy cloud retrievals from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) airborne simulator (MAS). 3D radiative transfer 

calculations based on MAS cloud retrievals were performed through a 3D Monte Carlo radiative 

transfer (RT) model (RTM), and intercompared with SSFR measured irradiance to gain insights 

of satellite-derived, e.g., MODIS, cloud radiative properties such as cloud albedo. Song et al. (2016) 

studied a case from the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) that 

utilized the approach developed by Schmidt et al. (2010a) to quantify the 3D biases in cloud 

transmittance associated with inhomogeneities of cloud fields. The case study revealed that 3D 

effects can contribute a bias of ±12-19% in traditional imagery-derived cloud transmittance. 

LeBlanc et al. (2012) studied two selected cases from two different aircraft campaigns – one flight 

from the Arctic Research of the Composition of the Troposphere from the Aircraft and Satellites 

(ARCTAS) and one flight from the Nexus of Air Quality and Climate Change (CalNex) to access 

an improved algorithm that can derive spectral aerosol optical depth from vertical aerosol 

extinction profile from the perspective of spectral relative forcing efficiency of aerosols. 

Additionally, case studies of aircraft observations have been used in many other studies in 

validating satellite derived CRE and ARE (Coddington et al., 2010), in evaluating 3D effects of 
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CRE and ARE (Schmidt et al., 2010a), and in developing measurement techniques for estimating 

CRE and ARE (Schmidt et al., 2010b).  

Case studies further the understanding of atmospheric processes, and often elicit new 

scientific questions, while allowing to test scientific hypotheses through qualitative analysis of 

airborne along with space-borne observations. In addition to “case study mode”, an inclusive 

approach, which utilizes more data from field mission, has been gradually adapted to airborne 

radiation science. For example, instead of only studying selected “golden cases” of limited flight 

track segments, Cochrane et al. (2019) utilized aircraft observations from an entire field campaign 

to derive aerosol optical properties such as asymmetry parameter, single scattering albedo, 

followed by an aircraft observational based parameterization of direct aerosol radiative effects for 

the whole study region of the field campaign (Cochrane et al., 2021). The parameterization 

obtained from collective use of the data allows to capture both the properties of aerosols and clouds 

as well as their radiative effects, and it serves as constraints for satellite observations and modeling 

studies of various kinds, with minimum assumptions that are necessary in retrieval-based 

approaches.  

Although the inclusive approach is more powerful as a tool for validating satellite-derived 

CRE and ARE, the transition from case studies has been slow, in part because real-world 

conditions during field campaigns are often too complex to lend themselves to analysis. This 

proved limiting for addressing the challenges in radiation science of our time, which are precisely 

the kinds of complex conditions that make analysis difficult and introduce systematic biases in the 

space-borne quantification of atmospheric radiative effects. The gap for the transition was an 

automated tool capable of reconstructing spatially complex scenes from a variety of data sources, 

and of subsequent automated 3D-RT calculations. Only automated processing of a large number 
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of scenes, up to entire field missions, was going to break through these limitations, and this thesis 

addresses this challenge. 

It will provide several examples that demonstrate how to approach atmospheric radiation 

problems by using aircraft and satellite observations statistically, as opposed to using isolated cases 

as done in many past radiation science studies, for answering a number of science questions as 

outlined below. To this end, I developed a toolbox – the Education and Research 3D Radiative 

Transfer Toolbox (EaR3T, described in Section 1.4 and in Chapter 3), that can meet the need for 

extensive and automated 1D and 3D radiative transfer calculations required by the aforementioned 

inclusive approach.  

Three science questions are addressed in the subsequent chapters of this thesis: 

 
1. What is the accuracy of satellite imagery-derived cloud radiative effects of thin clouds over 

ice as sampled during a NASA aircraft campaign in the Arctic? (Chapter 2) 
 

The Arctic is a challenging place on Earth to accurately quantify cloud radiative effects 

with satellite observations, and yet is only rarely sampled with aircraft, let alone surface-based 

observations. The surface, which is both bright and heterogeneous, makes traditional cloud 

detection algorithms and cloud retrieval algorithms challenging as they require accurate 

knowledge of surface albedo in the shortwave wavelength range to distinguish clouds from the 

surface. Platnick et al. (2001) proposed an improved cloud retrieval algorithm that instead of 

utilizing reflectance at visible wavelength, uses the shortwave-infrared wavelengths of 1630 nm 

and 2130 nm for retrieving cloud optical properties (referred to as “1621” cloud product) over 

snow surface, as snow and ice at those two wavelengths are dark and vary little. Still, Wendisch et 

al. (2019) showed that a third of clouds are missed from cloud detection through intercomparison 

of cloud fraction derived from MODIS and aircraft observations. This issue provided the 
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motivation to evaluate satellite-derived CRE in the Arctic, and led to the work shown in Chapter 

2. It evaluated the spectral and broadband irradiance calculated from the MODIS “1621” cloud 

product in the Arctic against aircraft measurements collected during the Arctic 

Radiation-IceBridge Sea and Ice Experiment (ARISE, described in Section 1.1). Specifically, the 

upwelling and downwelling shortwave spectral and broadband irradiance measured by the Solar 

Spectral Flux Radiometer (SSFR, described in Section 1.2) and the BroadBand Radiometer system 

(BBR, described in Chapter 2) were used to intercompare with MODIS-derived spectral and 

broadband irradiance pixel-by-pixel for two flight days – one above clouds and one below clouds. 

I aimed at obtaining the best-possible satellite-derived CRE in the Arctic to validate both MODIS 

capabilities of detecting and correctly characterizing clouds through the “1621” cloud product. 

Going beyond the challenges we face for clouds, the heterogeneity of the snow/ice surface in the 

Marginal Ice Zone (MIZ) of the Arctic is also a key factor that can alter the CRE. To account for 

the heterogeneous surface, I developed a spectral surface albedo parameterization, which utilizes 

clear-sky near-surface observations of aircraft camera imagery and SSFR measured albedo during 

multiple flights to statistically characterize surface albedo for the bright and dark regions of the 

MIZ. Finally, I answered the question by attributing the source of biases in satellite-derived CRE 

through a spectral dependence and variation analysis for the measured and calculated irradiance 

along the flight track. The aforementioned RT calculations based on MODIS were performed in a 

highly automated fashion, which was the precursor and motivation for EaR3T. Encouraged by the 

insights gained from the statistical assessment of satellite-derived CRE in the Arctic, I turned my 

eye to the Tropics, where the heterogeneous cloud environment and fast changing clouds are 

extremely challenging for obtaining an accurate CRE representation from satellite observations. 

This allowed me to address the second science question: 
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2. What is the accuracy of satellite imagery-derived cloud radiative effects of heterogeneous 
clouds as sampled during a NASA aircraft campaign in the Philippine tropics? (Chapter 
3) 

 
 

The opportunity for answering this question was afforded to me by the Cloud, Aerosol and 

Monsoon Processes Philippines Experiment (CAMP2Ex, described in Section 1.1), an aircraft 

campaign by NASA in 2019. Fortunately enough, NASA CAMP2Ex collaborated with the 

Meteorological Satellite Center (MSC) of the Japanese Meteorological Agency (JMA), and so 

imagery from the Advanced Himawari Imager (AHI) onboard the geostationary satellite 

Himawari-8 was made available to the mission team. AHI takes continuous multi-channel 

reflectance measurements every 10 minutes to monitor the lifecycle of clouds, among other 

applications. The AHI reflectance can be fed into legacy cloud retrieval algorithms to produce 

cloud products. Moreover, I built upon the code base from the previous chapter and developed the 

EaR3T, a toolbox that can automate the 1D and 3D-RT calculations for airborne and spaceborne 

radiation science. The availability of abundant data from CAMP2Ex and AHI, and the capability 

of performing large-scale RT calculations with EaR3T enable systematic intercomparisons 

between satellite imagery derived CRE and aircraft measurements. Specifically, 1D and 3D 

downwelling irradiance calculations were performed by EaR3T using AHI cloud products, and 

compared with irradiance measurements from the Spectral Sunshine Pyranometer (SPN-S, 

described in Section 1.2) for all the below-cloud flight tracks during the entire CAMP2Ex mission. 

These systematic intercomparisons between 3D-RT calculations and observations (for the first 

time with data from an entire field mission) allowed to quantify the bias associated with traditional 

1D cloud retrieval in satellite imagery derived CRE. 
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While working on the quantification of imagery-derived biases in cloud radiative effects, 

a new cloud retrieval approach was being developed in the group, with the potential to mitigate 

3D-RT biases in passive imagery cloud retrievals. Rather than mapping cloud reflectance to cloud 

optical thickness (COT) on a pixel-by-pixel basis, without considering the spatial context of a pixel 

as done in the heritage independent pixel approximation (IPA), it takes the context of a pixel into 

account. This context-aware Convolutional Neural Network (CNN) was developed by Nataraja et 

al. (2022, described in Section 1.5) in our group, where EaR3T provided synthetic training data 

based on large eddy simulation (LES) data.  

In this thesis (Chapter 3), the newly developed CNN, as well as the heritage IPA were 

applied to measurements for the very first time. I used high-resolution airborne imagery collected 

by an all-sky camera (described in Section 1.2) deployed during CAMP2Ex to retrieve COT fields, 

and subsequently validated the outcome. For this validation, independent ground truth data was 

unavailable in addition to the imagery itself. Therefore, I developed a new validation metric, called 

‘radiance self-consistency’, which can be applied to any imagery-based cloud retrievals. It uses 

3D radiance calculations through EaR3T based on given cloud retrievals, e.g. CNN-COT field, to 

validate against satellite radiance measurements themselves, which are always available. The 

consistency between the COT-generated 3D radiance and satellite measured radiance could give 

quality assessment for the COT. 

Having studied cloud radiative effects for two challenging atmospheric conditions in two 

opposite climate zones – for thin clouds over bright surfaces in the Arctic and for spatially complex 

clouds in the Tropics, I now use the capabilities of automated data processing to study the radiative 

effects of aerosols in the presence of clouds, another area where satellite observations alone are 

currently challenged. A NASA field campaign – the ObseRvations of Aerosols above CLouds and 



 9 

their intEractionS (ORACLES, 2016-2018, described in Section 1.1) was dedicated to study clouds 

and aerosols in the southeast (SE) Atlantic – a region of the globe with biomass burning (BB) 

aerosols overlying a semi-permanent boundary layer cloud layer, with the central science question: 

What is the direct radiative effect of the African biomass burning aerosol layer in 
clear- and cloudy-sky conditions over the SE Atlantic? 

 
The question cannot be answered with aircraft measurements alone as they have limited spatial 

and temporal coverage. The successful use of geostationary satellite observations during the 

CAMP2Ex study gave rise to the idea that the ORACLES science question could be addressed by 

relying on the relative strengths of both geostationary satellite observations (extensive regional 

and temporal coverages) and aircraft observations (accuracy of in-situ observations; resolution etc.) 

as discussed above, in order to arrive at the best estimate of the direct aerosol radiative effect 

(DARE). How to do this specifically is encompassed by the specific question underlying Chapter 

4 of this thesis: 

 
3. How can detailed, accurate aircraft observations be combined with spatially and 

temporally extended satellite imagery to obtain the best estimate of the direct aerosol 
radiative effect for the study region of a set of NASA campaigns in the southeast Atlantic? 
(Chapter 4) 

 
 

The most commonly used approach for the evaluation of DARE derived from satellite 

cloud and aerosol products is through the evaluation of the satellite retrieval products against cloud 

and aerosol aircraft observations (Peers et al., 2021), and that was the original path here as well 

(see Section 1.3): to quantify the effect of the aerosol layer on COT retrievals from polar-orbiting 

and geostationary imagers, SSFR cloud retrievals were generated from all the below-aerosol 

above-cloud flight legs (referred to as BOL), where the aerosol effects on cloud retrievals are 

minimal, during the entire three-year campaign, and compared those against SSFR retrievals from 
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a higher altitude, where the aerosol layer does affect the retrieval. This work was published by 

Chang et al. (2021). 

Ultimately, it became clear that the cloud retrieval was biased not only by the aerosol layer, 

but also by cloud spatial inhomogeneities. Since the most important parameter for DARE besides 

the aerosol loading itself is the albedo that the aerosol layer experiences, the combined 

uncertainties in this parameter given aerosol-induced and cloud variability-induced biases made 

the retrieval-based approach impractical. Instead, I sought to arrive directly at DARE from aircraft 

observations, bypassing imagery-based cloud and aerosol retrievals. This was made possible by 

the work of Cochrane et al. (2021) who developed a parameterization of the instantaneous DARE 

parameterization based on the aircraft observations collected during ORACLES (referred to as 

C21). C21 can provide instantaneous broadband DARE estimates at any location of the campaign 

region based on minimum inputs such as mid-visible scene albedo and aerosol optical depth, both 

of which are available from direct aircraft observations. 

This observationally based DARE parameterization avoids the error associated with 

various assumptions made in the aforementioned retrieval-to-DARE approach. On the other hand, 

DARE can also not be derived from aircraft measurements exclusively, even from the entire 

campaign. That is because the aircraft measurements alone do not fully represent the DARE of the 

study region as 1) diurnal variation of aerosols and clouds, especially clouds, are not considered, 

and 2) the spatial coverage of the aircraft measurements is limited. These two challenges can be 

resolved if geostationary satellite observations can be used as they offer extensive spatial and 

temporal coverage. Therefore, I incorporated geostationary satellite observations from the 

Spinning Enhanced Visible and InfraRed Imager (SEVIRI) with aircraft observations from 

ORACLES and developed a statistical based mapping that can directly translate SEVIRI measured 
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reflectance into BOL scene albedo (referred to reflectance-to-albedo mapping). Such mapping 

allows diurnal and domain scene albedo to be obtained from SEVIRI as reflectance measurements 

that are taken every 15 minutes for the entire ORACLES study region throughout the day. Diurnal 

DARE for any given region can then be obtained from C21 based on the SEVIRI-derived scene 

albedo and aerosol properties from aircraft measurements. With the diurnal DARE, diurnally 

integrated DARE can be calculated by averaging the diurnal DARE over the course of the day. 

The combined process of 1) reflectance-to-albedo mapping, 2) DARE estimate from C21, and 3) 

integration of diurnal DARE into diurnally-integrated DARE is referred to as the diurnal DARE 

method. It enables the exploration of DARE at different temporal scales ranging from days to 

months, and at different spatial scales ranging from degree-size grid box to the entire study region, 

which addresses the ORACLES central science question. 

The works of Chapter 2, 3, and 4 can be found in the following peer-review publications: 
 

● Chen, H., Schmidt, S., King, M. D., Wind, G., Bucholtz, A., Reid, E. A., Segal-Rozenhaimer, 
M., Smith, W. L., Taylor, P. C., Kato, S., and Pilewskie, P.: The Effect of Low-Level Thin 
Arctic Clouds on Shortwave Irradiance: Evaluation of Estimates from Spaceborne Passive 
Imagery with Aircraft Observations, Atmos. Meas. Tech., 14, 2673–2697, 
https://doi.org/10.5194/amt-14-2673-2021, 2021. 
 

● Chen, H., Schmidt, S., Massie, S. T., Nataraja, V., Norgren, M. S., Gristey, J. J., Feingold, G., 
Holz, R. E., and Iwabuchi, H.: The Education and Research 3D Radiative Transfer Toolbox 
(EaR3T) – Towards the Mitigation of 3D Bias in Airborne and Spaceborne Passive Imagery 
Cloud Retrievals, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2022-
143, in review, 2022. 
 

● Chen, H., Schmidt, S, Cochrane, S. P., Mallet, M., LeBlanc, S. E., Redemann, J., Pistone, K., 
Kacenelenbogen, M., Rozenhaimer, M. S., and Burton, S.: Diurnally Integrated Direct Aerosol 
Radiative Effect above Clouds and Clear-Sky from Aircraft Measurements during ORACLES 
2016-2018, Atmos. Meas. Tech., to be submitted, 2022. 

 
1.1 Field Campaigns 

 The data used in this thesis were collected during three field campaigns – 1) the Arctic 

Radiation-IceBridge Sea and Ice Experiment (ARISE, 2014), 2) the Cloud, Aerosol and Monsoon 
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Processes Philippines Experiment (CAMP2Ex, 2019), and 3) the ObseRvations of Aerosols above 

CLouds and their intEractionS (ORACLES, 2016-2018). These three field campaigns were all 

funded by the National Aeronautics and Space Administration (NASA). ARISE was NASA’s first 

Arctic aircraft campaign that focused on studying the cloud properties and radiative effects in the 

Arctic for a better understanding of Arctic sea ice decline and associated climate change (Smith et 

al., 2017). The campaign was executed in September 2014 based at Eielson Air Force Base (AFB) 

near Fairbanks, Alaska. A NASA C-130 aircraft carried a comprehensive set of remote sensing 

and in-situ instruments for measuring surface and cloud properties. More details of ARISE are 

described in Section 2.2. 

 CAMP2Ex aimed at characterizing the coupling of aerosol processes, cloud physics, and 

atmospheric radiation during Monsoon season at the synoptic scale (Reid et al., 2022). The 

campaign was conducted from August to October in 2019 based at Clark International Airport in 

the Philippines. A NASA P-3 aircraft was deployed to carry advanced remote sensing and in-situ 

instruments to take measurements of clouds and aerosols. The Meteorological Satellite Center 

(MSC) of the Japanese Meteorological Agency provided high resolution geostationary satellite 

imagery from the Advanced Himawari Imager (AHI) onboard Himawari-8 for monitoring the 

fast-changing cloud environments over the study region. A more detailed instrumentation is 

described in Section 3.2. 

 ORACES was a three-year NASA aircraft field campaign to study the biomass burning 

aerosols and their influence on regional and global climate (Redemann et al., 2021). The campaign 

was executed from the end of August to the end of September in 2016, from early August to early 

September in 2017, and from late September to late October to cover the active African burning 

season. ORACLES 2016 was based at the Walvis Bay International Airport near the west coast of 
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Namibia. For ORACLES 2017 and 2018, the mission was based at the international airport of São 

Tomé and Príncipe. The NASA P-3 aircraft was deployed during the entire three-year ORACLES 

mission, while a NASA ER-2 aircraft was only deployed during the first year of ORACLES. A 

few changes were made to the instrumentation and measurement techniques to compensate for the 

unavailability of the ER-2 aircraft for ORACLES 2017 and 2018 due to various logistic reasons. 

A comprehensive set of advanced active and passive remote sensing, as well as in-situ instruments 

were deployed to make direct measurements of aerosol and cloud radiative properties. A detailed 

overview of the ORACLES mission can be found at Redemann et al. (2021), and is further 

described in Section 4.2. 

1.2 Airborne Instrumentation 

The data from various airborne instruments are used – the Solar Spectral Flux Radiometer 

(SSFR), the Spectral Sunshine Pyranometer (SPN-S), the airborne all-sky camera (ASC), the 

broadband radiometer system (BBR), an aircraft nadir-viewing camera (NVC), the Spectrometer 

for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and the High Spectral 

Resolution Lidar 2 (HSRL-2). I will only introduce the SSFR, SPN-S, and ASC in this subsection 

as they were key instruments developed in the Atmospheric Imaging, Radiation and Remote 

Sensing group at the University of Colorado Boulder (CU). The BBR (Section 2.2.1), NVC 

(Section 2.2.3), 4STAR and HSRL-2 (Section 4.2.2) will be described in the chapters where they 

occur. 

The SSFR is the legacy instrument in the CU AIRS group. SSFR was originally designed 

and developed at NASA Ames in the early 2000s (Pilewskie et al., 2003). It was originally 

designed as an airborne instrument with two light collectors – nadir light collector and zenith light 

collector for simultaneously measuring upwelling and downwelling spectral irradiance range from 
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350 nm to 2150 nm, but it has also been deployed at multiple ground sites, e.g. at the Skywatch 

Observatory at CU, to take continuous measurements of solar radiation. SSFR has gone through 

several important development stages designed specifically for different aircraft field campaigns. 

For example, an active leveling platform was developed for counteracting the aircraft attitude to 

keep the zenith light collector look straight up for the ARISE campaign. Details of the instrument 

specifics will be described in Section 2.2.2 and Section 4.2.1. 

The SPN-S and ASC are relatively new. They were developed for the deployment of 

ORACLES 2018, and also flown during CAMP2Ex 2019. The SPN-S is a modified version of the 

commercially available global-diffuse SPN1 pyranometer (Wood et al., 2017). Similar to SPN1, 

SPN-S contains 7 detectors and a fix-mounted shadow mask that can simultaneously measure 

diffuse and global irradiance. However, SPN-S is a spectral version of SPN1; a prototype that 

enables the measurements of spectral irradiance from 350 nm to 1000 nm with spectral resolution 

of 1 nm and temporal resolution of 1 Hz (Norgren et al., 2022). The ASC is a commercially 

available all-sky camera – ALCOR ALPHEA 6.0CW. It contains fish-eye optics and provides 

hemispheric imaging through radiances in red, green, and blue channels. Radiometric and 

geometric calibrations are performed in the airborne radiation science laboratory at LASP before 

and after each deployment. Details of SPN-S and ASC can be found in Section 3.2.2.4 and Section 

3.2.2.5. 

1.3 Cloud Retrieval 

Spectral albedo can be directly derived from the upwelling and downwelling irradiance 

measurements of SSFR. From the spectral albedo, cloud optical thickness (COT) and cloud 

effective radius (CER) can be retrieved through legacy cloud retrieval algorithms. Although not 

included in any of the three papers in the thesis, extensive efforts have been invested into 
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processing cloud retrievals from SSFR measurements. Legacy cloud retrieval algorithms utilize 

RT calculations at one non-absorbing wavelength in the shortwave and at one weakly absorbing 

wavelength in the near-infrared to simultaneously retrieve COT and CER (e.g., Coddington et al., 

2010). They use so-called “lookup tables” (LUTs), which are constructed from 1D-RT calculations 

under various cloud and solar conditions. Figure 1.1 shows an example of LUTs created based on 

the 1D-RT calculations of albedo at 860 nm and 1630 nm with and without overlying absorbing 

aerosols for water clouds. With SSFR provided albedo measurements at 860 nm and 1630nm, COT 

and CER can be estimated from the near-vertical gridding (red/blue solid lines) and near-horizontal 

gridding (red/blue dashed lines), respectively. 

 

                                           

Figure 1.1. Albedo at 860 and 1630 nm at solar zenith angle of 35° with (red) and without aerosol (blue) included in 

the RT calculations. The solid lines (near-orthogonal) are albedos calculated with the same cloud optical 

thickness (COT). The dashed lines (near-horizontal) are albedos calculated with the same cloud effective 

radius (CER). 

 

 

To evaluate the aerosol effects on satellite imagery derived cloud retrievals, SSFR cloud 

retrievals were processed for two flight legs collected from a “radiation wall” maneuver from the 
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P-3 on August 13, 2017 – one flight leg below-aerosol and above-cloud (referred to as BOL) and 

one flight track above both cloud and aerosol layer (referred to as TOL). As mentioned before, the 

advantage of aircraft flying at any altitude, here at BOL, is to take measurements of cloud 

reflectances that are unaffected by the aerosols. The TOL legs, where aircraft measurements of 

clouds are affected by the aerosols to the same degree as satellite measurements, can be used to 

emulate satellite retrievals. The BOL and TOL together allow an assessment of the bias in the 

cloud retrievals stemming from the aerosol layer. Figure 1.2 shows an illustration of COT and 

CER derived from SSFR measured albedo at 860 nm and 1630 nm for a BOL flight track and a 

flight track at TOL. The satellite cloud retrievals from MODIS (black) and SEVIRI (cyan and 

magenta) along the flight track that are closest in time with the aircraft observations were provided. 

Figure 1.2b indicates that 1) there is good agreement among SSFR COT, MODIS and SEVIRI 

imagery-derived COT, 2) the satellite imagery-derived COT is systematically low-biased due to 

the presence of aerosols in between the satellite instrument and the clouds from TOL/BOL 

intercomparisons. Such cloud retrieval validation, as demonstrated in Figure 1.2, helps in 

quantifying the aerosols effects on cloud retrievals. However, the cloud retrieval biases associated 

with other challenging natural environments such as 3D effects from cloud inhomogeneities are 

not addressed in this manner. All these challenges, prevent us from obtaining an unbiased DARE 

from satellite observations. Therefore, I pursued a different approach for obtaining DARE that 

bypasses satellite retrievals and was described previously for the last science question and later in 

Chapter 4. 
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Figure 1.2. (a) BOL (red) and TOL (blue) flight tracks overlaid on MODIS RGB imagery from NASA WorldView 

on August 13, 2017. (b) Cloud optical thickness and (c) cloud effective radius retrieved from SSFR, MODIS, 

and SEVIRI along the two flight tracks.  

 

1.4 EaR3T 

EaR3T is a modularized Python package that provides high-level interfaces to automate the 

process of 1D and 3D radiative transfer (RT) calculations for radiative closure studies, radiative 

energy studies, and machine learning in atmospheric radiation. Specifically, EaR3T can be used to 

facilitate 1) large-scale systematic radiation closure studies based on satellite remote sensing data 

products, 2) validation of imagery-derived cloud radiative effects using comprehensive 

measurement sets from airborne research campaigns, and 3) the training of CNNs with synthetic 

cloud fields, such as previously mentioned CNN retrieval framework developed by Nataraja et al. 

(2022). Figure 1.3 shows an illustration of the usage of EaR3T to evaluate 3D aerosol effects in 

the context of the Radiation Working Group for the development of the NASA A-CCP (Aerosol 

(a) 

(b) 

(c) 
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and Cloud, Convection and Precipitation) study, now known as the AOS (Atmosphere Observing 

System) mission preparation study. Based on a cloud field from LES, 3D nadir radiance 

calculations at 532 nm were performed by EaR3T to generate synthetic observations that would be 

made by a spaceborne radiometer. To evaluate the aerosol effect, the calculations were performed 

with and without aerosols, as well as with and without 3D-RT effects Visually, the radiance fields 

are similar, and the aerosol does not show a significant impact on the radiance on a transect along 

the white dashed line. However, when looking at the radiance histogram in the full domain, 

discrepancies are found in the shape and location of peaks. Such subtle, but important differences 

were previously studied mainly in irradiance fields (Schmidt et al., 2009), and are now becoming 

important for remote sensing, and therefore radiances. However, systematic studies require large 

quantities of synthetic data. Such data can be generated with other LES cloud fields in an 

automated way with various different aerosol properties, e.g., absorbing aerosols, scattering 

aerosols etc. The EaR3T is publicly available at https://github.com/hong-chen/er3t, and is 

maintained and extended by graduate students at the University of Colorado Boulder. It aims at 

minimizing the barrier of using 3D-RT calculations and promoting 3D radiation science with 

anticipation of systematically quantifying and mitigating 3D-RT biases of imagery-derived cloud 

and aerosol radiative effects in the future. 
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Figure 1.3. 3D reflectance calculations for (a) a LES cloud field only, (b) the same LES cloud field with overlying 

aerosol layer at 532 nm. The reflectance along the white dashed line is shown in (c) and the histograms for 

the reflectance calculations are shown in (d). 

 

1.5 CNN COT Retrieval Framework 

The CNN COT retrieval framework was developed by Nataraja et al. (2022) and is a new 

machine learning approach to retrieve COT. It adapts a U-Net architecture and treats the retrieval 

of COT from radiance as a segmentation problem – probabilities of 36 COT classes range from 

COT of 0 to 100 are returned as final COT retrieval for a given radiance field of clouds. It accounts 

for the spatial context of clouds or in other words, horizontal photon transport, which is neglected 

in traditional cloud retrieval algorithms. It was trained on synthetic cloud fields generated by the 

Large Eddy Simulation (LES) model, which contains the ground truth of COT. EaR3T was used 

(a) (b) 

(c) (d) 
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to produce 3D-RT radiance calculations at 600 nm for the LES cloud fields, which establish a 

mapping between radiance to COT. Figure 1.4 shows a collection of samples from the training 

data as an illustration. The training data are in 64x64 tile format with spatial resolution of 100 m. 

The COT shown on the left panel is obtained directly from the LES dataset by column integrating 

the cloud extinction coefficients. The right panel shows realistic radiance fields that in nature 

would correspond to the COT fields, which are 3D radiance calculations at 600 nm produced by 

EaR3T. Details of the training dataset can be found in Nataraja et al. (2022). The CNN has been 

tested on LES data different from the training dataset as well as satellite and airborne imageries. 

Results are generally promising as 3D biases in the traditional IPA retrievals are mitigated to a 

large degree. More development efforts are currently being invested into building more 

comprehensive CNNs with the goal of mitigating 3D bias in satellite imagery-derived cloud optical 

properties. The big challenge for practical applications of machine learning tools for operational 

retrievals is to establish trust that they represent the underlying physics of a retrieval problem at 

hand. To achieve this, the radiance self-consistency approach that I developed in the framework 

of this thesis provides a metric that we explore in Chapter 3. I will show that this self-consistency 

metric has the potential to lead to a breakthrough for machine learning based passive imagery 

cloud retrievals. 
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Figure 1.4. Illustrations of 64x64 tiles of (a) cloud optical thickness from LES data and (b) calculated 3D radiance 

from EaR3T for CNN training. 

  

(a) (b) 
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Chapter 2 
 

The Effect of Low-Level Thin Arctic Clouds on Shortwave Irradiance: Evaluation of 

Estimates from Spaceborne Passive Imagery with Aircraft Observations 

 

2.1 Background 

Understanding the warming of the Arctic necessitates an understanding of the radiative 

impact of clouds and surface albedo, especially at the surface where the interaction with the 

cryosphere occurs (Curry et al., 1996; Shupe and Intrieri, 2004). Clouds cool the surface in the 

shortwave (SW) wavelength range by reflecting solar radiation and warm the surface in the 

longwave (LW). Low-level, liquid-bearing clouds have recently received special attention because 

they significantly contributed to the 2012 enhanced Greenland ice melt (Bennartz et al., 2013). 

