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Abstract

Combinatory logic is becoming important as a basis for functional language implemen-
tation. However, the combinators often seem mysterious or arbitrary, and are under-
stood, if at all, purely as mechanical transformations. The purpose of this note is to
show that the combinators, especially 8, are neither mysterious nor arbitrary, but
have a simple explanation in terms of familiar concepts from ordinary logic.
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1. Combinators as Propositional Logic

The initiate to the world of combinatory logic is likely to be puzzied by the
apparent arbitrariness of the combinators. For many, they eventually acquire
meaning through familiarity with their peculiar internal workings, but remain at
heart a mystery. In reconciling ourselves to them, it helps that some of them are
at least comprehensible! I corresponds to the "identity function”, B is "functional
composition”, and K is clearly useful for discarding unwanted information. But

why are these particular things so important? Worst of all: what, oh what, is 87

To Schonfinkel, S was the "fusion function”, of which he wrote [4] "Clearly,
the practical use of the function S will be to enable us to reduce the number of
occurrences of a variable - and to some extent also of a particular function - from
several to a single one."" On the topic of 8 Curry and Feys wax uncharacteristi-
cally mystical [2], p. 184: "When Schonfinkel was discovered in a literature search,
K was added to the theory at once; but § was regarded as a mere technicality until
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the development of the newer axiomatic theories in the 1940’s." By way of clarify-
ing this remark, they write on p. 237: "None of these treatments used the
Schonfinkel combinator S, and it was not perceived how that combinator could be
used to make definitions by structural induction as in the present §A." This

sounds suspiciously like saying that S is indeed just a technicality, but oh! what a

bandy one it is. In any event, [ never found these remarks, nor the similar ones to

¥ Translation by Stefan Bauer-Mengelberg, in J. van Heijenoort, ed., From Frege to Gédel: a
source book in mathematical logic, 1879-1931, Harvard University Press, 1967.



be found throughout the literature on combinatory logic, to be very illuminating.

The purpose of this note is to show that the combinators, especially 8, are
neither mysterious nor arbitrary, but have a simple explanation in terms of fami-
liar concepts from ordinary logic. The story begins with a pair of axioms common

to numerous formulations of propositional logic (see, e.g., [1]).

Al:Fp = (g~p)

A2 (p=(g=r))=p=q)=(p~1)
These axioms are sufficiently well-known to be blessed with names. A7 is the

law of affirmation of the consequent; A21s the self-distributive law of implication.

The inference rules of interest to us are substitution and modus ponens. Using
these rules, we can prove many propositional theorems, though A7 and A2 alone

are incomplete by anyone’s standards. For example, here is a proof of (p » p).

L.Ep~(qg~p) (A1)

2 =la=r)-(p=g)~(p~r) (42
B =(g-p)~(p~q)~(p=p) (2])
4. (p=q)=(p-p) (modus ponens 3,1)

o =la=p)~(p~p) (4.,

(]

o]

F(p~p) (modus ponens 5,1)

The story continues with a search for effective methods corresponding to the
axioms. The "effective interpretation™ of Af is that, given p, we can produce p
when given ¢. The method for doing this is obvious; we hang on to p when it's
given us, and produce it when given ¢, throwing ¢ away. In lambda-notation, this
method is expressed by Az.hy.x . The connection between the lambda-expression

and A7 is captured vividly by the polymorphic type of the expression.



(Az.Xy.z): o = (B -~ a)
In combinators, of course, this is K. So K is just the law of affirmation of the con-

sequent.

The effective interpretation of A2 is that, given 1) a way to produce a method
of obtaining r from ¢, given p, 2) a way to produce ¢ from p, and 3) p, we can pro-
duce r. From 1) and 3) we obtain a method for producing r from ¢; from 2) and 3)
we obtain ¢. Finally, from these two things we obtain r. In lambda-notation, this
is just e Ay hz.(z z)(y z). Again, the type of the expression makes the connection
vivid.

Az dyNe(z 2)(y 2)): (e = (B =v)) = ((a = B) ~ (e = 7))

So 8 turns out to be just the self-distributive law of implication. Carrying the
analogy forward, substitution is type-matching, and modus ponens is application.
If we use unification to do type-matching automatically, then these two inference
rules are always carried out together, as a single rule, which we will call applica-
tion, and denote by juxtaposition. Hence, we can rewrite our earlier proof of (p -

p) in terms of combinators as follows.

LEK:a-(B8-a)
2.8 (= (B =)= ((=B) = (o~ 7))
3.f‘SK:(a»B)—-(o¢ -v)
4. FSKK: (a - a)
SKK, of course, reduces to I, the "identity" on all types.
It is only fair to note that Curry and Feys carry out this and many other
proofs in their discussion of the theory of functionality. However, their choice of

the notation F(a,B) for (o + B) obscures the results considerably. The functional-

ity of S becomes, in this notation, F(F(e,F(B,v)),F(F(a,B),F(a,y))), which is



bardly recognizable as the self-distributive law of implication! In his introductory
text, Hindley [3] adopts this notation for functionality wholesale, thereby per-

petuating the mystique of the combinators.

