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Abstract

We discuss extensions of Jain’s framework for network design [8] that go beyond undirected
graphs. The main problem is finding an approximate minimum cost cover of a crossing super-
modular function by a set of directed edges. We show that iterated rounding gives a factor 3
approximation, where factor 4 was previously known and factor 2 was conjectured. Our bound
is tight for the simplest interpretation of iterated rounding. We also show that iterated rounding
has unbounded approximation ratio when the problem is extended to mixed graphs.

1 Introduction

Iterated rounding, introduced by Jain [8], has taken its place as a general technique for approxi-
mating solutions to integer linear programs. Jain’s original framework was for undirected network
design problems. This paper investigates the directed case. The approximation guarantee for the
directed case was known to be at most 4 but conjectured to be 2, just like the undirected case. We
prove an upper bound of 3. We prove a matching lower bound, at least for the simplest version of
iterated rounding. Specifically, we show that 1/3 is the tight lower bound on the Ly-norm of an
extreme point of the directed cut-covering LP for a crossing supermodular requirement function.

Previous Work

Jain showed that iterated rounding achieves a factor 2 approximation for the undirected Steiner
network problem [8, 13]. Iterated rounding remains the only way known to achieve even an O(1)-
approximation for this problem. More generally Jain gave a factor 2 approximation for any undi-
rected network design problem whose cut requirements are given by a weakly supermodular func-
tion.

Subsequently a number of iterated rounding algorithms were presented for network design prob-
lems dealing with vertex connectivity. They are all based on the setpair covering LP. Fleischer
et.al. achieve a 2-approximation for element connectivity as well as {0,1,2} vertex connectivity,
both on undirected graphs [6]. These are the best results known for these problems. Cheriyan
et.al. [1] give an O(y/m)-approximation for setpair covering, which extends to an O(n/v/n — k)-
approximation for k-vertex connectivity on both directed and undirected graphs [2] (a recent im-
provement is given in [10]).

Detouring a little, let k-EC stand for “k-edge connected” and let k-ECSS stand for “k-edge
connected spanning subgraph”. A problem of interest is finding a minimum cost k-ECSS. We will
also refer to the problem of finding a minimum cost k-EC augmentation (this is the same problem,
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except the cost 0 edges are not recorded as part of the solution). Khuller and Vishkin give 2-
approximations for these two problems, on both directed and undirected graphs [9]. Their work
generalizes the algorithm for the case £ = 1 by Frederickson and Ja’Ja’ [5].

Most relevant to our results is the work of Melkonian and Tardos [11]. [11] generalizes Jain’s
framework to directed graphs. Jain’s weakly supermodular cut requirement function becomes a
crossing supermodular function. This makes the model less general but it still includes problems
of interest: It includes the minimum cost directed k-ECSS problem and hence more sophisticated
variations such as making a directed hypergraph k-edge connected by adding a minimum cost set
of directed graph edges. (See Section 2.)

[11] proves that iterated rounding achieves an approximation ratio of 4. Melkonian and Tardos
conjectured that the true approximation ratio is 2 (like the undirected case) and supported this
conjecture with experimental evidence.

In addition to the iterated rounding algorithm, [11] proves an approximation ratio of 2 for their
problem by using a different algorithm: It consists of two applications of an algorithm of Frank [3]
which gives an exact solution in the special case of an intersecting supermodular cut requirement
function. The resulting approximation algorithm is the generalization of [5, 9].

In the experiments this 2-approximation gave poorer results than iterated rounding, e.g., the
2-approximation averaged 25% above optimum while iterated rounding averaged within 1.5% of
optimum (more details are in [11]). Such results, plus the success of iterated rounding on other
problems, motivate our further study of the directed case.

Our Results

The only known method of proving a performance bound for iterated rounding is Jain’s original
result. It says iterated rounding gives a 1/e-approximation when the LP under study is guaranteed
to have optimum extreme points Z with ||Z||o > €. [11] conjectured that supermodular directed
cut problems have e = 1/2. We prove a tight bound of € = 1/3. More precisely for the cut covering
LP of any supermodular directed cut problem, every nonzero extreme point # has ||Z|l,c > 1/3.

