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ABSTRACT

This paper considers the relationship between extended context free
normal systems (a nondeterministic version of Tag systems of Post with
deletion number equal to 1 and using nonterminals) and ETOL systems.

It is demonstrated that the class of languages generated by context free
normal systems (denoted L(ECFN)) lies strictly between the class of EOL
languages (denoted L(EOL))and the class of ETOL Tanguages. Several
characterizations of L{(ECFN) in terms of L(EOL) are provided and a

number of closure properties of L(ECFN) are established.






INTRODUCTION

Normal systems introduced by E. Post in [13] are rewriting systems with
(a finite number of) rules of the form xP - Py where x,y are particular
words and P is a variable ranging over the set of all words (over the
alphabet of the given system). Post has shown in [13] that even a subclass
of the class of normal systems called Tag systems is equivalent to Turing
machines. It is shown in [1]  that this result remains true even if one
considers Tag systems with rules xP - Py where the length of x does not
exceed two. In [173 it is shown that this result is not true for Tag systems
in which x is a single letter and this result is strengthened in [2]
to arbitrary normal systems with this property. Both H. Wang and S. Cook
prove their results by demonstrating that the derivability problem for
those systems is decidable.

Then in [10]1 it is pointed out that the resultsof H. Wang and
S. Cook (and even their proof techniques) are closely related to the
theory of L systems and in particular to the work concerning the membership
problem for DOL and OL systems (e.g., the paper by P. Doucet [4 1). Five
years later a more thorough investigation of the relationship between
context free norma] systems (that is normal systems with rules xP - Py
where x is a letter) and L systems is presented in [9]. M. Kudlek proves
that the class of languages generated (in the usual way) by context free
normal systems using nonterminals, which we abbreviate as ECFN systems,
lies between the class of EOL languages and the class of ETOL languages
(he also points out that each ECFN system G has a naturally associated
EOL system H which provides the "backbone" of each derivation in G).
Whether the class of languages generated by ECFN systems (denoted L(ECFN)
lies strictly between L(EOL) (the class of EOL languages) and L(ETOL)
(the class of ETOL languages) is left open in [9]. Also the closure

of L{ECFN) under various basic operations is left open.
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In this paper we investigate the precise relationship of L{ECFN) to
L(EOL) and L(ETOL). We demonstrate that L(EOL) ;.L(ECFN) ng(ETOL) and
provide characterizations of L(ECFN) in terms of L(EOL). We also establish

a number of closure properties of L(ECFN).

A normal system rewrites a word while permuting it cyclically from
left to right. Hence the operation of cyclic permutation (see, e.g. [15]
and [3]) seems particularly suited for the investigation of ECFN systems.
As a matter of fact we demonstrate that this operation provides a basic
link between ECFN systems and EOL systems. We hope that this paper strengthens
the relationship between the classical Tag systems of Post and the more
recent EOL systems of Lindenmayer. In particular we show how various known
results and techniques of dealing with EOL systems are directly applicable
in the analysis of ECFN systems and languages. Also, we think that this
paper provides more insight into the topic of cyclic permutations.

We assume the reader to be familiar with basic formal language theory

and in particular with EOL systems (see, e.g., [141).




I. PRELIMINARIES

We mostly use standard language theoretic terminology and notation
(see, e.g., [14] ). Perhaps only the following points should be noted.
For a finite set Z, #Z denotes its cardinality; also to simplify the
notation we often identify a singleton set with its element. For a
word x, |x| denotes the length of x and 4 denotes the empty word. In
this paper we consider only finite nonempty alphabets. Two ianguages
are considered equal if they differ at most by the empty word. For
a word x, mir x denotes the mirror image of x and for a language K,
mir K denotes the mirror image of K. A homomorphism that maps every
letter into a letter is called a coding. It is always assumed that a
finite substitution maps each letter into a nonempty set of words.

