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 Drug-drug interactions (DDIs) constitute a major cause of adverse drug events 

(ADEs), which may result in morbidity, mortality, and increased healthcare 

expenditures.  As the role of drug therapy continues to expand and polypharmacy 

becomes more common, the prevalence of significant DDIs also increases, 

potentially limiting the therapeutic benefits of medication therapy. While existing 

DDI research largely focuses on single levels of DDI, a method that incorporates 

clinical, pharmacological, and physiological (genetic) factors can offer an improved 

approach to identifying and characterizing potential DDIs. Current limitations to 

efficient DDI characterization that can affect DDI prevention include: limited 

availability of clinical studies, shortcomings within study designs, limited 

accessibility of drug interaction information due to storage in disparate sources, and 

omissions in DDI reporting within information sources, especially their mechanisms 

of interaction and clinical significance. 

 This thesis presents the novel Drug-drug interaction Discovery and 

Demystification (D3) pharmacovigilance system, which employs Big Data mining 

and Semantic Web technologies to predict potential DDIs, assess their clinical 

significance, and describe the mechanism(s) responsible for predicted interactions. 
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By integrating drug information from a variety of trusted biomedical sources into a 

coherent, comprehensive DDI knowledge base, D3 leverages the power of big data to 

construct inference-based predictions to support probabilistic identification, 

validation, and mechanistic classification of potential DDIs. To qualify the 

effectiveness of D3, an unbiased benchmark was constructed to characterize the 

likelihood determinations of D3’s predictions against both DDIs reported by its own 

knowledge sources as well as DDIs reported for five commonly prescribed 

medications with high propensities for interaction by Micromedex, a respected 

commercial knowledge source. D3 demonstrates a 93.4% recall rate against DDIs 

from its own knowledge sources and performs comparably within the margin of 

error for DDIs reported by Micromedex. The application of D3 to DDIs predicted by 

five publicly available pharmacovigilance systems indicates that these systems 

appear to be vastly over-stating the number of DDIs. These results indicate the 

potential of D3 as an investigative tool for clinicians and researchers to gain some 

foresight into the likelihoods and causes of potential interactions.   
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CHAPTER I 
 
 

INTRODUCTION 
 
  
 
I.1 Motivation and Problem Definition  
 
 One of the earliest scientists, Francis Bacon, once said of drug treatments, 

‘‘the remedy is worse than the disease.'' This statement certainly rings true when 

considering adverse patient outcomes that occur due to drug-drug interactions 

(DDIs). DDIs constitute a major cause of adverse drug events (ADEs), and occur 

when multiple drugs interact within an individual’s body and produce unintended 

toxic effects not initially predicted by the administration of the individual drugs. 

ADEs represent a major health burden around the world, resulting in significant 

hospitalization, morbidity, mortality, and healthcare utilization costs (Bates et al., 

1995; Classen, Pestotnik, Evans, Lloyd, & Burke, 1997). In 2013, ADEs accounted 

for 711,232 cases of serious illness in the US, with 117,752 of these cases resulting 

in death (“FDA Adverse Events Reporting System (FAERS) > FAERS Reporting by 

Patient Outcomes by Year,” n.d.). In addition, medical expenses attributed to ADEs 

are estimated at over US$1 billion per year to health care systems (Grymonpre, 

Mitenko, Sitar, Aoki, & Montgomery, 1988; Hamilton, Briceland, & Andritz, 1998; 
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Shad, Marsh, & Preskorn, 2001). Unfortunately, the impact of ADEs, and DDIs in 

particular, can be expected to increase exponentially due to the rise in the number 

of drugs being prescribed to each patient (Percha & Altman, 2013). 

 Several factors work against early identification of potential DDIs, one 

important factor being the unavailability of DDI information before drugs reach the 

market (LePendu et al., 2013; Reis & Cassiani, 2010). Clinical trials conducted prior 

to a new drug’s approval are usually insufficient to test its interactions with other 

medications, since potential interacting drugs are rarely prescribed to the patients 

enrolled in the trial. In fact, since clinical trials are designed to study the safety and 

efficacy of a new medication, patients that are taking drugs that may interact with 

the trial medication are frequently explicitly excluded from the studies (van der 

Heijden, van Puijenbroek, van Buuren, & van der Hofstede, 2002). Other factors 

that may predispose individuals to DDIs include diet, dosage determination, and 

age-related changes in physiology (Patel, Rana, Suthar, Malhotra, & Patel, 2014). 

Because of these many complexities, a growing need exists to reduce ADEs through 

efficient characterization and prevention of potential DDIs. 

 Pharmacovigilance is a type of pharmacological science that aims to 

monitor, collect, and synthesize research information about ADEs from multiple 

resources in order to prevent drug-related problems. Existing pharmacovigilance 

research proposes to minimize the risk of ADEs by analyzing available published 

resources and investigating potential DDIs through the use of diverse informatics 

approaches. These pharmacovigilance methods offer a valuable opportunity to 
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identify potential DDIs prior to their occurrence. Such analyses investigate the 

potential for DDIs by leveraging extensive biomedical data from scientific articles, 

electronic health records (EHRs), the FDA’s Adverse Event Reporting System 

(FAERS), and other drug information sources (Böttiger et al., 2009; Iyer, Harpaz, 

LePendu, Bauer-Mehren, & Shah, 2014; Tari, Anwar, Liang, Cai, & Baral, 2010; 

Tatonetti, Ye, Daneshjou, & Altman, 2012a). Despite their comprehensive approach, 

pharmacovigilance studies to date have captured only a portion of the available 

potential DDI information and fail to accurately assess the clinical relevance of 

predicted interactions. Moreover, contemporary pharmacovigilance informatics 

studies are limited by their ability to analyze available information based on only 

single mechanisms of interaction. However, the significant numbers of confounding 

clinical, environmental, genetic and other factors pose formidable challenges in 

identifying, studying and predicting potential DDIs (Lewis, 2010; Percha & Altman, 

2013; Tatonetti, Fernald, & Altman, 2012). 

 As highlighted above, one of the most complex challenges in identifying 

potential DDIs is the single-focus approach of current pharmacovigilance research. 

One example of this is a recent study by Preissner, et al., who developed a complete 

database (SuperCYP) for cytochrome P450 enzymes and their rules for drug 

interactions from Medline abstracts (Preissner et al., 2010). The limited focus of 

studies like these leads to a neglect of other less common yet important pathways, 

and can also fail to detect multi-pathway DDIs, which occur as a result of two or 

more interactive mechanisms (Tari et al., 2010; R. Zhang et al., 2014a).  For 
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example, the interaction between statins and cyclosporine occur through both the 

metabolism (CYP3A4) and transport (P-glycoprotein) pathways (Holtzman, 

Wiggins, & Spinler, 2006).  

 Another profound challenge is the overall lack of explanation regarding 

potential DDI mechanisms. There remains a pressing need to study potential DDI 

mechanisms beyond those that focus solely on drug metabolism (Hutzler, Cook, & 

Fleishaker, 2011). Accordingly, Boyce, et al. have voiced the need for 

pharmacovigiliance research focused on modeling both pharmacokinetic and 

pharmacodynamic DDI mechanisms (R. D. Boyce, Collins, Horn, & Kalet, 2007). 

 The disparate, disconnected sources of drug information that are currently 

available pose an even greater challenge to efficient pharmacovigilance evaluation. 

Integrating these sources into a complete resource that can aid in accurate and 

early interaction discovery continues to challenge researchers. For instance, many 

clinically used potential DDI sources vary widely in their reporting of interactions 

(Hazlet, Lee, Hansten, & Horn, 2001; Peters, Bahr, & Bodenreider, 2015, p. -). As a 

result, currently there is neither one comprehensive pharmacovigilance source nor a 

single successful technique that uses all the available data and integrates it in a 

way that predicts interactions before they are observed clinically. Indeed, a recent 

study recommends checking more than one resource to validate a DDI (Scheife et 

al., 2015).  

 Clearly, the limitations in existing pharmacovigilance research constrain 

the discovery and characterization of potential DDIs.  Ultimately, the research to 
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date has failed to comprehensively analyze the large variety of potential DDI 

mechanisms and is inadequate to provide the information required to effectively 

prevent DDIs in an age of complex pharmacological treatments. 

 

I.2 Research Questions and Objectives  
 
 The general purpose of this thesis is to build an integrated data model from 

existing biomedical knowledge sources, automate validation of clinical relevance, 

automate identification of interaction mechanism(s), contribute to developing a new 

and clinically relevant pharmacovigilance mechanism resource, and evaluate known 

pharmacovigilance systems. 

 Identifying the clinical relevance of predicted interactions before they reach 

the market has been extremely challenging due to the limited availability of clinical 

studies, shortcomings within study designs, limited accessibility of drug interaction 

information due to storage in disparate sources, and omissions in DDI reporting 

within information sources, especially regarding their mechanisms and clinical 

significance. These limitations raise the following questions: 

1. Can an effective pharmacovigilance system be developed to provide 

probabilistic validation and classification of potential DDIs using existing 

knowledge sources? 

2. What is the proper way to identify potential DDIs?  

3. Is there a way to provide detailed, mechanistic explanations for potential 

DDIs?  
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4. What kind of clinical determinations can be made from the D3 

pharmacovigilance system we create?  

5. Is there a way to reliably assess the clinical relevance of potential DDIs 

we discover?   

6.  Ultimately, can we build a complete and intelligent pharmacovigilance 

database that identifies DDIs along with the mechanisms of interaction 

that can provide potential DDI information to both inform scientific 

evaluation and reduce the burden of DDIs in clinical medicine?   

 

To address these questions, the proposed thesis has the following objectives: 

• Characterization: To develop a pharmacovigilance system of knowledge 

integration and discovery with the goal of supporting the study of potential 

DDIs.  

• Integration: To use scalable Semantic Web technologies to fill in knowledge 

gaps across biomedical domains. 

• Efficiency: To design an efficient pharmacovigilance system and an 

intelligent database for potential DDI study. 

• Utility: To improve patient care by providing a system for clinicians and 

researchers to identify and understand potential DDIs.  
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I.3 Applications   
 
 Drug-drug interaction Discovery and Demystification (D3) is an integrated 

and semantic-based pharmacovigilance system intended to aid both researchers and 

clinicians. It is designed to incorporate all essential available data from existing 

trusted sources and identify new and hidden knowledge that each source 

individually cannot describe. It is important to clarify that the D3 

pharmacovigilance system is not intended to replace clinical trials, but to: 1) 

evaluate theoretically potential DDIs; 2) suggest an explanation for unusual 

responses or symptoms; and 3) propose new hypotheses about the mechanisms of 

potential DDIs. Furthermore, the D3 system will open the horizons for researchers 

to incorporate more details and formulate better predictions that can be used 

efficiently by clinicians. All of these findings should be considered speculative until 

clinically verified.  

I.3.a Usage: The D3 pharmacovigilance system here developed can be used 

in various clinical and scientific applications. One important application is in using 

the output of the D3 database as a gold-standard in pharmacovigilance research. 

Another central clinical application is using it as a decision-making system to check 

and understand potential DDIs, as well as a system for recommending alternative 

drugs with fewer interactions. The main application is that the D3 system can be 

used by clinicians and researchers to gain some foresight into the clinical relevance 

of DDIs and causes of potential interactions. Finally, the proposed system can help 
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in the development of safe drug combinations, which may be increasingly used to 

treat complex or chronic conditions. 

I.3.b Limitations: The D3 pharmacovigilance system, on the other hand, has 

several limitations that need to be addressed in future work. One limitation of the 

system is that it will not be able to predict the severity of DDIs. In fact, determining 

the severity of any interaction based on mechanistic information is a challenging 

task due to the limited availability of experimental data determining how the 

identified interactions may change the concentrations of the interacting drugs. 

Another limitation is that the system does not consider a potential DDI resulting 

from inappropriate dosing. As a matter of fact, interactions are naturally dosage-

dependent, but the dose a patient receives often depends on patient-related factors 

such as age, sex, demographics and medical history, all of which are outside the 

scope of this thesis (Rogatko, Babb, Tighiouart, Khuri, & Hudes, 2005). 

 I.3.c D3 for big data: When performing research and designing a data-

driven system for proof of concept, the scale of training data potentially can be 

limited due to the financial and material resources available and the scope of the 

design. The D3 system proved to be a reversal of this concept. The quantity of data 

readily available in the commercial-DDI world is incredibly limited due to many 

factors, including lack of sharing, limited research, and private control. In fact, it is 

this very limitation of information that has been a driving force behind the creation 

of many pharmacovigilance systems. However, what appeared to be lacking in this 

field was a means to evaluate the effectiveness of such systems from a clinical 
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standpoint. This was the impetus behind the design of the D3 system. With the goal 

of D3 being to raise the standard of predicted DDIs to a clinically-relevant level, the 

necessary training of D3 needed to be clinically-researched and, hopefully, proven 

interaction information. Therefore, it was prudent for D3 to use and reuse whatever 

existing knowledge was available to meet this standard. As a result, we have 

integrated 29 different biomedical and drug interaction sources. While there are 

other sources available that could potentially be vetted, D3 was intended to be a 

proof of concept without limitations of scale that could only be improved with 

additional training information. As such, while the quantity of data currently and 

readily available to train D3 was somewhat limited by the typically conceived 

notions of “big data”, this is also a limitation characteristic of the industry itself. If 

all possible DDI information were available, D3 would be unnecessary. Therefore, it 

is the very limitation of DDI information that creates the need for D3. As the 

availability of additional data increases, so will the performance of D3, and 

hopefully one day with complete DDI information at a clinical level, D3 will have 

outlived its usefulness. For now, enough data was utilized to prove the concept of 

D3 as a viable evaluation method for pharmacovigilance systems. 

 
I.4 Contributions 
 

The D3 system addresses the challenges outlined above by using the power of 

interconnected diverse biomedical data sources augmented with big data mining of 

the Semantic Web. Fundamentally, this thesis addresses the primary difficulties in 

aggregating DDI information sources and automated inferences for 
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pharmacovigilance discovery and explanation, with the ultimate goal of 

constructing a new and clinically relevant pharmacovigilance mechanism database. 

The core of the system is the use of Semantic Web technologies, community-curated 

ontologies and datasets to tackle pharmacovigilance research challenges. The 

proposed system will advance scientific knowledge by identifying significant new 

pathways involved in potential DDIs and meeting the following aims. 

 

Aim One addresses the challenge of moving beyond a single-level drug 

interaction to focus on more complex interactions. By integrating DDI information 

from fifteen diverse sources into a coherent knowledge base, the D3 

pharmacovigilance system can provide complex inferences, semantic similarities, 

and mechanistic information to identify and explain reported and potential DDIs at 

multiple biomedical levels. These levels include all factors that could contribute to 

DDIs: pharmacokinetic (interactions altering the absorption, distribution, 

metabolism, or excretion processes), pharmacodynamic (interactions affecting 

physiological systems within the body) and pharmacogenetic (when genetic factors 

alter drug exposure through pharmacokinetic or pharmacodynamic mechanisms), or 

multi-pathway (interaction occurring through interactive mechanisms) interactions.  

Aim Two handles the real need for determining the clinical relevance of 

DDIs. By mining 10 clinically relevant DDI resources and 12 biomedical sources, 

the D3 pharmacovigilance system can assist in determining the clinical relevance of 

DDIs using a novel statistical inference model based on similarities within proven 
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DDI lists and biomedical features. Nine biomedical features are considered for 

similarity identifications: targets, side effects, enzymes, transporters, carriers, 

indications, mechanisms of action, genetic variations, and physiological features.     

Aim Three is to leverage the coherent D3 knowledge base to identify most 

likely mechanisms for the interactions. These mechanisms include the following: 

1. Pharmacokinetic interactions: 

a. Metabolism (inhibition and induction) 

b. Transporter (inhibition and induction) 

c. Protein binding 

2. Pharmacodynamic interactions:  

a. Additive (both drugs share a mechanism of action)  

b. Competitive (both drugs act on the same pharmacologic target) 

3. Pharmacogenetic interactions:  

a. Known single nucleotide polymorphisms (SNPs) in genes that 

may alter drug exposure 

4. Multi-pathway interactions: 

a. Interactions occurring as a result of two or more interactive 

mechanisms 

Aim Four tackles the need for annotating existing pharmacovigilance 

information resources with the mechanistic information. Fifteen different DDI 

sources, 14 that have been collected by Ayvaz et al. (including 5 clinical sources, 4 

natural language corpora and 5 pharmacovigilance sources) and ClinicalTrials.gov, 
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will be annotated by D3 with mechanistic information (Ayvaz et al., 2015). The DDI 

pairs will be represented and stored as Unified Medical Language System (UMLS) 

concept identifiers and then the D3 resource will be constructed (Bodenreider, 

2004). Below is the list of anticipated thesis contributions:  

1. A new pharmacovigilance platform for knowledge discovery and integration 

in the biomedical field. 

2. A mechanism for grouping semantic properties.  

3. A pharmacovigilance system to support probabilistic validation and 

classification of potential DDIs utilizing existing knowledge sources. 

4. A query model to support potential DDI queries utilizing 15 different DDI 

sources. 

5. A method to support queries using different drug names (generic, brand and 

chemical) to find interactions.   

6. A model to infer potential multi-pathway DDIs.  

7. A novel mechanism to predict potential DDIs based on similarities in 

mechanisms of interaction.  

8. A model to identify when potentially interacting drugs may also interact on 

the genetic level in patients possessing known polymorphisms (SNPs) in 

drug-metabolizing enzymes or transporters. 

9. A similarity-based method to automate validation of clinical relevance. 

10. A similarity-based method to automate identification of interaction 

mechanism(s). 
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11. A tool to evaluate known pharmacovigilance systems. 

12. A tool to annotate known pharmacovigilance systems with most likely 

mechanism(s) of interactions. 

 

I.5 Thesis Outline  
 

This thesis is structured in 7 following chapters:  

 

Chapter II introduces the dangers of DDIs in health and science. Then it 

discusses: (i) a traditional method of discovering potential DDIs and (ii) a 

pharmacovigilance method of discovering potential DDIs. In the related works 

section, we particularly examine, compare and contrast how these methods are 

designed and note current limitations of the state of the art. In the latter part, we 

introduce the Semantic Web: its concepts and architecture, its way of representing 

the knowledge and data integration, and finally, its impact on the clinical research 

area. 

 

Chapter III discusses the process of developing a D3 knowledge base that 

integrates twelve biomedical data types and fifteen DDI resources considering all 

factors that could contribute to DDIs from pharmacokinetics (metabolism, 

transporter, and protein binding), pharmacodynamics (additive and competition), 

pharmacogenetics (SNPs), and multi-pathway (enzyme and transporter) levels. The 

construction of the D3 semantic infrastructure consists of three phases: (i) 

collecting, (ii) mapping, and (iii.) integrating and loading. Each phase is discussed 
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in more detail in a separate section. Then, we enrich the knowledge base by 

inserting the Minimum Information Required in the Annotation of Models 

(MIRIAM) registry property and demonstrate how easily D3 can be expanded by 

linking it to external sources (Novère et al., 2005). Next, we verify and validate the 

resulting semantic infrastructure by using reasoning techniques to check for 

consistency of the knowledge base. Finally, we demonstrate the usefulness of such 

integration by identifying embedded associations for a chemotherapy medication.  

 

Chapter IV presents a pilot study of the thesis. In this chapter, we propose a 

novel method to identify multi-pathway potential DDIs using interconnected 

diverse biomedical data obtained by mining of the Semantic Web. First, we develop 

a semantic rule-based model to identify potential DDIs arising from metabolic and 

transporter interactions. We then demonstrate the utility and validity of our 

approach using irinotecan, a chemotherapy agent. Finally, the statistical 

significance of the result is analyzed along with the precision and recall of predicted 

interactions.   

 

Chapter V describes in detail the design and development phases of the D3 

pharmacovigilance system. In particular, Phase One discusses the identification 

and clinical examination of the most common mechanisms of DDIs; this yields nine 

mechanisms of interaction. Then we convert these mechanisms to semantic 

inferences that are proposed to validate and classify the proven and potential DDIs. 
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Phase Two illustrates the processes of building D3, which are divided into two main 

sub-phases: (i) building an inferential query model, and (ii) building an inferential 

probabilistic model. Each model is discussed in more detail in a separate section. In 

Phase Three, we exploit the D3 system by introducing a set of experiments 

conducted to test the two inferential models of the D3 system. Finally, we discuss 

the results and outcomes of these tests.  

 

Chapter VI describes the process of annotating current pharmacovigilance 

resources with mechanistic information. First, we show the need for a complete and 

comprehensive pharmacovigilance database by analyzing seven DDI sources that 

report the interaction of two well-researched drugs. We also demonstrate the high 

level of diversity in reported interactions by pairing 15 DDI sources and then 

computing the average Jaccard Index between them.  Further, we statistically 

analyze the fifteen DDI resources used in this study and prove the lack of their 

support with regards to DDI mechanisms of interaction. Then we propose two main 

contributions: (1) annotating the fifteen DDI resources with the mechanistic 

information and (2) building the D3 highly clinically pharmacovigilance database by 

extracting DDI pairs from 5 non-clinical resources.  

 

Chapter VII defines the validation and benchmarking of the D3 

pharmacovigilance system. First, we test the coverage of the D3 system’s query-

based model for the extraction of explicit DDIs from 15 DDI sources by computing 
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its recall against each source as well the whole group. Then the D3 probabilistic-

based model was unbiasedly benchmarked to identify its likelihood of predictions 

against both DDIs reported by its own knowledge resources as well as DDIs 

reported by Micromedex, a respected commercial system, for five commonly 

prescribed medications with high propensities for interaction. Then, we use the D3 

system model as a tool to evaluate five non-clinical resources in terms of reliability 

in reporting only clinically relevant DDIs. Finally, we present and discuss the 

evaluation of the results of this testing.  

 

Chapter VIII gathers the conclusions of this thesis, together with its 

limitations and complementary future work to be addressed. 
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CHAPTER II 
 
 

BACKGROUND AND SIGNIFICANCE 
  
 
 
 Polypharmacy, defined as concomitant prescriptions of five or more 

medications, has grown considerably in recent years, and unfortunately, patients 

taking multiple medications have an increased risk of experiencing major DDIs 

(Guthrie, Makubate, Hernandez-Santiago, & Dreischulte, 2015). Apart from the 

risk of death, DDIs are implicated in 0.054% of ER visits, 0.57% of hospital 

admissions and 0.12% of re-hospitalizations (Becker et al., 2007). Because of these 

increasing risks and costs, a wide range of techniques and approaches has been 

developed to study potential DDIs. This chapter critically examines and discusses 

these techniques and approaches in order to gain a more comprehensive view of how 

to manage potential DDIs.  In this chapter, we also shed light on the Semantic Web 

technologies that are used in this thesis. This chapter is divided into three main 

sections. In the first, we discuss the concept of DDI. In the next section, we survey 

the current methods for studying potential DDIs by classifying them as traditional 

or novel (pharmacovigilance). The last section illustrates briefly the concept of 

Semantic Web technologies and how they are useful in this context. Finally, we 

INTRODUCTION 
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summarize the chapter with a focus on the limitations of current approaches to 

investigating potential DDIs. 

 

II.1 Drug-Drug Interactions   
 

DDIs constitute an emerging medical problem around the world, contributing 

significantly to morbidity and mortality. Generally, unintended interaction between 

two drugs causes either toxicity or inefficacy; neither of these is a desirable effect. 

This necessitates alterations in dosage or the pursuit of alternative treatments for 

therapeutic intervention to avoid the development of clinically significant ADEs.  

Mechanisms involved in DDIs can be pharmacokinetic (causing alterations in drug 

exposure), or pharmacodynamic (affecting physiological systems within the body) in 

nature, or both (Williams & Feely, 2012). Pharmacokinetic interactions have been 

known to affect drug absorption, distribution, metabolism (biotransformation) and 

elimination, while pharmacodynamic interactions change the actual effects of a 

drug (Pleuvry, 2005). Pharmacogenetic factors that contribute to drug interactions 

constitute a rapidly emerging field of study and involve specific genetic factors that 

predispose individuals to DDIs via pharmacokinetic or pharmacodynamic 

mechanisms. Figure 2.1 shows the general concept of DDIs involving 

pharmacokinetic and pharmacodynamic mechanisms, as well as the contribution of 

pharmacogenetic factors.  
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Unfortunately, DDIs may result in discomfort, debilitating illness, and in 

extreme cases, death. For instance, when simvastatin (a CYP3A4 substrate) is 

administered with posaconazole (a CYP3A4 inhibitor), the statin accumulates in the 

body due to the inhibition of its metabolism by posaconazole, leading to risk of 

myopathy and rhabdomyolysis (Krishna et al., 2012). As illustrated in the previous 

example, DDIs can cause ADEs, which are associated with morbidity, mortality, 

and increased healthcare expenditure. As a result, development of methods to avoid 

these problems is critical since more accurate and comprehensive information about 

potential DDIs will increase patient safety as well as health quality. In practice, 

potential DDIs are challenging to study as they depend on many clinical, 

environmental, genetic and other factors. In a recent review, Percha & Altman 

argue that several of these factors work against early identification of potential 

Figure 2.1: Mechanisms of DDI following multiple drug 
administration 
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DDIs (Percha & Altman, 2013). They list the most prohibitive factors as being the 

lengthy time needed to perform clinical studies and the variance of genetic and 

demographic features in patient populations, which can produce or hide potential 

DDIs. In the next section, we will describe existing methods of potential DDI study.  

 

II.2 The State of the Art    
 

A wide range of clinical, computational and pharmacovigilance approaches 

have been developed to guide potential DDI research. Here, we discuss these 

techniques and approaches by categorizing them as either traditional or 

pharmacovigilance models for potential DDI discovery. First, we discuss the 

traditional potential DDI model. This includes in vitro, in vivo, and retrospective 

studies. Next, we discuss the pharmacovigilance DDI model. The pharmacovigilance 

discovery model includes mining clinical notes and published literature, as well as 

use of cheminformatics and the Semantic Web.  

 

II.2.a The Traditional DDI Discovery Model 

Historically, DDIs have been proven through laboratory or clinical studies of 

drug interactions. The traditional discovery model is used to identify the effect of 

one drug on a biological target or system in relation to a second drug 

(“Pharmacology Condensed, 2nd Edition | Maureen Dale, Dennis Haylett | ISBN 

9780443067730,” n.d.). The interaction often results in a change in concentration of 

the second drug. Cytochrome p450 metabolism interaction is the most common 



21 

 
example of this type of DDI (“Flockhart DA. Drug Interactions: Cytochrome P450 

Drug Interaction Table,” n.d.; Lynch & Price, 2007).  

In vitro and in vivo studies mandated during the drug development process 

assist in discovering some interactions before a drug reaches the market. In vitro 

studies are particularly valuable to characterize a new drug’s route(s) of 

biotransformation and to examine the potential of a new drug to alter enzymatic 

activity. Moreover, they are designed to determine the relationship between a 

drug’s concentration and its pharmacologic effects. After in vitro studies, in vivo 

experiments leverage in vitro data to identify the volume of distribution, clearance, 

bioavailability, and other pharmacokinetic parameters of the drug (Thummel & 

Wilkinson, 1998). The US Food and Drug Administration (FDA) recently issued 

guidance to inform in vitro and in vivo drug interaction studies in order to make 

more detailed investigation of potential DDIs part of the approval process for new 

drugs (S.-M. Huang, Temple, Throckmorton, & Lesko, 2007).  

One advantage of traditional in vitro and in vivo methods for discovering 

potential DDIs is their ability to characterize the pharmacokinetics of a drug. In 

other words, the processes of absorption, distribution, metabolism and excretion can 

be accurately tested inside the living organism. Another important advantage of 

these models is the minimization of human risk while studying potential DDIs 

(Wienkers & Heath, 2005). Although in vitro and in vivo studies warn the medical 

community about interactions, these investigative processes are slow and often test 

only small numbers of drugs and targets (Hutzler et al., 2011; Venkatakrishnan, 
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von Moltke, Obach, & Greenblatt, 2003). As a result, these processes do not allow 

researchers to study the interactions of new drugs as quickly as these new drugs are 

being added to the market. Another limitation of in vitro and in vivo studies is that 

clinical trials that are conducted prior to a new drug’s approval largely focus on that 

drug alone. This is obviously not sufficient to test a drug’s interactions with other 

medications, which are usually not prescribed to the patients enrolled in the 

studies. Finally, FDA instruction to the pharmaceutical industry to guide DDI 

studies focuses most commonly on the cytochrome enzyme (CYPs) and transporter 

interactions, while important potential DDI factors such as pharmacogenetics are 

not discussed. Thus, these guidelines do not provide comprehensive instruction for 

adequate study and understanding of potential DDIs.  

Retrospective studies are another method of traditional DDI discovery. 

Retrospective studies look backward in time using patients’ health records to 

identify potential DDIs. Many retrospective studies have produced promising 

results, providing useful and easy-to-implement information to clinicians for a 

variety of applications, including dose spacing (Liu & Unni, 2014; Peng et al., 2003; 

“Reference Guide For Foreign Pharmacy Licensing Exam Pharmacy Management & 

Pharmacoeconomics Question And Answers,” n.d.). However, retrospective studies 

are often subject to bias and contain limited sample sizes that reduce both their 

statistical power to assess research questions and their external validity 

(generalizability). In other words, because these studies are limited to existing 

records, they do not allow researchers to manipulate trial design to most efficiently 
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examine clinical questions, and they are subject to error in the collection of data 

within the original medical record (Rosholm, Bjerrum, Hallas, Worm, & Gram, 

1998).  

An additional limiting characteristic of traditional discovery models for 

investigation of potential DDIs is the focus on either one particular enzyme or a 

single drug class interaction. For instance, Williams & Feely have extensively 

reviewed pharmacokinetic and pharmacodynamic drug interactions for the 

cholesterol-lowering statins (D. D. Williams & Feely, 2012). The same group has 

studied potential DDIs related to UDP-glucuronosyltransferase substrates (J. A. 

Williams et al., 2004). Even though these studies have shown promising results, 

they are still considering only single pathway interactions. These analyses do not 

address the fact that DDIs can be complex processes with interactions extending 

beyond the single pathway level. 

The medical burden associated with DDIs will undoubtedly continue due to 

the long timeframe required to discover potential DDIs using traditional 

approaches. As a result, recent research has concluded that new methods are 

needed to aid in early DDI detection (Hennessy & Flockhart, 2012; Percha & 

Altman, 2013).  In the next subsection, we will discuss these novel 

(pharmacovigilance) methods.  
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II.2.b The Pharmacovigilance DDI Discovery Model 

The pharmacovigilance approach leverages different computational methods 

to predict potential DDIs. This novel model for potential DDI discovery accounts for 

important DDI information, which may be embedded in text forms such as scientific 

articles, electronic health records (EHRs), the FDA’s Adverse Event Reporting 

System (FAERS), or drug information sources (Iyer et al., 2014; Tari et al., 2010; 

Tatonetti, Ye, et al., 2012a; Wishart et al., 2008). It also includes cheminformatic 

methodologies, which identify potential DDIs by using 2D/3D QSAR (quantitative 

structure-activity relationships) to find similarities among sets of drugs (Korhonen 

et al., 2005; Yap & Chen, 2005). Therefore, researchers have recently begun 

experimenting with diverse pharmacovigilance approaches that employ available 

published resources to investigate and minimize the potential risk of DDIs. 

Mining medical texts to manually represent DDI data in a formal 

representation has been widely used and has shown promising results in potential 

DDI discovery. Medical text-mining includes extracting potential DDIs from 

scientific articles such as Medline, FAERS and EHRs (“FDA Adverse Events 

Reporting System (FAERS) > FAERS Reporting by Patient Outcomes by Year,” 

n.d.). An example of utilizing EHRs for pharmacovigilance study is the informatics 

for integrating biology & the bedside (i2b2) system (Murphy et al., 2010). Other 

works have proposed a classification system to not only identify potential DDIs but 

to also explain existing ones (Coulet, Shah, Garten, Musen, & Altman, 2010; 

Percha, Garten, & Altman, 2012). The method of mining texts has produced 
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promising results, but the extracted medical literature data is often error-prone 

because it requires substantial manual revision before use. 

Other pharmacovigilance models have incorporated text mining with 

Semantic Web technologies specifically to utilize the Semantic Web’s reasoning 

technique for potential DDI discovery. For instance, Tari et.al mixed text-mining 

methods and reasoning capability and found interactions based on transcription 

factors (Tari et al., 2010). More recent work has found potential DDIs based on the 

physiological effect of drugs at the level of biological functions. This study showed 

that though two drugs are not linked together by targets or proteins, they still could 

produce interactions when the two drugs are targeting the same biological process 

(R. Zhang et al., 2014a). 

The cheminformatic method of potential DDI discovery depends on the idea 

that if two drugs are similar in chemical and pharmacological features, they could 

interact. For example, protein structure, molecular structure and target-based 

interactions are applied to identify potential DDIs (Vilar, Lorberbaum, Hripcsak, & 

Tatonetti, 2015). The cheminformatic methods account for a similarity between 

drug classes as well. A significant advantage of this method, in addition to its 

capacity to identify potential DDIs, is the ability to provide extensive information 

about mechanisms of drug interaction.  

The manual curation of DDI data into a formal representation has been 

applied to find potential DDIs as well. This includes building a potential DDI 

knowledge base, combining multiple biomedical resources related to DDIs, and 



26 

 
utilizing the Semantic Web’s capabilities in reasoning. For instance, one 

contributing work on potential DDIs used only Semantic Web converted patient 

EHRs in a Resource Description Framework (RDF)(“Resource Description 

Framework (RDF) Model and Syntax Specification,” n.d.), which is a standard way 

of representing data on the Semantic Web. After conversion, the researchers 

queried the possible interactions between cardiovascular and gastroenterology 

drugs from the RDF to identify whether clinically reported DDIs in publically 

available resources were observed in real patient data.  

Another recent contribution to pharmacovigilance models for potential DDI 

discovery has been the development of drug recommendation frameworks using a 

business rule engine (Doulaverakis, Nikolaidis, Kleontas, & Kompatsiaris, 2014). 

This system was used to find both potential DDIs and drug-disease interactions, 

and was employed by Takarabe et al. to develop a DDI knowledge base containing 

both pharmacokinetic and pharmacodynamic information (Takarabe, Shigemizu, 

Kotera, Goto, & Kanehisa, 2011). A chief advantage of pharmacovigilance models of 

potential DDI discovery relative to traditional models is their ability to combine 

different scientific disciplines implicated in DDI study. However, while recent 

efforts in pharmacovigilance discovery have offered valuable advancements, these 

methods still possess substantial shortcomings, including a reliance on small data 

sets and an inability to assess the clinical relevance of predicted DDIs. This thesis, 

on the other hand, will focus on more complex methods of potential DDI discovery, 
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provide possible mechanisms of interaction, and assess the clinical relevance of 

discovered potential DDIs using heterogeneous data.  

