TOOLBOX: A LIVING DIRECTOR FOR
UNIX TOOLS OWNED BY THE COMMUNITY

Carlos Maltzahn and David Vollmar

CU-CS-747-94

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

TOOLBOX: A LIVING DIRECTORY FOR
UNIX TOOLS OWNED BY THE COMMUNITY

Carlos Maltzahn and David Vollmar

CU-CS-747-94 1994

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430 USA

ToolBox: A Living Directory For Unix Tools
Owned By the Community

Carlos Maltzahn and David Vollmar
Computer Science Department
University of Colorado at Boulder
Campus Box 430
Boulder, CO 80309-0430
{carlosm,vollmar}@cs.colorado.edu

Abstract. Members of a community who work primarily at computer termi-
nals are deprived from distributed cognition as it occurs in many other
domains where people work with tools in a shared physical space. This
makes it harder for individuals to pick up cues towards useful tools and
their utilizations. Traditional help systems were unsuccessful to fill in this
gap of information flow. People prefer to consult other people in their com-
munity because either their tool knowledge is contextualized appropriately
or they know other people who can help. In this paper we describe the
design and preliminary evaluation of a system that is actively looking for
new tools and is interviewing potential experts. The result of these inter-
views is presented by weekly newsletters and a hypertext system in World
Wide Web format. We specifically address design issues of and experience
with the interviewing process and the presentation of the resulting informa-
tion.

1.0 Introduction

People share tools via networked computers. The design of these systems, however, tend
to prevent people from sharing practical knowledge about how to use these tools. Our
paper identifies the consequences of this situation and presents a fully functional prototype
which supports the exchange of practical knowledge.

The following example illustrates how computers make practical use of tools invisible:
Consider a mechanic shop with its abundance of tools hanging from perfboards, lying on
work benches or on the floor. A good way to find out about the various purposes of these
tools is to watch mechanics using these tools. Compare this situation with a modern multi-
ple room office where people work at networked computers: Without taking a careful look
on a person’s screen one cannot see any tools. People are punching keys - no matter what
tools they use and how they use them. Furthermore, screens are considered to be private
areas. It is usually not socially acceptable to stare over somebody’s shoulder. Thus, people
who are working in a computer environment are less exposed to the practical use of tools.

The latter environment generally leaves three ways to acquire tool related information:
(i) one can explore the on-line environment in the hope to stumble across a useful piece of

ToolBox 1

information, (ii) one can ask another person, or (iii) browse through an on-line or off-line
manual. Exploring the on-line environment tends to be time consuming and unproductive
[13]. Instead, users prefer to consult their colleagues or local experts [7] [9]. Asking
another person has the advantage of a certain response [8], which contains either contextu-
alized information, i.e., information that is grounded in the domain of the local community
[2] [14] [16], or a pointer to another person who might know the answer [11]. The latter
has also the advantage that it potentially extends the personal list of social contacts to
experts. Asking another person involves, however, “bothering” people, i.e. interrupting
their work. Furthermore, asking involves informal conversations. Beside their conve-
nience and social importance their negative aspects are (i) their low effectiveness because
only a few members of the community get the knowledge they need, and (ii) their fragility
because the knowledge is coupled with the availability of experts [17]. A question also
bears the danger of being interpreted as incompetence. Thus, one can view the social con-
text of people helping each other as a “competence market” in which people are trading
competence points for answers. This imposes social pressure especially on novices who
usually don’t have much to offer but who try hard to become a competent and accepted
member of the new community. People in this situation are therefore more likely to
browse through anonymous sources of information such as manuals and on-line help sys-
tems in order to build up some own competence before entering the competence market.
These, however, present information in a very general, de-contextualized way which
makes it difficult to discover useful tools for a given situation. Thus, the search can be
time consuming and unproductive [13]. This is especially true for keyword oriented sys-
tems like “man” in Unix" since appropriate keyword selection requires knowledge about
the overall structure of the corresponding domain [10]. Also, for novices on-line help sys-
tems are often as difficult to discover as any other tool.

All of the above ways of information acquisition require (i) the initiative of the user to
look for information, and (ii) an idea of where to look for information. Thus, the user can
not serendipitiously pick up useful information from his/her environment. In this paper we
address this problem by presenting ToolBox which is a fully functional prototype that
attempts to combine the advantages of asking somebody with the advantages of reading
manuals or using on-line help systems. Our approach is to provide a community con-
structed directory for tools, i.e. tools are categorized and reviewed by the community
itself. We call our approach a “living” directory because it evolves in a community by
actively collecting information about the social and domain-specific context of tools, i.e.
who is using which tool for what purpose. The directory is “owned” by the community
since every community member can modify the system at convenience.