Furthermore the simplest supermodular directed cut problem of interest, minimum cost k-EC

augmentation, has an infinite family of instances where the unique optimum extreme point is % (%

is our notation for a vector with all coordinates equal to 1/3. This result holds for any integer k£ > 1.
The proof is based on a “generic” example which should allow it to extend to other supermodular
cut problems.) The simplest version of iterated rounding gives approximation ratio exactly 3 on
these instances (for both minimum cost k-EC augmentation and minimum cost k-ECSS). We leave
open the possibility that a more sophisticated rounding strategy achieves approximation ratio 2.
However new proof techniques will be required for such a result.

The reason we can prove a tight upper bound is that we concentrate more on linear independence
than graph properties (starting with Proposition 3.6).

The last part of this paper briefly examines the supermodular cut problem on mixed graphs.
Here the solution may use both directed and undirected edges. The main finding is negative:
Looking again at minimum cost k-EC augmentation, for any integer k > 1 there is an infinite

family of instances where the unique optimum extreme point is %, for n the number of vertices.
But for minimum cost 1-EC augmentation and generalizations like the hypergraph augmentation
problem mentioned above, 1/4 is the tight lower bound for ||Z||, # an extreme point of the cut
covering LP. (So iterated rounding is a 4-approximation.)

Section 2 defines the supermodular directed cut problem and gives several examples. Section
3 proves the Ly, lower bound, implying that iterated rounding achieves approximation ratio 3.



Section 4 shows our bound is tight, even for mincost k-ECSS. Section 5 gives the mixed graph
results, with the analysis of 1-ECSS in Appendix A.

Terminology

Throughout this paper n and m denote the number of vertices and number of edges of the given
graph G = (V, E), respectively. In all graphs, each edge has a multiplicity that specifies the number
of copies. (m ignores multiplicities.) Self-loops are not allowed.

We usually denote a path by listing its vertices, e.g., u, v, w. Sometimes for clarity we include
the edges, e.g., u (@) v, w where the edge uv has been previously designated as a.

For S C V, G/S denotes the graph G with the vertices of S contracted. (Retain any parallel
edges that may be created.)

For S,T CV, 6(S,T) denotes the number of edges from S — T to T — S, and p(S,T) denotes
o(T,S).

A set S CV is k-edge connected if no two vertices of S are separated by a cut of < k edges, i.e.,
any set of vertices X with SN X, S — X # () has p(X) > k. Equivalently any two distinct vertices
s,t € § are joined by k edge-disjoint st-paths.

2 Crossing Supermodular Directed Cut Problems

Sets S,T C V cross if each of the four sets S — 7,7 — S,SNT and V — (S UT) is nonempty. A
family C of subsets of V' is crossing if S,T € C with S and T crossing implies SNT,SUT € C. In
this case a function f : C — R is crossing supermodular if f(S)+ f(T) < f(SNT)+ f(SUT) for
every two crossing sets S,T € C.

Let G = (V,E) be the given graph. We use the vector space R™, where each dimension
corresponds to an edge of E. An “overarrow” ~ signifies a vector. In particular we use this
notation:

T is a vector of values z, for each e € E. For F C E, £r denotes the vector £ with every
component outside of F' zeroed.

For e € E, € denotes the unit vector having z, = 1.

For § CV,8(S) (3(S)) denotes the boundary vector of edges leaving (entering) S, i.e., the entry
for e is the weight of e if e leaves (enters) S and 0 otherwise.

For r € R, 7 denotes the vector with every entry equal to r.

A (crossing) supermodular (directed) cut problem is specified by a digraph G = (V, E), a crossing
family C C 2V with crossing supermodular function f : C — Z, and three vectors in R, an edge
cost vector ¢ and upper and lower bound vectors @ and I respectively. Without loss of generality we
assume | < i, ['and i are integral vectors, and we allow infinite upper bounds. We seek a minimum
cost set of edges respecting the upper and lower bounds such that every set S € C has in-degree at
least f(S).

We give several supermodular cut problems that are of interest. The simplest is finding a
minimum cost directed k&-ECSS (C = 2V — {0, V}, f = k). Most of the examples derive from this
problem.