Have we succeeded in making the combinators seem less arbitrary? Perhaps.
In any event, we can be comforted that they are not more mysterious than the
axioms of propositional logic. Nonetheless, there is something less than completely
satisfying about an "explanation” of one set of arbitrary rules in terms of another.
Another possible source of dissatisfaction is the absence of any logical connective

other than implication. We take up these issues in turn in the following sections.

2. A Categorial Analysis of S and K

To explain the special significance of the combinators § and K, we begin with
two intuitive principles which everyone will surely accept. The first is that an
unconditional assertion is true under all conditions. In what follows, we shall call
an unconditional assertion a fact, and a conditional assertion a method for estab-
lishing a fact under the stated conditions. With this terminology, the first princi-
ple becomes: "a method exists for establishing a fact under arbitrary conditions”.
The second principle is that whenever a method and its conditions coexist, 1t can
be carried out. That a method and its conditions coexist means that there is a con-
dition from which both derive, and that we have methods for establishing them

from that condition.

Let p, g, r, - stand for arbitrary facts, and let p? stand for methods of
establishing p under the condition ¢. Finally, let & - B denote that a method exists

for establishing B from «.

Using this notation, our two principles can be diagrammed as follows.



The first of these diagrams corresponds to K, the second to S. The dashed
arrow along the bottom of the 8 diagram is created by S from the two upward-
pointing methods. For example, S produces the identity from p to p when these

methods are both instances of K, as show below,

r

Category theorists will recognize something else in these diagrams, however. T
The first diagram indicates that all objects p and ¢ have an exponent object, p?.
The second is a variation on the usual diagram specifying the universal property of

the exponent. evis the evaluation map (the unit of the "Currying" adjunction).

The 8 diagram differs from the usual one in that both ¢ and r¢ are derived
from a common domain, p. This peculiarity is forced on us by the fact that we
don’t have products. In fact, the diagram "cheats" as a result of this deficiency; to
make it correct we would have to have a single object, viz. r9X ¢, as the.domain of
ev, instead of two disconnected objects. Because of the differences, we shall use the
term "quasi-exponentials” to refer to the objects p?. Nouetheless, the diagrams are

compelling, and suggest that exponentiation is the really important part of

"The reader not versed in category theory may skip the remainder of this section without loss of
continuity.



Cartesian-closedness for A-models.

The interpretation of 8§ and K as specifying categorial structure for A-models
raises an interesting problem when we consider reflexive domains. If the retraction
p - p? (which can always be constructed from S and K alone) is 50, then pis a
reflexive domain. Scott has shown that there are nontrivial reflexive domains, and

these can be used as models of untyped A-calculi with m-conversion [5].

The problem is that p? - p, interpreted as a propositional formula, leads to
inconsistency (in the sense of Post). From this formula and | p - p, We cal con-
clude F p by application. Ordinarily, this would wreak havoc, because we could
deduce any formula whatsoever via substitution. In the current situation, how-
ever, the problem vanishes because substitution, independent of modus ponens, is
not a valid rule of inference for us! This is the ultimate reason for combining these
into the rule of application in the first place. The effect is essentially similar to res-

tricting the principle of comprehension in the manner of ZF.

We have already noted the lack of products, preventing us from having a full
Cartesian-closed structure. We know, however, that products can be "simulated”
in pure A-calculus. The connection between these "internal" products and the
"external” products of a Cartesian-closed category, and the problem of
interdefinability of the logical connectives in general, is examined in the next sec-

tion.

3. And, Other Connectives

We take up now the problem of defining a binary connective "A", called "con-

junction”, which obeys the following laws.

Pl.bpAg-p



P2. pAg=g

C.kp=(g=pAa

Abstractly, p A ¢ represents the product of p and ¢. PI and P2 are the first and
second projections, respectively, and (' is the pairing operation. Now, it happens
that there is a standard way to represent products in pure h-calculus, rendering

these laws as shown below.

pl =N, x(Ay hzy) (@ (B ~a))~vy) -7y

p2 = ke a(hyhzz) ((a ~(B~B))~v)~v

c=hrhyhre ((zx)y)a-(B~((a=(B~7v))~7)

Suppose now that the facts & and € are proved by methods d and e, respectively.

We form the conjunction of these facts as follows.
l.Fea = (B ={{a~(B~v))=-7v))

Hds

Bl ed:B-((38-(B~%) ~v)

1. e e

5. f“cde:(b‘ ~(€-vy)) -~y

oo

To select the first conjunct, we apply p1.

6. pl: (o = (B=a))-vy)~7y

7.F plcde):

Similarly,

8. F p2ede): e

We see that everything will work out nicely if we define p A g to be (p » (g = 1)) »

r. All we need to do is to prove, as theorems, the types of the three A-expressions

corresponding to the three laws of products.