 Overall, based on the available literature discussed in the state of the art 

section, we identify two common weaknesses of current DDI study. First, most of 

these studies focus largely on pharmacological aspects of the problem and provide 

only a single-pathway of discovery. However, in reality, an interaction between two 

drugs may occur due to many factors. Therefore, these methodologies are greatly 

limited in discovering potential DDIs caused by other mechanisms, such as by 

genetic, transporter, or physiological factors. The second weakness is that most 

studies lack an explanation regarding the mechanisms of potential DDIs; an 

extensive literature review revealed only one study that addresses mechanistic 

details, and these were limited solely to pharmacokinetic interactions. 

Consequently, since designing clinical trials to comprehensively characterize 

potential DDIs is heavily reliant on preliminary information from pre-clinical 

studies describing the nature of potential interactions, providing more detailed 

information about the mechanisms of proposed interactions is essential to aiding 

researchers in efficient clinical trial design. 

 

II.3 The Semantic Web in Life Science  

The Semantic Web is a new technology that aims to enhance the current 

World Wide Web (WWW) to make it understandable to both humans and machines. 

Thus, information presented on the WWW can easily be connected and interpreted, 
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leading to accurate knowledge retrieval and integration. The World Wide Web 

Consortium (W3C) supports the Semantic Web (“World Wide Web Consortium 

(W3C),” n.d.). The main goal of the W3C’s work is to allow data to be shared and 

reused across multiple applications, users, and organizations by providing an 

interoperability framework. Data from various resources are explicitly described in 

the Semantic Web, leading to easy integration, understanding and automated 

computer processing. 

 With the rapid increase and nature of numerous biomedical data sets, 

knowledge in information systems is often represented in different formats. The 

need addressed by the Semantic Web to accomplish standard representation and 

integration is essential to the life sciences industry to achieve better biomedical 

studies (Tim Berners-Lee & Hendler, 2001; Hendler, 2003). In this section, we will 

describe the Semantic Web concept architecture, its applications for data 

integration, its methods of knowledge representation, and its important role within 

the biomedical domain. 

 

II.3.a Concepts and Architecture 

The Semantic Web architecture includes multiple layers (Figure 2.2).  The 

first layer is a Semantic Web language layer, termed the Universal Resource 

Identifier (URI) (T. Berners-Lee, Fielding, & Masinter, 2005). It is used to 

standardize the language of the resources in the Semantic Web. The actual syntax 
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used in the Semantic Web is the Extensible Markup Language (XML) schema 

(“Extensible Markup Language (XML) 1.0,” n.d.).  

 

 

 

 

 

 

 

 

 

 

 

Another important syntax in the Semantic Web is the RDF. An RDF is a 

graphical representation of resources, written in the form of XML. Resource 

Description Framework Schema (RDFS) extends the RDF to allow classes, 

properties and types of resources to be explicitly declared (“RDF Schema 1.1,” n.d.). 

Also, Web Ontology Language (OWL) adds more vocabulary for describing classes 

and properties (“OWL Web Ontology Language Overview,” n.d.). Inferences and 

reasoning within the Semantic Web data can be done via RDFS and OWL. Another 

important component in the Semantic Web architecture is the SPARQL Protocol 

Figure 2.2: Diagram representation of Semantic Web layers. Adopted from W3C  
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and RDF Query Language (SPARQL) (Prud’hommeaux & Seaborne, n.d.). SPARQL 

is a query language for the Semantic Web.  

 

II.3.b Knowledge Representation 

Knowledge in biomedical systems often comes in different and complex 

formats, leading to the risk of unsuccessful discovery of a desirable goal and 

processing with regards to biomedical study (Ruttenberg, Rees, Samwald, & 

Marshall, 2009). In fact, any knowledge is useless if it is not well represented and 

accessible. The use of ontologies as a knowledge representation tool on the Semantic 

Web helps to avoid such problems. An ontology is a formal representation or 

conceptualization that aims to make knowledge understandable and reusable across 

different platforms (Gruber, 1993). The ontology also offers sophisticated reasoning 

and inter-operational abilities relevant to a semantic context. The main components 

of an ontology as described above are: classes, relationships, instances, and, finally, 

axioms. Biomedical knowledge provides an example: classes (genes, diseases, etc.), 

relationships between different classes (e.g., a protein is encoded by a gene), sets of 

instances mapped to classes (e.g., mouse p53 is a gene), and finally axioms (e.g., if 

drugs from different classes share a common property, such as a side effect, they 

may interact). Representation of all these components is easily done using OWL in 

the Semantic Web. Despite the advantages of the ontology in making the 

information more suitable for inference and processing, its development is time-

consuming and complex (e.g., it requires ontology engineers and domain experts). 
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Another problem with building any new ontology in the medical field is that 

biomedical data continues to grow rapidly, and its ontology needs to change 

accordingly. As a result, it has been recommended to reuse existing ontologies 

whenever it is possible instead of developing new ones (“Wiley,” n.d.). Likewise, to 

encourage the reuse of existing ontologies, particularly within complex ontologies 

(i.e., from different knowledge domains), it is important to provide mapping 

between different ontologies to describe merging and constraining processes. 

 

II.3.b.1 Resource Description Framework (RDF) 

The RDF is a standard way of representing data on the Semantic Web in 

graph-or-tree form. <Subject, Predicate, Object> are the components of the RDF 

statement known as triples. RDF statements are modeled as a graph with <Subject, 

Object> as its vertices connected by directed arcs <Predicate>. In addition, each 

RDF statement creates its own unique meaning. However, a single RDF statement 

can be linked to other graphs. Eventually, the result is a well-defined web forming a 

structure like a graph. Every resource in the RDF graph model has a unique URI 

reference. This URI guarantees global integration and avoids redundancy. Finally, 

having our data represented in a logical graph associated with relationships and 

constraints provides an easy way to manage and analyze it. 
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II.3.b.2 Web Ontology Language (OWL)  

The OWL is used to capture knowledge of interest about specific domains by 

adding more vocabulary to Semantic Web data for describing properties and classes. 

An important use of the OWL is to define concepts and add relationships among 

them (Antoniou & van Harmelen, 2004). OWL also can be used to define 

constraints. In addition, there are many open source ontology editors such as 

Protégé that are used to develop an ontology with all its components (classes, 

properties, instances, and axioms) (Horridge, Knublauch, Rector, Stevens, & Wroe, 

2004, p. -). The structure of classes within the ontology is a taxonomy with super- 

and sub-classes. In the OWL, properties are usually used to provide the semantic 

link between concepts using binary relations. Instances represent individuals, while 

the axioms are logic-based in the form of rules. A significant strength of OWL is its 

ability to provide not only inheritance from classes of properties, but also 

subsumptive reasoning that allows interoperability between different systems. 

 

II.3.c Data Integration 

The Semantic Web, as a new version of the current web, is known as web2; 

data from various resources are explicitly described leading to easy integration, 

understanding and automated computer processing (“The Semantic Web,” n.d.). The 

Semantic Web and its technologies (RDF, RDFS, and OWL) represent concepts in 

graphical format using a common language. As is stated above, the RDF is the 

foundation of Semantic Web technology. The need for both RDFS and OWL with 
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RDF is to embody concepts of specific-domain knowledge and add relationships. 

Once the knowledge is represented in Semantic Web format, accurate reasoning 

from this knowledge can be achieved. The use of URI in the Semantic Web to 

provide a physical location of the information helps to avoid data redundancy. If two 

URIs point to the same concept, the RDF will join them together with one unique 

URI. This approach allows seamless integration of data from diverse sources in 

addition to providing the interoperable representation of it; this is in contrast to 

traditional data integration. Another important feature of the Semantic Web is that 

the RDF model is easily changeable; i.e., there is no need to rebuild the model from 

the beginning. Thus, the Semantic Web is dynamic, and the result is an ability to 

add new information quickly. 

 

II.3.d Toward Translational Research 

Recently, there have been tremendous advances in designing and 

implementing biomedical ontologies. The Gene Ontology (GO), Chemical Entities of 

Biological Interest (ChEBI), and many other projects have adopted Semantic Web 

knowledge representations (Ashburner et al., 2000; Degtyarenko et al., 2008). 

Moreover, many consortium efforts such as Health Care and Life Sciences (HCLS) 

by W3C and Open Biomedical Ontology (OBO) have been proposed in order to 

develop standard biomedical ontologies (Cheung, Yip, Townsend, & Scotch, 2008; 

Smith et al., 2007). Hence, the Semantic Web has been used effectively in the life 

sciences, and there has been a great deal of positive progress in this area.  
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II.4 Conclusion 

 
In this chapter, we first demonstrated the concept of DDI along with its 

clinical and economic impact in health and life science. We then discussed, 

examined and analyzed different studies from two main potential DDI discovery 

models: traditional and pharmacovigilance methods. Overall, the available 

literature from both models pose significant limitations to the process of 

discovering and understanding potential DDIs. These limitations are 

summarized as follows:   

• None of the previously examined studies have proposed a 

comprehensive approach for discovering potential DDIs at different 

and multiple mechanistic levels. All of the studies focus either on a 

single interaction type or study a single interaction mechanism. As a 

result, there is a need for an approach that is able to study potential 

DDIs at multiple mechanistic levels in order to provide not just 

potential interactions, but also to identify new mechanisms of 

interaction.  

• Most potential DDI discovery approaches are developed for specific 

domains and are difficult to re-apply in other settings. Therefore, a 

more generic approach that is able to model potential DDIs is needed.  

• Most of the studies that utilize potential DDI information for their 

research are limited in that they only consider narrow types of DDI 

discovery, which are mostly pharmacokinetic. Therefore, there is a 
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need for a broader approach that is able to model, adopt and utilize 

diverse DDI dimensions. 

• Potential DDI information sources consist of rich information, which 

can provide a great benefit to a pharmacovigilance customization 

system. Most of the studies discussed in this chapter are incapable of 

gathering and interpreting hidden semantic knowledge from these 

sources. We argue that a good pharmacovigilance system is one that 

can infer and exploit hidden semantic information from multiple 

sources and that this pharmacovigilance system can be used to provide 

better results.  

• None of the previously examined pharmacovigilance studies have 

proposed an effective approach for knowing the clinical relevance of 

predicted DDIs. All of the studies seem to produce more and more 

DDIs, which may not necessarily be important. Consequently, there is 

a need for a method to evaluate and identify the most clinical 

relevance of existing DDIs. 

 

Finally, we gave a brief introduction to the Semantic Web and its related 

technologies, and we concluded by showing some well-known successful applications 

of it. 
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CHAPTER III 

 
THE DRUG-DRUG INTERACTION DISCOVERY AND DEMYSTIFICATION 

KNOWLEDGE BASE  
 
 
  
 As discussed in the previous chapter, existing pharmacovigilance systems 

suffer from a number of limitations that restrain potential DDI discovery. A critical 

shortcoming of these systems is their limited focus on single pharmacological 

aspects of potential DDIs. The main problem with such a focus is that it ignores 

other important interaction factors that may not be easily recognized. This is 

generally because the sources currently available for DDI discovery are disparate 

and disconnected. Therefore, most of the DDI detection methods (both traditional 

and pharmacovigilance) that we examined earlier, which rely on single levels of 

interaction, cannot accurately forecast potential DDIs in an age of complex 

pharmacological treatments. One way to address this problem is by developing a 

complete and comprehensive knowledge base that integrates multiple existing DDI 

information sources.  

 In clinical practice, healthcare practitioners often have diverse 

backgrounds, training, expertise and clinical preferences, creating an essential need 

for resources that guide clinician judgment toward optimal patient care.  For the 

INTRODUCTION 
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treatment of disease, clinical practice guidelines are created that synthesize the 

best medical evidence available to provide evidence-based recommendations that 

optimize patient outcomes (Woolf, Grol, Hutchinson, Eccles, & Grimshaw, 1999).  

For the prevention and management of DDIs, however, no single comprehensive 

resource exists to guide clinicians.  By providing more detailed explanations and 

integrating a greater amount of information (including mechanistic information) to 

assess potential DDIs, the drug-drug interaction discovery and 

demystification (D3) system we are developing seeks to aid clinicians in making 

appropriate decisions regarding DDIs. As a result, the D3 system aims to provide 

clinicians with an invaluable decision-making support tool by creating a 

comprehensive DDI knowledge base that is able to model and answer complex DDI 

questions and keep pace with an increasingly complex clinical picture. 

 In this chapter, we propose the D3 semantic infrastructure that integrates 

existing biomedical data from pharmacokinetic (interactions involving metabolism, 

transporters, and protein binding), pharmacodynamic (additive, synergistic, and 

competitive interactions), pharmacogenetic (single nucleotide polymorphisms that 

influence drug exposure), and multi-pathway (interactions involving more than one 

of the aforementioned pathways) interaction levels. The innovation of this D3 

semantic infrastructure is both the integration of diverse knowledge sources for 

drug entities and the inference of new relationships using semantic synergism. The 

D3 semantic infrastructure is, therefore, able to identify and explain reported and 
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potential DDIs. In order to achieve this complex task, a number of requirements 

must be taken into consideration: 

• The D3 knowledge base should contain the necessary information for DDI 

discovery at multiple interaction levels.  

• Data in the D3 knowledge base should be extracted, transformed, and 

stored in a formal and semantic representation. 

• The D3 knowledge base should be able to provide precise answers to 

complex DDI questions. 

• The D3 knowledge base should be able to easily adapt to changes. 

• The D3 knowledge base should be generic enough to be integrated and 

deployed to provide a wide range of DDI discoveries. 

  

 Building upon these requirements, in the next section we propose building a 

novel D3 knowledge base.  

 

III.1 Building the D3 Knowledge Base 
 

For the accurate discovery and explanation of drug interactions occurring 

through multiple pathways as planned in this thesis, a knowledge base needs to 

include information from different biomedical levels related to drug mechanisms. 

The development of this framework is necessary since there is, unfortunately, no 

single knowledge base that provides the requisite information. In fact, modeling 

DDI mechanisms is not a trivial task because the mechanisms are often missing 
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from sources or not up-to-date (R. D. Boyce et al., 2007). For example, Boyce et al. 

have developed a drug interaction knowledge base, but it is restricted to only 

metabolic-based interactions (R. Boyce, Collins, Horn, & Kalet, 2009a, 2009b). 

Other contributions such as the Quantitative Drug Interactions Prediction System 

(Q-DIPS) , the Pharmacogenomics Knowledge Base (PharmGKB), and SuperCyp 

have shown important results for modeling DDI mechanisms (Bonnabry, Sievering, 

Leemann, & Dayer, 1999; Klein et al., 2001; Preissner et al., 2010); however, they 

mostly focus on single mechanisms or certain drug classes. Due to the limited 

coverage in existing work with regard to modeling DDI mechanisms, this thesis 

proposes the building of a knowledge base called D3. The D3 knowledge base will 

model drug interaction mechanisms at pharmacokinetic, pharmacodynamic, 

pharmacogenetic, and multi-pathway levels. Moreover, D3 will be used as a model 

basis for data integration and a schema for knowledge discovery. Data will be 

semantically integrated into the D3 RDF network.  

 

III.1.a Data Sources  
 
The scientific goal of the D3 knowledge base is to support mechanistic DDI 

research. Toward such a goal, we attempt to provide background knowledge that 

serves our research purpose and to choose a number of sources that can aid in 

achieving complex research. It is important to mention that we will build the D3 

knowledge base so as to make it not only scalable for reasoning but also accurate at 

the conceptualization level. Moreover, while designing the D3 knowledge base, we 
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will consider high-level granularity by reusing as much information from existing 

knowledge bases as we can. The final goal while constructing the D3 knowledge 

base is to provide it with extensibility and flexibility by offering a well-structured 

schema for the purpose of future integration of new information sources. The D3 

knowledge base will be developed initially using fifteen different biomedical sources. 

These biomedical sources are listed below: 

1. The Unified Medical Language System (UMLS) (a terminology integration 

system produced by the National Library of Medicine (NLM)) (Bodenreider, 

2004).  

2. The Open Data Drug & Drug Target Database (DrugBank) (a database 

containing detailed information about drugs and their targets) (Wishart et 

al., 2008). 

3. The Pharmacogenomics Knowledge Base (PharmGKB) (a database 

identifying significant relationships that show the effect of genetic variation 

(SNPs) on drug disposition) (Klein et al., 2001). 

4. The National Drug File – Reference Terminology (NDF-RT)  (an ontology that 

describes and models drugs within pharmacokinetic, pharmacodynamic, 

physiological, and related disease domains)(Brown et al., 2004). 

5. The National Cancer Institute thesaurus (NCIt) (an ontology that covers 

vocabulary for medical and translational research with a focus on cancer) (de 

Coronado, Haber, Sioutos, Tuttle, & Wright, 2004). 
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6. Gene Ontology (GO) (an ontology that aims to describe genes and gene 

products at the molecular function, biological process, and cellular component 

levels) (Ashburner et al., 2000). 

7. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway (a 

comprehensive knowledge base for pathway information found in genes, gene 

products, drugs and diseases) (Kanehisa & Goto, 2000). 

8. BioCarta Pathways (an online service to provide pathway information at 

molecular levels, for the understanding of gene interactions) 

(“BioCarta_Pathways,” n.d.). 

9. UniProtKB/Swiss-Prot (an integrated knowledge base that provides 

information on protein functions and sequences) (Boutet, Lieberherr, 

Tognolli, Schneider, & Bairoch, 2007). 

10. Entrez Gene (a well-known, comprehensive, gene-specific database with a 

focus on completed sequenced genomes from National Center for 

Biotechnology Information (NCBI) (Maglott, Ostell, Pruitt, & Tatusova, 

2005)). 

11.  Drug-Drug Adverse Drug Event Associations database (TWOSIDES)  (a 

drug-drug interaction resource derived from the analysis of spontaneously 

reported ADEs) (Tatonetti, Ye, et al., 2012a). 

12.  Gene-GO file from NCBI (a text file that includes gene-gene ontology 

relationship information)(“Home - Gene - NCBI,” n.d.). 
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13. Side Effect Resource (SIDER) (a free source describing drugs with their side 

effects, targets and indications) (Kuhn, Campillos, Letunic, Jensen, & Bork, 

2010). 

14. ClincalTrials.gov (an international source for information from clinical 

trials)(“Home - ClinicalTrials.gov,” n.d.). 

15. DDI source by Ayvaz et al that combines 14 different drug interaction sources 

including 5 clinical sources, 4 natural language corpora and 5 

pharmacovigilance sources (Ayvaz et al., 2015). 

 

These data sources and ontologies have been chosen to be semantically 

represented, integrated and stored in the D3 knowledge base in order to fill in 

knowledge gaps in drug information addressed by the thesis, as well as to achieve 

better knowledge discovery by other researchers. In the next section, we will 

describe in detail the process of building the D3 knowledge base. This includes the 

identification of biomedical entities, normalization and insertion of semantic 

relationships, and the process of transformation, normalizing, and storing D3 RDF 

data, which includes direct insertions from UMLS and mapping external sources.  

 

 III.1.b Constructing the D3 OWL (Schema) and Inserting Semantic 
Relationships 

 
Different biomedical sources record similar information, but vary in the level 

of detail and ways they represent that information. For example, the DrugBank 

knowledge base records information about warfarin and its related enzymes, 
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transporters, etc. The side effect resource SIDER also holds warfarin side effect 

information. In order to incorporate these sources, their entities (known as 

resources in the Semantic Web) need to be identified consistently. These entities are 

identified and named by URIs. The URIs in the Semantic Web serve two functions: 

(1) as identifiers, and (2) as the locations of network endpoints. There have been 

many efforts to normalize URIs, such as the Life Science Record Name (LSRN) 

project , OKKAM , the Minimum Information Required in the MIRIAM registry, 

and Bio2rdf (“Life Science Resource Name (LSRN),” n.d., “Okkam - Thinking 

identifiers!,” n.d.; Nolin et al., n.d.; Novère et al., 2005). Though these efforts have 

offered different URIs that work toward seamless integration, there is still no 

complete schema for identifying biomedical entities (Sahoo, Bodenreider, Zeng, & 

Sheth, 2007). As a result, we chose to define our own schema as the Drug-Disease 

ontology.  For representing and storing D3 knowledge base concepts, we chose to 

rely on the UMLS. More specifically, the UMLS Concept Unique Identifiers (CUIs) 

will be converted into the D3 knowledge base URIs, and these form the reference set 

of concepts by which the other data sources are to be mapped. That is to say, the 

UMLS produced by NLM (version 2015 AA) was used as the backbone of the D3 

knowledge base since UMLS has been a stable integrated biomedical information 

source for more than 20 years (“UMLS - Release Notes,” n.d.; Vizenor, Bodenreider, 

Peters, & McCray, 2006).  



44 

 
Apart from its longevity, the UMLS has also been chosen for the following 

reasons: (1) UMLS by nature is an integration system (Figure 3.1), thus providing 

an integrated knowledge base for the proposed system;  

 

 

 

 

 

 

 

 

 

 

 

 

 

(2) UMLS is an enormous repository, currently containing 170 source vocabularies 

and biomedical ontologies, thus providing system extensibility; (3) UMLS is updated 

periodically, and using it as a basis makes the D3 system updatable to extend its 

utility lifetime; and (4) UMLS covers a comprehensive list of biomedical sources and 

provides semantic relationships so that D3 can be used as a model for data 

integration and a schema for knowledge discovery. In the next section, we will 

Figure 3.1: Different biomedical sources already integrated into UMLS 
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discuss the process of building the D3 knowledge base. It contains two construction 

steps: (1) creation of the D3 OWL profile, and (2) establishment of the D3 RDF 

network.  

 

III.1.b.1 D3 OWL Construction  

As discussed before, OWL extensions to the RDF help capture additional 

knowledge. For example, OWL supports many useful features such as inheritances 

between classes, restrictions, inferences and consistency checking. However, most 

biomedical sources are not presented in OWL format. As a result, converting them 

into OWL is labor intensive and time consuming. In addition, there is no single 

comprehensive OWL for all types and relationships to describe objects within the 

biomedical area. The Semanticscience Integrated Ontology (SIO), the Semantic 

Network of the UMLS, and several studies reviewed by Smith and others are all 

examples of OWL schemas for linking entities in the Semantic Web (At, 1989; 

Dumontier et al., 2014; Smith et al., 2005). We examined all of these and did not 

find one that could cover all the relationships and objects in the D3 knowledge base. 

Thus, for this thesis, we use a self-created OWL for storing the D3 knowledge base 

schema (classes and relationships) and for consistency checking.  

Protégé version 4.3 was chosen for building the OWL representation. The 

OWL has been used to create classes and subclasses in the D3 knowledge base to 

hold drug profiles including: pharmacological profiles, with subclasses (involving 

drugs, pharmacokinetics, and proteins); bimolecular profiles, with subclasses 
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(involving genes, pathways, cellular components, biological processes and molecular 

functions); physiological profiles, with subclasses (involving mechanisms of action 

and physiology); genetic profiles, with subclasses (involving alleles, SNPs and 

haplotypes); and finally, phenomenological profiles, with subclasses (involving 

diseases and side effects)(Knublauch, Fergerson, Noy, & Musen, 2004). In 

preparation for the remaining thesis steps, semantic relationships that link 

instances in the D3 knowledge base’s RDF graph have been inserted from UMLS 

and numerous external resources.  

 

III.1.b.2 Normalization and Insertion of D3 Semantic Relationships  

Meaningful relationships between entities are key not only for reasoning but 

also for integration of biomedical entities into the D3 knowledge base. However, as 

we stated above, there is unfortunately no one formal model for defining semantic 

relationships. Hence, in D3, semantic relationships between instances have been 

inserted and normalized from the UMLS Metathesaurus and numerous external 

resources. From UMLS, the needed semantic relationships were retrieved from the 

MRREL, which is a table in UMLS that stores semantic relationships, using a 

MySQL query. Other semantic relationships have been inserted from the external 

ontologies such as DrugBank, PharmGKB, and others listed above. Semantic 

relations such as ‘induces’, ‘inhibits’ and ‘substrate’ were stored as text in the 

DrugBank knowledge base; thus, it was necessary to build a Java regular 

expression function to extract and normalize them and then to map them to the D3 
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knowledge base. Moreover, all semantic relationships between entities have been 

studied and grouped as much as possible. For instance, it was recommended by 

NDF-RT to group the four different relationships may_treat, may_prevent, 

may_diagnose, and induces into only one causal relationship, has_indication, 

between drug-disease pairs (“National Drug File – Reference Terminology (NDF-

RTTM) Documentation,” n.d.). To provide another example, NCIt linked irinotecan to 

the CYP3A4 enzyme using the chemical_or_drug_is_metabolized_by_enzyme 

relationship, while DrugBank linked them by substrate_of. Since both relationships 

connect the same resources (irinotecan to CYP3A4), the D3 knowledge base grouped 

and stored them as drug_is_metabolized_by_enzyme. This grouping simplifies the 

relations in the knowledge base and removes redundancies. In its current phase of 

development, the D3 knowledge base has a total of 116 semantic relationships that 

link instances in its knowledge base, providing it with a rich set of relationships for 

inferencing purposes. 

 
III.1.c Creation and Loading of RDF into the D3 Knowledge Base 
 
The challenge of data integration is well documented in functional areas such 

as life science and translational research (“Health Care and Life Sciences (Semantic 

Web) Current Status - W3C,” n.d.). The principles of the Semantic Web specify 

solutions for efficient integration, reuse and discovery of a knowledge base. As 

stated above, an RDF represents data in the form of a graph. <Subject, Predicate, 

Object> are the components of the RDF statement known as triples. These triples 

are represented as one database object. Moreover, these triples form a complex 
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graph like the World Wide Web and can be linked together in enormous and 

intricate graphs. RDF by nature has one universe for all RDF data stored. 

Therefore, when two entities share the same URI, they will be linked. In our study, 

we are using RDF to incorporate the data that we have identified as significant to 

achieve our goal. In this section, we will illustrate the process of creating D3’s RDF 

network. The process includes extracting data from UMLS and mapping external 

sources.   

 

III.1.c.1 Extracting Data from UMLS into the D3 RDF Network  

As mentioned earlier, we are building our D3 knowledge base based on the 

UMLS Metathesaurus, and all other biomedical domains are integrated, or mapped, 

to it. The UMLS Metathesaurus contains multiple terms and vocabulary from 

different resources with their relationships. When terms or vocabulary mean the 

same thing, UMLS groups them and assigns a CUI (Figure 3.2).   

 

 

 

 

 

 

 

 

Figure 3.2: UMLS integration methodology. Adapted from 
http://www.nettab.org/2007/slides/Tutorial_Bodenreider.pdf  
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In short, UMLS is semantically oriented. Additionally, when UMLS 

integrates sources, it retains those sources’ original identifiers. For instance, in 

Figure 3.2, UMLS grouped multiple terms (synonyms) related to the concept of 

headache and assigned C0018681 as a unique ID. In doing this, it also stored 

A0066000, which is the concept ID for headache in the Medical Subject Headings 

(MeSH) knowledge base (Lipscomb, 2000). We are using the appropriate external 

IDs stored by UMLS for mapping purposes.  

The UMLS Metathesaurus dataset version 2015AA was downloaded from the 

UMLS knowledge server with a MySQL loading script. Metathesaurus has 48 files, 

of which we are using four: MRCONSO to standardize drug names, MRREL to add 

semantic relationships, MRSAT to map external sources, and MRSTY to check 

correct semantic groups and assure the quality of the inter-source mapping process 

(Bodenreider & McCray, 2003). Jena application-programming interface (API) is 

used to create and store the D3 knowledge base (Carroll et al., 2004; Owens, 

Seaborne, Gibbins, & Schraefel, 2008). For example, to add pathway instances 

using KEGG from UMLS, a MySQL query was issued to retrieve all CUIs 

(instances) under specific conditions. For all vocabulary and ontologies inside 

UMLS, the same MySQL technique has been applied to generate the D3 RDF with 

small modifications to reflect the source of interest in MRSAT fields. In preliminary 

work, an RDF network of GO, NDF-RT, KEGG, NCIt, and NCBI genes from UMLS 

has been successfully generated and stored in a local D3 RDF triple store database. 

Moreover, for each entity in the D3 knowledge base, we have added a label, a 
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semantic type and its external references. UMLS has 133 semantic types, which 

provides for terminology categorization in multiple biomedical domains (At, 1989). 

We have inserted semantic types as properties for our RDF for the purpose of 

checking each entity type.  

 

III.1.c.2 Mapping External Resources into D3 Knowledge Base 

Despite the fact that RDF triples have been successfully created and stored 

in a local D3 triple store file, in order to achieve better knowledge discovery it is 

also necessary to add other external biomedical resources to fill in gaps between 

multiple biomedical domains described by the source database. Therefore, 

PharmGKB, DrugBank, ClinicalTrials.gov, SIDER, DDI source by Ayvaz, and NCBI 

(gene-GO associations) have also been added to the D3 knowledge base. This 

mapping is based on a cross-referencing technique. That is, if two different 

resources in two different databases refer to each other by ID, they can be linked 

together through what is known in the Semantic Web as an x-reference. As stated 

above, when UMLS integrates sources, it retains the original identifiers, which can 

be used to establish the D3 mapping process. To map the DrugBank dataset, for 

instance, a Java program has been written to query the dataset and look for cross-

referencing identifiers in drugs, enzymes, transporters, drug carriers and targets. 

After that, cross-references were checked one by one and a MySQL query (in a 

specific field that matches the cross-references) was issued to link the cross-

references to its UMLS CUI. If a link was found, the DrugBank triple was 
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integrated into UMLS. For example, irinotecan was added to the D3 knowledge 

base from DrugBank by cross-referencing its entry in the Anatomical Therapeutic 

Chemical  (ATC) classification system, which codes drugs based on therapeutic, 

pharmacological and chemical properties, active ingredients, and systems or organs 

affected (“WHOCC - ATC/DDD Index,” n.d.). The ATC system uniquely identifies 

irinotecan with the value L01XX19, and since the ATC data source is already 

included in the UMLS Metathesaurus, UMLS was queried to retrieve the CUI 

associated with the L01XX19 value. The result was the CUI of irinotecan, 

C0123931. Then, the SPARQL/update technique was applied to modify the 

DrugBank resource by replacing the DrugBank identifier of DB00762 with 

C0123931 (Seaborne & Manjunath, 2007). In this way, the D3 knowledge base was 

enriched by inheriting central properties and objects from DrugBank. In this study, 

all external sources were stored as CUIs to avoid redundant linking between D3 

URIs and to keep inference syntax simple. The same methodologies are being 

applied to integrate the other external biomedical resources in a consistent way. For 

other data sources where there was neither a direct link nor an intermediate source 

to provide a link, we mapped them by an exact case-insensitive match of a semantic 

string. For example, ClinicalTrials.gov was mapped by string-matching a drug 

name in the ClinicalTrials.gov database with UMLS, and the consistency of 

mapping was checked by identifying the correct semantic type of CUI in the UMLS. 

Data sources covering information such as DDI sources and gene-GO relationships 

that come in text form were converted to RDF format and added to the D3 
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knowledge base as well. All biomedical resources listed in the data source section 

have been successfully integrated into the D3 in its current form, leading to a solid 

knowledge base at different biomedical levels. After integrating all significant 

biomedical resources into the D3, its knowledge base size is 2.01 GB. Further, the 

number of relationship triples is more than 30 million, with 32 classes (genes, 

drugs, diseases, etc), 116 properties (has_indication, has_SNPs, etc), 35,158 drugs, 

and more than 50,000 DDI pairs. Figure 3.3 shows the aspirin resource inside the 

D3 knowledge base. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

III.1.d Consistency Checking and Validation of the D3 Knowledge 
Base 

 
This thesis proposes an integrative identification, validation, and 

classification system for proven and potential DDIs using existing knowledge 

sources and the Semantic Web. An innovative aspect of this system is its intention 

Figure 3.3: Aspirin resource in D3 knowledge base  
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to both integrate diverse knowledge sources for drug-centric entities and show the 

benefit of semantic synergism.  

The D3 knowledge base was built as discussed above by integrating various 

biomedical sources, which could introduce inconsistencies, a common problem when 

integrating different sources in the Semantic Web. Thus, it is important to check for 

these inconsistencies to avoid incorrect inference. Pellet, which is an OWL-DL 

reasoner, has been chosen to check for inconsistencies (Sirin, Parsia, Grau, 

Kalyanpur, & Katz, 2007). Pellet is integrated with Jena and supports extensive 

reasoning functionalities such as consistency checking, classification and 

realization. Moreover, Pellet’s resulting inferred model of reasoning can be 

efficiently queried using SPARQL. First, the Pellet library has been added and Java 

code has been written to validate the D3 knowledge base.  

The D3 knowledge base has been found to be consistent, and the 

classification and realization processes were completed successfully by adding main 

classes for each instance in the knowledge base (Figure 3.4).  

 

 

 

  

 

 

 
 
 Figure 3.4: Results of D3 knowledge base consistency checking and 

validation 
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III.2 Adding MIRIAM Registry for Linking Life Science Data  
 

The power of the Semantic Web is its usefulness in linking separate 

biomedical sources. Data from different sources and formats can be easily 

integrated after modeling in the RDF. Every resource in the RDF graph model has a 

unique URI reference, and this URI is the key to linking biomedical sources.  When 

two different sources use the same URIs, they can be easily linked.  Even better, 

related concepts can also be linked via URIs, as when one database, source1, uses 

a URI from another database, source2, as a cross-reference. For example, a 

PharmGKB source can be seamlessly linked to a UMLS concept, because the 

PharmGKB source refers to the UMLS concept; hence it is easy to connect the two 

sources (Figure 3.5).  

 

 

 

 

 

 

 

 

 

 

 Figure 3:5: PharmGKB x-reference to UMLS 
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As a result, it is important that scientists use the same URI when referring to the 

same thing. Unfortunately, with the explosive growth of biomedical sources in 

recent years, many URIs are redundant or inconsistent. In response to these issues, 

scientists and researchers have produced different schemas to normalize URIs, such 

as OKKAM, MIRIAM, and Bio2rdf. 

The MIRIAM registry maintained by the European Bioinformatics Institute 

provides a unique URI to normalize biomedical concepts. The core of life science 

data in MIRIAM’s registry uses Identifers.org to provide online resources for 

seamless integration with external sources (Juty, Novère, & Laibe, 2012). MIRIAM 

recently has been adopted by the Semantic Web community in frameworks such as 

Bio2RDF and EMBL-EBI for normalizing URIs and tracing links mediated by cross-

referencing (Jupp et al., 2014). The MIRIAM registry has published 557 life science 

data sources such as NCBI Gene, GO, and DrugBank, and has provided 734 URIs 

(“MIRIAM Registry,” n.d.). In this section, we will show how we have added cross-

referencing URIs to the D3 knowledge base for easy linking, and we will 

demonstrate the effectiveness of adding the MIRIAM registry URIs by linking the 

Online Mendelian Inheritance in Man (OMIM) source into the D3 knowledge base 

(Hamosh, Scott, Amberger, Bocchini, & McKusick, 2005). 

While constructing the D3 knowledge base, our main goal was to make it 

applicable for a wide range of potential DDI discoveries. One way to achieve such a 

goal is by linking D3’s knowledge to external knowledge bases. We chose the 

MIRIAM registry to provide the cross-referencing link for the D3 knowledge base. 
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The process of adding the registry for cross-referencing URIs into D3 included the 

following steps: 

1. When adding a resource from UMLS to the D3 knowledge base, store 

its original ID and original database in a list along with its CUI.  