(a) Consider a “host” graph H = (W, F'), a subset of vertices V C W, and a set of “candidate”
edges E C V x V. A k-EC internal augmentation (of V) is a subset E' C E with V k-edge



connected in the graph (W, E' U F). (Here E' and F are multisets; equivalently the weight of an
edge e in E' U F is the sum of its weights in E’ and in F).

In the mincost directed k-EC internal augmentation problem we are given a directed host graph,
a set of vertices V', plus candidate directed edges F and their costs. We seek a minimum cost subset
of E that is a k-EC internal augmentation of V.

(b) (This is a special case of (a).) Recall that in a directed hypergraph, each hyperedge consists
of a set of head vertices and a set of tail vertices [12, p.769]. (A vertex is allowed to be both a head
and a tail.) The natural definitions of path, in-degree and k-edge connectivity apply to directed
hypergraphs. It is easy to see that Menger’s Theorem holds: For any two distinct vertices s, t, the
greatest number of edge-disjoint st-paths equals the smallest number of hyperedges whose deletion
destroys every such path. (This is proved by modelling a directed hypergraph by a directed graph.)
A graph-edge augmentation of a hypergraph consists of the hypergraph plus a number of (ordinary
graph) edges. A k-EC graph-edge augmentation makes the hypergraph k-edge connnected.

In the mincost k-EC graph-edge augmentation problem for directed hypergraphs we are given a
directed hypergraph plus a set of (ordinary) candidate directed edges E and their costs. We seek
a minimum cost subset of E that, when added to the hypergraph makes it k-edge connected.

(c) Any crossing supermodular function remains crossing supermodular when we increase its
value on a singleton set arbitrarily. Similarly for complements of singleton sets. Hence we can add
arbitrary lower bound constraints on the in-degree and out-degree of all vertices. As an example,
consider the problem of finding a minimum cost directed spanning tree (i.e., all vertices must be
reachable from a given root 7). This can be done in polynomial time. Adding lower bounds on the
out-degree of each vertex makes the problem NP-hard (it contains the directed Hamiltonian path
problem). This problem is a supermodular directed cut problem.

(d) Example (c) can be generalized as follows. In a given directed graph, for each vertex v
let Z,, denote an intersecting family of subsets of edges directed to v, and let i, : Z, — Z be an
intersecting supermodular function. Define O, and o, similarly. We can enhance any supermodular
directed cut problem by requiring that the solution contain at least i,(S) (0,(S)) edges of S for
every S CZ, (S C O,) and every v € V. As a simple example the given edges may be colored red
or green and we require a minimum number of edges of each color in each direction at each vertex.

Note that we cannot hope for a constant factor approximation algorithm for the supermodular
directed cut problem if f is a general function. For instance the directed Steiner tree problem is
modelled by such a problem with f(S) equal to 1 if S contains a terminal but not the root, else 0.
However this function is not supermodular.

We use the following “cut covering” linear program, which results from dropping the integrality
constraints from the supermodular directed cut problem. Recall our conventions for vectors, e.g.,
the inner product Z - §(S) equals the in-degree of S using edge weights given by Z.

minimize I
(LP) subject to 2 p(S) (S) Sec

IV NIV

f
i
I

Our approximation algorithm is iterated rounding. Although any version suffices for our upper
bounds we need to be specific for the lower bound examples. We use round-the-highest [11]: Find an
optimum extreme point Z. Fix the value of all components z, that are largest (i.e., equal to ||Z||o)
to their final value [z.]|. Modify (LP) to the residual problem (i.e., replace f(S) by f(S) — [z¢] if
e enters S). Repeat the procedure until all values are fixed.



As shown in [8, 13], if any nonzero extreme point for any instance of (LP) has Ly,-norm at
least e then iterated rounding achieves a 1/e approximation ratio.

3 Lower Bound for Extreme Points

This section proves the Lo, lower bound:

Theorem 3.1 Any nonzero extreme point Z to (LP) has ||Z|lec > 1/3. Hence iterated rounding
achieves approximation ratio 3 for the supermodular directed cut problem.

