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Abstract

The reflection coefficient of a TEM wave normally incident at the
truncated upper edge of a slab-loaded parallel-plate waveguide is computed
from a knowledge of the tangential electric field on the top of the slab
beyond the truncated edge. To approximate this "aperture" field, we use
the static edge field, which results in the correct value of reflection
coefficient to first order when the substrate is electrically thin. The
approach of this note has implications for several problems of microstrip

patch antennas and transmission lines.



1. INTRODUCTION

Analysis of microstrip patéh antennas can be carried out by several
techniques. A "numerically exact" approach can be used in which an
integral equation for the surface electric current on the patch is
formulated, and solved using, e.g., a moment method [1]. This method
can be cumbersome, since the kernel of the integral equation is a
Sommerfeld integral which itself requires a fair amount of numerical
analysis to compute. Moreover, the unknown current must be found over
the entire two-dimensional surface of the patch, while the only peculiar
behavior it actually exhibits is near the edge where its singularities
appear.

- Other, approximate, methods are used which provide insight into
the physics of the problem. The cavity model [2] is widely used, in
which the fields are reckoned mainly to be under the patch and obey a
two-dimensional Helmholz equation. Opinions differ, however, on what
conditions should be enforced on these fields at the edges of the patch.
Different ways of accounting for the fringing fields at the edge can
result in resonant frequency shifts of the same order as the bandwidth,
making design a difficult procedure [3]. Once accurate fringe fields
at the edges are available, however, the radiation field of the patch
can be accurately computed using the equivalent aperture or magnetic-
current method [4] [5].

In this report we will address a simple problem--that of reflection

of an incident TEM wave at the edge of a semi-infinite patch conductor.



This problem has an exact formal solution by the Wiener-Hopf method
[6], [7], but extracting simple but accurate approximations for the
case of an electrically thin substrate is a formidable mathematical
task [3]. Also, the extension of the Wiener -Hopf method to deal with
the finite patch of arbitrary shape does not seem to be possible.

We will formulate the problem as an integral equation for the
electric field in the "aperture" which extends beyond the edge of the
semi-infinite plane conductor along the top of the substrate to
infinity. We find that an accurate expression for the reflection
coefficient for the thin-substrate 1imit can be obtained by using known
expressions for the static electric field near the edge. The idea is
similar to one used some time ago by Leppington and Levine [8] to find
the edge correction for the capacitance of a circular disk capacitor.
This method promises to be genera]izab1e to a patch of fairly arbitrary
shape, and offers considerable efficiency insofar as it deals with
an unknown (the aperture.magnetic current) which is significantonly over a

narrow strip near the edge.

2. THE APERTURE INTEGRAL EQUATION

Consider the geometry of Fig. 1. A TEM wave in the parallel plate
region 0 < z < d is normally incident at the edge of the upper con-
ductor, which occupies z = d from -» < x < 0. We consider the incident
wave

e-ikx

Ei=e-ikx;H;=- - (0 < z < d) (1)

/Ve.» e, is the relative permittivity of the



substrate, and ko = W/l €. To = /“o/eo' The scattered wave will consist

0°0
of only three field components, inasmuch as 3/3y = O:
S
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We assume a time-dependence of exp(iwt).

To formulate the requisite integral equation for the problem, we
first define Green's functions for the free space region 51 above the
substrate (z > d) and for the substrate region 52(0 < z < d) itself
(Fig. 2). We denote these by G] and 62 respectively, and define them by

the conditions

(v2 + kg)G] = -g(x-x')s(z-2") (z, 2' > d)
- (3)
3G
521- =03 6 >0 as /fx-x')z + (z-z‘)2 > @
z'=d
if Im (ko) <0
and
2 2 _ ) ' !
(v- + k )62 = -§(x-x"')s(z-z") (0 <z, 2' <d)
26, (4)
oz 2=0,4 - 0% Gy~ 0as /}X-X')z + (z-2')2 s e
if Im(k) <O
where Vz = 32/3x2 + 32/322. These functions are readily obtained by
standard methods:
Voo o1y = - dfn(2) (2)
6 (xax"52,2") = =HH " (K R) + HZ (KR} (5)

where



R = J(x-x')2 + (z-2')% and Ry = Ax-x*)" + (z42'-2d)° ,

Héz) is the Hankel function of the second kind; and
Sik|xx'| o cos ™Z cos MZ' i |x-x'|
leg 41y = _ 1€ d d m
G, (x,x"32,2") q " + mZ] e e (6)
where
2 2 L . 2 L
g = K- (T = i 1 ()7 - K )