2. Check whether the MIRIAM registry website has provided an 

identification scheme for the original source.  

3. If there is identification, retrieve both the namespace as well as the 

URI; otherwise; the link cannot be established.   

4. Finally, add a new property to the D3 resource with the namespace as 

name of the relationship and URI as object + the original ID.  

 

ABCB1 gene provides an example to illustrate this process. The ABCB1 gene 

is stored in the D3 knowledge base as D3:C037662. 

 As stated above, one advantage of UMLS is keeping the original ID when it 

integrates and assigns the CUI. The C0376622 has its original OMIM id = 171050. 

To add the MIRIAM registry URI, we checked its website and found that MIRIAM 

provided a unique URI for each OMIM source. As a result, we created a new 

property for the C0376622 concept in the D3 knowledge base to store the x-OMIM 

reference (Figure 3.6).   

 

 

Figure 3.6: ABCB1 resources with Miriam registry URIs  
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In the D3 knowledge base, we have successfully added the external MIRIAM 

registry URIs for these sources: DrugBank (drugs and targets), PharmGKB (drugs, 

genes, and diseases), Entrez Gene, Gene Ontology, OMIM, KEGG, NDF-RT, SIDER, 

and NCIt. These URIs will provide our D3 knowledge base with implicit linkability. 

Next, we illustrate how such a link can be easily achieved using the MIRIAM 

registry URIs. Specifically, we would like to be able to easily query the OMIM 

source using the D3 knowledge base.  

OMIM is a human genotype and phenotype knowledge base that supports 

human clinical genetics research. It has been widely used to identify the 

relationships between genes and diseases (Feramisco, Sadreyev, Murray, Grishin, & 

Tsao, 2009; J. Wang et al., 2008). The OMIM source was transformed and stored as 

an RDF file by the Bio2RDF team, and they have made the source available for 

query or download (“Statistics for Online Mendelian Inheritance in Man,” n.d.). We 

downloaded the RDF version from the Bio2rdf server and stored it using a Jena 

triple store database. The OMIM RDF version has a property Bio2RDF: x-

identifiers.org that links a resource to its URIs in the MIRIAM registry. We used 

this property when querying to link between our D3 resources and the Bio2RDF 

one. Figure 3.7 shows an example of a SPARQL query where we linked our D3 

with the OMIM source and asked about the ABCB1 gene ID in the Bio2rdf source: 

 

 

 

Figure 3.7: Link D3 to Bio2RDF via Miriam registry 
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The result of the query can be found at Bio2rdf website. We used the Bio2rdf 

server for illustration purposes here. Using the power of the Semantic Web and the 

utility of x-identifiers.org, we show how seamless the integration between 

biomedical sources can be. This will greatly aid in aggregating information to 

answer complex biomedical questions. We have also showed how D3 can be easily 

expanded and linked to important sources.  

 

III.3 Benefits of Semantic Mining in Identifying Embedded Associations 
for a Chemotherapy Medication 
	

While more complex cases demonstrating the utility of the D3 system in 

modeling and answering a specific DDI question will be discussed in detail in 

Chapter V of this thesis, the current case serves to illustrate the D3 system’s 

ability to uncover new relationships between information stored in distinct sources.  

As seen with irinotecan, effectively integrating information from multiple sources 

may contribute to a more detailed understanding of the subject being queried.  

Furthermore, this example shows the potential utility of the D3 knowledge base for 

additional clinical applications. 

To demonstrate the usefulness of our semantically integrated knowledge 

base, we will use a case study to find drug-pathway associations.  It is true that 

biochemical pathways can be straightforwardly retrieved from different knowledge 

bases, such as KEGG, but the implicit biochemical pathways are hard to find. Using 

our D3 knowledge base, we are going to find the implicit pathway for irinotecan, a 

chemotherapy drug for colon cancer treatment. As has been done in related work 
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(Qu, Gudivada, Jegga, Neumann, & Aronow, 2007), we propose 3 different SPARQL 

queries to identify the implicit pathways for irinotecan: 

 

1. Through irinotecan directly: The query retrieves only one pathway, 

Caspase Cascade in Apoptosis (Figure 3.8).  

2. Through irinotecan interacting with genes: The query retrieves 103 

pathways (Figure 3.9). 

3. Through irinotecan’s clinical features: The query retrieves 21 

pathways (Figure 3.10). 

The apoptosis pathway was found through the second and third queries, while the 

first query yielded the Caspase Cascade, a system of aspartic acid-specific proteases 

responsible for the apoptosis process, with the result shown here (“Caspases: Their 

Role in Cell Death and Cell Survival | Sigma-Aldrich,” n.d.).  

 

 

 

 

 

 

 

 

 

Figure 3.8: Mining irinotecan pathways via target 
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In fact, the mechanism of action of irinotecan is known to lead to apoptosis 

(Pommier, 2006). Irinotecan works by inhibiting the topoisomerase enzyme, which 

is responsible for DNA copying and transcribing. The inhibition happens when 

irinotecan binds to the topoisomerase I-DNA complex that leads to the destruction 

Figure 3.9: Mining irinotecan pathways via interacting genes 

Figure 3.10: Mining irinotecan pathways via clinical features   
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of that complex. As a result, the cell’s DNA no longer copies and transcribes, and 

this leads to apoptosis. Other retrieval pathways identified by D3, such as the p53-

signaling pathway, are shown to be related to cancer (Sherr & McCormick, 2002). 

These preliminary results could be used for repurposing existing drugs for new 

indications. Studying these inferred pathways within a disease and the role that 

irinotecan plays in these pathways could help to find a new possible indication for 

other types of cancer. Further studies would need to be conducted to determine 

these pathways and to clarify their role in the cell cycle in relation to irinotecan. In 

summary, the Semantic Web provides an excellent way to mine biomedical 

resources to explore clinical applications. 

 
III.4 Conclusion 

 
In this chapter, we have introduced a complete and comprehensive DDI 

knowledge base using Semantic Web technologies. This knowledge base integrates 

multiple biomedical sources by implicitly transforming and mapping their instances 

into one complete resource. In order to accurately map and represent the knowledge 

discovered by D3, we introduced two novel methods. One exploits the UMLS 

semantic types network to accurately identify a concept; while the second groups 

similar semantic relationships into one.  

The result of this work is a complete D3 knowledge base that improves 

pharmacovigilance study. Unlike other approaches in the literature such as 

(Bonnabry et al., 1999; R. Boyce et al., 2009a, 2009b), or (Preissner et al., 2010) D3 
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covers the DDI mechanisms at multiple biomedical levels. In particular, our 

proposed knowledge base is capable of modeling, discovering and explaining the 

different biomedical mechanisms that could contribute to DDIs. This D3 knowledge 

base is also able to expand, adapt and update information easily. Another main 

focus highlighted in this chapter is that the proposed D3 knowledge base is generic 

and flexible enough to be integrated with diverse biomedical sources. In this 

chapter, we have illustrated this innovation by integrating OMIM sources. 

In order to show the usefulness of our D3 knowledge base, we also identified 

a new potential application for a chemotherapy medication, showing that D3 could 

be useful for drug repurposing and discovering ways that existing medications could 

be used to effectively treat new diseases (Boguski, Mandl, & Sukhatme, 2009).  

Notably, a fundamental issue that is not addressed in this chapter is the 

critically important process of discovering potential DDIs utilizing the D3 

knowledge base. In general, our approach builds a complete DDI knowledge base 

that models different mechanisms of interaction, allowing us to identify, validate, 

and classify reported and potential DDIs in a more effective way. In the next 

chapter, we investigate this potential by generating different inference tasks for the 

D3 system. 
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CHAPTER IV 
 

 
DRUG-DRUG INTERACTION KNOWLEDGE DISCOVERY USING 

PROTOTYPE SEMANTIC MINING INFRASTRUCTURE - A 
METABOLIC AND TRANSPORTER INTERACTION CASE STUDY 

 
  
 

In the previous chapter, we established a comprehensive knowledge base 

called D3 that models DDI mechanisms at multiple biomedical levels. So far, this 

D3 knowledge base has been dealt with solely as a collection of individual sources, 

ignoring the potential for valuable semantic relations that might exist between 

them. In this chapter, we examine our fundamental hypothesis that by employing 

the semantic relationships contained within the D3 knowledge base, we provide the 

means to better identify and characterize both proven and potential DDIs and to 

offer a better pharmacovigilance system. 

This chapter focuses on utilizing the semantically integrated D3 knowledge 

base to identify complex interactions as well as to reveal previously unsuspected 

mechanistic interactions. The novelty of the interaction model proposed here is its 

ability to identify potential DDIs across multiple biomedical levels. Such a model 

can then be used to discover hidden DDI information in existing sources, improving 

INTRODUCTION 

 



64 

 
understanding of DDIs at the mechanistic level. However, in order to develop an 

effective model, we need to carefully address three questions:  

• What factors should be considered when designing a model to utilize 

the rich semantic relationships of the D3 knowledge base?  

• How do we exploit the vast integrated relationships within the D3 

knowledge base to comprehensively assess the potential for DDIs?  

• How do we develop a model to find potential DDI information that is 

not explicitly evident within knowledge sources? 

 

In this chapter, we address these questions by introducing the importance of 

multi-pathway DDIs, a complex type of interaction, which occurs due to two or more 

interactive mechanisms. For instance, cyclosporine interacts with many cholesterol-

lowering HMG-CoA reductase inhibitors (statins) by both inhibiting CYP3A4-

mediated drug metabolism and organic anion transport polypeptide- (OATP-) 

mediated transport into hepatocytes, the site of the statins’ therapeutic activity 

(Asberg, 2003). The result of this interaction is not only a decrease in the statins’ 

therapeutic efficacy, but also an increase in their toxicity due to higher drug plasma 

concentrations because of reduced metabolism and drug elimination. 

To study multi-pathway DDIs, we present a novel method using the Semantic 

Web’s inference capabilities to examine drug information across multiple 

mechanistic levels. Specifically, we propose a rule-based model to discover potential 

DDIs arising from metabolic and transporter interactions. We then demonstrate the 
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validity of this approach using irinotecan, a chemotherapy agent. By linking 

mechanistic data from available DDI sources, we demonstrate the capacity of the 

D3 system to identify potential interactions with irinotecan, including the discovery 

of new potential interactions across previously unidentified mechanisms. 

 
IV.1 Method  

 
To demonstrate the usefulness of the semantically integrated D3 knowledge 

base in identifying complex interactions, a preliminary case study is designed to 

identify multi-pathway interactions. This includes choosing a real world test case 

drug and applying inference.  

 

IV.1.a A Motivating Scenario: The Colon Cancer Medication 
Irinotecan as a Case Study  

 
We choose to explore new interactions for irinotecan, a chemotherapy drug. 

Irinotecan is a nuclear DNA topoisomerase I (Top1) inhibitor used to treat 

metastatic colorectal cancer. Its mechanism of action involves inhibition of the Top1 

enzyme, a critical mediator of DNA transcription and replication. As a result, 

irinotecan promotes cancer cell death, leading to its therapeutic efficacy. Despite 

the effectiveness of irinotecan, myelosuppression (the slowing of bone marrow 

activities related to blood and immune cell production) and diarrhea, which results 

from the direct action of irinotecan on the intestinal mucosa, are established toxic 

effects of irinotecan (Xu & Villalona-Calero, 2002).  
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Irinotecan is eliminated from the body in the bile via the efflux transporter P-

glycoprotein (P-gp). As a result, any induction or inhibition of the P-gp transporter 

will effect irinotecan concentrations. For instance, cyclosporine (which was one of 

the results our model infers) has been shown to decrease the elimination of 

irinotecan by 39% to 64% due to inhibition of P-gp (Innocenti et al., 2004). 

Additionally, the enzyme CYP3A4 plays an important role in irinotecan metabolism 

(Haaz, Rivory, Riché, Vernillet, & Robert, 1998, p. -450). The impact of CYP3A4 on 

irinotecan metabolism is seen when voriconazole, a CYP3A4 inhibitor, is co-

administered with irinotecan, resulting in increased irinotecan plasma 

concentrations and subsequently increased cellular toxicity. Therefore, DDIs 

involving irinotecan can occur at either the metabolism or transporter levels. For 

example, nefazodone (which was another of the results our model infers), an 

antidepressant that inhibits CYP3A4 and induces P-gp, influences the disposition of 

irinotecan via two distinct mechanisms when the medications are co-administrated 

(Ma & McLeod, 2003).  To comprehensively characterize the potential for drug 

interaction with irinotecan, then, a DDI knowledge base must be able to integrate 

drug information across a variety of mechanisms in order to accurately model drug 

disposition. 

Finally, irinotecan has been the subject of extensive DDI study due to its very 

complicated pharmacokinetic profile that makes its interactions with other drugs 

more likely (Mathijssen et al., 2001). More specifically, it has been shown that most 

of the toxic effects of irinotecan result from variations of the UGT phase II enzymes 
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(Hahn, Wolff, & Kolesar, 2006). Therefore, due to its complex pharmacokinetic 

profile and high potential for serious ADRs, such as myelosuppression and diarrhea, 

we selected irinotecan as a robust case to illustrate the utility of the D3 system in 

identifying potential drug interactions.  

A semantic rule-based model has been designed to infer drugs that could 

potentially interact with the same metabolic pathways and transporters that 

mediate irinotecan disposition. Following this hypothesis, the PharmGKB 

knowledge base will be used as a source of evidence to adjust the semantic rule to 

account only for drugs that share metabolic and transporter pathways with 

irinotecan.  

 

IV.1.b Identifying Inference Rules  
 
Inference—the process of reasoning from evidence and conditions to produce 

conclusions (“Apache Jena - Reasoners and rule engines: Jena inference support,” 

n.d.)—is one of the most powerful tools of the Semantic Web. This process can be 

done using mainly OWL, RDFS  (subClassOf) or RDF, using different inferring 

techniques such as description logic (DL) and rule engines (RE) (“Apache Jena - 

Reasoners and rule engines: Jena inference support,” n.d., “The Description Logic 

Handbook,” n.d.). Jena offers inferences from a knowledge base through reasoners 

and rule engines. For this study, we use Jena’s generic rule reasoner for inferring 

purposes. The engines produce valid statements within a system based on rules. 

Moreover, Jena’s generic rule reasoner includes three models: forward chaining, 
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backward chaining and a hybrid model. The forward chaining works by looking at 

the facts to derive a conclusion; a typical example of this model occurs in medical 

diagnosis. For instance, if a patient has a positive ELISA test for anti-HIV 

antibodies and a detectable HIV viral load in his blood sample, we can diagnose him 

with HIV. The backward chaining, on the other hand, works in the opposite way; 

i.e., it starts with a conclusion (goal) and tries to satisfy it. Considering the same 

HIV example, a physician (using backward chaining) assumes a patient has HIV 

and then tries to find all information (facts) to validate his assumption. The last 

model is hybrid chaining, in which both forward and backward models can be 

combined.   

For this study, a semantic rule-based model is predefined for reasoning 

throughout the D3 knowledge base to identify potential interactions involving the 

chemotherapy medication irinotecan. Basically, we reason through the D3 system 

using the forward chaining model. Potential interaction candidates for irinotecan 

are identified on the basis of pharmacological similarities as stated before. That is, 

drugs with the same metabolic pathways (e.g., being processed by the CYP3A4 

enzyme) and transporter (e.g., being transported by P-gp) as irinotecan are assumed 

to potentially interact with this drug. Figure 4.1 shows a graphical representation 

of the inference along with its forward chaining rule that is defined to identify the 

drugs that potentially would interact with irinotecan at the metabolic and 

transporter levels.  
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IV.2 Results  
 
After the semantic rule-based model was applied to infer irinotecan drug 

interactions, 215 FDA-approved drugs were identified that satisfied the requisite 

conditions for an interaction: they were metabolized by the CYP3A4 enzyme and 

transported by P-gp. To validate the outcomes, PharmGKB was used as a source of 

evidence to check associations between the candidate drugs and the CYP3A4 

enzyme/P-gp transporter. Only 116 of the 215 drugs identified by D3 had evidence 

for an association listed in PharmGKB (Table 4.1).  

 

 
 
 

 

Figure 4.1: Multi-pathway inference discovery model 
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Table 4.1: Model outcome validation of the irinotecan 116 predicted drugs 

 
 
 
 
 
 
 
 
 

 
Among the 116 drugs identified by PharmGKB, 28 were possible candidates 

for metabolism-based interactions (either inhibition or induction), 28 were indicated 

for possible transporter-based interactions (either inhibition or induction), and 8 

drugs, despite not inhibiting or inducing CYP3A4 or P-gp, were co-substrates for 

both pathways with irinotecan (similar disposition).  Additionally, 52 drugs 

demonstrated the potential to interact with irinotecan through both transporter and 

metabolic mechanisms (Figure 4.2).   

 

 

 
 
 
 
 
 

 

Validation Source  Predicted Interactions 

Curated DDI sources  80 (69%) 

Literature  12 (10%) 

Never studied  24 (21%) 

This table shows the overall validation results after running the possible drug interactions 
of irinotecan. 80 possible interactions have been found in the selected curated DDI sources. 
Among those not found in the selected sources, 12 interactions were reported in medical 
literature and other sources that were not used in the first analysis. This validation process 
yielded 24 potential interactions, which have never been studied or discussed in either the 
medical literature or commercial and free DDI sources.  

Figure 4.2: 116 Interactive drugs predicted by the model were classified into four 
different categories (metabolism, transporter, metabolism and transporter, and similar 
disposition) 

 

In
te

ra
ct

io
n

 P
er

ce
n

ta
ge

s 
 

24%	 24%	

48%	

4%	
Metabolism Transporter Metabolism and 

Transporter 
Similar 

Disposition 
Mechanisms of Interactions 



71 

 
Based on the observed propensity for drugs to interact with irinotecan 

simultaneously across multiple mechanisms, the importance of developing a 

knowledge base that accurately integrates information detailing all potential 

mechanisms of interaction is essential.  Notably, the D3 system successfully 

detailed interaction between nefazodone and irinotecan (an example previously 

discussed) at both the transporter and metabolism mechanistic levels.  Conversely, 

decision support tools such as Micromedex, Lexicomp, and Facts and Comparisons 

all identified only interactions between the two medications at the metabolism level 

through CYP3A4 inhibition (“Facts & Comparisons® eAnswers | Clinical Drug 

Information,” n.d., “Lexicomp® Online | Clinical Drug Information,” n.d., 

Micromedex® Healthcare Series., 2015).  Comprehensively identifying all 

mechanisms of drug interaction is critical since interaction through one mechanism 

may potentiate or mitigate interaction at another, and thereby potentially 

contribute to clinically meaningful DDIs (Hinton, Galetin, & Houston, 2008). 

Therefore, the complex case of irinotecan highlights the insufficiencies of 

conventional DDI identification systems, namely their ability to identify DDIs solely 

related to one mechanism of interaction, and demonstrates the value of using 

integrated Semantic Web technology systems such as D3 to more accurately model 

potential DDIs and inform clinical decision support tools.   
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IV.2.a Validation   
 
The 116 semantic rule-based DDI predictions were compared against five 

different commercial and free license DDI information sources, specifically 

PDDIs, Medscape (“Latest Medical News, Clinical Trials, Guidelines – Today on 

Medscape,” n.d.), Lexi-Comp, Drugs.com (“Drugs.com | Prescription Drug 

Information, Interactions & Side Effects,” n.d.), and Micromedex Solutions. 

These five sources were used because no single comprehensive DDI source 

exists. Zhang et al. suggest that using the curated data sources (such as the ones 

mentioned above) for validation could lead to many false positives due to the 

incompleteness of available curated data sources, and thus, precision could 

suffer (R. Zhang et al., 2014b). Tari et al. also report the limitations of using 

DrugBank as a gold standard for validation; they found only 11% of their results 

reported while 77% were found by searching the medical literature (Tari et al., 

2010). These studies demonstrate that weak recall is a commonly encountered 

limitation when using commonly available sources. When we consider only those 

116 irinotecan-interactive drugs found also in PharmGKB, the D3 validation 

process identified 80 DDIs collectively reported among the sources, while 36 of 

the potential DDIs identified in our study had no interaction reported in any of 

the sources investigated. Twelve of the 36 remaining drugs had evidence 

associated from the literature and other clinical websites (Appendix A). 
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IV.2.b Statistical Significance of Predicted Interactions 
 
The DDIs source by Ayvaz et al. was selected as the gold standard for this 

study, since it integrated 14 publically available sources of DDI information from 

natural language corpora and from clinical and pharmacovigilance sources. 

Fisher’s exact test was used to find the significance of the overlap between the 

results generated by the proposed model and DDIs. First, a two-by-two 

contingency table for irinotecan was generated. Then, a significant overlap 

between the drugs predicted by the model and the drugs that were listed to have 

interactions with it in the DDIs source was measured (Table 4.2). 

 

       Table 4.2: Fisher’s exact test two-tailed p-value 

 
 
 
 

 
 
 
 

 
 

IV.2.c Precision and Recall of Predicted Interactions 
 

For further evaluation of the potential interaction candidates retrieved for 

irinotecan, this study calculated the recall and precision of those candidates. As 

mentioned before, the results of initial semantic predictions were 116 drugs, of 

which 80 were proven (True Positive-TP) and 36 were potential (False Positive-

FP), during the validation process. To identify the quality of search results, the 

total number of irinotecan interactions was first retrieved individually from the 

   True False P-value 
Predicted   55 37 

<0.05 
Unpredicted   166 1356 

 
The table illustrates the significant overlap between the drugs predicted by our model 
(116 drugs) to have interaction with irinotecan and the drugs that are listed to have 
interactions with irinotecan in DDIs (two-tailed Fisher's exact test, p-value = <0.05). 
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sources DDIs, Lexi-Comp, Drugs.com, Micromedex Solutions and Med-scape. 

Then, the resulting lists of irinotecan interactions were combined, and 

overlapping information was removed, leading to 547 drugs being reported to 

interact with irinotecan among these seven sources. The recall then was 

computed as: ( !" (!")
!" !" ! !" (!"#)× 100% = 14%), and the precision was calculated as: 

( !" !"
!" !" ! !" !" × 100% = 68%). Poor recall was due to the restriction of the inference 

model (i.e., a drug being metabolized by the CYP3A4 enzyme and transported by 

the P-gp transporter). In fact, in the application of such a DDI inquiry, relevant 

and precise information is more important than improper information; that is to 

say, the precision is more important than recall in this case study. However, in 

order to improve the recall, the model could be modified to account for any 

enzyme-transporter co-interactions. 

 
IV.3 Limitations  

 
 Though the proof-of-concept rule-based model was able to identify possible 

interactions for irinotecan with 79% correct detection (69% from DDI sources + 

10% from literature and clinical websites), this test study has several limitations 

that should be addressed in future work. First, the rule-based model checked 

only for potential interactions, but it did not determine the clinical significance 

of those interactions. In fact, determining the severity of any interaction based 

on mechanistic information is complex without pursuing clinical 

pharmacokinetic/ pharmacodynamic studies to (1) determine how the identified 

interactions may change the interacting drugs’ concentrations, and (2) assess the 
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therapeutic index of the interacting medications, that is, how changes in drug 

concentrations will impact the drugs’ therapeutic efficacy and the potential for 

adverse effects. This model, however, provides potential interaction candidates 

for pharmacologists to pursue in clinical studies to ascertain the true 

significance of these interactions. Another limitation is that this study examines 

interactions for only one drug, irinotecan. Even though irinotecan’s complex 

pharmacokinetic profile allowed us to test the full range of our model, the value 

of the DDI knowledge base would be proven more definitively if more examples 

were provided. 

 

IV.4 Conclusion 

 
In this project, the D3 knowledge base is employed to identify potential 

DDIs and to model their mechanisms of interaction. We focus on our 

semantically integrated knowledge base as the main knowledge resource in this 

case study, due to its ability to represent more complex methods of interaction 

than other DDI identification systems.  

In this chapter, the fundamental hypothesis is that by discovering the 

semantic knowledge contained within the D3 knowledge base, we obtain the 

means for providing a better way to understand drug interaction mechanisms 

and hence to provide a better pharmacovigilance system. In order to access the 

semantic knowledge from the D3 knowledge base, we first need a way to identify 

how drugs are related to each other. Therefore, in this chapter we proposed a 
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novel semantic method that aims to identify interaction at two mechanistic 

levels. This method inferred the interactions by using the information that is 

associated with a drug in the D3 knowledge base. Moreover, in this chapter, we 

also identify potential interactions that have not yet been studied clinically and 

characterize potential and proven DDIs based upon their mechanisms of 

interaction. We also conduct different evaluations to assess different aspects of 

our proposed approach. In the evaluation processes, seventy-nine percent of 

possible irinotecan-based DDIs were corroborated by 8 well-known DDI sources, 

while 21% were not (67% precision, 15% recall). Also, significant differences 

(based on a two-tailed Fisher's exact test, p-value < 0.05) were detected when a 

rule-based model was compared to the DDI source by Ayvaz et al. The obtained 

results demonstrate the effectiveness of using our method to identify new and 

potential drug interactions. Finally, we summarize the significant contributions 

in this chapter as follows: 

 

• We developed a method to identify multi-pathway drug interactions 

based on metabolic and transporter similarities.  

• We identified a number of potential interactions that have not been 

clinically studied. 

• We categorized and explained the mechanisms of DDIs. 

• We realized when evaluating our outcome that the establishment of a 

comprehensive, accurate, and evidence-based resource for DDIs would 



77 

 
offer significant value for both drug interaction research and clinical 

practice. 
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CHAPTER V 
 

DATA-DRIVEN SYSTEM FOR VALIDATION AND CLASSIFICATION OF 
DRUG-DRUG INTERACTIONS 

 
 
 
 In chapter III, we established a comprehensive DDI knowledge base by 

semantically integrating and modeling drug information at the pharmacokinetic, 

pharmacodynamic, pharmacogenetic, and multi-pathway interaction levels. This 

D3 knowledge base was developed to be used for automated reasoning about 

potential and proven DDIs and their mechanisms and has an effective means of 

adapting to changes in drug profiles, that is, the drug information present 

within the knowledge bases within D3 upon which inferences are generated. We 

showed the ability of the semantically integrated D3 knowledge base to identify 

hidden pathways of drug action, which was effectively utilized in our example to 

propose a potential drug repositioning application for a chemotherapy 

medication. In Chapter IV, we showed that the D3 knowledge base can be used 

to identify, validate and classify multi-pathways DDIs. By proposing a novel 

semantic rule-based model that is able to exploit hidden knowledge from the 

relationships among D3 integrated sources, we demonstrated the capacity to 

identify multi-pathway potential DDIs that arise from metabolic and transporter 

INTRODUCTION 
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interactions. Up to this point, however, we have only tested the ability of our 

system to identify potential interactions for one mechanism type, the multi-

pathway interaction. Having demonstrated the full range of our model by testing 

these complex multi-pathway interactions, we will proceed to assess the ability 

of the D3 knowledge base to characterize DDIs via each of the previously 

proposed mechanisms of interaction. One current limitation of our use of the D3 

system is that we have not yet considered the clinical relevance of predicted 

DDIs. Therefore, considering both the clinical relevance of predicted DDIs and 

their precise mechanisms of interactions are two critical factors that we will 

address in this chapter. 

 Unfortunately, existing pharmacovigilance systems typically either identify 

just one type of interaction or analyze drug interaction using a single 

mechanistic pathway.  In the former systems, the main focus is usually on 

pharmacokinetic interactions, such as those that occur with CYP enzymes, 

which are well described in clinical literature. In the latter systems, the multi-

pathway potential DDI is completely ignored as these systems only possess the 

capacity to model potential DDIs via a single pathway of interaction. Both 

approaches are unlikely, then, to discover potential DDIs that have not already 

been identified through clinical study. In addition, these approaches are unlikely 

to detect DDIs through less common mechanisms of interaction. However, it is 

evident that multiple mechanisms of DDIs must be taken into account when 

providing pharmacovigilance services. This is because in real life, a potential 
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DDI may happen due to the interplay between many different and even 

simultaneously active mechanisms; hence, effective pharmacovigilance systems 

should be able to account for complex drug mechanisms. We also acknowledge 

that existing sources of DDIs contain a high proportion of non-clinically relevant 

DDIs.  

 Our aim is to design a pharmacovigilance system that can provide effective 

DDI discovery services. However, providing an effective pharmacovigilance 

system is a very complex task. This is because first, existing pharmacovigilance 

systems cannot support the complex and diverse mechanisms of interaction that 

need to be added. Second, most of the available DDI resources that could be used 

to assess and identify the clinical relevance of predicted DDIs vary widely in how 

comprehensively or consistently they report already proven DDIs. Our paradigm 

of providing effective DDI discovery services includes the validation of the 

clinically relevant DDIs and characterization of their specific mechanisms of 

interaction. This requires us to address the following challenging questions:  

• How do we collect and integrate existing DDI information? 

• Which DDI sources do we trust to forecast the clinical relevance of 

predicted DDIs? 

• When identifying similarities between two drugs, what are the 

biomedical features to be considered that may constitute an 

interaction?  

• How do we collect and organize mechanistic interaction information? 
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• What types of mechanisms should be considered for interaction? 

• How do we represent and model mechanisms in drug profiles? 

• How do we examine interactions between competing mechanisms in 

an effective way? 

• In conclusion, how do we provide a pharmacovigilance system that is 

able to assess and integrate DDI information across multiple 

mechanisms of interaction?  

 

In this chapter, our objective is to develop a pharmacovigilance system, 

called Drug-drug interactions Discovery and Demystification (D3) that aims to 

use Semantic Web technologies to address the limitations of existing 

pharmacovigilance research. The D3 system, herein proposed, holds a proven 

DDI list collected from fifteen trusted sources and examines different 

mechanisms of interaction. The D3 system then employs these sources about 

drug interactions, and their mechanisms, as part of a pharmacovigilance 

recommender system. Ideally, D3 will contain two novel inferential models to 

study proven and potential DDIs: (1) a query-based model and (2) a probabilistic-

based model.  

This chapter is divided into three main sections that can be seen as the 

phases of development of the D3 system. In the first phase (Phase I), we discuss the 

identification and clinical examination of the most common mechanisms of an 

interaction. Then we convert those mechanisms into a set of semantic inferences 
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that will be used by D3 for automated discovery to both identify the mechanisms of 

potential DDIs and clarify the proven DDIs. The second section (Phase II) 

illustrates the process of constructing the D3 system. This second section is divided 

into two main sub-phases: (1) building an inferential query-based model, and (2) 

building an inferential probabilistic-based model. In last section (Phase III), we 

exploit both D3 models (query and probabilistic) for DDI study. 

 

V.1 Phase 1: Declaration of D3 Semantic Inferences 
 
Fundamentally, there are multiple avenues to pursue when characterizing 

DDIs, but one of the most proven methods is to examine DDIs by first determining 

the mechanisms of interaction between drugs and then comparing those 

mechanisms to known mechanisms of DDI. Understanding mechanisms of 

interaction is essential to informing the strategies that will enable clinicians and 

scientists to avoid the interaction altogether or to employ strategies that will 

mitigate its severity, thereby providing the means of reducing harmful ADEs. Thus, 

there is a pressing need to study potential mechanisms that go beyond a single 

level. Boyce, et al. have voiced the need for pharmacovigiliance research focused on 

modeling both pharmacokinetic and pharmacodynamic DDI mechanisms, for 

example (R. D. Boyce et al., 2007). In the first development phase of D3, we aim to 

define the most common mechanisms of DDIs and convert them into semantic 

inferences. In this process, D3 comprises and amalgamates facts to be used for 

inferences from nine different well-known biomedical sources. After that, we build 
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nine different inferences to extract hidden information about mechanisms of 

interaction from these sources. Specifically, we build nine inferences that study the 

following DDI mechanisms: (1) protein binding; (2) metabolism inhibition; (3) 

metabolism induction; (4) transporter inhibition; (5) transporter induction; (6) 

additive pharmacodynamic effect; (7) competitive pharmacological effect; (8) 

pharmacogenetics; and finally, (9) multi-pathway interactions. Notably, two 

described mechanisms of DDI are not included as inferences in D3 for distinct 

reasons. Synergistic drug effects, occurring when the pharmacological or side effects 

of one drug increase the pharmacological efficacy of another, were not included as 

they are accounted for in clinical decision-making and do not typically lead to ADEs 

or negative patient outcomes. Antagonistic pharmacodynamic drug effects, which 

occur when a pharmacological or other side effect of one drug reduces the 

pharmacological effect of another, are not included in our inferences since D3’s 

similarity-based method for integrating DDI information is not able to effectively 

capture this interaction type.  

We are using these nine semantic inferences for validation and classification 

of proven and potential DDIs and their mechanisms. Below, we give the clinical 

definition of each semantic inference, a real clinical example, and categorization for 

each semantic inference based upon its interaction type. After that, we give the fact 

source that is being used by the D3 pharmacovigilance system for inference and 

specify the symbolic description for each inference. 
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1. Protein binding-based interaction 

Clinical definition and example: Protein binding increases the unbound drug 

concentration of one of a pair of interacting drugs. Therefore, this can lead to 

intensified pharmacological effects and possible toxicity, especially with drugs that 

have a narrow therapeutic window. For example, nitazoxanide when 

coadministered with warfarin results in the displacement of warfarin from its 

plasma protein binding sites, increasing unbound warfarin concentrations and, 

accordingly, increasing the chance of warfarin toxicity (Mullokandov E, 2014).   

Interaction type: pharmacokinetic. 

Fact source: DrugBank. 

D3 inference definition:  DrugBank stores the protein binding values as a human 

readable text, so we develop a Java pattern recognition method to extract numbers 

from the text. Then we only consider a protein-binding interaction if both drugs have 

a high affinity (> 70% of the drug is bound) to bind to the same protein.  

 

2. Metabolism induction-based interaction 

Clinical definition and example: Enzyme induction refers to the process by 

which a drug increases the activity of a drug-metabolizing enzyme, thereby 

increasing the rate at which the enzyme metabolizes drugs (either other drugs or 

the drug itself as in the case of auto-induction) in the body (Spina & de Leon, 2007).  

Induction of drug-metabolizing enzymes is a common mechanism for potential DDIs 

and is well described in the CYP family of enzymes. Enzyme induction may lead to 
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either toxicity (particularly through formation of a toxic metabolite) or therapeutic 

inefficacy. For example, the combination of rivaroxaban and rifampin results in 

reduced rivaroxaban concentrations and is associated with an increased risk of 

stroke due to a loss of rivaroxaban’s therapeutic effect (Baciewicz, Chrisman, Finch, 

& Self, 2013). 

Interaction type: pharmacokinetic. 

Fact source: NCIt NDF-RT, and UniProtKB/Swiss-Prot. 

D3 inference definition: When one drug induces the metabolic processing of the 

other, D3 infers an interaction and the inducer drug that causes the interaction. 

