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Palakurthi, Naga Venkata SivaPratap (M.S., Computer Science)

Similarity Analysis on Unstructured Text using Dependency Trees in BioMedical Domain

Thesis directed by Prof. Lawrence Hunter

The published Biomedical scientific literature discusses most of the relationships between

biomedical entities like drugs, genes, diseases and cellular processes. Relationships in the form of X

(drug) inhibits Y (Gene), X (drug) treats Y (disease) and so forth are scattered in an unstructured

format over millions of articles. Sentences like “X decreases Y”, “Y is decreased by X” and “X

reduces Y’s effect” represents the same underlying relationship (decrease) between X and Y despite

different sentence structures. Identifying such similarities in the relationships is critical to various

applications in natural language processing and information retrieval.

Extracting these similar relationships between entities has various applications in question

and answering [1], relationship analysis [2], and semantic search [3]. However, identifying these

relationships from the vast corpus of unstructured data is a complex task which involves techniques

like data mining, machine learning, and Natural language processing. We found that various

methods like EBC [2] have inherent drawbacks in scaling to larger datasets and also in using

full-text bodies for analysis. Inspired by this need, this thesis work focuses on scalable similarity

analysis on the unstructured text of full-text bodies using entities from different ontologies.

We devised a new method - Mengsim, which is a dependency parse based similarity detec-

tion technique that finds similar relationships between semantic concepts from sentences like “X

decreases Y”, “Y is decreased by X” and “X reduces Y’s effect”. Mengsim relies on dependency

grammar which gives syntactic connections between words in a sentence [4].

Mengsim’s evaluation along with standard models showed its effectiveness in retrieving similar

relationships. We also found that the proposed method can scale to larger datasets. We used

concepts from three biomedical ontologies in our methods - diseases, drugs and genes which show

the ability to scale to multiple ontologies.
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Chapter 1

Introduction

This thesis proposes a dependency path based relational similarity method which applies to

massive data sets of full-text articles like Pubmed. Scientific literature in the biomedical field is

growing at an exponential rate for the human readers to keep up. This unprecedented increase

in content has lead the researchers to develop computational methods to understand/analyze the

literature automatically with/without supervision. One of the interesting problems in such analy-

sis is relation extraction task which deals with identifying relations between nominals. Relational

analysis by Swanson [5] lead to the discovery of a previously unknown connection between magne-

sium and migraines. Percha et al. [2] discovered five new drugs which are previously unknown to

DrugBank [DrugBank is a manually curated database of drugs and its interactions].

Relations on a fundamental level, are the connections people perceive among concepts or

nominals, i.e., how one nominal interact with another nominal. The relations in literature are in

the form of text fragments which are usually described by the authors in a variety of ways. For

example, x is increased by y, y increases x, y significantly increases y - all arguably describe a single

generic relation ‘increase’. Identifying the words (is increased by, increases, significantly increases)

which represent relationships in the text often helps in mapping them to the standard relations like

hypernyms and hyponyms (which are typically defined in ontologies and knowledge bases).

In practice, mapping the text fragments to standard relations (for example ‘is increased by’

to ‘increase’) on a large scale of data like PubMed is a complicated and computationally expensive

process. Popular approaches use methods to identify similarities in the text fragments describing
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the relations which help in grouping the similar text fragments and can be named to represent a

standard relation.

Various methodologies were developed to find similarities in text fragments describing rela-

tionships. These methodologies fall in supervised, semi-supervised or unsupervised learning ap-

proaches. Further, the similarity techniques used in these approaches are based on the broad

spectrum of methods like attributional similarities and relational similarities.

However, these methodologies often face problems in scaling to large datasets like Pubmed.

Pubmed is a huge collection of 26+ million articles which is the primary reason for these scalability

issues. This thesis focuses on a developing a PubMed scale relational similarity methodology for

identifying text fragments representing similar relationships.

This thesis also focuses on using full bodies of literature rather than short abstracts which

gives an opportunity to extract various relations not mentioned in abstracts.



Chapter 2

Relevant Background

2.1 Unstructured Text

Rich domain-specific unstructured knowledge resources such as Pubmed present large cor-

pora of scientific journals for analysis. Most of the knowledge in the biomedical field is in the form

of unstructured text in scientific journals [6]. The amount of data available to scientists in journals

is overwhelming. As described by V Nastase et al., [5], ”without automation in the form of knowl-

edge discovery, connections between entities or phenomena may go unnoticed.” The computational

approaches for automation have gained popularity in the biomedical field from decades. These

procedures need to extract data efficiently, aggregate, annotate and store information from these

unstructured texts.

However, unstructured data presents significant challenges for computational methods. Au-

thors represent results in natural language using different word choices and different sentence struc-

tures. Algorithms need to understand and link synonyms for named entities like drugs, genes,

relationships, etc. Computational approaches need to overcome differences in sentence structures

(like “X decreases Y”, “Y is decreased by X”) and word choices (like ‘decrease’, ‘reduce’) which

leads to a formal representation of text for better analysis. Moreover, the scale of the unstructured

data available for analysis is increasing rapidly [42] which lays the emphasis on scalability issues.

Performance and scalability are important features for these computational approaches.
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2.2 Concepts

The word ‘Concept’ is associated with many controversies related to its representation and

relevance in the biomedical domain [7]. In our work, we refer concept as any ontologically defined

term. Throughout the work, we use different terms like entities, nominals, and concepts which all

mean the same.

Ontologies are a formal way of representing knowledge in which terms have a clear, unambigu-

ous meaning which makes them suitable for representing semantics in an ambiguous unstructured

text. Bio-ontologies represent concepts from life sciences and molecular biology. There are many

Bio-ontologies in the biomedical domain like Chemical Entities of Biological Interest (CHEBI), Hu-

man Disease Ontology (DOID), Gene Ontology (GO), etc. There also exist controlled knowledge

bases like OMIM, PharmGKB, DrugBank which provide more information about the ontological

terms. These Bio-ontologies and knowledge bases play a central role in bioinformatics: they act

as database integrators, shared vocabularies, and more [8]. Structured ontologies and knowledge

bases are becoming increasingly central to the construction of sophisticated information retrieval

systems.