Consider an arbitrary extreme point Z to (LP). By definition the m components of Z are
uniquely determined by some set of m constraints that have been changed to equalities. Let F
be the set of edges that are not determined by their bounds, F = {e : z, ¢ {l¢,u.}}. The vector
Zr is determined by the degree constraints, i.e., for some family £ of subsets of V', the vector of
unknowns Zp is the unique solution to the linear system

where g(S) = f(S) — Zg_r - p(S) is a positive integer for every S € £. Combining arguments of
Jain [8] and Frank [4], one can show that £ can be taken as laminar. Specifically Melkonian and
Tardos proved the following:

Lemma 3.2 ([11]) There is a laminar family of sets L = TUQO such that Z is the unique solution
for iy in the linear system

) 7r-A(S) = i(S) SeI
Jr-3(S) = o(S) Se€0

where each right-hand side i(S), 0(S) is a positive integer.

Note that 7 is a vector in R™, although only the values in F' are relevant. The lemma holds for
(LP) with an arbitrary crossing supermodular function f. As expected, a set of S € Z (S € O)
corresponds to a set S (V — S) with a tight constraint in (LP). We will use the terms Z-set and
O-set with the obvious meaning. Note that a set can be both.

We define a rooted forest F that represents the laminar family £. The nodes of F are partitioned
into two sets Zr and Ox. They represent the Z-sets and O-sets of L, respectively. Thus F has
|Z| + |O| nodes. A set belonging to Z N O gives rise to two nodes.

Throughout the discussion we identify each forest node and its set. This may cause slight
ambiguities but they will be resolved from the context. As an example if S is a node of F, saying
S € Zx means that S is being treated as a node while S € Z means it is being treated as a set. In
the latter context we will speak of a vertex in §. On the other hand when it is entirely clear that
S is a node we may use the simpler notation S € Z.

If Sisasetin ZNO let S, and S, denote the two corresponding nodes. Define S, to be the
parent of S; in F. We do not specify which node belongs to Zr and which to O — this detail is
irrelevant.

We complete the definition of F by specifying the remaining parent-child relations in F: The
children of a node S are the nodes T' corresponding to the maximal proper subsets of S in £. In
this definition replace S by S, if S € ZN O, and similarly replace T' by T, if T' € Z N O. This
completes the definition of F.



A node of F is a leaf, chain node or branching node depending on whether it has 0, 1 or > 1
children, respectively. Chain nodes have a further classification: A chain node is a I-node if it
belongs to the same family Zz, O as its (unique) child. If not (its child belongs to the opposite
family) it is a 2-node. For example if § € ZN O then S, is a 2-node; S, may be any type of node
(including a 2-node).

The overall proof strategy is Jain’s [8, 13]: Assume for the sake of contradiction that no edge
has value > 1/3, i.e.,, 0 < z, < 1/3 for every edge e. (We can ignore edges with z, = 0.) We will
assign two ends of an edge to each node of F. Each end will be assigned at most once, and at least
two ends will remain unassigned. This contradicts the fact that the number of edges equals the
number of nodes of F (by Lemma 3.2).

We define a notion of “availability” to guide the assignment of ends. Each node of F will be
assigned ends that are available to it. Intuitively we will show that ends available to the leaves of F
pay for the leaves and the branching nodes, while ends available to the 1-nodes pay for themselves.
The 2-nodes pay for themselves, but their available ends can come from other 2-nodes or branching
nodes. The most involved part of the argument is the analysis of 2-nodes. For this reason we
postpone all details concerning 2-nodes and begin by discussing the other nodes.

Consider a chain node S with unique child A. Let e be an edge with an end in S — A. We'll
call e “p-directed” if it’s oriented consistent with S’s family Z or O and “c-directed” if it’s oriented
consistent with A’s family. In precise terms e is p-directed (c-directed) if either

(1) S€Zr (A€ Ixr) and e enters S or A,

or (i1) S € O (A € Of) and e leaves S or A.

Note that in (7) only one of the two possibilities holds, i.e., e cannot enter both S and A, since it
has an end in S — A. Similarly in (i7). Also for a 1-node the notions of p-directed and c-directed
agree, while for a 2-node they disagree.