 

3. Metabolism inhibition-based interaction 

Clinical definition and example: In opposition to enzyme induction, enzyme 

inhibition refers to the process by which a drug reduces the function of a drug-

metabolizing enzyme.  Enzyme inhibition increases the plasma concentrations of 

drugs metabolized by the enzyme, which may lead to either toxicity or therapeutic 

inefficacy (as in the case of a prodrug). For example, the antimicrobial agent 

erythromycin inhibits the metabolism of warfarin when the two are co-

administered, resulting in an increase in warfarin serum concentrations and a 

subsequent increased risk of bleeding (Rice, Perry, Afzal, & Stockley, 2003).  

Interaction type: pharmacokinetic. 

Fact source: NCIt NDF-RT, and UniProtKB/Swiss-Prot. 
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D3 inference definition: When one drug prevents the metabolic processing of the 

other, D3 infers an interaction and the inhibitor drug that causes the interaction.  

 

4. Transporter induction-based interaction 

Clinical definition and example: Generally, transporter interaction plays an 

important role in drug absorption and disposition. Induction of a transporter leads 

to increases in drug relocation within the body via the transporter, which, 

depending on the location of the transporter and whether the transporter promotes 

drug influx or efflux, may either increase or decrease the amount of drug absorbed 

into the body or available at the site of drug action.  As a result, induction of drug 

transporters may result in serious toxicities or therapeutic inefficacy.  For instance, 

carbamazepine induces the P-gp mediated efflux of paliperidone and thus reduces 

paliperidone’s therapeutic effect when the two are co-administered (Yasui-Furukori, 

Kubo, Ishioka, Tsuchimine, & Inoue, 2013). 

Interaction type: pharmacokinetic. 

Fact source: DrugBank. 

D3 inference definition: When one drug induces transport of another, resulting in 

alterations in the elimination of the second drug, D3 infers the interaction and 

inducer drug that causes the interaction. 

 
5. Transporter inhibition-based interaction 

Clinical definition and example: Transporter inhibition results in decreased 

transporter function and occurs more commonly than transporter induction. As with 
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induction, inhibition of drug transporters can increase or decrease drug exposure 

systemically or at the site of action depending on the location and function of the 

transporter being inhibited; the resulting changes in drug concentration can lead to 

ADEs or therapeutic inefficacy. For instance, quinidine significantly increases 

serum concentrations of digoxin when the two are co-administered by inhibiting P-

gp-mediated digoxin efflux in the intestinal wall (König, Müller, & Fromm, 2013).  

Interaction type: pharmacokinetic. 

Fact source: DrugBank. 

D3 inference definition: When one drug inhibits the transport of another, 

resulting in alterations in the elimination of the second drug, D3 infers the 

interaction and inhibitor drug that causes the interaction. 

 

6. Multi-pathway-based interaction 

Clinical definition and example: A multi-pathway interaction refers to a type of 

complex DDI wherein the interaction occurs as a result of two or more interactive 

mechanisms. This type of interaction is difficult to accurately describe as the net 

effect of drug action across multiple simultaneous pathways of interaction must be 

characterized. For example, DDIs between some statins and cyclosporine occur 

through the metabolism (CYP3A4) and transport (P-gp) pathways (Holtzman et al., 

2006). This leads to complicated interactions that are hard to resolve. 

Interaction type: pharmacokinetic. 

Fact source: NCIt NDF-RT, and UniProtKB/Swiss-Prot. 
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D3 inference definition: When both drugs share at least one enzyme as well as one 

transporter, D3 infers the interaction and the pharmacological actions of both 

enzyme and transporter.  

 

7. Competitive pharmacological effect-based interaction 

Clinical definition and example: This interaction occurs when two or more 

drugs bind competitively to the same molecular target, with the result that the 

binding of one drug reduces the affinity of another drug or both drugs for the target. 

While the significance of the interaction depends on the pharmacological effects of 

the competing medications, the relative affinities of the medications for the 

receptors, and the therapeutic index of the interacting drugs, this interaction type 

results in a reduction of drug action (which may potentially decrease therapeutic 

efficacy) and the potential for increased drug adverse effects.  For example, 

albuterol-mediated bronchodilation, achieved through agonism at the beta-2 

adrenergic receptors, is competitively disrupted when co-administered with the non-

selective beta-adrenergic receptor antagonist, propranolol (Johnsson, Svedmyr, & 

Thiringer, 1975).  

Interaction type: pharmacodynamic. 

Fact source: Entrez Gene, Gene-GO, NCIt, and GO. 

D3 inference definition: When both drugs act on the same pharmacologic target, 

D3 infers the interaction and the affected target.  
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8. Additive pharmacodynamic effect-based interaction 

Clinical definition and example: When two drugs with similar 

pharmacodynamic effects are administered, summation of the effects of both drugs 

occurs, potentially resulting in excessive toxicity and pharmacodynamic response. 

For instance, the combination of glyburide and metformin could result in 

hypoglycemia since both agents reduce blood glucose levels through different 

mechanisms (Q. Wang, Cai, Van de Casteele, Pipeleers, & Ling, 2011). 

Interaction type: pharmacodynamic. 

Fact source: NCIt, NDF-RT and UniProtKB/Swiss-Prot. 

D3 inference definition: When both drugs share the same pharmacological effect, 

D3 infers the interaction. 

 

 

 

 

9. Pharmacogenetic-based interaction 

Clinical definition and example: Pharmacogenetic-based interactions occur 

when two drugs that share a common metabolic pathway or a transporter are given 

to a patient with a polymorphism in the drug metabolizing gene or transporter 

known to alter drug exposure.  For example, individuals with a genetic alteration 

(SNP) associated with the poor activity of a drug-metabolizing enzyme may 

experience drug interactions during co-administration of drugs that are co-

substrates for the affected enzyme despite the fact that an appreciable DDI is not 

seen when the same two drugs are co-administered in individuals with wild-type 

enzyme function.  Increases in the hypotensive effects of metoprolol (a CYP2D6 

substrate) have been described upon co-administration with paroxetine, also a 
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substrate for CYP2D6, in patients with known alleles for reduced CYP2D6 function 

(Lynch & Price, 2007).  

Interaction type: pharmacogenetic. 

Fact source: Pharmgkb. 

D3 inference definition: When potentially interacting drugs may also interact on 

the genetic level in patients possessing known polymorphisms (SNPs) in drug-

metabolizing enzymes or transporters, D3 infers the responsible SNPs in the 

interaction.  

 

These nine predefined semantic predictions for each of these levels that the 

D3 system utilizes for DDI study are summarized in Table 5.1.  

 

 

Table 5.1: Nine different inferences are provided by the D3 system for potential and proven DDI discovery 
and explanation, where x is a drug (object), z is a drug (perpetrator) and y represents a mechanism of 
interaction, respectively.  

Interaction 
inference 

Clinical   
definition 

Conditions for 
interaction 

Fact 
sources 

Clinical        
example 

Protein binding-
based interactions 

When two drugs 
have high affinity (> 
70% of the drug is 
bound) to bind to the 
same protein. 

 
x,z bind_to y                

x,z > 70% DrugBank nitazoxanide 
/warfarin 

Metabolism 
induction-based 
interactions 

When one drug 
induces the 
metabolic processing 
of the other. 

 
 

x metabolized_by y           
z induces y 

NCIt NDF-
RT, and 
UniProtK
B/Swiss-
Prot 

rivaroxaban / 
rifampin 

Metabolism 
inhibition-based 
interactions 

When one drug 
prevents the 
metabolic processing 
of the other. 
 

 

x metabolized_by y 
z inhibits y 

NCIt and 
NDF-RT, 
and 
UniProtK
B/Swiss-
Prot 

warfarin/ 
erythromycin 
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Transporter 
induction-based 
interactions 

When one drug 
induces the 
transport of another, 
altering its 
elimination. 
 

 

x transported_by y  
z induces y 

DrugBank 
carbamazepine/ 
talinolol  

Transporter 
inhibition-based 
interactions 

When inhibits 
transport of another, 
altering its 
elimination. 

x transported_by y   
z inhibits y 

DrugBank 
quinidine/      
digoxin 

Multi-pathway-
based interactions 

When both drugs 
share at least one 
enzyme and one 
transporter. 

x metabolized_by y 
x transported_by y2 
z metabolized_by y 
z transported_by y2   

NCIt NDF-
RT, and 
UniProtK
B/Swiss-
Prot 

cyclosporine/  
statins 

 

Competitive 
pharmacological 
effect-based 
interaction 

 

When both drugs act 
at same 
pharmacologic 
target. 

 

 

x targets y              
z targets y 

Entrez 
Gene, 
Gene-GO, 
and NCIt, 
GO 

propranolol/ 
albuterol  

Additive 
pharmacodynamic 
effect-based 
interaction 

 
When both drugs 
share mechanism of 
action. 
 

 
x share_moa_with y    
z share_moa_with y 

NCIt, 
NDF-RT 
and 
UniProtK
B/Swiss-
Prot 
 

glyburide/ 
metformin 

Pharmacogenetic-
based interaction 

When two drugs 
that share a 
common metabolic 
pathway or a 
transporter are 
given to a patient 
with a 
polymorphism in the 
drug metabolizing 
gene or transporter 
known to alter drug 
exposure 

 

 

x associated with _SNPs y            
z associated with _SNPs y Pharma 

GKB 
metoprolol/ 
paroxetine 

 

V.2 Phase 2: Construction of the D3 System  

 
The aim of this phase is to address the question of how an effective 

pharmacovigilance system can be developed to provide validation and classification 
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of proven and potential DDIs using existing knowledge sources. This system was 

motivated by the following requirements: 

• The D3 should be able to not only predict an interaction, but also should 

provide the likely mechanisms causing the interaction.  

• The D3 should be able to support the identification of proven DDIs by 

amalgamating 15 different DDI knowledge sources. 

• The D3 should be able to support DDI queries using different drug names 

(generic, brand and chemical).   

• Many pharmacovigilance systems are limited to specific types of 

interaction. Our system should be comprehensive enough to consider 

diverse interaction types. 

• Many pharmacovigilance systems do not take into account rich 

mechanistic information with regards to DDI. Our system should be 

capable of discovering and exploiting hidden mechanistic information from 

multiple diverse text formats, data schemas, and controlled vocabularies, 

and it should interlink these with diverse datasets extracted from the 

biomedical domain to improve the quality of pharmacovigilance 

recommendations. 

• Not all pharmacovigilance systems take into account genetic variation 

(SNPs) when studying DDIs. Our system should be capable of providing 

an alert when interacting drugs may also interact on the genetic level in 
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patients possessing known polymorphisms (SNPs) in drug-metabolizing 

enzymes or transporters. 

• Many pharmacovigilance systems do not take into account all of the 

details present within drug information from existing sources for proven 

DDIs. Our system should be capable of discovering similarities of 

interaction between proven DDIs and then exploiting them to provide the 

likelihood of a potential DDI. 

• No existing pharmacovigilance systems assess the clinical relevance of 

their predicted DDIs. Our system should be able to consider the clinical 

relevance of potential DDIs and report only those DDIs likely to impact 

clinical decision-making.  

• The D3 should be able to provide only the likely mechanisms of 

interaction. 

 

To address these challenges and requirements, in this section we integrate 

our proposed techniques from Chapters II-IV, as well as those presented in the 

first section of Chapter V, to model potential DDIs and their mechanisms in order 

to provide a comprehensive pharmacovigilance system.  

In this section, the main goal is to show that D3 is capable of identifying 

proven DDIs from different sources along with their mechanisms of interaction and 

to demonstrate D3’s ability to infer potential DDIs and their mechanisms accurately 

to provide a valuable decision tool for informing clinical practice. To achieve such a 
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goal, two types of inferential models are being developed and added to the D3 

system: (1) query-based and (2) probabilistic-based. With regards to the former type, 

it should be noted that the system determines only whether there is a reported 

interaction or not, along with the common pathways it finds to account for the 

interactions. If the D3 query-based model does not find a reported interaction, it 

will infer potential DDIs based on nine different inferences that were described in 

the V.1 Phase 1: Declaration of D3 Semantic Inferences section and that could 

cause the interaction. The query-based model does not rank the mechanisms of 

DDIs according to importance when there is more than one, and it does not provide 

the clinical relevance of predicted interactions. The probabilistic-based model, on 

the other hand, is designed as an improvement, which will provide the likely 

mechanisms for proven DDIs to help avoid the need for manual filtering of results 

to recognize the strongest cause of the interactions. It will also use a novel and 

complex biomedical similarity-based method to identify the clinical relevance of 

potential DDIs.  

 

V.2.a Phase 2: D3 Inferential Query Model 

 
The main aim of this section is to provide evidence for the usefulness of the 

Semantic Web approaches to identify not only potential DDIs, but also to explain 

the cause of the interactions. As a result, the semantic inferential query-based 

model we propose, in conjunction with a probabilistic-based model to be described 

later, will help in overcoming the current challenges in pharmacovigilance systems. 
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Specifically, these proposed models are designed to move beyond a single-level of 

drug interaction to focus on more complex interactions and to identify all possible 

mechanisms that contribute to the interaction between two drugs. The D3 

inferential query-based model, as the name suggests, is based on the query 

language of the Semantic Web, SPARQL. SPARQL is the query language for RDF 

graphs that produces conclusions only if requisite conditions are satisfied. Further, 

the conditions are based on the D3 knowledge model; hence SPARQL supports 

indirect inference by retrieving information that is not explicitly stated in the 

knowledge base. SPARQL query syntax can be understood as finding a path in the 

RDF graphs by utilizing a set of semantic relationships; Figure 5.1 shows a D3 

SPARQL query to identify an inhibition of metabolism-based interaction that can be 

read as follows: Find a drug that is a substrate of an enzyme and another drug that 

is an inhibitor of this enzyme. 

 

 

 

 

 

 

 

At the macroscopic level, the D3 inferential query-based model works by 

querying the D3 knowledge base in search of an interaction between two drugs. The 

Figure 5.1: Metabolism inhibition inference 
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model then returns a determination of whether the two drugs are reported for 

potential interaction. If a DDI is reported, the model then runs all semantic 

inferences to provide the common pathways it finds that could account for the 

interaction. If the DDI has a potential significance that has not been reported for an 

interaction in the integrated DDI sources, it will infer a potential DDI based on all 

semantic predictions that could cause the interaction. Figure 5.2 shows a flowchart 

of the D3 inferential query-based model. 

 

Practically, the D3 inferential query-based model contains the following 

important functions: 

 

Figure 5.2: D3 inferential query-based model flowchart 
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1. Normalized Naming of Drugs Using RxNorm: A drug by nature has 

several names: brand, generic, chemical, etc. Aspirin, for example, has 35 

different drug names (“Bayer (Aspirin) Patient Information: Side Effects 

and Drug Images at RxList,” n.d.). In our system, we normalize all drug 

names using RxNorm, which is a tool provided by the National Library of 

Medicine to assist with standardization of drug names. RxNorm currently 

holds drug names and synonyms from 15 drug information sources 

(“RxNorm Overview,” n.d.). This normalizing step is necessary because 

users might have different preferences when searching for an interaction. 

Algorithm 1 shows the D3 normalized naming using the RxNorm 

function that takes users’ input and converts it to the RxNorm identifier.  

 

2. Proven DDI Identification: once the drug name is standardized using 

the RxNorm function, the model will start investigating the requested 

DDI. The model checks the enormous volume of information available 
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within DDI sources to identify the interaction. The novelty of the D3 

inferential query-based model is its ability to identify reported 

interactions by checking DDI information collected and integrated from 

the 15 DDI resources that are stored in the D3 knowledge base. Table 5.2 

shows the DDI resources considered for use in the proven DDI 

identification.  

 

Table 5.2: Fifteen DDI resources are used by the D3 query-based model 
DDI                          

source 
DDI 

Numbers 
Definition 

Source        
type 

Crediblemeds.org(Credi
bleMeds, n.d.) 

82 List of important DDIs. Clinical 

PK-Corpus(R. Boyce, 
Gardner, & Harkema, 
2012) 

165 
DDI resource derived from all drug 
product labels. 

Texts 

DrugBank(Wishart et 
al., 2008) 

11840 
List of DDIs along with their 
explanations.  

Bioinformatics 

The Drug Interaction 
Knowledge Base(R. 
Boyce et al., 2009a) 

560 
List of pharmacokinetic DDIs along 
with their evidence.  

Bioinformatics 

NDF-RT(“National Drug 
File – Reference 
Terminology (NDF-
RTTM) Documentation,” 
n.d.) 

9883 
DDI resource derived by Veteran’s 
Administration health care system. 

Clinical 

ClinicalTrials.gov(“Hom
e - ClinicalTrials.gov,” 
n.d.) 

3645 
List of sever DDIs that result of 
ADEs. 

Clinical 

KEGG(Takarabe et al., 
2011) 

26328 
DDI resource derived from Japanese 
product labels. 

Bioinformatics 

DDI-Corpus-
2011(Segura Bedmar, 
Martínez, & Sánchez 
Cisneros, 2011) 

569 
DDI resource derived from 
biomedical texts. 

Texts 

DDI-Corpus-
2013(Segura Bedmar et 
al., 2011) 

1282 Updated list from DDI-Corpus-2011. Texts 

National Library of 
Medicine cardiovascular 
Corpus(Stan, 2014) 

246 
DDI resource derived from 
cardiovascular drug product labels. 

Biomedical 
texts 

ONC-High 
Priority(Phansalkar et 

1150 
List of important DDIs by the Office 
of the National Coordinator for 

Clinical 
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al., 2012) Health Information Technology. 

ONC-Non-
interruptive(Phansalkar 
et al., 2013) 

2079 
List of non-interruptive DDIs by the 
Office of the National Coordinator 
for Health Information Technology. 

Clinical 

OSCAR EMR(OSCAR 
Electronic Medical 
Record, n.d.) 

7753 DDI resource derived from EHRs. Clinical 

SemMedDB from 
PubMed(Kilicoglu, Shin, 
Fiszman, Rosemblat, & 
Rindflesch, 2012) 

3536 
DDI resource derived from PubMed 
abstracts. 

Bioinformatics 

Twosides(Tatonetti, Ye, 
Daneshjou, & Altman, 
2012b) 

63333 
DDI resource derived from the 
analysis of spontaneously reported 
adverse events 

Bioinformatics 

 

 Using a complete list of available DDI resources is essential due to the high 

level of diversity in reported interactions among DDI information sources. Once an 

interaction is found, the D3 inferential query-based model will run all semantic 

inferences to provide the common pathways it finds between two drugs to account 

for the discovered interaction.  Algorithm 2 shows the D3 proven DDI 

identification function that takes users’ input and returns a report of DDI 

information from knowledge sources along with the possible mechanisms of the 

interaction 



100 

 
3. Potential DDI Inference: This function will perform and play a role 

only if the proven DDI identification method returns null. In other words, 

this function is only run when the requested interaction is not reported in 

any of the 15 DDI sources. The determination of the interaction using the 

potential DDI inference method then depends on the occurrence of at least 

one of the D3 semantic inferences to count for a potential DDI. Algorithm 

3 shows the D3 potential DDI inference function that takes users’ input 

and determines if a DDI is potential or not based upon the D3 semantic 

inferences. 
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Finally, Algorithm 4 shows how the D3 inferential query-based model works.  
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 At the end of this phase, two types of DDI studies were proposed. These types 

are: reported and potential studies. In each type, the D3 inferential query-based 

model can provide complex inferences to identify reported and potential interactions 

along with their possible mechanisms of interactions. An example of each semantic 

inference is given in Appendix B.  

 

V.2.b Phase 2: D3 Inferential Probabilistic Model 

 
In the previous section we introduced the inferential query-based model that 

can be seen as a proof-of-concept for identifying and explaining complex DDIs and 

hidden mechanisms of interaction. By integrating extensive DDI information from 

diverse sources into a coherent knowledge base and using SPARQL as an inference 

technique, the query model was able to provide useful inferences to identify and 

explain reported and potential DDIs. This typical way of inferencing has been 

widely used in many studies within the biomedical field such as (Ruttenberg et al., 

2009; Sahoo et al., 2007). However, this inference technique has one notable 

limitation: researchers are required to filter the query results. This limitation 

affects our D3 inferential query-based model in two important ways. First, it will 

not allow the model to automate the ranking of the mechanisms of interactions 

according to importance when there is more than one. Thus, the possible 

mechanisms of interactions would need to be manually filtered to recognize the 

strongest cause of the interactions. Second, it also will not provide the probability of 

the potential interaction. As a result, it is almost impossible to assess the clinical 
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relevance of discovered potential interaction using solely the D3 inferential query-

based model. 

The main aim of this section is to overcome these two limitations by 

introducing the second part of the D3 pharmacovigilance system, the inferential 

probabilistic model. The inferential probabilistic model of D3 is proposed as a 

perfection of the inferential query-based model described earlier. The probabilistic 

model, unlike the query-based one, eventually should return the probability of the 

potential interactions, assist in determining the clinical relevance of the 

interactions, and place the possible mechanisms of interaction in order according to 

importance when there is more than one. Thus, it will provide a means of 

identifying novel and clinically relevant potential DDIs to minimize the risk of 

ADEs. 

In this D3 inferential probabilistic model, the hidden information and 

similarity between DDIs, their interaction lists, and their mechanisms of 

interaction are discovered using a set of complex probabilistic algorithms. The 

discovered knowledge is then exploited to infer and gain a better understanding of 

DDI mechanisms of interaction, and this in turn results in providing better 

pharmacovigilance services. In order to provide such services, we require answers to 

these challenging questions:  

• Is it possible to automate prediction of potential DDIs to some degree? 

• Is there a way to reliably assess the clinical relevance of discovered potential 

DDIs? 
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• How can we probabilistically identify and provide the most likely 

mechanisms of interaction according to importance? 

 

Based on these questions, we divide this phase into two important 

development stages: (1) the learning process and (2) statistical inferences. The 

learning stage includes three main steps: (1) filtering existing and available DDI 

resources to create relevant DDI lists; (2) constructing a drug’s biomedical 

similarity matrix, which allows the comparison of similarities between two drugs in 

terms of their pharmacokinetic, pharmacodynamic, and pharmacogenetic 

properties; and (3) extracting all possible mechanisms of interaction for DDIs. The 

statistical inferences stage is then designed to utilize the learning stage 

functionalities to perform calculations that provide the probability of potential 

DDIs, to assess the clinical relevance of predicted DDIs, and to order the 

mechanisms of interactions according to importance. In the next section, we shall 

discuss the learning process of the D3 inferential probabilistic model. 

 

Stage 1: Learning Process  
 
In this stage, we propose developing a pharmacovigilance profile from the 

existing DDI resources and biomedical sources that are scattered throughout the 

biomedical domain. This process includes building lists of important DDIs, 

constructing the biomedical features similarity matrix, and identifying mechanisms 

of interaction. We consider several existing DDI resources for building the list of 
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drug interactions, as they have rich information that can be exploited to identify the 

clinical relevance of discovered potential interactions. However, a drug might have 

different lists of interactions in different resources. For instance, while National 

Drug File - Reference Terminology (NDF-RT) listed 7 drugs that interact with 

irinotecan, Drugs.com reported 329 DDIs involving irinotecan. Such information 

cannot be used unless we have a sufficient DDI list that records all the interactions 

of irinotecan in each resource. If this information is available, then we need a way 

to learn how important a DDI is in a particular clinical assessment (e.g., how 

important is it for a physician to watch for a specific DDI that might cause ADEs?). 

According to Horn, important DDI identification requires both the object and 

perpetrator drugs to be characterized along with the mechanism(s) of their 

interaction (Horn, Hansten, & Chan, 2007). Following this hypothesis, he 

implemented the Drug Interaction Probability Scale (DIPS), a tool that includes 

thoughtful questions to evaluate the probability of the clinical relevance of 

discovered potential interactions. In our learning process, we have taken into 

consideration the DIPS recommendations for discovering novel and potential DDIs. 

In particular, we consider (1) examining both drugs in order to identify the 

interaction and (2) investigating their mechanisms of interactions.  First addressing 

the former, we primarily pre-filter DDI lists (i.e., those stored in the existing, 

publically available DDI resources) and consider just the clinically relevant drug 

interactions. Then, we study all drugs’ profiles utilizing 9 different biomedical 

features in order to assure the identification of clinically relevant DDIs. For the 
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latter, we propose to examine 9 different well-known mechanisms of interaction to 

identify the most likely cause of the interaction. The D3 learning process consists of 

three main steps: filtering DDI resources to build a list of clinically relevant 

interactions, constructing the drug’s biomedical features similarity matrix, and 

gathering all possible pathways of interaction. Before presenting each step, here we 

define some concepts that are essential in this learning process: 

• Clinical relevance likelihood: This is the likelihood that a clinical 

interaction will occur. I.e a DDI that impacts the clinical judgments.  

• Clinically relevant DDIs: These represent DDI pairs that are reported in 

either a clinically oriented resource or extracted from biomedical literature. 

This type of DDI is essential for two main reasons. The first is that it would be 

associated only with clinically relevance interactions. The second reason is 

that it could be used to discriminate between important and less significant 

DDIs. That is, the D3 pharmacovigilance system should provide relevant DDIs 

for the current drug and exclude other DDIs that are clinically irrelevant to 

the current drug interaction. 

• DDI filtering: A drug and its list of interactions in the D3 inferential 

probabilistic model are filtered based on their clinical impact. That is, all 

irrelevant DDIs would not be considered in the learning process. 

• DDI biomedical features similarity profile: This profile contains all the 

modeled DDI information associated with relevant biomedical features. Each 

biomedical feature models and contains information that is relevant in just 
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one specific biomedical entity. As a result, a DDI might have more than one 

biomedical feature based on the number of drug dimensions that are taken 

into account in the D3 pharmacovigilance system. In this, D3 is unlike other 

systems that list each biomedical feature in a separate profile. 

 

Stage 1 Step 1: Filtering Existing DDI Resources  
 
When providing pharmacovigilance services, only the most essential reported 

DDIs that are relevant to clinical practice should be selected. Therefore, in this step, 

we first need to evaluate the reputable, available DDI resources that hold different 

lists of DDIs to consider the most comprehensive and clinically relevant DDIs. This 

can be done using two different modeling techniques. One possible modeling 

technique is to treat each source separately. However, such a mechanism has two 

limitations: (1) a DDI list in one resource might overlap with other resources; thus, 

this can lead to extensive duplication; and (2) other important DDIs may be 

overlooked when a single resource does not report them. Instead, in this step we 

suggest an integrated learning technique to quantify and model those DDIs that are 

clinically relevant. For instance, if a particular DDI is found in two DDI resources, 

then we add one to the D3 probabilistic-model list. The advantage of this technique 

is that there is no need to be concerned about the potential overlap within DDI 

sources, which can lead to inaccurate prediction. In building the integrated and 

clinically relevant DDI list, we consider 10 different publically available DDI 

resources. Specifically, in the V.2.a Phase 2: D3 Inferential Query Model 



108 

 
section, we showed how the query-model can effectively search for an interaction 

exploiting 15 different DDI resources (6 clinical resources, 4 natural language 

corpora and 5 pharmacovigilance resources). However, we mentioned that such a 

model is unable to assist in knowing the clinical relevance of this interaction. This 

is because of two important reasons. The first is that the pharmacovigilance 

resources, unlike the clinical ones, though they have some measure of success, are 

not derived from clinical studies. Rather, they result from an inference process and 

often are not clinically relevant. For example, Twosides (a pharmacovigilance 

resource derived from the analysis of spontaneously reported adverse events) is an 

example of a DDI resource excluded through our learning process because as stated 

above their DDIs were not clinically relevant. Another limitation of the 

pharmacovigilance resources is that they list only DDIs that are already reported in 

clinical resources. Thus, considering them will add more duplication to our D3 lists. 

Therefore, the step of filtering existing DDI resources is essential, as we aim only to 

provide the most clinically relevant DDIs. Therefore, from the 15 resources used in 

the D3 query-based model, we consider 10 DDI resources, six of which are clinically 

oriented and four of which are derived from analyzing biomedical literature (in vitro 

-in vivo studies, pharmacology case reports, lab reports, medical literature, and 

drug product labels). As illustrated in Table 5.3, the D3 inferential probabilistic 

model comprises the most comprehensive collection of DDI information from 

publicly available resources to be considered for use in the learning process by 

which D3 will learn to identify potential clinically relevant DDIs.   
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Table 5.3: Ten DDI resources are used by D3 probabilistic -based model  

DDI resources 
DDI 

Numbers 
Definition Source type 

Crediblemeds.org 82 List of important DDIs Clinical 

PK-Corpus 165 
DDI resource derived from all drug 
product labels 

Biomedical 
Texts 

NDF-RT 9883 
DDI resource derived by Veteran’s 
Administration health care system 

Clinical 

ClinicalTrials.gov 3645 
List of severe DDIs that result in 
ADEs 

Clinical 

DDI-Corpus-2011 569 
DDI resource derived from 
biomedical texts 

Biomedical 
Texts 

DDI-Corpus-2013 1282 Updated list from DDI-Corpus-2011 
Biomedical 

Texts 
National Library of 
Medicine cardiovascular 
Corpus 

246 
DDI resource derived from 
cardiovascular drug product labels 

Biomedical 
texts 

ONC-High Priority 1150 
List of important DDIs by the Office 
of the National Coordinator for 
Health Information Technology 

Clinical 

ONC-Non-interruptive 2079 
List of non-interruptive DDIs by the 
Office of the National Coordinator 
for Health Information Technology 

Clinical 

OSCAR EMR 7753 DDI resource derived from EHRs Clinical 

 

Once all the DDIs are extracted from our base of DDI sources, a list of 

clinically relevant DDIs can be generated. Algorithm 5 shows the process of 

integrating all resources and removing the overlap between them to generate a 

unique clinically relevant DDI list.  
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After integrating and removing overlapping processes, we generate a list of 

21,897 clinically important and non-duplicated DDIs. This list, as will be discussed 

in detail in the inference stage, will be used for determining the clinical relevance of 

predicted interactions as well as for ordering the mechanisms of interaction.  

 
Stage 1 Step 2: Building a Biomedical Features Similarity Matrix 

for Drug Comparison 
 

Once all clinically relevant DDIs from D3’s DDI sources are filtered and stored in a 

list, the list will be used in the next step of learning and modeling DDIs and their 

mechanism profiles. For example, we can compare a DDI by using a list of 
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interactions: by creating an interaction profile for each drug within the DDI, D3 can 

mine the knowledge base to find similarities between two interactions’ profiles. In 

this step, we aim to compute the similarities of each drug in terms of multiple 

biomedical features.  Indeed, the similarity-based method has already been widely 

used in the field of DDI study. This includes, but is not limited to, studying 

similarities between two drugs in terms of chemical and molecular structure, ADE 

profile, drug indication class, and interactions profile. For example, studies showed 

that similarity between the molecular structures of drugs from AERS was useful in 

predicting drugs that might potentially interact to produce adverse events such as 

rhabdomyolysis and inflammation of the pancreas (Vilar et al., 2011; Vizenor et al., 

2006). Similarly, a recent contribution has combined 6 different similarity-models to 

enhance the detection of DDIs that can cause arrhythmia (Vilar et al., 2015). These 

existing studies provide the motivation for our work. However, the content of drug 

information in knowledge sources is vastly different in the D3 system than in 

previous research.  

Fundamentally, we are applying the concept of the Jaccard metric (Equation 

5.1) to establish our Jaccard similarity equation for computing the pair-wise 

biomedical similarity of interacting drugs.  

 

 

 

Equation 5.1: Jaccard similarity equation  
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Indeed, there are a larger number of similarity measures that can be applied to 

replace Jaccard. Those measures differ in three important properties: (1) counting 

for negative matches (lack of similarity across a pair resulting in stronger likelihood 

of interaction), (2) correcting matches (alternative similarity of mined information), 

and (3) classifying similarities. Choi et al (Choi & Cha, 2010), have classified 76 

similarity measures based on their relationships and convergences that could be 

considered. These could be evaluated based on regression of various samples, 

constituting DDI classes, to determine the measures’ effectiveness and applicability. 

At the current stage of the work, D3 uses the Jaccard similarity measure to identify 

clinically relevant DDIs based on computing the similarity between drugs within 

their biomedical features. 

As drugs may have more than one common feature (e.g., side effects, 

molecular target, etc.), a drug profile in D3 is modeled for each entity 

independently. Formally, let F = {f1, f2,...,fn} be a set of all the biomedical features, 

let D = {d1,d2,...,dn} be a set of all drugs mapped to F (i.e., based on the D3 

knowledge base), and let FX = {fx1, fx2, ..., fxn} be a drug dimension that contains 

different biomedical features fx, where dn × fx → [0, 1]. Next, we propose an 

averaged Jaccard similarity metric to compute the pair-wise DDI biomedical 

similarity, which consists of two sub-phases: 

Step 2 Sub-Phase 1: In this sub-phase, the goal is to define the biomedical 

features that we are considering for creating a drug’s biomedical features similarity 

matrix. As the goal of the D3 inferential probabilistic model is to identify the 
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clinical relevance of predicted DDIs, we apply nine different biomedical features, 

unlike the existing research, which typically considers only one or two features, to 

evaluate similarities between two drugs. These nine biomedical features are: (1) 

drug targets, (2) drug indications, (3) drug enzymes, (4) drug transporters, (5) drug 

side-effects, (6) drug carriers, (7) drug mechanisms of action, (8) genetic variations, 

and (9) physiological effects. Table 5.4 summarizes all biomedical features along 

with their sources of information and shows the nine biomedical features that are 

used to create the D3 similarity matrix. 

 

 

 

 

 

 

 

 

 

 

Step 2 Sub-Phase 2: Here we describe our rules for computing the 

biomedical similarity between two drugs; the rules are:  

Table 5.4: Nine biomedical features are used to create similarity matrix.  

Biomedical Features  Fact sources 

Drug targets  
DrugBank 

Drug indications  
NDF-RT 

Drug enzymes  DrugBank, NCIt NDF-RT, 
and UniProtKB/Swiss-Prot 

Drug transporters  
DrugBank 

Drug side effects 
SIDER 

Drug carriers  
DrugBank 

Drug mechanisms of action NCIt and  
NDF-RT 

Genetic variations  
PharmaGKB 

Physiological effects  
NDF-RT 
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1. If both drugs only have exact elements (match) within a biomedical 

feature, they are similar.  

2. If both drugs lack the same feature, they are similar. 

3. All biomedical features are equally weighted.  

4. The similarity score is a result of summing each feature’s individual 

Jaccard score divided by the total number of biomedical features.   

 

Figure 5.3 shows the process of computing the similarity of the nine-biomedical 

features as well as the equation of the final similarity score.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3: D3 similarity score calculation 
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The final similarity score will be used to generate the biomedical similarities matrix 

for ranking the candidate DDIs. Figure 5.4 shows the flowchart of building the 

drug’s biomedical features similarity matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Overall process of building the D3 matrix  
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Stage 1 Step 3: Extracting All Possible Mechanisms of Interaction  
 
After creating a list of clinically relevant DDIs and constructing the D3 

biomedical features similarity matrix, we move to the last step in our learning 

process: retrieving all potential mechanisms of interaction.  