When they are optically thin (LWP smaller than 20 gm-2), their SW cooling effect is small because 

they do not reflect much sunlight, especially when the surface is already bright. In the LW, on the 

other hand, their emissivity increases rapidly with the liquid water path (LWP), making them 

blackbodies and warm the surface especially if they are at a low altitude. For larger LWP, the SW 

cooling eventually dominates as the cloud becomes more reflective. 

Valuable data on Arctic clouds has been collected by ground-based observations over the 

past few decades (Curry et al., 1996, Shupe et al., 2011), but they are limited in spatial coverage 

and needed to be augmented by additional observations, especially from space-borne remote 

sensing measurements to help gain meaningful insights of cloud radiative effects in the Arctic as 

a whole. 

Hartmann and Ceppi (2014) used the dataset from the Clouds and the Earth’s Radiant 

Energy System (CERES) and showed that every 106 km2 decrease in September sea ice extent is 



 23 

associated with a 2.5 Wm-2 increase in annual-mean absorbed solar radiation averaged over the 

region from 75º N to 90º N. Kay and L’Ecuyer (2013) used combined products from active and 

passive remote sensing and showed that during the 2007 summer, the cloud reduction and sea ice 

loss in the Arctic resulted in more than 20 Wm-2 anomalies in shortwave radiation at the top of the 

atmosphere (TOA). The radiation products used in these studies, e.g., CERES-EBAF (Clouds and 

Earth’s Radiant Energy Systems – Energy Balanced And Filled, Loeb et al., 2012), 

2B-FLXHR-LIDAR (Level 2B radiative fluxes and heating rates calculated from radiative transfer 

model by utilizing radar-lidar cloud and aerosol retrievals from A-Train satellites, Henderson et 

al., 2013), all rely on coincident cloud observations from the Moderate Resolution Imaging 

Spectroradiometer (MODIS). 

MODIS is a 36-band passive imager onboard the Terra and Aqua satellites. It provides 

cloud optical parameters (COPs), e.g., cloud optical thickness (COT), cloud effective radius (CER), 

and cloud thermodynamic phase, from which irradiance can be derived. The COPs from MODIS 

have been used extensively in studies of cloud radiative effects (e.g., Wielicki et al., 1996; Platnick 

et al., 2003; Loeb and Manalo-Smith, 2005; Oreopoulos et al., 2016). Due to the lack of 

temperature and reflectance contrast between clouds and the underlying surface in the Arctic, 

detecting the clouds is challenging for passive remote sensing, especially when they are thin and 

occur at a low level. Liu et al. (2010) showed that the MODIS cloud detection algorithm performs 

better over the ocean than over the ice. The traditional cloud retrieval algorithm (Nakajima and 

King, 1990) retrieves COT and CER from the reflectance at two channels, one where clouds do 

not absorb (660, 860, or 1240 nm), and one where cloud drops are weakly absorbing (1630 or 2130 

nm). Over snow and ice, the surface albedo is already high in the visible and near-infrared (leaving 

little dynamic range for cloud remote sensing of optical thickness) and varies regionally and 
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temporally (leading to uncertainties in the retrieval products). This, in combination with low-sun 

conditions, makes it difficult to obtain accurate cloud optical properties from passive remote 

sensing. To improve the reliability of MODIS cloud retrievals in the Arctic, an algorithm has been 

developed that uses two shortwave-infrared bands of 1630 nm and 2130 nm, where snow and ice 

are relatively dark (Platnick et al., 2001; King et al., 2004). However, the surface albedo varies 

with surface type even for these bands, and the operational algorithm assumes constant values 

obtained from a climatology based on 5 years of Terra/MODIS data (Moody et al., 2007). 

In addition to the COPs themselves, the snow/ice surface albedo also plays an important 

role in determining the cloud radiative effect and radiation energy budget in the Arctic (Curry et 

al., 1995; Shupe and Intrieri, 2004). The surface albedo changes significantly from the visible to 

the near-infrared wavelength range (Wiscombe and Warren, 1981; Brandt et al., 2005) with 

different spectral dependence depending on the surface conditions (e.g., snow and ice). 

Inhomogeneous surface conditions such as floes of partially snow-covered ice, varying snow depth 

and snow grain size, and surface topography (e.g., sastrugi), all affect the spectral shape and 

magnitude of the surface albedo. To improve the understanding the inhomogeneous Arctic surface 

and the spectral dependence of surface albedo, spectral surface albedo measurements for snow and 

ice have been collected during ground-based field experiments in the polar regions (e.g., Perovich 

et al., 2002; Brandt et al., 2005). In addition, Perovich et al. (2002) showed that different surface 

types, e.g., ice, ponds, leads etc., can be identified from aerial camera images through an image 

processing software. Moreover, a spectral surface albedo model has been developed for different 

Arctic surfaces such as white sea ice, snow, and melting ponds on sea ice (Malinka et al., 2016 

and 2018). However, an operational surface albedo product based on space-borne observations is 
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still not available for the polar regions – in contrast to the land surfaces of the lower latitudes 

(Strahler et al., 1999). 

Finally, accurate knowledge of the water vapor is also important, even in the shortwave (as 

we will show in this paper). In summary, the challenges for deriving shortwave irradiance from 

passive remote sensing are (a) inaccurate detection of clouds and cloud optical property retrievals 

over snow or ice surfaces; (b) lack of accurate surface albedo as a constraint in the radiative transfer 

model (RTM); (c) insufficient knowledge about the water vapor profile.  

The aim of this paper is to use aircraft radiation measurements collected during the NASA 

Arctic Radiation – IceBridge Sea & Ice Experiment (ARISE, Smith et al., 2017) to evaluate 

irradiance as derived from coincident satellite imagery, and to investigate the causes of any biases. 

In the first step, the spectral snow surface albedo was derived from upwelling and downwelling 

irradiance measurements, accounting for partially snow-covered scenes by the snow fraction 

estimated from aircraft camera imagery. In the second step, we used an RTM to calculate the 

upwelling and downwelling broadband and spectral irradiance at flight level, incorporating the 

MODIS-derived COPs and spectral surface albedo derived from the aircraft measurements as 

inputs. 

The calculated irradiances were then compared with the measured broadband and spectral 

irradiance pixel by pixel for two cases – above-cloud and below-cloud. Section 2.2 describes the 

data and method used in this study. Section 2.3 provides the results and discussions for the 

measured spectral surface albedo, as well as for the comparisons between irradiance calculations 

and measurements. Conclusions are drawn in Section 2.4. 
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2.2 Data and Methods 

ARISE was a NASA airborne measurement campaign to study snow and ice properties in 

the Arctic marginal ice zone (MIZ) in conjunction with cloud microphysics and radiation (Smith 

et al., 2017). The NASA C-130 aircraft was instrumented with shortwave and longwave 

radiometers, described in this section, along with cloud microphysics probes, aerosol optical 

properties instruments, and snow and ice remote sensors. The experiment was based at Eielson Air 

Force Base near Fairbanks, Alaska, from 2 September to 2 October 2014, to capture the September 

sea ice minimum. In the Arctic, overpasses of polar-orbiting satellites are fairly common. ARISE 

targeted multiple overpasses of MODIS and CERES on Aqua, Terra, or VIIRS on Suomi NPP on 

almost every flight. One of the primary objectives of ARISE was to validate irradiance (or flux 

densities) derived from CERES-MODIS observations with aircraft radiation measurements. Figure 

2.1 shows two science flights on 11 September and 13 September that sampled above- and 

below-cloud conditions, respectively. These flights include so-called “lawnmower” patterns, a 

series of parallel flight legs laterally offset by about 20 km. They were specifically designed for 

ARISE to sample one or two 100 × 100 km2 grid boxes per flight with a sufficient number of 

coincident CERES footprints (each with a 20-km diameter at nadir), as to acquire statistically 

significant above- or below-cloud aircraft measurements for the validation of CERES-MODIS 

derived irradiance. 
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Figure 2.1. ARISE flight tracks overlaid on MODIS false color imagery (0.65 𝜇𝑚 for red, 11 𝜇𝑚 for blue, and 3.7-

11 𝜇𝑚 for green) from NASA Langley Research Center on 11 September and 13 September 2014. The focus 

region if these two research flights was [136 º W, 130 º W, 72.5 º N, 74.5 º N] in the marginal ice zone. 

 

Comparing the aggregated data from ARISE directly with the CERES-MODIS flux 

products within the grid box, e.g., using histograms, is challenging because of the heterogeneity 

of the scenes in terms of surface albedo, cloud conditions, and changing solar zenith angle. 

Therefore, in this paper, we instead compare aircraft observations directly (pixel by pixel) with 

calculations based on MODIS cloud retrievals along the flight track. The comparison of the 

aggregated data with CERES-MODIS products is done in a separate publication; we do not use 

CERES in our analysis because its large footprint does not lend itself to a direct comparison with 

aircraft data in a heterogeneous environment.  

The first step is to merge observations of the broadband shortwave irradiance from the 

BroadBand Radiometer system (BBR, details in Section 2.2.1) and of the spectral shortwave 

irradiance from the solar spectral flux radiometer (SSFR, details in Section 2.2.2). This merged 

product combines the high radiometric accuracy and high-fidelity angular response from BBR with 

the spectral resolution from SSFR, and is referred to as “SSFR-BBR” data. From these data, the 

11 September 13 September 
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surface albedo is derived for low-level legs under clear-sky conditions. To account for the 

heterogeneous surface (dark ice mixed with snow-covered ice), the surface albedo is acquired as a 

function of snow fraction, which is estimated from images of a downward-looking video camera 

(Section 2.2.3; details on the snow-cover dependent surface albedo derivation in Section 2.3.1). 

Finally, atmospheric profiles and reanalysis data (Section 2.2.4) along with MODIS cloud products 

are used to calculate all-sky spectral and broadband irradiances along the flight track (Section 

2.2.5), for subsequent comparison with the observations in Sections 2.3.2 and 2.3.3. 

2.2.1 BroadBand Radiometer System (BBR) 

The BBRs deployed during ARISE are modified CM 22 Precision Pyranometers from Kipp 

& Zonen (Bucholtz et al., 2010). The BBR included downward-looking and upward-looking 

sensors. The radiometers were fix-mounted on the aircraft and measured upwelling and 

downwelling broadband irradiance (unit: W m-2), that is, the spectrally integrated irradiance from 

200 nm to 3600 nm. To account for the change of sun-sensor geometry due to aircraft attitude 

(pitch and roll), a software attitude correction (Long et al., 2010) was applied to the BBR data. In 

addition, a sunshine pyranometer (SPN-1) was flown to measure diffuse and global radiative fluxes 

(Badosa et al., 2014; Long et al., 2010). The SPN-1 radiometer was originally intended for 

ground-based use, but is suited for airborne measurements of global and diffuse radiative fluxes 

because it does not have any moving parts, unlike traditional instruments such as the Multifilter 

Rotating Shadowband Radiometer (MFRSR). Smith et al. (2017) provide mission-specific details 

on both instruments. The BBR has a reported uncertainty of 3% (Smith et al., 2017). 
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2.2.2 Solar Spectral Flux Radiometer (SSFR) 

To attribute discrepancies between satellite-derived irradiance and airborne observations 

to causes such as erroneous water vapor, cloud properties, or three-dimensional radiative transfer 

effects, spectrally resolved measurements are needed (Schmidt and Pilewskie, 2012). SSFR is a 

moderate resolution flux spectrometer built at the Laboratory for Atmospheric and Space Physics 

(LASP, University of Colorado Boulder). It is an updated version of the heritage spectrometer 

system originally developed at NASA Ames (Pilewskie et al., 2003). The SSFR radiometer system 

consists of two spectrometers for each viewing direction (zenith and nadir): 1) a Zeiss grating 

spectrometer with a Silicon linear photodiode detector array covering a wavelength range from 

350 nm to 950 nm and 2) a Zeiss grating spectrometer with an InGaAs linear photodiode detector 

array covering a wavelength range from 950 nm to 2150 nm. The spectral resolution of the Silicon 

channels is 6 nm with a sampling of 4 nm. For the InGaAs channels, the spectral resolution is 

coarser – 12 nm with 6 nm sampling. From the SSFR measurements, spectral albedo, net flux, and 

absorption can be derived. 

SSFR is typically flown in conjunction with an Active Leveling Platform (ALP, also built 

at LASP), which was developed for counteracting the changing aircraft attitude to keep the zenith 

light collector horizontally aligned (the nadir light collector was fix mounted). This is particularly 

important in the Arctic, where low sun elevations lead to large systematic errors for fix-mounted 

or poorly stabilized sensors (Wendisch et al., 2001). One reason is that radiation from the lower 

hemisphere (for example, from clouds below or at the aircraft altitude) is registered by the zenith 

detector when it is tilted, which leads to systematic biases that cannot be corrected. Another reason 

lies in the specific design of the SSFR light collectors, which are realized as integrating spheres 

with a circular aperture on top. They diffuse the incoming light collected by the aperture and 
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bundle it into a fiber optics cable that transmits it to the radiometer system inside the aircraft 

(Schmidt and Pilewskie, 2012). The integrating sphere has an imperfect response to the incidence 

(polar) angle θ (Kindel, 2010), in contrast to the response of broadband radiometers such as BBR, 

which are closer to cos(θ) as required for irradiance. At high sun elevations, a so-called hot spot 

arises from a baffle that prevents light from being directly transmitted into the fiber optics. Since 

the response deviates significantly from cos(θ), the direct and the diffuse light need to be corrected. 

This is done by separating the diffuse and direct component, using radiative transfer calculations 

in conjunction with SPN-1 measurements (details are provided in Appendix 2.A), and further 

assuming that the downwelling diffuse radiation is close to isotropic. This assumption is an 

approximation, which becomes invalid if parts of the lower hemisphere are in the light collector’s 

field of view.  

The light collector’s angular response to the azimuthal angle also needs to be considered. 

Throughout the course of the mission, the zenith data revealed a dependence on the relative 

azimuth of the sun to the aircraft. This dependence was characterized at the end of the mission, by 

two calibration circles flown on 2 October. The non-homogeneous azimuthal response of the 

zenith light collector occurred for solar zenith angles greater than 66°. Generally, an azimuthally 

variable response could either be attributed to aircraft interference (e.g., by the tail and/or 

propellers of the host aircraft), or to the light collector itself. For the former, BBR and SPN-1 (both 

fix-mounted on the C-130) would also be affected. To assess their azimuthal response, the 

attitude-corrected BBR data (Bannehr and Schwiesow, 1993; Bucholtz et al., 2008; Long et al., 

2010) was compared with the SPN-1 global irradiance data, as well as with radiative transfer 

calculations. This comparison revealed that in this case, aircraft interferences were minor 

compared to atmospheric effects (e.g., cirrus), and that only SSFR measurements, but not BBR 
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and SPN-1, had a significant azimuthal dependence, suggesting the SSFR light collector as the 

source, rather than aircraft interferences. In order to determine the azimuthal dependence, the 

SSFR measurements were referenced to the BBR measurement1  during the calibration circle 

(details in Appendix 2.B). This azimuthal correction function (dependent on the relative azimuth 

angle of the aircraft and the sun) was then used for the zenith SSFR data for all research flights. 

After azimuthal correction, the SSFR downwelling irradiance was scaled to BBR using the method 

described in Appendix 2.D. It is in this sense that the BBR and SSFR measurements are merged. 

By using BBR, SPN-1, and SSFR in such a way, the redundancies between the instruments were 

used to capitalize on the strengths of the individual instruments (BBR: un-biased angular response 

and high radiometric accuracy; SPN-1: diffuse/global separation; SSFR; spectral resolution for 

sub-range of BBR and SPN-1). The SSFR nadir signal was also referenced to the BBR data in a 

similar manner (see Appendix 2.D) because BBR has the better angular response, whereas SSFR 

provides spectral resolution. The details about the merging method and the uncertainties of the 

merged irradiance product are provided in Appendix 2.D. 

The angular dependence of SSFR was verified in the laboratory. In addition, wavelength 

and radiometric calibrations were performed before and after the mission. The wavelength 

calibrations ensured spectral accuracy by referencing the SSFR measurements to several line 

sources. The primary radiometric calibration, performed with a NIST-traceable calibrated lamp, 

links SSFR measured digital counts to spectral irradiance. The radiometric calibration was also 

transferred to a so-called secondary radiometric field standard, which monitored the stability of 

the radiometers throughout the mission.  

 
1 Since BBR has a near-ideal angular response, the attitude correction with respect to the polar angle can be performed 
by software as long as data are limited to small deviations from level. By contrast, SSFR with its non-ideal angular 
response requires an active leveling platform. 
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2.2.3 Imagery from Downward-Looking Video Camera 

A downward-looking video camera (referred to as “nadir camera”) is often included as a 

standard payload on NASA aircraft. It is a standard, commercially available video camera and 

typically records scenes for context only and is not radiometrically or geometrically calibrated. 

Despite this shortcoming, the videos recorded by the nadir camera are used for quantitative image 

analysis. From the video, we first extract image frames with an average rate of 2 Hz (2 frames per 

second). The extracted image has a pixel resolution of 2592 (width) ×1944 (height). To co-register 

the aircraft nadir imagery with the measurements from other instruments, the times for the 

individual image frames are needed, but the image frames themselves did not contain a digitally 

stored time. They include a timestamp located at the lower left side that contains time information, 

and we used Optical Character Recognition (OCR) to retrieve the time from this information. 

In the second step, the nadir camera imagery was used to quantify the fractional snow 

coverage. The snow fraction, which is the fraction of bright pixels of the image, was estimated. To 

this end, the image was converted from RGB (red, green, and blue) into grayscale by  

𝐺𝑟𝑎𝑦 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (2.1) 

for each pixel. The weights come from standardized encoding recommendations for television 

(referred to as BT.6012). Another choice would have been to use a single-color channel, or even 

use the color information to distinguish surface types, but that was not necessary here. For more 

sophisticated imagery analysis, see Perovich et al. (2002).  

One issue of the nadir camera imagery was the darkening effect from the center to the edge 

of its field of view, which is known as the vignette effect. To compensate, the brightness of the 

 
2 https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-E.pdf 
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image was linearly increased from edge to center through an image blending and interpolation 

technique by Haeberli and Voorhies (1994):  

𝑜𝑢𝑡 = (1 − 𝛽) × 𝐵𝑙𝑎𝑐𝑘 + 𝛽 × 𝐺𝑟𝑎𝑦 (2.2)  

where Black is a black image with the same dimensions as Gray, and 𝛽 is the image blending 

factor, a 2D matrix with increasing values of 1.1-1.5 from the image center to the edge. The 

operator “×” denotes element-by-element multiplication. To avoid the vignetting extremes in the 

corners, only the imagery within a concentric sampling area was used to derive snow fraction (left 

panel of Figure 2.2a). The key step of the snow fraction detection algorithm is the separation of 

dark versus bright pixels. To do this, an adaptive thresholding technique was applied. It is an 

approach for handling an image with unevenly distributed intensities by dividing the image into 

subimages and assigning different thresholds for each of the subimages (Gonzalez et al., 2002). 

The details of the adaptive thresholding are described in Appendix 2.C. The snow fraction is then 

estimated by 

𝐹𝑟𝑎𝑐 = !!"#$%&
!&'&()

 (2.3) 

where 𝑁"#$%&' is the number of pixels above the variable threshold, and 𝑁'(')* is the total number 

of pixels within the sampling area. The imagery and detection results are illustrated in Figure 2.2a, 

whereas Figure 2.2b shows the simultaneously measured upwelling and downwelling spectral flux. 

The uncertainties associated with the estimated snow fraction are discussed in Appendix 2.D. 
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Figure 2.2. (a) An example of the snow fraction along with its uncertainty estimated from the nadir camera imagery 

at 20:03:32 UTC on 13 September, at a location of [132.95ºW, 73.85ºN]. The flight altitude was 134 m. The 

left panel is the nadir camera imagery. The radius of the field of view was about 380 m. The right panel uses 

yellow and purple to indicate bright and dark pixels as detected by the adaptive thresholding method. The 

snow fraction is derived from the abundance of yellow pixels. (b) The upwelling and downwelling irradiance 

from SSFR-BBR at the same time. 

 

2.2.4 C-130 Thermometer and Hygrometer and Modern-Era Retrospective analysis for 

Research and Applications version 2 (MERRA-2) 

The NASA C-130 aircraft was equipped with a thermometer and a hygrometer to measure 

air temperature and relative humidity, but it did not carry a dropsonde system. Figure 2.2.3b shows 

the profiles derived from the C-130 during a descending leg from 19:31:14 (altitude: 6.447 km) to 

19:50:05 (altitude: 0.258 km) on 13 September, 2014. Due to a malfunction of the hygrometer on 

(a) 

(b) 

Snow Fraction = 81% ± 4% 
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11 September, 2014, no water vapor profile from the C-130 is available on this day. Instead (Figure 

2.3a), we used the temperature and water vapor content profiles from MERRA-2, which is an 

atmospheric reanalysis dataset from NASA (Bosilovich et. al., 2015). MERRA-2 (M2I3NVASM) 

provides 3-hourly assimilated 3D meteorological fields (dimensions: 576 in longitude; 361 in 

latitude; 72 pressure levels from 985 hPa to 0.01 hPa). The comparison of the in-situ profiles and 

MERRA-2 (Figure 2.3b) shows good agreement, although the reanalysis does not reproduce the 

details of the vertical profile. A more systematic comparison of reanalysis and in-situ data from 

ARISE is done by Rozenhaimer et al. (2018) and is not the focus of this paper. The observations 

reveal much drier and slightly colder conditions than captured in the subarctic climatology from 

Anderson et al. (1986), referred to here as AFGL. Nevertheless, we used the climatology above 

6.5 km to provide complete temperature and water vapor profiles from 0 to 120 km, after rescaling 

them to the observed temperature and water vapor values at 6.5 km. The constructed atmospheric 

profiles were then used in the RTM (described in the next subsection) to obtain irradiance 

calculations. 
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Figure 2.3. Vertical profiles of temperature and water vapor from MERRA-2 and from the climatology (AFGL) for 

(a) 11 September and (b) from the C130 for 13 September 2014. On 11 September, MERRA-2 data at 21:00 

UTC was averaged over the region of [135 º W, 130.625 º W, 72.5 º N, 74 º N] to represent the atmospheric 

profile there. The vertical cloud distribution was unavailable from the in-situ data. On 13 September, aircraft 

data from a descending leg (19:31 UTC to 19:50 UTC at 133.8 º W, 74.1 º N) was used for the atmospheric 

profiles. Based on the water vapor profile, the cloud was likely located below 1.0 km (indicated in grey). 

Since hygrometer measurements were not available on 11 September, the cloud top height (1.1 km) was 

obtained from the MODIS L2 product), and the geometric thickness was set to 0.2 km (just like on September 

13). The flight level range is also shown. The solid lines for both days represent the temperature and water 

vapor profiles that went into the radiative transfer calculations. 

 

(a) (b) 
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2.2.5 Radiative Transfer Calculations based on MODIS Cloud Products 

The publicly available pixel-level MODIS cloud products (MOD/MYD06, collection 6.1), 

which are provided in 5-minute granules (Platnick et al., 2017), are used in this study. The MODIS 

cloud product includes COPs such as COT, CER, and cloud thermodynamic phase, which are 

essential parameters for calculating cloud radiative effects. As described before, the MODIS COT 

and CER are retrieved simultaneously using a bi-spectral reflectance method (Nakajima and King, 

1990). To minimize the influence of the surface on cloud retrievals, the 1630 nm and 2130 nm 

bands are used since the snow and ice surface are relatively dark at those two bands (Platnick et 

al., 2001; King et al., 2004). These retrievals are included in the MOD/MYD06 files and will be 

referred to as the “1621” cloud product. Limited in-situ observations suggested that the clouds 

consisted primarily of liquid water, and the MODIS cloud phase product showed less than 2% of 

ice clouds along the flight track. Therefore, the clouds were assumed to be liquid.  

The MODIS “1621” product includes COPs for cloudy and partially cloudy conditions. 

The latter are denoted as “PCL” in the MODIS data variable name. The product was extracted 

along the flight track and then input into a radiative transfer model (RTM) to calculate spectral 

and broadband irradiance at flight level. A 1-D RTM (libRadtran version 2.0.1, Emde et al., 2016) 

was used for the calculations. It requires the following inputs: 

1) Day of the year (for accurate Sun-Earth distance); 

2) Atmospheric profile; here, the subarctic summer atmospheric profile from Anderson et al. 

(1986) along with: 

a) Water vapor content profile from MERRA-2 for 11 September and from the C-130 

hygrometer for 13 September, 2014; 
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b) Temperature profile from MERRA-2 for 11 September and from the C-130 

thermometer for 13 September, 2014; 

3) Solar zenith angle; 

4) Wavelength; 

5) Surface albedo at the specified wavelength (see Section 2.3.1); 

6) Slit functions (also known as instrument line shape), which describe the bandpass function 

of the spectrometer. Here, SSFR slit functions as measured in the laboratory are used (full 

width at half maximum (FWHM) of 6 nm for the Silicon channels and FWHM of 12 nm 

for InGaAs channels); 

7) Cloud optical thickness, and cloud effective radius; here, from MODIS-COPs; 

8) Phase functions; here, from Mie calculations distributed with libRadtran; 

9) Output altitude grid; here: only at the aircraft flight level. 

The RTM uses a solar spectrum with 1 nm resolution as solar source at TOA (Kurucz, 1992). The 

Discrete Ordinates Radiative Transfer Program (DISORT, Stamnes et al, 1988) is used as the 

radiative transfer solver. LOWTRAN 7 (Pierluissi and Peng, 1985) is used for the molecular 

absorption parameterization. The cloud layer altitude was set to 0.8 km to 1.0 km for 13 September 

according to the water vapor profile from the aircraft hygrometer. Since the hygrometer data was 

not available for 11 September and the cloud layer could not be identified from the temperature 

profile, the mean of cloud top height from MODIS and a cloud geometrical thickness of 0.2 km 

were used in the calculations. The RTM output includes downwelling (global and direct) and 

upwelling irradiance at the specified wavelengths and output altitude (in this case, at the flight 

altitude). The cloud layer location and flight level altitude range were indicated in Figure 2.3. The 
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wavelength range of the calculations is set to 200 to 3600 nm, which encompasses both BBR and 

SSFR. 

2.3 Analysis and Results 

This section shows the results for the spectral surface albedo derivation from the irradiance 

data and the aircraft camera imagery, as well as the comparison of broadband and spectral 

irradiance between aircraft measurements and radiative transfer calculations. The spectral 

mixed-scene surface albedo parametrization (described first) is used as input to the RTM 

calculations in the subsequent comparisons with broadband and spectral irradiance observations. 

Finally, any biases are attributed to different sources based on their spectral fingerprint. 

2.3.1 Spectral Surface Albedo 

From the simultaneous measurements of spectral downwelling and upwelling irradiances 

(𝐹(𝜆)↓ and 𝐹(𝜆)↑), the surface albedo  

𝛼(𝜆) = -(/)↑

-(/)↓
 (2.4) 

can be derived through atmospheric correction (Appendix 2.E) from low near-surface legs under 

clear-sky conditions. Clear-sky measurements were a rare occurrence because low-level clouds 

were ubiquitous. In this study, we used clear-sky measurements of SSFR-BBR from 20:00:26 UTC 

to 20:10:51 UTC on 13 September (referred to as “0913-clear-sky”). A time-synchronized video 

of the flight is provided as supplementary material (S1 “s1_flight-video_0913-clear-sky.mp4”). 

This video shows that the Arctic surface varied significantly – from snow scenes to scenes with a 

large amount of dark ice. Clear-sky scenes (no clouds above or below) were identified from the 

forward and nadir cameras. During the “0913-clear-sky” case, the aircraft flew at an altitude at 

around 149 m.  
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To make full use of the direct measurements of the spectral surface albedo from SSFR-

BBR, we parameterized the surface albedo by snow fraction, which can be estimated from the 

nadir camera imagery (described in Section 2.2.3). The parameterization was done through a data 

aggregation technique that combines collective measurements in a partially snow-covered 

environment. Figure 2.2.4 shows the surface albedo at 640 nm, 1240 nm, and 1630 nm plotted 

versus the snow fraction. The uncertainties of the surface albedo and snow fraction are indicated 

as vertical and horizontal error bars, respectively (details are provided in Appendix 2.D). The data 

showed that linear regression can be used to establish a simple relationship between snow fraction 

and albedo, assuming that each observed spectrum is a mixture of only two so-called end-members: 

the spectral albedos of a dark and a bright surface. These end-members can vary depending on the 

local conditions. For example, the dark component can either be open ocean or young ice. The 

bright component can either be thick ice or a snow-covered surface. The resulting spectral surface 

albedo for a mixed sampling region is established through the slopes 𝑠/ and intercepts 𝑖/of the 

linear fit, with the snow fraction 𝑆𝐹 ranging from 0 to 1 as the independent variable: 

𝛼/ =	 𝑖/ + 𝑠/	𝑆𝐹                                                                                                                                                                  (2.5) 

The linear regression coefficients (𝑖/ and 𝑠/) and associated uncertainties were obtained through 

orthogonal distance regression (Boggs and Rogers, 1990) for all the SSFR wavelengths except for 

the water absorption bands, and those less than 350 nm or greater than 1800 nm because of a low 

signal-to-noise ratio. We provided the coefficients as a supplementary material (see S2 

“s2_surface-albedo-coefficients.h5”). This simple surface albedo parameterization has obvious 

drawbacks; for example, the implicit linear-mixing assumption, the variability of the end-members, 

and data sparsity of the individual end members (in the example in Figure 2.2.4, snow fractions 

below 0.6 rarely occur). 



 41 

 

Figure 2.4. Estimated snow fraction from nadir imagery versus SSFR-BBR measured surface albedo at 640 nm, 1240 

nm, and 1630 nm. The surface albedo and snow fraction uncertainties are indicated as vertical and horizontal 

error bars. The solid lines show linear regression fits, and the shaded region indicates their uncertainties. 