Let us apply Green's theorem to the functions H; and G] on the region

S] and to H; and G2 on the region 52. We find that

s
® 3 (x',z")
s = - ., Yy > l ]
Hy(x,z) J G](x,x 3Z,d) T Liogt dx
° (8)
= dwe, J G, (x,x"32,d)E(x" )dx'
(o]
for z > d, and
. ® a3 (x',z")
H 9 = H] '; ;] [] '
y(x z) L G2(x x'3z,d) 53 g dx
' T e (9)
= 'iwaoer L}GZ(X’X 3Z,d)E(x" )dx
We have introduced the shorthand notation
E(x) = E,(x,d) (10)

for the tangential electric field on the aperture z = d, x > 0.
The reflected TEM wave underneath the upper conductor in x < 0 can

be identified using (9). By (2) we have

E; = - g%—] Gz(x,x';z,d)E(x')dx' (11)
(o]

But the portion of the right side of (11) due to the reflected TEM wave



can be identified as coming from the first term of G2 as given in (6). Thus,

r _ i " _ _i_ 'ile'X'I ' '

B, TEM = 73X L [- g e TE(x" )dx

w (12)

= _ _]_ 'ikX ' "ikX' '
. (o]

since x < 0. Since E; =1 at x = 0, we identify the reflection coefficient

r as

[- 4

T = - é%—fo E(x)e-1kxdx (13)

The aperture field E(x) can, in principle, be solved for from an
integral equation which we obtain by enforcing continuity of the tangential
H-field across the aperture at z = d, x > 0. From (8) and (9), this

integral equation is
d ig . '
[ thebeaxt) + e ylxax’) -5 e X g yae
o . (14)

1e :
= Lk (x > 0)

where the kernels are defined by

1..(2)
Ke(xsx') = Gy (x,x"3d,d) = =5 H M (k |x-x"]) (15)
N - . 4 miklxex'| 1§ e

3. APPROXIMATE EVALUATION OF T
Our strategy here will be to make a reasonable approximation to E(x)
in order to evaluate I . If the substrate is electrically thin, kd <1,
it is reasonable to suppose that, near the edge (k|x| << 1), E(x) should
be proportional to the static electric field distribution for the same
geometry. Let us denote the static field distribution in the aperture

0 < x < » for a voltage difference V between upper plate and ground plane

by Eo(x):



o

f E (x)dx = V (17)
o}
At a point x < 0 a few d behind the edge underneath the upper plate,

we should still be in the quasistatic region near the edge, and yet all
the higher-order cutoff modes (m > 1) have attenuated to negligible

levels, leaving a TEM field of

Ez(x,z) =1+T (x < 03 |x] >> ds k|x| << 1) (18)

and a voltage from the upper to lower plate of - (1 + r)d. Therefore,

the quasistatic approximation to E(x) should be

E(x) = - 10 g () (19)

Now, the solution Eo(x) to the static problem is also known [9]-[11],
being obtained by modified Wiener-Hopf methods (though much simpler in
form than the exact solution for arbitrary kd [6], [7]1). Substitutiong
(19) into (13), we can evaluate the resulting integral using eqns. (2.19)
and (2.16) of [10]. The fésu]t, unfortunately, does not quite agree
with the asymptotic development of the exact result given in [3] for
kd << 1.

An alternative method for finding T accurately to O(kd) makes use of
eqn. (14) with x = 0. Combining it with (13) gives the expression

ik " ' ' ' !
1 -r=- l_r L [Ke(0,x") + € Ky (0,x')IE(x" )dx (20)

Now, for kd << 1, we can write approximately

w _-mmx'/d -
Kd(o,x') -,~_.;I? Z e - = - ;rlr_ ln(-l -e X /d) (2])
'E]—] 1 k x' (X' > 0)
Ke(0sx') = = 5 = 5 (an 5=+ ) (22)



where y = 0.5772... is Euler's constant.

Using these together with (17) and (19) in (20) gives

k d . k.d
1-r1,.0 31 i, o
T+T 76‘—‘;{2 = (an —— + )
. = E_(x) )
H v [’L”%*Er““'e“x/d)]dx} (23)
o
The remaining integral is evaluated in the Appendix. From eqn. (A.17),
we get
k d .
-t 0 f1_1 ) oL }
+T'ﬁr—{2 m [ﬂ'n(kod)+y 1+2 EY‘QO( Be) € n 2m] (24)

where Qo(-ae) is defined in the Appendix. Equation (24) agrees
precisely with the result of [3] to order kd.