The aim of this step is to capture all possible mechanisms of interaction that 

can be discovered from the D3 knowledge base. Understanding such DDI 

mechanisms can allow a pharmacovigilance system to uncover hidden pathways of 

interaction. In order to capture and discover DDI mechanisms of interaction in this 

step, we utilize the nine proposed mechanisms of DDI at the pharmacokinetic, 

pharmacodynamic, pharmacogenetic, and multi-pathway levels described in the V.1 

Phase 1: Declaration of D3 Semantic Inferences section. We then design a 

function that takes a potential DDI and returns any findings from the D3 semantic 

inferences that account for its potential mechanisms of interaction. Algorithm 6 

shows the extraction of potential mechanisms of interaction for a given potential 

DDI.  
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At the end of this stage, the three steps of the learning process are initialized. 

To review, these steps are: creation of a clinically relevant DDI list, construction of 

a biomedical features similarity matrix, and extraction of potential mechanisms of 

interaction. In each step, a set of results will be available for inference purposes. In 

the next stage, we shall show how these results will be exploited in order to infer a 

likelihood score for a potential interaction, assist in determining its clinical 

relevance, and suggest the most likely mechanisms of interaction. 

 

Stage 2: Statistical Inferences  
 
One important question might be raised regarding how to use existing 

biomedical knowledge about a drug, its interactions list, and its mechanistic 

information to discover novel DDIs that are both highly probable and clinically 

relevant. Because drug information, while of essential use in creating a DDI 

characterization tool, is both heterogeneous in its presentation and ever-evolving, 

we argue that an effective pharmacovigilance system needs a means of coherently 

organizing current drug information scattered across different sources in order to 

provide highly relevant and likely DDIs with their mechanisms. The main target of 

this stage is to answer the following questions: 

• When selecting a proven and clinically relevant DDI (based on clinical 

literature) from our created list of clinically relevant DDIs, how similar is 

this proven DDI to the potential one being investigated? 
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• Is there a way to provide detailed, mechanistic explanations for potential 

and proven DDIs?  

 

The main assumption is that the proven DDIs can provide us with a direct 

bridge to understand accurate criteria for proposing potential DDIs based on 

similarities within biomedical features. Figure 5.5 illustrates the general 

hypothesis of the probabilistic inferences.  

 

 

 

 

 

 

 

 

 

 

 

More specifically, in this stage, we aim to carefully address three questions: 

• How likely is a DDI to occur? 

• How clinically relevant is a proposed potential DDI? 

• Why, mechanistically, does a DDI occur? 

Figure 5.5: D3 probabilistic inferences hypothesis 
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 Our strategies for answering these questions are based on the learning 

process stage. Specifically, we base the inferences on three principles: (1) the 

construction of interaction profiles for a DDI (i.e., an interaction profile for each 

drug in the DDI) by exploiting the filtered DDI list, (2) the computation of a 

biomedical similarity score for the DDI, and (3) the extraction of mutual 

mechanisms between the interacting drugs. The main inference strategy in this 

stage is based on our novel probabilistic inferences that were introduced in the 

section V.2.a Phase 2: D3 Inferential Probabilistic Model. Moreover, this 

statistical inferences stage has three main methods: (1) identifying the likelihood 

of DDIs, (2) inferring the clinical relevance of potential DDIs, and (3) sorting the 

mechanisms of DDIs according to importance. The D3 statistical inferences 

model is distinctive as it uses six different steps to probabilistically infer and 

recommend novel and potential DDIs along with their mechanisms of 

interaction. The three steps outlined above are considered when determining the 

likelihood and the clinical impact of a potential DDI, while another three steps 

are employed when determining and ordering the DDI mechanisms of 

interactions: (1) identifying the mutual mechanisms of DDIs, (2) filtering these 

mutual mechanisms based on prevalence and biomedical similarity calculation, 

(3) and, finally, ordering the mechanisms of interaction. Before presenting each 

step, we define some concepts that are essential in this statistical inferences 

stage: 
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• Existing drug: a drug that is found in both the D3 knowledge base and the 

clinically filtered DDI list.  

• New drug: a drug that is found in the D3 knowledge base but not in the 

clinically filtered DDI list. 

 

These definitions for distinguishing between drugs are critical because they 

determine whether D3 should look in clinical trials for a known DDI or calculate a 

statistical inference on a potential one.  

 
Stage 2 Step 1: Identifying the Likelihood and Clinical Relevance 

of a DDI 
 
In this method, the goal is to use existing knowledge about a drug, 

including its clinically relevant list of interactions and biomedical features, to 

provide the likelihood of important potential DDIs. This step requires four main 

methods: (1) generating interaction profiles for a DDI, (2) constructing a 

biomedical similarity matrix for the interaction profiles of a DDI, (3) computing 

the likelihood of a DDI, and finally, (4) determining the clinical relevance of a 

DDI.  

 
Step 1 Method 1: Generating Interaction Profiles for DDIs 
 
In this step, the goal is to quantify a DDI between two drugs. That is, we 

want to identify the level of reported interactions for each drug in the DDI. 

Formally, let DDI = {drugX and drugY} where drugX ≠ drugY, let drugX = {drugX1, 

drugX2,..., drugXn} be a set of all reported interactions for drugX, and let drugY = 
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{drugY1, drugY2, ..., drugYn} be a set of all reported interactions for drugY. Next, 

we propose a method to retrieve two lists of interactions for both drugX and drugY 

from the learning process stage. Algorithm 7 shows the process of retrieving a 

drug interaction list to create the interaction profile for a DDI.  

 

 

 

 

 

 

 

 

Step 1 Method 2: Constructing a Biomedical Similarity Matrix for the 
Interaction Profiles with DDIs 

 
 Once profiles of interactions have been generated for a DDI, all drugs in 

both interaction profiles are used in the next step of identifying how similar the 

interaction profiles are for the drugs proposed in the DDI. In this step, we aim to 

compute the biomedical similarity for each drug within the proposed DDI based 

on their interaction profiles. Considering a first interaction profile for a drugX = 

{drugX1, drugX2,..., drugXn} and the second interaction profile for a drugY = 

{drugY1, drugY2,..., drugYn}, we want to identify how similar the {drugX1, 

drugX2,..., drugXn} list is to the drugY list and, vice versa, how similar the 

drugX list is to the {drugY1, drugY2,..., drugYn} list. Therefore, we create a 
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biomedical similarity matrix for each drug in the DDI. We then apply the 

methodology described in Stage 1 Step 2: Building a Biomedical Features 

Similarity Matrix for Drug Comparison to identify the similarity score for 

each drug profile with other drugs’ profiles. Figure 5.6 illustrates the 

construction of the biomedical similarity matrix to compute the similarity of 

drugX’s interaction profile to drugY’s. 

 

 

 

 

 

 

The result of this step is two lists: (1) all drugs that interact with drugX = 

{drugX1, drugX2,..., drugXn} and are similar to drugY, and (2) all drugs that 

interact with drugY = {drugY1, drugY2,..., drugYn} and are similar to drugX.  

Algorithm 8 shows the process of scoring each drug in the interaction profiles.  

 

 

 

 

 

Figure 5.6: Biomedical similarity matrix  
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Step 1 Method 3: Computing the Likelihood of DDIs 

The main goal of this step is to use all calculations of Step 1 Methods 1 and 

2 to provide the likelihood of a DDI. This requires checking for an existing 

interaction between two lists (from Step 1 Method 2) and averaging the similarity 

scores. Once we compute the similarity of the two interaction profiles within a DDI, 

the next step is to check for an interaction between drugs in both lists. More clearly, 

we want only to consider the clinically proven interactions from both lists below a 

predefined threshold. Formally, let drugXddiSimilartoY = {drugX1ddiSimilartoY, 

drugX2ddiSimilartoY,..., drugX(n)ddiSimilartoY } be a list of drugs that are proven 

to interact with drugX and that are shown to have similar biomedical features to 

drugY, and let drugYddiSimileatoX ={drugY1ddiSimilartoX, 

drugY2ddiSimilartoX,..., drugY(n)ddiSimilartoX } be a list of drugs that are proven 

to interact with drugY and that are shown to have similar biomedical features to 

drugX. Following this, we want to check for an interaction between all drugs from 

both lists; i..e., (drugX(n)ddiSimilartoY vs. drugY(n)ddiSimilartoX). Assuming 

drugX10ddiSimilartoY was proven to interact with drugY3ddiSimilartoX, we then 

retrieve their biomedical similarity scores, which were computed in Step 1 Method 

2. We average these similarity scores for both drugs to compute the likelihood of a 

DDI, using Equation 6.2:     
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We follow the same process for all drugs in both lists until there are no drugs 

left. The result is a new list of proven DDIs along with their similarity scores. We 

then take the DDI list and sort it in descending order. The highest value is 

considered to have the highest likelihood of a potential DDI.  

 

Step 1 Method 4:  Determining the Clinical Relevance of DDIs 

DDIs remain a major challenge to effective administration of medications 

around the world. Researchers, drug companies and clinicians spend considerable 

effort attempting to mitigate DDIs and their potential to cause ADEs.  However, the 

challenge of preventing DDIs is still unresolved. The most important reason for this 

is that there is still as yet no proper way to adequately identify significant DDIs. In 

other words, there is still no clear method for identifying potential clinically 

relevant DDIs. The medical need to have a clear method for recognizing clinically 

relevant DDIs is increasing as new drug therapies are introduced to the market and 

treatment strategies become increasingly complex, resulting in a theoretical 

increase in the number of potential DDIs.  

In this section, we provide a novel computational method of recognizing 

clinically relevant potential DDIs based on the similarities not only within the 

interaction profiles for the DDIs, but also in their biomedical features. The main 

assumption is that the list of integrated and proven clinically relevant DDIs from 

Stage 1 Step 1 of our learning process (Filtering Existing DDI Resources) and 

the similarity score from the statistical inferences from Step 1 Method 2 
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(Constructing a Biomedical Similarity Matrix for the Interaction Profiles 

with DDIs) can provide us with a tool to identify clinically relevant potential DDIs.  

Formally, let DDI = {drugX and drugY} where drugX ≠ drugY. As we apply Step 1 

Methods 1, 2 and 3 of the statistical inferencing process, we obtain a likelihood 

score for a potential DDI. Once we get the score, we could classify it based on five 

well-known DDI severity categories:  

 

No interaction represents a score of [0 - 0.1]. 

(1) Minor interaction represents a score of [0.2 - 0.3]. 

(2) Moderate interaction represents a score of [0.3 - 0.4]. 

(3) Major interaction represents a score of [0.4 - 0.7]. 

(4) Avoid combination (contraindication) represents a score of [0.7 - 1.0]. 

 

After we classify the likelihood score, we only consider a DDI to be clinically 

relevant if the score is within categories 4 or 5. In other words, if the score is equal 

to or above 0.4, we consider it a clinically relevant DDI. To provide evidence for the 

usefulness of our method to recognize clinically relevant potential DDIs or not, in 

V.1 Phase 3: Exploiting D3 Models below we shall show a real world test case 

using a DDI between irinotecan and levofloxacin. . 
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Stage 2 Step 2: Ordering the Mechanisms of DDIs  

The last method of statistical inferences is the determination of the most 

likely mechanism of a DDI. In the V.1 Phase 1: Declaration of D3 Semantic 

Inferences section, we created 9 different inferences to deduce possible 

mechanisms of DDI at the pharmacokinetic, pharmacodynamic, 

pharmacogenetic, and multi-pathway interaction levels. Later, in the V.2.a 

Phase 2: D3 Inferential Query Model section, we used the 9 inferences in the 

D3 query-based model to identify novel and hidden pathways of interaction. We 

showed how successfully we were able to infer the well-known mechanisms of a 

DDI as well as to suggest novel ones (Appendix B). However, we have yet to 

demonstrate the capacity of the D3 query-based model for determining the main 

mechanisms of DDIs. In this method, the main goal is to identify the most likely 

mechanisms of interaction. In other words, we aim to suggest the mechanisms 

with regard to their roles when there are more than one. We also want to be able 

to eliminate any irrelevant mechanisms of DDIs. To achieve such a goal, we first 

need to identify the overall level of supporting evidence within existing DDI 

resources for the D3 inferences. Algorithm 9 shows the process of computing 

the overall level of completeness of the knowledge-sources for D3 inferences 

among the 15 DDI resources, and Figure 5.7 shows the results of this analysis.  
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Figure 5.7: Bar chart showing the overall support that existing DDI 
resources provide for D3 inferences  
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This chart (Figure 5.8) shows how existing DDI resources support D3 inferences 

for the interaction mechanisms. The primary reason for this analysis is to identify 

why DDIs occur, but applying our D3 inferences across DDI resources does not show 

a clear independence. That is, the chart shows that DDIs are very complicated since 

there is not one dominant mechanism across all resources. Moreover, the chart 

clearly indicates the lack of supporting evidence for the D3 inferences across all 

interaction mechanisms. The mechanism with the largest support is 

pharmacogenetic, with over sixty percent, whereas the additive mechanism has the 

smallest support with just over twenty percent.  Apart from the pharmacogenetic 

mechanism, reported evidence for the next highest supported mechanism provides 

support just below forty percent. This analysis indeed confirms findings from 

current research about the lack of studies supporting DDI mechanisms of 

interactions. Many studies indicate not only the lack of supporting DDI mechanism 

information but also the huge disparities in the information that is reported. One 

way to cope with this problem is by supporting decision-making based on 

mechanism information with available and accurate information about drug 

biomedical features. In this section, we present a novel method to probabilistically 

order the mechanisms of DDIs. The proposed method is divided into five main 

methods: (1) retrieving the mechanisms of DDI, (2) identifying similar proven 

interactions, (3) eliminating additional mechanisms of DDI, (4) computing the 

prevalence of mechanisms of interaction within DDI profiles, and, finally, (5) 

identifying the most likely mechanisms for DDIs. Before presenting each method, 
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we here define some concepts that are essential to our methods of ordering DDI 

mechanisms: 

• Potential DDI: a DDI in question. 

• Proven DDI: two that are clinically proven to interact; ideally, proven DDIs 

will possess highly similar biomedical features to the potential DDIs in 

question.  

 

Step 2 Method 1: Retrieving the Mechanisms of a DDI  

The main goal of this process is to query the D3 knowledge base to 

retrieve all possible mechanistic pathways for the potential DDI. We use the 

learning process Stage 1 Step 3: Extracting All Possible Mechanisms of 

Interaction to extract and create a list of all possible mechanisms of 

interaction.    

 

Step 2 Method 2:  Identifying a Proven Interaction Similar to a 
DDI 

As we stated above, existing DDI resources are limited in their ability to 

accurately characterize mechanisms of interaction. To overcome such 

limitations, in this step, we first need to identify a proven DDI that is similar to 

a potential one. Therefore, we utilize the learning process Stage 1 Step 2: 

Building a Biomedical Features Similarity Matrix for Drug Comparison 

to detect a similar DDI. Once the similar DDI is found, then we retrieve all of its 

possible mechanisms of interaction. 
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Step 2 Method 3: Eliminating Additional Mechanisms of DDIs 

The goal of this process is to filter the mechanisms of interaction. By 

filtering here we mean removing unimportant mechanisms from our list. In Step 

2 Method 2: Identifying a Similar Proven Interaction to a DDI, we 

identified a DDI that was similar to the potential DDI, and we retrieved the 

mechanism(s) for the similar DDI. We have also (in Step 2 Method 1: 

Retrieving Mechanisms of a DDI) stored all possible mechanisms of a 

potential DDI. Therefore, we have two lists describing mechanisms of 

interaction. Our next step is then to identify the common mechanisms between 

our potential DDI and the proven similar DDI. Formally, let potentialDDI = 

{MoA1, MoA2} be a set of all possible mechanisms for potential DDIs, and let 

provenDDI = {MoA2, MoA3, MoA4} be a set of all possible mechanisms for 

proven DDIs; then potentialDDI ∩ provenDDI = {MoA2} is the set of remaining 

possible mechanisms for the proven and potential DDIs. The results of the 

intersection process are considered to be the most probable mechanisms of 

interaction that will be ordered in the next process.  

 
Step 2 Method 4: Computing Prevalent Mechanisms of Interaction 

within the DDI Profile  
 
 Methods 1, 2, and 3 can be considered input processing stages. That is, all 

calculations of these methods will be used to provide inputs to Method 4. In this 

method, the aim is to support mechanisms of interaction based on a drug 

interaction profile as well as on biomedical similarity score. In other words, we 
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want to identify how common a mechanism is for a drug through its list of 

interactions. To answer this question we need to have two inputs: (1) a proven 

DDI that is highly similar to the potential DDI and (2) a non-sorted 

mechanisms-of-interaction list. Step 2 Method 2: Identifying a Similar 

Proven Interaction to a DDI provides us with the first input whereas Step 2 

Method 3: Eliminating Additional Mechanisms of a DDI provides the 

second. Once all the required inputs are provided, two sub-phases are proposed 

to discover the commonality of a mechanism: (1) creating interaction profiles for 

the proven DDI and (2) identifying mechanisms common to the potential and 

proven DDI’s interaction profiles.  

 

Method 4 Sub-Phase 1: Creating Interaction Profiles for the Proven 
DDI 

 
 The main goal of Sub-phase 1 is to create interaction profiles that contain a 

list of drugs proven to interact with the examined DDI. From Stage 2: 

Statistical Inferences, we call on Step 1 Method 1: Generating 

Interaction Profiles for DDIs to generate two interaction profiles for the two 

interacting drugs in the DDI.  

 
 

Method 4 Sub-Phase 2: Identifying Prevalent Mechanisms for 
Interaction Profiles  

 
Once we generate the two interaction profiles of a DDI, Sub-phase 2 is 

designed to compute the commonality for each mechanism. Formally, let DDI = 
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{drugX and drugY} where drugX ≠ drugY. Let drugXinteractionProfile = {drugX1, 

drugX2,..., drugXn} be a set of all reported interactions for drugX, and 

drugYinteractionProfile = {drugY1, drugY2,..., drugYn} be a set of all reported 

interactions for drugY. Let DDImechanism = {MoA1, MoA2,..., MoA(n)} be a set of 

all possible mechanisms after eliminating all additional mechanisms that are not 

shared by the two lists. Next, we propose a novel commonality method to compute 

the importance of each mechanism within the interaction profile and the biomedical 

similarities. Algorithm 10 shows how we compute the commonality score for each 

mechanism in the two profiles.  
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Step 2 Method 5: Identifying the Most Likely Mechanisms of 

Interaction for a DDI  
 

Finally, the last method of Stage 2 Step 2: Ordering the Mechanisms of 

DDIs is to order the mechanisms of interaction for DDIs, taking into account all the 

Stage 2: Statistical Inferences methods including: retrieving the mechanisms of 

a DDI, identifying a proven interaction similar to the DDI, eliminating extraneous 

mechanisms of the DDI, and, finally, computing the common mechanisms of 

interaction within the DDI profile in the previous methods, using Equation 6.3:   

 

 

 
 
 Now, at the end of Stage 2, three novel methods of inference have been 

initialized. These methods are: identifying the likelihood of DDIs, inferring the 

clinical relevance of potential DDIs, and sorting the mechanisms of DDIs according 

to importance. In each method, a set of complex statistical functions and 

calculations have been used to infer results. In Phase 3, we shall show how these 

inferences will be exploited in order to better understand and examine DDIs. 

 
V.3 Phase 3: Exploiting the D3 System  

 
Once both D3 inferential models are constructed, we can then study DDIs by 

discovering more relevant mechanisms of interaction that a might be involved in a 

DDI. In this phase we aim to show the usefulness of our D3 pharmacovigilance 

system for studying DDIs. We argue that the inferences in the D3 system are rich 
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with semantic information and computations, and by exploiting such computations 

we can infer novel semantic knowledge that can be used to provide a better 

understanding of DDIs and hence provide more relevant pharmacovigilance 

services. In Chapter IV, we have already proposed a model to infer a novel multi-

pathway DDI from our D3 knowledge base. In that model, we proposed a rule-based 

method that allows our pharmacovigilance system to discover and obtain extra 

information about a chemotherapy medication’s mechanisms of interaction, which, 

in turn, led to an enhanced understanding of the drug’s potential therapeutic 

mechanism. In this phase, we argue that applying the same method to identify and 

explain mechanisms for all DDIs allows us to discover, infer and gain a better 

understanding of these DDIs and their mechanisms of interaction.  

As explained above, the D3 pharmacovigilance system contains two main 

inferential models: (1) a query-based model and (2) a probabilistic-based model. The 

D3 query based-model has been designed to check for interactions using 15 DDI 

resources, as well as inferring 9 different mechanisms of interaction using SPARQL 

as an inference technique. The following scenarios have been proposed with the 

query-based model: 

1. If both drugs exist in the D3 knowledge base and are listed in the 15 DDI 

resources as a reported interaction, the interaction is proven. In this case, 

D3 will infer all possible mechanisms of interaction. 

2. If both drugs exist in the D3 knowledge base and are NOT listed in the 15 

DDI resources as an interaction, this interaction is defined as potential.  
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D3 will infer all possible mechanisms of interaction to support the 

interaction identification.  

3. If one of the drugs does NOT exist in either source, a clinical trial is 

recommended.  

4. If neither drug exists in either source, a clinical trial is recommended.  

 

The probabilistic-based model has been proposed to identify the likelihood of 

DDIs, assess their clinical relevance, and order the mechanisms of interaction. The 

following scenarios have been offered by the probabilistic-based model: 

1. If both drugs exist in the D3 knowledge base and are listed in a D3 DDI 

list from Stage 1 Step 1 of our learning process (Filtering Existing DDI 

Resources) as a reported interaction, this DDI is listed as proven with 

high clinical relevance. D3 will then order all possible mechanisms of 

interaction according to importance.  

2. If both drugs exist in the D3 knowledge base and exist in the clinically 

relevant DDI list but are not reported as an interaction, D3 will assess 

how likely this DDI is and what its clinical relevance is. Based on this 

assessment, D3 will then order all possible mechanisms of interaction 

according to importance. 

3. If neither drug exists in either source, a clinical trial is recommended.  

4. If neither drug exists in the D3 knowledge base BUT is listed in a 

clinically relevant DDI list as a reported interaction, the DDI will be listed 
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as proven with clinical relevance. However, D3 will not be able to provide 

mechanisms of interaction for this DDI.  

5. If one of the drugs does NOT exist in either source, a one-sided calculation 

will assess how likely this DDI is and what its clinical relevance is. D3 

will then order all possible mechanisms of interaction according to 

importance.  

 

In the next phase, we propose two case studies: (1) a case study for the D3 

inferential query-based model and (2) another case study for the D3 inferential 

probabilistic-based model. In each case, we will test both proven and potential 

DDIs.   

 
Case Study 1: D3 Query-Based Model Inferences  

In this case study, the main goal is to demonstrate the usefulness of the D3 

query-based model by testing two real world DDIs. Specifically, we propose a DDI 

between aspirin and ibuprofen as a proven DDI and investigate interactions 

between irinotecan and levofloxacin as a potential DDI.  

 
1. Aspirin and Ibuprofen as a Proven DDI 
 

Aspirin and ibuprofen have been used for decades to relieve pain and other 

symptoms. A study was published by the MacDonald group that showed that co-

administration of both drugs in cardiovascular patients led to increased all-cause 

mortality and cardiovascular mortality compared to patients who had received 
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aspirin only (MacDonald & Wei, 2003). In 2006, the US Food and Drug 

Administration (FDA) warned about interactions between these two agents(FDA, 

n.d.). Moreover, aspirin and ibuprofen’s mechanisms of interaction are very complex 

and happen at multiple pharmacokinetic and pharmacodynamic levels (Awa, Satoh, 

Hori, & Sawada, 2012). Therefore, due to their complex interaction mechanisms and 

since this interaction has the potential to lead to serious ADEs, we tested our 

model’s usefulness in studying interactions between the two drugs. Both drugs were 

entered into the model and 5 different DDI resources reported an interaction: NDF-

RT, Twosides, Drugbank, Kegg, and OSCAR. Second, seven mechanisms of 

interactions were inferred (Table 5.5). 

 

Table 5.5. Seven inferred mechanisms of interaction between aspirin and ibuprofen found 
by the D3 query-based model 

Mechanism of interaction Explanation 

Pharmacokinetic (protein binding) 
High protein binding affinity of aspirin(Wishart et 
al., 2008)  

Pharmacodynamic (additive) 
Cyclooxygenase Inhibitors(Micromedex® Healthcare 
Series., 2015) 
 

Pharmacokinetic (metabolism inhibition) 

 
CYP2C9, PTGS2, PTGS1 enzymes (Samowitz et al., 
2006) 

Pharmacokinetic (metabolism induction) CYP2C19 enzyme(Chen et al., 2003) 

Pharmacokinetic (transporter inhibition) 
SLC22A6 gene(“Ibuprofen Pathway, 
Pharmacokinetics,” n.d.) 

Multi-pathway (metabolic- transporter) 

 
CYP2C9 enzyme, ABCB1 gene, SLC22A6 gene, 
CYP2C19 enzyme, CYP2C8 enzyme(Samowitz et al., 
2006) (“Ibuprofen Pathway, Pharmacokinetics,” n.d.) 

Pharmacogenetic Rs20417(Lee, Kim, Wu, Wang, & Dionne, 2006) 
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The results in Table 5.5 clearly show that our D3 query-based model can 

help in capturing hidden mechanistic information with regards to DDIs and provide 

different sources for reporting the interaction. Although these drugs have been 

thoroughly studied, knowing that D3 can infer potential mechanisms for proven 

DDIs at so many levels with well-known drugs increases our confidence that it can 

also identify potential interactions among less well-studied drugs. 

 

2. Irinotecan and Levofloxacin as a Potential DDI 

 
An effective way to infer potential DDIs is through identifying and 

understanding the mechanisms of interaction. We proposed to identify a possible 

interaction between irinotecan and levofloxacin and to understand the mechanisms 

of interaction. Irinotecan, which has been an FDA-approved drug since 1996, is an 

effective chemotherapeutic medication for treating colon cancer (Douillard et al., 

2000). Irinotecan induces apoptosis by inhibiting the topoisomerase I enzyme, and 

consequently also inhibiting DNA replication and transcription (Pommier, Leo, 

Zhang, & Marchand, 2010). Unfortunately, patients treated with chemotherapy 

medications are at high risk of many different kinds of infections. According to 

cancer clinical practice guidelines, levofloxacin has good evidence supporting its use 

for primary infection prevention in patients undergoing chemotherapy (Freifeld et 

al., 2011). Therefore, irinotecan and levofloxacin were fed into the D3 model and the 

model returned 4 mechanisms that could cause interactions: metabolism inhibition 

(irinotecan and levofloxacin both inhibit the CYP3A4 enzyme), transporter 
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inhibition (levofloxacin inhibits the P-gp transporter), multi-pathway interaction 

(both drugs share the CYP3A4 enzyme and the P-gp transporter), and 

pharmacogenetic interaction (a specific SNP, rs1045642, is associated with altered 

P-gp activity for both drugs). To provide precise evidence, we queried the D3 

knowledge base aiming to find a drug that was already known to interact with 

irinotecan and which had a similar pharmacokinetics profile to levofloxacin (an 

inhibitor of both the CYP3A4 enzyme and the P-gp transporter). Indinavir was 

retrieved. We could then hypothesize that there is a possible interaction between 

irinotecan and levofloxacin for two important pharmacological reasons.  The first is 

based on the P-gp transporter.  Indinavir has been shown to interact with 

irinotecan because it increases the level or effect of irinotecan  (L. Zhang, 2010). 

Since levofloxacin and indinavir share the same transporter action (both are P-gp 

inhibitors), we can say that levofloxacin and irinotecan could interact via P-gp. The 

second reason is based on the CYP3A4 enzyme. Levofloxacin is a CYP3A4 inhibitor, 

and CYP3A4 plays an important role in irinotecan metabolism (Santos et al., 2000, 

p. 4). Therefore, when CYP3A4 inducers or inhibitors are administered, irinotecan 

concentration may change significantly. The ability to generate these two 

hypotheses was based on the capability of the D3 query-based model. Based on our 

hypothesis, we recommend one of two possible actions be taken as a follow-up:  

1. Medical records either forward or retrospective for patients who have been 

prescribed both irinotecan and levofloxacin should be checked; or  
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2. Clinical trials should be conducted to prove the interaction between 

irinotecan and levofloxacin.  

 

Case Study 2: D3 Probabilistic-Based Model Inferences  

The D3 probabilistic-based model was designed to address three important 

limitations of the query-based model. The first limitation is that even though the 

query-based model infers potential interactions, it is not able to provide the 

likelihood of those interactions. The second limitation is that the query-based model 

will not be able to determine the clinical relevance of predicted interactions. The 

last limitation is that, though the query-based model infers potential mechanisms of 

interaction, those mechanisms require manual filtering to determine the most likely 

cause of the interactions. In this case study, we show how the D3 probabilistic-

based model will overcome those limitations. We propose the same test cases we 

used in the query model to study the proven and potential DDIs.  

 

1. Aspirin and Ibuprofen as a Proven DDI 
 

 In the query-based model, we showed how we were able to identify the 

proven interaction between aspirin and ibuprofen, list all DDI resources that 

report the interaction, and suggest 7 different mechanisms of interaction. Using 

the probabilistic-based model, on the other hand, we want to demonstrate that 

we can capture the interaction with its likelihood, provide its clinical relevance, 

and, finally, order the mechanisms of interaction according to importance. When 
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we enter aspirin and ibuprofen into the D3 model, it returns 1 (i.e., 100%) as the 

likelihood of interaction. In Stage 2: Statistical Inferences, Step 1 Method 4:  

Determining the Clinical Relevance of DDIs, we classify our likelihood 

score of interaction to determine the clinical relevance. Based on our 

classification schema, any likelihood score above 0.4 is considered clinically 

relevant. Thus, since the score of aspirin and ibuprofen is 1, it is then identified 

by our model as a clinically relevant DDI. Finally, the model orders the 7 

mechanisms of interaction found by the query-based model as follows: 

A. 0.046651974 Metabolism Inhibition 
B. 0.037774377 Transporter Inhibition 
C. 0.03353279 Additive 
D. 0.030037235 MultiPathways 
E. 0.02711666 Protein Binding 
F. 0.017725537 Metabolism Induction 
G. 0.016276017 Pharmacogenetic 

 

Based on the results, metabolism inhibition is shown to be the strongest 

mechanism of interaction. In accordance, one study suggested that aspirin and 

ibuprofen might interact due to the metabolism inhibition mechanism of interaction 

(Saxena, Balaramnavar, Hohlfeld, & Saxena, 2013). Our results clearly show how 

the D3 probabilistic-based model is able to give a probability value for a DDI, assist 

in determining its clinical importance, and order the mechanisms of interaction 

based on a common mechanism within drugs’ interaction profiles.  
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2. Irinotecan and Levofloxacin as a Potential DDI 

 
The potential interaction between irinotecan and levofloxacin was suggested 

via the D3 query-based model. Moreover, the potential interaction was suggested 

because of four different mechanisms of interaction. Here, we are using the D3 

probabilistic-based model to evaluate this interaction. Therefore, the two drugs are 

given to the model and the model returns a likelihood value of 0.23119652. Using 

our classification method, an interaction could be possible but the model would 

consider it a minor interaction. The model also provides prednisone and etoposide 

as similar proven DDIs (in terms of biomedical features) to the potential irinotecan 

and levofloxacin. Finally, we order the four mechanisms of interaction that were 

found to contribute to the DDI as follows:     

A. 0.07724251 Metabolism Inhibition 
B. 0.06572684 Transporter Inhibition 
C. 0.060484476 Multi-Pathways 
D. 0.050410457 Pharmacogenetic 

 

The results of both test cases demonstrate how the D3 probabilistic-based 

model is capable of identifying the likelihood of proven and potential DDIs, 

assessing the clinical relevance, and ordering the mechanisms of interaction based 

upon importance when there are more than one. A corollary to this model is that it 

can be used to provide putative explanations for reported DDIs, the majority of 

which are reported without an underlying mechanism, and it can evaluate existing 

DDI resources to report highly clinical relevant DDIs.   
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V.4 Conclusion 

In this chapter, we presented a distinctive system that is able to use existing 

knowledge about drugs, their biomedical features, and their interaction lists to 

provide pharmacovigilance services. This system is based on the integration of two 

types of inferences: query and probabilistic. The D3 system is a generic system that 

consists of different techniques and algorithms to study, understand and exploit 

users’ drug knowledge and DDI resources to provide pharmacovigilance services. 

Finally, using different biomedical features of drugs, we showed that considering 

different drug information in pharmacovigilance systems can provide more effective 

DDI discovery and explanation. We also show that our system’s probabilistic 

method can assist in determining the clinical relevance of existing DDIs and 

provide putative explanations for reported DDIs that have no mechanistic 

information. The main contributions of this chapter are as follows: 

• We presented two inferential models and studied some of their components 

and capabilities. 

• We proposed a generic system that could be used by diverse applications to 

provide an explanation for DDIs. This system is also generic so it can assist 

in determining the clinical relevence of DDIs.  

• We proposed a novel method to identify the likelihood of a DDI based on the 

proven interaction information that is collected from existing DDI resources, 

as well as a process to compute the clinical importance of the DDI. 
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• We extended the method of inferring and exploiting new hidden knowledge 

that was presented in Chapter IV to infer new mechanisms for DDIs. 

•  We introduced a novel system for ordering the mechanisms of DDIs to 

provide the most likely causes of the DDIs. 

• We demonstrate the essential nature of DDI resources and other biomedical 

information in providing an effective pharmacovigilance service, and 

illustrate the capacity of the D3 system to more effectively integrate drug 

information from a wide array of existing, reputable drug sources to provide 

superior pharmacovigilance services. 
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CHAPTER VI 
 
 

DEVELOPMENT OF A COMPREHENSIVE, MECHANISM-BASED DRUG-
DRUG INTERACTION RESOURCE AND ITS UTILIZATION IN 

CHARACTERIZING THE MECHANISMS FOR DRUG-DRUG INTERACTIONS 
DESCRIBED IN EXISTING KNOWLEDGE RESOURCES 

 
 
 

In the previous chapter, we established a distinctive system that is able to 

use publically available drug information to provide unique pharmacovigilance 

services. This includes, but is not limited to: (1) mining 15 different DDI resources 

to identify potential DDIs as well as determine their likelihood, (2) assisting in 

determining the clinical relevance of discovered interactions, and (3) providing 

mechanistic explanations to characterize interactions across nine mechanistic 

levels: protein binding, induction and inhibition of drug metabolism, induction and 

inhibition of drug transport, competitive pharmacological effect, additive 

pharmacodynamic effects, pharmacogenetic considerations, and multi-pathway 

interactions.      

In this chapter, we focus on exploiting this system to address three well-

known yet unresolved limitations of current pharmacovigilance systems.  These are: 

(1) omissions in the comprehensive reporting of DDIs, (2) a lack of mechanistic 

information to describe interactions, and (3) the inability to determine the clinical 

INTRODUCTION 
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relevance of DDIs. These issues make it difficult for both clinicians and researchers 

to make sound, evidence-based decisions regarding the potential for drug 

interactions in the setting of clinical medicine. Indeed, providing a comprehensive 

DDI resource is a very complex task. This is because, first, existing publically 

available and commercial DDI reporting resources vary widely in their reporting of 

interactions. Frequently, one resource will report a particular DDI while another 

resource will not. For instance, the interaction of irinotecan with beta-blocker drugs 

is reported only in Lexi-Comp, but not in any other resource. Second, the 

mechanistic information describing DDIs is rarely available and often not well- 

organized. For example, CredibleMeds, a clinically-oriented resource, provides only 

unstructured text explanations about DDI mechanisms. Third, the mechanistic 

information of DDIs, if found, is very frequently limited to metabolic interactions. 