Creation of Bio-ontologies and knowledge bases by humans is an intensive and a time-

consuming task requiring a great deal of human effort. Moreover, these knowledge bases need

an extensive maintenance, updating and deleting of relationships [2].

The ontological concepts are usually represented in a wide variety of ways in the scientific

literature. Concepts can be expressed using synonyms, hyponyms or various morphological forms

(Bollegala et al. [9]). Identifying such different types and mapping to an ontologically defined con-

cept is a critical process in understanding the unstructured text and is performed using techniques

like ontology term recognition. Table 2.1 shows various representations of concepts used in bio

literature.

We used three different structured sources for analysis in our methods. 1) The Disease

Ontology [10] is a standardized ontology which has concepts from human diseases, phenotype
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Table 2.1: Various representations of semantic concepts

Semantic Concept Representations

AIDS acquired immunodeficiency syn-
drome, acquired immunodeficiency,
AIDS

helminthiasis helminth infections, helminth-
infected, helminth infection,
Helminthiasis, helminthiasis

Pneumocystis pneumocystis pneumonia, pneumo-
cystis, Pneumocystis

characteristics, and related medical vocabulary disease concepts. 2) ChEBI”(Chemical Entities of

Biological Interest) ontology [11] provides concepts of molecular entities focused on ‘small’ chemical

compounds like drugs, atoms, roles, etc. 3) Genes extracted from PharmGKB (Pharmacogenomics

Knowledge base) [12] drug-gene associations. The examples of concepts used in our methods are

in Table 2.2. Though we used concepts from 3 ontologies in our results, our method is designed to

work with concepts from any ontology.

Table 2.2: Sample Concepts from 3 Ontologies used in our methods.

Ontologies Sample Concepts

ChEB”- Drugs Tamoxifen, codeine, metoprolol

PharmGKB - Genes BCL2L1, BRAC1, CYP2D6, KIT

DOID - Diseases Antiviral drug, fluconazole, chloro-
quine

2.2.1 Concept Extraction

Ontology term recognizers transform unstructured text to formal meaning representations.

The output of such recognizers is a partial formal representation of the underlying text. As described

by Funk et al. [7], concepts are difficult to recognize in text due to a disconnect between what is

captured in an ontology and how the concepts are expressed in the text. Funk further describes

the tremendous diversity in the possible forms of representations for these concepts.
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Various automated concept mapping tools exist that recognize references to ontological terms

in the text. Numerous advances in the availability of high-quality ontologies and the ability to accu-

rately identify concepts in texts, and in language processing methods have made significant progress

in concept analysis. Most widely used generic concept mapping tools are the National Library of

Medicine’s MetaMap, UIMA ConceptMapper and NBCOs Open Biomedical Annotator (NCBO

Annotator) [7]. Other less familiar tools are Whatizit, KnowledgeMap, CONANN, IndexFinder,

Terminizer, and Peregrin [7].

The system described in Funk et al. [7], uses UIMA ConceptMapper with best-performing

parameters for each of the supported ontologies. Funk’s concept mapper is used in our methods to

identify the biomedical entities in sentences. It should also be noted that the concepts recognized

by any of the automated concept recognition tools are not always accurate.

2.3 Relations

Relations are the connections people perceive between objects. As Tesniere [13] describes

“The connection is indispensable to the expression of thought. Without the connection, we would

not be able to express any continuous thought, and we could only list a succession of images and

ideas isolated from each other and without any link between them.”

Any piece of text describes a set of entities and the ways in which these entities connect. The

connections usually come from 2 sources. One is through knowledge sources like ontologies or from

general knowledge. A typical example of such knowledge is from GO ontology mitochondrion -¿ is -¿

intracellular organelle, where ‘is’ represents a relationship between mitochondrion and intracellular

organelle. The second source of connections comes from text fragments. For example, in the text

‘ibuprofen is prescribed to alleviate gingival pain’, the connection between ibuprofen and gingival

pain is ‘alleviate.’

Depending on the granularity, relations can be unary (involves one object), binary (involves

two objects), ternary (involves three objects) or a more generic n-ary (involves n objects). Unary

relations describe properties of an object. Binary relations are most popular and extensively studied
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Table 2.3: Demonstration of relationships between semantic concepts

Drug - Concepts Gene - Concepts Relation

chloroquine TLR9 block

lapatinib EGFR can activate

capsaicin TRPV1 binds

antidepressant BDNF activates

Oxaliplatin TRPA1 abolishes

morphine SON affects

gefitinib EGFR antibody

metformin STAT3 down regulates

morphine CPP induces

itraconazole CYP3A4 inhibitor

in bioinformatics. Table 2.3 gives examples of binary relations between two class of objects Drugs

and Genes. RelEx [14], JT Chang et al., [15], Percha et al., [2] have all concentrated on binary

relations.

The relationships are often extracted using two methodologies. One methodology is the

inventory approach, which is computationally suited to many computational models. This method

needs to define an inventory of relations and later use it in the analysis. For example, Nastase and

Szpakowicz [16] established 30 relations like cause, effect, product, part, whole, etc. and used them

for relation extraction.

In the second approach, relations were not defined initially. The dataset of relations is built

as the algorithms process and analyze data. EBC [2] uses this methodology to learn the structure

of relationships. The inventory approach and exploratory approach each have their advantages and

can be chosen based on the specifics of the problem.