Let vertex v be an end of edge e and let S be a node of F. Below we define when v, as an end
of e, is available to S. For simplicity we will abbreviate this to “v is available to S” except when it
is necessary to refer to e. The definition for 1-nodes is illustrated in Fig.1(a). Note that availability
to 2-nodes will be defined later, here we give the definition for the other cases.

Definition 3.3 End v of edge e is available to node S of F if (i) or (ii) holds:

(i) When S is a leaf, v € S. Furthermore either S € Ir and e enters S or symmetrically,
S € Of and e leaves S.

(i1) When S is a 1-node, v € S — A for A the child of S. Furthermore e is p-directed.

Clearly v, as an end of e, is available to at most one node.

Lemma 3.4 The number of ends available to leaves of F exceeds twice the number of leaves and
branching nodes.

Proof: A leaf S € Tx is entered by > 4 fractional edges. (If not, Z - 5(S) a positive integer makes
ze > 1/3 for some entering edge e.) Let F have £ leaves. Hence > 4/ edge ends are available to
leaves. F has < £ branching nodes, since any rooted forest has fewer branching nodes than leaves.
The lemma amounts to 44 = 2(2/). O

The rest of the proof is based on linear independence of £. Specifically the set of vectors

-

{p(S): S €T} U{s(S):S € O} is linearly independent.

Lemma 3.5 Fach 1-node has at least two available ends.
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Figure 1: Chain nodes with their unique child. Circles represent Z-sets and squares O-sets. The
chain node is outermost and drawn heavier. (a) 1-nodes and their available edges. (b)—(c) 2-nodes
and their corresponding available edges, when the 2-node is (b) the root, (c) a leaf.

Proof: Consider a 1-node S with child A, where wlog S, A € Zr. The vector @ = §(S) — p(A) has
entries 0 and +1. Every edge e with a, = +1 has an end available to S: If a, = 1 then e enters S
but not A. If a, = —1 then e enters A but not S. In both cases e is p-directed and has an end in
S — A available to S.

Now we need only show @ has > 2 nonzero entries. @ # 0 by linear independence. 7 - @ is a
signed sum of fractions z. that is an integer (the in-degrees 7 - p(S) and Z - §(A) are integral by
Lemma 3.2). Hence there cannot be only 1 nonzero a.. O

Analysis of 2-nodes

Our theorem follows from Lemmas 3.4-3.5 if we show the 2-nodes pay for themselves. We begin
with two simple facts that form the core of the proof:

- - - -

Proposition 3.6 (i) For any sets A C S CV, §(S) = §(A) + (S — A,V —85) —4(4,5 — A).
Similarly for p(S). . .
(ii) For any S CV partitioned into sets A;, i =1,...,7, §(S) — p(S) = Xi—q 6(4;) — p(4;).

Proof: (i7) follows from the well-known fact that p — § is a modular function. For a direct proof
observe that an edge from A; to A; has a coefficient of zero on the right-hand side, since it has

-

coefficient one in both §(4;) and p(4;). O



We start the analysis by defining a subtree Fg for each node S of F. Fg is the minimal subtree
of F having S as its root and each leaf either a leaf of F or a 2-node. As a simple example, Fg is
the single node S when S is a leaf or a 2-node.

For any 2-node S we define a second subtree Fg. F3 is defined like Fg except S must be
interior. More precisely Fg is the minimal subtree of F having S as its root and each leaf either a
leaf of F or a 2-node other than S.

The various trees F§ can overlap: A 2-node S occurs at the root in F§, and also as a leaf in
Fy. for T the first 2-node that is a proper ancestor of S (if such an ancestor exists). It is easy to
see these are the only possible overlaps.

We now complete the definition of availability. This part of the definition is illustrated in

Fig.1(b) (c).

Definition 3.7 End v of edge e is available to the 2-node S if
(i) v (as the end of e) is not available to any leaf or 1-node;
(ii) the deepest node of F that contains v, say X, belongs to F&;
(iti) if X is a 2-node then either X = S and e is p-directed, or X # S and e is c-directed.