For example, the Drug Interaction Knowledge Base (DIKB), a pharmacovigilance 

DDI resource, is built solely for examining metabolic DDIs. Finally, and most 

challenging, is the assessment of the clinical relevance of interactions identified in 

DDI resources. A recent study confirms that there is not yet a systematic way to 

determine the clinical relevance of DDIs (Scheife et al., 2015). The same study also 

highlights the significant need to distinguish the clinical impact of identified DDIs 

due to the increasing prevalence of interactions as new drugs are developed and 

commercially marketed. Our general aim, then, is to build a pharmacovigilance 

resource called D3 that can provide comprehensive DDI information. Our paradigm 

of providing comprehensive DDI information includes specifically enhancing 
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existing resources (clinical and text) with mechanistic information using the nine 

different interaction mechanisms listed in Chapter V and evaluating existing 

pharmacovigilance resources to extract the most clinically relevant potential and 

unique DDI pairs that have not yet been clinically well-described. In order to 

achieve these complex tasks, a number of requirements must be taken into 

consideration: 

 

• When enhancing existing DDI resources with mechanistic information, only 

the most likely mechanisms should be added. 

• The D3 pharmacovigilance resource should contain only the most clinically 

relevant DDI information that is extracted from publicly available DDI 

resources.  

• The D3 pharmacovigilance resource should transform and store DDIs in a 

formal and semantic representation. 

• The D3 pharmacovigilance resource should be able to provide precise 

mechanistic information. 

• The D3 pharmacovigilance resource should contain the original source of 

the DDI information. 

• The D3 pharmacovigilance resource should be universal enough to be 

integrated into and to provide inspiration for a wide range of studies. 
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 Building upon these requirements, we divide this chapter into four main 

sections: (1) illustrating the enormous variation among DDI resources, (2) 

highlighting the lack of mechanistic information within DDI resources, (3) 

demonstrating the accuracy of identified mechanistic information within D3 by 

utilizing proven, clinically relevant DDIs as examples, and (4) building the D3 

pharmacovigilance resource.    

 
 
VI.1 Searching for Consensus among DDI Resources 

 
DDI information can be found in literature, on webpages, in medical reports, 

and in databases. Manipulating and representing the extensive knowledge from 

these disparate resources is a common problem in the clinical domain. Both 

researchers and clinicians are challenged in their efforts to find reliable DDI 

information because it must be identified and collected from so many different 

formats and places, and in the end, the various resources may not agree. The 

purpose of this section is to prove the presence of variance in the DDIs reported by 

leading information sources along with the degree of behavioral independence 

among them. This is a study of the collective reporting behaviors of seven leading 

commercial and free resources based on comparative sampling of select DDIs 

reported (or not reported). These sources are: TWOSIDES, DrugBank, Lexi-comp, 

NDF-RT, Drugs.com, Micromedex, and Medscape.  

As demonstrated in Chapter IV- IV.2.a, divergent reporting behaviors 

surfaced during the validation process. Some sources frequently reported many 
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DDIs while others reported far fewer. For example, it was observed that NDF-RT 

only reported 7 drug interactions with irinotecan, although it did report more than 

9000 DDIs for other drugs. In contrast, Drugs.com reported 329 DDIs involving 

irinotecan, and Drugbank reported 11. Of perhaps greater concern was the 

inconsistency found among the resources regarding the reporting of particular DDIs 

with irinotecan. Frequently, one source would report a particular interaction while 

another source would not. For instance, the interaction of irinotecan with beta-

blocker drugs was reported in Lexi-Comp, but not in the other resources. Simple 

observation of these inconsistencies led to an investigation into the level of 

agreement or disagreement among the resources. A preliminary null hypothesis was 

made that there would be neither a consistent agreement nor a consistent 

disagreement among the resources. An agreement/disagreement scale was 

constructed ranging from zero to one with zero and one representing absolute 

disagreement and absolute agreement, respectively. The null hypothesis was placed 

in the middle of the scale (H0 = 0.5). The primary focus in choosing this scale and 

structure was to explore various forms of hypothesis testing to analyze the overall 

relative reporting behaviors of the sources collectively. Such hypothesis testing 

would also allow approximate determination of the level of independence in the 

reporting behavior of the resources. The sample was based on reporting behaviors of 

the 80 reported DDIs of irinotecan among the 116 drugs originally considered in the 

verification process. Thus, each DDI report sampled from the resources involved the 

interaction of irinotecan with one of the 80 drugs reported by our DDI knowledge 
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base to potentially interact with it. From the reports sampled, a conformity sample 

was constructed by finding the mean reporting behaviors of all pairs of the seven 

sources and the overall collection of sources. After computing confidence intervals 

for the collective sample, the lower confidence bound equaled 0.49 and the upper 

equaled 0.58. Thus, there was a 95% chance that the population’s mean was 

between 0.49 and 0.58 (Table 6.1). 

 

Table 6.1: 95% Confidence interval to show the variations when reporting irinotecan 
interaction among resources  
Sample Number (True 
positive) 

80 
95.00% confidence interval 

Sample mean 0.53 
Sample standard deviation 0.20 Lower bound 0.49 

95% Confidence T-Value for 
80 degree of freedom 

2 Upper bound 0.58 

This table shows the 95% confidence interval of the 7 DDI resources compared to each other. 
0 value means absolute disagreement, 0.5 shows variations (agreement/disagreement), and 1 
indicates absolute agreement. After computing, there is a 95% chance that the population’s 
mean is between 0.49 and 0.58, which means there are variations in reporting the 
interactions among 7 resources.  

 

Comparing this to the constructed conformity scale led to the strong 

conclusion that there was no level of statistical agreement in the reporting behavior 

between the DDI resources. Additional confidence intervals were investigated on 

samples of individual pairings of sources to aid in identifying the dependence and 

independence of the sources. The analyses of these confidence intervals are provided 

in Figure 6.1.  
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To put this result into perspective, we apply the same test for carbamazepine, 

a well-known drug used to treat seizures. Our carbamazepine result corroborates 

the enormous variation in DDI reporting among knowledge sources. Figure 6.2 

shows the expected agreement level for carbamazepine.  

0%	 20%	 40%	 60%	 80%	 100%	
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Figure 6.1: Confidence interval to show the variations when reporting 
irinotecan interaction among DDI resources 
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The strength of agreement presumed from the testing intuitively infers a 

level of dependence among sources. Likewise, the strength of disagreement also 

seems to imply some level of dependence. 
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Figure 6.2: Confidence interval to show the variations when reporting 
carbamazepine interaction among DDI resources 
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VI.2 The Need for Mechanistic Information among Data Resources 

 
In Chapter V, V.2.2, Method 3, we computed the overall level of 

completeness of knowledge sources in supporting mechanistic information among 15 

DDI resources. Our analysis showed that the existing DDI resources do not 

sufficiently assess the mechanisms of drug interaction. In this section, we would 

like to investigate this within an individual resource. That is, if a resource supports 

mechanistic information, how complete is the information in the resource and which 

types of mechanisms does it support? In order to answer these complex questions, 

an inference process is conducted to test the nine mechanisms resource by resource. 

We consider the 15 DDI resources used by the D3 query-based model in Chapter V, 

V.2.1. These 15 DDI resources are classified in 3 main categorizes: (1) clinical, (2) 

text, and (3) pharmacovigilance. After that, we test the nine mechanisms of 

interaction resource by resource and identify the number of occurrences for each 

mechanism.  Eventually, this analysis will identify the popularity of a mechanism 

within multiple DDI resources. The consensus DDI mechanism is the one 

mentioned most consistently among the resources. Algorithm 11 shows how we 

compute the popularity score for each mechanism within the DDI resource. The 

three Figures 6.3, 6.4, and 6.5 represent the results for each resource category. 
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 Figure 6.3: Mechanisms of interaction supporting levels by clinical resources 
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Figure 6.5: Mechanisms of interaction supporting levels by pharmacovigilance resources 
supporting level 
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Figure 6.4: Mechanisms of interaction supporting levels by literature 
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Figures 6.3 – 6.5 show the frequency with which each specific mechanism of 

interaction was implicated as a mechanism for DDI among the different sources.  As 

is clearly demonstrated in the charts, the 15 DDI resources vary greatly in the 

mechanisms they ascribe to their identified DDIs. In particular, the clinical 

resources (Figure 6.3) seem to mention fewer mechanisms of interaction than the 

other two categories of resources.  Moreover, the mechanism with the largest 

support is inhibition of metabolism, being described as a mechanism in over 

seventy-five percent of DDIs, whereas pharmacological competition and additive 

pharmacodynamic effect mechanisms have the least support among all categories. 

The results of this analysis drive three important conclusions. First, our analysis 

shows the inconsistencies in terms of the types of interaction mechanisms supported 

among existing DDI resources; thus, there is a real need to accurately synthesize 

mechanistic information to elucidate the true mechanisms of interaction. Second, 

the clinical category (Figure 6.3), which includes six DDI resources, shows limited 

capacity to support all mechanisms overall and most notably the rare pathways 

such as additive and competition. Finally, though the overall support level for 

mechanistic information was not promising, the little support indicates that there is 

room for improvement in adding mechanistic information to what is already 

available for decision-making. In the next section, we attempt to overcome these 

limitations by annotating current DDI resources with mechanistic information.  
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VI.3 Utilizing Data Resources to Enhance Descriptions of DDI Mechanisms 

 
The difficulty in discovering and studying DDIs occurs because DDIs, by their 

very nature, are complex processes that depend on many clinical, environmental, 

genetic, and physiological factors. Understanding the specific mechanisms that 

mediate DDIs, however, is an essential consideration for informing interventions to 

mitigate drug interactions. Throughout this thesis, we have highlighted the 

significant limitations in the contemporary research investigating DDI 

mechanisms. In Chapter V, we proposed a new system that is capable of studying 

DDIs across nine different mechanisms of interaction. In this section, we aim to 

utilize the D3 system to enhance the knowledge of existing and proven DDIs by 

more effectively integrating mechanistic information to characterize drug 

interactions. Since it is inefficient and impractical to confirm every DDI by means of 

a clinical trial, an expensive and slow process, providing information about the 

mechanism of the proposed interaction is key information that clinicians need to 

mitigate the occurrence of drug interactions. The process of adding the mechanistic 

information to existing DDIs involves three steps: (1) retrieving all proven DDIs 

from existing resources, (2) retrieving all possible mechanisms of DDI, and (3) 

annotating DDI reports with the most likely mechanisms of interaction.  

 

Step 1: Retrieving All Proven DDIs from Existing Resources   

Before annotating a given DDI with mechanistic information, we first need to 

retrieve all DDIs of interest. Therefore, from Chapter V, Step 1 of our learning 
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process (Filtering Existing DDI Resources), we retrieve a list of DDIs that 

contains 21,897 clinically important and non-duplicated DDIs. Those 21,897 DDIs 

are aggregated from ten different well-known clinical and text DDI resources.   

 

Step 2: Retrieving All Possible Mechanisms of DDI   

The next important step in enhancing DDIs with mechanistic information is 

to retrieve all possible mechanisms of DDI. This can be directly obtained via the 

learning process, Step 3: Extracting All Possible Mechanisms of Interaction, 

in Chapter V. This results in 9 different mechanism of interaction: (1) protein 

binding; (2) metabolism inhibition; (3) metabolism induction; (4) transporter 

inhibition; (5) transporter induction; (6) additive pharmacodynamic effect; (7) 

competitive pharmacological effect; (8) pharmacogenetic interactions; and finally, 

(9) multi-pathway interactions.  

 

Step 3: Annotating DDIs with the Most Likely Mechanisms of Interaction    

Once we retrieve the list of proven DDIs and all possible mechanisms of 

interaction, the annotation of the DDIs can be made by executing the novel 

Ordering the Mechanisms of DDI method from Chapter V. This method orders 

the mechanisms based on biomedical similarity between the DDI and the 

commonality of a mechanism within drug interaction profiles. A possible limitation 

of this method is that it assumes the correct mechanism to always be at the top of 

the list. Therefore, if it is not, the system does not consider it. In this step, we 
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overcome this limitation by introducing a margin of error for the DDI mechanisms. 

The goal of the margin of error is to improve our accuracy when assessing the 

mechanisms of interaction. Since we cannot be certain that the correct mechanism 

will be listed at the top of our created mechanism list, due to the previously 

demonstrated limitations in mechanistic information within the knowledge bases, 

we must determine the potential for error within our system. Moreover, applying 

the margin of error can assist in eliminating any extra mechanisms (i.e., those 

which are above the margin of error value) and reordering the mechanisms (i.e., by 

measuring how far each mechanism is from the margin of error value). This will 

eventually lead to retention of only the most likely mechanisms of DDI.  

In order to identify the margin of error boundary, we collect a sample of 9 

DDIs where we know in advance the mechanism of interaction, which is protein 

binding. Then we enter each DDI using Method 3: Ordering the Mechanisms of 

DDI, and compute the margin of error for each pair by subtracting the highest 

value from the correct value. For example, if the protein binding mechanism were 

ranked to be the highest for a DDI, then the result would be 0 (highest-correct). 

From the DDIs sampled, a margin of error sample was computed by finding the 

mean margins of error of all pairs of the nine DDIs. After computing the standard 

error of the mean for the collection sample, the upper confidence boundary equaled 

0.025035745. Thus, there is a 97.5% chance that the population’s true mean is 

below 0.025035745. Table 6.2 shows the nine collection sample calculations. 
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Table 6.2: Nine protein binding samples are used to determine the averaged error 
rate   

DDI Pair  Error Result  

dexamethasone, phenytoin 
0.02421753 

rifampicin, phenytoin 
0.024348518 

aspirin, phenytoin 
0.005775154 

gemfibrozil, warfarin 
0.01786845 

doxycycline, warfarin 
0.018178755 

phenytoin, warfarin 
0.011138968 

clofibrate, warfarin 
0.0 

Sulphamethoxazole, warfarin 
0.02000928 

Sulphinpyrazone, warfarin 
0.03797837 

Mean 
0.017723892 

Standard deviation 
0.011191613 

Standard error of the mean 
0.003730538 

Upper 95% limit 
0.025035745 

  
Once we estimate the margin of error for the population mean, we use it to 

check the results from Method 3: Ordering the Mechanisms of DDI. We 

approach this by subtracting the value of the most likely mechanism from our list 

(0.13980994 in the example below) from the values given to the other mechanisms. 

Then, if the calculated difference (the value after subtraction) for each mechanism 

remains within our margin of error (i.e., less than 0.025035745), we consider it a 

possible mechanism of DDI; otherwise, we eliminate it. For example, the interaction 

between rivaroxaban and rifampin has been associated with an increased risk of 
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stroke (likely due to induction of CYP3A4 metabolism, the enzyme that metabolizes 

rivaroxaban, by rifampin) and, upon analysis by D3 (“Safety Information > Xarelto 

(Rivaroxaban) Tablets,” n.d.), was found to possibly interact through 5 different 

pathways before applying the error margin: 

A. 0.13980994 Metabolism Induction 
B. 0.12819114 Protein Binding 
C. 0.10624011 Multi Pathways 
D. 0.10554226 Transporter Inhibition 
E. 0.084756725 Transporter Induction 

 
 

However, applying the margin of error enables us to eliminate three less important 

mechanisms of interaction. Two mechanisms are kept from the original list: 

A. Metabolism Induction 
B. Protein Binding 

 
To identify the benefit of the margin of error in considering the most likely 

mechanisms of interaction, we collect a random sample of 40 proven DDIs that 

interact because of a great variety of mechanisms of interaction. Then we compute 

how often D3 is able to identify the correct mechanisms under three constraints: 

1. Listed: How often does the correct mechanism show up on the list? 

2. Within margin of error: How often does the correct mechanism still 

appear on the list after checking the margin of error threshold? 

3. Top Mechanism: How often does the correct mechanism show up at the 

top of the list? 
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Figure 6.6 shows how the correct mechanisms fall within the margin of 

error: 92%. While the correct mechanism was not on the top, it was within the 

margin of error, and therefore, because it is, the correct mechanism could 

conceivably be at the top if the knowledge base was even more comprehensive.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: D3 most likely mechanisms of interaction identification  
 

Top	mechanism	 Within	Margin	of	
Error	 Listed	

D3	likely	mechanisms	of	
interaction	identiWication	 51.28205128	 92.30769231	 76.92307692	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

pr
ec
en
ta
ge
	%
	



164 

 
We apply the same methodologies to check for all possible mechanisms before 

annotating the proven DDIs. Algorithm 12 shows how we add the mechanistic 

information to existing DDIs. Forty-two percent of the 21,897 DDIs were 

successfully annotated with mechanistic information, while 58% were reported to 

interact due to other mechanisms that are not covered by the D3 system.  

 

Figure 6.7 displays a pie chart of the annotation results, and Figure 6.8 

displays an example of an annotated DDI between aspirin and ibuprofen.  
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Figure 6.7: D3 annotates 42% of DDIs and leaves 58% un-annotated  
 

Figure 6.8: DDI between aspirin and ibuprofen with D3 annotation 
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The results of the annotating process can help to provide putative 

explanations for reported interactions, the majority of which are reported without 

an underlying mechanism. This technology will potentially aid researchers and 

clinicians in identifying the possible mechanisms for drug interactions of both pre-

market and post-market-released drugs. Thus, it may improve the safety of 

medication use in the clinical setting and also provide a means of streamlining 

clinical trial design, which in turn will help to minimize the time and expense of 

designing clinical trials. 

 
VI.4 Building the D3 Pharmacovigilance Resource  

 
Even though the challenges posed by DDIs for effective medication therapy 

have been recognized for many years, there is still no well-trusted resource that can 

be universally used to check and validate DDIs. Accordingly, a recent study advises 

using more than one DDI resource for assessing the potential for interaction when 

using medications concomitantly (Conde-Estévez, Echeverría-Esnal, Tusquets, & 

Albanell, 2015). The lack of a single, comprehensive DDI resource exists because of 

two important reasons. First, the inconsistency among resources in reporting DDIs 

leads to extensive gaps in information. For instance, Zhang et al. suggest that using 

compendia for validation of DDIs could lead to many false positives due to the 

incompleteness of available curated data sources, and thus, precision can suffer (R. 

Zhang et al., 2014b). Tari et al. also report the limitations of using DrugBank as a 

gold standard for validation; they found only 11.0% of their results reported while 

77% were found by searching the medical literature; therefore, weak true positive 
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rates are another problem when using these databases (Tari et al., 2010). Second, 

the astronomical number of reported potential DDIs distracts from efficient 

recognition of those listed DDIs that have true clinical relevance (Conde-Estévez et 

al., 2015). Therefore, the lack of agreement in reporting the clinical relevance of 

DDIs could lead to serious medical decision errors. For instance, a study shows vast 

conflicts between Micromedex and Drug Interaction Facts (DIF) in reporting the 

severity of DDIs.  

In this section, we aim to solve the current issues of reporting DDIs by 

building a system that is superior to others and that can serve as a comprehensive 

go-to source for DDI information. We argue that most of the DDIs found in non-

clinical resources (pharmacovigilance systems) are not clinically relevant and need 

to be reevaluated, and that applying the D3 system to evaluate existing DDI 

resources allows us to discover, infer and gain only the most clinically important 

DDIs. In Chapter V, we proposed a system to quantify the likelihood of a DDI. In 

that system, we determined the likelihood by computing the similarity of a potential 

DDI to other known DDIs with regards to biomedical features and interaction 

profiles.  This process allows our pharmacovigilance system to discover additional 

information about a potential DDI, which leads to a better understanding of the 

mechanisms mediating the interaction and its clinical importance. In this section, 

however, we will apply the D3 system specifically to pharmacovigilance knowledge 

resources.  To do this, we build our D3 pharmacovigilance resource by extracting 

and integrating DDIs from 5 existing pharmacovigilance DDI resources. 
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Specifically, we aim to evaluate these 5 non-clinical resources to capture DDIs with 

a high potential for clinical relevance according to analysis from our D3 system. The 

five pharmacovigilance DDI resources we consider for building our D3 resources are 

Drugbank, The Drug Interaction Knowledge Base (DIKB), KEGG, SemMed, and 

Twosides. In order to evaluate their DDI lists, we first need to remove the overlap 

from the 21,897 DDIs we identified in Step 1: Retrieving All Proven DDIs from 

Existing Resources. Once the overlap is removed, we are left with a unique list of 

DDIs (false positives) that have not been reported in any clinical resource. Table 

6.3 shows all resources with their DDI numbers before and after overlap removal. 

 

Table 6.3: The unique positive DDIs retrieved from 5 pharmacovigilance resources  

DDI source 
Original 

DDI 
Number 

Definition 
After 

overlap 
removal  

DrugBank 11840 List of DDIs along with their explanations.  8754 

The Drug Interaction 
Knowledge Base 

560 
List of pharmacokinetic DDIs along with 
their evidence.  

379 

KEGG DDI 26328 
DDI resource derived from Japanese product 
labels. 

23,241 

SemMedDB from PubMed 3536 
DDI resource derived from PubMed 
abstracts. 

3216 

Twosides 63333 
DDI resource derived from the analysis of 
spontaneously reported adverse events 

59,922 

  

These five DDI resources are used for this analysis because they do not 

contain strong clinical evidence to support their DDIs. Some of them also are a 

result of an inference process in which they identify many theoretical DDIs that 

have not been clinically proven. Once we get sets of false positives for each resource, 
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the next step is to use the D3 system to calculate the likelihood of each DDI in each 

resource set. The last step is to calculate the recall for the D3 system to obtain the 

appropriate threshold for generating the D3 resources. Therefore, recall of the D3 

system is calculated with respect to the 10 different DDI resources used in this 

thesis. That is, we want to use recall rate as means of identifying how well the D3 

system applies all the knowledge given. We calculate the recall of the 21,897 DDIs 

from Step 1: Retrieving All Proven DDIs from Existing Resources at different 

thresholds; Figure 6.9 shows the performance of D3 system within in its knowledge 

sources.  

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9 confirms that the D3 system performs very well with its own 

knowledge sources at different thresholds in capturing most clinical DDIs. For 

example, at the 0.05 thresholds, D3 catches 99.9% of all clinical DDIs. Since we 
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Figure 6.9: D3 recall using 10 DDI resources  
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want to have a low false positive rate and to only retrieve clinically relevant DDIs 

from the five resources, we set our threshold at 0.3, indicating that the D3 system 

would capture 97% of correct proven DDIs. Table 6.4 shows the number of 

retrieved DDIs based on a 0.3 threshold value that would create the D3 

pharmacovigilance resource.  

Table 6.4 DDI pairs passed by D3 and used to create the D3 pharmacovigilance 
resource  

DDI source 
Original 
positive  

Passed by D3 based on 
0.3 threshold 

False 
positive 

percentage 

DrugBank 8,754 50% 47% 

The Drug Interaction 
Knowledge Base 

379 80% 17% 

KEGG DDI 23,241 39% 58% 
SemMedDB from 
PubMed 

3,216 20% 77% 

Twosides 59,922 25% 72% 

 

The final step is to combine the extracted DDIs from the five resources and 

remove the overlap among them to create a clinically relevant DDI resource from 

existing DDIs. The result is 16,276 non-duplicated and potentially clinically 

relevant DDIs that are stored in the D3 pharmacovigilance resource. The list can be 

limited if we raise the threshold, or increased if the threshold is lowered. However, 

we want to keep our false positive rate as high as possible in order not to miss any 

clinically relevant proven DDIs.  
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VI.5 Conclusion 

In this chapter, we highlight the immense need for a gold-standard 

mechanistic DDI resource as well as evaluate available DDI information. Then, 

we employ the D3 system to overcome these limitations. This is done by adding 

mechanistic information to existing DDI reports to generate a resource that can 

identify clinically relevant potential DDIs. For instance, D3 is able to annotate 

mechanistic information for 60% of DDIs encountered within 10 DDI resources. 

Such information will be able to not only assist clinicians in practice, but also 

direct research to predict potential DDIs before a drug is introduced to the 

market. Second, the D3 prediction performance value provides confidence in 

evaluating existing DDI resources. This is demonstrated by extracting clinically 

relevant potential DDIs from five pharmacovigilance resources. Our analysis 

indicates that these 5 resources report many theoretical false positive DDIs. 

Ultimately, the D3 pharmacovigilance resource is built by integrating important 

DDI information from a wide list of reputable knowledge sources, creating a 

comprehensive list of potential DDIs that assesses the probability that a pair of 

drugs will interact, the mechanism by which they interact, and the clinical 

relevance of potential interactions.  
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CHAPTER VII 
 
 

BENCHMARKING AND EVALUATION OF D3 
 

 
 
 

In the previous chapters of this thesis, we presented distinct evaluations that 

focused on examining specific aspects of our D3 system, such as evaluating a multi-

pathway DDI and examining the capacity of the D3 query-based and probabilistic-

based models. We evaluated such aspects in isolation via test cases to examine the 

potential of our system to effectively integrate and synthesize information to 

provide accurate inferences for characterizing DDIs. Different evaluation 

methodologies were employed to examine different capacities of our system. From 

these analyses, we have obtained positive results that demonstrate the potential of 

D3 to serve as a useful pharmacovigilance system. However, because these 

evaluations examined each aspect in isolation, further testing is needed to assess 

D3’s ability to comprehensively characterize DDIs.  Additionally, since most of our 

previous examples used in our test cases were literature-based rather than coming 

from clinical decision support tools, we aim to incorporate all the methods, 

techniques and algorithms previously proposed to assess D3’s capacity to identify 

DDIs, define their mechanisms, and determine their clinical significance in 

INTRODUCTION 
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comparison with a trusted DDI decision support tool that is widely used in clinical 

practice (Micromedex). In particular, we aim to examine the effectiveness, efficiency 

and subjective satisfaction of using our system to answer the following essential 

questions: 

• Does D3’s integration of drug information provide a better 

pharmacovigilance service than other existing systems?   

• Is D3’s drug information knowledge base generalizable enough to be 

implemented for other applications (e.g., drug repurposing)?    

• Can our system accurately assess the clinical relevance of DDIs? 

• Can our system provide putative explanations for reported interactions, 

the majority of which are currently reported without an underlying 

mechanism? 

We first discuss different evaluation methodologies from the literature, and 

then we introduce the methodology we will employ to evaluate our work. 

 

VII.1 Evaluation of Pharmacovigilance Systems 
 

The evaluation process for pharmacovigilance systems, especially those 

seeking to identify DDIs, is known to be difficult, time consuming and expensive 

(Abarca et al., 2006). This truth is attributed to a number of factors, including the 

enormous number of drug interaction pairs over which each pharmacovigilance 

system must be evaluated to gain a true assessment of their DDI identification 
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ability. Moreover, some systems are specialized to report only certain type of DDIs 

(e.g. metabolic DDIs), while other pharmacovigilance systems focus on more than 

one DDI interaction type. Therefore, each system may require different evaluation 

strategies and metrics. Another significant challenge in evaluating 

pharmacovigilance services is that definitive experiments are lacking for many 

theoretical DDIs, requiring time consuming and expensive clinical pharmacokinetic 

or pharmacodynamics studies to truly characterize the potential for drug 

interaction, its severity, and its potential clinical ramifications.  These types of 

analyses typically include assessing how potential interactions alter the interacting 

drugs’ concentrations and then determining the therapeutic index of the interacting 

medications, that is, how changes in drug concentrations will impact the drugs’ 

therapeutic efficacy as well as their potential for adverse effects. Finally, drug 

interaction mechanistic information is rarely found in pharmacovigilance systems 

and the available information is often limited to one mechanism of interaction. 

Other mechanistic information is generally scattered across disparate literature 

sources and requires tedious manual work for effective extraction. As a result, there 

is no standard way to evaluate a pharmacovigilance system because each system 

proposes different strategies to identify DDIs, strategies that are tailored to a 

specific system’s coverage and perspective. However, many researchers have 

recommended strategies to evaluate the pharmacovigilance system. For example, 

one study suggests that evaluation methods utilize drug compendia, while another 

study recommends utilizing more than one pharmacovigilance system to obtain 
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consensus information about specific interactions by which to evaluate new systems 

(Conde-Estévez et al., 2015; Scheife et al., 2015).  

 

VII.2 Evaluation of the D3 System 
 

The main aim of this chapter is to benchmark and evaluate our D3 system. 

Fundamentally, we want to know if using the existing resources about DDIs could 

provide improved pharmacovigilance services. To accomplish this task, we profile 

our system to figure out how it actually performs at each discrimination threshold. 

All interactions with likelihoods below this threshold are eliminated as false 

positives. Given these measurements of how well D3 performs at each threshold in 

the knowledge base, we can estimate what level of error should be expected when 

we compare D3 to other public or commercial pharmacovigilance systems. The 

evaluation process for the D3 system consists of three main steps: (1) testing DDIs 

contained within the D3 knowledge base, (2) testing DDIs that are new to the 

system, and (3) testing induction and inhibition of metabolic enzyme mechanisms of 

interaction as an example of how D3 is capable of finding the mechanism of 

interaction. 

We first evaluate the D3 query-based model against 15 DDI resources and 

compute its recall rate. Then we examine the overall performance of the system by 

graphing the Detection Error Tradeoff (DET). After that, we compare the 

performance of D3 to five different free, publicly available pharmacovigilance 

systems. Then, the system is tested against a trusted, clinically utilized commercial 
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pharmacovigilance system (Micromedex). Finally, we test D3’s predictions for two 

mechanisms of interaction related to the metabolic process.  

 

VII.2.a. Evaluation of the D3 Query Model  
 
The query-based model is designed to search for DDIs within 15 knowledge 

resources and to describe potential mechanisms for interaction across 9 different 

mechanistic types. To evaluate the query-based model, we calculate its recall with 

respect to the 15 different DDI resources used in this thesis. Recall is a helpful 

metric here (Equation 7.1) because it allows us to understand how well existing 

sources are covered by our system.  

 

 

 

For each resource, we determine how many of its proven DDIs were inferred by our 

9 inferences. We then determine the recall. We also determine the overall recall of 

the union of all existing sources to be 68%, which allows evaluation of the power of 

the system. For the recall of each source individually, see Table 7.1.  

 
Table 7.1 Coverage of D3 for the extraction of explicit DDIs from 15 DDI resources  

DDI resource Source type Number of DDIs Recall (%) 

Crediblemeds.org 
 

Clinical 
82 100 

PK-Corpus 
 

Text 
165 93.9 

DrugBank Bioinformatics 11840 74.1 
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The Drug Interaction Knowledge Base Bioinformatics 560 99.8 
 
NDF-RT 

 
Clinical 

 
9883 

 
49.9 

 
ClinicalTrials.gov 

 
Clinical 

 
3645 

 
36.7 

 
KEGG DDI 

 
Bioinformatics 

 
26328 

 
64.5 

 
DDI-Corpus-2011 

 
Text 

 
569 

 
88.2 

 
DDI-Corpus-2013 

 
Text 

 
1282 

 
83.2 

 
National Library of Medicine 
cardiovascular Corpus 

Text 
 

246 
 

91.4 

 
ONC-High Priority 

 
Clinical 

 
1150 

 
84.9 

 
ONC-Non-interruptive 

 
Clinical 

 
2079 

 
74.8 

 
OSCAR EMR 

 
Clinical 

 
7753 

 
55.1 

 
SemMedDB from PubMed 

 
Bioinformatics 

 
3536 

 
62.2 

 
Twosides 

 
Bioinformatics 

 
63333 

 
79.0 

 

Overall  

 

Clinical, 
Bioinformatics 

& Text 

 

 

114393 

 

 

68.0 

 
 

To put these results into perspective, we must emphasize that these DDI 

resources are highly variable and many focus on reporting different types of 

interactions for different reasons. Thus, we examine the similarity between each of 

these 15 sources by computing their Jaccard Index (Appendix C). The average 

Jaccard Index was 1.7%, indicating a low level of overlap and a high level of 

diversity in reported interactions. The low average Jaccard Index and high overall 

recall indicate that our D3 query-based model is able to successfully integrate 

diverse knowledge bases to reliably predict a wide variety of reported DDIs. 
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VII.2.b Evaluation of the D3 Probabilistic Model  

 
In this section we introduce a set of test cases and evaluate our work in a 

naturalistic environment, where D3 has no information about samples of DDIs. We 

identify the D3 true positive rate, compare D3’s performance to that of free and 

commercial pharmacovigilance systems, and finally, discuss our results. 

 
 

VII.2.b.1 Overall Performance of D3 
 
Before evaluating our system, it is important to show how the system 

performs (how high its true positive rate is when compared to its true negative 

rate). Therefore, we use a Detection Error Tradeoff (DET) curve to identify the 

overall performance of the D3 system. DET is a useful metric here, because our 

system can be seen as a binary classification system (either identifying or not 

identifying a potential interaction). Figure 7.1 shows the DET curves for the D3 

system.  
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Figure 7.1: DET for D3 system 
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The Figure 7.1 shows promising performance within its knowledge sources, 

as at 96% TPR, D3 is able to catch all true negative DDIs. It is important to point 

out that the sample’s number of true negative interactions is only 11 DDIs, while 

the sample of TPR contains 21,897 DDIs. This small number of true negative 

samples is due to the non-existence of any gold-standard DDI resources that can be 

examined to ensure that two drugs do not interact.  

 

VII.2.b.2 Test Case 1: Public Pharmacovigilance Systems Evaluation  
 

Public pharmacovigilance systems refer to systems that report mostly non-

clinical DDIs (i.e. usually theoretical) utilizing readily available data. To measure 

the D3’s performance at different thresholds, we compare D3 to five different public 

pharmacovigilance systems: Drugbank, Keeg, The Drug Interaction Knowledge 

Base (DIKB), SemMedDB from PubMed and Twosides. This step is a performance 

comparison between our system and other systems. Similar to Chapter VI (VI.4 

Building the D3 Pharmacovigilance Resource), for each pharmacovigilance 

system we retrieve all of its DDIs and then remove the overlap with the D3’s list of 

clinically relevant DDIs. This results in a unique DDI list for each resource. Then, 

for each list, we recall Chapter V- (V.2.2 Phase 2: D3 Inferential Probabilistic 

Model) to compute the likelihood for each DDI in the list. We repeat this same 

processes for all resources. Figure 7.2 shows the benchmark graph (baseline) with 

curves for the D3 system and other public pharmacovigilance systems, where the x-
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axis represents different threshold values and the y-axis show the true positive rate 

as a percentage.    