The relations described in this thesis mainly describe the instance of relations like reduce,

regulates, etc., rather than ‘type’ of relations (like causal, spatial) unless directly specified.

2.4 Syntactic Relations

Due to unstructured text’s complexity and varied ways of representation of Information, we

use underlying syntactic representations to capture interactions between concepts.
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In the English language, sentence structures often follow subject-verb-object (SVO) format

where subject comes first, verb comes second, and the object third. In the sentence “Paracetamol

decreases fever”, subject is paracetamol, verb is decreases and object is fever. There are other

structures of language like SOV (Paracetamol fever decreases), VOS (decreases fever Paracetamol)

etc., which are not valid in English. The sentence structures are governed using a set of rules,

processes, and principles known as syntax. Parse trees (syntactic trees) are used to represent these

structures in language according to a specified grammar. Parse trees will be discussed in detail in

the following section.

2.4.1 Dependency Paths - Syntactic Relations

Dependency parse trees are a variation of parse trees that provide a representation of a

Grammatical Relations (GR) between words in a sentence. These Grammatical Relations (GR),

inspired by Dependency Grammar, offers a level of abstraction over specific syntactic analyses [17].

The importance of Grammatical Relations (GR) connecting ontology terms is that they may help

in identifying the meaning of relationships.

Using dependency trees for identification of relationships is a popular approach discussed in

various studies. Zelenko et al., [18] used tree kernels on dependency parse tree representation of

sentences to extract relations between entities. Bunescu et al., [19] further hypothesized that the

shortest path between entities in a dependency tree contains almost entire information needed for

relationship extraction.

Each relationship in a dependency tree is an asymmetric binary relationship between a word

called head and another word called modifier [13]. An example of a Dependency relationship is

“dobj(decreases, fever)”, where dobj is the “direct object” relationship between head - decreases

and modifier - fever. The structure of a sentence can be represented by a set of such relationships

through which a tree (directed graph) of a sentence can be created.

Regarding the implementation details, there exist multiple implementations of dependency

parsers like Stanford Dependencies (SD) [17] and MINIPAR [20]. We used Stanford parser to
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extract dependencies trees for sentences. Stanford Dependency (SD) representation is chosen as it

showed promising results in relationship extraction tasks in the works of [2] [14] [21] [22]. Stanford

Parser uses around 50 dependency relationships. Table 2.4 lists a subset of universal dependency

relationships. SD provides good coverage of core grammatical relations, such as subject, object,

internal noun phrase relations, and adverbial and subordinate clauses [23]. More details about the

design principles and GR’s used in Stanford parser can be found in [17].

Table 2.4: Subset of Universal Dependency Relations

Relation Description Example

det determiner - Relation between the
head of an NP and its determiner.

The man.

advmod adverb modifier - An adverb or
adverb-headed phrase that serves to
modify the meaning of the word.

Genetically
modified.

dobj direct object - Direct object of a VP
is the noun phrase which is the ob-
ject of the verb.

She gave me a
raise.

nsubj nominal subject - is a noun phrase
which is the syntactic subject of a
clause.

Clinton defeated
Dole.

The dependency tree for the sentence “A potent inhibitor of ACE, captopril, prevented the

cleavage of the C-terminal.” formed using SD is shown in Figure 2.1.
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Figure 2.1: Graphical representation of the Dependency tree parsed using SD for the sentence: A

potent inhibitor of ACE, captopril, prevented the cleavage of the C-terminal.

The links in Figure 2.1 represent dependency relationships. The direction of a link is always

from the head to the modifier in the relationship. Labels associated with the relationship describe

the type of dependency relationships.

The path between two words (which are not connected directly) is formed by concatenating

the dependency relations and the words in between them. Previous work in [2] [14] [24] [19] have

shown evidence that the information required to assert a relationship between two concepts in a

sentence is typically captured by the shortest dependency path connecting those two concepts. The

path between terms captopril and ACE from Figure 2.1 is

Captopril [advmod, prevented, nsubj, inhibitor, prep of] ACE

2.5 Full text bodies

Scientific literature is published in the form of technical journals which contains abstract and

body. Abstract contains a summarized version of the journal whereas body contains a long, and

detailed version. Much of the previous relation centered methodologies like DIPRE, EBC, RelEx

used only the short abstracts over the long and complicated full-text bodies.

According to Cohen et al. [25], full-text bodies differ structurally from abstracts in the

scientific literature. The sentences are longer in full-text bodies. The longer sentences mean that
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the number words per sentences will be high which might influence the performance of the parsers.

Moreover, the sentences in full-text bodies use parenthesis significantly which further can inflict

grave consequences on performance and efficiencies of information extraction tools.

Cohen further conducted a study on the number of mentions of biomedical entities in the full-

text bodies vs. abstracts. The study revealed that on average article bodies have more mentions

of drugs and disease semantic classes than abstracts. Drugs were mentioned on average 0.72 times

in abstracts, whereas 13.6 times in bodies when a dataset of 97 articles is studied.

Thus factors like longer sentences, complex sentence structures, a significant number of entity

mentions make full-text articles difficult to process than short text abstracts but offer a richer source

of knowledge.

2.6 Learning methods on Pubmed Scale

Another good problem to solve in bioinformatics is the scale of data available for analysis.

Most of the knowledge about biomedical entities like drugs, genes, proteins, etc., is published in

the form of unstructured text in scientific journals. PubMed is a full-text collection of biomedical

and life sciences journal literature at the U.S. National Institutes of Health’s National Library of

Medicine (NIH/NLM).

As of October 2016, Pubmed comprises more than 26 million journals with some records

going back to 18th century. Adding to 26 million number, more than a million new records are

added each year to Pubmed. Methods to analyze such a large scale data need specialized designs

to process on time.