 

The snow spectral end-member (snow fraction of 1) of the mixed-scene spectral surface 

albedo (referred to as “2014-09-13 surface albedo”) is shown in Figure 2.2.5. The error bars of the 

surface albedo are larger in shortwave than in the near-infrared. As expected, the surface albedo is 

high in the shortwave range from 400 to 900 nm and decreases in the near-infrared. The SSFR-

BBR derived albedo spectra resemble the ground-based measurements of thick snow over ice near 

Davis Station, Antarctica (Brandt et al., 2005), and they are also close to spring-time aircraft 

measurements near Barrow (Alaska, Lyapustin et al., 2010). Figure 2.2.5 also shows the surface 

albedo with zero snow fraction. As pointed out above, snow fractions below 0.6 were extremely 

rare during “0913-clear-sky”. Nevertheless, the mixed-surface data, extrapolated to 0 snow 

fraction, compares surprisingly well to ground-based measurements of young gray ice, taken 

during the Australian National Antarctic Research Expeditions (ANARE) in 1996 (Warren et al., 

1997). The spectra shape of the surface albedo at 0 snow fraction (along with the nadir camera 
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imagery from S1) suggests that during the sampled time period, the dark pixels were ice at various 

freezing states instead of open ocean. As mentioned above, the binary representation of surface 

types oversimplifies the actual mixture of ice and snow, but is adequate to serve as surface albedo 

input for the RTM to constrain the irradiance calculations over mixed surfaces, which is our 

primary goal here. 

 

     

Figure 2.5. Spectral surface albedo derived from SSFR-BBR measurements for SF=100% (black) and SF=0 (gray), 

along with their uncertainties. In addition, different albedos from the literature are shown for comparison. 

 

2.3.2 Broadband Irradiance Comparison 

In this section, we show broadband irradiance comparisons between SSFR and BBR 

measurements and MODIS-COPs based RTM calculations at aircraft flight level for an 

above-cloud case (referred to as “0911-above-cloud”) and a below-cloud case (referred to as 

“0913-below-cloud”), collected by the research flights on 11 September and 13 September, 

respectively.  

The RTM irradiances were calculated for wavelengths from 200 nm to 3600 nm. Since the 

SSFR-BBR derived surface albedo described in previous subsection was not available at 

wavelengths shorter than 350 nm, in gas absorption bands, and for wavelengths greater than 1800 
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nm due to a low signal-to-noise ratio, several techniques were applied to fill in the surface albedo 

spectra (details in Appendix 2.F). For both the “0911-above-cloud” and “0913-below-cloud” cases, 

the surface albedo along the flight track was calculated from SF as driving parameter to Equation 

(2.5). The SF was determined differently for the two cases. For “0913-below-cloud”, SF was 

obtained from the camera imagery; for “0911-above-cloud”, that was not possible because the 

surface was not visible through the clouds, and SF was instead set to a constant value of 76.4%, 

which was obtained by varying SF in Equation (2.5) until 𝛼1234	nm reproduced the observed clear-

sky baseline for the upwelling irradiance at 1640 nm. Since SF is inferred from the albedo at a 

single wavelength in this case, it may reflect an “effective”, rather than the actual snow fraction 

(as obtained from the camera imagery where available), unless the spectral shape of the albedo as 

acquired for “0913-clear-sky” matches the one of “0911-above-cloud”. This is not necessarily the 

case. For example, changes in snow grain size between the two cases would disproportionately 

affect 1640nm. It should also be noted that the observed albedo is the blue-sky albedo (direct beam 

and diffuse light conditions), whereas the albedo required for the cloud cases is the white-sky 

albedo (diffuse light only). However, MODIS-derived surface albedo in the Arctic (not shown 

here) shows that usually the blue-sky albedo of snow does not deviate significantly from the 

white-sky albedo. The difference between the two is discussed by Gardner and Sharp (2010). In 

addition, it is assumed that the simple parameterization as expressed in Equation (2.5) holds for 

the whole study region. This is justified because the measurements occurred in the same general 

area. Figure 2.2.6 shows the surface albedo calculated for SF=76.4% for “0911-above-cloud”. 

Comparing with dry- and wet-season surface albedo climatology from Kay and L’Ecuyer (2013), 

the wet-season climatology agrees well with SSFR-BBR derived surface albedo in the shortwave 

(wavelength less than 900 nm) except for wavelength 660 nm, where climatology has a higher 
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surface albedo. In the shortwave near-infrared (wavelength greater than 900 nm) however, the 

dry-season climatology agrees better with SSFR-BBR derived albedo than wet-season. It is worth 

noting that the surface albedo assumed in MODIS 1621 cloud retrievals (Platnick et al., 2018) 

agrees with the surface albedo we obtained from SSFR-BBR. 

 

          

Figure 2.6. Spectral surface albedo (black) along with their uncertainties used in the RTM for the 2014-09-11 

calculations. The spectral albedo uses the SSFR-BBR derived albedo with SF=76.4% (red) except for the 

wavelength ranges marked (1) in green: replaced by scaled modeled snow albedo (blue); (2) in red (gas 

absorption bands): linear interpolation; and (3) in yellow (1800nm to 1900nm): polynomial fit using 

SSFR-BBR derived albedo from 1650nm to 1800nm. 

 

Figure 2.2.7 shows the broadband irradiances from SSFR-BBR, BBR, and the calculations 

(Figure 2.2.7a: downwelling; Figure 2.2.7b: upwelling) for the “0911-above-cloud”, where the 

aircraft was flying at an altitude around 7 km. The observed variability in the downwelling signal 

is due to the occurrence of cirrus above the aircraft, which is confirmed by the forward camera 

(Figure 2.7 1-3). In Figure 2.7a, cirrus-free regions are highlighted in green. 
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Figure 2.7. Broadband (a) downwelling and (b) upwelling irradiance from SSFR-BBR, BBR, and MODIS-COPs 

(Terra MODIS at 22:00) based RTM calculations on 11 September (above-clouds) along with their 

uncertainties (c) and (d) the histograms. The observed irradiances include a horizontal error bar (indicating 

the size of the SSFR-BBR FOV) in addition to the vertical error bar (indicating the uncertainty of SSFR-BBR 

irradiance). The cloud optical thickness from MODIS is indicated in green. The average cloud optical 

thickness is 6.03. The forward camera images are provided at (1) 21:46:39, (2) 22:01:53, and (3) 22:31:05. 

The nadir camera images are provided at (i) 21:18:15, (ii) 21:49:22, (iii) 22:03:28, and (iv) 22:41:18 UTC. 

The time differences between aircraft measurements and MODIS granule are indicated in the axis labels. The 

average flight altitude was 7 km and the average aircraft ground speed was 150 m/s.  

(2) (1) (3) 

(a) 

(1) (3) (2) 

(i) (iv) 

(b) 

(iii) (ii) 

(iv) (i) (ii) (iii) 
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It shows that the cirrus decreases the measured downwelling irradiance by up to 10% (40 Wm-2). 

However, there is no appreciable cirrus cover in the regions where low-level clouds are present. 

Since those are the focus of the manuscript, cirrus were not considered in the RTM. For the 

upwelling irradiance, the MODIS-derived baseline value of 230 Wm-2 corresponds to locations 

where MODIS did not detect any clouds. It is important to note that the value of the baseline 

indicates the RTM calculations under clear-sky condition, which would change if a different 

surface albedo parameterization or a different snow fraction were used. For a SF=76.4%, the 

calculations agree with the measurements within 10%. The cloud optical thickness along the flight 

track (included in Figure 2.2.7b) ranges from 0.5 to 15.3, with a median of 5.7, suggesting that 

MODIS does not retrieve clouds with an optical thickness below 0.5. In contrast to the calculations, 

the measurements show a continuous variation from leg to leg, suggesting that the clouds actually 

extended beyond the locations where MODIS detected them. Since the SSFR/BBR sensors 

integrate the cosine-weighted radiances hemispherically, they do not the same field of view (FOV) 

as MODIS pixels. The clouds detected by SSFR/BBR but not by MODIS could therefore be caused 

by clouds located outside the FOV of MODIS. To take this into account, we assume a 90° (±45°) 

FOV for the SSFR/BBR that encompasses roughly half of the irradiance signal for an isotropic 

radiance distribution. When the aircraft was flying at 7 km, the FOV diameter of SSFR/BBR is 14 

km (indicated as horizontal bars in Figure 2.7b, translated into a time range using the aircraft speed). 

This is larger than the 1 km MODIS pixel-level product FOV. However, the results indicate that 

cloud portion missed by MODIS exceeds the FOV of the aircraft radiometer and therefore cannot 

be explained by the mismatch in the observational geometry. To further corroborate that the 

MODIS algorithm is indeed missing clouds, a sequence of nadir camera imagery (Figure 2.2.7b i-
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iv) is considered. At close inspection, the images reveal wave patterns, suggesting the existence of 

thin clouds in regions where MODIS does not detect any. In this case, undetected, optically thin 

clouds made up more than one fifth of the points along the flight track. Figure 2.2.7b indicates that 

these undetected clouds lead to an underestimation of the upwelling irradiance by 30 Wm-2 

averaged over these pixels (>10% discrepancy). Figure 2.8 shows the histograms of the (a) 

downwelling and (b) upwelling irradiance of the cirrus free data (marked in green in Figure 2.7a). 

Without including the data affected by the cirrus, the downwelling irradiances from RTM agree 

with observations within measurement uncertainty. The upwelling irradiances from the RTM show 

two distinct modes. The mode on the left corresponds to clear-sky, and the mode on the right to a 

range of somewhat higher reflected irradiance due to those clouds that are detected by MODIS. 

From the clear-sky mode (black dashed line on the left at 233 Wm-2) to the thinnest detectable 

cloud (green line at 246 Wm-2), there is a gap, which, according to the measurements, is actually 

filled with a continuum of values from thinner clouds and/or from a variable surface albedo. 

Because of this gap, the low bias due to undetected clouds is smaller than or equal to 13 Wm-2. 

Whereas this bias caused by undetected clouds in the upwelling irradiance is almost negligible, it 

becomes significant for the transmitted irradiance (see below). The calculated irradiances for the 

locations where MODIS does detect clouds are only 10 Wm-2 lower than the measurements (4%), 

which is only slightly larger than the BBR/SSFR measurement uncertainty (3%, see Appendix 2.D) 

and can be explained either by (a) incorrect COPs (optical thickness, effective radius, or 

thermodynamic phase) and/or (b) inaccurate or variable surface albedo. To quantify the 

contributions of these effects to the total discrepancy, the spectral information from SSFR is used 

in Section 2.3.3. 
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Figure 2.8. Histograms of broadband (a) downwelling and (b) upwelling irradiance from SSFR-BBR (red), BBR 

(blue), and MODIS-COPs (black, Terra MODIS at 22:00) based RTM calculations on 11 September 

(above-clouds). Only “cirrus free” data (marked in green in Figure 2.7 (a)) is included. For (a), the mean 

values of BBR, SSFR-BBR, and RTM calculations are indicated by the colored dashed lines. For (b), the 

mean is calculated for each of the two modes separated by the green line and indicated by the colored dashed 

lines. 

 

After the investigation of the above-cloud case for MODIS-derived irradiance, we turn our 

attention to the below-cloud case – “0913-below-cloud”, which relates to near-surface irradiance. 

The primary cloud layer consisted of stratocumulus cloud and was located between 0.8 and 1.2 

km. The cloud optical thickness (indicated in Figure 2.9a) ranges from 4.1 to 8.1, with a median 

of 5.8. A secondary cloud layer close to the surface, located below the aircraft’s minimum flight 

altitude of 500 ft (approximately 150 m), frequently occurs due to a temperature inversion close 

to the surface, where leads and cracks in the ice provide the necessary moisture for their formation. 

These clouds also need to be considered to quantify the radiative surface budget, but they are 

excluded from the analysis here because the aircraft could not underfly them. As a result, only the 

data from 22:21:00 to 22:25:48 (minimal occurrence of the secondary cloud layer as indicated by 

the forward and nadir camera imagery) was selected for comparison. A time-synced video for this 

flight leg is provided in the supplementary materials (see S3 “s3_flight-video_0913-below-

cloud.mp4”). As mentioned before, in contrast to the above-cloud case where the surface albedo 

(a) (b) 
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was held constant in the RTM, the surface albedo variability on the below-cloud leg was 

considered here. Figure 2.9 shows the upwelling and downwelling broadband irradiance 

comparison between calculations and observations from SSFR-BBR and BBR. When 

incorporating the “13 September surface albedo” into the RTM, the upwelling irradiance 

calculations resemble the SSFR-BBR and BBR measurements (Figure 2.9b). The calculations 

agreed well with SSFR-BBR and BBR when clouds were detected except for the time period 

before 22:22:48 UTC when the aircraft was entering the cloud field. The MODIS granule from 

Aqua was a snapshot of the cloud scene at 22:10, 10 minutes prior to the beginning of the flight 

leg. Measurement-model discrepancies for specific pixels can therefore be explained by changes 

of the cloud field over time. 

    

    

(a) 

(b) 
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Figure 2.9. Broadband (a) downwelling and (b) upwelling irradiance from SSFR-BBR, BBR, and MODIS-COPs 

(Aqua MODIS at 22:10) based RTM calculations on 13 September (below-clouds). The time difference 

between aircraft measurements and MODIS granule is indicated in the axis labels. In addition, the field of 

cloud optical thickness and radiance at 860 nm from MODIS are provided in (c) and (d). On the map, the 

black line indicates the flight track studied in (a) and (b). The average flight altitude was 235 m, and the 

average aircraft ground speed was 106 m/s. 

 

The bimodal behavior that is apparent in the time series (Figure 2.9a and 2.9b) as well as in the 

histograms (Figure 2.10) stems from time periods with and without clouds in the model input. The 

observations show no evidence of any cloud gap – hence only one mode appears. The “cloud gaps” 

apparent in the satellite but not aircraft measurements could be caused by different viewing and 

sun-sensor geometries between the satellite and aircraft instruments. For example, tall clouds could 

block the direct sun beam measured by the aircraft radiometer when flying below clouds under 

low-sun conditions. By evaluating the fields of cloud optical thickness and radiance at 860 nm 

from MODIS (Figures 2.9c and 2.9d) and the supplementary flight video S3, we found that any 

cloud gaps are not large or frequent enough permit the direct beam to be transmitted. This leads to 

a smooth irradiance time series in the aircraft measurements. The gaps (circled in Figure 2.9c, most 

likely at sub-grid scale for the 1 km product), however infrequent, do occur in the satellite retrievals. 

From the histograms of Figure 2.10, one can estimate the pixel-level bias caused by undetected 

(c) (d) 

cloud gap 
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clouds. In this case, the thinnest detectable clouds are associated with 234 Wm-2 in the calculations, 

as opposed to the clear-sky value of 330 Wm-2 (bias of 86 Wm-2). For the upwelling irradiance, 

the bias is 57 (245-188) Wm-2, and the net irradiance high bias due to undetected clouds is therefore 

29 W m-2. 

 

     
Figure 2.10. Histograms of broadband (a) downwelling and (b) upwelling irradiance from SSFR-BBR (red), BBR 

(blue), and MODIS-COPs (black, Aqua MODIS at 22:10) based RTM calculations on 13 September 

(below-clouds). The mean value of the SSFR-BBR and BBR data is calculated and indicated by red and blue 

dashed lines. For the RTM calculations, the mean value is calculated for each of the two modes separated by 

the green solid line and indicated by the black dashed lines.  

 

 

2.3.3 Spectral Irradiance Comparison 

Although the model-measurement biases in the broadband irradiances are negligible when 

clouds were detected, the time series as shown in Figure 2.2.7b do not quite match, especially for 

the thin parts of the clouds near the edge of a field. To diagnose the cause, we use the spectrally 

resolved measurements by SSFR-BBR in this section. 

For “0911-above-cloud”, Figure 2.11 presents the spectral upwelling irradiance 

comparison at 860nm and 1640nm. To put these results into context, the RTM calculations were 

(a) (b) 
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not only performed with a surface albedo from Equation (2.5) (with SF=76.4%), but also with 

climatological surface albedos of the Arctic dry and wet seasons (0.85 and 0.75) for 860nm from 

Kay and L’Ecuyer (2013). As shown in Figure 2.11a, the baseline of the clear-sky RTM 

calculations varied significantly with surface albedo. The clear-sky measurements from 21:12:25-

21:15:35 UTC are slightly below the SF=76.4% baseline calculation for 860 nm, and above for 

other times. It is impossible to tell whether the variability at this wavelength stems from surface 

albedo variability or from undetected clouds. For 1640 nm (Figure 2.11b), however, the clear-sky 

baseline is much more defined and less variable than other wavelengths, which is why we 

determined the SF value based on that wavelength. 

 

     

     

Figure 2.11. Spectral upwelling irradiance at 860nm (panel a) and 1640nm (panel b) from SSFR-BBR (red) and 

MODIS-COPs based RTM calculations using “13 September surface albedo” with SF=76.4% (black) on 11 

September. In addition, calculations with climatological snow albedos are shown in panel (a) (Arctic wet 

season: 0.75; Arctic dry season: 0.85).The time periods where clouds were not detected are marked in green 

(a)  

(b)  
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in panel (b). The clear-sky period that was used to determine the snow fraction is highlighted in blue in panel 

(b). The uncertainties of the spectral irradiances are indicated as vertical error bars, and the horizontal error 

bars correspond to the radiometer FOV as in Figure 2.7. Both need to be considered to identify undetected 

clouds. 

 

Since any inaccuracies in the spectral surface albedo will propagate into model biases for 

both cloudy and clear-sky conditions, an operational surface albedo retrieval in the Arctic would 

be highly desirable. In this context, it is important to note that the small broadband 

model-measurement discrepancy of 8 Wm-2 from Figure 2.7 is only achieved when the SSFR-BBR 

derived surface albedo is used in the RTM calculations; when using a climatology instead, it would 

be larger. In other words, in absence of an operational product, the surface albedo variability 

dominates the uncertainty in clear- and cloudy sky irradiance calculations.  

At 1640 nm (Figure 2.11b), there is good model-measurement agreement for the clear-sky 

baseline and for cloudy pixels that MODIS detects. That is because snow is dark in the shortwave 

infrared, and because MODIS COPs in the Arctic are primarily based on these wavelengths. 

Because of the obvious distinction between cloudy and clear pixels in the measurements and 

calculations, it is possible to estimate the fraction of partially or fully cloudy pixels that are not 

detected by MODIS. Among all the cloudy pixels along the flight leg (i.e., pixels with clouds 

above or below the MODIS detection threshold), 27% (highlighted in green) are actually cloudy 

even though MODIS identifies them as clear sky. One interesting finding from the broadband 

irradiance comparison (Figure 2.7b) is that the calculations are low-biased relative to the 

observations. However, from the spectral comparison (Figure 2.11), the calculations have 

larger/similar values than the SSFR measurements at 860 nm/1640 nm. To reconcile the apparently 

contradictory results, we use the full spectrum from the calculations and observations at 21:24 

UTC on 11 September, when the broadband calculation indicates a 6 Wm-2 low bias. 
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Figures 2.12a and 2.12b show the spectral upwelling irradiance from the RTM calculations 

and from the SSFR-BBR measurements, as well as the difference between RTM and SSFR-BBR. 

In addition to the RTM calculations with atmospheric profiles from MERRA-2 (referred to as 

RTMMERRA), we provided the calculations with the atmospheric profile climatology (AFGL 

subarctic summer, Anderson et al., 1986, referred to as RTMAFGL). The agreement between 

RTMMERRA and SSFR-BBR in the water vapor absorption bands indicates that MERRA-2 is 

sufficient to prescribe the water vapor content in the calculations. The broadband irradiance 

difference between RTMMERRA and RTMAFGL due to water vapor is 13.5 Wm-2. Outside of the gas 

absorption bands, the calculations agree with the measurements at wavelengths smaller than 

around 850nm, but are slightly low-biased at near-infrared wavelengths. Spectral discrepancies are 

caused by the use of inaccurate 1) surface albedo 2) cloud optical parameters, some of which 

compensate each other in the broadband integral. Such error compensation may lead to an 

improved model-measurements agreement for the “wrong reasons”; therefore, validation efforts 

should include spectrally resolved measurements. 

       

(a)  
860 nm 

1640 nm 
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Figure 2.12. (a) Spectral upwelling irradiance from SSFR-BBR (black) and MODIS-COPs based RTM calculations 

with atmospheric profiles from MERRA-2 (red) and with AFGL subarctic summer climatology (blue) at 

21:24 UTC on 11 September. (b) Irradiance difference between RTM and SSFR-BBR. The uncertainty of 

the SSFR-BBR irradiance is indicated as error bars (for one spectrum only). 

 

So far, the analysis did not reveal whether the observed model-measurement discrepancies 

are due to biases in the COPs or in the surface albedo. Figures 2. 2.13-2.2.14 are an attempt to 

disentangle both sources of uncertainty despite the limited number of observations during ARISE. 

Figure 2. 2.13 shows the ratio between modeled (labeled “RTM”) and measured (“SSFR-BBR”) 

upwelling broadband irradiance at flight-level as a function of the retrieved COT for the collection 

of cloudy pixels from 11 September. At large COT, clouds dominate the upwelling irradiance, 

whereas the surface dominates in the limit of zero COT (as stated above, the retrieved minimum 

is 0.5). The ratio of RTM/SSFR-BBR can be used to indicate how biased the surface albedo is in 

the RTM when COT is approaching to 0 and how biased the cloud optical properties are when the 

COT approaches large values. The data reveal a functional relationship between COT and the 

RTM/SSFR-BBR ratio. 

 

(b)  
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Figure 2.13. Ratio (RTM/SSFR-BBR) of upwelling broadband irradiance as a function of cloud optical thickness 

from MODIS “1621” cloud product on 11 September. The time differences between aircraft measurements 

and MODIS granule (unit: hour) is color-coded. The black curve is an exponentially fitted line using 𝑟 =

𝑎 − 𝑒,⋅./012, where 𝑎 = 1.0093, 𝑏 = −0.5464, and 𝑐 = −2.3954. 

 

An exponential fitting of 

𝑟 = 𝑎 − 𝑒"⋅789:;                                                                                                                                                                 (2.6) 

is used to parameterize the upwelling irradiance ratio as a function of COT. The black curve in 

Figure 2. 2.13 suggests that the surface albedo in the calculations is biased low by about 8%, 

whereas almost no bias is detectable in the cloud properties (𝑎 of ~1.01). Figure 2.2.14 shows the 

spectral fits for the wavelengths between 350 and 1800nm. Two spectra are calculated: the 

spectrum of the ratio when 𝐶𝑂𝑇 = 0 (denoted as 𝑟4(𝜆)), corresponding to cloud-free conditions; 

and the spectrum of ratio at infinite COT (denoted as 𝑟<(𝜆)), corresponding to cloudy conditions. 

The 𝑟4(𝜆) spectrum (red) is consistently lower than 1.0 at short wavelengths (< 1300 nm) and 

slightly greater than 1.0 for wavelengths longer than 1500 nm. This suggests that the surface albedo 

is underestimated for the shorter wavelengths and overestimated for the longer wavelengths. Since 

changing the snow fraction will only increase or decrease surface albedo for all wavelengths, 

simply changing the snow fraction does not improve the agreement for both long and short 



 57 

wavelengths. As mentioned before, the albedo we used in the RTM is so called blue-sky albedo, 

which differs from the white-sky albedo that captured by the measured upwelling irradiance under 

cloudy condition. Instead, the discrepancies could be caused by the physical changes of the surface, 

different sun angles, and/or instrument performance changes. The 𝑟<(𝜆) spectrum (blue) oscillates 

around 1.0 for the shorter wavelengths and is consistently larger than 1.0 for longer wavelengths, 

which suggest that the retrieved effective radius is slightly biased. Unfortunately, owing to limited 

sampling time, the below-cloud flight (13 September) leg does not lend itself to any conclusions 

from a cloud transmittance perspective since it is not the same cloud field as on 11 September. In 

future flight campaigns, coordinated above- and below-cloud legs will furnish more information 

on bias analyses than possible from ARISE. 

 

                       
Figure 2.14. The spectrum of ratio when 𝐶𝑂𝑇 = 0 (red, indicating cloud free) and when 𝐶𝑂𝑇 = ∞ (blue, indicating 

surface free) for wavelengths range from 350 nm to 1800 nm. The gas absorption bands are indicated in gray. 

Ratios at the gas absorption bands are excluded. 

 

2.4 Conclusions 

In this paper, we used aircraft observations to validate shortwave irradiance derived from 

satellite passive imagery (MODIS) of low-level cloud fields. This was done with two consecutive 

flights from the NASA ARISE campaign, which sampled the radiation below and above a cloud 
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field in a similar location of the MIZ. Such validation studies are especially important in the Arctic 

because observations from the surface are sparse. Despite their limitations, passive imagery 

products are one of the essential data sources for observationally-based estimates of the surface 

radiative flux under cloudy conditions, which necessitates a quality assessment of cloud detection 

and the derivation of cloud optical parameters for a variety of specific cloud and surface types as 

well as surface angles. In addition, accurate knowledge of the surface albedo and of the water 

vapor vertical distribution is required to derive the net fluxes at the surface, above the cloud layer, 

and at the top of atmosphere. The two cases analyzed here only focused on one region with one 

specific surface and cloud type, but this allowed developing a validation approach that did help 

answer specific questions such as: 

1. What is the reliability of passive imagery cloud detection in the MIZ and over solid 

snow-covered regions? 

2. How much do undetected clouds bias imagery-derived irradiance, especially at the surface? 

3. What is the relative magnitude of irradiance errors caused by undetected clouds, biased 

cloud properties, incorrect surface albedo parameterization, and water vapor? 

This paper sheds some light on these questions using the combined measured broadband and 

spectral irradiance in the study region, but these results are far from representative for the Arctic 

as a whole. To gain a statistically based understanding, validation data from multiple experiments 

will have to be combined. By aggregating data from multiple missions, it should be possible to 

answer more general questions, which a single case study cannot address: 

● Do existing cloud climatologies from space-borne passive imagery observations accurately 

reproduce the frequency of low-level optically thin clouds over different surface types? 
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● Do existing climatologies of surface albedo capture the spatial and temporal variability 

sufficiently to keep errors in the derived all-sky irradiance and cloud radiative effects to an 

acceptable level? 

It is unclear what “acceptable” would mean for the second question, but our study showed that the 

actual surface albedo deviates from commonly used climatologies. Throughout the Arctic, 

inaccurate knowledge of the surface albedo and its variability will lead to an inaccurate estimation 

of cloud radiative effects and net surface fluxes, even under clear-sky conditions. This is especially 

important in the visible part of the spectrum where most of the shortwave energy resides, and 

where the albedo of different surface types (ice, fresh and old snow) varies significantly. Of course, 

knowledge of the near-infrared variability of snow and ice albedo (via grain size) is also important 

because it affects the accuracy of imagery-derived cloud products. 

To capture the spatial and spectral variability of the surface, we developed a data 

aggregation technique that combines collective measurements in a partially snow-covered 

environment into one spectral surface albedo dataset that is parameterized by snow fraction 

(“binary” representation of the radiative surface properties). The dataset we obtained agrees with 

ground-based measurements for the two extremes (called spectral end-members): snow and thin 

ice. In our case, ice-free open ocean was radiatively insignificant, and the two end-members were 

sufficient to represent the surface variability. In more complex, more general cases, more end-

members will be required. 

In assessing the relative magnitude of different errors (question 3 above), we found that 

undetected clouds have the most significant impact on the imagery-derived irradiance. In the case 

studied here, MODIS did not detect clouds below a threshold of 0.5 in optical thickness, even 

when including partially cloud-covered pixels. For the above cloud case, this led to a low bias of 
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up to 13 Wm-2 for the upwelling shortwave irradiance. The below cloud case was harder to 

interpret due to the limited data and the lack of knowledge about the irradiances at cloud top. 

However, the model-measurement comparison indicated a high bias of at least 86 Wm-2 in 

downwelling shortwave irradiance if clouds are not detected, which again suggested undetected 

clouds as the dominating error source. While the cloud reflectance (and thereby the TOA cloud 

radiative effect) bias is minimal (above-cloud case), the cloud transmittance bias (and thereby the 

surface cloud radiative effect) is significant (below-cloud case). This means that (in reality) the 

surface would receive less shortwave radiation than derived from satellite imagery and melt less 

rapidly. Of course, low-level clouds have a warming effect in the longwave. There is, in fact, some 

indication from land observations (Greenland) that the (longwave) warming effect from thin 

liquid-bearing clouds dominates (Bennartz et al., 2012). If a large fraction of clouds in the Arctic 

are not detected (as also reported by Wendisch et al., 2019), this would mean that the surface melt 

due to clouds would be significantly underestimated. In any case, the performance of passive 

imagery detection algorithms in the Arctic, along with shortwave and longwave flux biases needs 

to be systematically studied in the future. 

In addition to the bias from undetected clouds, secondary error sources are (a) surface 

albedo, (b) water vapor content, and (c) cloud optical properties. By using an SSFR-BBR derived 

surface albedo along with atmospheric profiles from aircraft measurements and MODIS-COPs in 

the RTM calculations, they agreed with the measured spectral and broadband shortwave irradiance 

within the range of uncertainties, except in regions where MODIS did not detect clouds. It should 

be pointed out that in absence of an operational surface albedo product, the surface albedo 

uncertainty by far dominates the calculated shortwave irradiance error. 
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While the radiation calculations at TOA can be constrained through the radiation product 

from satellite observations (e.g., CERES), the radiation calculations at the surface do not have such 

constraints. The attribution of the individual error contributions was done based on measurements 

from the SSFR-BBR, by distinguishing the different physical mechanisms based on their spectral 

dependence. Under some circumstances, the different errors compensate partially in the broadband 

irradiance. 