We assert that v, as an end of e, is available to at most one node S of F. This is clear from
(¢)—(ii) above unless X, the deepest node of F containing v, belongs to two trees F§. In that case
X is a 2-node and the trees are 7% and F§ for some S # X. Since X is a 2-node edge e cannot be
both p-directed and c-directed (as in Fig.1(b)—(c)). Hence (i77) makes v available to only one of X
and S.

The analysis of 2-nodes uses Proposition 3.6 to derive a nontrivial linear equation for p(.S)
(6(S)) when S is a 2-node in Zr (OF). This equation will immediately give the two edge ends that
pay for S. To prove the equation we will require similar equations for 6(S) (5(S)) when S is an
arbitrary node in Zr (Of). Notice the switch, e.g., when S is a 2-node in Zr the first equation
is for p(S) and the second is for g(S) We specify the desired equations in two steps: First we
describe the equation for 2-nodes. Then we give a similar description for the arbitrary node case.
The equation for 2-nodes is called an “r-expansion” since it is used at the root of 5. The equation
for arbitary nodes is an “n-expansion” since it is used at all nonroots of F5.

We use this additional notation: If 7 is a subtree of F then 7 denotes the tree 7 extended
by including the (unique) child of each 2-node leaf of 7. For instance Fig.1(b) illustrates Fg for a

2-node S.

-

Definition 3.8 Let S be a 2-node. If S € Zr (Of) an r-expansion for p(S) (8(S)) is an equation

-

whose left-hand side is p(S) (6(S)) and whose right-hand side is
(2) 3" 0ad(A) + Y opAB) + Y 0

A€O Bel ecF

where
(i) ca,08 and o are integers; B )
(i) O (1) is a set of nodes contained in FENOr — S (FSNIr—S);
(#i) F is a set of edges, each having an end that is available to S.

Two aspects of this definition deserve comment. In actuality the ¢ factors are simply signs, +.
Our main result only requires the weaker fact that the o’s are integral. We discuss the additional
properties of an expansion after proving the main theorem.

Second consider the fact that condition (i7) excludes node S from O and I. So for example

- -

if S € OF the trivial expansion 0(S) = §(S) is outlawed. But suppose S corresponds to a set in



ZNO. In more detail take S € O with unique child A € Tz, where S and A correspond to the

-

same set of £. (i7) allows I to contain A, e.g., an expansion can have the form §(S) = g(4) +....

Since p(A) is identical to §(S) this amounts to §(S) = p(S) + .... This of course is fine, since the
equation will still be nontrivial.

Example Consider three chain nodes, O,0" € Of, I € Zx, with I the unique child of O and O’
the unique child of I. So O and I are 2-nodes. It is possible that I represents the same set as O or
O'. The tree F}, consists of root O and leaf I; F}, consists of O, I and leaf O'. The r-expansion of
5(0) will derive from Proposition 3.6(i) and have the form §(0) = §(0') + 3 0.¢.

To extend Definition 3.8 let S be an arbitrary node (possibly a 2-node). Let S be the first
proper ancestor of S that is a 2-node, if such exists. If S € Zr (S € O) an n-ezpansion for 5(S)
(p(S)) is defined just like Definition 3.8 changing (i7)—(4i%) to the following:

(i) O C FsN O and I C Fs NIy,

(ii') F is a set of edges, each having an end that is available to S.

This definition also merits several comments. First, (ii') allows F(S) (3(S)) to occur on the
right-hand side if § € Zr (S € Of). This makes sense since we are expanding 3(5) (5(S)).

Second, suppose S corresponds to a set in Z N O, with S € Zr and its unique child A € O.
Although A does not belong to Fs it does belong to Fs. Hence the expansion §(S) = §(A) is
allowed, even though it amounts to the identity 6(S) = &(S). We allow these trivial expansions
since they are just the first step in constructing the nontrivial expansions of Definition 3.8.

Finally note that (4ii') is vacuous if § does not exist (the proof does not use this case).

Here is the main lemma.

-

Lemma 3.9 Consider a node S € Ir. §(S) has an n-ezpansion, and if S is a 2-node then (S)
has an r-expansion. Symmetrically for a node S € Of.