When the learning methods are considered, supervised methods need specific training data

for each type of analysis. Creating training data involves tremendous manual effort and cannot be

scaled easily even if there is a slight change in requirements. The same problem exists with semi-

supervised methods, which often require a small seed set of training data. However unsupervised

methods do not need any training data and can be scaled easily to different datasets.
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2.7 Similarity Measures

Relation extraction tasks usually rely on similarity measures to group large number of rela-

tion instances which can later be named with hypernyms/hyponyms. In practice, a wide number

of similarity measures are used for relation extraction. However, Turney broadly classifies the

similarity measures into two types - Attributional Similarity and Relation Similarity.

Attributional similarity measures the similarity between two words based on their attributes.

Two words are considered synonymous if they have a high degree of attributional similarity.

Whereas, two words pairs are considered as analogous if they have high attributional similarity.

The second type of classification is Relational Similarity which corresponds to the similarities

between relations. For example, two entities Acetaminophen: fever, ibuprofen: cold are relationally

similar as the first word in each pair has a decreasing effect on the second word.

The relational similarity can be reduced to attributional similarity since Acetaminophen and

ibuprofen are drugs whereas fever and cold are diseases. More about these methods are discussed

in the methodology section.



Chapter 3

Methods

3.1 Introduction

In the previous chapters, we discussed the basic concepts like relations, scientific literature,

huge datasets and learning methodologies. We also discussed the complexities of full-text bodies

of scientific journals, realized the problems like scalability often faced in the relational analysis.

In this chapter, we will discuss in detail about a related research methodology - EBC and

introduce a new method Mengsim to perform relationship analysis on a huge dataset. We will also

demonstrate the method’s applicability to various problems in the biomedical domain.

3.2 Related Work

3.2.1 EBC

EBC (Ensemble Biclustering for Classification) [2] works on finding relationships between

two class of entities like drugs and genes using a strong theoretic co-clustering algorithm called

Information Theoretic CoClustering (ITCC) [26]. EBC relies on co-clustering frequencies, computed

by ITCC to find similarities between dependency paths (relations) and also between concepts. EBC

uses this similarity measure (clustered frequencies) to do further analysis of clustering and also ranks

elements in clusters using seed sets to find new relationships.

EBC does not require to define a strict set of relations. It takes the naturally varying forms

of relationships described in a text and attempts to learn the structure of relationships.
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Though EBC is simple in implementation, our evaluation of EBC on huge text corpus showed

its inabilities in scaling to large datasets. Each run of EBC’s ITCC starts with random seed

clusters, because of which it ends with different cluster assignments after each run. To get the

right similarities, ITCC algorithm has to run for approx 2000 times. These enormous number of

executions require large memory and also significant runtime. As can be seen in the figure, ITCC

algorithm’s runtime increases exponentially with the number of data points.

Figure 3.1: EBC’s ITCC Performance
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3.3 Mengsim Methodology

Methods like EBC relies on bootstrapping, which needs a small set of relation instances for

extraction. Unfortunately, when working on various problems in the biomedical domain, one simply

cannot specify seed samples for each of these relations (Turney et al. [27]). Thus we set us on a

goal to develop methods which can scale to larger datasets like Pubmed without the need to specify

seed sets.

Various types of learning methods rely fundamentally on similarity functions for analysis.

Supervised relation extraction task relies on methods to find similarities between training data and

testing data. Unsupervised methods use similarity functions to similar group relations.

As finding similarities between relation instances in free text is the fundamental task in

relation extraction, we focus on building a scalable relational similarity method. To scale to larger

datasets, the proposed method need to be fast and should be able to run in a distributed manner.

The following sections outline the proposed approach.

3.3.1 Pre-Processing

Figure 3.2: Overview of methodology used in this thesis
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Figure 3.2 gives an overview of the system adopted in our methodology. The PubMed Central

Open Access Corpus (November 2015 snapshot) has approximately a million articles which can be

converted into text format from their original nxml format. Pubmed Sentences containing concepts

from 3 different ontologies - ChEBI, DOID, PharmGKB Genes were extracted using state of the

art Colorado Computational Pharmacology’s concept mapper [7].

Many of the ontology terms are multi-worded, so we used a modified NLTK’s sentence tok-

enizer which uses a dictionary of multi-word ontology terms. These tokenized sentences are then

used to form the dependency trees using the Stanford Dependency parser. The dependency trees

from the parser contain terms from the whole sentence. Whereas, a dependency path connecting

the specified ontology terms gives the information needed to describe relationships between con-

cepts. For this, we used the iGraph library to extract the dependency paths connecting specified

ontology terms from the dependency trees. Each word in the dependency path is then represented

using its morphological root.

Table 3.1 and Table 3.2 shows the datasets formed after pre-processing.

Table 3.1: Dataset 1 - ChEBI(drugs) and PharmGKB’s Genes on whole pubmed

Total Number of sentences with these terms 35,322

Total Number of Unique Dependency Paths 31160

Total Number of Unique drug, gene pairs 2,115

Table 3.2: Dataset 2 - ChEBI(drugs) and Doid (infectious diseases) on whole pubmed

Total Number of sentences with these terms 2,716

Total Number of Unique Dependency Paths 2,521

Total Number of Unique drug, disease pairs 252

3.3.1.1 Filtering

Due to the usage of automatic processing methods, our datasets are susceptible to various

errors. To eliminate errors, we filtered the dataset at different levels. Sentences which have more
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than 500 characters are removed. Sentences of this length occur likely due to the errors in sentence

segmentations due to the presence of characters like ‘;’ and ‘:’ as delimiters. Including such longer

sentences will result in memory overloads in various stages like parsing and path extraction. We

further removed all pairs of concepts with less than five co-occurrences, to eliminate relationships

with less significance.