Generalizing the findings from airborne studies such as these will only be possible by improving 

satellite remote sensing along the way, which in turn requires airborne observations for the 

development and validation of a new generation of cloud retrievals in the Arctic. Such retrievals 

(e.g., Ehrlich et al., 2017) will need to account for surface and cloud variability, and address the 

issue of undetected thin clouds. A database of spectral albedos, acquired with similar techniques 

as proposed here, would provide the necessary testbed for developing operational space-based 

retrievals for surface reflectance as available for the lower latitudes. With lower COT thresholds 

for cloud detection, spatially and temporally dependent surface albedo, accurate cloud retrievals 

even for thin clouds, passive remote sensing will significantly improve our current understanding 

of cloud radiative effects in the Arctic. 
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Chapter 3 
 

The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – Towards the 

Mitigation of 3D Bias in Airborne and Spaceborne Passive Imagery Cloud Retrievals 

 

3.1 Background 

Three-dimensional cloud effects in imagery-derived cloud properties have long been 

considered an unavoidable error source when estimating the radiative effect of clouds and aerosols. 

Consequently, research efforts involving satellite, aircraft, and surface observations in conjunction 

with modeled clouds and radiative transfer calculations have focused on systematic bias 

quantification under different atmospheric conditions. Barker and Liu (1995) studied the so-called 

independent pixel approximation (IPA) bias in cloud optical thickness (COT) retrievals from 

shortwave cloud reflectance. The bias arises when approximating the radiative transfer relating to 

COT and measured reflectance at the pixel or cloud column level through one-dimensional (1D) 

radiative transfer (RT) calculations, while ignoring its radiative context. However, net horizontal 

photon transport and other effects such as shading engender column-to-column radiative 

interactions that can only be captured in a three-dimensional (3D) framework, and can be regarded 

as a 3D perturbation or bias relative to the 1D-RT (IPA) baseline. 3D biases affect not only cloud 

remote sensing but they also propagate into the derived irradiance fields and cloud radiative effects 

(CRE). Since the derivation of regional and global CRE relies heavily on satellite imagery, any 

systematic 3D bias impacts the accuracy of the Earth’s radiative budget. Likewise, imagery-based 

aerosol remote sensing in the vicinity of clouds can be biased by net horizontal photon transport 

(Marshak et al., 2008). Additionally, satellite shortwave spectroscopy retrievals of CO2 mixing 
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ratio are affected by nearby clouds (Massie et al., 2017), albeit through a different physical 

mechanism than in aerosol and cloud remote sensing (Schmidt et al., 2022). 

Given the importance of 3D perturbations for atmospheric remote sensing, ongoing 

research seeks to mitigate the 3D effects. Cloud tomography, for example, inverts multi-angle 

radiances to infer the 3D cloud extinction distribution (Levis et al., 2020). This is achieved through 

iterative adjustments to the cloud field until the calculated radiances match the observations. 

Convolutional neural networks (CNNs, Masuda et al., 2019; Nataraja et al., 2022) account for 

3D-RT perturbations in COT retrievals through pattern-based machine learning that operates on 

collections of imagery pixels, rather than treating them in isolation like IPA. Unlike tomography, 

CNNs require training based on extensive cloud-type specific synthetic data with the ground truth 

of cloud optical properties and their associated radiances from 3D-RT calculations. Once the 

CNNs are trained, they do not require real-time 3D-RT calculations and can therefore be useful in 

an operational setting. Whatever the future may hold for context-aware multi-pixel or multi-sensor 

cloud retrievals, there is a paradigm shift on the horizon that started when the radiation concept 

for the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE, Illingworth et al., 2015) was 

first proposed (Barker et al., 2012). It foresees a closure loop where broadband radiances, along 

with irradiance, are calculated in a 3D-RT framework from multi-sensor input fields (Barker et al., 

2011), and subsequently compared to independent observations by radiometers pointing in three 

directions (nadir, forward-, and backward-viewing along the orbit). This built-in radiance closure 

can serve as an accuracy metric for any downstream radiation products such as heating rates and 

CRE. Any inconsistencies can be used to nudge the input fields towards the truth in subsequent 

loop iterations akin to optimal estimation, or propagated into uncertainties of the cloud and 

radiation products. 
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This general approach to radiative closure is also being considered for the National 

Aeronautics and Space Administration (NASA) Atmospheric Observation System (AOS, 

developed under the A-CCP, Aerosol and Cloud, Convection and Precipitation study), a mission 

that is currently in its early implementation stages. Owing to its focus on studying 

aerosol-cloud-precipitation-radiation interactions at the process level, it requires radiation 

observables at a finer spatial resolution than achieved with missions to date. At target scales close 

to 1 km, 3D-RT effects are much more pronounced than at the traditional 20 km scale of NASA 

radiation products (O’Hirok and Gautier, 2005; Ham et al., 2014; Song et al., 2016; Gristey et al., 

2020a). Since this leads to biases beyond the desired accuracy of the radiation products, mitigation 

of 3D-RT cloud remote sensing biases needs to be actively pursued over the next few years. 

Transitioning to an explicit treatment of 3D-RT in operational approaches entails a new 

generation of code architectures that can be easily configured for various instrument constellations, 

interlink remote sensing parameters with irradiances, heating rates, and other radiative effects, and 

can be used for automated processing of large data quantities. 

Here, we introduce one such tool that could serve as the seed for this transition: the 

Education and Research 3D Radiative Transfer Toolbox (EaR3T). It has been developed over the 

past few years at the University of Colorado to automate 3D-RT calculations based on imagery or 

model cloud fields with minimal user input. EaR3T is maintained and extended by graduate 

students as part of their education, and applied to various different research projects including 

machine learning for atmospheric radiation and remote sensing (Gristey et al., 2020b; 2022; 

Nataraja et al., 2022), as well as radiative closure and satellite simulators (this paper and Schmidt 

et al., 2022). It is implemented as a modularized Python package with various application codes 

that combine the functionality in different ways. 
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The goal of the paper is to introduce EaR3T as a versatile tool for systematically quantifying 

and mitigating 3D cloud effects in radiation science as foreseen in future missions. To do so, we 

will first showcase EaR3T as an automated radiance simulator for two satellite instruments, the 

Orbiting Carbon Observatory-2 (OCO-2, this application is referred to as APP1 in this manuscript) 

and the Moderate Resolution Imaging Spectroradiometer (MODIS, application code 2, APP2) 

from publicly available satellite retrieval products. In the spirit of radiance closure, the intended 

use is the comparison of modeled radiances with the original measurements to assess the accuracy 

of the input data, as follows: operational IPA COT products are made using 1D-RT, and thus the 

accompanying radiances are consistent with the original measurements under that 1D-RT 

assumption only. That is, self-consistency is assured if 1D-RT is used in both the inversion and 

radiance simulation. However, since nature operates on 3D-RT, we break this traditional symmetry 

in this manuscript and introduce the concept of 3D radiance consistency where closure is only 

achieved if the original measurements are consistent with the 3D-RT (rather than the 1D-RT) 

simulations. The level of inconsistency is then used as a metric for the magnitude of 3D-RT 

retrieval artifacts as envisioned by the architects of the EarthCARE radiation concept (Barker et 

al., 2012). 

Subsequently, we discuss applications where EaR3T performs radiative closure in the 

traditional sense, i.e., between irradiances derived from satellite products and collocated airborne 

or ground-based observations. The aircraft Cloud, Aerosol and Monsoon Processes Philippines 

Experiment (CAMP2Ex, Reid et al., 2022), conducted by NASA in the Philippines in 2019, serves 

as a testbed of this approach. Here, we use EaR3T’s automated processing capabilities to derive 

irradiance from geostationary imagery cloud products and then compare these to cumulative 

measurements made along all flight legs of the campaign (application code 3, APP3). In contrast 
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to previous studies that often rely on a number of cases (e.g., Schmidt et al., 2010a; Kindel et al., 

2010), we perform closure systematically for the entire data set, enabling us to identify 3D-RT 

biases in a statistically significant manner. Finally, we apply a regionally and cloud type specific 

CNN, introduced by Nataraja et al. (2022) that is included with the EaR3T distribution, to high-

resolution camera imagery from CAMP2Ex. This last example demonstrates mitigation of 3D-RT 

biases in cloud retrievals using the concept of radiance closure to quantify its performance against 

the baseline IPA (application code 4). 

The general concept of EaR3T with an overview of the applications, along with the data 

used for both parts of the paper is presented in Section 3.2, followed by a description of the 

procedures of EaR3T in Section 3.3. Results for the OCO-2 and MODIS satellite simulators (part 

1) are shown in Section 3.4, followed by the quantification and mitigation of 3D-RT biases with 

CAMP2Ex data in Section 3.5 and Section 3.6 (part 2). A summary and conclusion are provided 

in Section 3.7. The code, along with the applications presented in this paper, can be downloaded 

from the github repository: https://github.com/hong-chen/er3t. 

 

3.2 Functionality and Data Flow within EaR3T 

3.2.1 Overview 

 To introduce EaR3T as a satellite radiance simulator tool and to demonstrate its use for the 

quantification and mitigation of 3D cloud remote sensing biases, five applications (Figure 3.1) are 

included in the github software release, four of which are discussed in this paper: 
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Figure 3.1. Flow charts of EaR3T applications for (a) OCO-2 radiance simulation at 768.52 nm (data described in 

Section 3.2.2.1 and 3.2.2.2, results discussed in Section 3.4), (b) MODIS radiance simulation at 650 nm (data 

described in Section 3.2.2.1, results discussed in Section 3.4), (c) SPN-S irradiance simulation at 745 nm 

(data described in Section 3.2.2.3 and 3.2.2.4, results discussed in Section 3.5), (d) all-sky camera radiance 

simulation at 600 nm (data described in Section 3.2.2.5, results discussed in Section 3.6), and (e) radiance 

simulation at 600 nm based on LES data for CNN training (not included in this paper). The data products and 

their abbreviations are described in Section 3.2.2. 

 

1. APP1, Section 3.4.1 (examples/01_oco2_rad-sim.py): Radiance simulations 

along the track of OCO-2 , based on data products from MODIS and others – to assess 

consistency (closure) between simulated and measured radiance; 

2. APP2, Section 3.4.2 (examples/02_modis_rad-sim.py): MODIS radiance 

simulations – to assess self-consistency of MODIS level-2 (L2) products with the 

associated radiance fields (L1B product) under spatially inhomogeneous conditions; 

3. APP3, Section 3.5 (examples/03_spns_flux-sim.py): Irradiance simulations 

along aircraft flight tracks, utilizing the L2 cloud products of the AHI , and comparison 

with aircraft measurements – to quantify retrieval biases due to 3D cloud structure based 

with data from an entire aircraft field campaign; 

(a) (b) (c) (d) (e) 
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4. APP4, Section 3.6 (examples/04_cam_nadir_rad-sim.py): Mitigation of 3D 

cloud biases in passive imagery COT retrievals from an airborne camera, application of a 

convolutional neural network (CNN) and subsequent comparison of CNN-derived 

radiances with the original measurements – to illustrate how the radiance self-consistency 

concept assesses the fidelity of cloud retrievals. 

Figure 3.1 shows the high-level workflow of the applications. The first four share the 

general concept of evaluating simulations (the output from the EaR3T, indicated in red at the 

bottom of each column) with observations (indicated in green at the bottom) from various satellite 

and aircraft instruments. The results for the four applications are interpreted in Section 3.4.1, 

Section 3.4.2, Section 3.5, and Section 3.6. The workflow of each application consists of three 

parts – 1) data acquisition, 2) pre-processing, and 3) RTM setup and execution. EaR3T includes 

functions to ingest data from various different sources, e.g., satellite data from publicly available 

data archives, which can be combined in different ways to accommodate input data depending on 

the application specifics. For example, in APP1, EaR3T is used to automatically download and 

process MODIS and OCO-2 data files based on the user-specified region, date and time. Building 

on the templates provided in the current code distribution, the functionality can be extended to new 

spaceborne or airborne instruments. The fifth column of Figure 3.1 shows an application that 

differs from the first four, and was developed for earlier papers (Gristey et al., 2020a and 2020b; 

Nataraja et al., 2022; Gristey et al., 2022). In contrast to the first four, which use imagery products 

as input, the fifth application ingests model output from a Large Eddy Simulation (LES) and 

produces irradiance data for surface energy budget applications, or synthetic radiance fields for 

training a CNN. Details and results are described in the respective papers. Furthermore, Schmidt 
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et al. (2022) builds upon APP1 to study the mechanism of 3D cloud biases in OCO-2 passive 

spectroscopy retrievals.  

 After the required data files have been downloaded in the data acquisition step, EaR3T 

pre-processes them and generates the optical properties of atmospheric gases, clouds, aerosols, and 

the surface. In Figure 3.1, the mapping from input data to these properties is color-coded 

component-wise (brown for associated cloud property processing if available, blue for associated 

surface property processing if available, green for associated ground truth property). Although the 

current version only includes Monte Carlo Atmospheric Radiative Transfer Simulator (MCARaTS, 

Iwabuchi, 2006) as the 3D RT solver, EaR3T is designed to be modular so as to employ various 

different solvers. To achieve this flexibility, pre-processing is a required intermediate step since 

different RT solvers interface with the input data differently. Although the four applications 

included in this paper do not take aerosol layers into consideration, the setup of processing optical 

properties for aerosols is supported and has been used in other applications, such as studying 

cloud-aerosol radiative effects based on LES data (Gristey et al., 2022). After pre-processing, the 

optical properties are fed into the RT solver. Finally, the user obtains radiation output from EaR3T, 

either radiance or irradiance. The output is saved in HDF5 format and can be easily distributed and 

accessed by various programming languages. The data variables contained in the HDF5 output are 

provided in Table 3.1. 

 

Metadata 

Variable Name Description Data Type Dimension 

mean/N_photon Number of photons 
per run Array N_g 

mean/N_run Number of runs Integer value N/A 

mean/toa TOA downwelling 
flux Float value N/A 
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Radiance 

Variable Name Description Data Type Dimension 

mean/rad 

Radiance field at 
user specified 

altitude averaged 
over different runs 

Array (N_x, N_y) 

mean/rad_std 

Standard deviation 
of the radiance 

fields from different 
runs 

Array (N_x, N_y) 

Irradiance 

Variable Name Description Data Type Dimension 

mean/f_down 
Downwelling 

irradiance averaged 
over different runs 

Array (N_x, N_y, N_z) 

mean/f_down_std 

Standard deviation 
of the downwelling 

irradiance from 
different runs 

Array (N_x, N_y, N_z) 

mean/f_down_diffuse 

Diffuse 
downwelling 

irradiance averaged 
over different runs 

Array (N_x, N_y, N_z) 

mean/f_down_diffuse_std 

Standard deviation 
of the diffuse 
downwelling 

irradiance from 
different runs 

Array (N_x, N_y, N_z) 

mean/f_down_direct 
Direct downwelling 
irradiance averaged 
over different runs 

Array (N_x, N_y, N_z) 

mean/f_down_direct_std 

Standard deviation 
of the direct 
downwelling 

irradiance from 
different runs 

Array (N_x, N_y, N_z) 

mean/f_up 
Upwelling 

irradiance averaged 
over different runs 

Array (N_x, N_y, N_z) 

mean/f_up_std 

Standard deviation 
of the upwelling 
irradiance from 
different runs 

Array (N_x, N_y, N_z) 
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Table 3.1. Data variables contained in the output HDF5 file from EaR3T for radiance and irradiance calculations. The 

radiance is simulated with a user-specified sensor geometry at a given altitude using forward photon tracing. 

The data variables listed under Metadata are included for both radiance and irradiance calculations. N_x, 

N_y, and N_z are the number of pixels along x, y, and z direction, respectively. N_g is the number of g, 

explained in Section 3.3. 

 

The aforementioned three steps – data acquisition, pre-processing, and RTM setup and 

execution are automated such that the 3D/1D-RT calculations can be performed for any region at 

any date and time using satellite or aircraft data or other data resources such as LES. EaR3T is 

hosted on Github at https://www.github.com/hong-chen/er3t. Since it is developed as an 

educational and research 3D-RT tool collection by students, it is a living code base, intended to be 

updated over time. The master code modules for the four applications as listed in Figure 3.1 are 

included in the EaR3T package under the examples directory. 

3.2.2 Data 

The radiance simulations in APP1 and APP2 use data from the OCO-2 and MODIS-Aqua 

instruments, both of which are in a sun-synchronous polar orbit with an early-afternoon equator 

crossing time within NASA’s A-Train satellite constellation. Figure 3.2 visualizes radiance 

measurements by OCO-2 in the context of MODIS Aqua imagery over a partially vegetated and 

partially cloud-covered land, illustrating that MODIS provides imagery and scene context for 

OCO-2, which in turn observes radiances from a narrow swath. The region is located in southwest 

Colorado in the United States of America. We selected this case because both the surface and 

clouds are varied along with diverse surface types. The surface features green forest and brown 

soil, whereas clouds include small cumulus and large cumulonimbus. In addition, this scene 

contains relatively homogeneous cloud fields in the north and inhomogeneous cloud fields in the 

south, which allows us to evaluate the simulations from various aspects of cloud morphology. To 
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simulate the radiances of both instruments we use data products from OCO-2 and MODIS, as well 

as reanalysis products from NASA’s Global Modeling and Assimilation Office (GMAO) sampled 

at OCO-2 footprints and distributed along with OCO-2 data (Section 3.2.2.2). 

 

                                        
Figure 3.2. OCO-2 measured radiance (units: Wm-2nm-1sr-1) at 768.52 nm, overlaid on MODIS Aqua RGB imagery 

over southwestern Colorado (USA) on 2 September, 2019. The inset shows an enlarged portion along the 

track, illustrating that OCO-2 radiances co-vary with MODIS-Aqua radiance observations. 

 

For APP3 (irradiance simulations and 3D cloud bias quantification), we use geostationary 

imagery from the Japanese Space Agency’s Advanced Himawari Imager to provide cloud 

information in the area of the flight path of the NASA CAMP2Ex aircraft (Reid et al., 2022). The 

AHI data are used in conjunction with aircraft measurements of shortwave spectral radiation 

(Section 3.2.2.4). Subsequently (APP4: 3D cloud bias mitigation), we demonstrate the concept of 

radiance closure under partially cloudy conditions with airborne camera imagery (Section 3.2.2.5). 

The underlying cloud retrieval is based on a convolutional neural network (CNN), which is 

described in a related paper (Nataraja et al., 2022) in this special issue and relies on 

EaR3T-generated synthetic radiance data based on Large Eddy Simulations (LES). 
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3.2.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS) 

MODIS is currently flying on NASA’s Terra and Aqua satellites, launched in 1999 and 

2002 respectively. They are multi-use multispectral radiometers conceived as central elements of 

the Earth Observing System (EOS, King and Platnick, 2018). For APP1 and APP2, EaR3T ingests 

MODIS level 1B radiance products at the quarter kilometer scale (channels 1 and 2, MxD02QKM, 

where ‘x’ stands for ‘O’ in the case of MODIS on Terra, and ‘Y’ in the case of Aqua data), the 

geolocation product (MxD03), the level 2 cloud product (MxD06), and the surface reflectance 

product (MxD09A1). For this paper, we use only Aqua data (MYD), from data collection 6.1. All 

the data are publicly available, and are distributed at the LAADS (Level-1 and Atmosphere 

Archive & Distribution System) Distributed Active Archive Center (DAAC) by NASA’s Goddard 

Space Flight Center. 

 For cloud properties in APP2, we use the MODIS cloud product (MxD06L2, collection 

6.1). It provides cloud properties such as cloud optical thickness (COT), cloud effective radius 

(CER), cloud thermodynamic phase, cloud top height (CTH), etc. (Nakajima and King, 1990; 

Platnick et al., 2003). Since 3D cloud effects such as horizontal photon transport are most 

significant at small spatial scales (e.g., Song et al., 2016), we use the high-resolution red (650 nm) 

channel 1 (250 m), and derive COT directly from the reflectance in the Level-1B data 

(MYD02QKM) instead of using the coarser-scale operational product from MYD06. CER and 

CTH are sourced from MYD06 and re-gridded to 250 m. The EaR3T strategy for MODIS data is 

similar, in principle, to the more advanced method by Deneke et al. (2021), which uses a 

high-resolution wide-band visible channel from geostationary imagery to up-sample narrow-band 

coarse-resolution channels. However, we simplified cloud detection and derivation of COT from 

reflectance data for the purpose of our paper by using a threshold method (Appendix 3.A) and the 
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two-stream approximation (Appendix 3.B). In future versions of EaR3T this will be upgraded to 

more sophisticated algorithms. A simple algorithm (Appendix 3.C) is used to correct for the 

parallax shift based on the sensor geometries and cloud heights. The cloud top height data is 

provided by the MODIS L2 cloud product and assuming cloud base is the same. 

For the surface reflectance, we used MYD09A1, for which cloud-cleared observations are 

aggregated over an 8-day period (Vermote et al., 2015). This product is available on a sinusoidal 

grid with a spatial resolution of 500 m for MODIS band 2, and includes atmospheric correction 

for gas and aerosol scattering and absorption. 

3.2.2.2 Orbiting Carbon Observatory 2 (OCO-2) 

The OCO-2 satellite was inserted into NASA’s A-Train constellation in 2014 and flies 

about 6 minutes ahead of Aqua. OCO-2 provides the column-averaged carbon dioxide (CO2) 

dry-air mole fraction (XCO2) through passive spectroscopy based on hyperspectral radiance 

observations in three narrow wavelength regions, the Oxygen A-Band (~0.76 micron), the weak 

CO2 band (~1.60 micron), and the strong CO2 band (~2.06 micron). As shown in the inset of Figure 

3.2, it takes measurements in eight footprints across a narrow swath. Each of the footprints has a 

size around 1-2 km, and the spectra for the three bands are provided by separate, co-registered 

spectrometers (Crisp et al., 2015). 

The OCO-2 data products of 1) Level 1B calibrated and geolocated science radiance 

spectra (L1bScND), 2) standard Level 2 geolocated XCO2 retrievals results (L2StdND), 3) 

meteorological parameters interpolated from GMAO (L2MetND) at OCO-2 footprint location are 

downloaded from NASA GES DISC (Goddard Earth Science Data Archive and Information 

Services Center) data archive (https://oco2.gesdisc.eosdis.nasa.gov/data/OCO2_DATA). Since 

MODIS on Aqua overflies a scene 6 minutes after OCO-2, the clouds move with the wind over 
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this time period. We therefore added a wind correction on top of the parallax-corrected cloud fields 

obtained from MODIS (Section 3.2.2.1). This was done with the 10 m wind speed data from 

L2MetND (see Appendix 3.D). For the same scene as shown in Figure 3.2, Figure 3.3 shows (a) 

COT, (b) CER, and (c) CTH, all corrected for both parallax and wind effect. 

 

                                                                                             

                                             
Figure 3.3. (a) Cloud optical thickness derived from MODIS L1B radiance at 650 nm by the two-stream 

approximation (Equation 3.A2), (b) cloud effective radius (units: 𝜇m), and (c) cloud top height (units: km) 

collocated from the MODIS L2 cloud product. The locations of the cloudy pixels were shifted to account for 

parallax and wind effects. The parallax correction ranged from near 0 for low clouds and 1 km for high clouds 

(10 km CTH). The wind correction was around 0.8 km, given the average wind speed of 2 m/s to the east. 

 

 The OCO-2 data (L2StdND) themselves only provide sparse surface reflectance for the 

footprints that are clear, while EaR3T requires surface albedo for the whole domain. Therefore, we 

used MYD09A1 as a starting point. However, since MODIS does not have a channel in the Oxygen 

(a) (b) 

(c) 
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A-Band, MODIS band 2 (860 nm) was used as a proxy for the 760 nm OCO-2 channel as follows: 

we collocated the OCO-2 retrieved 760 nm surface reflectance ROCO within the corresponding 860 

nm MODIS MYD09A1 data RMOD as shown in Figure 3.4a (same domain as Figures 3.2 and 3.3) 

and calculated a scaling factor assuming a linear relationship between ROCO and RMOD (ROCO 

=a·RMOD). Figure 3.4b shows ROCO versus RMOD for all cloud-free OCO-2 footprints. The red line 

shows a linear regression (derived scale factor a=0.93). Scaling is also applied for the weak and 

strong CO2 channels, even though there are matching MODIS channels. Optionally, the 

OCO-2-scaled MODIS-derived surface reflectance fields can be replaced by the OCO-2 surface 

reflectance products for pixels where they are available. 

 

           
Figure 3.4. (a) Surface reflectance from the OCO-2 L2 product in the Oxygen A-band (near 760 nm), overlaid on the 

surface reflectance from the MODIS MYD09 product at 860 nm. (b) OCO-2 surface reflectance at 760 nm 

versus MODIS surface reflectance at 860 nm, along with linear regression (y=ax) as indicated by the red line 

(slope a=0.9337). 

3.2.2.3 Advanced Himawari Imager (AHI) 

The Advanced Himawari Imager (AHI, used for APP3) is a payload on Himawari-8, a 

geostationary satellite operated by the Meteorological Satellite Center (MSC) of the Japanese 

Meteorological Agency. The AHI provides 16 channels of spectral radiance measurements from 

(a) (b) 
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the shortwave (0.47µm) to the infrared (13.3µm). During CAMP2Ex, the NASA in-field 

operational team closely collaborated with the team from MSC to provide AHI satellite imagery 

at the highest resolution over the Philippine Sea. From the AHI imagery, the cloud product 

generation system – Clouds from AVHRR Extended System (CLAVR-x), was used to generate 

cloud products from the AHI imagery (Heidinger et al., 2014). The cloud products from CLAVR-x 

include cloud optical thickness, cloud effective radius, and cloud top height at 2 (at nadir) to 5 km 

spatial resolution. Since AHI provides continuous regional scans every 10 minutes the AHI cloud 

product has a temporal resolution of 10 minutes. 

3.2.2.4 Spectral Sunshine Pyranometer (SPN-S) 

The SPN-S is a prototype spectral version of the commercially available global-diffuse 

SPN1 pyranometer (Wood et al., 2017; Norgren et al., 2022). The radiometer uses a 7-detector 

design in combination with a fixed shadow mask that enables the simultaneous measurement of 

both diffuse and global irradiances, from which the direct component of the global irradiance is 

calculated via subtraction. The detector measures spectral irradiance from 350 to 1000 nm, and the 

spectrum is sampled at 1 nm resolution with 1 Hz timing. 

During the CAMP2Ex mission, the SPN-S was mounted to the top of the NASA P-3 aircraft 

where it sampled downwelling solar irradiance. To ensure accurate measurements, pre- and 

post-mission laboratory-based calibrations were completed using tungsten “FEL” lamps that are 

traceable to a National Institute of Standards and Technology standard. Additionally, the direct 

and global irradiances were corrected for deviations of the SPN-S sensor plane from horizontal 

that are the result of changes in the aircraft’s pitch or roll. This attitude correction applied to the 

irradiance data is a modified version of the method outlined in Long et al. (2010). However, 

whereas Long et al. (2010) employ a “box” flight pattern to characterize the sensor offset angles, 
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in this study an aggregation of flight data containing aircraft heading changes under clear-sky 

conditions is used as a substitute. The estimated uncertainty of the SPN-S system is 6 to 8%, with 

4 to 6% uncertainty stemming from the radiometric lamp calibration process, and up to another 2% 

resulting from insufficient knowledge of the sensor cosine response. The stability of the system 

under operating conditions is 0.5%. A thorough description of the SPN-S and its calibration and 

correction procedures is provided in Norgren et al. (2022). In this paper (APP3) only the global 

downwelling irradiance sampled by the 745 nm channel is used.  

 

3.2.2.5 Airborne All-Sky Camera (ASC) 

The All-Sky Camera (used for APP4) is a commercially available camera (ALCOR 

ALPHEA 6.0CW3) with fish-eye optics for hemispheric imaging. It has a Charge-Coupled Device 

(CCD) detector that measures radiances in red, green, and blue channels. Radiometric and 

geometric calibrations were performed at the Laboratory of Atmospheric and Space Physics at the 

University of Colorado Boulder. The three-color channels are centered at 493, 555, and 626 nm 

for blue, green, and red, respectively, with bandwidths of 50 – 100 nm. Only radiance data from 

the red channel were used in this paper. The spatial resolution of the ASC depends on the altitude 

of the aircraft and the viewing zenith angle. Across the hemispheric field of view of the camera, 

the resolution of the field angle is approximately constant, at about 0.09º. At a flight level of 5 km, 

this translates to a spatial resolution of 8 m at nadir. However, due to accuracy limitations of the 

geometric calibration and the navigational data from Inertial Navigation System (INS), the nadir 

geolocation accuracy could only be verified to within ±50 m. During the CAMP2Ex flights, the 

 
3https://www.alcor-system.com/common/allSky/docs/ALPHEA_Camera%20ALL%20SKY%20CAMERA_Doc.pdf 
last accessed on April 24, 2022. 
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camera exposure time was set manually to minimize saturation of the detector. The standard image 

frame rate is 1 Hz. The precision of the camera radiances is on the order of 1%, and the radiometric 

accuracy is 6 – 7%. 

 

3.3. EaR3T Procedures 

 In the previous Section, we described the general workflow of EaR3T applications, along 

with relevant data. In this Section, we will focus on the specific implementation of the workflow 

through the EaR3T software package. It is a toolbox for 3D-RT with modules for automatic input 

data download and processing, generation of radiative and optical properties of surface, 

atmospheric gases, clouds and aerosols, wrappers for 3D-RT solvers and output post-processing, 

with the end goal to simulate radiances and irradiances along entire satellite orbits or aircraft flight 

tracks. Unlike established radiative transfer packages such as libRadtran (Mayer and Kylling, 2005; 

Emde et al., 2016), which provide extensive libraries of optical properties along with a selection 

of solvers, EaR3T focuses on automated radiative transfer for two- or three-dimensional cloud, 

aerosol, and surface input data, and therefore only comes with minimal options for optical 

properties, and solvers. The initial release is available at https://github.com/hong-chen/er3t. 