The success of using (20) insteaq of (13) appears to be due to the
fact that only the difference 1-T rather than T itself is being computed.
This point should be kept in mind when extending the method to other

situations.

4. CONCLUSION

The purpose of this brief note has been to show how a rigorous
result for an edge reflection problem can be duplicated up to terms of
0(kd) using only the static field near the edge. The method provides
a close 1ink with the equivalent aperture or magnetic current method
used for computing radiation fields of microstrip patch antennas.

This approach has been used in a separate report to evaluate the
edge correction for the static capacitance of a microstrip patch of
arbitrary shape, generalizing the classical Kirchhoff formula for a

circular disk with air substrate. Currently under study is an



application to reflection of a non-normally incident wave from the edge
of a semi-infinite upper conductor. In future studies, we hope to be
ab]e_to formulate an edge-aperture theory for an arbitrarily-shaped

patch on an electrically thin substrate.



APPENDIX

In this Appendix, we will evaluate the integral

J Eo(x)[zn §-+ erﬁn(] - e'“x/d)]dx
[e]

where Eo(x) is the static electric field on the aperture z = d, 0 < x < =.

To do this we first construct static, scalar Green's functions-G and

01
GO2 for the regions S and S, shown in Fig. 2. In § (z > d), we want
2 . . 28
v GO] = -§(x-x")8(z-2"'); 577 =0 (A.1)
2'=d
2 a2 42
(We understand as before that v© = —5 t ). We choose
3X 3z
o /(x-x')2 +(z-2')?% /(x-x')2 +(z +2'-2d)°
GO] = - 5;-[2n 3 +.4n ] ]  (A.2)
. \ 2 . 2\% . \
and for this we have as p' = (x'" + 2°) =+ « din (z, z') > d:
6. - -1 e 4ol (A.3)
01 n d o :

In 52 (0 < z <d), we want

. . 3602
= -§(x-x )8(z-z") ; —3z7 =0 (A.4)
z'=0,d

2
v Gyp

for which we take the solution

_ X=X (o}
Go2 = = ~2q— * Cp2 (A.5)
where
mnz '
o =1 E s g €05 g -mm | x-x'| /d (A.6)
02 m m
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We have in 0 < (z,z') < d, as |x - x'| + «:

6, - o(e mIx-x"1/d, (A.7)

c -~

02
We will apply these Green's functions in a variant of a formula

due to Harrington ([12], eqn. (3-50)). Let ¢ be any constant vector

and let G be any scalar Green's function satisfying VZG = -§(x-x")s(z-z")

as in (A.1) or (A.4). Let E be an electrostatic field so that v x E = 0.

Then using the divergence theorem and some vector identities, we can

verify
CEG) = - §dn - {1Exv'03: 51 EG) +EGE 6 far (A.8)
c
where o = (x,z) and p' = (x',z'), and C is any closed contour in the

xz-plane enclosing the point p. We shall see that by choosing C to be
C] or C2 and G to be GO] or G02 that the boundary conditions on G allow
for considerable simplification of the 1ine integral in (A.8).

First put 6 = Gy, E;= a,, and take C to be C,. Let p = E]E:S].
Then by the boundary condition on GO1 at z'=d and the vanishing of the
integral over the semicircular part of C1 as R+«, (A.8) reduces to

9

Ez(x],z]) = S;T-L) Eo(x')GO](x],zi;.x ,d)dx (A.9)

where Eo(x) = Ex(x,d). We proceed analogously with the case when C is
taken to be C2 and G = GOZ; however the first term in (A.5) must be

treated carefully when taking the 1imit as R » ». If 52 € 52, we obtain

_ 9 1y\nC Lol |_]_ ' '
£ (x22,) = - Eig'f £y (x' 168, (xprz,3x )X’ -1 [(Eo(x Jax' (A.10)
o]
2

Now let z, ~ d* and z, > d”, and invoke the boundary conditions on



1

Ez at z = d to get the following representation for the charge density

at z = d:
o (x) = e [E_(x,d+) - ¢ E_(x,d-)]
s otz r z (A.11)
d ” ] ] ] t eoel" ® t ]
= €0 a_)?jo EO(X )[K](sz )+€rK2(sz )]dX + d J Eo(x )dX
X
where
K](x,x') = 601(x,d,x',d) = - %-zn. X;X
Ky(x,x") = ng(x,d,x',d) (A.12)
1 gL hen
T m=1 m m
We also have the conditions Eo(x) =0 for x < 0 and
J E (x)dx = V | (A.13)

0
where V is the voltage betwen the upper plate and the ground plane.