The idea of a community constructed directory is not new. Perhaps one of the most
related systems is described in [8] since it also tries to integrate users into a help systems
for Unix tools. However, the author assumes that users voluntarily contribute knowledge
and does not address motivational issues, such as benefit of use and the overhead of add-
ing new knowledge. Furthermore, in order to retrieve information the system requires the
user to pose a query. However, it is often difficult to come up with effective queries with-
out having sufficient knowledge about the domain structure [10].

1. Registered trademark

2 ToolBox

Answer Garden [1] relieves the user from asking questions by presenting a branching
network of diagnostic questions from which the user can choose the best match to his/her
problem. If no satisfactory match exists the user can press an “Unhappy” button and post
the new question which is automatically routed to the appropriate expert. The system,
however, needs to be explicitly configured in order to provide this routing service, i.e.,
experts are known a-priori. In the advent of new tools, Answer Garden does not support
the discovery of new experts. The authors assume formally assigned experts, i.e., main-
taining Answer Garden is part of their job, and do not consider any other motivations.

DYK (“Did You Know”) [12] allows any member of a community to add new pieces of
information to a directory service. The design carefully accounts for motivational issues,
i.e., it tries to be an attractive displacement activity by being user-invoked, by presenting
small pieces of information and by being engaging. In particular, it provides feedback
mechanisms for information providers, an issue that we have not yet addressed in the
ToolBox design. To our knowledge, DYK structures its information through a pre-set,
non-hierarchical set of categories. It thus does not offer much support for users who look
for a particular piece of information.

A nice account of the difficulty of collaboratively structuring a group memory is given
in [3] which describes the design and implementation of TeamInfo. The basic idea of
TeamlInfo is to offer a group version of the various private collections of email folders.
The authors report on their experience with trying to collaboratively achieve a consensus
on the structure of a group memory. They present a taxonomy of filing habits that illus-
trates the complexity of developing a group filing habit. We believe, however, that this
complexity can be reduced in the following ways. First, consensus on group memory
structures is easier to achieve in small, specialized domains, e.g. the domain of Unix tools
(see also [17]). However, TeamInfo’s domain is defined as “information of persistent
value for the group.” This is not only a large and general domain but also a continually
changing one since it is based on the dynamic interests and tasks of community members.
Second, the authors describe an attempt to reach an explicit consensus through dedicated
meetings, i.e. people were asked to explicitly discuss and then agree on a structure. We
believe that an explicit consensus is harder to achieve than an implicit one, i.e. where peo-
ple start out with an ad-hoc structure and individually change it as needed. Thus, an
implicit consensus with respect to a categorization structure is constituted by the fact that
people are using it as a basis for communication without ever explicitly agreeing to it, i.e.
the structure is never finished and perfect.

In the following section we will present the underlying ideas of the design of our proto-
type. We will then describe the various components and present some feedback we got
from the members of the Computer Science Department of the University of Colorado at
Boulder who were the experimental users of this directory service. The report is concluded
with an outlook on further research on collaboratively “grown” information systems.

2.0 Design Issues

In this section we describe various design issues we considered particularly relevant for
a community constructed directory. After analyzing our target community we identify the
problem of motivating community construction. This in turn raises issues regarding the

ToolBox 3

presentation of the ToolBox browsing space which is discussed in the third part of this
section. The last part addresses the problem of the visibility of ToolBox and its services.

2.1 Analysis Of The User Community

The target community of our prototype are the people at the Computer Science Depart-
ment of the University of Colorado at Boulder who use Unix tools. Based on the number
of Unix on-line manual entries and the fact that some of the tools do not have manual
entries we roughly estimated the number of tools as 1000. Monitoring the process tables of
seven main hosts for one month we came up with the following data: 235 users have used
389 tools. The number of tools each user used ranges from 1 to 86. Most users used two
tools (35). The following figure shows the distribution. Although 389 different tools were

35‘ Number of people
30
25
20
15

10 Number of tools

per person

5 10 15 20 25 30 35 40 45 50 55 60

used only few people used more than 10 tools. This data seems to confirm studies which
conclude that most people in a computer environment are experts for a small set of com-
mands and novices for the rest of it (e.g. [4]). Since this kind of expertise is distributed
over a large set of commands it is of great advantage to every member of the community
to know local experts.

2.2 Motivating Community Construction

As a community constructed system ToolBox relies on the active participation of its user
community. Thus the system design needs to ensure that each class of users within the tar-
get community benefits from its use [6]. In particular, ToolBox needs to offer benefits for
the consumer of tool information as well as for the person who adds new information to

4 ToolBox

the system. Benefits can take many forms: the most trivial one being financial motivations
offered by organizations. However, we are interested in benefits that are solely based on
the services provided by the system.