Some of the dependency paths obtained may not represent a relation between entities. These

incorrect paths may reduce the performance of algorithms and also reduce efficiency. So these

should be identified and filtered before proceeding to further steps. Paths containing conjunctions

like ‘and’ and ‘or’ are one of such incorrect paths. The paths containing conjunctions usually

connect two subsentences or two clauses and the presence of them between two entities signifies an

error [Thomas et al. [28]]. The cause of such errors is due to the limitations in the conversions by

Stanford parser [MC De Marneffe et al. [17]].

3.3.2 Similarity function - Dependency path similarity

From the previous steps of dataset preparation and filtering, a cleaned dataset of dependency

paths connecting various entities is obtained. We now need a similarity function which can com-

pute similarities between the huge number of dependency paths. The proposed method Mengsim

computes the similarity score between pairs of dependency paths. The greater the score is, the

greater the similarity between the relationships expressed.

The motivation for a new distance function like Mengsim is because of the inherent drawbacks

with standard similarity models which are not designed to work with dependency paths. Depen-

dency paths connecting biological concepts often consists of terms like prepositions, dependency

terms (like nsub, amod) and other relevant terms describing underlying semantic relationships like

decrease, inhibits and expedites. All these terms need to be handled separately due to the inherent

differences, which makes non-weighted functions like cosine inapplicable.

Mengsim’s distance function is inspired from the similarity detection method used in DIRT

[24] (extended distributional hypothesis). Mengsim calculates similarities between two syntactic
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expressions U and V based on the following intuitive principles.

• The similarity between relationships U and V is related to what they have in common. The

more commonality the relationships have, the more similar they are.

• The difference in relationship lengths of U and V is inversely related to similarity between

them.

• The commonality of verbs and actual words in relations like ‘decrease’, ‘inhibitor’ and so

forth, have more weighting than commonality of dependency terms like ‘advmod’, ‘nsubj’,

‘dobj’ etc.

• The commonality of prepositions like ‘of’, ‘in’ etc., have lower weighting than commonality

of dependency terms and actual words.

The distance is calculated using the formula

In the distance formula, U and V are vector representations of two dependency paths. W is

a weighted vector which is used to weigh different terms in the relation.

Mengsim’s score is symmetric which means

mengsim score(U, V,W ) = mengsim score(V,U,W ).

The order of weighted vector W is equal to the combined number of unique terms in two

dependency paths U and V. Equal weights like [1 1 1 ... 1], gives equal importance to all terms in

the dependency path which yields results similar to non-weighted methods like cosine.

We used simple weight functions with weights ranging from 0 to 1. The terms with weight:1

are most relevant in the similarity and terms with weight:0 are least relevant.
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To determine the right weights, we looked closely at biological interactions between various

types of entities. The following table describes the interactions between genes and drugs extracted

from various journals in Pubmed.

Table 3.3: Demonstration of Drug - Gene relationships between concepts

Drug - Concepts Gene - Concepts Relation

chloroquine TLR9 block

lapatinib EGFR can activate

capsaicin TRPV1 binds

antidepressant BDNF activates

Oxaliplatin TRPA1 abolishes

morphine SON affects

gefitinib EGFR antibody

metformin STAT3 down regulates

morphine CPP induces

itraconazole CYP3A4 inhibitor

Also, the possible relation types between drugs and diseases comprise relations like ‘treat-

ing’, ‘cures’, ‘doesn’t cure’, ‘stabilizes’ etc., These relations shows that verbs describe the relation

instance and prepositions add details to that relation. This work concentrates on finding hyper-

nyms or phenomena of relationships between entities and doesn’t deal with the finer details of a

relationship. Thus for finding the similar relationships, we relatively down weigh the prepositions

compared with other words like verbs.

The weights in our method were based on trial and error method. In future, these can be

improved by using a machine learning model on a trained corpus of similar dependency paths.

To demonstrate similar dependency paths, we ran the proposed Mengsim metric on two

datasets along with baseline methods - cosine and wminkowski. Cosine is the most popular non-

weighted generic similarity function, whereas wminkowski is the popular weighted function. Though

there exist many similarity functions designed for specific purposes, we choose the popular cosine

and wminkowski as baseline models because of the complexities of manual evaluation mechanism

used in this work. To demonstrate the results of each method, we extracted similar dependency

paths using the following base sentence with the semantic concepts ‘FAAH’ gene and ‘analgesic’
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drug.

“This reasoning is supported by findings that the analgesic effects of a FAAH inhibitor persist

after long-term administration and no apparent desensitization of CB1R function takes place after

chronic FAAH inactivation.”

The syntactic relation (dependency path) connecting these two concepts ‘FAAH’ and ‘analgesic’ is

[amod, effects, nmod:of, inhibitor, compound]

Table 3.4 shows the top 10 similar sentences retrieved when cosine similarities are used. Since

it is a non-weighted approach, it treats all terms equally due to which terms with less significance

like ‘due’ and shorter sentences get more similarity scores. Table 3.5 shows the top 10 similar sen-

tences obtained from weighted minkowski distance function with different weights to propositions,

dependency terms, and other words.
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Table 3.4: Top 10 cosine similar sentences for base syntactic relation [amod, effects, nmod:of,

inhibitor, compound] and concepts ‘FAAH’ and ‘analgesic’

[u'amod', u'inhibitor',
u'compound']

We report that coadministration of
ketoconazole, a strong CYP3A4 inhibitor, with
5 mg i.v. temsirolimus in healthy subjects had
no effect on temsirolimus

[u'amod', u'inhibitor', u'nmod:of']

These different mutations are associated with
different risk of relapse after resection of the
primary tumor but also impact on the activity
of imatinib (selective inhibitor of KIT and
PDGFR-α) [4–6].

[u'compound', u'inhibitor',
u'compound']

Furthermore, MCF-10A cells treated with Nutlin-3,
a MDM2 E3-ubiquitin ligase-specific inhibitor that
arrests WT-p53 degradation, showed increased
p53 stability, resulting in decreased endogenous
Nox4 protein (Figure 4).