By a gsm mapping we understand the translation of a nonde?efministic
generalized sequential machine with accepting states. ”

For the sake of completeness let us recall briefly the notion

of an EOL system (see, e.g., [14]). An EOL system is a construct

G = (2,h,w,A) where 3 is an alphabet (the total alphabet of G),
A < 2 (the terminal or target alphabet of G), « € 2% (the axiom.

of G) and h is a finite substitution on z™*. For x,y ¢ z* we write

X = y whenever y € h(x); then L denotes the reflexive and the transitive
clgsure of the relation = . Thg language of G is defined by L.(G) =

{x € 2% o z X} ; we sas that L(G) is an EOL language. If Z % A

then G is re?erred to as a OL system and L(G) as a OL Zanguage; 1in

this case G is specified as (Z,h,w). if for all a € 2, & # h(a). then

we say that G is a propagating EOL system, abbreviated EPOL system, and that
L(G) is an EPOL lZanguage. L({EOL) denotes the class of EOL languages.

An ETOL system differs from an EOL system in that it has a finite number
of finite substitutions rather than one only. Then a sing1é,deri90tion
step (=) is performed using only one, but arbitrary, finite substitution

(in different derivation steps one may use different finite substitutions).
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L(ETOL) denotes the class of all ETOL Tanguages.
In the sequel we will often use the following operation.
Definition. Let u,v be words. We say that u is a cyelie conjugate
of v if there exist words x,y such that u = xy and v = yx. For a language
K, the eyclic permutation of K, denoted eyc K, is defined by
ceye K = {y|y is a cyclic conjugate of a word in K}. For two .languages
K and M we say that K is a cyclic conjugate of M, denoted K ~ M, if
(1) for every u € K there exists a v € M such that v is a cyclic conjugate
of u, and
(2) for every u ¢ M there exists a v € Ksuch that v is a cyclic conjugate

of u. o

It is easy to see that ~ is an equivalence relation,
cye K = {yx | xy € K} and that K is a cyclic conjugate of M if and
only if cye K = eye M.

It turns out that, e.g., the classes of regular and context free
languages are closed under cyclic permutation (see, e.g., [11 ] and
[15 1) but for our paper the following result from [3 ] is particularly
interesting.

Lemma 1.1 ([ 3 1). L(ETOL) is closed under cyclic permutation. o



IT. BASIC DEFINITIONS AND PROPERTIES

In this section we recall from [ 9 ] the definition of ah extended
context free normal system - the basic object of investigation of our paper.
Definttion. An extended context free normal system, abbreviated
ECFN system, is a construct G = (2,h,w,A) where I and A are alphabets (the
total and the terminal alphabet respectively), w € 2t (the axiom) and h
is a finite substitution on z*. A direct derivation step (in G), denoted
by =, is defined as follows: if a € £, u, v € 2* and v € h(a) then au = uv.

G :
As usual the derivation relation (in G), denoted by i, is defined as the

G
reflexive and transitive closure of =. The language of G is defined by
G | |
L(G) = {v € %] © 2 v); we say that L(G) is an ECFN Zanguage. If, for each

G
a €2, A £ h(a) then we say that G is an extended propagating. context free

normal system, abbreviated EPCFN system; L(G) is referred to as an EPCFN
language. O

The class of ECFN languages (EPCFN languages respectively) is denoted
by L(ECFN) (L(EPCFN) respectively).

-Remark. Note that in [ 9 ] it is allowed that for a symbol a, h(a) is
the empty set. However, the reader can easily see that the definition from

{ 9 1 and our definition are equivalent. o

Thus an EOL system and an ECFN system differ only in tHe way a direct
derivation step is performed. It turns out that the "underlying" OL system
of a given ECFN system G p]aysva very-essential role in analysing the
language of G.

Definttion. let G = (z,h,w,s) be an ECFN system. The underlying OL

system of G, denoted UOL(G), is the OL system (2,h,0). o

If u e z* and |u] = n then n derivation steps in G starting with u

constitute a round (see [17 ] and [ 2 ]) and’ they yield a word v € 2* which



can be obtained from u in UOL(G) in one step. Thus every derivation in G can
be considered to consist of a sequence of rounds followed by a sequence of
direct derivation steps too short to form a round (see the proof of Loemma 3
in [ 2 ] and Theorem 7 in [ 9 ]). This is formally expressed by the following
basic Temma relating ECFN and EOL systems. (Since this Iemmé is so basic,

for the sake of completeness we give it together with a proof).