We will now walk through the OCO-2 and MODIS simulator applications with the codes 

examples/01_oco2_rad-sim.py (APP1) and examples/02_modis_rad-sim.py 

(APP2). The data acquisition (first step in Figure 3.1) uses functions in er3t/util. APP1 and 

APP2 use the functions in er3t/util/modis.py and er3t/util/oco.py for 

downloading the MODIS and OCO-2 data files from the respective NASA data archives and for 

processing the data (e.g., geo-mapping, gridding etc.). The user supplies minimum input (date and 

time, as well as latitudes and longitudes of the region of interest), which need to be specified in 
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download_modis_https and download_oco2_https (from er3t/util). For 

example, for APP1 and APP2, the only user inputs are the date and time and the region of interest 

– in this case September 2, 2019, with the westernmost, easternmost, southernmost, and 

northernmost longitudes and latitudes of 109°W, 107°W, 37°N, and 39°N. In order for EaR3T to 

access any data archives such as NASA Earthdata, the user needs to create an account with them 

and store the credentials locally (detailed instructions are provided separately along with the EaR3T 

distribution). 

After the data acquisition step, the satellite data are fed into the pre-processing step for 1) 

atmospheric gases (er3t/pre/atm), 2) clouds (er3t/pre/cld), 3) surface 

(er3t/pre/sfc) as shown in Figure 3.1. In the default configuration of the APP1, the standard 

US atmosphere (Anderson et al., 1986; included in the EaR3T repository) is used within atm. 

EaR3T supports the input of user-specified atmospheric profiles, e.g., atmospheric profiles from 

reanalysis data for APP2 as described in Schmidt et al. (2022), by making changes in 

atm_atmmod (from er3t/pre/atm). Subsequently, molecular scattering coefficients are 

calculated by cal_mol_ext (from er3t/util), and absorption coefficients for atmospheric 

gases are generated by (er3t/pre/abs). At the current development stage, two options are 

available: 

1. Line-by-line (used by APP1): The repository includes a sample file of absorption coefficient 

profiles for a subset of wavelengths within OCO-2’s Oxygen A-Band channel, corresponding 

to a range of atmospheric transmittance values from low (opaque) to high 

(so-called “continuum” wavelength). They were generated by an external code (Schmidt et 

al., 2022) based on OCO-2’s line-by-line absorption coefficient database (ABSCO, Payne et 

al., 2020). For each wavelength, there are hundreds of individual absorption coefficient 
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profiles, spectrally spaced at the native resolution of ABSCO, and ranging across the 

instrument line shape (ILS, also known as the slit function) of the OCO-2 Oxygen A-Band 

spectrometer. The ILS, as well as the incident solar irradiance, are also included in the file. 

In subsequent steps, EaR3T performs RT calculations at the native spectral resolution of 

ABSCO, but then combines the output by convolving with the ILS and outputs OCO-2 

radiances or reflectances at the subset of wavelengths. For probabilistic (Monte Carlo) RT 

solvers such as MCARaTS, the number of photons can be kept relatively low (e.g., 106 

photons), and can be adjusted according to the values of the ILS at a particular ABSCO 

wavelength. Any uncertainty at the ABSCO spectral resolution due to photon noise is greatly 

reduced by convolving with the ILS for the final output. 

2. Correlated-k (used by APP2): This approach (Mlawer et al., 1997) is appropriate for 

instruments such as MODIS with much coarser spectral resolution than OCO-2, as well as 

for broadband calculations. In contrast to the line-by-line approach, RT calculations are not 

performed at the native resolution of the absorption database, but at Gaussian quadrature 

points (called “g’s”) that represent the full range of sorted absorption coefficients, and then 

combined using Gaussian quadrature weights. The repository includes an absorption 

database from Coddington et al. (2008), developed specifically for a radiometer with 

moderate spectral resolution on the basis of HITRAN (high-resolution transmission 

molecular absorption database) 2004 (Rothman et al., 2005). It was created for the ILS of 

the airborne Solar Spectral Flux Radiometer (SSFR, Pilewskie et al., 2003), but is applied to 

MODIS here, which has a moderate spectral resolution of 8-12 nm with 20-50 nm 

bandwidths. It uses 16 absorption coefficient bins (g’s) per target wavelength, which are 

calculated by EaR3T with the Coddington et al. (2008) database using the mixing ratios of 
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atmospheric gases in the previously ingested profile. In future implementations, the code will 

be updated to enable flexible ILS and broadband calculations. 

The er3t/pre/cld module calculates extinction, thermodynamic phase, and effective 

droplet radius of clouds from the input data. The er3t/pre/pha module creates the required 

single scattering albedo and scattering phase function. The default is a Henyey-Greenstein phase 

function with a fixed asymmetry parameter of 0.85. It is, however, recommended to also install 

libRadtran to enable the usage of Mie phase functions based on thermodynamic phase, effective 

droplet radius, and wavelength. In this study, APP1 and APP2 use Mie phase functions calculated 

from Legendre polynomial coefficients distributed along with libRadtran based on the wavelength 

cloud droplet effective radius. In the future, EaR3T will include stand-alone phase functions, which 

can be chosen on the basis of droplet size distributions in addition to effective radius. It is also 

possible to include aerosols in a similar fashion as clouds. This is done with the er3t/pre/aer 

module. In the case of aerosols, spectral single scattering albedo and asymmetry parameter are 

required as inputs in addition to the extinction fields. 

After the optical properties are calculated, they are passed into the 3D-RT step 

(er3t/rtm/mca). In addition to MCARaTS, planned solvers for the future include MYSTIC 

(Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres, Mayer, 

2009) and SHDOM (Spherical Harmonic Discrete Ordinate Method, Evans, 1998; Pincus and 

Evans, 2009). This step performs the setup of RT solver-specified input parameters and data files, 

distributing runs over multiple CPUs, and post-processing RT output files into a single, 

user-friendly HDF5 file. For example, when radiance is specified as output (default in APP1 and 

APP2), key information such as the radiance field and its standard deviation are stored in the final 
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HDF5 file (details see Table 1). The EaR3T documentation only provides detailed instructions of 

installing the RT solvers (currently only MCARaTS) and libRadtran. 

While the EaR3T repository comes with various applications such as APP1 and APP2, 

described above, the functions used by these master or ‘wrapper’ programs can be organized in 

different ways, where the existing applications serve as templates for a quick start when developing 

new applications. The functions used by the master code pass information through the various 

steps as Python objects. For example, in examples/01_oco2_rad-sim.py, the downloaded 

and processed satellite data are stored into the sat object. Later, the sat object is passed into an 

EaR3T function to create the cld object that contains cloud optical properties. Similarly, EaR3T 

provides functions to create the atm, and sfc objects with optical properties for atmospheric 

gases and the surface. These objects (atm, cld, sfc) are in turn passed on to solver-specific 

modules for performing RT calculations. The user can choose to save the data of the intermediate 

objects into Python pickle files after the first run. In this way, multiple calls with identical input 

can re-use existing data, which accelerates the processing time of EaR3T. Unless the user specifies 

the overwrite keyword argument in the object call to reject saving pickle files, these shortcuts 

save significant time. Moreover, EaR3T is capable of distributing simulations over multiple CPUs 

to accelerate the calculations, which is useful for potential future application of later EaR3T or 

EaR3T-like codes in operational or large-scale data processing. 

 

In the following sections, we discuss results obtained from EaR3T, starting with those from 

examples/01_oco2_rad-sim.py and examples/02_modis_rad-sim.py (Section 

3.4), examples/03_spns_flux-sim.py (Section 3.5), and concluding with 
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examples/04_cam_nadir_rad-sim.py (Section 3.6). The detailed RT setup for the four 

applications is provided in Table 3.2. 

 
APP1 - Radiance 

for 
MODIS 

APP2 - Radiance 
for 

OCO-2 

APP3 - 
Irradiance for 

SPN-S 

APP4 - Radiance 
for 

CNN/ASC 

Wavelength 760 nm 650 nm 745 nm 600 nm 

Atmospheric 
profile 

US Standard 
Atmosphere 

Reanalysis AFGL - 
Tropical 
Summer 

AFGL - Tropical 
Summer 

Solar zenith 
and azimuth 

angles 

Acquired from 
OCO-2 data 

Acquired from 
MODIS data 

Calculated from 
aircraft 

navigational 
data 

Calculated from 
aircraft 

navigational data 

Surface albedo Scaled from 
MYD09A1 

Acquired from 
MYD09A1 

0.03 0.03 

Sensor zenith 
and azimuth 

angles 

Acquired from 
OCO-2 data 

Acquired from 
MODIS data 

Zenith Nadir 

Cloud Optical 
Thickness 

Retrieved from 
MODIS 

reflectance 
through IPA 

method 

Retrieved from 
MODIS 

reflectance 
through IPA 

method 

Acquired from 
AHI L2 Cloud 

Product 

Retrieved 
through 1) IPA 

method, 2) CNN 
model 

Cloud effective 
radius 

Acquired from 
MYD06L2 

Acquired from 
MYD06L2 

N/A N/A 

Phase function Mie Mie Henyey-
Greenstein 
(g=0.85) 

Henyey-
Greenstein 
(g=0.85) 

Cloud location CTH from 
MYD06L2 minus 

1 km to CTH 

CTH from 
MYD06L2 minus 

1 km to CTH 

2 km to 3 km 1 km to 2 km 

Number of 
Photons 

1×108 1×108 1×107 1×108 

 

Table 3.2: RT parameters for APP1, APP2, APP3, and APP4. 
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3.4. EaR3T as a 3D Satellite Radiance Simulator 

This section demonstrates the automated 3D radiance simulation for satellite instruments 

by EaR3T for OCO-2 and MODIS measured radiance based on publicly available MODIS retrieval 

products. The OCO-2 application is an example of radiance consistency between two distinct 

satellite instruments where the measurements of one (here, OCO-2) are compared with the 

simulations based on data products from the other (here, MODIS). The MODIS application, on 

the other hand, is an example of radiance self-consistency. We will show how inconsistencies can 

be used for detecting cloud and surface property retrieval biases. 

3.4.1 OCO-2 (APP1) 

The OCO-2 radiance measurements at 768.52 nm for our sample scene in the context of 

MODIS imagery were shown in Figure 3.2. For that track segment, Figure 3.5 shows the simulated 

radiance along with the measurements as a function of latitude. The radiance was averaged over 

every 0.01° latitude window from 37° N to 39° N (the standard deviation within the bin indicated 

by the shaded color). In clear-sky regions (e.g., around 38.2º N), the simulations (red) are 

systematically higher than the measurements (black), even though the footprint-level OCO-2 

retrieval was used to scale the MYD09 field as described in Section 3.2.2.2 (Figure 3.4). This is 

because, unlike the MYD09 algorithm which relies on multiple overpasses and multiple-days for 

cloud-clearing, the OCO-2 retrieval is done for any clear footprint. Clouds in the vicinity lead to 

enhanced diffuse illumination that is erroneously attributed to the surface reflectance itself. The 

EaR3T IPA calculations of the clear-sky pixels (blue) essentially reverse the 3D effect and 

therefore match the observations better. The 3D calculations enhance the reflectance through the 

very same 3D cloud effects that led to the enhanced surface illumination in the first place. It is 
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possible to correct this effect by down-scaling the surface reflectance according to the ratio 

between clear-sky 3D and IPA calculations, but this process is currently not automated. 

 

                               
Figure 3.5. Latitudinally averaged (0.01° spacing) radiance calculations from EaR3T (red: 3D, blue: IPA) and OCO-

2 measured radiance at 768.52 nm (black). The solar zenith angle for the radiance simulation case is 33.75°. 

 

In the cloudy locations, the IPA calculations match the OCO-2 observations on a footprint-

by-footprint level, demonstrating that wind and parallax corrections were performed successfully. 

Of course, there is not always a perfect agreement because of morphological changes in the cloud 

field over the course of six minutes. It is, however, apparent that the 3D calculations agree to a 

much lesser extent with the observations than the IPA calculations. Just like the mismatch for the 

clear-sky pixels indicates a bias in the input surface reflectance, the bias here means that the input 

cloud properties (most importantly COT) are inaccurate. For most of the reflectance peaks, the 3D 

simulations are too low, which means that the input COT is biased low. This is due to 3D cloud 

effects on the MODIS-based cloud retrieval. Since they are done with IPA, any net horizontal 

photon transport is not considered, which leads to an apparent surface brightening as noted above, 

at the expense of the cloud brightness. As a result, the COT from darker clouds is significantly 
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underestimated. This commonly known problem, with several aspects discussed in the subsequent 

EaR3T applications, can be identified by radiance consistency checks such as the one shown in 

Figure 3.5, and mitigated by novel types of cloud retrievals that do take horizontal photon transport 

into account (Section 3.6). 

3.4.2 MODIS (APP2) 

 To go beyond the OCO-2 track and understand the bias between simulated and observed 

radiances from a domain perspective, we now consider the radiance simulations for the MODIS 

650 nm channel. The setup is exactly the same as for the OCO-2 simulations, except that 1) the 

viewing zenith angle is set to the average viewing zenith angle of MODIS within the shown domain 

(instead of OCO-2), and 2) the surface reflectances from MYD09 are used directly, this time from 

the 650 nm channel without rescaling. Figure 3.6a shows the MODIS measured radiance field, 

while Figure 3.6b shows the EaR3T 3D simulations. Visually, the clouds from the EaR3T 

simulation are generally darker than the observed clouds, which is in line with our aforementioned 

explanation of net horizontal photon transport. They are also blurrier because radiative smoothing 

(Marshak et al., 1995) propagates into the retrieved COT fields, which are subsequently used as 

input to EaR3T. To look at darkening and smoothing effects more quantitatively, Figure 3.7 shows 

a heatmap plot of simulated radiance versus observed radiance. It shows that the radiance for 

cloud-covered pixels (labeled “cloudy”) from EaR3T are mostly low-biased while good agreement 

between simulations and observations was achieved for clear-sky radiance (labeled “clear-sky”). 

The good agreement over clear-sky regions is expected. As mentioned above, we use MYD09 as 

surface reflectance input, which in contrast to the OCO-2 surface reflectance product is 

appropriately cloud-screened and therefore does not have a reflectance high bias. There is, of 

course, a reflectance enhancement in the vicinity of clouds, but that is captured by the EaR3T 
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calculations. The fact that the calculations agree with the observations even for clear-sky pixels in 

the vicinity of clouds, shows that the concept of radiance consistency works to ensure correct 

satellite retrievals even in presence of clouds. It also corroborates our observation from Section 

3.4.1 that COTIPA is low biased. Since the MODIS reflectance is not self-consistent with respect 

to COTIPA as shown for the cloudy pixels in Figure 3.7, we can identify a bias in the cloud 

properties even without knowing the ground truth of COT. On the other hand, successful closure 

in radiance (self-consistency) would provide an indication that the input fields including COT are 

accurate, although it is certainly a weaker metric than direct verification of the retrievals through 

aircraft satellite retrieval validation with in-situ instruments. 

 

           
 
Figure 3.6. (a) MODIS measured radiance in channel 1 (650 nm). (b) Simulated 3D radiance at 650 nm from EaR3T. 

The solar zenith angle for the radiance simulation case is 34.42°. 

 

 
 
 

(a) (b) 
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Figure 3.7. Heatmap plot of EaR3T simulated 3D radiance vs. MODIS measured radiance at 650 nm. 

 

Summarizing the two satellite radiance simulator applications, one can say that EaR3T 

enables a radiance consistency check for inhomogeneous scenes. We demonstrated that a lack of 

simulation-observation consistency (MODIS versus OCO-2) and self-consistency (MODIS versus 

MODIS) can be traced back to biased surface reflectance or cloud fields in the simulator input. 

This can become a diagnostic tool for the quality of retrieval products from future or current 

missions, even when the ground truth is not known.  

For technical reference: The MODIS simulation took about one hour on a Linux 

workstation with 12 CPUs for three 3D RT runs with 108 photons each. With a slightly modified 

setup and parallelization, the automation can be easily applied for entire satellite orbits, although 

more research is required to optimize the computation speed depending on the desired output 

accuracy. 

 

3.5. EaR3T as 3D Aircraft Irradiance Simulator (APP3) 

In contrast to the previous applications that focused on satellite remote sensing, we will 

now be applying EaR3T to quantify 3D cloud retrieval biases through direct, systematic validation 

cle
ar-

sky 
clo

udy 



 90 

of imagery-derived irradiances against aircraft measurements, instead of using the indirect path of 

radiance consistency in Section 3.4. Previous studies (e.g., Schmidt et al., 2007; Kindel et al., 2010) 

conducted radiative closure between remote sensing derived and measured irradiance using 

isolated flight legs as case studies. Here, with the efficiency afforded by the automated nature of 

EaR3T, we are able to conduct radiative closure of irradiance through a statistical approach that 

employs campaign-scale amounts of measurement data. Specifically, we used EaR3T to perform 

large-scale downwelling irradiance simulations at 745 nm based on geostationary cloud retrievals 

from AHI for the CAMP2Ex campaign, and directly compare these simulations to the SPN-S 

measured irradiances onboard the P-3 aircraft. This is done for all below-cloud legs from the entire 

campaign with the aim to assess the degree to which satellite-derived near-surface irradiances 

reproduce the true conditions below clouds. 

The irradiance simulation process is similar to the previously described radiance simulation 

in Section 3.4, with only a few modifications. First, we used cloud optical properties from the AHI 

cloud product (COT, CER and CTH) as direct inputs into EaR3T. Secondly, we used a constant 

ocean surface reflectance value of 0.03. Such simplification in surface albedo is made under the 

assumption that 1) the ocean surface is calm with no whitecaps, and that 2) the Lambertian 

bidirectional reflectance distribution function (BRDF) is sufficient (instead of directionally 

dependent BRDF) to represent surface albedo for the irradiance calculation. Since the ocean 

surface albedo can greatly differ from 0.03 when the Sun is extremely low (Li et al., 2006), we 

excluded data under low-Sun conditions where the SZA is greater than 45°. Lastly, since EaR3T 

can only perform 3D simulations for a domain at a single specified solar geometry, we divided 

each CAMP2Ex research flight into small flight track segments where each segment contains 6 

minutes of flight time. The size and shape of the flight track segments can vary significantly due 
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to the aircraft maneuvers, aircraft direction, aircraft speed, etc. For each flight track segment, 

EaR3T performs irradiance simulations for a domain that extends half a degree at an averaged solar 

zenith angle. In contrast to the radiance simulation output, which is two-dimensional at a specified 

altitude and sensor geometry, the irradiance simulation output is three dimensional. In addition to 

x (longitude) and y (latitude) vectors, it has a vertical dimension along z (altitude). From the 

simulated three-dimensional irradiance field, the irradiance for the flight track segment is 

interpolated to the x-y-z location (longitude, latitude, and altitude) of the aircraft. EaR3T 

automatically sub-divides the flight track into tiles encompassing track segments, and extracts the 

necessary information from the aircraft navigational data. Based on the aircraft time and position, 

EaR3T downloads the AHI cloud product that is closest in time and space to the domain containing 

the flight track segment. 

Figure 3.8 shows simulated irradiance for a sample flight track below clouds on 20 

September, 2019. Figure 3.8a shows the flight track overlaid on AHI imagery. Figure 3.8b shows 

3D (in red) and IPA (in blue) downwelling irradiance simulations for the highlighted flight track 

in Figure 3.8a, as well as measurements by the SPN-S (in black). Since the 3D and IPA simulations 

are performed separately at discrete solar and sensor geometries for each flight track segment based 

on potentially changing cloud fields from one geostationary satellite image to the next, 

discontinuities in the calculations (indicated by gray dashed lines) are expected. The diffuse 

irradiance (downwelling and upwelling) can also be simulated and compared with radiometer 

measurements (not shown here). Since the irradiance was simulated/measured below clouds, high 

values of downwelling irradiance indicate thin-cloud or cloud-free regions while low values of 

downwelling irradiance indicate thick-cloud regions. The simulations successfully captured this 

general behavior – clouds thickened from west to east until around 121.25° E, and thinned 
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eastwards. However, the fine-scale variabilities in irradiance were not captured by the simulations 

due to the coarse resolution of COT in the AHI cloud product (3-5 km). Additionally, the 

simulations also missed the clear-sky regions in the very east and west of the flight track as 

indicated by high downwelling irradiance values measured by SPN-S. This is probably also due to 

the coarse resolution of the AHI COT product where small cloud gaps are not represented. Large 

discrepancies between simulations and observations occur in the mid-section of the flight track 

where clouds are present (e.g., longitude range from 121.15° to 121.3°). Although the 3D 

calculations differ somewhat from the IPA results, they are both biased high, likely because the 

input COT (the IPA-retrieved AHI product) is biased low. This bias is caused by the same 

mechanism that was discussed earlier in the examples from MODIS (Section 3.4.2). This begs the 

question whether this is true for the entire field mission. To answer the question, we performed a 

systematic comparison of the cloud transmittance for all available below-cloud flight tracks from 

CAMP2Ex, using EaR3T’s automated processing pipeline. 

 

       
Figure 3.8. (a) Flight track overlay HIMAWARI AHI RGB imagery over the Philippine Sea on 20 September, 2019. 

(b) Measured downwelling irradiance from SPN-S at 745 nm and calculated 3D and IPA irradiance from 

EaR3T for the highlighted flight track in (a). 

 

(a) (b) 
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For this comparison, we use transmittance instead of irradiance because it has less diurnal 

dependence. The transmittance is calculated by dividing the downwelling irradiance below clouds 

by the downwelling irradiance at the top of the atmosphere extracted from the Kurucz solar spectra 

(Kurucz, 1992). Figure 3.9 shows the histograms of the simulated and measured cloud 

transmittance from all below-cloud legs. The average values are indicated by dashed lines. 

Although the averaged values of IPA and 3D transmittance are close, their distributions are 

completely different. Only the 3D calculations and the measured transmittance reach values 

beyond 1. This occurs in clear-sky regions in the vicinity of clouds that receive photons scattered 

by the clouds as previously discussed for the OCO-2 application. 

 

                                 
Figure 3.9. Histogram of measured transmittance from SPN-S at 745 nm (black) and calculated 3D (red) and IPA 

(blue) transmittance from EaR3T for all the below-cloud flight tracks during CAMP2Ex in 2019. The mean 

values are indicated by dashed lines. The yellow shaded area represents the relatively low transmittance 

region where the probability density of the observed transmittance (black) is greater than the calculations. 

Vice versa for the green shaded area. 

 

Both the distribution and the mean value of the simulations are different from the 

observations – the simulation histogram peaks at around 0.9 while the observation histogram peaks 

at around 1. The histograms indicate that the RT simulations miss most of the clear-sky conditions 
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because of the coarse resolution of the AHI cloud product. If clouds underfill a pixel, AHI 

interprets the pixel as cloudy in most cases. This leads to an underestimation of clear-sky regions 

since cumulus and high cirrus were ubiquitous during CAMP2Ex. The area on the left (highlighted 

in yellow) has low cloud transmittance associated with thick clouds. In this range, the histograms 

of the calculations are generally below the observations, and the PDF of the calculations is offset 

to the right (indicated by the yellow arrow). This means that the transmittance is overestimated by 

both IPA and 3D RT, and thus that the COT of thick clouds is underestimated, consistent with 

what we found before (Figure 3.8b). The high-transmittance end (highlighted in green) is 

associated with clear-sky and thin clouds. Here, the peak of the PDF is shifted to the left (green 

arrow), and the calculations are biased low. This is caused by a combination of 1) the 

overestimation in COT of thin clouds due a 3D bias in the AHI IPA retrieval, 2) the aforementioned 

resolution effect that underestimates the occurrence of clear-sky regions, and 3) net horizontal 

photon transport from clouds into clear-sky pixels. Overall, the low bias dominates, as is apparent 

from mean values of the distributions. There is an overall low bias of 10%, and the combined 

imager resolution and 3D effects do not compensate each other. 

Summarizing, this application demonstrates that EaR3T’s automation feature allows 

systematic simulation-to-observation comparisons. If aircraft observations are available, then 

closure between satellite-derived irradiance and suborbital measurements is a more powerful 

verification of satellite cloud retrieval products than the radiance consistency from the earlier 

stand-alone satellite applications. Even more powerful is the new approach to process the data 

from an entire field mission for assessing the quality of cloud products in a region of interest (in 

this case, the CAMP2Ex area of operation). We found that the bias between observed and 

satellite-derived cloud transmittance is partially caused by the coarse imager resolution, and 
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partially by 3D effects, although other retrieval artifacts could also play a role. Although important 

for future research, it is beyond the scope of this paper to disentangle these effects. 

 

3.6. EaR3T for Mitigating 3D Cloud Retrieval Biases (APP4) 

In this section, we will use a high-resolution imagery from a radiometrically calibrated 

all-sky camera flown during the CAMP2Ex to isolate the 3D bias (sometimes referred to as IPA 

bias) and explore its mitigation with a newly developed CNN cloud retrieval framework (Nataraja 

et al., 2022). The CNN, unlike IPA, takes pixel-to-pixel net horizontal photon transport into 

account. It exploits the spatial context of pixels in cloud radiance imagery, and extracts a 

higher-dimensional, multi-scale representation of the radiance to retrieve COT fields as the output. 

It does so by learning on “training data”, which in this case was input radiance and COT pairs 

synthetically generated by EaR3T using LES data from the Sulu Sea. The best CNN model, trained 

on different coarsened resolutions of the data pairs, is included within the EaR3T repository. For 

APP4, this CNN is applied to real imagery data for the first time, which in our case are near-nadir 

observations by the all-sky camera (Section 3.2.2.5) that flew in CAMP2Ex. 

The CNN model was trained at a single (fixed) sun-sensor geometry (solar zenith angle, 

SZA=29.2°; solar azimuth angle, SAA=323.8°, viewing zenith angle, VZA=0º), at a spatial 

resolution of 100 m. We therefore chose a camera scene with a matching SZA (28.9°), and rotated 

the radiance imagery to match SAA=323.8°, and subsequently gridded the 8-12 m native 

resolution camera data to 100 m. Figure 3.10a shows the RGB imagery captured by the all-sky 

camera over the Philippine Sea at 02:10:06 UTC on 5 October 2019. The Sun is located at the 

southeast and can be easily identified from the sun glint. Note that this image has not yet been 

geolocated; it is depicted as acquired in the aircraft reference frame. Figure 3.10b shows the rotated 
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scene of the red channel radiance for the region encircled in yellow in Figure 3.10a. The sun (as 

indicated by the yellow arrow) is now at SAA=323.8°. Inside a 6.4x6.4 km2 core area, the 100 m 

gridded radiance field is shown instead of the native-resolution imagery. 

 
 

                           
Figure 3.10. (a) RGB imagery of nadir-viewing all-sky camera deployed during CAMP2Ex for a cloud scene centered 

at [123.392°E, 15.2744°N] over the Philippine Sea at 02:10:06 UTC on 5 October, 2019. The lines indicate 

the axis of the aircraft (yellow) and wing to wing (across, black). The yellow circle shows the approximate 

field of view that is geolocated for (b); the dots denote various directions from the nadir point. (b) Gridded 

radiance for the square area indicated by solid black lines in (a) with a pixel size of 64x64 and spatial 

resolution of 100 m. Later for the comparison of COT and RT calculations, only the data from the red square 

box (50x50) is used. The solar position (azimuth) is indicated by the yellow arrow. 

 

From the radiance field, we used both the traditional IPA (based on the two-stream 

approximation) and the new CNN to retrieve COT fields. Figure 3.11 shows the COTIPA and 

COTCNN fields, which are visually quite different. For relatively thick clouds (e.g., at (x=2, y=22)), 

the CNN tends to retrieve larger COT values than COTIPA. Also, it returns more spatial structure 

than the IPA (e.g., around {2,-1}). To assess how either retrieval performs, we now apply the 

radiance self-consistency approach introduced with MODIS data in Section 3.4.2. Using both the 

IPA and the CNN retrieval as input, we had EaR3T calculate the (synthetic) radiance that the 

(a) (b) 
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camera should have observed if the retrieval were accurate. The clouds are assumed to be located 

at 1-2 km. Such an assumption is inferred from low-level aircraft observations of clouds on the 

same day. These radiance fields are shown in Figure 3.12, and can be compared to the red box 

from Figure 3.10b, which marks a region where 12 edge pixels have been removed from the 

original domain. This was necessary because the CNN performs poorly at edge pixels, and because 

the 3D calculations use periodic boundary conditions. 

 

           
Figure 3.11. Cloud optical thickness for the gridded radiance in Figure 3.10b (a) estimated by IPA and (b) predicted 

by CNN. 

 

           
Figure 3.12. 3D radiance calculations from EaR3T at 600 nm based on cloud optical thickness field (a) estimated by 

Two-Stream approximation and (b) predicted by the CNN. The calculations were originally performed for 

(a) (b) 

(a) (b) 
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the 64x64 domain. Then 7 pixels along each side of the domain (contoured in gray) were excluded, which 

resulted in a 50x50 domain. 

 
 

           
Figure 3.13. Scatter plot overlays 2D histogram of 3D radiance calculations at 600 nm based on cloud optical 

thickness (a) estimated by Two-Stream approximation and (b) predicted by the CNN vs. measured red 

channel radiance from all-sky camera. 

 

As evident from the brightest pixels in Figures 3.12b and 3.10b, the radiances simulated 

on the basis of the CNN COT input are markedly lower than actually observed by the camera. This 

is because the CNN was trained on a LES dataset with limited COT range that excluded the largest 

COT that occurred in practice. This means that the observational data went beyond the original 

training envelope of the CNN, which highlights the importance of choosing the CNN training data 

carefully for a given region. In Figure 3.13, the simulations are directly compared with the original 

observations, confirming that indeed the CNN-generated data are below the observations on the 

high radiance end. Otherwise, the CNN-generated radiances agree with the observations. By 

contrast, the IPA-generated data are systematically lower than the observations, over the dynamic 

range of the COT, which is indicative of the 3D retrieval bias that we discussed earlier. Here again, 

the self-consistency approach proves useful despite the absence of ground truth data for the COT. 