[u'amod', u'treatment',
u'compound']

Combined with dexamethasone, DEStreatment
resulted in 50% PSA declines in 64–68% of
patients in a small randomised study (Shamash ),
but venothromboembolic events occurred in 22%
of patients in the combination arm.

[u'amod', u'Iressaxae',
u'compound']

Study results demonstrated that the EGFR
tyrosine kinase inhibitor gefitinib (Brand name
Iressa®) achieved a response rate of more than
80% in mutant tumors, but was basically
ineffective in wild-type tumors without mutations
[5].

[u'amod', u'protein', u'compound']

Two additional genes whose functions may be
associated with AMPA receptors in dopaminergic
neurons are also highly dysregulated in PD, NSF
(N-ethylmaleimide sensitive fusion protein;
202395_at, P = 1.18252E−05, DElog 2 P =
4.12902E−06, DElog 2 28];

[u'amod', u'inhibition', u'compound']

Compared to ezetimibe, PCSK9 inhibition
resulted in a mean LDL-C reduction of
approximately 36 % (95 % confidence interval
(CI), 33–39 %) [19].

[u'amod', u'resistant', u'amod',
u'patients', u'nmod:in',
u'expression', u'compound']

Also in clinical studies, an inverse correlation
between EGFR and ERα expression in tamoxifen
resistant patients has been reported [5,6,18-20]

[u'amod']

Involvement of EGF signalling in the
pathogenesis of bone metastasis was implicated
by the unexpected relief of bone pain in phase II
clinical trials of EGFR inhibitor gefitinib in breast
cancer patients ( Albain ; von Minckwitz ).
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Table 3.5: Top 10 wminkwoski similar sentences for base syntactic relation [amod, effects, nmod:of,

inhibitor, compound] and concepts ‘FAAH’ and ‘analgesic’

[u'amod', u'inhibitor',
u'compound']

We report that coadministration of ketoconazole, a
strong CYP3A4 inhibitor, with 5 mg i.v. temsirolimus in
healthy subjects had no effect on temsirolimus

[u'amod', u'inhibitors',
u'compound']

However, various anti-diabetic drugs, such as metformin,
dipeptidyl peptidase 4 (DPP4) inhibitors, although it has
been successfully work to blood glucose lowering in type 2
diabetes, have been repurposed from other clinical
indications to treat renal injury.

[u'amod', u'Inhibitor',
u'compound']

Renoprotection by benazepril and telmisartan in diabetes:
A histopathological study Singh J 1 2 Department of
Pharmacology Pathology Objective: To observe effects of
benazepril{ACE Inhibitor} and telmisartan.

[u'amod', u'effects',
u'compound']

In the TNF-transgenic mice, up-regulation of both TNFR
mRNAs was detected after BDV-infection so that
anticonvulsantand proconvulsive TNF effects might have
been operative.

[u'nmod:of', u'effects', u'nsubj',
u'inhibitor', u'compound']

Nishimura and Bailey also studied the effects of captopril,
an ACE inhibitor, and proved that the effects involved Ang II
generation.

[u'nmod:than', u'effective',
u'nsubj', u'inhibitors',
u'compound']

Four meta-analyses have suggested that angiotensin-
converting enzyme (ACE) inhibitors are more effective than
other antihypertensive agents in reducing LVH, for similar
reductions in BP.

[u'nmod:of', u'inhibitor',
u'compound']

Captopril, for instance, is a potent ACE inhibitor, and
administration of captopril lowers the blood pressure.

[u'compound', u'effect',
u'nmod:of']

However, in contrast to purported antidepressant effect of
BDNF signaling, cytokine action is largely associated with
depressive-like behaviors.

[u'compound', u'inhibitor',
u'nmod:of']

In addition to regulating physiological vessel growth, the
NRP1–ABL1 pathway promotes vascular pathology that
can be inhibited by treatment with Imatinib, a small
molecule inhibitor of ABL1, or through the genetic ablation
of NRP1 in ECs; thus, both approaches significantly and
similarly reduced vessel growth in a mouse model of
human retinopathy.

[u'nmod:of', u'inhibitors',
u'compound']

The majority related to hypotensive effects of varying
combinations of ACE inhibitors, loop diuretics and calcium
channel blockers.
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Table 3.6: Top 10 Mengsim similar sentences for base syntactic relation [amod, effects, nmod:of,

inhibitor, compound] and concepts ‘FAAH’ and ‘analgesic’

[u'nmod:of', u'effects', u'nsubj',
u'inhibitor', u'compound']

Nishimura and Bailey also studied the effects of
captopril, an ACE inhibitor, and proved that the
effects involved Ang II generation.

[u'amod', u'inhibitor', u'compound']

We report that coadministration of ketoconazole,
a strong CYP3A4 inhibitor, with 5 mg i.v.
temsirolimus in healthy subjects had no effect on
temsirolimus

[u'amod', u'inhibitors', u'compound']

However, various anti-diabetic drugs, such as
metformin, dipeptidyl peptidase 4 (DPP4)
inhibitors, although it has been successfully work
to blood glucose lowering in type 2 diabetes,
have been repurposed from other clinical
indications to treat renal injury.

[u'amod', u'Inhibitor', u'compound']

239 Renoprotection by benazepril and
telmisartan in diabetes: A histopathological study
Singh J 1 2 Department of Pharmacology
Pathology Objective: To observe effects of
benazepril{ACE Inhibitor} and telmisartan.

[u'amod', u'effects', u'compound']

In the TNF-transgenic mice, up-regulation of both
TNFR mRNAs was detected after BDV-infection
so that anticonvulsant and proconvulsive TNF
effects might have been operative.