In order to identify benefits we need to identify the roles and their goals of system users.
In the case of ToolBox these are (i) the consumer, who wants to efficiently find relevant
and up-to-date information, and (ii) the tool expert, who mostly wants to work undisturbed
(i.e., we assume that the role of a tool expert is not officially sanctioned by the organiza-
tion). The above user community analysis indicates that tool expertise is distributed, i.e.,
every member in the community can assume either role depending on the tool in question.
In ToolBox we took advantage of this fact by combining the directory construction pro-
cess with learning experiences. As a result we designed an interview during which Tool-
Box (the interviewer) asks the user (the interviewee) to interact with the representations of
ToolBox such that (i) the user reveals information about a given set of tools and (ii) learns
about structure and content of the ToolBox information space. However, the user explores
this space in the context of the interview, i.e. his/her explorations are task-oriented. There
is evidence that task-oriented explorations are more effective than task-free explorations
[13]. Important for the acceptance of the interviewing process is how well it fits in every-
day practice of the community. For example, users often engage in “displacement activi-
ties” [12]. In order to take the role of a displacement activity the interview (i) needs to be
brief, (ii) can be aborted at any time and without cost, and (iii) offer some informal contact
with the rest of the community.

Another way of increasing the benefit of construction is to reduce construction over-
head. We chose strategies of active and intelligent distribution and coordination of the
construction load among the appropriate members of the community. More specifically,
we use a dispatching strategy that is a combination of optimistic expertise assignment and
active soliciting. With expertise assignment we mean the process of assuming a user to be
an expert with respect to a tool based on his/her tool usage history. An optimistic expertise
assignment is an assignment based on usage patterns that not necessarily imply expertise.
Under active soliciting we understand the system initiated process of inviting a potential
expert for a construction session. Since our domain are on-line tools every tool user gener-
ates inevitably data in the computer network environment. For instance, a workstation
which runs Unix maintains a table that list all non-terminated processes. Among other sta-
tus information this process table also associates each process with the command and the
user who initiated it. A subset of these processes represent the set of tools currently used
by the community. Monitoring the process tables on all networked computers within the
community can be used to discover new tools and their users. For each entry in the process
table one can safely assume the following: (i) the tool that corresponds to the command
exists, and (ii) the location of the tool is known to the user’s environment. However, it is
also possible that the following is true: (iii) the user is able to classify the tool according to
a given tool taxonomy, (iv) the user knows where to find documentation, and (v) the user
knows something about the usage of the tool within the community’s domain. The
assumption of the last three statements (iii-v) is an instance of optimistic expertise assign-
ment. Note, that with this method the directory service will discover every program that
gets used by at least one member of the user community. Hence, this strategy is particular
useful for dynamically changing environments like Unix.

ToolBox 5

2.3 The Browsing Space

We call the information space of ToolBox browsing space since it is intended to offer a
“road map” to tool users. The browsing space can be browsed and searched. We will now
motivate the following requirements of the browsing space: (i) bridge the gap between the
user’s informational needs and the existing tool documentation, (ii) allow for easy capture
and easy recall, and (iii) let users modify the browsing space.

2.3.1 Filling the Gap

The current tool directory of our target community only offers information on a keyword
basis (i.e., man and apropos). This is not helpful for users who do not know what kind of
support an existing tool collection might provide. A browsing space provides the key-
words that are needed to find a tool. Its structure serves as explicating semantic relation-
ships between these keywords such that the user receives some guidance of how to
reformulate the problem in order to find the right set of tools. Each location in the brows-
ing space needs to be presented with its semantic context, i.e. the structure in which the
current location is embedded, and that the user can easily change location without losing
orientation.

Once the user has found a promising category, it is important that the choice can be vali-
dated by looking at the category’s list of subcategories and tools. In this situation the user
needs to be able to quickly access the potential value of tools to his/her problem. There-
fore, each tool should associated with a one- or two-line description. It is also important
that all this information is included into the keyword search space. For example, the user
might want to search for tools that are semantically similar to a known tool, i.e., tools
which share the category of the known tool or are located in an adjacent category.

In traditional tool manuals the user can be overwhelmed by the technical detail s/he is
confronted with once s/he has found a potentially useful tool [13]. Often it tums out that -
- after spending too much time in the reading of irrelevant details -- the tool is not appro-
priate at all. In our design of ToolBox we strived to avoid this situation by providing some
kind of bulletin board for each tool. The task of this bulletin board is to post multiple opin-
ions about for what the tool is typically used, from where to get good documentation,
where it can be found, and who in the community might give helpful information. Thus,
we do not want to replace documentation but we want to complement the existing docu-
mentation by providing important community specific information.

2.3.2 Costs of Capture and Recall

Our approach is to view the browsing space as a evolving communication forum of the
community. It must be easy for users to add new information about tools (minimal capture
costs) and retrieve relevant information about tools (minimal recall costs). In the follow-
ing paragraphs we discuss different ways of structuring a browsing space, i.e., multidi-
mensional spaces, directed graphs and trees.