(a) (b) 
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This is extremely helpful because in reality satellite remote sensing does not have the ground truth 

of COT, whereas radiance measurements are always available. For the CNN, the self-consistency 

of the radiance is remarkable for the thinner clouds (radiance smaller than 0.4), which encompass 

83.5% of the total number of image pixels. 

Finally, we use EaR3T to propagate the 3D cloud retrieval bias into the associated bias in 

estimating the cloud radiative effect from passive imagery retrievals, which means that we are 

returning from a remote sensing to an energy perspective (irradiance) at the end of the paper. The 

calculated cloud radiative effects (CRE) of both below-clouds (at the surface) and above-clouds 

(at 3 km) are shown in Figures 3.14a and 3.14b. The most important histograms are those from 3D 

irradiance calculations based on the CNN retrievals (black solid line), as this combination would 

be used in a next-generation framework for deriving CRE from passive remote sensing, and the 

other would be IPA irradiance calculations based on the IPA retrieval (red solid line), as done in 

the traditional (heritage) approach. The dashed lines are the other combinations. The mean values 

(red vs. black) indicate that in our case the traditional approach would lead to a high bias of more 

than to 25% both at the surface and above clouds. Here again, 3D biases do not cancel each other 

out in the domain average. If the CNN had better fidelity even for optically thick clouds, the real 

bias in CRE would be even larger. A minor, but interesting finding is that regardless of which COT 

retrieval is used, the mean CRE is very similar for IPA and 3D irradiance calculations, even though 

the PDFs are very dissimilar. By far the largest impact on accuracy comes from the retrieval 

technique, not from the subsequent CRE calculations. Here again, the self-consistency check turns 

out as a powerful metric to assess retrieval accuracy. Of course, we only used a single case in this 

part of the paper. For future evaluation of the CNN versus the IPA, one would need to process 

larger quantities of data in an automated fashion as done in the first part of the paper. This is 
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beyond the scope of this introductory paper, and will be included in future releases of EaR3T and 

the CNN. 

 

                   
Figure 3.14. Histograms of cloud radiative effects derived from 1) 3D irradiance calculations based on COTCNN (solid 

black), 2) IPA irradiance calculations based on COTIPA (solid red), 3) IPA irradiance calculations based on 

COTCNN (dashed blue), and 4) 3D irradiance calculations based on COTIPA (dashed green) both (a) at the 

surface and (b) above the clouds. The mean values are indicated by vertical lines. 

 

3.7 Summary and Conclusion 

In this paper, we introduced EaR3T, a toolbox that provides high-level interfaces to 

automate and facilitate 1D- and 3D-RT calculations. We presented applications that used EaR3T 

to: 

a) build a processing pipeline that can automatically simulate 3D radiance fields for satellite 

instruments (currently OCO-2 and MODIS) from publicly available satellite surface and 

cloud products at any given time over any specific region; 

b) build a processing pipeline that can automatically simulate irradiance along all flight legs 

of aircraft missions, based on geostationary cloud products; 

c) simulate radiance and irradiance for high-resolution COT fields retrieved from an airborne 

camera, using both a traditional 1D-RT (IPA) approach, and a newly developed 3D-RT 

(CNN) approach that considers the spatial context of a pixel. 

(a) (b) 
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Unlike other satellite simulators that employ 1D-RT, EaR3T is capable of performing the radiance 

and irradiance calculations in 3D-RT mode. Optionally, it can be turned off to link back to 

traditional 1D-RT codes, and to calculate 3D perturbations by considering the changes of 3D-RT 

fields relative to the 1D-RT baseline. 

With the processing pipeline under a) (APP1 and APP2, Section 3.4), we prototyped a 

3D-RT powered radiance loop that is envisioned for upcoming satellite missions such as 

EarthCARE and AOS. Retrieved cloud fields (in our case, from MODIS and from an airborne 

camera) are fed back into a 3D-RT simulation engine to calculate at-sensor radiances, which are 

then compared with the original measurements. Beyond currently included sensors, others can be 

added easily, taking advantage of the modular design of EaR3T. This radiance closure loop 

facilitates the evaluation of passive imagery products, especially under spatially inhomogeneous 

cloud conditions. The automation of EaR3T permits calculations at any time and over any given 

region, and statistics can be built by looping over entire orbits as necessary. The concept of 

radiance consistency could be valuable even for existing imagery datasets because it allows the 

automated quantification of 3D-RT biases even without ground truth such as airborne irradiance 

from suborbital activities. In the future it should be possible to include a 3D-RT pipeline such as 

EaR3T into operational processing of satellite derived data products. 

 Benefitting from the automation of EaR3T in b) (APP3, Section 3.5), we performed 3D-RT 

irradiance calculations for the entire CAMP2Ex field campaign, moving well beyond radiation 

closure case studies, and instead systematically evaluating satellite-derived radiation fields with 

aircraft data for an entire region. From the comparison based on all below-cloud flight tracks 

during the entire campaign, we found that the satellite-derived cloud transmittance was biased low 

by 10% compared to the observations when relying on the heritage satellite cloud product. 
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From the statistical results of the CAMP2Ex irradiance closure in b), we concluded that the 

bias between satellite-derived irradiances and the ground truth from aircraft measurements was 

either due to the coarse spatial resolution of the geostationary imagery products, or caused by 

3D-RT effects. To minimize the coarse-resolution part of the bias and thus to isolate the 3D-RT 

bias, we used high-resolution airborne camera imagery in c) (APP4, Section 3.6), and found that 

even with increased imager resolution, biases persisted. The at-sensor radiance derived from IPA 

COT retrievals was inconsistent with the original measurements. For cloudy pixels, the calculated 

radiance was well below the observations, confirming an overall low bias in IPA COT. This low 

bias could be largely mitigated with the context-aware CNN developed separately in Nataraja et 

al. (2022) and included in EaR3T. Of course, this novel technique has limitations. For example, 

the camera reflectance data went beyond the CNN training envelope, which would need to be 

extended to larger COT in the future. In addition, the CNN only reproduces two-dimensional 

clouds fields and does not provide access to the vertical dimension, which will be the next frontier 

to tackle. Still, the greatly improved radiance consistency from COTIPA to COTCNN indicates that 

the EaR3T-LES-CNN approach shows great promise for the mitigation of 3D-RT biases associated 

with heritage cloud retrievals. We also discovered that for this particular case, the CRE calculated 

from traditional 1D cloud products can introduce a warming bias of at least 25% at the surface and 

above clouds. 

EaR3T has proven to be capable of facilitating 3D-RT calculations for both remote sensing 

and radiative energy studies. Beyond the applications described in this paper, EaR3T has already 

been extensively used by a series of on-going research projects such as producing massive 3D-RT 

calculations as training data for a new generation of CNN models (Nataraja et al., 2022), evaluating 

3D cloud radiative effects associated with aerosols (Gristey et al., 2022), creating flight track and 
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satellite track simulations for mission planning etc. More development effort will be invested into 

EaR3T in the future, with the goals of minimizing the barriers to using 3D-RT calculations, and to 

promote 3D cloud studies. EaR3T will continue to be an educational tool driven by graduate 

students. From a research perspective, we anticipate that it will enable the systematic quantification 

and mitigation of 3D-RT biases of imagery-derived cloud-aerosol radiative effects. 
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Chapter 4 
 

Diurnal Direct Aerosol Radiative Effects above Clouds and Clear Sky from Aircraft 

Measurements during ORACLES 2016-2018 

 

4.1 Background 

The direct radiative effects of absorbing aerosols have remained a hot topic for decades 

because of their large uncertainty with respect to their climate forcing (IPCC, 2013). One of the 

difficulties in quantifying aerosol radiative effects arises when aerosols co-occur with clouds. 

Clouds act like a moderator of the direct aerosol radiative effects. Whether the absorbing aerosol 

layer cools or warms the top of the atmosphere (TOA) depends on the underlying scene albedo – 

a dark surface, e.g., clear-sky over ocean, will lead to a cooling effect while a bright surface, e.g., 

presence of clouds, may lead to a warming effect at the TOA. In other words, the albedo below an 

absorbing aerosol layer, can alter the sign of the direct aerosol radiative effects at the TOA 

(Twomey, 1977; Russell et al., 2002). Aerosols, in turn, can also affect the radiative properties of 

clouds. The cooling and warming effect of aerosol can induce changes in atmospheric circulation, 

which will either enhance or reduce cloudiness (Ackerman et al., 2000; Koch and Del Genio, 2010). 

Additionally, the aerosol particles are important as cloud condensation nuclei. The abundance of 

aerosol particles affects the cloud droplet size and distributions, resulting in a change in cloud 

radiative properties such as albedo (Twomey, 1974). The mutual interactions between clouds and 

aerosols bring large uncertainties in predicting anthropogenic climate forcing, which needs to be 

better quantified. 
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The southeast (SE) Atlantic Ocean contributes one third of the total global biomass burning 

(BB) aerosol (van der Werf et al., 2010), sourced from inland BB in Africa during the southern 

African burning season from August to October. Since the BB aerosol particles mainly consist of 

black carbon – the most absorbing atmospheric aerosol constituents, the BB aerosol belongs to one 

of the main sources of global absorbing aerosol (Bond et al., 2013). Another noteworthy fact about 

SE Atlantic is that a semi-permanent stratocumulus cloud deck usually underlies the BB aerosol, 

which makes the SE Atlantic a perfect place on the globe to study cloud and aerosol radiative 

effects and their interactions. 

The need for a better understanding of cloud and aerosol radiative effects and their 

interactions and the ideal cloud-aerosol environment of SE Atlantic motivated the deployment of 

the ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) mission funded 

by the National Aeronautics and Space Administration (NASA). ORACLES was a 3-year aircraft 

field campaign during 2016 in Namibia, and 2017 and 2018 in São Tomé and Príncipe to study the 

aerosol and cloud radiative interactions over the western coast region of Africa. The NASA P-3 

and ER-2 aircraft were deployed during ORACLES 2016, while only the P-3 was deployed during 

ORACLES 2017 and 2018, carrying various remote sensing and in-situ instruments for collecting 

various cloud and aerosol properties. The details of the instruments and cloud and aerosol retrieval 

products can be found in the overview of the ORACLES project (Redemann et al., 2021). Figure 

4.1 shows various sample flight tracks overlaid on MODIS satellite imagery (one from each year 

of ORACLES). Various flight maneuvers and sampling techniques were employed during 

ORACLES. During 2016, the ER-2 and P-3 were aligned to collect measurements of aerosol and 

cloud properties simultaneously above and below the aerosol layer as shown in Figure 4.1a. For 

vertical profiling of the aerosol layer, the P-3 regularly performed so-called “square spirals” (red 
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circles in Figure 4.1 – spirals with short straight-and-level segments for every 90º heading change) 

for measuring localized radiation and in-situ atmospheric profiles. These were used, among other 

applications, for aerosol optical property retrievals (Cochrane et al., 2019). Finally, extended 

horizontal legs as well as ramp ascents and descents were performed along so-called routine flight 

tracks to collect statistics for the climatological study of clouds and aerosols over the SE Atlantic. 

These routine flight tracks served to collect aircraft measurements for model-observation 

comparisons (Doherty et al., 2022). 

 

Figure 4.1. ORACLES flight tracks overlaid on MODIS RGB imagery obtained from NASA WorldView for 2016-

09-20, 2017-08-13, and 2018-09-30. P-3 and ER-2 flight tracks are indicated in red and blue, respectively. 

 

Four corridors that cover the study region of the horizontal flight tracks (or routine flight 

tracks) were created for evaluating model estimated direct aerosol radiative effects (DARE) as part 

of the climatological characterization of the region, as shown in Figure 4.2. They were strategically 

located to align with the approximate center of the aerosol plume (zonal, green), the transition into 

the plume, but more importantly the transition from clear sky in the south to stratocumulus in the 

north. The two meridional ones cut across the plume at different proximity to the land.  
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Figure 4.2. Transects used for model-observation comparison for ORACLES 2016 – 2018 region. 

 

From the combined aircraft measurements, DARE can be derived. Cochrane et al. (2021) 

developed a parameterization (referred to as C21) that provides broadband instantaneous DARE 

estimates from aerosol optical depth at 550 nm (𝐴𝑂𝐷==4), cloud-level albedo at 550 nm (𝛼==4), 

solar zenith angle (SZA), and optionally aerosol single scattering albedo at 550 nm (𝑆𝑆𝐴==4). This 

parameterization is based on the collection of the “square spirals” from the ORACLES campaigns, 

which provided vertical profiles of spectral net irradiance and AOD measurements, acquired by a 

spectral airborne radiometer and a spectral sunphotometer (Section 4.2). The parameterization is 

a generalization of the concept of aerosol radiative forcing efficiency (RFE, Meywerk and 

Ramanathan, 1999, referred to as radiative effect efficiency here) , which empirically relates the 

broadband DARE and the 𝐴𝑂𝐷==4  as 𝐷𝐴𝑅𝐸 = 𝑅𝐹𝐸 ⋅ 𝐴𝑂𝐷==4 , and can be regarded as an 

intensive radiative property of the aerosol layer. This is beneficial for generalizing multiple 

measurements of an air mass where only the AOD varies, whereas other properties such as SSA, 
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asymmetry parameter, or scene albedo remain constant. Equations (3) and (4) in C21 generalize 

this to: 

𝐷𝐴𝑅𝐸 = 𝑃(𝐴𝑂𝐷==4, 𝛼==4) 

and 

𝐷𝐴𝑅𝐸 = 𝑃𝑋(𝐴𝑂𝐷==4, 𝛼==4, 𝑆𝑆𝐴==4) 

in order to capture the key parameters that explain the variability of DARE during ORACLES 

beyond the AOD itself. The first parameterization, P, includes the albedo of the underlying scene 

as an additional input parameter. By including SSA in the second, extended parameterization, PX, 

the case-specific DARE variability due to varying aerosol optical properties is captured, reducing 

the uncertainty of DARE in the region if SSA is known. By contrast, the more basic 

parameterization, P, captures the campaign-averaged dependence of DARE on the primary 

parameters only; SSA varies too little to drive the DARE variability in the regional average. 

While the C21 parameterization provides the translation of simple scene parameters into 

DARE at any given location, it arrives at the instantaneous DARE that is specific to a fixed SZA. 

In order to make the measurements useable for constraining models statistically, the next steps are 

to 1) integrate DARE over the course of the day considering the diurnal variability of the scene 

parameters at a given location, and 2) to use all the measurements from ORACLES collectively to 

obtain the best estimate of diurnally-averaged DARE throughout the study region – the goal of this 

chapter. In this way, we will address one of the three main science questions of ORACLES 

(Redemann et al., 2021): 

What is the direct radiative effect of the African biomass burning aerosol layer in clear- and 

cloudy-sky conditions over the SE Atlantic? 
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The main challenges are 1) the diurnal integration of the instantaneous DARE since the 

aircraft only samples a snapshot of the scene parameters that go into C21, and 2) insufficient spatial 

coverage of the flight tracks to provide us with representative statistics for the entire SE Atlantic. 

During the course of a day, both the AOD and the underlying clouds, and thus the scene albedo 

can change, and so does DARE. While the AOD is slowly varying (Chang et al., 2021), the most 

significant driver of DARE variability are variations of the clouds. The obvious, traditional 

approach for capturing this variability along with that of the AOD is to use geostationary imagery 

retrievals of cloud and aerosol properties and validate them with pinpoint aircraft observations 

where available (Peers et al., 2021). In this case, geostationary imagery is provided by the Spinning 

Enhanced Visible and InfraRed Imager (SEVIRI) operated by the European Organization for the 

Exploitation of Meteorological Satellites (EUMETSAT). It provides continuous 

radiance/reflectance measurements for the ORACLES region every 15 minutes throughout the day. 

Retrievals of cloud optical thickness (COT) and AOD of the layer above the clouds can be achieved 

by using multiple wavelengths in the shortwave (Meyer et al., 2015), but this is challenging even 

with data from polar-orbiting imagers such as the Moderate Resolution Imaging Spectroradiometer 

(MODIS) and requires a number of assumptions on the optical properties of the aerosol, which are 

usually fixed. The application of such techniques to geostationary data provides unprecedented 

temporal coverage as shown in Peers et al. (2021), but is more challenging because of SEVIRI’s 

limited number of channels, coarse spatial resolution, and less rigorous radiometric calibration 

than available in polar-orbiting imagery.  

Nevertheless, although the cloud reflectance measured by SEVIRI is contaminated by the 

aerosol layer sitting in between the clouds and SEVIRI itself (referred to here as “dimming effect”), 

the radiance/reflectance observations still contain useful signals associated with the varying cloud 
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properties. Moreover, the magnitude of “dimming effect” as a function of aerosol optical properties, 

solar zenith angle etc., can be quantified using the aircraft observations. ORACLES, by design, 

provided a large number of horizontal legs just above the clouds and below the aerosol layer. 

Therefore, it is possible to link the cloud albedo (as measured by the airborne spectral radiometer) 

directly to the collocated reflectances from the high spatial resolution mid-visible SEVIRI channel 

(HRV, Section 4.2), as a function of AOD (also measured directly, by the airborne sunphotometer). 

This direct link enables a parameterization that maps mid-visible AOD and SEVIRI mid-visible 

reflectance directly to cloud albedo, bypassing the need for COT retrievals. In this direct pathway 

to cloud albedo, artifacts such as dimming and cloud variability effects as described in Chang et 

al. (2021) can be avoided. 

In this chapter, we combine the DARE parameterization of C21 with a new 

parameterization, developed below, that maps SEVIRI reflectance to the scene albedo that the 

aerosol layer experiences. Furnished with the SEVIRI/aircraft-based cloud albedo 

parameterization, we can integrate the instantaneous, aircraft-derived DARE to arrive at the 

diurnally-integrated DARE, filling in cloud albedo information based on satellite data, beyond the 

time when the aircraft is present in the sample area. The new parameterization, i.e., the mapping 

of reflectance to albedo is based on the statistics from aircraft and geostationary satellite 

observations. 

We then approach the science question from above by evaluating DARE at different scales 

– from the small scale of a single flight track segment on a single day to the large scale of select 

model-observation grid boxes acquired over multiple flight days. This allows us to arrive at 

observationally based DARE that is minimally affected by assumptions about aerosol optical 

properties, as opposed to approaches that rely on satellite retrievals of cloud and aerosol properties 
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with subsequent calculations of DARE. By using the whole collection of our observations in the 

study area, we seek to gain an understanding of the natural variability of DARE, and attribute it to 

the associated variability of clouds and aerosols. 

The aircraft and geostationary satellite instruments and data are described in Section 4.2. 

The methodology is provided in Section 4.3. The results are shown in Section 4.4 and conclusions 

are drawn in Section 4.5. 

 

4.2 Instruments and Data 

In this study, we use aircraft observations from three airborne instruments: 1) the Solar 

Spectral Flux Radiometer (SSFR), 2) the Spectrometer for Sky-Scanning, Sun-Tracking 

Atmospheric Research (4STAR), and 3) the High Spectral Resolution Lidar 2 (HSRL-2) in 

conjunction with geostationary satellite observations from the Spinning Enhanced Visible and 

Infrared Imager (SEVIRI). Specifically, SSFR provides directly measured scene albedo at 550 nm 

(referred to as 𝛼==4>>-?), 4STAR and HSRL-2 provide measured aerosol optical depth (AOD) at 550 

nm (referred to as 𝐴𝑂𝐷==43>9@?  and 𝐴𝑂𝐷==4A>?B ), and SEVIRI provides calibrated reflectance 

observations at its high-resolution visible (HRV) channel. Our goal is to make the best use of all 

the available aircraft and geostationary satellite observations to derive DARE that represents the 

natural variability of aerosols and clouds. 

To do that, we manually selected all the aircraft data from the three-year ORACLES 

mission when the aircraft was flying steadily below the aerosol layer and above the clouds based 

on the following criteria: 

1. Aircraft flies straight and level (pitch, roll<5º), and maintains a low altitude at 1-3 km; 
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2. Downwelling irradiance at 550 nm is steady at a high value to ensure no cirrus above, and 

that the aircraft is not inside a cloud. 

The selected aircraft data are referred to as the bottom of aerosol layer (BOL) legs. The BOL legs 

provide key aircraft observations for the systematic TOA SEVIRI reflectance to BOL albedo 

mapping (Section 4.3). The advantage of BOL is that it provides scene albedo measurements that, 

unlike satellite observations of clouds with an intervening aerosol layer, have the aerosol effect 

eliminated. Meanwhile, the AOD measurements from 4STAR can characterize the aerosol layer 

above, which allows us to build the mapping from SEVIRI TOA reflectance to BOL albedo as a 

function of AOD loading. The BOL legs are then used to calculate the instantaneous DARE via 

the C21 parameterization, using SSFR albedo and 4STAR AOD as inputs, whereas the SEVIRI 

input is used to extend the albedo time series at a given location beyond the sampling time, as 

discussed above. 

To gain more DARE statistics than from the BOL legs alone, we additionally select all the 

aircraft data when the aircraft was flying steadily above the aerosol layer by following the criteria 

1-2 except that the aircraft maintains a relatively high altitude at 5-6 km. These high leg aircraft 

data will be referred to as the top of aerosol layer (TOL) legs and provide AOD measurements 

from HSRL-2. For these, direct albedo measurements by SSFR are unavailable, and they are 

therefore generated from SEVIRI. Details of each instrument and data will be described in the 

following subsections. 

4.2.1 SSFR 

The SSFR (Pilewskie et al., 2003; Schmidt and Pilewskie, 2012) system consists of a 

spectrometer box and two light collectors – nadir and zenith. The nadir light collector was fixed 

mounted at the bottom of the NASA P-3 aircraft. The zenith light collector was mounted on an 
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active leveling platform at the front-top of the aircraft to counteract aircraft attitude in order to be 

horizontally aligned throughout the flight. The horizontal alignment of the zenith light collector 

ensures that 1) direct solar radiation can be accurately traced and corrected for the imperfect 

response of the instrument to the polar incidence angle (Kindel 2010), and 2) no radiance 

contamination occurs from the lower hemisphere. The two light collectors together provide 

simultaneous spectral upwelling and downwelling irradiance measurements ranging from 350 nm 

to 2100 nm, with a spectral resolution of 8 – 12 nm. The details of the instrumentation and data, 

e.g., calibration procedures, uncertainties of the measurements were described by Cochrane et al. 

(2019). 

From the simultaneously measured upwelling (𝐹↑) and downwelling irradiance (𝐹↓), albedo 

(𝛼) can be directly calculated through 𝛼 = 𝐹↑/𝐹↓. In this study, only the irradiance measurements 

at 550 nm from SSFR are used to provide directly measured scene albedo (𝛼==4>>-?), the required 

input parameter for the C21 parameterization. Based on the reported uncertainties of SSFR 

irradiance measurements (Cochrane et al., 2019), the uncertainty of 𝛼==4>>-?  is estimated to be 

approximately 2%. 

4.2.2 4STAR and HSRL-2 

The 4STAR instrument was mounted at the mid-top fuselage of the P-3 aircraft and pointed 

upward to measure spectral direct solar radiation. The measured radiation covers continuous 

wavelengths ranging from 350 nm to 1750 nm with a spectral resolution of 2-3 nm below 1000 

nm and 3-7 nm above (LeBlanc et al., 2020). The measurements can be used to retrieve column-

integrated optical properties of clouds, aerosols, and trace gases above the aircraft (Dunagan et al., 

2013). Spectral aerosol optical depth ranges from 350 to 1650 nm is one of the data products 

provided by the 4STAR team and is publicly available in the ORACLES data archive (Redemann 
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et al., 2021). Several calibration and correction techniques such as a Langley technique (Schmid 

and Wehrli, 1995), azimuthal correction etc. were applied to achieve an average AOD uncertainty 

of 0.011 at 500 nm (LeBlanc et al., 2020). Only the AOD at 550 nm from 4STAR is used in this 

study (𝐴𝑂𝐷==43>9@?). 

The HSRL-2 is a successor to HSRL-1 from NASA Langley (Hair et al., 2008). It is a lidar 

system pointing downwards to measure aerosol backscatter and extinction coefficient profile and 

aerosol depolarization at 355, 532, and 1064 nm (Burton et al., 2018). Originally, the HSRL-2 was 

designed to be flown on the ER-2 aircraft during ORACLES 2016. Due to the unavailability of 

ER-2 during ORACLES 2017 and 2018, it was redesigned and mounted on the P-3 aircraft. When 

the aircraft is flying above the aerosol layer, the column integrated extinction coefficients from 

HSRL-2 can be used to represent the aerosol layer optical depth. In this study, we used the HSRL-

2 measured AOD at 532 nm and scaled to 550 nm (𝐴𝑂𝐷==4A>?B) through an assumed AOD versus 

wavelength relationship with an absorption Ångström exponent of 1.25 for the BB aerosols 

(Cazorla et al., 2013). 

4.2.3 SEVIRI 

SEVIRI is the main payload onboard four Meteosat Second Generation (MSG) satellites 

(Schmetz et al., 2002), which are geostationary weather satellites operated by the European 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT). The MSG 

geostationary satellites provide full disc imagery over Europe and Africa every 15 minutes, and 

rapid scan imagery over Europe every five minutes. In this chapter, we used the calibrated 

reflectance of SEVIRI from Meteosat-10 (or MSG-3) for ORACLES 2016 and 2017 and from 

Meteosat-11 (or MSG-4) for ORACLES 2018. 
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SEVIRI has 3 shortwave and 8 infrared channels with nadir spatial resolution of 3x3 km. 

In addition, the high-resolution visible (HRV) channel offers an increased spatial resolution of 1x1 

km (Cros et al., 2006). The HRV channel has a nominal center wavelength of 750 nm and a 

relatively broad spectral response compared to other visible bands (Deneke et al., 2021). We use 

the full disc imagery which has a temporal resolution of 15 minutes. Based on the time and 

geolocation of the aircraft, we perform collocation to obtain the SEVIRI HRV reflectance that is 

closest in time and location to the aircraft. 

 
4.3 Methodology – Development of reflectance-to-albedo mapping 

In this section, we will show a newly developed parameterization that can provide 

estimates of diurnally integrated DARE for the ORACLES study region. The key of our 

parameterization lies in the mapping of geostationary satellite measured reflectance (𝑅𝑒𝑓A?C>DCE?E) 

onto BOL scene albedo at 550 nm (𝛼==4) that is unaffected by the aerosols, which is then used as 

input for estimating DARE through C21. This mapping goes beyond a traditional atmospheric 

correction, where at-sensor radiances are corrected for the scattering and absorption effects of the 

intervening atmosphere, and converted into water-leaving radiances or in our case radiances at the 

top of the clouds below the aerosol layer. Instead, it also accounts for the angular anisotropy of the 

radiation that is important to consider when the final product is albedo, rather than reflectance. 

Previous work has shown that this is best done with empirical parameterizations such as the ones 

involved for generating the CERES angular distribution models (ADM). In contrast to the ADMs, 

which provide TOA upwelling broadband irradiances based on a unidirectional at-sensor 

broadband radiance measurement, our application provides a spectral albedo below the aerosol 

layer based on at-sensor nadir radiance measurements. Since the 𝑅𝑒𝑓A?C>DCE?E  is continuously 
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measured by SEVIRI throughout the day, diurnal scene albedo of 𝛼==4, thus diurnal DARE, can 

be obtained through the mapping. 

Figure 4.3 shows 𝑅𝑒𝑓A?C>DCE?E  versus 𝛼==4>>-?  for ORACLES 2016 (red), 2017 (blue), and 

2018 (green) stratified to select AOD and SZA ranges indicated in each panel figure title. The 

AOD stems from 4STAR, and the SZA is calculated based on the time and geolocation of the 

aircraft. The observations indicate a clear relationship between SEVIRI HRV reflectance and scene 

albedo from SSFR measured below the aerosol layer. More importantly, the relationship can be 

stratified by AOD and SZA. It should also be pointed out that the data has a significant spread 

around the functional relationship between the SEVIRI reflectance and the BOL albedo. In part, 

that is due to the different spatial resolution of the SEVIRI HRV channel (1 km) versus the aircraft 

observations (hundreds of meters), as stated above. However, since aerosol and cloud properties 

vary from case to case and from campaign to campaign, some variability is expected even in the 

absence of this mismatch. In fact, it is remarkable that data points from different cases and years 

(different colors in Figure 4.3b, for example) are as consistent as they are. For other regions on the 

globe, the variability of aerosol and cloud properties might prohibit a similar approach.  
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Figure 4.3. Illustration of the modeled albedo-to-reflectance relationship (gray line), the relationship after scaling by 

scale factor directly obtained from the observations (black dashed line), the relationship after scaling by 

linear-fitted scale factor (shown in Figure 4.2) for two selected AOD and SZA bins (indicated by each panel 

figure title). The colored dots are collocated SEVIRI HRV reflectance versus SSFR albedo at 550 nm during 

ORACLES 2016 (red), 2017 (blue), and 2018 (green). 

 

The general idea behind the mapping is that 𝛼==4  can be expressed as a function of 

𝑅𝑒𝑓A?C>DCE?E 

𝛼==4 = 𝑓@8F,>H@(𝑅𝑒𝑓A?C>DCE?E)                                                                                                                  (4.1) 

and the function 𝑓@8F,>H@ can be determined from collocated aircraft and satellite observations. To 

derive the mapping relationship based on the collocated aircraft and satellite observations, the data 

were fitted separately for each AOD and SZA bin. We first calculated physics-based fit functions 

𝑓@8F,>H@?9  using RT calculations of nadir reflectance and albedo for a range of COT, indicated by 

gray curves in Figure 4.3. Those were then rescaled using the observations with a least-square fit. 