 

 

 

 
 
 
 
 
 
 
 
 

 

 

The benchmark graph, Figure 7.2, shows the kind of performance we would 

expect from our system, which is based on a proven set of DDIs from clinical trials 

and medical literature search, per threshold.  We see that a threshold of 0.3 (i.e. 

true positive rate = 95%) is the ideal value for a reliable DDI resource; if we select 

0.3 as a threshold, we see from the graph that none of the public systems meet the 

threshold for reliability. The best competitor we find at the 0.3 threshold is the 

DIKB system, which still scores less than 80%. Additionally, Drugbank 

demonstrates a true positive rate of less than 50% at the 0.3 threshold while the 

other public systems perform even more poorly. Therefore, apart from DIKB, other 

Figure 7.2: Comparison of D3 to five pharmacovigilance systems  
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public pharmacovigilance resources realistically perform at only half the rate of a 

reliable system at the 0.3 threshold. As the discrimination threshold is increased, 

the performance of these public systems drops even more dramatically; Table 7.2 

shows the level of reliability of each system with a 0.5 discrimination threshold 

(70% true positive rate in the D3 system).  

 

 

 

 

 

 

 

 

While the reliability of the D3 system falls to approximately 70% at the 0.5 

discrimination threshold (30% false positive rate), the public pharmacovigilance 

systems fare much worse, with Drugbank, the best performing of these systems, 

only correctly reporting 10% of clinically relevant DDIs. Therefore, it is clear that 

most the examined public pharmacovigilance systems do not accurately report 

clinically significant DDIs.  

 

 

 

Table 7.2: Number of false positives found by D3 in current DDI resources 

Pharmacovigilance 
system 

Validated by D3 based on a 
0.5 threshold 

False positive 
percentage 

Drugbank 10% 90% 

DIKB 5% 95% KEGG 5% 95% 

SemMedDB from PubMed 3% 97% 

Twosides 2% 98% 
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VII.2.b.3 Commercial Pharmacovigilance Systems Evaluation  
 
Commercial pharmacovigilance systems attempt to report only clinically 

relevant DDIs based on clinical studies and evidence within the medical literature, 

and the data they use are not publicly available. In this evaluation step, we profile 

D3 to compare its performance at each threshold compared to commercial 

pharmacovigilance systems. Mainly, we consider Micromedex, a highly reliable DDI 

system that is widely utilized in clinical practice, as a gold standard for comparison. 

The question is whether D3 can perform well on additional samples of known DDIs 

when it has no preexisting information on a specific DDI. In order to answer this 

complex question, we test four different samples against Micromedex: (1) an 

interaction profile for a well-known drug, (2) a set of severe DDIs, (3) a combined 

list of all DDIs for 5 well-known drugs, and (4) a comparison of D3 to both public 

and commercial systems. Our hypothesis is that the D3 system will perform 

similarly to Micromedex in reporting clinically relevant DDIs.   

 

Test Case 2: Comparison of D3 to an Interaction Profile: Atorvastatin 
as a Case Study  

 
Atorvastatin is used therapeutically to lower blood cholesterol by inhibiting 

endogenous cholesterol synthesis. The medication is a substrate of both CYP3A4 

and P-glycoprotein, meaning that inhibition or induction of these metabolism or 

transport systems may lead to an increase in adverse drug events, such as 

myopathy and rhabdomyolysis, or a decrease in therapeutic efficacy (“Drug Safety 

Labeling Changes > Lipitor (atorvastatin calcium) Tablets,” n.d.). Therefore, 
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atorvastatin has the potential for clinically important DDIs based on its 

pharmacokinetic and pharmacodynamic characteristics. Micromedex reports 89 

interactions with atorvastatin. We retrieve all interactions and remove the overlap 

with the D3 clinical list. Then we recall Chapter V’s V.2.2 Phase 2: D3 

Inferential Probabilistic Model to compute the likelihood for each DDI in the 

list. Figure 7.3 shows the benchmark graph for atorvastatin DDIs with two curves: 

one for the D3 system (baseline) and the other for Micromedex.  

 

 

 

 

 

 

 
 
 

 

 

As demonstrated in Figure 7.3, the two curves are very close to each other, 

indicating that D3 has a very high recall rate with Micromedex in capturing the 

majority of atorvastatin DDIs, even at high discrimination thresholds. For example, 

with a low threshold of 0.15 (true positive rate = 99%), D3 captures all listed 

atorvastatin interactions. Moreover, even with a high threshold of 0.5 (true positive 

Figure 7.3: Comparison of D3 to atorvastatin interaction list from Micromedex   
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rate = 70%), D3 performs well, evidenced by a 50% true positive rate. In this 

instance, D3’s recall is impressive, compared to the well-regarded commercial 

resource Micromedex. 

 

Test Case 3: Comparison of D3 to Micromedex in Evaluating Severe 
Interactions for Five Drugs 

 
 The main aim of this test case is to show how D3 can assist in determining 

the clinical relevance of DDIs. Five drugs (warfarin, phenytoin, digoxin, simvastatin 

and ketoconazole) were recommended for testing by a pharmacist at Purdue 

University based on their high potential of having clinically relevant DDIs. For each 

drug, we retrieve only the severe interactions from Micromedex (those deemed to be 

contraindications or major interactions) and remove the overlap with the D3 list. 

This resulting sample is 125 severe DDIs involving the five previously mentioned 

drugs. We then compute the likelihood for each DDI in the severity list. Figure 7.4 

shows the benchmark graph for the severe interactions.  

 

 

 

 

 

 

 

Figure 7.4: Comparison of D3 to severe DDIs for 5 drugs 
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 As shown in Figure 7.4, D3 has high recall rate of DDIs for its knowledge 

base, as the system only misses one DDI (out of a possible 125) at the 0.15 

discrimination threshold. At a more conservative 0.5 threshold, D3 still recalls 43% 

of the interactions for its knowledge base. While this may seem like there are many 

interactions being ignored, it is important to consider that the false-positive rate, or 

misidentified interactions from other sources, will be extremely-low at this 

conservative threshold. Because D3 is oriented towards culling clinically relevant 

interactions from pharmacovigilance systems, it would be expected that 

approximately 43% of the clinically relevant interactions would remain for those 

systems as well. This is particularly effective for choosing interactions in which to 

invest research and clinical testing. At a more liberal threshold of 0.3 as a warning 

system, D3 still recalls 93% of the proven interactions taken from Micromedex. A 

similar expectation could be made for other pharmacovigilance systems. It should 

be kept in mind that the interactions tested from Micromedex were not part of the 

D3 knowledge base and therefore acted as an independent test in the truest sense.  

 

Test Case 4: Comparison of D3 to Combined List for Five Drugs 

 Unlike Test Case 3, which focused only on the severe DDIs for the five 

drugs, in this test case we investigate a larger and more complete list of all DDIs for 

the five previously mentioned drugs. From Micromedex, we retrieve 5 lists of 

interactions for warfarin, phenytoin, digoxin, simvastatin and ketoconazole. We 

then combine these lists into one unique list and remove the overlap with the D3 
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DDI list, obtaining 600 DDIs in all. The likelihood of each DDI is computed using 

the Chapter V- V.2.2 Phase 2: D3 Inferential Probabilistic Model. Figure 7.5 

shows the benchmark graph for D3 with Micromedex.  

 

 

 

 

 

 

 

 

 
 

 

Similar to the previous benchmark graphs, Figure 7.5 illustrates the 

excellent performance of D3 across the examined discrimination thresholds. At the 

previously mentioned 0.3 threshold, D3 identifies over 72% of the DDIs identified by 

Micromedex. As the threshold increases, D3’s true positive rate declines in a 

manner similar to that seen with Micromedex.    

 
Test Case 5: Comparison of D3 to Public and Commercial 

Pharmacovigilance Systems   
 

 The main aim of this test case is to combine Test Case 1: Public and Test 

Case 4: Commercial to assess the comparable performance of D3 for public and 
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Figure 7.5: Comparison of D3 to a large sample from Micromedex 
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commercial systems at each threshold. Because D3 was constructed from data 

drawn from public systems, it is necessary to independently validate its 

performance. Such validation would mean that D3 should perform comparably to 

commercial systems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The benchmark graph, Figure 7.6, shows that D3 demonstrates a similar 

characteristic for its public knowledge sources and Micromedex, a respected, 

commercial knowledge source. In contrast, the application of D3 to several existing 

pharmacovigilance systems showed the apparent, drastic over-reporting of the 

majority of these systems even for a conservative (low) threshold. Only DIKB 

performed with a comparable characteristic to D3 and Micromedex. In fact, DIKB 

reports only clinically relevant, evidence-based interactions. At a low threshold of 
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Figure 7.6: Comparison of D3 to public and commercial pharmacovigilance systems  
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0.15 (true positive rate (recall rate) = 99% for D3 public sources), D3 corroborates 

98% of the drug interactions identified by Micromedex. Apart from DIKB, at a 0.25 

threshold, the other systems demonstrate at least a 30% over-reporting rate, 

indicating that many of the DDIs they report are clinically unlikely. On the other 

hand, with a high threshold 0.5 (true positive rate (recall rate) = 70% for D3 public 

sources), D3 corroborates 35% of Micromedex-identified DDIs whereas D3 

corroborates 13% or less of the DDIs reported by all of the studied public 

pharmacovigilance systems. The marked difference in the characteristic of D3 for its 

public sources and Micromedex compared to the more liberal public sources shows 

the discrimination-power of D3 and the over-reporting of these public sources.  

 
VII.2.c Evaluation of the Mechanistic Inference Method  
 

 Because there is no gold-standard source for drug interaction mechanistic 

information, in this section we design the evaluation methodology to consider two 

different metabolic interaction mechanisms: inhibition and induction. To do this, we 

manually construct two different test cases, one for metabolism inhibition and 

another for the metabolism induction. For both cases we choose classical examples 

of a strong CYP enzyme inhibitor ketoconazole and a strong CYP enzyme inducer 

rifampin (Böhmer, Drollmann, Gleiter, & Nave, 2008; Rae, Johnson, Lippman, & 

Flockhart, 2001). After that, we check Micromedex for both drugs’ list of 

interactions and retrieve only drugs that interact because of metabolism reaction. 

The result is 20 induction interactions and 21 inhibition interactions. Then, we take 

each list and run the VI.3 Utilizing Data Resources to Enhance Descriptions 
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of DDI Mechanisms method from Chapter VI. Figure 7.7 shows the induction 

inference while Figure 7.8 shows the inhibition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: Performance of D3 in annotating DDIs with induction 
mechanism  
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Figure 7.9: Performance of D3 in annotating DDIs with inhibition 
mechanism  
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Figure 7.8: Performance of D3 in annotating DDIs with 
inhibition mechanism  
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Figures 7.8 and 7.9 show that D3 is able to predict the right mechanism of 

interaction with an 85% success rate. A corollary to this is that we can also use the 

same system to provide putative explanations for reported interactions, the 

majority of which are reported without an underlying mechanism.  

 
VII.3 Conclusion 
 

In this chapter, we integrated all the methods, algorithms and systems that 

were proposed in this thesis. This integration allowed us to evaluate the 

effectiveness of the D3 system in identifying drug interactions by way of comparison 

with other public and commercial pharmacovigilance services. The reported results 

from five test cases showed that our D3 system was able to provide novel and 

unique pharmacovigilance services by demonstrating: (1) increased performance (a 

higher true positive rate) when compared to publicly available pharmacovigilance 

systems when analyzing a complete list of unique drug interactions contained 

within each system; (2) performance similar to Micromedex when investigating 

interactions associated with the widely-used drug, atorvastatin; (3) a true positive 

recall rate of approximately 93% when identifying severe, clinically significant 

interactions involving five commonly used medications as identified by Micromedex; 

(4) a true positive recall rate of 72% relative to Micromedex when identifying all 

interactions with the five medications from the previous test case; and, finally, (5) 

superior performance relative to all public pharmacovigilance systems in recalling 

all interactions identified with the same five medications by Micromedex.  
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The strong performance of D3 in these test cases is attributed to specific 

advantages in the capacity of our system relative to other pharmacovigilance 

systems.  In particular, the D3 system helped to assist in determining the clinical 

importance of DDIs and to provide the most likely mechanisms of interaction. These 

abilities are due to the capacity of D3 to consider not only the biomedical 

similarities between medications, but also to identify interaction profiles between 

DDIs that are used to improve the precision of recommendations. The evaluation of 

D3 against different pharmacovigilance systems using different interaction lists 

shows that our proposed system is generic enough to be applied in different 

applications. It also demonstrates the diverse drug dimensions that are utilized in 

our system to provide pharmacovigilance services. In addition, the proposed system 

can be used to evaluate current pharmacovigilance systems with regards to 

assessing the clinical relevance of their reported DDIs.  Finally, D3 is also designed 

to add mechanistic information to enhance both clinical and non-clinical 

pharmacovigilance systems.  

 
 
 
 
 
 
 
 
 

 



192 

 
 
 
 
 
 
 
 

CHAPTER VIII 
 
 

OVERALL CONCLUSIONS 
 

 
 

Aiming to address the limitations in current pharmacovigilance systems, this 

thesis focuses on the process of aggregating information from drug-drug interaction 

(DDI) knowledge sources to perform inference-based predictions for statistical 

identification, validation, and classification of DDIs. The novelty of this work lies in 

the systematic approach in which DDI information is integrated into a 

comprehensive knowledge base and employed to build integrated data model from 

existing biomedical knowledge sources, automate validation of clinical relevance, 

automate identification of interaction mechanism(s), and evaluate known 

pharmacovigilance systems. In this chapter, we first summarize the demonstrated 

capacity of D3 as evidenced in multiple test cases throughout this thesis.  Next, we 

discuss the achieved contributions to the field relative to other approaches present 

in the literature. Finally, we discuss the limitations of the D3 system and consider 

future work. 

 
 
 
 

INTRODUCTION 
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VIII.1 Summary and Achieved Contributions 

 

VIII.1.a Constructing the Drug-Drug Interaction Discovery and 
Demystification Knowledge Base  

 
One of the main challenges in current pharmacovigilance systems is the 

number of disparate, disconnected sources of information currently available for 

DDI discovery. Integrating these sources into a comprehensive resource that can aid 

in accurate and early discovery of DDIs continues to challenge researchers. Many 

pharmacovigilance studies do not address this challenge as they focus only on a 

single pharmacological aspect of potential DDIs (such as a single mechanism of 

interaction), but do not account for the multitude of factors that contribute to DDIs.  

A complete analysis, therefore, requires integration of drug information from 

multiple sources. A number of studies have attempted to develop sophisticated 

systems that are able to model and integrate DDI information (R. D. Boyce et al., 

2007; Brochhausen et al., 2014). However, such studies face many challenges in 

accurately discovering DDIs, as they do not address an essential aspect of DDI, that 

interactions may occur as a result of two or more interactive mechanisms. Another 

common limitation in these studies is that they do not account for the many 

different types of interactive mechanisms. Therefore, these systems suffer from 

incompleteness and low performance when providing pharmacovigilance services 

because they do not adequately recognize the many different mechanisms of 

interaction that contribute to DDIs.  
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To address these limitations, this thesis proposes a novel knowledge base to 

model drug information that encompasses multiple interaction mechanisms. This 

knowledge base characterizes DDIs across nine mechanisms of interaction that we 

propose for improving the effectiveness of DDI study. Unlike other approaches in 

the literature, this knowledge base is able to model DDIs at multiple interaction 

levels. In particular, the contributions of our work can be summarized as follows: 

 

• We develop a novel knowledge base that models DDI information across nine 

interaction levels: pharmacokinetic (interactions involving metabolism, 

transporters, and protein binding), pharmacodynamic (additive and 

competitive interactions), pharmacogenetic (single nucleotide polymorphisms 

that influence drug exposure), and multi-pathway (interactions involving 

more than one of the aforementioned pathways) interaction levels. This 

knowledge base takes advantage of the available biomedical knowledge 

resources to increase the accuracy of DDI identification. 

• DDI information is represented as semantic networks, which are richer and 

more precise than traditional integration approaches. Such representation 

allows us to better understand DDIs as well as to exploit our improved 

semantic knowledge to provide better pharmacovigilance services.  

• The proposed knowledge base is generic and flexible so it can be used in 

multiple domains.  
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VIII.1.b Building the D3 System 
 
A primary shortcoming of most current pharmacovigilance systems is the 

inability to integrate drug information from multiple sources to identify and 

comprehensively characterize DDIs. Ultimately, this limitation impacts clinical 

practice negatively through suboptimal recommendations provided by 

pharmacovigilance-supported decision assistance tools. This shortcoming occurs for 

two important reasons: (1) the single-focus approach of current pharmacovigilance 

systems and (2) the overall lack of explanation regarding DDI mechanisms. This 

thesis seeks to overcome these limitations by proposing a new Semantic Web-based 

system to discover and explain DDIs based on information from 29 sources. In the 

D3 pharmacovigilance system, the hidden semantic knowledge and relationships 

between DDIs are discovered using two novel inferential models to infer DDIs and 

their mechanisms of interaction. The discovered knowledge is then utilized to 

provide a pharmacovigilance service that is capable of reasoning and can adapt 

itself to the different interaction types without the need of human intervention. The 

contributions of this system can be summarized as follows: 

 

• Unlike other works that are limited to specific types of interaction, we 

develop a model to identify a DDI across nine interaction mechanisms. 

Such a model offers the benefits of enhancing the processes of discovering, 

inferring and gaining a better understanding of uncommon mechanisms of 

interaction, which results in a better pharmacovigilance system.  
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• We develop a novel query-based model to support DDI identification using 

information about different drugs from 15 DDI resources. In comparison 

to current systems described in the literature, our developed model is able 

to take advantage of richer DDI information to provide more accurate 

validation.  

• We propose a mechanism to discover and exploit the hidden semantic 

knowledge from drug interaction profiles. Unlike many works in the 

literature which are incapable of inferring and exploiting hidden semantic 

information, our mechanism infers the semantic information between 

DDIs in biomedical resources and employs it to drive a better 

understanding of drug interactions, which can potentially improve the 

pharmacovigilance services provided to clinicians. 

• We develop a novel probabilistic inference model to assist in determining 

the clinical relevance of DDIs. To our knowledge, none of the current 

systems in the literature have used probabilistic modeling in this way. 

• We introduce a novel model for ordering the mechanisms of DDIs to 

provide their most likely causes. This approach is distinct from many 

other systems in the literature, which provide information for only one 

type of interaction mechanism.  
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VIII.1.c Exploiting the D3 System 
 
As DDIs may have different and complex pathways of interaction, it is 

becoming increasingly important to consider all possible data when studying them. 

Most current pharmacovigilance systems collect only metabolic-based mechanistic 

information without considering any other mechanistic data. Such systems neglect 

the fact that DDIs may occur due to different mechanisms of interaction. The 

continued growth of drug data, such as information detailing therapeutic, chemical, 

genomic and phenotypic considerations in drug therapy, also increases the ability to 

study DDIs at an intricate level. Therefore, considering these types of data is 

becoming increasingly important when performing comprehensive 

pharmacovigilance services. 

Attempts to incorporate this data have been made by a number of studies 

(Cheng & Zhao, 2014, p. –; Duke et al., 2012; Vilar et al., 2015). However, the main 

problem in these works is a lack of flexibility in modeling, integrating and 

exploiting DDI information for use in pharmacovigilance systems in a generic 

fashion. For example, some studies lack extensibility as they are limited to specific 

techniques (Percha & Altman, 2013). Another important limitation in predicting 

DDIs is assessing the clinical relevance so as to provide pharmacovigilance services 

that benefit clinical practice in an effective way. For instance, one study voiced the 

need for a standard characterization of clinical relevance due to the vast number of 

theoretical, clinically unimportant DDIs reported by many systems (Conde-Estévez 

et al., 2015). Overall, there is general lack of support for elucidating the mechanistic 
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reasons behind DDIs.  

In this thesis, we present a novel pharmacovigilance system to address these 

limitations. We define query and probabilistic models to discover, learn, adapt and 

exploit DDIs. Unlike other works in the literature, this system is generic enough to 

consider diverse DDI dimensions, and to be applied in diverse domains of 

application. Another distinctive feature of this system is its ability to model and 

incorporate 15 DDI- and 14 biomedical sources to provide effective 

pharmacovigilance services. We incorporate these sources because not all DDI 

information is available in one single source, but, rather, information is scattered in 

different places and formats. Therefore, we incorporate those sources to provide not 

just clinically relevant DDIs but also to provide the most likely mechanisms of 

interaction for each DDI. To the best of our knowledge, this is the first work that 

attempts to model, exploit and incorporate all of these sources in a generic fashion 

to support the identification of highly clinically relevant DDIs associated with their 

most likely mechanisms of interaction. The contributions of this work can be 

summarized as follows: 

• Many pharmacovigilance systems consider just specific types of interaction. 

In contrast, we proposed a method to study interaction across nine 

mechanistic levels. In this proposal, DDI profiles, which model all drug 

biomedical and interaction information, have a clear mechanistic distinction.  

• Many pharmacovigilance systems do not take into account all of the details 

present within drug information from existing sources for proven DDIs. In 
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this thesis, the D3 model is built to incorporate and integrate information 

from resources about proven DDIs. 

• Many pharmacovigilance systems are limited to specific pathways of 

interaction (Preissner et al., 2010). In contrast, the proposed D3 system 

considers diverse mechanistic information, and is also able to adopt new 

specific mechanistic dimensions based on the information provided. 

• As DDI resources may identify different interaction lists, we propose a novel 

mechanism to combine and consider the most clinically relevant DDI in each 

resource. Unlike systems that do not assess the clinical importance of 

identified DDIs, D3 uses reliable DDIs that are extracted from clinical and 

literature-based resources to identify clinically significant DDIs (Tatonetti, 

Ye, et al., 2012b; R. Zhang et al., 2014b). In this case, we can evaluate 

existing DDI systems to identify their non-clinical DDIs (false positive rate). 

• Many pharmacovigilance systems do not take into account rich mechanistic 

information with regards to DDIs. In contrast, in this thesis, we possess the 

capability to discover and exploit hidden mechanistic information from 

multiple diverse text formats, data schemas, and controlled vocabularies, and 

we have the ability to interlink this information with diverse datasets 

extracted from the biomedical domain to improve the quality of 

pharmacovigilance recommendations. 

• Two major and distinctive contributions in this thesis are: (1) developing 

novel techniques to evaluate current non-clinical DDI systems to determine 
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the clinical relevance of proposed DDIs, and (2) utilizing data resources to 

enhance descriptions of DDI mechanisms. 

 

VIII.1.d Development of a Comprehensive, Mechanism-based DDI 
Resource   

 
Despite the fact that DDIs constitute a major cause of adverse drug events 

(ADEs), there remains no complete and comprehensive DDI resource. Moreover, 

there is also no single resource that is widely utilized to describe DDI mechanisms. 

These two challenges have created a vast need for a new resource in which only 

clinically relevant DDIs are considered along with their mechanisms of interaction. 

In this thesis, we present a novel pharmacovigilance DDI resource that 

contains clinically significant DDIs associated with their mechanisms of interaction. 

We gather and incorporate DDI information from 15 publically available resources.  

We then normalize the information, filter it based on its clinical impact, and 

represent predictions in a formal and semantic representation. The contributions of 

this work in this area can be summarized as follows: 

• We enhance current DDI resources by providing the most likely 

mechanisms of interaction.  

• We build the D3 resource by extracting the most highly clinically 

impactful DDIs from five non-clinical DDI resources. 

• We normalize data with UMLS and semantic representation.  

• We record the original source of DDI information. 
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• We consider the external utility when developing our DDI resource to 

provide effective information for use in a wide range of studies. 

 
 

VIII.1.e Evaluation of the D3 System    

The process of evaluating pharmacovigilance systems is known to be difficult 

and expensive (Abarca et al., 2006). This truth is attributed to a number of factors, 

including the enormous number of drug interaction pairs through which each 

pharmacovigilance system must be evaluated to gain a true assessment of its DDI 

identification ability. Moreover, some systems are specialized to report only certain 

type of DDIs (e.g., metabolic DDIs), while other pharmacovigilance systems focus on 

more than one DDI interaction type. Therefore, each system requires different 

evaluation strategies and metrics. In addition, mechanistic information on drug 

interactions is rarely found in pharmacovigilance systems and the available 

information is often limited to one mechanism of interaction. Other mechanistic 

information is generally scattered across disparate literature sources and requires 

tedious manual work for effective extraction.  

In this thesis, we implement two strategies to evaluate our work. First, we 

evaluate each model in our proposed system in isolation in order to probe different 

test cases and conditions that can affect its inferences. Then, we evaluate the 

complete system with both models to gain an understanding of the overall 

performance of our system in comparison to other works in the literature. 

For the isolated evaluations, we use different methodologies, including 
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literature search, Fisher’s exact test, and precision-recall evaluation strategies. For 

the literature, diverse scientific journals and articles are examined to validate 

different results and experiments to find the correct answers. For the Fisher’s exact 

test and the precision-recall, we conduct statistical analyses to evaluate existing 

DDI resources, which allows us to gain a better understanding of how to design an 

effective pharmacovigilance system. Such experiments allow us to collect more 

reliable results as well as draw direct comparisons between different systems in the 

literature. The results of all the evaluations are encouraging, as they provide 

positive results, which support the validity of the proposed system. However, we 

found that there is a need to evaluate all of these models when they are integrated 

in one system in a real clinical environment in order to draw clear conclusions on 

the performance of our proposed system in comparison to other works in the 

literature. For this purpose, we developed three case studies that integrate all the 

proposed methods and models: (1) testing DDIs contained within the D3 knowledge 

base, (2) testing DDIs that are new to the system, and (3) testing induction and 

inhibition of metabolic enzyme mechanisms of interaction. This evaluation 

methodology allowed us to analyze the performance of different systems. The 

results obtained from this evaluation confirmed our hypotheses in this thesis, that 

our D3 system of identification, validation, and classification can provide significant 

benefits in improving pharmacovigilance services. The D3 system demonstrates the 

ability to identify only those DDIs that are highly clinically relevant. We also tested 

an external set of DDIs, which showed that clinicians who use our D3 system can 
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validate DDIs with a high level of accuracy. The contributions of these evaluations 

can be summarized as follows: 

• In comparison to other works in the literature (DIKB, Twosides, 

Drugbank, SemMed, and Keeg), we provide more insights and a more 

accurate list of DDIs. 

• The isolated evaluations of all the aspects of our system enable us to test 

different settings and inferences to find the effectiveness of each model, as 

well as to provide a direct comparison with other similar systems 

proposed in the literature. 

• In comparison of our three test cases, D3 performed similarly to 

Micromedex, a respected commercial knowledge source, averaging an 92% 

detection rate for Micromedex-identified interactions. 

•  In comparing D3 to five public pharmacovigilance systems based on 

Micromedex-identified interactions, our system demonstrates a 

performance that is superior to all public pharmacovigilance systems. 

• The diverse evaluations that are presented in this thesis show that our 

system is generic enough to be applied in a diverse domain of applications. 

VIII.2 Discussion and Future Work 

In this thesis, we have proposed different models, algorithms and techniques 

to model DDIs and their mechanisms in order to provide improved 

pharmacovigilance services. These models, algorithms and techniques cover a wide 
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range of areas including learning and adapting DDI profiles, developing a multi-

pathway discovery model, creating a process of semantic inference and exploitation, 

and, finally, characterization of DDIs in order to generate recommendations. 

Although a wide range of problems have been addressed in this thesis, further 

improvements of the proposed system as well as incorporation of new information 

sources will be pursued. Now, we discuss some of the limitations of our work and 

provide possible solutions that may further improve our system. 

Our first limitation is that the effectiveness of the techniques that we have 

proposed to infer and exploit semantic information from DDI profiles in this thesis 

depends heavily on the richness and the quality of the developed D3 knowledge 

base. Some DDI information in this thesis is transformed by different projects, such 

as Bio2rdf (Callahan, Cruz-Toledo, & Dumontier, 2013). That is, we have relied on 

the transformation quality for some original sources from the Bio2RDF website, 

which has been shown to have a high quality of transformation. However, in the 

future we plan to perform our own conversion of original sources to avoid any 

concerns about the quality and completeness the of Bio2rdf transformation process. 

Another limitation of this thesis is that the system infers potential clinically 

relevant interactions, but it is not able to predict the seriousness of those 

interactions. In fact, determining the seriousness of any interaction based on 

mechanistic information to determine how the identified interactions may change 

the concentrations of the interacting drugs is a challenging task due to limited 

experimental data. Therefore, all D3 findings should be considered speculative until 
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clinically verified. 

Another source of weakness in this thesis is associated with the computations 

of biomedical similarities between DDIs. When building the biomedical features 

similarity matrix for drug comparison, currently D3 is designed to treat all nine 

biomedical features similarly by assigning an equal weight. This was done so as to 

avoid arbitrary bias across the field of drugs being compared. Equal weighting 

implies that all biomedical features have an equal level of importance when 

determining similarity. In reality, this is not necessarily true. The problem is the 

statistical failure of any particular feature can be compensated for by a less-

relevant similarity in the interaction being considered. Therefore, this may create a 

bias in many cases towards features whose similarity is far less relevant than 

others. This can be addressed by correlating individual biomedical feature 

similarity to actual rates of DDI occurrence for various classes of DDIs. Here we 

propose one way to cope with this limitation using logistic regression to pre-assign 

weight values to biomedical features. The main goal of the D3 biomedical similarity 

matrix is to statistically identify how two drugs are similar by comparing 9 different 

biomedical features. Moreover, the assumption is that if two pairs of drugs are 

similar to a degree (using predefined thresholds) and one of those pairs has been 

proven to interact, there is clinical relevance for a reaction predication within the 

other pair. By using logistic regression we can identify what essential biomedical 

features to consider for the comparison between two drugs. Logistic regression can 

be used here because we have a dichotomous (binary) variable (if a biomedical 
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feature is similar enough). In case of a dichotomous variable, our aim is to 

understand the relationship between the explanatory variables (presence or absence 

of a biomedical feature) and the dependent variables (proven DDI occurrence).  

However, not all interactions may occur simply due to the presence of a particular 

similarity, making an overall similarity-dissimilarity-irrelevance profile valuable 

for understanding classes of interactions. The explanatory variables that D3 uses to 

determine the similarity score of a clinically relevant DDI are: (1) indications, (2) 

side effects, (3) SNPs (4) mechanisms of action, (5) carriers, (6) enzymes, (7) 

transporters, (8) targets, and (9) physiologic features. Each of these variables has 

application in combination with others to particular interactions. Determining trust 

weights for them could be made more reliable by applying a priority order or filter. 

This would, in effect, lead to what may be considered understanding “patterns” of 

similarity. That would allow adjustment of the weights based on closeness to a 

pattern.  

Accomplishing this would require isolating drug interactions that share 

strong characteristic similarities of features to classify them. Building these 

samples would allow the prediction of classes and potentially their points of overlap. 

Regression could be performed on these class samples to determine appropriate 

levels of similarity based on likelihood of interaction occurrence, which could then 

be used to provide proper weighting for the feature similarity. 
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Another weakness of this study is that the system utilizes a patch update to 

revise the knowledge base. This process is slow and time consuming. In the future, 

we are planning to perform an incremental update model wherein we only change 

one component of the knowledge base at a time, rather than updating the whole 

system at once.  Ideally, dynamically accessed information with real-time 

processing would be preferable to take into account the most recent developments 

per adequate vetting. 

Two main difficulties have been continually documented throughout this 

thesis: (1) the non-existence of a resource for negative DDIs, which are DDIs that 

have no documented evidence for interaction on compendia and medical literature 

contained in MEDLINE(J. Huang et al., 2013)  and (2) the incomplete and 

inconsistent documentation of mechanistic information within the field. As a result, 

when implementing and evaluating our work, we found it difficult to generate a 

suitable set of DDIs as a reference for validation. Similarly, there is no 

comprehensive mechanistic information resource. We overcame these limitations by 

manually searching the literature to generate DDI lists for reference and to identify 

sufficient mechanistic information.  

Finally, when our system identified a new DDI with a high likelihood of 

interaction and a high potential for clinically relevant implications, the predicted 

interaction was still considered a false positive if there was no information in either 

the literature or compendia to validate the interaction. However, we are planning to 

integrate different patient health record resources as they often contain evidence for 
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potential DDIs that are not well characterized in other sources (Pathak et al., 2013).  

In this way, we can expand our search for information that confirms novel DDI 

pairs predicted by our system.   
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APPENDIX A 

 
MULTI-PATHWAY INTERACTION VALIDATION 

  
 
 

In this appendix, we show the validation process for irinotecan’s multi-

pathway findings from Chapter IV. Three different tables are illustrated including: 

(1) interactions found in compendia, (2) interactions found in literature and on 

clinical websites, and (3) potential interactions. 