Cemma 11.1 (L 23, [ 91). Let G = (2,h,w,4) be an ECFN system. Then

%
L(G) = {v,u jvz, u € 4* and, for some Vi €27, u ¢ h(vl) and Vv, € L(UOL(G))}‘

‘ Proof.

Let x € L(G).

If x ¢ L(UOL(G)) then obviously we can write x in the form vou where
Vol satisfy the conditions from the statement of the lemma.

If x ¢ L(UOL(G)) then Tet ®g = @, W1s...y @ = X be a derivation of x in
G and let m < n be the Targest index such that w, € L(UOL
where lv1§ =n - m. Then clearly x = Vou where u € h(vl).

(G)). Let wo = ViV

Consequently

L(G) < {vou | Vosli€ +* and, for some vy € ¥, u e h(vl) and ViV, € L(UOL(G))}.

On the other hand, the reverse inclusion is obvious (one derives Vou

from vyv, in fvl]

Hence the lemma holds. o

steps).

It turns out (see [ 9 1) that each EOL language is also an ECFN Tanguage,
a fact very useful in our further considerations.

Lemma IT1.2 (L S 1). L(EOL) c L(ECFN).

Proof.

Let K € L(EOL) and Tet G = (2,h,w,4) be an EOL system genarating K (it
is well known, see, e.g., [14 ], that we may assume that G is propagating).
Llet T = {3 | a € 2} and let Gy = (2 U f}hl,B,A) be the ECFN system where
hy(a) = {x | x € h(a)} and hl(E) = {a) for all a € 2 (for a word y, y results

from y by replacing each occurrence of each letter a iny byVE).



By Lemma II.1,

L(G) = {v,u | vy, ue 2* and, for some vy €2%, u € hy(vy) and vyv, € L(Ug (§))2.
The construction of &, implies that, in the above, if ViV, € L(UOL(G)) then
either v,v, € 2* or ViV, € T¥. Suppose that v, and v, are nonempty. Then

u € hl(vl) implies that Vou ¢ ¥ (because G is propagating). Thus either Vo
or vy is empty. Consequently L(Gl) = L(UOL(GI)) N a*. Since by construction of
Gys L(Up (61)) = L(G) U {X | x € L(G)} we get L(G;) = L(G).

Thus L(EOL) c L(ECFN). o

We wi]l prove later on that L(EOL) ;_L(ECFN).
However it turns out that each ECFN language has a cyclic conjugate in L(EOL) - a
very basic fact in our proofs in the sequel.

Theorem 11.1. For every ECFN language K there exists an EOL language
M such that K~ M,

Proof. |

Let G = (z,h,0,4) be an ECFN system such that L(G) = K. Let

*

M = {uv, | v,, u € 4" and, for some vy € 2%, u € h(vy) and v,v, € L(Uy (6))3.

1

By Lemma II.1 M is a cyclic conjugate of K. Also it is easy to see that there
exists a gsm mapping g such that g(L(UOL(G))) = M. Since it is well known

(see, e.g., [14]) that L(EOL) is closed under gsm mappings, M is an EOL language.

Thus the theorem holds. o




III. POSITIVE CLOSURE PROPERTIES

In this section we consider positive closure properties of L(ECFN), that
is we preéent several operations which applied to elements of L(ECFN) yield
languages in L(ECFN}. The’results of this section will be verv essential in
establishing the precise relationship between L(ECFN) on the one hand and
L(EOL) and L(ETOL) on the other hand.

We start with the following obvious result.

Theorem 111.1. L(ECFN) is closed under union. -

Proof.

Obvious. o

In analysing ECFN systems the following extension. of the operation
of cyclic permutation will be quite useful.

Definition. Let A be an alphabet, K ¢ 4* and f be a coding on A*. The
f-cyclic permutation of K is defined by cye K ={v f(u) | uv é K}.

Lemma 111.1. Llet G = (Z,h,w,A) be an EOL system and let f}be a coding on
A¥. Then cyecL(G) € L(EPCFN).

Proof. A

Let Gi'= (Zl,hl,ml,A) be the ECFN system where
Z

~s

Z, =2 U

1

2 ={a | a €z} and F a new symbol,

v

UT ULFIU s with¥ = (3 | a €3}, 2=1a | ac3),

w = w.(for a word x, X results from x by replacing each occurrence of a

letter a in x by @; analogously one gets x and X),

hy(3) = (a) for a €28,

hl(gd = {g,a} for a € a,

hy(2) = (3} for a € 2\4,

hy(a) = (3, f(a)} fora € 4,
hy(3) = (X | x € h(a)} for a €z,

=
[y
——~
o
A
i

hl(F) = {F} for a € A.