A multidimensional space requires every location to be specified by a tuple of fixed
length. In a multidimensional browsing space for tools every tool is categorized by its
location, i.e. a fixed set of attributes. Thus, tools that are similar with respect to their

6 ToolBox

attributes are located close to each other. However, in order to place a tool in such a
browsing space one has to decide upon values for all attributes. In order to accommodate
all Unix tools the number of dimensions of the browsing space needs to be large, i.e., each
tool would be represented by a large set of attributes. This requires looking at many
attributes that would turn out to be irrelevant. Another problem is to represent such a mul-
tidimensional space in an effective manner. Furthermore, adding new dimensions to this
space would have an effect on the classification of the other tools and on the presentation
of the space.

Semantic relationships are often represented by directed graphs (e.g. [15]). However,
with sufficient size of the network, orientation becomes increasingly difficult. More recent
applications like Mosaic (a World Wide Web client) try to avoid disorientation by provid-
ing pointers to the location where one has started, by recording traces such that one can go
back step by step, and by private “hot lists” which are unstructured lists of bookmarks.
Many hypertext titles have adopted a hierarchical structure, i.e. each page contains point-
ers to a super page, Toot page, or to pages on the same “hierarchy level”. The popularity of
this structure might be explained by the dominance of hierarchical structure in paper based
media. ,

We therefore looked at tree structured browsing spaces. Compared to multidimensional
spaces these have the advantage that each category defines its own set of “attributes”, i.e.
its super- and subcategories, and that new attributes (i.e. subcategories) can be added with-
out any global effects. Each tool can be characterized by just placing it into a category that
resides in a context that makes only the relevant attributes explicit. However, almost all
tree structured categorization systems include non-hierarchical cross references among
semantically related categories. ‘

To account for non-hierarchical semantic relationships we chose to relax the constraints
of tree structures towards directed acyclic graphs, also called multi-hierarchies. This type
of structure allows a category to have multiple super categories. Furthermore, we also
allow tools to be placed in multiple categories. All the information associated with a tool
other than categorization remains however the same.

2.3.3 User Modifiability

Community members can communicate their view on tools by modifying and extending
the browsing space. As mentioned earlier, our conjecture is that community members will
implicitly agree upon a browsing space as long as they can tailor it to their needs. In order
to find out whether these conjectures are true we started out with a prototype that offers
unrestricted modifiability to potential tool experts. Potential tool experts interact with the
system during interviews. In the interview situation the user can reflect upon the adequacy
of the hierarchy since s/he is confronted with the task to place a set of tools. Thus, while
interacting with the interviewer the user can add new categories, move categories, and cut
and paste tools. We do not allow users to delete categories since this would make poten-
tially large amounts of information inaccessible. However users can move categories into
a “trash” category from where they can be recovered if necessary.

ToolBox 7

2.4 Visibility

One common problem of directory services for tools is that they can only be accessed by
running yet another tool. As with all tools, a user needs to know about its existence in
order to use it. The dilemma can only be solved if there is some way to actively deliver
such information to the user. One very effective delivery system is sending email to users.
However, it would not be enough to just mention the existence of ToolBox. What we need
instead is a message that catches a user’s attention and makes the information instantly
applicable. A good candidate for such a message is the kind of message ToolBox sends to
potential tool experts in order to ask for an interview: (i) The message is personalized in
that it enumerates a subset of the tools the user has used recently. (ii) The user is asked to
run a command to start the interview. This is immediately applicable and promises to sat-
isfy the user’s curiosity, thereby encouraging displacement activity as mentioned earlier.

Thus, sending out interview invitations seems to be a promising way to achieve visibil-
ity of the directory service. The questions remain, (i) who in the community receives such
emails and (ii) whether there is a part of the community that tends to be left out. In order to
make sure that everybody finds out about the directory service we designed a service that
sends out a weekly newsletter via email. The newsletter reports all tools where ToolBox
recently managed to get an interview for the first time and includes the results of these
interviews together with instructions on how to use the directory. This newsletter is sent to
all members of the community. '

3.0 The Components Of ToolBox

ToolBox consists of a Picker which picks up new tools, a Solicitor which solicits for
interviews by periodically sending email messages to users, a Newspaper which periodi-
cally generates a newsletter, an Interviewer which is called by users who are willing to
give interviews, and db2html which periodically generates a system of World Wide Web
hypertext pages that represent the content of the database. The diagram illustrates the
interactions of these components. Arrows represent directed information flow. Compo-
nents in italic fonts are either constantly or periodically run by the system using the timer
service of Unix (i.e., cron). Components in bold fonts are applications started by the user.
The following example scenario should clarify the interactions of the components:

Tuesday: Paul writes an email filter application in order to better manage the daily load
of email messages. He is testing his program with a filter application that comes with the
elm package. Meanwhile Mary in another part of the building gets finally sick of using t-
editor and tries f-editor for the first time which does not help much either. The Picker, con-
stantly in the background picks up the filter application of Paul and the f-editor application
of Mary because the tools are new to the ToolBox system. Both tool names with their
users are stored in a relational database.