An easy way to develop any such proof is to use the abstraction algorithm to

convert the pure N-expression to a corresponding pure combinatory expression
For reference, we will use the algorithm in the following form

let rec abstract{z,e) =

case ¢ of
v (S K K)
y: (K y) , /
(el e2): S{abstract(z,el) (abstract(z,e2))

(Ny.el): abstract(z, abstract(y,el))
esac

Fo convert ¢ to a combinatory expression, we compute abstract(z, Ay Az.(z z) y)

which results in the following combination

((

S (S (K ) (S ((5 (K 8)) (S (K K)) (K 8)))) .
(S ((S (K S)) (S (5 (K 8)) (5 (K K)) (K 8)))) (3 (K K)) (K (S K K)))
((5 (S (K 8)) (S (K K)) (K K)D)((S (K K)) (S K K))))

((5 ((3 (K 8)) (S (K K)) (K K))) (K (S K K)))

A syntactic derivation of this expression follows
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By writing down the corresponding sequence of types, we obtain a more conven-

tional proof.
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Do SR e e L0 B e e
DD C0 O b e e DO

.1017:0&-(({3-(7-»/(8»4;) -

218: (o = (B ~(y~(8~€))))~(a~(B~(vy~8)~(y~¢))
1916: a0 = (B ~(((y = 8) =) = ((y = 8) ~8)))

1020: & = ((B = ((y ~B) =) = (B ~((y - 8) = 3))

221: (o= (B =((y=~8)~v)) = (o ~(B~((y~38)~3))

2215: a0 = (B ~ (o > y) = y))

1923: 0 = (B = (((a = (¥ = 8)) ) ~((a = (y ~8)) ~8)))

10 24: o =+ (B = ((a = (v = 8)) = v)) = (B ~ ((a = (v ~ 8)) = 3)))
225: (@~ (B =((a=(y~=8))~7v))~(a~(B~((x=(y~8))~8))
26 13:a = (B = ((a = (B ~v))=v))

The preceding pair of proofs correspond to a bottom-up "parse”, or "recogni-

tion" of the proof. We can also do a top-down "derivation” of the proof, starting

with the goal and working backwards, which is how the abstraction algorithm itself

works. Along the way, we will introduce two "optimizations”, at steps 13 and 14,

which were revealed by inspecting the types at those steps in the preceeding proof.
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The "optimized" combination eliminates 16 symbols out of 61, for a 26% reduction.

Both combinations work equally well for pairing. A similar process leads to proofs
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of pl and p2. Other connectives can, of course, be defined in a similar manner,

using well-known techniques from the study of pure A-calculi.

4. Inside, Out

An interesting question to ask about our definition of A is whether it is
"robust” in the sense that it remains a product for any "reasonable" extension of
the logic. One "reasonable” extension is Heyting's formulation of intuitionistic

propositional logic (IPL). The axioms of IPL are as follows.

InNFa-(aAa)
I2F(a AB)~(BAa)
I3F(a=B)=((aAy)=(BAY)
I b ((a=B)A(B =v)) = (a~7)
I5ha-(B-~a)
16 (o Ao = B)) = B
IThF o~ (aVB)
I8F(aVB)-(BVa)
I9F ((@=y)AB =)~ ((aVB)~7)
J10 b~ = (@ = B)
11 F (o = B) A (& = ~B)) = -a

Although the self-distributive law of implication does not appear explicitly in
this list, it is easily derived as a theorem. Hence the theorems corresponding to ¢,
pl, and p2 can also be derived as before. In order for our definition of A in terms of
- to continue to play the role of conjunction, however, we must show that all of
the new axioms involving A (namely 11, 12, I3, I4, 16, 19, and 111) can be proved as
theorems from the remaining axioms (namely 15, 17, 18, and 110). This is impossi-

ble on the face of it, because of the four remaining axioms only {10 even mentions
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the connective -, and it appears only on the left of -, whereas we need to derive
I11, in which -a is the conclusion. In fact, none of the connectives of IL are

interdefinable.

This result is somewhat disturbing, because clearly any model of IL is also a
model of SK, but A as defined in SK is not the product in any such model! How
can this be? The definition of A in SK is an infernal construction. No counterex-
ample to its being a product can be constructed inside SK. From outside, however,
it may or may not look like a product. That is, in the system where both SK and
its model are constructed, the constructions of the model are available, in addition

to those of SK, in which case counterexamples can be constructed if they exist.

From a computational standpoint, only the internal constructions of any sys-
tem are relevant. This does not mean that any theorem about a computational
system is useless to the computer scientist unless its proof corresponds to some
construction within the system. For example, it may be useful to know that some
construction is or is not "robust™ with respect to reasonable extensions. However,
we are only concerned with non-robustness if it can be demonstrated in some com-
putational system. If this cannot be done, then the purported lack of robustness
can never impair the operation of our program. These observations suggest that
the metamathematics of computer science should be carried out in some "univer-

sal” computational system. For more on this point, see [6].

The correspondence between types, logical formulas, and realizations (i.e.,
programs) is only hinted at here. It has been part of the folklore of the field for
quite some time, but most of the discussions of it in print are buried in technically
intimidating works on such things as the semantics of higher-order intuitionistic

logic. I hope the current essay has helped to make the essence of this important
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insight more accessible, and that it encourages the reader to explore the subject

further.
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