AU

Derivations im G1 in which no symbols of A occur simulate derivations

in G: if x = y then the simulating derivation in G1 is a "composition"
G
of rounds X

¢ >
o U

%2 y. By Lemma II.1,
1 G
* * ;

and, for some v, € 27 , u € hl(vl) and vyv, € L(UOL(Gl))}‘

o U*

1
L(Gl) = {vzuivz,u €A
From the construction of G1 it follows that in the above vy and Vo must
A A
* , * . o2 - .

ie such that v, € & and vy € 2% 5 d.e. Vv, = XV, with x,v, € L(G) and
X1Vo produces Vo f(xl).

Consequently L(Gl) = {x, f(xl)lxlx2 € L{G)} = cye (G). Moreover if G is

propagating then so is Gl‘ Since G can be assumed to be propagating,

the theorem holds. a

This yields the following closure result for L(ECFN).

Theorem 111.2. L(ECFN) is closed under cyclic permutation.

Proof, |

Let K € L(ECFN). By Theorem II.1 there exists an EOL language M such
that K~ M (and so cye K = cyec M).By Lemma III.1 (take f to be the identity

mapping) eye M € L(ECFN) and so cye K € L(ECFN). o

As a matter of fact f-cyclic permutations provide our first characterization
of L(ECFN) in terms of L(EOL).
Theorem 111.3. Let A be an alphabet, & = {ala € 4} and K ¢ 4* |
Then K € L(ECFN) if and only if there exist an EOL language M and a coding
fon (4 UT)" such that K = 0¥ 0 eye M.
Proof.
The "if" part of the statement of the theorem follows from Lemma III.1
(and from the obvious observation that to get an intersection with n*
one changes the terminal alphabet of the systemconsidered to ).
To prove the "only if" part we proceed as follows. Let G = (Z,h,0,d)

be an ECFN system
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and let K = L(G). Let M = {Uvzlu,v2 € o and, for some vy € ¥, u ¢ h(vl)
and ViVo € L(UOL(G)) , where for a word x € A® , X is obtained by replacing
every occurrence of every letter a in it by a. Clearly M can be obtained

from L(U,, (G)) by a gsm mapping, hence M € L(EOL). Let f be the coding on

oL
(4 UT)* defined by f(a) =3, and f(3a) = a for all a € 4. Then ..
2* n cyeM = {vzulu,v2 ¢ p*and, fot some v, € 2¥, u € h(v,) and ViV, € L(UOL(G))

and so by Lemma II.1, 2* 0 cych = L(G) = K. Hence the theorem holds. o

Theorem III.3 allows one to prove tﬁe following nqrmal form theorem for
ECFN systems.

Theorem 111.4. L(ECFN)= L{EPCFN) .

Proof.

Clearly L(EPCFN) c L({ECFN).

To prove that L(ECFN) ¢ L(EPCFN) let K € L(ECFN), K ¢ p . By Theorem III.3,
K=a%n cyce M where M is an EOL Tanguage and f is a coding. Hence, by
Lemma III.1, eyec M € L(EPCFN) and so obviously K = A* N cye M € L(EPCFN). o

We end this section be establishing the closure of L(ECFN) under gsm
mappings.

Theorem 111.5. L(ECFN) is closed under gsm mappings.

Proof.

Let G = (2,h,w,a) be an ECFN system, let K = L(G).and let g be a gsm mapping,
g : 2+ @*. For words UpsUy € 2" and VisVy € o* we write <VsVp> € g(<u1,u2>)
if and only if ViV € g(uluz) and moreover Vs is the output produced by g
during the processing of uss i€ {1,2}.

Consider the language M ¢ (@ U §)* defined by
M= {Xy|x,y € @ and for some words UsVysVy € 2t ViV, € L(UOL(G)),

Vou € 8, u e h(vl) and <y,x> € g(<v2,u>)}.