Wednesday: At 6am the Unix timer service starts the Solicitor which once a day sends
email messages to the users of tools that were newly discovered during the past 24 hours.
Each email message contains a short list of tools that were individually compiled for the
corresponding user. The message also asks each user to call a tool called Interviewer that
helps to classify each tool and to answer some questions about usage, documentation, and

8 ToolBox

email mosaic

Picker / \ Interviewer T

Q‘Newwaper db2html
Database j

advisor status. At 7am the timer service starts db2html which compiles the content of the
databases into a system of mosaic pages.

In the morning Paul reads his email. One of his email messages has the subject line
“ToolBox needs your help”. He reads the message and cuts and pastes the command that
calls the Interviewer. The email message has already supplied the command with the right
arguments. He executes the command and is confronted with a full screen ASCII interface
that presents the hierarchy and a set of commands that allows him to navigate through the
hierarchy, modify or extend it. He drops each tool of the list that was provided as argu-
ments to the command into categories he thinks are appropriate and modifies or extends
the hierarchy along the way. Whenever he drops a tool into a category the Interviewer asks
him about usage, source of documentation and whether he wants to be a listed advisor, an
anonymous advisor, or not an advisor at all. He can also indicate that he would prefer not
to be solicited again.

Mary receives a similar message that allows her to let loose of her frustrations about the
f-editor. However, while reading the email message she also found out about the ToolBox
Mosaic page. She fires up Mosaic and visits the ToolBox page. Her goal is to find out
about new editors. Since she already knows the t-editor she tries to use the Mosaic search
function in order to get to the editor section of the browsing space faster. In the same sec-
tion she discovers l-editor. She clicks on the tool name which takes her to the l-editor tool
page. There she looks through a list of local comments and leamns about the users in her
community who use 1-editor. In one of the statements someone mentions a newsgroup for
l-editor. She then re-visits the ToolBox home page and clicks on “return to outline” which
takes her to the editor category within the categorization structure. She finds related cate-
gories next to the editor category and she spends some time “grazing” interesting bits of
information.

Monday: At 8am the Unix timer service starts the Newspaper which generates a new
newsletter and sends it to the whole community. Among other things it contains the result
of the interviews with Paul and Mary since they were the first ones interviewed about the
filter application and the f-editor.

/N

ToolBox 9

The next subsections describe the tools more in detail and the important issues related to
them.

3.1 Picker

The Picker is a constantly running process that periodically scans the process tables of a
specified set of networked computers. Its task is (i) to maintain the community database
which relates to each tool the list of users who are using it, (ii) to discover tools that are
either new or “forgotten”, and (iii) to collect users of unknown tools. To achieve (ii) and
(iii) it maintains a database of known tools and of newly discovered tools with their users.
Known tools are time stamped and can be forgotten. Forgetting is important since a tool is
not really discovered as long as no tool expert has been successfully interviewed; users are
free to ignore any ToolBox messages. If a specified period of time (e.g., half a week)
passes and the tool has not received enough responses (e.g., at least two) the entry in
known tools expires and the tool can be newly discovered, i.e. the Picker looks for new
users of those forgotten tools.

3.2 Solicitor

The task of the Solicitor is to send email messages to those users that have used new
tools. To minimize disturbance the Solicitor mails only one message per user and in order
to keep interviews short it limits the maximum number of tools that a user is asked about
to a specified constant (e.g., five). Tools that do not fit in mail messages are wait-listed for
the next initiation of Solicitor (e.g., the next morning). As a basic principle, the Solicitor
will never ask a user about the same tool twice.

Generally, the messages consist of three parts: (i) The introduction which includes a
shortcut to directly execute the interviewer command without reading the rest of the mail
and the list of tools about which ToolBox wants to interview the user, (ii) the instruction
part where the user receives an overview of what the interview will look like, and (iii) a
trailer which gives information about the project, the authors, and the location of the
mosaic page. Users who have not been solicited before receive with the soliciting message
a more elaborate introduction to the ToolBox service.

3.3 Newspaper

Based on the contents of the database the Newspaper generates a newsletter which con-
tains the following: (i) General statistics about tool usage, similar to the data we presented
about the target user community earlier on in this paper. This includes which hosts are
scanned and an acknowledgment of all the users who added information to the ToolBox.
(ii) New tools with the results of their first interviews, and (iii) general information about
the Toolbox.