The resulting mapping functions (𝑓I@8F,>H@ = 𝑆𝐹@8F,>H@ ⋅ 𝑓@8F,>H@?9 , where 𝑆𝐹@8F,>H@  is a scale 

factor) are indicated by the black dashed curves. Finally, a systematic parameterization 𝑠𝑓	is 

developed for the scaling factors (𝑆𝐹@8F,>H@) to cover the entire AOD and SZA spaces. The final 

mapping function of 𝑓@8F,>H@ is shown as black curves in Figure 4.3 and can be expressed by the 

following equation: 

𝑓@8F,>H@ = 𝑠𝑓 ⋅ 𝑓@8F,>H@?9                                                                                                                         (4.2) 

4.3.1 Radiative Transfer Calculations 

We start by deriving 𝑓?9  from radiative transfer calculations. The radiance at 750 nm 

(nominal center wavelength for SEVIRI HRV channel) and the irradiance at 550 nm (wavelength 

of SSFR albedo) are calculated using EaR3T (Chen et al., 2022) for 
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● Cloud optical thickness (COT): 0, 0.1, …, 1, 2, …, 10, 12, …, 20, 25, …, 50, 60, …, 100; 

● Aerosol optical depth (AOD): 0, 0.05, …, 0.6; 

● Solar zenith angle (SZA): 0°, 5°, …, 85°. 

For the simulation in this study, we used the Monte Carlo Atmospheric Radiative Transfer 

Simulator (MCARaTS, Iwabuchi, 2006) as RT solver of EaR3T and set the photon number to 108 

for each simulation run. We chose a Monte Carlo (MC) RT solver over 1D-RT solver, e.g., 

DISORT, because the Mie scattering phase functions for the radiance calculations can be used 

more directly by the MC than is possible with a deterministic RT model such as DISORT (which 

expands the phase function through a Legendre polynomial expansion). On the other hand, the 

Mie phase function is fixed to a set a-priori droplet size. The RT details are the following: 

1. The atmosphere is set to standard tropical atmosphere (Anderson et al., 1986); 

2. The surface albedo is set to 0.03; 

3. The cloud layer is located between 1-2 km; 

4. Mie phase functions for cloud effective radius of 12μm; 

5. The aerosol layer is set to 2-6 km with single scattering albedo of 0.85 and an asymmetry 

parameter of 0.6 (Dubovik et al., 2002); 

The irradiance simulation is done for altitude levels from surface to 20 km (every 1 km). The 

radiance is simulated at a nadir view (sensor zenith angle of 0°) and at an altitude of 35786 km to 

simulate what SEVIRI HRV would measure. From the radiance calculations 𝑅𝑎𝑑@8F,>H@J=4
?9 (𝐶𝑂𝑇) 

and 𝐹𝑙𝑢𝑥@8F,>H@==4
?9 (𝐶𝑂𝑇) , we can obtain the reflectance 𝑅𝑒𝑓@8F,>H@J=4

?9 (𝐶𝑂𝑇)  and 

𝛼@8F,>H@==4
?9 (𝐶𝑂𝑇)  (see Appendix 4.A), resulting in 𝛼@8F,>H@==4

?9 (𝐶𝑂𝑇) =

𝑓@8F,>H@?9 (𝑅𝑒𝑓@8F,>H@J=4
?9 (𝐶𝑂𝑇))	as base functions for the physics-based fit. 



 119 

The RT assumptions are not always exact. For example, a surface albedo of 0.03 is not 

valid as ocean surface albedo becomes large under low-sun conditions (Li et al., 2006). The 

SEVIRI viewing angle is not necessarily strictly nadir, depending on the area of observation. 

However, the main purpose of 𝑓@8F,>H@?9 was to represent the primary angular features (albeit for a 

fixed microphysical assumption) of the radiance distribution in order to facilitate the radiance to 

irradiance conversion, whereas the final scaling is accomplished by fitting the observations. 

4.3.2 Parameterization 

In this subsection, we demonstrate how the final reflectance-to-albedo mapping (𝑓@8F,>H@) 

is developed using 𝑓@8F,>H@?9  as fit functions, which we have derived in the previous subsection. 

The general concept has been described at the beginning of this section. To recap, the first step is 

to select the measurements of 𝛼==4>>-? and 𝑅𝑒𝑓A?C>DCE?E from BOL flight tracks of all three ORACLES 

campaigns for each AOD and SZA range. Then 𝑓@8F,>H@?9 (𝑅𝑒𝑓J=4) is scaled based on a least mean 

squares (LMS) method: 

𝑓′@8F,>H@(𝑅𝑒𝑓J=4) = 𝑆𝐹@8F,>H@ ⋅ 𝑓@8F,>H@?9 (𝑅𝑒𝑓J=4)                                                                  (4.3) 

Figure 4.4 shows the dependency of the scale factors on SZA. This dependency can be 

represented as a polynomial regression. The individual observations used for calculating the scale 

factors are stratified by AOD (colored dots). At a given SZA, there is no systematic dependence 

of the scale factor on the AOD. That is because the base function 𝑓@8F,>H@?9 (𝑅𝑒𝑓J=4) already takes 

the AOD into account. Any variability of 𝑆𝐹@8F,>H@ is due to case specific variations of properties 

other than AOD and SZA. For example, they can stem from changes in the cloud droplet effective 

radius assumed in the RT calculations of 𝑓@8F,>H@?9 , the degree of cloud inhomogeneity, or changes 

in the aerosol SSA.  
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Figure 4.4. Scale factors (concept see previous figure) as a function of SZA. The black line is fitted from all the data 

through polynomial 4th order fit and represents the general relationship between scale factor and SZA for all 

different AOD settings. The size of the dots indicates relative abundance of available observations. 

 

The ORACLES average conversion from 𝑅𝑒𝑓J=4  to 𝛼==4?9  is represented using the 

polynomial regression line 𝑠𝑓(𝑆𝑍𝐴) from Figure 4.4, in conjunction with 𝑓@8F,>H@?9 (𝑅𝑒𝑓J=4), rather 

than the individual cases (dots in the same figure), arriving at the final parameterization: 

𝑓@8F,>H@(𝑅𝑒𝑓J=4) = 𝑠𝑓(𝑆𝑍𝐴) ⋅ 𝑓@8F,>H@?9 (𝑅𝑒𝑓J=4)                                                                    (4.4) 

In the next section, this parameterization will be used to calculate the diurnal albedo from 

the SEVIRI HRV reflectance, which allows us to turn the instantaneous DARE from Cochrane et 

al. (2021) into a diurnally dependent DARE, integrate it throughout the day, and calculate it for 

the entire ORACLES region. 

 

4.4 Results 

In this section, we show the diurnal and diurnally integrated DARE obtained through 

previously described parameterization, which utilizes statistics from aircraft and satellite 



 121 

observations from all three ORACLES campaigns. First, we show how the diurnally dependent 

DARE is derived for a small BOL flight track segment. Next, we provide the diurnally integrated 

DARE for the grid boxes of the transects shown in Figure 4.2 that are aggregated to the appropriate 

scale level for observation-model comparisons. The evaluation of DARE moving from the fine 

scale of a flight track segment to the large scale of a modeling grid box requires the consideration 

of natural variability of clouds and aerosols radiative effects at these different scales. As we discuss 

the results, these considerations will be central. 

4.4.1 Diurnal DARE for a Select Flight Track Segment 

We use a BOL flight track segment – 08:29:27 to 08:37:32 UTC on October 5, 2018 to 

illustrate our DARE approach. Figure 4.5a shows the SSFR measured scene albedo (blue dots), 

SEVIRI HRV reflectance (black), SEVIRI-derived scene albedo (red), and estimated DARE 

(green) throughout the day. Note that the diurnal dependence of the SEVIRI reflectance is 

primarily due to changes in the cloud fraction. In the morning and evening, there are fewer clouds 

than throughout the day. Imagery snapshots of the sample area with the flight track overlaid are 

shown for three times. The actual SSFR albedo observations are shown together with the albedo 

obtained from the SEVIRI HRV through our parameterization, at that specific time (first snapshot). 

The pixel groups at other times correspond to all available HRV observations at the original 

measurement location. The original measurements occurred relatively early in the day when clouds 

had not fully developed. The cloud fraction and hence the cloud albedo were still low at this point. 

In the middle of the day, the albedo increased to around 0.8. The aircraft location within the 

imagery is shown every 30 seconds (dots in Figure 4.5 1-3 and i-iii). For the first snapshot, the 

actual albedo measurements are compared with those that are obtained from HRV through the 
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parameterization (Figure 4.6). The comparison indicates that the SEVIRI-derived scene albedo 

agrees well with SSFR-measured scene albedo, for both clouds and cloud gaps. 

 

 

       

        

Figure 4.5. a) Diurnal reflectance from SEVIRI HRV reflectance (black) sampled at a P-3 below-cloud flight track 

from 08:29:27 to 08:37:32 UTC on October 5, 2018. The cloud albedo at 550 nm derived from the 

parameterization is in red, and the DARE derived from C21 is indicated in green. The cloud albedo measured 

by SSFR is shown in blue. Subplots 1-3 show the SEVRI HRV reflectance domain as well as the collocated 

SEVIRI HRV reflectance along the flight track (only flight track data of every 30 seconds are shown) at three 

(a) 

1 2 3 

1 & i 2 & ii 3 & iii 

i ii iii 
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times (09:30, 12:00, and 15:00) as indicated by vertical dashed lines in (a). i-iii show the associated derived 

cloud albedo fields. For comparison, i also shows the measured albedo from SSFR for the time when the P-3 

flew there (offset by –0.035°, blue circles). 

 

 

                                             

Figure 4.6. Albedo (at 550 nm) derived from SEVIRI HRV reflectance (red) and albedo (at 550 nm) measured by 

SSFR (blue) at the location of P-3 flight track as indicated in Figure 4.4-i. 

 

There is a slight discrepancy between the HRV reflectance row (1-3) and the derived albedo 

field row (i-iii) in that the overall reflectance around noon is higher than that around 15 UTC, 

where the magnitude of albedo does not change much. This is due to the changing SZA, which 

alters the mapping from reflectance to albedo as shown in Figure 4.4. This illustrates that the 

satellite reflectance cannot be used blindly as a proxy for the scene albedo. Instead, the SZA and 

AOD dependent conversion needs to be done in a measurement-supported manner as implemented 

here. In the time series from (a), the changing relationship between reflectance (black) and albedo 

(red) is also apparent. 

The instantaneous DARE, in turn (green) can now be derived at any given time (even 

outside of the time of the original observations) from the C21 parameterization. The AOD, 

obtained from 4STAR, is kept constant over the course of the day, whereas the albedo varies as 

shown in the figure. This reflects the underlying assumption that the main driver of DARE 
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variability throughout the day is cloud albedo, rather than AOD. Interestingly, there are some times 

of the day when the cloud albedo is so low that the DARE takes on a negative value. 

The cloud imagery in Figure 4.5 1-3 suggests that the variability of the DARE in Figure 

4.5a is caused by the inhomogeneities of the cloud fields beneath the flight track. Throughout the 

day, the albedo ranges from 0.1 to 0.8, whereas the AOD along the sampled flight track varies 

from 0.22 to 0.25 only, with a mean of 0.24. The true variability of the AOD throughout the day 

at this specific location is likely somewhat larger than this range, but the cloud variability 

dominates the DARE variability by far, justifying our approach of pegging AOD throughout the 

day to the original measurements. 

After demonstrating how to obtain the diurnal instantaneous DARE for a specific flight 

track (referred to as diurnal extension), we will now analyze diurnally-integrated DARE for the 

ORACLES observation-model grid boxes, in the following subsection. The diurnally-integrated 

DARE is obtained from the time series of instantaneous DARE by averaging the sum of 

instantaneous DARE throughout the day (24 hours). For example, the diurnally integrated DARE 

for the time series in Figure 4.5a ranges from 3.9 to 13.2 W/m2, with an average of 9.5 W/m2, 

whereas the instantaneous DARE from aircraft observations at around 09:30 AM UTC ranges from 

-21.4 to 20.8 W/m2, with an average of -2.4 W/m2. From hereon down, DARE refers to the 

diurnally integrated quantity. In addition, we will use the diurnally integrated DARE normalized 

by aerosol loading (mid-visible AOD), which is similar to the REE mentioned above, and will be 

referred to as radiative effect efficiency (REE). 

4.4.2 Statistics for Single Grid Box 

We now focus on an entire grid box with multiple samples collected over the course of the 

ORACLES campaigns. Figure 4.7 shows all flight tracks for grid box 5 in the second meridional 
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stripe from Figure 4.2. In Figure 4.7a, the available BOL samples (circles) and TOL samples (stars) 

are labeled by flight date in the legend, collected on 14 different days. For the BOL flight tracks, 

AOD at 550 nm comes from 4STAR. For the TOL flight tracks, it comes from HSRL-2 as 

explained in Section 4.2.2. Figure 4.7b shows the observations for all the BOL legs, where both 

AOD and albedo were available from 4STAR and SSFR. Figure 4.7c shows the albedo histogram 

for those same cases (BOL), whereas Figure 4.7d shows the AOD for both BOL (4STAR) and 

TOL (HSRL-2) legs. The albedo variability is high, ranging from 0.1 (clear sky) to 0.9 (overcast). 

By contrast, the AOD does not vary as much; typical values range from 0.1-0.2, although high 

aerosol loading cases can attain up to 0.6. 

 

                                     

                                

Figure 4.7. (a) BOL P-3 locations (dots) and TOL locations (stars) for Meridional-2 grid box 5. (b) Heatmap of AOD 

at 550 nm measured by 4STAR vs. albedo at 550 nm measured by SSFR. (c) and (d) are histograms for 

albedo and AOD, respectively. The dates of the flight tracks are indicated by colors shown in the mid-panel 

legend for (a), (c), and (d). 

(a) 

(d) (c) 

(b) 



 126 

4.4.3 Diurnally integrated DARE for Single Grid Box 

To extrapolate from the instantaneous measurements for grid box 5 of meridional transect 

2 from the previous subsection, the albedo for the entire day is obtained from SEVIRI as explained 

above, whereas AOD is assumed constant. The diurnally integrated DARE for this grid box is then 

obtained through C21. Figure 4.8 shows the statistics of the DARE and REE as a function of the 

diurnally averaged albedo. The critical albedo (the point at which the DARE switches from cooling 

to warming) is 0.3, which is very similar to Cochrane et al. (2021), although their study relates to 

instantaneous rather than diurnal DARE and albedo. After normalizing the DARE by AOD 

(radiative forcing efficiency, REE, as introduced above, Figure 4.8b), an almost linear dependence 

of the instantaneous REE on the scene albedo emerges. It is remarkable that such simple 

relationships apply even after accounting for the diurnal variability in the cloud conditions, and 

therefore scene albedo and DARE. Figure 4.8c and d show the histograms of the DARE and REE. 

Similar to the distribution of scene albedo and AOD, the histograms feature several distinct modes. 

The variability of the REE (Figure 4.8d) stems primarily from the scene albedo. The mode around 

-25 W/m2 is for clear sky, the mode around 50 W/m2 is for overcast clouds, and the mode around 

25 W/m2 is for partially cloud covered conditions. The DARE histogram itself (Figure 4.8c) is a 

bit harder to interpret since the aerosol loading affects the location of the peaks as well as the 

clouds. 

Figure 4.8 only shows the DARE corresponding to the BOL samples (4-STAR AOD) from 

the previous section. However, the plots equivalent to Figure 4.8 from TOL (HSRL-2 AOD) look 

very similar to BOL, even though the measurements were taken on different days. This 

corroborates our previous statement that the DARE variability is driven by cloud variability to a 

much greater extent than by the AOD. 
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Figure 4.8. (a) Heatmap of diurnally integrated DARE vs. diurnally averaged albedo at 550 nm from SEVIRI for the 

Meridional-2 grid box 5. (b) The same as (a) except for diurnally integrated DARE normalized by AOD 

(REE). (c) and (d) are histograms for DARE in (a), and DARE normalized by AOD in (b), respectively. 

 

4.4.4 Filled-in Single Grid Box 

The specific grid box we focused on earlier was sampled on many days, and therefore the 

resulting DARE and REE distributions from Figure 4.8 can be regarded as statistically meaningful, 

even when using only the BOL legs. So far, satellite and aircraft data were combined by using 

AOD from 4-STAR or HSRL-2 at the specific sampling locations as shown in Figure 4.7a, along 

with the albedo time series from SEVIRI at those same locations. For less frequently sampled grid 

boxes, this is too sparse to provide statistically meaningful statistics. Therefore, we developed a 

second way to combine aircraft and satellite data, based on the joint BOL/TOL (4-STAR/HSRL-2) 

(a) (b) 

(c) (d) 
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AOD observations, and the albedo time series not only at the specific sampling locations, but for 

all available SEVIRI pixels within it. Specifically, this is done by considering all SEVIRI pixels 

with the associated albedo times series and the AOD measurements from all aircraft samples as 

independent data pools, which are combined by calculating DARE for each SEVIRI pixel, while 

randomly assigning AOD from the pool of available data, a kind of Monte Carlo approach. This 

is computationally more efficient than calculating DARE for each satellite pixel for each AOD 

sample. To summarize, the SEVIRI data are not only used to temporally extend the albedo time 

series at a single sampling location, but also spatially beyond the aircraft track into the entire grid 

box. Filling in the grid box in this manner has the advantage that not only the AOD aircraft 

observations are used to the fullest extent possible, but also the albedo, which is much more 

variable than AOD, as noted above. 

Figure 4.9 shows the histogram of the DARE and REE of all the flight days for the same 

grid box as used before. In addition to the spatially filled-in data (labeled satellite-based), the 

previously shown statistics based solely on aircraft sampling locations (labeled aircraft-based) is 

also shown for reference. The shape of the aircraft-only and filled-in DARE and REE distributions 

is similar because the number of sample points was fairly high even before filling in the other grid 

points. Still, the total number of data points, as indicated by the total count scale, is much higher 

when including all available satellite data. In terms of mean values (solid lines), the DARE and 

REE estimates are higher for the filled in method, which is due to a larger occurrence of high 

albedo in the extended sample. 
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Figure 4.9. (a) Histograms of diurnally integrated DARE derived for the whole satellite domain (black) and aircraft 

flight tracks only (gray) for the Meridional-2 grid box 5. (b) The same as (a) except for diurnally integrated 

DARE normalized by AOD. The DARE derived for the satellite domain are color-coded for four different 

combinations of high/low AOD and high/low cloud albedo, where the “high” and “low” are above/below the 

median value. The mean values are indicated by the dashed vertical lines. 

 

To further interpret the results, we divided the DARE and REE into four quadrants of small 

and large AOD and albedo, as delineated by their median values – indicated by different colors. In 

Figure 4.9b, high- and low-AOD data lead to the same REE, isolating the impact of cloud albedo 

on the location of the four modes. For Figure 4.9a, on the other hand, the low- and high-AOD data 

show very different signatures for the high-albedo segment of the data set, with mean values of 5 

and 15 W/m2, respectively. This illustrates that although cloud albedo is the primary driver of the 

DARE, the variability of AOD is also significant. 

4.4.5 Statistics from a Full Transect 

Having demonstrated the two modes of combining aircraft and satellite data for a single 

grid box, we now apply the analysis to all grid boxes from the meridional transect 2. In addition 

to the histograms of DARE and REE, Figure 4.10 also includes the distribution of AOD and albedo. 

For different grid boxes, the number of available flight days differ significantly. That is why the 

(a) (b) 
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area under the histogram of grid boxes 1, 2, 7, and 8 is smaller than that for grid boxes 3-6. The 

distribution of DARE and REE are closely related to the distribution of AOD and cloud albedo. 

For example, grid boxes 2-4 have similar coverage in AOD and albedo, and their REE histograms 

show a similar location of their peaks. Similarly, grid boxes 7-8 have AOD and albedo centered 

around 0.35 and 0.5, respectively. Therefore, positive REE and DARE dominate in these boxes. 

For some grid boxes, the number of flight days was too limited to sample all the modes, leading 

to a statistically incomplete representation of this area. For example, grid box 8 only contains high 

aerosol loading and high cloud albedo, and the histograms for the DARE and REE are therefore 

dominated by a single mode. 

In many cases, the green/red and blue/brown dashed lines coincide for the REE because 

the DARE is normalized by the AOD, and the distinct aerosol loading should therefore not matter. 

However, this is only the case if aerosol loading and albedo are uncorrelated. In reality, they often 

are not, as shown in the AOD/albedo heatmaps with the four quadrants of high/low AOD and 

albedo defined by the dotted lines. Therefore, dividing up AOD/albedo parameter space in this 

fashion is not necessarily unique, and the different modes need to be interpreted carefully when 

attributing DARE and REE variability to the underlying causes. 
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Figure 4.10. The left panel and the mid panel are the same as Figure 4.9 for all the grid boxes of Meridional-2. 

Additionally, a heatmap of AOD vs. albedo is shown in the right panel for each grid box. The AOD vs. albedo 

plots are divided into four quadrants. The mean value of AOD vs. albedo of each quadrant is indicated by 

star marker. 
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 Going further, Figure 4.11 shows the mean values of DARE and REE (location of the black 

and gray lines from the previous plot), as well as the low- and high-aerosol/albedo subsets (colored 

lines) as a function of latitude for the whole transect. The horizontal bars are the standard 

deviations representing the variability.  

The aircraft-only results (gray) are only shown for context; the filled-in results (black) can 

be considered as more statistically significant. Overall, the aerosol has a TOA warming effect for 

the selected meridional transect as both the aircraft- and satellite-based DARE and REE are greater 

than 0. To attribute DARE to the most important scene parameters, the latitudinal dependence of 

averaged AOD and albedo is provided in Figure 4.11c. The scene albedo starts at 0.3 near the 

equator in the north, which is close to the critical albedo as we discovered in Figure 4.8. Thus, the 

DARE and REE are close to zero regardless of the aerosol loading. As the scene albedo increases 

southward, the DARE and REE become more positive. When thin clouds are present (low-albedo), 

the DARE and REE (red and green) show a closer correlation to the aerosol loading than when it 

becomes more cloudy (high-albedo, blue and brown). This suggests that the clouds are the main 

contributor for the variability of DARE and REE. Although aerosol is important as a modulator, 

its radiative effects are outweighed by the cloud properties. Another interesting finding is that the 

aircraft-based DARE and REE pick up the latitudinal dependence of aerosol more distinctively 

than the satellite-based DARE and REE. This indicates that the regional variability of clouds is as 

important as their diurnal variability. In some regions (for example, at latitudes north of -5º), the 

variability of the DARE (typically ±10 Wm-2 as indicated by horizontal error bars) of the 

aggregated data set outweighs the DARE itself, and thus suggests that on average, the aerosol has 

no appreciable radiative effect in the region. By contrast, when stratifying the high aerosol loading 

data by cloud conditions (via scene albedo), the DARE is distinctly positive (negative) for high 
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(low) albedo, respectively. To a lesser extent, a separation of low/high albedo DARE can also be 

observed for low aerosol loadings, although it is not statistically significant given the variability 

as visualized through the horizontal error bars. In any case, the contrast between high- and 

low-albedo conditions ranges from  ±5-10 Wm-2. For reference, the maximum model discrepancy 

on diurnally averaged DARE from Haywood et al. (2021) is about ±5 Wm-2. A significant share 

of the model spread is due to the representation of clouds and their diurnal development in various 

models. Validating and constraining models using the results from our study need to be done both 

for the aggregated data (black in Fig. 4.11) as well as the stratified data (colored lines). In this way, 

the discrepancies can be attributed to the underlying causes such as cloud properties, aerosol 

loading or optical properties. Contrasting DARE, such as warming and cooling in the same 

location as seen in models, is also seen in our measurements, and is primarily due to clouds. 
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Figure 4.11. Latitudinal trends of averaged (a) diurnally integrated DARE, (b) diurnally integrated DARE normalized 

by AOD, and (c) averaged scene albedo and AOD for Meridional-2 grid boxes shown in Figure 4.8. The 

standard deviations are indicated by the vertical error bars. 

 

4.5. Conclusions 

In this chapter, we developed a method that can provide diurnal DARE estimates directly 

from aircraft and satellite observations. This is achieved through a reflectance-to-albedo mapping 

that translates SEVIRI HRV reflectance, which is continuously measured every 15 minutes 

throughout the day, into scene albedo at 550 nm below the aerosol layer. The SEVIRI-based 

diurnal scene albedo obtained from the mapping together with AOD measurements from the 

aircraft are then input into C21 to get broadband DARE estimates at a given location throughout 

the day, and those are integrated to provide diurnal DARE. Compared to the traditional DARE 

approach that performs RT calculations based on satellite and cloud retrievals, our approach is 

mostly observationally based and provides the DARE estimates closest to the aircraft 

(a) (b) (c) 
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measurements, with minimal assumptions that are usually entailed in satellite retrieval algorithms. 

In this way, the errors coming from various assumptions made in the traditional approach can be 

bypassed, with the caveat that the direct method, developed here, comes with its own uncertainties 

that lie mainly in the variability of the cloud-aerosol system. 

Through the method, we explored the DARE at different temporal and spatial scales – from 

instantaneous DARE to diurnally integrated DARE, from a single BOL flight track to a collection 

of BOL flight tracks and to the entire model-observation grid box domain. We demonstrated the 

reflectance-to-albedo mapping is valid as SEVIRI-derived scene albedo show remarkable 

agreement with SSFR-measured scene albedo when we perform diurnal extension for a BOL flight 

track. When aggregating the DARE to a larger spatial scale than provided by the individual aircraft 

observations, the natural variability of DARE associated with clouds (and to a lesser degree 

aerosols) became obvious. At the largest aggregation scale, we presented the DARE for a 

meridional transect consisting of modeling-to-observation comparison grid boxes defined for 

ORACLES. The results showed a strong latitudinal dependence – from an almost neutral DARE 

for a region with a scene albedo close to the critical albedo, to a strongly warming effect for a 

region with higher cloud cover and albedo. By separating the DARE into distinct modes – 

combinations of high/low scene albedo from clouds and high/low aerosol loading, we found the 

DARE to be mostly correlated with the scene albedo. Correlations between DARE and AOD are 

only significant for thin clouds (low scene albedo). 

The most significant advantages of our method are 1) it provides diurnally integrated 

DARE by incorporating the geostationary satellite observations from SEVIRI, thus generalizing 

instantaneous DARE from aircraft observations only, 2) it can provide DARE for a much more 

complete study region than aircraft observations alone, 3) it offers direct access to aerosol and 
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cloud properties along with the DARE. Mutually consistent cloud-aerosol properties and 

CRE/DARE are of key importance for model evaluation since any discrepancies between observed 

and simulated conditions need to be attributed to specific model processes. Advantage (1) is 

important as the drastic change of the clouds throughout the day, as shown in Section 4.4.1, can 

lead to large discrepancies between instantaneous DARE and diurnally integrated DARE, 

suggesting that instantaneous DARE is not sufficient to represent the DARE. For a solid model-

observation intercomparison of DARE, diurnal integration to account for the diurnal cloud 

variability is required. Advantage (2) allows us to obtain a better understanding of natural 

variability of DARE at different spatial scales. By integrating the diurnal variation of clouds and 

extending study region from limited aircraft locations to the entire 2°x2° modeling grid boxes, we 

clearly see a mitigation of under-sampling bias (aliasing) along with increased natural variability 

of DARE associated with clouds and aerosols (mostly clouds). Balancing the under-sampling bias 

and natural variability is important because if natural variability of DARE is large and outweighs 

the DARE itself, we might lose “resolution” of processes or patterns that are relevant for validating 

model output. In our case, model-observation comparisons at the 2°x2° scale will fail due to large 

natural variability, and one needs to fall back on shorter periods of observations or smaller areas 

of model evaluation. Thus model-observations comparison needs to be performed at certain scales 

that take the natural variability of the DARE and underlying parameters into account. Advantage 

(3) allows attribution, e.g., separating DARE into distinct modes, and quantification, e.g., variance 

analysis, for the natural variability. 

In the future, elements of the new, direct approach for obtaining DARE could be combined 

with the more traditional approach of using satellite observations, and thus get to an optimal DARE 

characterization in a given region. No matter which approach is used, the issue of optimal data 
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aggregation scale for making modeling-to-observation exercises useful and viable for model 

development needs to be addressed in detail, in light of natural variability of the system. 
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Chapter 5 
 

Conclusions 

 
This thesis was motivated by the goal to advance airborne radiation science beyond the 

selective use of aircraft observations for deriving cloud-aerosol radiative effects. This was done 

by analyzing large quantities of campaign data to systematically validate satellite-derived cloud 

and aerosol properties and the associated irradiances and radiative effects, especially for 

challenging conditions such as thin clouds over bright surfaces, inhomogeneous clouds, and 

aerosols co-occurring with clouds. The Education and Research 3D Radiative Transfer Toolbox, 

developed in this thesis, made the transition to this frontier possible. It automatically acquires input 

data from a variety of user-selectable sources and computes irradiance and radiance fields for entire 

aircraft flight patterns, satellite orbits, or simulated cloud databases, using a 3D-RT engine to 

emulate nature, as well as 1D-RT to connect to traditional retrieval algorithms. The initial 

applications to real-world complex scenes, showcased in the three core chapters (corresponding to 

three publications), demonstrate that embracing complexity in atmospheric scenes by inclusive 

data use reveals significant shortcomings of the observational system. 

The common thread in all three papers (chapters) of this thesis is the goal to extend the 

reach of airborne radiation science beyond case studies that are often selected subjectively, and 

instead use large amounts of field data systematically. In the case of chapter 2, two specific flight 

patterns were used for answering the science question at hand; in chapter 3, below-cloud 

observations from an entire mission served to validate satellite-derived cloud transmittance, and 

in chapter 4 all available aircraft data were combined with satellite imagery to arrive at 

above-cloud DARE without using imagery retrieval algorithms, thus bypassing the associated 
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assumptions. One general finding was that it is not appropriate to use statistics blindly, which 

means that the level of data aggregation needs to be tailored to the science question or goals. The 

level of data aggregation and generalization increase from a few flight legs (chapter 2) to 

observations and simulations from an entire field campaign (chapter 3) to three field campaigns 

(chapter 4). Below, we will discuss how this is done given the science question at hand. 