It is easy to see that there exists a gsm g, such that gl(L(UOL(G))) =M:
g, starts in a state q of g (chosen nondeterministically) on some
Vv Vo € L(UOL(G)), then it simulates g on a string u ¢ h(vl) putting bars on
the output letters until it arrives in a final state; at this moment g, starts
a simulation of g on Vo beginnihg in the initial state of g; the whole
simulation can be finished only when g arrives at q. Thus M ¢ L(EOL).

By Lemma II.1, g(K) = {yx|Xxy € M}. Hence g(K) = Q* n cyce M where f is
the coding on (2 UR)™ defined by f(a) =a and f(3) = a for all a € @ .

Thus by Lemma III.1, g(K) € L(ECFN). o



IV. THE RELATIONSHIP OF L(ECFN) TO L(EOL) AND L(ETOL)

The aim of this section is to establish a precise relationship between
L(ECFN) on the one hand and L(EOL) and L(ETOL) on the other hand.

We start by strengthening Lemma II.2.

Theorem IV.1. L(EOL) i L(ECFN).

Proof.‘

By Lemma II.2, L(EOL) < L(ECFN).

It is well-known (see, e.g.,[ 14]) that K = {anbmanlm = n=1} ¢ L(EOL).
That K € L(ECFN) is seen as follows. Let Ky = {bman$an)m Znz=1};
clearly K is context free and so K1 € L(EOL). But K = f({a,b}*$ n cchl)
where f is the homomorphism on {a,b,$}* defined by f(a) = a, f(b) = b and
f($) = A. Hence by Lemma II.2, Theorem III.2 and Theorem III.5,K ¢ L(ECFN)
and consequently L(ECFN) ~ L{EOL) # 0 .

Thus the theorem holds. o

Remark. It is instructive to notice that the language K from the proof
above is generated by the ECFN system G = (Z,h,w,s) where
z = {A,B{K{E,F,a;g,é,b,ng}, A = {a,b}, w = ABE and h is defined by

h(A) = {A,aA3,a},

h(B) = {Bb,b}

h(x) = {x,x} for x € {a,b},
h(X) = {x} for x € {a,b},
h(x) = {x} for x € {A,B}, and
h(x) = {F} for x € {a,b,F}. o

The following result puts Theorem IV.1 in a better perspective.
Theorem IV.2. Let A be an alphabet, #4 = 1 and let K ¢ a* .

Then K € L(EOL) if and only if K € L(ECFN).



Proof.

Directly from Theorem II.1l. o

We provide now another characterization of L(ECFN) in terms of L(EOL).
We need the following lemma first.

Lemma IV.1. For every language K € L(ECFN) there exist a language
M € L(EOL) and a gsm mapping g such that K = g(cyeM).

Proof.

Let K = L(G) where G = (3,h,w,A) is an ECFN system. Let $ ¢ 4 and
let M = L(UOL(G))$ : clearly M € L(EOL). Let g be the gsm mapping that
translates Vo $ vy intq all Vou such that u € h(vl); moreover g accepts

only if the output Vou € 4° . Then Lemma II.1 implies that K = g(cyeM). o

Theorem IV.3. L{ECFN) = {g{cye M) | M € L(EOL) and g is a gsm mapping} ,
moreover L(ECFN) is the smallest class of languages containing L(EOL) and
closed under cyclic permutation and gsm mappings.

Proof.

This follows directly from Lemma IV.1, Lemma II.2, Theorem III.Z2 and

Theorem III.5. o

Remark. It is easy to see that using Theorem III1.2 and Theorem III.5
one can strengthen Theorem III.2 to the closure of L(ECFN) under f-cyclic
permutations. Hence, by Theorem III.3, L(ECFN) is the smallest class
containing L(EOL) and closed under f-cyclic permutations and intersections

with &*. Comparing this result with Theorem IV.3 one sees a trade-off
between an arbitrary gsm mapping and cyclic permutation on the one hand

and a trivial gsm mapping (N A*) and f-cyclic permutations on the other hand. o

Based on Theorem IV.3 we also get the following additional positive

closure property which we consider quite surprising.
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Theorem 1V.4. L{ECFN) is closed under mirror image.
Proof.
Let K € L(ECF¥). By Theorem IV.3, there exist an EOL language M and
a gsm mapping g such that K = g(eye M). Obviously for an arbitrary language Z
and for an arbitrary gsm mapping f we have cye(mir Z) = mir(eye 1) and
mir f(Z) = fl(mir Z) for some gsm mapping fl (simply, fl simulates f
"backwards"’). Conseguently mir K = mir(g(cyc M)) = gl(mir(cyc M)) = gl(cyc(mir‘ M))
for some gsm mapping 9y - Since’obviously L(EOL) 1is closed under mirror image,

Theorem IV.3 implies that mir K € L(ECFN).