10 ToolBox

3.4 Interviewer

The Interviewer is invoked by the user with a list of tools. For each tool the interviewer
presents the browsing space and asks the user to “drop” the current tool in an appropriate
category. During this part of the interview the user can browse and modify the browsing
space, i.e., move categories, cut and paste tools, and get information about tools s/he finds
in categories. After the user drops a tool in an appropriate category the Interviewer asks
the user for: (i) short descriptions, experience and opinions, (ii) good sources of documen-
tation, and (iii) preferred advisory status (“Not available for advice”, “Willing to advise,
but anonymously”, “Willing to advise”, and “Don’t want to participate in ToolBox”).
Since the Interviewer is called by the user it has complete access to the users environment.
Therefore, it can automatically derive the location of a tool. Furthermore, it is able to
check whether the user has access to Mosaic. If the user does not, it can interactively help
the user to set up the necessary environment variables for Mosaic.

—| Hogin 1]
Entering tool <mosaic> in
Category: </root)>:
0: UNIX 6: editing 12: media control
I 1: archiving 7: environment 13: network
. 2: batch processing 8: file format conversionl4: printing
| 3: coding 9: games 15: viewing
4: database 10: information services 16: zz TRASH
| 5: document preparation 11: math
L Tools in category <rootd:
L COMMANDS:;
7y (bYack up one level (n)ext tool (help
(r)oot (x)cut out tool (i)nfo
(0,.16) enter this category (p)aste tool, (u)ndo
(a)dd category (dirop tool here (t)ooldisplay off.
‘ (m)ove category
| Your cHOICE: N

The Interviewer is the most critical component of ToolBox since its design has decisive
influence on the quality and quantity of information offered by the ToolBox service. Peo-
ple have to like interacting with the Interviewer in order to achieve a collaboratively and
timely maintained directory.

3.5 db2html

This program takes the information stored in the shared database and compiles it into a
system of World Wide Web hypertext pages which can be viewed by Mosaic. db2html cre-
ates a home page which essentially represents the browsing space including the hierarchi-
cal structure and the list of tools which are associated with a short abstract similar to the
apropos database. Within this page, hypertext links from categories to tools and back facil-
itate efficient browsing. Furthermore the document can be searched for any word using the
built-in search function of Mosaic. db2html also creates an additional page for each tool
which is linked to the home page. By clicking on the tool name in the home page one vis-
its the tool page which contains (i) multiple statements about use, documentation, and

ToolBox 11

location, (ii) a list of advisors with instructions on how to mail questions, (iii) a list of
users that have used the tool since the directory service was initiated. Mosaic allows the
annotation of each page for personal use (see Appendix for screendumps of the hypertext
pages as presented by Mosaic).

4.0 Feedback and Lessons

The availability of a structured list of available tools with a list of willing advisors
seemed very attractive to our target community. Due to the high visibility of ToolBox it
took us almost no effort to get a lot of feedback. In this section we summarize the issues
that were raised. Note, that most of our feedback comes from people who are not involved
in this or any closely related project and thus have no other interest in using ToolBox than
the interest motivated by the service ToolBox offers.

Some people did not believe that the expertise assumption is a useful design concept, i.e.
just because users are using a tool does not mean that they are able or willing to offer
information about it. Also, a user can use a tool quite often without knowing much about
it, whereas the same user could be an expert on another tool that s/he is currently not using
at all. We agree that the expertise assumption is not an accurate measure for locating
expertise. However, even if the frequent user of a tool knows little about the tool, the fre-
quency of use itself suggests the possible value of the tool. A novice might profit from
knowing about such frequently used tools. Whether the user is willing to offer information
is based on complex social factors similar to those we mentioned earlier when we dis-
cussed the risks of asking people. ToolBox does not force anybody to offer any informa-
tion. ‘

People did not like the selection of tools they were solicited for. Since the Picker blindly
picks up any new command users were solicited for (i) tools that they thought were too
insignificant (e.g., login), (ii) private tools that were not supposed to be available to the
community, and (iii) tools they never heard of because they were invoked by the login pro-
cedure or by another tool they use. These instances proved to be very bad for the image of
ToolBox. We are therefore working on alternative ways of evaluating process tables. One
idea is to maintain an exclusion list of insignificant tools. Another approach is to analyze
the parent/child dependencies of processes in order to catch automatically invoked tools.

We found it difficult to find the right compromise between a short interview and an inter-
view which asked for substantial information which would result in a greater number of
more specific questions. As mentioned earlier, we were striving for a short interview in
order to make it attractive as an displacement activity. In particular, people did not know
what to answer to the first question of the interview which asked about an opinion of a
tool. Often people thought they were asked to give a brief description for a tool of which
they believed was already well documented. They therefore regarded this question as
redundant. The following attempts to fix this problem might illustrate the problem of find-
ing a short question that is easy to answer and does not require any explanations. One ver-
sion of the question was “Usage:” which proved to be too hard to answer. Another version
said “For what do you use this tool?” which users answered with very general statements
like “for editing” (in an interview concerning the tool ‘emacs’). The same applied to still
another version asking “What do you think of this tool?” which caused even less specific

12 ToolBox

statements like “It’s great!” Users complained about the sequential nature of the interview
and suggested a form based approach that would serve as an overview of the interview and
examples instead of instructions. We are working on a complete redesign of the Inter-
viewer that will account for these complaints. We learned from this experience that users
need a lot of context information in order to answer a question successfully. For an inter-
view the context should include the overall structure of the interview and example
answers to questions.