[u'amod', u'inhibitor', u'nmod:of',
u'receptor', u'compound']

The first to receive FDA approval was gefitinib, a
small molecule inhibitor of the epidermal growth
factor receptor (EGFR) tyrosine kinase, a
transmembrane receptor whose activation leads
to intracellular signaling involved in cancer cell
proliferation and survival.

[u'amod', u'effects', u'nmod:of',
u'antagonists', u'compound']

Accordingly, first case reports show analgesic
effects of TNF antagonists in patients with
treatment-refractory pain caused by bone
metastases [26].

[u'amod', u'inhibitor', u'nmod:of',
u'binding', u'compound']

We found that mithramycin, an inhibitor of SP1
binding, could synergize with paclitaxel in some
TNBC (basal-like) cell lines, MDA-MB-231, MDA-
MB-468, and HDQ P1.

[u'amod', u'inhibitor', u'nmod:of',
u'AUC', u'compound']

Furthermore, when zibotentan was administered
in combination with itraconazole, a potent
inhibitor of CYP3A4, AUC increased by 28% [17].

[u'amod', u'inhibitor', u'nmod:of',
u'PDGFRA', u'compound']

By the introduction of the tyrosine kinase inhibitor
(TKI) imatinib, a selective inhibitor of KIT,
PDGFRA and a few other kinases, a new era in
the management of GIST began [4,5].
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Table 3.6 shows top 10 similarities using Mengsim. Similar dependency paths extracted with

Mengsim have balanced number of terms, unlike cosine method which extracts shorter dependency

paths. A detailed assessment and evaluation of Mengsim along with baseline methods will be

described in chapter 4.



Chapter 4

Evaluation

Various similarity measures are developed and studied in many text applications. These

models were developed to measure similarities at different levels like sentence level, relation level,

phrase level, entity level. Achananuparp et al. [29] summarize 14 similarity metrics which are

used to measure sentence similarity. SemEval has a dedicated challenge for measuring relational

similarity. The usual relation extraction task in SemEval is to find the degree to which the semantic

relations between A and B are similar to those between C and D from two pairs of words, A:B

and C:D. The training and test datasets for the SemEval task are manually prepared by a limited

number of people where they vote on the similarity between two sentences/entities.

We now discuss in detail the evaluation mechanisms adopted by some of the related method-

ologies. Zhang et al. [30] proposed an unsupervised learning method using dependency trees to

extract relations between named entities like persons and locations. The method is targeted to-

wards relations in general news data. They used Precision, Recall, and F-measure to evaluate the

similarity function. Hasegawa et al. [31] proposed a similar method but using contextual words

instead of dependency trees and used similar evaluation metrics. As the methods employed in this

research are closer to the these, we follow a similar approach for evaluation. For preparations of

test data, we rely on manual processes as used in SemEval tasks.

The evaluation of the similarity function used in our methods is performed in two phases.
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4.1 Phase 1

In the first phase, we prepared a dataset of sentences containing at least one occurrence of

(drug, gene) or one occurrence of (drug, disease). A collection of 6 base sentences is chosen in

random from the dataset. On each of these sentences, we ran our proposed similarity metric -

Mengism along with standard relation metrics (cosine and wmin) on all other sentences containing

same entities as the base sentence and extracted ten sentences with highest similarity score for each

metric.

We then use Mechanical turk (MTurk) to evaluate the relational similarity between the results

of each of these metrics. MTurk is a popular choice in computational linguistics for gathering

large numbers of human responses to scientific questions (SemEval task [32]; Mohammad and

Turney [27]). Mturk contains the major elements required to conduct research: an integrated

participant compensation system; a large participant pool; and a streamlined process of study

design, participant recruitment, and data collection [33].

In our evaluations, each HIT (Human Intelligence Task) in MTurk is presented with two

sentences (base sentence and one from top similar sentence retrieved) along with a different pair of

entities. In order to complete a hit, an MTurk worker has to choose one option among five options

presented - (Perfectly Similar, Almost Similar, Opposite, Not Sure, Not Similar). Few examples

are presented to the worker in the instructions along with explanations. An example task looks the

following way,

Sentence1: When it contacts with epidermis, capsaicin activates the TRPV1 receptor, which

elicits a rapid response via the release of neuropeptides (such as calcitonin gene related peptide,

substance P, and tachykinins) and monoamimes (histamine and serotonin) [32] [34] [35]. Sentence1-

Term-1: capsaicin Sentence1-Term-2: TRPV1

Sentence2: Also included were two transient vanilloid receptors, TRPV1 (the capsaicin recep-

tor) and TRPV4 (another heat receptor). Sentence2-Term-1: capsaicin Sentence2-Term-2: TRPV1

Options:
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• Perfectly Similar

• Almost Similar

• Not Sure

• Opposite

• Not Similar

Each sentence pair is presented to 3 workers, and the option with a majority vote is chosen.

For simplicity purposes, we combined Perfectly Similar and Almost Similar categories as Similar.

Opposite and Not Similar options are combined into Not Similar.

We used the precision metric to measure the efficiency of the similarity methods as it is

consistent with related methodologies (Zhang et al. [30], Achananuparp et al. [29] ). Due to the

manual nature of evaluation by MTurk workers, we did not calculate recall as it involves evaluating

the similarity between entities in hundreds of sentence pairs.

The following graph and the table show the results of Phase 1 evaluation. Mengsim’s precision

metrics are higher than others for the relational similarity task. Thus Mengsim performed better

than the standard methods in both categories Perfectly similar and Perfectly Similar + Mostly

Similar.