Proof: The proof is by induction on the height of S in F. The inductive assertion consists of
the equation for §(S) or F(S) with right-hand side (2), plus properties (i) —(ii) below. The two
properties simply restate the remaining restrictions from Definition 3.8 and its extension.

The notation S was introduced for n-expansions as the first proper 2-node ancestor of S. To
unify the two cases take S to be S for r-expansions.

Consider any vector € occuring in (2), i.e., e € F. We restate properties (i74) and (4) of the
definitions:

(i) Edge e has an end v available to S.

Next we treat (#4) of Definition 3.8 and (ii'). These statements are essentially syntactic and
require no explicit verification, except for excluding the term p(S) in an r-expansion for 5(S): In
the following O and I refer to the sets of (2).

(1) In an r-expansion for S, S ¢ O U 1.

We organize the induction in three cases. We always assume that we seek an expansion for
0(S). This implies S € Zp for an n-expansion and S € Op for an r-expansion. The argument for
an expansion for §(S) is symmetric.

Case 1. S is a leaf of F. A leaf only has an n-expansion, so we are assuming S € Zr. Fg consists
of the single node S. The desired equation is

(S =S"¢



where e ranges over all edges leaving S. Property (i) holds since the tail of an edge leaving S is
not available to S (as S € Zx) so it is available to S. (i¢) is vacuous.

Case 2. S is a chain node. Let A be the unique child of S. We will sometimes break the analysis
into three subcases. Since we seek an expansion of | (S) these subcases exhaust all possibilities:

(a) S is a 1-node. So A, S € Zx and we seek an n-expansion.

(b) S'is a 2-node in Zr. So A € O and again we seek an n-expansion. The subtree Fg consists
of the single node S. Also S # S.

(c) Sis a 2-node in Or. So A € Zr and we seek an r-expansion. The subtree of interest is F3,

and § = S.

Proposition 3.6(¢) applies to any chain node S and gives
(3) 3(S) =0d(A) + > ¢

where )" + € has e ranging over all edges with coefficient 1 in 6(S — A,V — S) or §(4,5 — A).

We show the sum ) + € satisfies property () for v chosen as the end of e in §— A: First suppose
S is a 1-node. End v of e is not available to the 1-node S (e is not p-directed since S € Zx). Clearly
this implies v is not available to any leaf or 1-node. This makes v available to S.

If S is a 2-node then obviously v is not available to any leaf or 1-node. If S € Zx then S # S
and e is c-directed, so v is available to S. If S € O then S = § and e is p-directed, so again v is
available to S. This establishes (i).

We complete the analysis of Case 2 in two subcases. First suppose S is a 2-node in Zx. Then
(3) is the desired expansion for S. The term §(A) is allowed in the expansion since A € Fg N Ox.
(If S belongs to Z N O we are deriving the equation §(5) = §(A), i.e., §(S) = §(5), but as already
noted this is fine.)

The remaining possibilities are that S is a 1-node, or a 2-node in 0. Both alternatives have
A € Tr. To get the desired expansion for 6(5), take (3) and replace 3(A) by its n-expansion given
by induction. (This expansion exists since A € Zr.)

Property (i) holds by induction. For (i7) suppose S is a 2-node in Ox. The right-hand side of
the expansion of §(A) contains boundary vectors 3(C), F(C) only for nodes C € F4. Clearly C is
not node S. (Note that if A represents the same set as S, it is fine to have p(A) on the right-hand

side.)

Case 3. S is a branching node. A branching node only has an n-expansion so we are assuming
S € Zr. Let the children of S be A;,i=1,...,r (r > 1). Each A; may belong to Zz or O. Define
Ap to be the set S — U;_, A;. It is possible that A is empty, and of course Ay does not belong to
L.

Proposition 3.6(7i) applied to the partition A;, 1 =0,1,...,r gives

@ 5(5) = 7(S) + Y 5(A) - A + Y&

where " + € has e ranging over all edges incident to Ag. This sum satisfies (7): Let v be the end
of e in Ay. Clearly v is not owned by any leaf or 1-node, so v is available to S.