Most people only knew ToolBox from their interactions with the Interviewer. Using
Mosaic proved to be too difficult for the target community: most people did not know how
to use Mosaic. We expect that this will change in the near future. However, it raises the
issue of how much “bootstrap” information a novice needs to acquire in order to success-
fully use ToolBox. In this case, a novice needs to leam the basics about how to use email,
the Interviewer and Mosaic. Experience showed that we could rely on the fact that people
knew how to use email and how to call a command (this knowledge was necessary for
starting the Interviewer). However, this was not true for Mosaic. We think that Mosaic will
become more known but to rely on this would be a mistake. Instead we plan to extend the
Interviewer in such a way that it (i) helps the novice user to use Mosaic, and (ii) does not
prevent expert users to use Mosaic efficiently.

In an initial test phase people sometimes received two messages a day which they found
obnoxious. Sending messages to users once a day seems to be a maximum.

Concerning the issue of privacy, we got conflicting feedback. Some people did not care
at all about being on the user community list as long they were not swamped by questions.
Others were opposed to being on a list that was publicly available over which they had no
control.

5.0 Observations

In this section we present some observations we took during the first month of ToolBox.
We started ToolBox with an ad-hoc categorization of tools which was roughly based on
the tools we came across ourselves. We populated this categorization with about 150 tools
we randomly picked out of the man pages. Within the first few days about six other users
added another 39 comments about tools. After a month we had 17 users (including the
authors). ToolBox then contained 249 comments about tools (of which the authors con-
tributed 23). During the first few days the categorization we provided was rapidly
extended and also considerably restructured resulting into 65 categories. After a month
only 6 more categories were added. In one case a user added a semantically equivalent cat-
egory with a different name (e.g., “document preparation” while “editing” already
existed). The Solicitor mailed an average of 10 messages a day with an average of three
tools per message. Over the month the selection of tools discovered by Picker improves as
the database becomes “smarter”. Although, the user base is still very small and there is so
far no evidence for the benefit of use, we think that these preliminary results are encourag-
ing.

ToolBox 13

6.0 Conclusions And Future Work

In this paper we presented a directory service for Unix tools that is designed in such a
way that its timely collaborative maintenance does not need to be externally motivated.
We are now at a stage where a continually increasing number of users want to use this ser-
vice and give us feedback about the various obstacles and shortcomings they encounter.
We therefore consider our project as mild success since its service appeared beneficial to
users who were not involved in this project at all. However, as the feedback shows, many
problems still need to be solved. Since ToolBox was started a little bit over a month ago it
is yet too early to make definite conclusions about the viability of two basic assumptions:
(i) the expertise assumption which states that a person who uses a tool knows enough to
substantially help a novice, and (ii) the assumption that the structure of a user modifiable
browsing space will stabilize over time. As shown above, preliminary results do not dis-
courage these assumptions.

Future research will focus on three areas: (i) Improving the quality of the Picker: in par-
ticular we want to investigate the applicability of text analysis methods, (ii) Integration of
the present Interviewer with Mosaic, and (iii) Supporting collaborative integrity mainte-
nance.

Ideally, the Interviewer would be integrated with electronic mail (see for instance the
Active Mail approach in [5]) and Mosaic such that the user does not need to call an extra
application when receiving a message from the Solicitor and can take advantage of the
navigation facilities and graphical user interface of Mosaic.

7.0 References

[1] M.S. Ackerman and T.W. Malone. Answer garden: A tool for growing organizational
memory. In Conference on Office Information Systems, pages 31-39, Cambridge,
MA, 1990. ACM.

[2] L. Bannon. Helping users help each other. In D. Norman and S. Draper, editors, User
Centered System Design: New Perspectives on Human-Computer Interaction, pages
399-410. Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

[31 L.M. Berlin, R. Jeffries, V.L. O’Day, A. Paepcke, and C. Wharton. Where did you
put it? issues in the design and use of a group memory. InINTERCHI ' 93, pages 23—
30, April 1993.

[4] S.W. Draper. The nature of expertise in Unix. In B. Shakel, editor, INTERACT ’84.
1984.

[51 Y. Goldberg, M. Safran, W. Silverman, and E. Shapiro. Active mail: A framework
for integrated groupware applications. In D. Coleman, editor, Groupware ’92, pages
222-224. Morgan Kaufmann Publishers, 1992.

[6] J. Grudin. Groupware and social dynamics: Eight challenges for developers. Comm.
ACM, 37(1):92-105, January 1994.