One could set up an,jntegro-differential equation for determining
E, by taking x > 0 in (A.11) and noting that Py = 0 in x > 0. This
equation could presumably be solved by a variant of the Wiener-Hopf
technique. However, we are not interested in the exact form of E0 o}
much as in a certain integral of it, and for this it will be sufficient
to use properties of ps(x) already known from previous Wiener-Hopf
solutions of this static problem [91-[11]. In particular [10], we know

that
Vd

e X
r

Eo(x) ~ as x/d > = (A.14)

and also that
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EW ean2n +1-2n2 -2 Q (-8 )

r- .1 w,r ro' e

- e0V o tr gt m
d W W
+ O(W an ‘a) as g *°
where
L m Er'1
QO(-ss) - mz] (-55) anom 8 = Eﬁ_

~is a function discussed .in [3] and for which simple closed-form
approximations are available [13].

Upon inserting (A.11) into (A.15) and using (A.13), we obtain

-]

| eI (0 + € l0,x ) Tex’

(o]

-]

= J .Eo(xf)[K](-w,x') *+ e Ky (-wox')Jdx'

[¢]

ﬁ Q(W) } erVw
e d

0

and as w/d -~ =, the right side, by (A.12) and (A.15), reduces to

oo

(A.15)

(A.16)

J Eo(x")[K; (0,x") + €K, (0,x")]dx = % [e an2m +1 - 2n2 -2¢ Q (-3,)]
e}

(A.17)



(1]

[2]

[3]

[4]

[5]

(61

[7]

(8]

[9l

(0]

1]

REFERENCES

J.R. Mosig and F.E. Gardiol,"A dynamical radiation model for microstrip
structures," in Advances in Electronics and Electron Physics,. vol. 59.
New York: Academic Press, 1982, pp. 139-237.

Y.T. Lo, D. Solomon and W.F. Richards, "Theory and experiment on micro-
strip antennas," IEEE Trans. Ant. Prop., vol. 27, pp. 137-145 (1979).

E.F. Kuester, R.T. Johnk and D.C. Chang, "The thin-substrate approxima-
tion for reflection from the end of a slab-loaded parallel-plate waveguide
with application to microstrip patch antennas," IEEE Trans. Ant. Prop.,
vol. 30, pp. 910-917 (1982).

P. Hammer, D. Van Bouchaute, D. Verschraeven and A. Van de Capelle,
"A model for calculating the radiation field of microstrip antennas,"
IEEE Trans. Ant. Prop., vol. 27, pp. 267-279 (1979).

H. Pues and A. Van de Capelle, "Accurate transmission-line model for
%he rictangular microstip antenna," IEEE Proc., pt. H, pp. 334-340
1984).

A.T. Fialkovskii, "Theory of higher-order modes in a nonsymmetrical
stripline" [Russian], Radiotekh. Elektron. vol. 21, pp. 683-690 (1976)
EEng]S transl. in Radio Eng. Electron Phys,, vol. 21, no. 4, pp. 15-21
1976)].

D.C. Chang and E.F. Kuester, "Total and partial reflection from the end
of a parallel-plate waveguide with an extended dielectric slab,"
Radio Science, vol. 16, pp. 1-13 (1981).

F. Leppington and H. Levine, "On the capacity of the circular disc
condensor at small separation," Proc. Camb. Phil. Soc., vol. 68,
pp. 235-254 (1970).

N.N. Lebedev, "The electric field at the edge of a plane condenser
containing a dielectric" [Russianl, Zh. Tekh. Fiz., vol. 28, pp. 1330-
1339 (1958) [Engl. trans. in Sov. Phys. Tech. Phys., vol. 3, pp. 1234-
1243 (1958)1.

W.C. Chew and J.A. Kong, "Asymptotic formula for the capacitance of two
oppositely charged discs," Math. Proc. Camb. Phil. Soc., vol. 89.
pp. 373-384 (1981).

W.C. Chew and J.A. Kong, "Microstrip capacitance for a circular disk
through matched asymptotic expansions," SIAM J. Appl. Math., vol. 42,
pp. 302-317 (1982). ]




[12] R.F. Harrington, Time-Harmonic Electromagnetic Fields. New York:
McGraw-Hi11, 1961.

[13] E.F. Kuester, "Accurate approximations for a function appearing in the
?na1y§is of microstrip," IEEE Micr. Theory Tech., vol. 32, pp. 131-133
1984).




INCIDENT
d +H> waVE

| Z
O,
@
T [17777777 777 777777777777 %

'Fig. 1: TEM wave incident at the edge of a semi-infinite patch.

Fig. 2: Surfaces S] and 52 for application of Green's theorem.