Table 4.1: Phase 1: Similarity evaluation results on three methods using fixed concepts

Evaluation type cosine wmin mengsim

Perfectly Similar 0.15 0.25 0.35

Perfectly + Almost Similar 0.27 0.54 0.57

4.2 Phase 2

In phase two, a random six sentences are chosen with at least one occurrence of (drug-gene)

or one occurrence of (drug disease). On each of these sentences, we ran our proposed similarity
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Figure 4.1: Evaluation - Relational Similarity with fixed concepts
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metric - mengism along with standard relation metrics (cosine and wmin) on all other sentences

containing same entities or different entities as the base sentence and extracted seven sentences

with highest relational similarity score for each metric.

The following figure shows the results of phase 2 evaluation. The results indicate that

Mengsim performs better than the standard similarity metrics in both categories tested - Perfect

Similar and Perfectly + Mostly Similar relationships .

Figure 4.2: Evaluation - Relational Similarity with all concepts

Table 4.2: Phase 2: Similarity Evaluation Results on three methods using all concepts

Evaluation type cosine wmin mengsim

Perfectly Similar 0 0.19 0.26

Perfectly + Almost Similar 0.09 0.26 0.45

The results from phase 1 and phase 2 indicates that Mengsim performs far better than other

methodologies in finding sentences with better relational similarity.
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4.3 Performance

Apart from measuring the relational similarity between entities, the key motivation for de-

veloping a new system is to scale on big datasets like Pubmed. This work started while working

on the EBC methodology (Percha et al. [2]) and realized its potential limitations when applied to

huge datasets like Pubmed.

EBC uses ITCC to measure relationship similarity between entities like drugs and genes.

The relationship similarity is based on clustering frequencies which are obtained by running the

ITCC algorithm on the data for N number of times. As percha mentioned, a typical N number of

iterations is over 1000. The runtime complexity for each run of ITCC is O(m*n) (Dhillon IS et

al. 2003), where m = number of rows and n = number of columns. If ITCC needs to be executed

for 1000 rounds, the runtime becomes O(1000*m*n). This enormous number of executions makes

ITCC computationally expensive and becomes very hard to run on huge datasets. Adding to that,

after each run of ITCC, clustering frequencies needs to be updated which further increases runtime

of algorithm linearly. The memory requirements for this approach is O(m*m).

Whereas with Mengsim, computation of distance function has a runtime complexity of

O(N*N) if processed sequentially, N represents the number of sentences. The runtime can fur-

ther to reduced to O(N) by distributing the computation to N processes. This makes it easier to

find similar relationships on huge datasets. The following figure shows the runtime evaluations of

EBC and Mengsim.
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Figure 4.3: ITCC vs Mengsim - Runtime Performance



Chapter 5

Discussion

The similarity results from chapters 3 and 4 demonstrated the Mengsim’s ability in retrieving

the sentences with similar relationships between entities. The usage of dependency path connecting

the entities for relationship analysis reiterated the argument of Bunescu et al. [19] which is “the

information relevant to relation extraction is almost entirely concentrated in the shortest path in

the dependency tree, leading to an even smaller representation.” The evaluation results in Chapter

4 showed that the proposed method Mengsim performs better than the standard relation metrics

in extracting similar sentences.

Chapter 4 also demonstrated the Mengsims ability in scaling to larger datasets with ease.

The methods can be distributed to various processes to reduce the time of executions.

5.0.1 Limits

The relational similarity approach proposed is dependent on various pre-processing steps

- entity detection, sentence segmentation, parse tree construction and path extraction. All of

these data processing stages uses off the shelf software components, and we do not calculate the

performance of these steps.

The proposed Mengsim methodology does not need all the data to be in memory to compute

distance for relational similarity. This independence on memory requirements makes the methods

applicable to datasets of any size as long as the processes run in distributed fashion.
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5.0.2 Error Analysis

The Stanford Parser [17] which was used in our system to extract dependency trees is trained

on newswire data. Relying on newswire data favors performance on a particular type of linguistic

data: formal text, written in a carefully constructed language and thoroughly revised. The per-

formance of the parser on other kinds of data then suffers due to this bias. Web data is different

from Bio literature. So often the output of parsers is subjected to errors in capturing dependencies

between words which are far apart and also in accurately mapping dependency relations [17] [22].

For example, from the Figure 2.1, ‘captopril’ which is the name of a drug is incorrectly recognized

as an adverb. We do not attempt to correct such dependency errors in our work.



Chapter 6

Conclusion

This thesis work started by evaluating a related work EBC to extract relationships from

unstructured data. Inspired by the EBC’s limitations regarding performance, we began work on

alternative models for similarity analysis. The fundamental task in relation extraction methods is

a relational similarity measure. This similarity measure is common to any learning methods like

supervised or unsupervised.

We devised a new similarity measure called Mengsim which demonstrated better results than

standard models in retrieving similarity relationships. Mengism can be used on sentence level

by restricting dependency paths connecting any one concept to perform meaningful relationship

analysis. Similarity analysis on two datasets formed from different sets of ontologies drugs-genes,

drugs-diseases shows that Mengsim can be applied to terms of a diverse set of ontologies.

In future, we will use machine learning models to determine accurate weights for Mengsim.

We will also focus on better visual mechanisms for displaying similar relationships. We will examine

newer vector models like GloVe [36] in determining similarity measures in the biomedical analysis.

We’ll work on better evaluation mechanisms for Mengsim, as the evaluation method using a crowd-

sourced system like mTurk is subjected to certain problems as mentioned in “Amazon mechanical

turk: Gold mine or coal mine?” [37].
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a database and ontology for chemical entities of biological interest. Nucleic acids research,
36(suppl 1):D344–D350, 2008.

[12] Micheal Hewett, Diane E Oliver, Daniel L Rubin, Katrina L Easton, Joshua M Stuart, Russ B
Altman, and Teri E Klein. Pharmgkb: the pharmacogenetics knowledge base. Nucleic acids
research, 30(1):163–165, 2002.

[13] Lucien Tesnière. Eléments de syntaxe structurale. Librairie C. Klincksieck, 1959.
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