[71 S.XR. Hiltz. Online communities: A case study of the office of the future. Ablex,

14 ToolBox

(8]

[9]

[10]

[11]

[12]

(13]

[14]
[15]

[16]

[17]

8.0

Norwood, NJ, 1984.

M. Kurisaki. Help systems: An information-sharing approach. In D. Diaper, editor,
INTERACT ’90, pages 529-534. Elsevier Science Publishers B.V. (North Holland),
New York, 1990.

K.N. Lang, R. Auld, and T.Lang. The goals and methods of computer users.
International Journal of Man-Machine Studies, 17:375-399, 1982.

N. Miyake and D.A. Norman. To ask a question, one must know enough to know
what is not known. Journal of Verbal Learning and Verbal Behavior, 18:357-364,
1979.

C.E. O’Malley. Helping users help themselves. In D. Norman and S. Draper, editors,
User Centered System Design: New Perspectives on Human-Computer Interaction,
pages 377-398. Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

D. Owen. Answers first, then questions. In D. Norman and S. Draper, editors, User
Centered System Design: New Perspectives on Human-Computer Interaction, pages
361-375. Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

J.F. Rieman. Learning strategies and exploratory behaviour of interactive computer
users. In Tech. Report CU-CS-723-94. Dept. of Computer Science, University of
Colorado at Boulder, 1994.

L.L. Scharer. User training: Less is more. Datamation, pages 175-182, July 1983.

J.F. Sowa. Principles of semantic networks: exploration in the representation of
knowledge. Morgan Kaufmann, San Mateo, CA, 1991.

L.A. Suchman. Office procedures as practical action: Models of work and system
design. ACM Transactions on Office Information Systems, 1:320-328, 1933.

L.G. Terveen, P.G. Selfridge, and M.D. Long. From "Folklore" to "Living Design
Memory". In INTERCHI ’ 93, pages 15-22. ACM, April 1993.

Appendix

ToolBox 15

s

) 1.1

Flle Options Navigate Annotate Help
Document Title: TooTBOX WHW Server
Decument URL: http://www.cs.colorado,edu/homes/carlosm/publ

ToolBox WWW Sarver

If you want to search by keyword, use the "Find In Current..” function in the “File® menu,
Otherwise browse through the ToolBox Hierarchy and find out what's in there. it is
updated every 24 hours!

The ToolBox Hierarchy

O hest
© keyboard mapping
© teminal control

a fle.: ;yscm

B g_ac_k{ Fors ‘am’[Hcmel Re)oadl Openmi Save As.“’ Cmne! NewWindw‘ Close Windowl

Part of the hierarchical structure of the ToolBox Home

Page as it is generated by db2htm] and viewed by Mosaic

£ie _Options _ Navigate Annctate

Document Title: Too1Box WWW Server

Document URL: http://www.cs.colorado. edu/homes /cari osm/publ

toxt

mecy- 18.593
editing fles, wiing code, reading and sending mall

sed
A very useful firer for simple tasks, Afthougyh sed
can be used for quite complex Wl - use awk or perl instead, especlally if you
need to maintain state over multiple fines.

v
text editor, clumsy interface, but very powerfull

(back tm outline)

| Back] Forwand] Home| Reicad] Open..] Save As. | Clone] New Window] Close Window] H

The content of the category “text”. This is a different section in
the same document that contains the hierarchical structure.
“Back to outline” leads back to the “text” category in the
hierarchical structure, Clicking on the tool names leads to the
corresponding tool pages.

[

FHie Optlons Navigate Annotate

Help
Document Title: Too1Box page for vi g
Document URL: http://www.cs.colorado, edushomes/carlosm/publ

ToolBox: vi

Comments on vi

Path: Jusriuchivi

Path: fusriucbivi

{with Mosaic Annotate, see bottam for annotations made so far)

1. Comment: text editor, clumsy interface, but very powerfull
Documentation: man pages

2. Comment: hard to leamn editor thet works on mest ascli terminals. if you have
the cheice to leam vi or emacs: leam emacs
Documentation: man pages

Mailing Questions

user community of i

Hyou want to mall questions to

Advisor List: (volimar)

Below are twe lists of users, The first is the advisor fist and the second represents the

@ an advisor - enter the subject lIne:
toolbox guestion ~ vi

® an ancnymous advisor - mall to car losm, 8nter the subject line:
toolbox anonymous - vi

® a member of the user community - be caitious and read the note below!

User Community of vi: (cariosm, usha, volimar, fedrick, ross, szexyrta, cal, ceash,
alib, garth, schwartz, fuehrer, shao, crivells, sankaran, wiener, raot, helen, }cuok, |cam,

med e Lnadied allonf ldnm mibasban lonn bnblnb nnlo 4 brimernil s b

1 Back| Forartl| Homef Reload] Open.| Save As..| Clone] New Window] Close Window|

Example of the tool page of “vi”. There are two comments
about vi and one advisor. Part of the local user community

is displayed at the bottom.

16

ToolBox