Hence the theorem holds. o

The above result shows that if one defines extended context free normal
systems to operate in the right-to-left mode (that is rules are of the
form Px - yP) then one obtains the same class of languages.

Finally we settle an open problem from [ 3 ].

Corollary IV.1. L(EOL) is not closed under cyclic permutation.

Proof,

It follows directly from Theorem IV.3, Theorem IV.1 and the fact that

L(EOL) is closed under gsu mappings. o

L(EOL) is not closed under cyclic permutation,but L(EOL) is not an AFL
(see, e.g., [ 14]1). To put Corollary IV.1 in a proper perspective we provide
now an example of a full AFL which is not cl&sed under cyclic permutation
(another example of this situation is given in [ 3 ]).

Remark. Consider the full AFL L(STACK) of stack languages ([ 5 1).
Clearly K1 = {bnzcnan | n=z 1} is a stack language, however according to
(121, X, = ta"™" <" | n = 1) is not a stack language. Since

K, = a*b*c* N cyeK,, L(STACK) is an example of a full AFL that is not closed

2 1’
under cyclic permutation. o




~ 0=

We move now to consider the relationship between L(ECFN) and L(ETOL).
The following result is from [ 9 1, however we provide a different proof
for it.

Lemma IN.2. (L 9 1). L(ECFN) c L(ETOL).

Proof.

This follows from Theorem IV.3, Lemma I.l and the well known facts (see,

e.g., [ 141) that L(EOL) c L(ETOL) and L(ETOL)is closed under gsm mappings. o

Our next result strenghthens Lemma IV.2 and answers a question frem
[91, |

Theorem IV.5. L(ECFN) g L(ETOL).

Proof,

By Lemma IV.2 L(ECFN) ¢ L(ETOL). It is well known (see [ 8 1) that
L(ETOL) \ L(EOL) contains languages over a one letter alphabet. Hence by
Theorem IV.2, L(ETOL) \ L(ECFN) # § and the theorem holds. o

In the next section we will see further examples of languages in

L(ETOL) \ L(ECFN).
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V. NEGATIVE CLOSURE PROPERTIES.

In order to have a more complete picture of L(ECFN) we move now to in-
vestigate several nonclosure properties of L(ECFN).

Theorem V.1. L{ECFN) is neither closed under inverse homomorphisms nor is
it closed under regular substitutions.

Proof.

Let K = {x ¢ {a,b}*l the number of occurrences of a in x equals 2" for
some n = 0}. It is well known (see [7 1) that K ¢ L(EOL).

Assume that K € L(ECFN). Then by Theorem II.1 there exists an EOL language
M such that K~ M.
Let f be the finite substitution on {a,b}* defined by f(a) = {a} and
£(b) = {b,a}. It is easy to see that K = b*f(M)b*. Since obviously L(EOL) is
closed under finite substitutions and under the operation of catenating b™ in
front of and behind any string of a language, K € L(EOL); a contradiction.
Thus K ¢ L(ECFN).

Since obviously KO = {a2n | n> 0} is an EOL tanguage and hence (Lemma II.2) t
an ECFN language and since K can be easily obtained from KO by both an inverse

homomorphism and a reqular substitution the theorem holds. o

Since it is well known that L(ETOL) is closed both under inverse homomorphisms
and under regular substitutions, the above result together with Lemma Iv.2.
yields an alternative proof of Theorem IV.5.

Next we recall a definition of an operation quite useful in investigating
various classes of languages (see [16 1).

Definition. Let 4 be an alphabet and let ¢ ¢ A. The copy operator (on A*)
is the mapping c, : 2¥ =+ (8 U ¢)* defined by c,(x) = x ¢ x for x € 2*. For

a language K c a*, CZ(K) ={x¢x| x€K.o

Theorem V.2. L{ECFN) is not closed under copying.