The first science question was aimed at evaluating passive satellite imagery cloud retrievals 

in the Arctic, where the lack of contrast between bright and heterogeneous snow- and ice-covered 

surfaces and clouds makes the derivation of CRE challenging: 

 

1. What is the accuracy of satellite imagery-derived cloud radiative effects of thin clouds over ice 
as sampled during a NASA aircraft campaign in the Arctic? (Chapter 2) 

 

I addressed this question by validating irradiance calculations based on the best-available 

passive satellite imagery cloud product for the Arctic with aircraft measurements. This validation 

was performed satellite pixel by pixel along the flight track for only two flight patterns during the 

NASA ARISE campaign – one above, and one below a cloud field. Despite the limited amount of 

data, the collocated observations and simulations showed that even with the best available cloud 

product, the CRE derived from satellite passive imagery is biased significantly since about a third 

of the optically thin clouds (cloud optical thickness below 0.5) were not detected. This confirmed 

findings by Wendisch et al. (2019) from other Arctic field campaigns, which revealed similar 

underestimation of cloud fraction in satellite imagery products for a larger number of cases. Going 

beyond cloud detection as the primary error source, the spectral signature in the aircraft 

measurements also allowed a ranking of the relative importance of secondary errors such as 

inaccurate surface albedo (largest secondary error contribution in terms of broadband shortwave 
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CRE), cloud optical properties, and water vapor (smallest error contribution). Interestingly, 

insufficient or inaccurate knowledge of the surface albedo had a larger impact on the CRE than 

the cloud optical properties themselves. It should be pointed out that although our study focused 

on the shortwave CRE, thin clouds can affect the longwave CRE even more strongly as cloud 

emissivity increases rapidly with liquid water path (Bennartz et al., 2013). This led to the 

hypothesis that thin clouds may have a net warming effect on the surface that is larger than 

currently observable by satellites. Along with a number of science questions related to the seasonal 

Arctic sea ice melt, this motivated the Arctic Radiation-Cloud-Aerosol-Surface-Interaction 

Experiment (ARCSIX), a planned aircraft field campaign by NASA. One of the key objectives 

from a remote sensing standpoint will be the development of a spatially variable surface reflectance 

product. Another will be more robust cloud detection and characterization, which is predicated on 

improved surface reflectance products.  

The second part of the thesis also validated satellite-derived CRE with aircraft observations, 

but this time in the Tropics, an environment where lack of contrast between clouds and the 

underlying surface is not the issue. Instead, the most significant challenges are the rapid evolution 

and spatial complexity of clouds, motivating the second science question: 

 

2. What is the accuracy of satellite imagery-derived cloud radiative effects of heterogeneous 
clouds as sampled during a NASA aircraft campaign in the Philippine tropics? (Chapter 3) 

 

 Traditional satellite imagery-derived cloud retrieval algorithms neglect horizontal photon 

transport, which induces 3D retrieval biases, especially for heterogeneous clouds. 3D biases are 

difficult to quantify because 1) 3D RT calculations, which are computationally expensive, are 

required, and 2) they are hard to isolate observationally since clouds often change quickly within 
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an observational time period. To quantify 3D biases, a higher level of statistical aggregation was 

needed than used for the Arctic, relying on not just selected legs from the flight campaign 

(CAMP2Ex), but from the collection of all legs. Capitalizing on the automation capability of EaR3T, 

3D irradiance calculations were performed for all the below-cloud flight tracks, using heritage 

cloud retrievals from a geostationary satellite in the region (AHI). The satellite-derived irradiance 

(and by extension, CRE) were then compared with the measured truth, obtained from aircraft 

observations. This showed that in the campaign average of the region, the cloud transmittance 

calculated from satellite imagery was low-biased by 10% due to a combination of 3D biases and 

coarse imagery resolution effects. This result is statistically robust, unlike in previous studies with 

a limited data pool. We found that retrieval biases due to cloud spatial inhomogeneity cannot be 

fully mitigated by averaging, nor can the resulting 10% low bias in cloud transmittance. This 

finding, valid for a specific region in the Tropics, evokes the question of whether similar biases 

occur throughout the Tropics, or even globally. If this were the case, global surface radiation 

budget assessments would need to be revised, with downstream repercussions on the water cycle. 

The work started in this thesis is only the beginning to explore this question.  

While the high level of data aggregation allowed us to quantify the overall bias, it did not 

allow us to disentangle two potential error sources – the coarse imager resolution and 3D effects. 

To do this, we used high-resolution airborne imagery, which minimizes resolution biases, leaving 

3D retrieval biases as the only source of error. We then applied two different types of retrievals: 

the heritage 1D retrieval where pixels are treated independently in the radiative transfer 

(independent pixel approximation, IPA), and a novel machine learning technique that is 

context-aware and accounts for net horizontal photon transport from pixel to pixel – the newly 

developed Convolutional Neural Network (CNN) retrieval framework (Nataraja et al., 2022). 
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The challenge in using machine learning in practice, that is, for operational retrievals, is 

the perception that any machine learning algorithm is “only as good as the training data”. This 

concern was addressed in this thesis by developing a metric, the so-called radiance self-consistency, 

that objectively quantifies the performance of any algorithm with respect to 3D effects. In this way, 

even our machine learning algorithm could be placed on a physical foundation. The concept treats 

the radiance measurements, rather than the cloud retrievals, as the “ground truth”. The cloud 

retrievals (from any algorithm) are hereby taken at face value, and the radiances that the imager 

should observe if they were accurate are calculated. Closure between these calculations and the 

original radiance measurements can then be regarded as a proxy for the accuracy of the cloud 

retrieval. Key is that the calculations emulate nature, and are therefore performed with 3D-RT. If 

the calculated radiances are consistent with the original measurements, then they are called 

self-consistent with respect to the retrieval that was generated from them. Any inconsistencies, on 

the other hand, serve as a metric for the infidelity of the cloud retrieval algorithm. It should be 

noted that while radiance self-consistency is a necessary condition for the retrieval to be accurate, 

it is not necessarily a sufficient condition. In-situ observations of clouds will always be the most 

stringent evaluation of remote sensing products. However, radiance self-consistency can be 

regarded as the first step when in-situ validation is unavailable. 

Summarizing, chapter 3 went further than answering the science question that initially 

motivated it. Instead of merely quantifying imagery retrieval biases due to cloud spatial 

inhomogeneity, it explored avenues for the mitigation of these biases. For the first time, CNN were 

applied to real-word imagery. The 3D retrieval biases were significantly decreased by the CNN, 

as evidenced in better radiance self-consistency than for the traditional IPA retrievals throughout 

almost the entire dynamic range of optical thickness. However, radiance inconsistencies at the high 
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end of the dynamic range also showed that the CNN performed poorly on clouds with large optical 

thicknesses. This was because this particular CNN was trained on synthetic data with low optical 

thickness, which never attained the high values that were encountered in reality, emphasizing the 

importance of remaining within the original training envelope of a given machine learning 

algorithm, and calling for the kinds of consistency checks that were developed in the thesis to 

automatically identify unrealistic retrievals. 

In chapters 2 and 3, the accuracy of radiative effects derived from satellite observations 

was quantified by validating them with aircraft observations, using varying degrees of statistical 

aggregation. Fundamentally, this type of work aims at improving our knowledge of climate system 

parameters by using satellite and aircraft observations jointly. Indeed, it triggered the development 

of mitigation strategies for persistent imagery retrieval biases. In chapter 4, however, the goal was 

to combine satellite and aircraft observations more directly, with minimal reliance on satellite 

cloud or aerosol retrievals: 

 

3. How can detailed, accurate aircraft observations be combined with spatially and temporally 
extended satellite imagery to obtain the best estimate of the direct aerosol radiative effect for 
the study region of a set of NASA campaigns in the southeast Atlantic? (Chapter 4) 

 

The background for this question was the wide range of top-of-atmosphere DARE 

estimates from a variety of models for the southeast Atlantic, as documented by, e.g., Zuidema et 

al. (2016) and Haywood et al. (2021, Figure 2). For some locations, certain models predicted a 

warming effect where others predicted cooling by the aerosol. Since satellite observations alone 

could not sufficiently constrain models, they needed to be augmented by aircraft observations such 

as the ones from the NASA ORACLES campaigns described in chapter 4.  
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For this data set, Cochrane et al. (2021) previously developed a DARE parameterization 

(referred to as C21) that can provide DARE estimates at a given location with minimal assumptions. 

C21 requires scene albedo and aerosol properties as inputs. With aircraft observations at a given 

location, only the instantaneous DARE can be obtained through C21, whereas modeling studies 

need to be constrained with diurnally integrated DARE for an entire study region. To extrapolate 

from the spatially and temporally limited aircraft observations to the full day, and well as to a 

larger region, radiance observations from geostationary imagery were incorporated as described 

in chapter 4. Specifically, a reflectance-to-albedo mapping was developed based on the statistical 

relationship between satellite measured reflectance and collocated aircraft albedo measurements 

during all ORACLES campaigns. This mapping provides the scene albedo input for the C21 

parameterization directly from the geostationary satellite reflectance throughout the day. The 

resulting instantaneous DARE is subsequently diurnally integrated. Summarizing, the aircraft 

observations provide (1) the relationship between scene albedo, aerosol properties and 

instantaneous DARE (C21 parameterization) and (2) the mapping from satellite reflectance to 

scene albedo at a range of specific times and aerosol loadings, whereas the satellite observations 

provide the scene albedo at any time (from the measured reflectance via the empirical mapping to 

albedo).  

Assuming that the aerosol loading varied negligibly compared to scene albedo (i.e., cloud 

properties) throughout the day and within a 2°×2° grid box, the aircraft and satellite observations 

were combined to estimate the local DARE, with a smaller range of variability than the model 

spread of the DARE for most locations. This means that the observations do indeed provide new 

constraints to the models. However, in some locations the natural variability of cloud and aerosol 

properties was so large that the available aircraft samples may have been insufficient to capture it, 
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leading to aliasing. This shows the limitations of aircraft-based observations. Direct validation of 

model estimates with merged aircraft-satellite observations is therefore only possible for regions 

with moderate natural variability. In the future, sampling strategies could be developed that take 

the periodicity of natural patterns explicitly into account. 

In conclusion: by exploring three science questions with joint aircraft-satellite observations, 

it was possible to gain a differentiated understanding of “statistics” for quantifying cloud and 

aerosol radiative effects under challenging conditions. The tool developed in the process – EaR3T 

in Chapter 3 – filled a gap in understanding atmospheric radiation in the real world, which is three-, 

and not one-dimensional. Beyond this thesis, EaR3T has been used to study cloud-aerosol radiative 

effects (Gristey et al., 2010a, 2010b, 2022), and to produce extensive synthetic data for training 

machine learning cloud retrievals (Nataraja et al. 2022).  

Satellite-derived CRE was validated against aircraft observations in two different climate 

regions, the Arctic and the Tropics. In both cases, significant biases were uncovered – for different 

reasons: undetected clouds and cloud spatial inhomogeneity, respectively. On the one hand, this 

led to the question whether the discovered bias patterns occur more widely than in the specific 

regions studied here. On the other, avenues for bias mitigation were proposed and tested. 

The science questions addressed in this thesis, along with other studies enabled by the 

development of EaR3T, are only the beginning of a transition towards fully embracing the 

complexity of atmospheric radiation in the real world. The various examples for approaching 

complex aircraft data in radiation science discussed here can guide the development of solutions 

for resolving some of the biases associated with assumptions and oversimplifications in traditional 

retrieval algorithms, and thus facilitate the transition from bias quantification to bias mitigation.  
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Appendix 

2.A Diffuse/direct correction for the polar angle response 

The polar angle response (“cosine response”) needs to be done separately for the direct and the 

diffuse downwelling radiation. Therefore, these two components first need to be separated, 

assuming  

𝐷𝑅(𝜆) = 𝐷𝑅;*K)#(𝜆) ∙ 𝑓 + 𝐷𝑅;*(LM(𝜆)(1 − 𝑓) 

where DR is the diffuse (to total, or global) ratio, f is the clear-sky fraction, and (1–f) is the fraction 

of a diffuser (clouds). 

We can make the simplification 𝐷𝑅;*(LM(𝜆) = 1.0, (i.e., the radiation under clouds does not have 

a direct component), leading to 

𝐷𝑅(𝜆) = 1 − 𝑓 ⋅ \1 − 𝐷𝑅;*K)#(𝜆)] (2.A1) 

The SPN1 measures the broadband diffuse radio, which we denote as 𝐷𝑅>N!1: 

𝐷𝑅>N!1 =
∫ F?(/)⋅-↓(/)M/34
35

∫ -↓(/)M/34
35

 (2.A2) 

where 𝜆1 and 𝜆P indicate the wavelength range of SPN1, and 𝐹↓(𝜆) is the calculated downwelling 

(global) spectral irradiance from a RTM (we did not use the SSFR measurements because they 

only encompass a sub-range of SPN-1). Substituting Equation (2.A1) into (2.A2), we get 

𝐷𝑅>N!1 = 1 − 𝑓 ⋅
∫ -↓(/)⋅Q1RF?6)7("(/)SM/
34
35

∫ -↓(/)M/34
35

 (2.A3) 

We can then determine f from 

𝑓 =
(1RF?89:5)⋅∫ -6)7("

↓ (/)M/34
35

∫ -6)7("
↓ (/)⋅Q1RF?6)7("(/)SM/

34
35

                                                                                                                                 (2.A4) 

and the diffuse/direct ratio can be calculated by using this value of f in Equation (2.A1). 
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2.B Azimuth response 

The azimuth response of the SSFR zenith light collector was obtained using the data collected 

during the so-called calibration flight (2014-10-02), where the aircraft flew a circles to collect 

radiation measurements at different solar azimuth angles. This was done by referencing the SSFR 

irradiance measurements to the simultaneous BBR data, building on the fact that unlike SSFR, 

BBR had no discernable azimuthal dependence. The data used to determine the azimuth response 

had a solar zenith range of [68.24 º, 71.49 º] with an average of 70.20 º, whereas the solar zenith 

angle range for the above-cloud case (2014-09-11, where the azimuth correction was applied) was 

[68.46º to 71.89º] with the mean of 68.91º.  

Since SSFR only covers part of BBR’s bandwidth from 200 to 3600 nm, RTM calculations 

were used to fill in SSFR spectra beyond its nominal wavelength range of 350 – 2050 nm. 

Subsequently, the RTM-extended SSFR irradiance was spectrally integrated (referred to as FSSFR). 

A second-order Fourier series was then applied to fit the azimuthal dependence captured by the 

ratio FSSFR/FBBR, shown in Figure 2.A1. It shows this ratio as a function of reference azimuth angle, 

defined as the azimuth angle of the sun with respect to the light collector, for which 0 degrees is 

defined as the aircraft flying due North. A second-order Fourier series was applied to fit the 

azimuthal dependence of FSSFR/FBBR. It constitutes SSFR’s azimuthal response at this solar zenith 

angle, which was then used to correct SSFR’s downwelling irradiance for the conditions 

encountered for the SSFR data collected during other research flights. The azimuth response 

obtained in Figure 2.A1 can be expressed as (with coefficients) 

-88;<
-==<

= 0.9460 + 0.0647 ⋅ cos a T
1U4

⋅ 𝜋c + 0.0160 ⋅ sin a T
1U4

⋅ 𝜋c 	− 0.0045 ⋅ cos a T
1U4

⋅ 2𝜋c 		−

0.0015 ⋅ sin	( T
1U4

⋅ 2𝜋)                                                                                                              (A5)                                                                                                                                            

where 𝜙 is the reference azimuth angle. 
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Figure 2.A1. Ratio between spectrally integrated SSFR downwelling irradiance and broadband downwelling 

irradiance from BBR as a function of reference azimuth angle (solar azimuth position with respect to the 

sensor, 0 degree pointing north) during 1:00 UTC – 1:36 UTC on 2014-10-03. The relative positions of the 

sun with respect to the aircraft are indicated by different colors. The black curve is a fitted function using a 

second order Fourier series. 

 

2.C Adaptive thresholding 

The threshold value at each pixel location of the image depends on the neighboring pixel intensities 

I.  For a pixel located at (x, y), the threshold value T(x, y) is calculated through the following steps: 

1). A subdomain of size d × d is selected with (x, y) at the center of the subdomain; 

2). The weighted average C(x, y) is calculated for the subdomain using Gaussian weights (Davies 

1990)	W(x, y), C(x, y) = ∑ ∑ I(i, j) ∙ W(i, j)V
WX4

V
YX4 ; 

3). The threshold for the pixel at (x, y) is the difference of the weighted average calculated in the 

previous step and a constant C4,  T(x, y) = C(x, y) − C4. 

d and  C4 are input parameters that can be adjusted to improve the results. In this study, d is set to 

1501 and C4is set to 0. 

 

2.D Uncertainty estimation 

1). SSFR-BBR irradiance product 
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For the SSFR spectral measurements, the nominal radiometric uncertainty is 5% (Schmidt et al., 

2010a). The nominal uncertainty of BBR measurements is 3% (Smith et al., 2017). As we 

described in Section 2.2, we corrected the azimuthal dependence of SSFR downwelling irradiance 

based on the BBR measurements using the method described in Appendix 2.B. After the 

correction, the SSFR downwelling and upwelling irradiances are still slightly inconsistent with 

BBR due to an imperfect cosine response comparing to BBR (although they agree with BBR within 

the range of uncertainty). In addition, the different sun-sensor geometries between the calibration 

flight (2 October, 2014) and the “0911-above-cloud” case mean that the azimuthal response as 

measured during the calibration flight does not necessarily fully apply to the case under study. In 

order to reference SSFR to BBR and simultaneously estimate the uncertainty of the merged 

product (SSFR-BBR), we applied a scaling method as shown in Figure 2.A2. Figures 2.A2 (a) and 

(b) show the azimuthally corrected SSFR downwelling and SSFR upwelling irradiance versus 

BBR. The wide spread of downwelling irradiance indicates that even after applying azimuthal 

correction for SSFR, some residual uncertainty of the azimuthal response obtained in Appendix 

2.B remains in the SSFR measurements after the azimuthal correction. In the upwelling irradiance, 

the SSFR is more closely related to BBR. Figures 2.A2 (c) and (d) illustrate how we correct for 

the remaining biases between SSFR and BBR and estimate the uncertainties of the SSFR-BBR 

product. Figures 2.A2 (c) and (d) show the histogram of the ratio of SSFR and BBR measurements. 

The ratio histograms indicate a scale factor of 1.006 and 0.946 for the SSFR downwelling and 

upwelling, with standard deviations of 0.025 and 0.01 when referencing to BBR. The scale factors 

of 1.006 and 0.946 are applied as divisor to SSFR downwelling and upwelling irradiance 

respectively. The SSFR irradiance after scaling (referred to as SSFR-BBR) versus BBR is shown 

in Figures 2.A2 (a) and (c) in green. After scaling, the SSFR-BBR and BBR achieve a better 
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consistency. The standard deviations of 0.025 and 0.01 represent the precision for the downwelling 

and upwelling irradiance of SSFR-BBR. Thus, we use 2.5% (0.025/1.006*100%) and 1% 

(0.01/0.946*100%) as the precision estimates for SSFR-BBR downwelling and upwelling, 

whereas the uncertainty propagates from BBR into the SSFR-BBR product (3%). 

 

                  
Figure 2.A2. SSFR integrated broadband irradiance versus BBR broadband irradiance (a: downwelling; b: upwelling) 

and the histograms of the ratio of SSFR integrated broadband irradiance to BBR broadband irradiance (c and 

d) for the “0911-above-cloud” case. The mean and the full width half maximum of the Gaussian distribution 

of the ratio are indicated as blue and green dashed lines in the histogram plots. The SSFR-BBR data (SSFR 

after applying the scale factor as indicated by the blue dashed line) versus BBR is indicated in green in (a) 

and (b). 

 

 

(a)  (b)  

(c)  (d)  
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2). Snow fraction and surface albedo 

When calculating the surface albedo from SSFR-BBR using Equation (2.4), we use the precision 

as determined above because the uncertainty cancels out for the ratio between the upwelling and 

downwelling irradiance. The uncertainty estimate of 2.7% for the surface albedo 𝛼 is then obtained 

through error propagation using Equation (2.4), where 

L(Z(/))
Z(/)

= paL(-(/)
↑)

-(/)↑
c
P
+ aL(-(/)

↓)
-(/)↓

c
P
                                                                                                                    (2.A6) 

 

 The uncertainty of the snow fraction described in Section 2.3 is estimated based on two main 

sources of error: 

1. Angle of the field of view (FOV): defined the circular area of the image pixels that were selected 

for processing; 

2. The subdomain size 𝑑 specified in the adaptive thresholding method described in Appendix 2.C. 

When the FOV size mentioned gets too large, pixels affected by the vignette effect and beyond 

correction is included, which will bias the results. When the FOV size gets too small, we would 

lose the variation of the snow fraction due to a relative small area. To use as many pixels as possible 

while avoiding to include contaminated pixels due to vignette effect at the corners, we found the 

best FOV angle to be 140°. In addition, changing the subdomain size 𝑑 would slightly change the 

results. Thus, we obtained 5 sets of snow fraction estimates using FOV angle of 120°, 140°, 160° 

and a subdomain size 𝑑 of 1401, 1501, and 1601. Figure 2.A3 shows the 5 sets of snow fractions 

estimated from nadir camera images using before-mentioned FOV angles and subdomain sizes. 

The standard deviation of the 5 sets of snow fraction is used as the uncertainties for the snow 

fraction for each data point. 
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Figure 2.A3. Snow fraction estimated using different FOV angles and subdomain sizes in the adaptive thresholding. 

The standard deviation of the 5 sets of snow fraction is shaded in black. 
 

3). Radiative transfer calculations 

The uncertainty of the radiative transfer (RT) calculations for the “0911-above-cloud” was 

estimated through the two-stream approximation of the reflectance 𝑅 

𝑅 =
[:Z⋅( 4>5?$)

[:( 4>5?$)
                                                                                                                                                                         (A6) 

where	𝜏 is the cloud optical thickness, 𝛼 is the surface albedo, 𝜇 is the cosine of the solar zenith 

angle, and 𝑔 is the asymmetry parameter. The value of 0.85 is assume for g. In addition, we assume 

that the two main sources for the uncertainty are from the cloud optical thickness 𝜏 and surface 

albedo 𝛼. The uncertainty of 𝑅 due to the change of 𝜏 and 𝛼 is therefore 

𝑢(𝑅) = pa\?
\[
𝑢(𝜏)c

P
+ a\?

\Z
𝑢(𝛼)c

P
                                                                                                                        (A7) 

This analytical formula allows to calculate uncertainties without numeric radiative transfer 

calculations. 
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2.E Atmospheric correction 

The following steps describe the atmospheric correction applied to the flight level albedo 

measured by SSFR-BBR. 

1) The spectral flight level albedo from SSFR-BBR (referred to as 𝑥4) was scaled by 0.6, 0.7, 

0.8, 0.9, and 1.0 (referred to as 𝑦1, 𝑦P, 𝑦], 𝑦3, and 𝑦=) – each of these are spectra; 

2) Five sets of downwelling and upwelling irradiances were obtained from the RTM by 

changing surface albedo to 𝑦1, 𝑦P, 𝑦], 𝑦3, and 𝑦= while keeping the other model inputs the 

same; 

3) From the five sets of downwelling and upwelling irradiances calculated at flight altitude, we 

can derive five corresponding flight level albedo 𝑥1, 𝑥P, 𝑥], 𝑥3, and 𝑥= using Equation (2.4); 

4) The five pairs of {𝑥, 𝑦} provide a relationship between surface albedo and flight level albedo 

(nearly linear), 𝑦 = 𝑎𝑥 + 𝑏; 

5) The linear relationship was inverted to infer the surface albedo spectrum from the 

measurements at flight level (𝑎𝑥4 + 𝑏). 

The atmospheric correction corrected less than 0.2% on flight level albedo at the non-absorbing 

wavelengths. 

 

2.F Extending spectral surface albedo 

To obtain the spectral surface albedo for a wavelength range from 200 nm to 3600 nm, several 

techniques were performed. Using the spectral surface albedo for “0911-above-cloud” (Figure 

2.6) as an example, the following steps were followed: 

1) The spectral surface albedo was calculated from Equation (2.5), e.g., with SF=76.4% 

(marked in red in Figure 2.6); 
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2) In the gas absorption bands (red area in Figure 2.6), the surface albedo was replaced with 

interpolated values; 

3) From 1800nm to 1900nm (yellow area in Figure 2.6), a polynomial fit was used for 

extrapolation, based on the spectral dependence from 1650 nm to 1800 nm; 

4) For the wavelengths shorter than 350 nm and greater than 1900 nm (green area in Figure 2.6), 

a modeled snow albedo (Wiscombe and Warren, 1981) was used, multiplied with a scale 

factor to match the measurements at the joinder wavelengths. 
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3.A Cloud Detection/Identification 

Cloudy pixels are identified through a simple thresholding method based on the red, green, 

and blue channels of MODIS. When the radiance values of the red, green, and blue channels of a 

pixel are all greater than the corresponding median value, the pixel is considered as cloudy, as 

illustrated by the following equation 

𝐈𝐟			
𝑅𝑒𝑑 > 𝑀𝑒𝑑𝑖𝑎𝑛(𝑅𝑒𝑑)	&
𝐵𝑙𝑢𝑒 > 𝑀𝑒𝑑𝑖𝑎𝑛(𝐵𝑙𝑢𝑒)	&
𝐺𝑟𝑒𝑒𝑛 > 𝑀𝑒𝑑𝑖𝑎𝑛(𝐺𝑟𝑒𝑒𝑛)

		z 𝐘𝐞𝐬, cloudy𝐍𝐨, clear	sky																																																																																(3. A1) 

Note that this only works for partially cloud-covered scenes, and may lead to false positives if 

there is brightness contrast from objects other than clouds. This method was specifically applied 

for the cases in this paper and should be changed as appropriate for future applications. 

 

3.B Two-Stream Approximation 

The two-stream approximation of the reflectance 𝑅 is calculated using Equation D2 from 

Chen et al. (2021), as follows: 

𝑅

=
𝜏 + 𝛼 ⋅ � 2𝜇

(1 − 𝑔) ⋅ (1 − 𝛼)�

𝜏 + � 2𝜇
(1 − 𝑔) ⋅ (1 − 𝛼)�

																																																																																																											(3. A2) 

where τ is the cloud optical thickness, 𝛼 is the surface albedo, 𝜇 is the cosine of the solar zenith 

angle, and 𝑔 is the asymmetry parameter. A value of 0.85 is assumed for 𝑔. The domain average 

of the solar zenith angle and surface albedo are calculated and used for estimating 𝜇 and 𝛼. Then, 

for a range of 𝜏, we calculated the 𝑅 and obtained the relationship of 𝑅(𝜏). For those cloudy pixels 

identified through A1, the inverse relationship of 𝜏(𝑅) is then used for estimating 𝜏 at any given 

𝑅. Note that this approach does not take into account any cloud reflectance anisotropies. 
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3.C Parallax Correction 

From the satellite's view, the clouds (especially high clouds) will be placed at inaccurate 

locations on the surface, which have shifted from their actual locations due to the parallax effect. 

We followed simply trigonometry to correct for it, as follows: 

Longitude correction (positive from west to east): 

𝛿𝑙𝑜𝑛 =
\𝑧;*M − 𝑧^_;] ⋅ tan(𝜃) ⋅ sin	(𝜙)

𝜋 ⋅ 𝑅D)#'&
× 180°																																																																														(B1) 

Latitude correction (positive from south to north): 

𝛿𝑙𝑎𝑡 =
\𝑧;*M − 𝑧^_;] ⋅ tan(𝜃) ⋅ cos	(𝜙)

𝜋 ⋅ 𝑅D)#'&
× 180°																																																																														(B2) 

where (𝑙𝑜𝑛^)' , 𝑙𝑎𝑡^)' , 𝑧^)') is the satellite location and 𝜃 and 𝜙 (0º at north, positive clockwise) 

are the sensor viewing zenith and azimuth angles. 𝑧;*M and 𝑧^_; are the cloud top height and the 

surface height. 𝑅D)#'&  is the radius of the Earth. Figure 3.A1 shows an illustration of parallax 

correction for the black-boxed cloud field in Figure 3.2.  

 

3.D Wind Correction 

The wind correction aims at correcting the movement of clouds when advected by the wind 

between two different satellites’ overpasses. 

Longitude correction (positive from west to east): 

𝛿𝑙𝑜𝑛 =
𝑢� ⋅ 𝛿𝑡

𝜋 ⋅ 𝑅D)#'&
× 180°																																																																																																																				(B3) 

Latitude correction (positive from south to north): 

𝛿𝑙𝑎𝑡 =
�̅� ⋅ 𝛿𝑡

𝜋 ⋅ 𝑅D)#'&
× 180°																																																																																																																				(B4) 
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where 𝑢� and �̅� are the domain-averaged 10 m zonal and meridional wind speeds, and 𝛿𝑡 is the time 

difference between two different satellites that fly on the same orbit. Figure 3.A1 shows the cloud 

location after applying the parallax (Appendix 3.C) and wind correction for the cloud field in the 

black box from Figure 3.2. 

 

 

                                          
Figure 3.A1. An illustration of correcting cloud location (red) for parallax effect (blue) and wind effect (green) for 

the black-boxed cloud field in Figure 3.2. 
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4.A Reflectance and Albedo 

From the radiance 𝑅𝑎𝑑 at the top of the atmosphere (TOA), reflectance can be calculated through 

the following equation assuming the radiation is isotropic: 

𝑅𝑒𝑓 =
𝜋 ⋅ 𝑅𝑎𝑑

𝐹98@ ⋅ cos	(𝜃)
 

where 𝐹98@ is the incident irradiance at TOA and 𝜃 is solar zenith angle. 

From the upwelling and downwelling irradiances of 𝐹↑ and 𝐹↓, albedo can be calculated through 

the following equation: 

𝐴𝑙𝑏𝑒𝑑𝑜 =
𝐹↑
𝐹↓

 

 

 

 

 

 