 

Table A1: irinotecan interactions found in compendia  

Drug Compendia 
Mechanisms 

of interaction 
Amiodarone Lexi-Comp – Medscape- PDDIs P-gp 

Transporter 
Carvedilol Lexi-Comp P-gp 

Transporter 
Citalopram PDDIs - Micromedex P-gp 

Transporter 
Cyclosporine Medscape P-gp 

Transporter 
Dasatinib Lexi-Comp - Drugs.com P-gp 

Transporter 
Gefitinib PDDIs P-gp 

Transporter 
Itraconazole Lexi-Comp – Medscape- PDDIs P-gp 

Transporter 
Loperamide PDDIs P-gp 

Transporter 
Mefloquine Lexi-Comp P-gp 

Transporter 

INTRODUCTION 
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Morphine PDDIs P-gp 

Transporter 
Propranolol Lexi-Comp - Drugs.com P-gp 

Transporter 
Quinidine Lexi-Comp - Medscape P-gp 

Transporter 
Tacrolimus Lexi-Comp - Drugs.com - 

Medscape 
P-gp 
Transporter 

Tamoxifen Lexi-Comp P-gp 
Transporter 

Trazodone Medscape P-gp 
Transporter  

Vinblastine Lexi-Comp P-gp 
Transporter 

Boceprevir Lexi-Comp CYP3A4 
Metabolism  

Carbamazepine PDDIs - Lexi-Comp - Drugs.com – 
Micromedex 

CYP3A4 
Metabolism  

Cimetidine PDDIs - Lexi-Comp CYP3A4 
Metabolism  

Clotrimazole Lexi-Comp CYP3A4 
Metabolism  

Clozapine Lexi-Comp- PDDIs CYP3A4 
Metabolism  

Desipramine Lexi-Comp CYP3A4 
Metabolism  

Dexamethasone PDDIs - Lexi-Comp – Micromedex CYP3A4 
Metabolism  

Diazepam PDDIs CYP3A4 
Metabolism  

Docetaxel PDDIs CYP3A4 
Metabolism  

Haloperidol Lexi-Comp CYP3A4 
Metabolism  

Imatinib PDDIs - Lexi-Comp CYP3A4 
Metabolism  

Ketoconazole Lexi-Comp - Drugs.com – 
Micromedex – Medscape- PDDIs 

CYP3A4 
Metabolism  

Methylprednisolon
e 

PDDIs CYP3A4 
Metabolism  

Mifepristone Lexi-Comp - Drugs.com - 
Medscape 

CYP3A4 
Metabolism  

Nelfinavir Lexi-Comp- PDDIs CYP3A4 
Metabolism  
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Olanzapine PDDIs CYP3A4 

Metabolism  
Pazopanib Drugs.com- PDDIs CYP3A4 

Metabolism  
Phenobarbital Lexi-Comp - Drugs.com – 

Micromedex- PDDIs 
CYP3A4 
Metabolism  

Phenytoin Lexi-Comp - NDF-RT – 
Micromedex- PDDIs  

CYP3A4 
Metabolism  

Prednisolone PDDIs CYP3A4 
Metabolism  

Pravastatin Lexi-Comp - Micromedex CYP3A4 
Metabolism  

Prednisolone PDDIs CYP3A4 
Metabolism  

Saquinavir Lexi-Comp- PDDIs CYP3A4 
Metabolism  

Sertraline PDDIs - Lexi-Comp CYP3A4 
Metabolism  

Telaprevir Lexi-Comp - Drugs.com CYP3A4 
Metabolism  

Topotecan PDDIs - Drugs.com CYP3A4 
Metabolism  

Acetaminophen PDDIs P-gp & CYP3A4 
Amlodipine PDDIs P-gp & CYP3A4 
Amprenavir PDDIs P-gp & CYP3A4 
Astemizole PDDIs P-gp & CYP3A4 
Atorvastatin Lexi-Comp - Medscape P-gp & CYP3A4 
Clarithromycin Lexi-Comp – Medscape- PDDIs P-gp & CYP3A4 
Clopidogrel PDDIs - Lexi-Comp P-gp & CYP3A4 
Cyclophosphamide PDDIs P-gp & CYP3A4 
Diltiazem PDDIs - Lexi-Comp P-gp & CYP3A4 
Doxorubicin PDDIs - Lexi-Comp P-gp & CYP3A4 
Fentanyl PDDIs P-gp & CYP3A4 
Hydrocortisone PDDIs P-gp & CYP3A4 
Ivacaftor Lexi-Comp - Drugs.com - 

Medscape 
P-gp & CYP3A4 

Indinavir Lexi-Comp – Medscape- PDDIs P-gp & CYP3A4 
Lapatinib Lexi-Comp - Drugs.com – 

Medscape- PDDIs 
P-gp & CYP3A4 

Lidocaine PDDIs P-gp & CYP3A4 
Losartan PDDIs - Drugs.com P-gp & CYP3A4 
Levofloxacin Drugs.com P-gp & CYP3A4 
Midazolam PDDIs P-gp & CYP3A4 
Nilotnib Lexi-Comp - Medscape P-gp & CYP3A4 
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Nefazodone Lexi-Comp – Medscape- PDDIs P-gp & CYP3A4 
Nicardipine Lexi-Comp - Medscape P-gp & CYP3A4 
Nifedipine PDDIs P-gp & CYP3A4 
Omeprazole PDDIs P-gp & CYP3A4 
Paclitaxel PDDIs P-gp & CYP3A4 
Pantoprazole PDDIs P-gp & CYP3A4 
Prednisone PDDIs P-gp & CYP3A4 
Sorafenib Drugs.com - Medscape P-gp & CYP3A4 
Ranitidine PDDIs P-gp & CYP3A4 
Rifampin Lexi-Comp – Micromedex - 

Medscape 
P-gp & CYP3A4 

Ritonavir Lexi-Comp -Medscape- PDDIs P-gp & CYP3A4 
Simvastatin PDDIs P-gp & CYP3A4 
Sirolimus Drugs.com P-gp & CYP3A4 
Venlafaxine PDDIs P-gp & CYP3A4 
Verapamil PDDIs - Lexi-Comp P-gp & CYP3A4 
Vincristine PDDIs P-gp & CYP3A4 
80 true positives: 16 could interact at the P-gp transporter level, 26 could 
interact at the CYP3A4 metabolism level, and 38 could interact at the 
transporter and metabolism levels  

 
Table A2: irinotecan interactions found in literature and clinical websites 

Drug 
Literature and clinical 

websites  
Mechanisms of 

Interaction 

Testosterone http://www.ncbi.nlm.nih.gov/pub
med/11901092 

P-gp Transporter 

Trimethoprim http://www.ncbi.nlm.nih.gov/pub
med/9458091 

P-gp Transporter 

Nitrendipine http://www.ncbi.nlm.nih.gov/pub
med/12019202 

P-gp & CYP3A4 

Fluoxetine http://www.ncbi.nlm.nih.gov/pub
med/21395523 

P-gp & CYP3A4 

Fluvoxamine http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2949913 

P-gp & CYP3A4 

Lovastatin http://meeting.ascopubs.org/cgi/co
ntent/abstract/28/15_suppl/3020 

P-gp & CYP3A4 

Methadone http://www.ncbi.nlm.nih.gov/pub
med/15260917 

P-gp & CYP3A4 

Probenecid http://www.ncbi.nlm.nih.gov/pub
med/15618649 

P-gp & CYP3A4 

Alfentanil 

http://www.fda.gov/drugs/develop
mentapprovalprocess/developmen
tresources/druginteractionslabelin
g/ucm093664.htm 

P-gp & CYP3A4 



243 

 
Clobazam https://online.epocrates.com/u/10a

1494/irinotecan 
Other 

Erlotinib http://www.ncbi.nlm.nih.gov/pub
med/15475439 

Other 

Axitinib http://www.ncbi.nlm.nih.gov/pub
med/21390185 

Other 

12 interactions with irinotecan from literature and other data sources. 2 
could interact at the P-gp transporter level, 7 could interact at the 
transporter and CYP3A4 metabolism levels, and 3 for other reasons 

 
Table A3: irinotecan potential interactions  

Drug Mechanisms of Interaction 

Imipramine P-gp Transporter 
Amitriptyline P-gp Transporter 
Dextromethorphan P-gp Transporter 
Doxepin P-gp Transporter 
Buspirone P-gp Transporter 
Ticagrelor P-gp Transporter 
Clomipramine P-gp Transporter 
Propafenone P-gp Transporter 
Brentuximab vedotin CYP3A4 Metabolism 
Risperidone CYP3A4 Metabolism 
Nisoldipine P-gp & CYP3A4 
Caffeine P-gp & CYP3A4 
Pimozide P-gp & CYP3A4 
Bromocriptine P-gp & CYP3A4 
Colchicine P-gp & CYP3A4 
Daunorubicin P-gp & CYP3A4 
Felodipine P-gp & CYP3A4 
Lansoprazole P-gp & CYP3A4 
Mitoxantrone P-gp & CYP3A4 
Ethinyl estradiol Other 
Domperidone Other 
Zidovudine Other 
24 potential interactions with irinotecan were found. 9 could interact at the P-
gp transporter level, 2 could interact at the CYP3A4 metabolism level, 9 could 
interact at the transporter and metabolism levels, and 4 for other reasons 
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APPENDIX B 

D3 INFERENTIAL QUERY MODEL INFERENCES  

 
In this appendix, we aim to show how the D3 query-based model that was 

presented in Chapter V works. As an illustration for the proposed query-based 

model, we consider nine inferences for discovering and explaining a DDI. That is, 

the D3 inferential query-based model works by querying the D3 knowledge base 

looking for an interaction between two drugs. The system then returns a 

determination of whether there is a reported interaction or not, along with the 

common pathways it finds to account for the interactions. Here we provide an 

example of each inference where the D3 query-based model was capable of 

identifying the correct interactions based on predefined semantic inferences. We 

confirm our results by providing a clinical citation from the literature confirming 

the interaction. The target mechanism is colored in blue. 
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1. Protein-binding interaction: 

 
Drug A:  Warfarin 
Drug B:  Sulfamethoxazole 
Result:  Reduce the Warfarin concentrations 
Clinical Evidence: http://www.ncbi.nlm.nih.gov/pubmed/7053283 
D3 output: 

 
Starting D3 Inferential Query Model 
Check the interaction between [Warfarin] and [Sulfamethoxazole] 
 
Check if Drugs are in UMLS database 
First Drug CUI is: C0043031 
Second Drug CUI is: C0038689 
 
Check if Drugs are in D3 knowledge base 
[Warfarin] and [Sulfamethoxazole] are in the D3 knowledge base 
 
DDI sources report DDI: 
[NDF-RT, Drugbank, CredibleMeds, OSCAR] 
 
**** This DDI is proven **** 
**** Mechanisms contribute for DDI **** 
 
Pharmacogenetic Mechanism  
Assertion facts are collected from pharmgkb the pharmacogenomics 
knowledge base 
[rs1057910] 
 
Protein-Binding Mechanism  
Assertion facts are collected from Drugbank database 
[There is possible interaction due to high protein binding affinity by 
Warfarin] 
 
Additive Mechanism 
Assertion facts are collected from The National Drug File - Reference 
Terminology (NDF-RT) and NCI Thesaurus - National Institutes of Health 
**** No Additive Mechanism is found  **** 
 
Competition Mechanism 
Assertion facts are collected from Gene Ontology (GO), NCI Thesaurus - 
National Institutes of Health and National Center for Biotechnology 
Information (NCBI) 
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**** No Competition Mechanism is found  **** 
 
Metabolism inhibition Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene, CYP2C9 gene, CYP2C8 gene] 
Both drugs can cause the interaction Warfarin AND Sulfamethoxazole 
 
Metabolism induction Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Metabolism induction Mechanism is found **** 
 
Transporter inhibition Mechanism 
Assertion facts are collected from DrugBank  
**** No Transporter inhibition Mechanism is found **** 
 
Transporter induction Mechanism 
Assertion facts are collected from DrugBank  
**** No Transporter induction Mechanism is found **** 
 
Multi-pathways Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Multi-pathways Mechanism is found **** 
 
 
 
 

2. Metabolism induction-based interaction: 

 
Drug A:  Rivaroxaban 
Drug B:  Rifampin 
Result: Increase the risk of stroke 
Clinical Evidence: http://www.ncbi.nlm.nih.gov/pubmed/23136913 
D3 output: 

 
Starting D3 Inferential Query Model 
 
Check the interaction between [Rivaroxaban] and [Rifampin] 
 
Check if Drugs are in UMLS database 
First Drug CUI is: C1739768 
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Second Drug CUI is: C0035608 
 
Check if Drugs are in D3 knowledge base 
[Rivaroxaban] and [Rifampin] are in the D3 knowledge base 
 
DDI sources report DDI: 
[NDF-RT, Kegg] 
 
**** This DDI is proven **** 
**** Mechanisms contribute for DDI **** 
 
Pharmacogenetic Mechanism  
Assertion facts are collected from pharmgkb the pharmacogenomics 
knowledge base 
**** No Pharmacogenetic Mechanism is found  **** 
 
Protein-Binding Mechanism  
Assertion facts are collected from Drugbank database 
[There is possible interaction due to high protein binding affinity by 
Rivaroxaban] 
 
Additive Mechanism 
Assertion facts are collected from The National Drug File - Reference 
Terminology (NDF-RT) and NCI Thesaurus - National Institutes of Health 
**** No Additive Mechanism is found  **** 
 
Competition Mechanism 
Assertion facts are collected from Gene Ontology (GO), NCI Thesaurus - 
National Institutes of Health and National Center for Biotechnology 
Information (NCBI) 
**** No Competition Mechanism is found  **** 
 
Metabolism inhibition Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Metabolism inhibition Mechanism is found **** 
 
Metabolism induction Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene, CYP3A5 gene] 
The induction happens by Rifampin 
 
Transporter inhibition Mechanism 
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Assertion facts are collected from DrugBank  
[ABCB1 gene] 
The inhibition happens by Rifampin 
 
Transporter induction Mechanism 
Assertion facts are collected from DrugBank  
[ABCB1 gene] 
The induction happens by Rifampin 
 
Multi-pathways Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene, ABCB1 gene, CYP3A5 gene] 
 
 
 

3. Metabolism inhibition-based interaction: 

 
Drug A:  Warfarin 
Drug B:  Erythromycin 
Result: Lead to a consequent risk because of warfarin anti-clotting 
Clinical Evidence: http://www.ncbi.nlm.nih.gov/pubmed/12778089 
D3 output: 

 
Starting D3 Inferential Query Model 
 
Check the interaction between [Warfarin] and [Erythromycin] 
 
Check if Drugs are in UMLS database 
First Drug CUI is: C0043031 
Second Drug CUI is: C0014806 
 
Check if Drugs are in D3 knowledge base 
[Warfarin] and [Erythromycin] are in the D3 knowledge base 
 
DDI sources report DDI: 
[NDF-RT, Twosides, Drugbank, OSCAR] 
 
**** This DDI is proven **** 
**** Mechanisms contribute for DDI **** 
 
Pharmacogenetic Mechanism  
Assertion facts are collected from pharmgkb the pharmacogenomics 
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knowledge base 
**** No Pharmacogenetic Mechanism is found  **** 
 
Protein-Binding Mechanism  
Assertion facts are collected from Drugbank database 
[There is possible interaction due to high protein binding affinity by 
Warfarin] 
 
Additive Mechanism 
Assertion facts are collected from The National Drug File - Reference 
Terminology (NDF-RT) and NCI Thesaurus - National Institutes of Health 
**** No Additive Mechanism is found  **** 
 
Competition Mechanism 
Assertion facts are collected from Gene Ontology (GO), NCI Thesaurus - 
National Institutes of Health and National Center for Biotechnology 
Information (NCBI) 
**** No Competition Mechanism is found  **** 
 
Metabolism inhibition Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP1A2 gene, CYP3A4 gene] 
The inhibition happens by Erythromycin 
 
Metabolism induction Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Metabolism induction Mechanism is found **** 
 
Transporter inhibition Mechanism 
Assertion facts are collected from DrugBank  
**** No Transporter inhibition Mechanism is found **** 
 
Transporter induction Mechanism 
Assertion facts are collected from DrugBank  
**** No Transporter induction Mechanism is found **** 
 
Multi-pathways Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Multi-pathways Mechanism is found **** 
 

4. Transporter induction-based interaction: 



250 

 
 

Drug A:  Digoxin 
Drug B:  Rifampin 
Result: Avoid combination  
Clinical Evidence: http://www.ncbi.nlm.nih.gov/pubmed/10411543 
D3 output: 

 
Starting D3 Inferential Query Model 
 
Check the interaction between [Digoxin] and [Rifampin] 

 
Check if Drugs are in UMLS database 
First Drug CUI is: C0012265 
Second Drug CUI is: C0035608 
 
Check if Drugs are in D3 knowledge base 
[Digoxin] and [Rifampin] are in the D3 knowledge base 
 
DDI sources report DDI: 
[NDF-RT, Twosides, Kegg, DDI-Corpus-2011, DDI-Corpus-2013, NLM-Corpus] 
 
**** This DDI is proven **** 
**** Mechanisms contribute for DDI **** 
 
Pharmacogenetic Mechanism  
Assertion facts are collected from pharmgkb the pharmacogenomics 
knowledge base 
[rs1045642] 
 
Protein-Binding Mechanism  
Assertion facts are collected from Drugbank database 
**** No Protein-Binding Mechanism is found  **** 
 
Additive Mechanism 
Assertion facts are collected from The National Drug File - Reference 
Terminology (NDF-RT) and NCI Thesaurus - National Institutes of Health 
**** No Additive Mechanism is found  **** 
 
Competition Mechanism 
Assertion facts are collected from Gene Ontology (GO), NCI Thesaurus - 
National Institutes of Health and National Center for Biotechnology 
Information (NCBI) 
**** No Competition Mechanism is found  **** 
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Metabolism inhibition Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Metabolism inhibition Mechanism is found **** 
 
Metabolism induction Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene] 
The induction happens by Rifampin 
 
Transporter inhibition Mechanism 
Assertion facts are collected from DrugBank  
[ABCB1 gene, ABCB11 gene, SLCO1A2 gene, SLCO1B1 gene, SLCO2B1 gene, 
SLCO1B3 gene] 
The inhibition happens by Rifampin 
 
Transporter induction Mechanism 
Assertion facts are collected from DrugBank  
[ABCB1 gene] 
Both drugs can cause the interaction Digoxin AND Rifampin 
 
Multi-pathways Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene, ABCB1 gene, ABCB11 gene, SLCO1A2 gene, SLCO1B1 gene, 
SLCO2B1 gene, SLCO1B3 gene] 
 
 
 
 

5. Transporter inhibition-based interaction: 

 
Drug A:  Digoxin 
Drug B:  Quinidine 
Result: Quinidine showed to significantly increase the serum level of digoxin; thus 
serious and complicated DDI can be occurred. 
Clinical Evidence: http://www.ncbi.nlm.nih.gov/pubmed/23686349 
D3 output: 

 
Starting D3 Inferential Query Model 
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Check the interaction between [Digoxin] and [Quinidine] 
 
Check if Drugs are in UMLS database 
First Drug CUI is: C0012265 
Second Drug CUI is: C0034414 
 
Check if Drugs are in D3 knowledge base 
[Digoxin] and [Quinidine] are in the D3 knowledge base 
 
DDI sources report DDI: 
[NDF-RT, Drugbank, DDI-Corpus-2011, DDI-Corpus-2013, NLM-Corpus, 
OSCAR, SemMedDB] 
 
**** This DDI is proven **** 
**** Mechanisms contribute for DDI **** 
 
Pharmacogenetic Mechanism  
Assertion facts are collected from pharmgkb the pharmacogenomics 
knowledge base 
**** No Pharmacogenetic Mechanism is found  **** 
 
Protein-Binding Mechanism  
Assertion facts are collected from Drugbank database 
**** No Protein-Binding Mechanism is found  **** 
 
Additive Mechanism 
Assertion facts are collected from The National Drug File - Reference 
Terminology (NDF-RT) and NCI Thesaurus - National Institutes of Health 
**** No Additive Mechanism is found  **** 
 
Competition Mechanism 
Assertion facts are collected from Gene Ontology (GO), NCI Thesaurus - 
National Institutes of Health and National Center for Biotechnology 
Information (NCBI) 
**** No Competition Mechanism is found  **** 
 
Metabolism inhibition Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene] 
The inhibition happens by Quinidine 
 
Metabolism induction Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
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National Institutes of Health 
[CYP3A4 gene] 
The induction happens by Quinidine 
 
Transporter inhibition Mechanism 
Assertion facts are collected from DrugBank  
[ABCB1 gene, ABCB11 gene, SLCO1A2 gene, SLCO1B1 gene, SLC22A8 gene] 
Both drugs can cause the interaction Digoxin AND Quinidine 
 
Transporter induction Mechanism 
Assertion facts are collected from DrugBank  
[ABCB1 gene] 
The induction happens by Digoxin 
 
Multi-pathways Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene, ABCB1 gene, ABCB11 gene, SLCO1A2 gene, SLCO1B1 gene, 
SLC22A8 gene] 
 
 
 
 

6. Multi-pathway-based interaction: 

 
Drug A:  Cyclosporine 
Drug B:  Atorvastatin 
Result: Cyclosporine inhabits both the metabolism and transporter of statin. 
Clinical Evidence: http://www.ncbi.nlm.nih.gov/pubmed/12558459 
D3 output: 

 
Starting D3 Inferential Query Model 
 
Check the interaction between [Cyclosporine] and [Atorvastatin] 
 
Check if Drugs are in UMLS database 
First Drug CUI is: C0010592 
Second Drug CUI is: C0286651 
 
Check if Drugs are in D3 knowledge base 
[Cyclosporine] and [Atorvastatin] are in the D3 knowledge base 
 
DDI sources report DDI: 
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[NDF-RT, Twosides, Drugbank, Kegg, NLM-Corpus, PK-Corpus] 
 
**** This DDI is proven **** 
**** Mechanisms contribute for DDI **** 
 
Pharmacogenetic Mechanism  
Assertion facts are collected from pharmgkb the pharmacogenomics 
knowledge base 
[rs1128503, rs2032582, rs776746] 
 
Protein-Binding Mechanism  
Assertion facts are collected from Drugbank database 
[There is possible interaction due to high protein binding affinity by 
Atorvastatin] 
 
Additive Mechanism 
Assertion facts are collected from The National Drug File - Reference 
Terminology (NDF-RT) and NCI Thesaurus - National Institutes of Health 
**** No Additive Mechanism is found  **** 
 
Competition Mechanism 
Assertion facts are collected from Gene Ontology (GO), NCI Thesaurus - 
National Institutes of Health and National Center for Biotechnology 
Information (NCBI) 
**** No Competition Mechanism is found  **** 
 
Metabolism inhibition Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene, CYP2C9 gene, CYP2C19 gene, CYP2C8 gene, CYP2D6 gene] 
Both drugs can cause the interaction Cyclosporine AND atorvastatin 
 
Metabolism induction Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene, CYP2C9 gene, CYP3A7 gene, CYP3A5 gene] 
The induction happens by Cyclosporine 
 
Transporter inhibition Mechanism 
Assertion facts are collected from DrugBank  
[ABCB1 gene, SLCO1A2 gene, SLCO1B1 gene, ABCC2 gene, ABCC1 gene] 
The inhibition happens by Cyclosporine 
 
Transporter induction Mechanism 
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Assertion facts are collected from DrugBank  
[ABCB1 gene] 
The induction happens by Cyclosporine 
 
Multi-pathways Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene, ABCB1 gene, ABCC2 gene, ABCC1 gene, SLCO1A2 gene, 
SLCO1B1 gene, CYP2C9 gene, CYP2C19 gene, CYP3A7 gene, CYP3A5 gene, 
CYP2C8 gene, CYP2D6 gene] 
 
 
 

7. Competitive-based interaction: 

 
Drug A:  Propranolol 
Drug B:  Albuterol 
Result: Propranolol and albuterol target the beta-2 receptors, but propranolol 
blocks the beta-2 receptors while albuterol catalyzes them; thus DDI occurs.  
Clinical Evidence: http://www.ncbi.nlm.nih.gov/pubmed/1233216 
D3 output: 

 
Starting D3 Inferential Query Model 
 
Check the interaction between [Propranolol] and [Albuterol] 
 
Check if Drugs are in UMLS database 
First Drug CUI is: C0033497 
Second Drug CUI is: C0001927 
 
Check if Drugs are in D3 knowledge base 
[Propranolol] and [Albuterol] are in the D3 knowledge base 
 
DDI sources report DDI: 
[Twosides, Drugbank, OSCAR] 
 
**** This DDI is proven **** 
**** Mechanisms contribute for DDI **** 
 
Pharmacogenetic Mechanism  
Assertion facts are collected from pharmgkb the pharmacogenomics 
knowledge base 
**** No Pharmacogenetic Mechanism is found  **** 
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Protein-Binding Mechanism  
Assertion facts are collected from Drugbank database 
**** No Protein-Binding Mechanism is found  **** 
 
Additive Mechanism 
Assertion facts are collected from The National Drug File - Reference 
Terminology (NDF-RT) and NCI Thesaurus - National Institutes of Health 
**** No Additive Mechanism is found  **** 
 
Competition Mechanism 
Assertion facts are collected from Gene Ontology (GO), NCI Thesaurus - 
National Institutes of Health and National Center for Biotechnology 
Information (NCBI) 
[Receptors, Adrenergic, beta-1, beta-2 Adrenergic Receptors] 
 
Metabolism inhibition Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[CYP3A4 gene] 
The inhibition happens by Albuterol 
 
Metabolism induction Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Metabolism induction Mechanism is found **** 
 
Transporter inhibition Mechanism 
Assertion facts are collected from DrugBank  
**** No Transporter inhibition Mechanism is found **** 
 
Transporter induction Mechanism 
Assertion facts are collected from DrugBank  
**** No Transporter induction Mechanism is found **** 
 
Multi-pathways Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Multi-pathways Mechanism is found **** 
 
 
 

8. Additive-based interaction: 
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Drug A:  Glibenclamide 
Drug B:  Metformin 
Result: the combination of glibenclamide and metformin could result in 
hypoglycemic.  
Clinical Evidence: http://www.ncbi.nlm.nih.gov/pubmed/21084384 
D3 output: 

 
Starting D3 Inferential Query Model 
 
Check the interaction between [Glibenclamide] and [Metformin] 
 
Check if Drugs are in UMLS database 
First Drug CUI is: C0017628 
Second Drug CUI is: C0025598 
 
Check if Drugs are in D3 knowledge base 
[Glyburide] and [Metformin] are in the D3 knowledge base 
 
DDI sources report DDI: 
[Twosides, Kegg, Clinicaltrials] 
 
**** This DDI is proven **** 
**** Mechanisms contribute for DDI **** 
 
Pharmacogenetic Mechanism  
Assertion facts are collected from pharmgkb the pharmacogenomics 
knowledge base 
**** No Pharmacogenetic Mechanism is found  **** 
 
Protein-Binding Mechanism  
Assertion facts are collected from Drugbank database 
**** No Protein-Binding Mechanism is found  **** 
 
Additive Mechanism 
Assertion facts are collected from The National Drug File - Reference 
Terminology (NDF-RT) and NCI Thesaurus - National Institutes of Health 
[Insulin Receptor Agonists [MoA]] 
 
Competition Mechanism 
Assertion facts are collected from Gene Ontology (GO), NCI Thesaurus - 
National Institutes of Health and National Center for Biotechnology 
Information (NCBI) 
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**** No Competition Mechanism is found  **** 
 
Metabolism inhibition Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Metabolism inhibition Mechanism is found **** 
Metabolism induction Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Metabolism induction Mechanism is found **** 
 
Transporter inhibition Mechanism 
Assertion facts are collected from DrugBank  
**** No Transporter inhibition Mechanism is found **** 
 
Transporter induction Mechanism 
Assertion facts are collected from DrugBank  
**** No Transporter induction Mechanism is found **** 
 
Multi-pathways Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Multi-pathways Mechanism is found **** 
 
 
 
 
 

9. Pharmacogenetic-based interaction: 

 
Drug A:  Ibuprofen 
Drug B:  Rofecoxib 
Result: COX-1 gene (PTGS1) and the COX-2 gene (PTGS2) polymorphism could 
lead to inefficacy of the both drugs.   
Clinical Evidence: http://www.ncbi.nlm.nih.gov/pubmed/16678543 
D3 output: 

 
Starting D3 Inferential Query Model 
 
Check the interaction between [Ibuprofen] and [Rofecoxib] 
 
Check if Drugs are in UMLS database 
First Drug CUI is: C0020740 
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Second Drug CUI is: C0762662 
 
Check if Drugs are in D3 knowledge base 
[Ibuprofen] and [Rofecoxib] are in the D3 knowledge base 
 
DDI sources report DDI: 
[Twosides] 
 
**** This DDI is proven **** 
**** Mechanisms contribute for DDI **** 
 
Pharmacogenetic Mechanism  
Assertion facts are collected from pharmgkb the pharmacogenomics 
knowledge base 
[rs20417] 
 
Protein-Binding Mechanism  
Assertion facts are collected from Drugbank database 
[There is possible interaction due to high protein binding affinity by 
Ibuprofen] 
 
Additive Mechanism 
Assertion facts are collected from The National Drug File - Reference 
Terminology (NDF-RT) and NCI Thesaurus - National Institutes of Health 
**** No Additive Mechanism is found  **** 
 
Competition Mechanism 
Assertion facts are collected from Gene Ontology (GO), NCI Thesaurus - 
National Institutes of Health and National Center for Biotechnology 
Information (NCBI) 
**** No Competition Mechanism is found  **** 
 
Metabolism inhibition Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[PTGS2 gene] 
Both drugs can cause the interaction Ibuprofen AND rofecoxib 
 
Metabolism induction Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
**** No Metabolism induction Mechanism is found **** 
 
Transporter inhibition Mechanism 
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Assertion facts are collected from DrugBank  
[ABCC4 gene] 
Both drugs can cause the interaction Ibuprofen AND rofecoxib 
 
 
Transporter induction Mechanism 
Assertion facts are collected from DrugBank  
**** No Transporter induction Mechanism is found **** 
 
Multi-pathways Mechanism 
Assertion facts are collected from DrugBank and NCI Thesaurus - 
National Institutes of Health 
[PTGS1 gene, ABCC4 gene, CYP2C9 gene, CYP2C8 gene] 
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APPENDIX C 

IDENTIFYING LEVELS OF AGREEMENT AMONG DDI RESOURCES 
USING JACCARD INDEX 

 
In this appendix, we prove the large disagreements among current DDI 

resources in reporting the interactions by computing the Jaccard Index. In 

particular, fifteen DDI resources used by this thesis are being examined as pairs, 

which result in 105 comparisons. These DDI resources are: (1) Clinicaltrials.gov, (2) 

NDF-RT, (3) DIKB, (4) ONC-HighPriority, (5) CredibleMeds, (6) KEGG, (7) 

Drugbank, (8) Twosides, (9) DDI-Corpus-2011, (10) SemMedDB, (11) PK-Corpus, 

(12) DDI-Corpus-2013, (13) NLM-Corpus, (14) OSCAR, and (15) ONC-

NonInteruptive. In Chapter VII we computed the averaged Jaccard Index among 

them; in this appendix on the other hand, for each of these 15 resources, we 

computed the Jaccard Index between it and the other 14 resources. Table C.1 

shows the results of the comparisons.  

The average Jaccard Index is 1.7%. See Table C.1 for the Jaccard Index for 

each of these resources. Such a low average Jaccard Index confirms that across a 

INTRODUCTION 
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large number of DDI resources, there is no level of agreement between DDI 

resources in reporting the interactions.  

 

Table C1: Jaccard Index for 15 DDI resources  

DDI Resources  Jaccard Result 

Clinicaltrials.gov, NDF-RT  0.0019998518 
DIKB, ONCHighPriority 0.019677997 
CredibleMeds, KEGG 0.0010233863 
Clinicaltrials.gov, Drugbank 0.00401997 
CredibleMeds, Twosides 9.312457E-4 
DDI-Corpus-2011, SemMedDB 0.014833127 
SemMedDB, Twosides 0.0054883915 
DDI-Corpus-2011, Twosides 0.0028405078 
ONC-HighPriority, SemMedDB 0.0025673942 
CredibleMeds, ONC-HighPriority 0.006535948 
OSCAR, SemMedDB  0.01137789 
PK-Corpus, DDI-Corpus-2011 0.039660055 
DIKB, DDI-Corpus-2011  0.022644928 
Clinicaltrials, DDI-Corpus-2013   0.0038712306 
NLM-Corpus, ONC-HighPriority   0.0064888247 
Drugbank, DDI-Corpus-2013  0.035429653 
PK-Corpus,NLM-Corpus   0.067532465 
NLM-Corpus, OSCAR  0.0045209094 
OSCAR, Twosides   0.017258156 
Clinicaltrials.gov, PK-Corpus  0.0015772871 
DDI-Corpus-2013, OSCAR  0.012665322 
KEGG, Twosides  0.043419063 
PK-Corpus, Drugbank  0.0062866723 
PK-Corpus, KEGG  0.0029149 
Drugbank, Twosides  0.02306813 
NDF-RT, ONC-NonInteruptive  0.006902357 
NDF-RT, DDI-Corpus-2011  0.016929364 
DDI-Corpus-2013, Twosides  0.005336694 
Clinicaltrials.gov, SemMedDB  0.0050384887 
Drugbank, DDI-Corpus-2011  0.017548176 
DDI-Corpus-2011, ONC-HighPriority   0.007620164 
CredibleMeds, DIKB  0.033816423 
PK-Corpus, NDF-RT   0.005202081 
PK-Corpus, DIKB  0.022566997 
KEGG, NLM-Corpus   0.004004836 
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NDF-RT, SemMedDB  0.005846638 
KEGG, ONC-HighPriority   0.0058201253 
ONC-NonInteruptive, Twosides   0.0073923487 
Drugbank, NLM-Corpus   0.009437902 
Clinicaltrials.gov, OSCAR 0.0010539258 
Drugbank, KEGG   0.058781102 
ONC-HighPriority, OSCAR   0.0049667004 
Drugbank, ONC-NonInteruptive   0.013101391 
PK-Corpus, DDI-Corpus-2013   0.03653295 
Drugbank, ONC-HighPriority   0.02525651 
DDI-Corpus-2013, ONC-NonInteruptive   0.0014898689 
DIKB,KEGG   0.0056852186 
Drugbank, OSCAR   0.025489375 
Clinicaltrials.gov, CredibleMeds 0.0 
KEGG, SemMedDB   0.01240762 
DIKB, OSCAR   8.427643E-4 
PK-Corpus, OSCAR   0.002786221 
CredibleMeds, Drugbank   0.0048040454 
DDI-Corpus-2013, SemMedDB   0.024234693 
DIKB, Drugbank   0.015477848 
NDF-RT, DDI-Corpus-2013   0.029506685 
ONC-HighPriority, ONC-NonInteruptive   6.1977067E-4 
NLM-Corpus, ONC-NonInteruptive   8.609557E-4 
CredibleMeds, OSCAR   0.0029441884 
CredibleMeds, SemMedDB   0.0 
CredibleMeds, ONC-NonInteruptive   0.0018544274 
NDF-RT, OSCAR   0.019068532 
CredibleMeds, DDI-Corpus-2013   0.0036791759 
KEGG, DDI-Corpus-2013   0.015372168 
NLM-Corpus, Twosides   0.0016068813 
Clinicaltrials.gov, ONC-NonInteruptive   0.0028030833 
PK-Corpus, SemMedDB   0.0032529142 
DDI-Corpus-2011, ONC-NonInteruptive   0.0015128592 
KEGG, DDI-Corpus-2011   0.007906768 
Drugbank, NDF-RT   0.116289824 
KEGG, ONC-NonInteruptive   0.018135551 
ONC-HighPriority, Twosides   0.0015532051 
PK-Corpus, ONC-HighPriority   7.61035E-4 
Clinicaltrials.gov, KEGG 0.0064808596 
DDI-Corpus-2013, ONC-HighPriority   0.00954753 
NDF-RT, NLM-Corpus   0.0071591926 
DIKB, Twosides   0.004970351 
NLM-Corpus, SemMedDB   0.009340806 
NDF-RT, KEGG   0.04303367 
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DIKB, NLM-Corpus   0.010025063 
DIKB, SemMedDB   4.885198E-4 
CredibleMeds, NDF-RT   0.0050428645 
DIKB, NDF-RT   0.012703646 
DDI-Corpus-2011, DDI-Corpus-2013   0.40653494 
PK-Corpus, Twosides   0.0012930491 
NDF-RT, ONC-HighPriority   0.03343949 
ONC-NonInteruptive, SemMedDB   0.0014267879 
KEGG, OSCAR   0.025362536 
Clinicaltrials.gov, DIKB   4.758506E-4 
NDF-RT, Twosides   0.015422168 
DDI-Corpus-2011, NLM-Corpus   0.06258149 
CredibleMeds, PK-Corpus   0.0 
ONC-NonInteruptive, OSCAR   0.09597592 
Clinicaltrials.gov, Twosides 0.0070062545 
Clinicaltrials, ONC-HighPriority   2.0859408E-4 
DDI-Corpus-2011, OSCAR 0.00823843 
Clinicaltrials,  NLM-Corpus   0.0015444015 
DIKB, DDI-Corpus-2013   0.019933555 
PK-Corpus, ONC-NonInteruptive   4.4583148E-4 
DIKB, ONC-NonInteruptive   0.0 
DDI-Corpus-2013, NLM-Corpus   0.055248618 
CredibleMeds, DDI-Corpus-2011   0.00618238 
CredibleMeds, NLM-Corpus   0.009230769 
Clinicaltrials, DDI-Corpus-2011   0.0016638935 
Drugbank, SemMedDB 0.009984235 