Proof.
Assume to the contrary that L(ECFN) is closed under copying. Let K € L(EOL),

K c a¥.

Then, by Lemma II.2 and Theorem III.5 it easily £011ows (apply copying
twice) that Kp = xgxgx¢g | x € K} € L(ECFN). By Theorem II.1 there exists
an EOL language M such that K1 ~ M. Clearly all words in M are of the form
y¢€x¢gx¢g zwherex €K, y, z € +* and moreover for every x € K a word of
this form is in M. Hence there exists a gsm mapping g such that g(M) = CZ(K).
Since L(EOL) is closed under gsm mappings, CZ(K) € L(EOL). This implies that‘
L{EOL) is closed under copying, which contradicts [ 161.

Thus we conclude that L(ECFN) is not closed under copying. o

Before we prove our next nonclosure result we need the following result
- bridging in a special way L(ECFN) and L(EOL), and so interesting on its own.
Lemma V.1. Let A be an alphabet, ¢ £ 4 and let KI’KZ be languages

over A. If K, ¢ K2 € L(ECFN) then either K, € L(EOL) or K, € L{EOL).

1

Proof.

In this proof we apply the usual translational technique of which
Greibach's "syntactic Temma" (see [ 6 ]) i$ a well known example.

Assume that K; ¢ K, € L(ECFN) and let 8 £ (& U {¢}),
Then by Theorem III.5, K1 ¢ K2 % € L(ECFN). Let G = (Z,h,w,a) be an EFCN
system such that L(G) = K1 ¢ K2 5. By Theorem II.1 there exists an EOL
language M such that L(G)rv.M,

Let 99 be the gsm mapping that translates every word of the form
z3y¢x with x,y,z € 4™ into y (and 97 rejects words of any other form).
Similarly let 9, be the gsm mapping that translates every word of the formh
z¢y3x with x,y,z € A* into y (and 9, rejects words of any other form). Since
L(G) ~ M, gl(M)_g Ky and gZ(M)_E Kz.

We consider separately two cases



Case 1. For every y € K1 there exist x,z € »* such that z3y¢x € M and
XZ € KZ'
Then clearly K}.E gl(M) and consequently K1 = gl(M).
Case 2. For every y ¢ K2 there exist x,z € a* such thatfz¢y$x €M and
Xz € Kl‘

Then clearly KZ-E gZ(M) and consequently K2 = gZ(M).

Since L(EOL) is closed under gsm mappings, to complete the proof it
suffices to demonstrate that cases 1 and 2 together exhaust all possibilities,
To this aim assume that case 1 does notb hold. Thus there exists a word
yq € Ky such that for all y, € K, and all x,z ¢ s* such that xz = y,,
z$y1¢x # M. Hence for this particular ¥y € K1 and for any Yo € K2 if
u € M is a cyclic conjugate of y1¢y2$ ¢ L(G) thenu = zl¢y2$x1 for some
X124 ¢ A% such that X121 = Y1+ Consequently case 2 holds.

Thus the Temma holds. o

Since it is well known (see, e.g., [18]) that L(EOL) is closed under
catenation, Lemma Y.1. says that L(EOL) is the largest subclass of L(ECFN)
closed under marked catenation.

Theorem V.3. L{ECFN) 1s neither closed under catenation nor is it closed
under Kleene star.

Proof.

Let K ¢ L(ECFN) \ L(EOL), by Theorem IV.1 such a K exists. By Theorem
IT1.5, K ¢ € L(ECFN) where K ¢ 5* and ¢ ¢ 4. If we assume now that L(ECFN)
is closed under catenation then K ¢ K ¢ ¢ L(ECFN) and so by Theorem III.5,

K¢ K ¢ L(ECFN). But this contradicts Lemma V.1 and conseduently L(ECFN) is
not closed under catenation.

If we assume that L(ECFN) is closed under Kleene star, then by Theorem III.5,
(K ¢)* € L(ECFN) and so, again by Theorem III.5, K ¢ K € L(ECFN) which contra-

dicts Lemma V.1. ThusL(EFCN) is not closed under Kleene star. o
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