To get the desired expansion for S, start with (4). Then for i =1,...,r,if A; € Zr (4; € OF)
replace 6(4;) (F(A;)) by its n-expansion, respectively.

Note that property (i) continues to hold by induction. (i7) is vacuous. O
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Observe from the proof that each term € occurring in an expansion has |o.| < 2. This is clear
since € can be introduced into the expansion at most twice, once for each of its ends.

We can now show how to pay for the 2-nodes. Consider a 2-node S. By symmetry assume
S € Of. Recall that we wish to show at least two ends are available to S. In the r-expansion of
5(S) each boundary vector is either §(C) for C' an O-set distinct from S, or 5(C) for C an Z-set.
But the boundary vectors for £ are linearly independent. (If S € Of corresponds to the same set
of £ as its child A € Zr then the term g(A) = p(S) may occur in the expansion. This is fine.) We
conclude the expansion involves at least one edge vector term €.

Next we show there cannot be exactly one such term. Multiply the expansion by #. The term

. g(S) is the in-degree of S wrt weights Z. So it is integral. Similarly all the boundary terms
. 000(C), Z-ocp(C) are integral. If there is only one edge vector term &, we have deduced that
- 0c€ = 0¢Ze is integral. But then |o.| < 2 implies z, is half-integral, contrary to our initial
assumption. This shows the expansion contains at least two vectors €. So we have the desired two
ends available to S.

Theorem 3.1 has been proved. We conclude by mentioning an additional property of expansions.

8 8 8

Corollary 3.10 FEach integer o 4,0B,0, occurring in an erpansion equals +1.
Remark For example an edge vector & occurs as +¢& or —€, even if e has two ends available to S.

Proof: The corollary is established by an induction similar to the lemma. We simply state the
inductive assertion, leaving the verification to the reader. In addition to the corollary we assert
two properties. The first pertains only to n-expansions (it is vacuous for an r-expansion):

(1) A boundary vector involving S occurs on the right-hand side of an expansion only with a
plus sign.

For example (i) means that if S € Zr and p(S) occurs on the right-hand side of the expansion of
0(S) then it has a plus sign, + 5(5).

The second property ensures uniqueness for the edge terms é:

(i7) Let edge e be incident to S. If € occurs on the right-hand side of an expansion for 4(.5)

-

(A(S)) its sign is + if and only if it occurs in the vector §(S) (p(5)).

For example (i7) means that if € occurs on the right-hand side of an expansion for §(S) its sign is
+ if it leaves S and — if it enters S. (The sign is arbitrary if it does neither.)

The affect of these two properties is that whenever a term can potentially be introduced a second
time in an expansion, it cancels the previous occurrence instead of building up a coefficient of two. O

-

4 Tight Example

This section shows Theorem 3.1 cannot be strengthened even for the simplest problems of interest.
Specifically, suppose iterated rounding is used to approximate a minimum cost directed k-ECSS.
In each iteration (LP) is the relaxation of a minimum cost directed k-EC augmentation problem.
This section proves:

Theorem 4.1 For any integer k > 1, an infinite family of instances of the minimum cost directed

k-EC augmentation problem has % as the unique optimum solution to (LP). Round-the-highest
has approzimation ratio 3 on these instances (for both mincost k-EC augmentation and mincost
k-ECSS).

11



The proof begins by exhibiting a “generic” supermodular cut problem where % is the unique opti-
mum. Any supermodular function that can model the generic problem will satisfy a corresponding
version of Theorem 4.1. We show this is the case for minimum cost k-ECSS.

We begin by specifying the laminar family £ and the extreme point Z of the generic example.
Every set of £ has degree requirement equal to one. Every edge e has z. = 1/3. Our example can be
arbitrarily large, and is composed of units called “modules”. There are three rules for constructing
the example, illustrated in Fig.2: (In Fig.2(b) ignore the label X — it will be used later.)

(1) An elementary module consists of 8 sets, 5 internal edges and 6 incident edges, arranged
as in Fig.2(a). The module on the left (right) has its outermost set in O (Z), so we call it an
elementary O-module (Z-module). The two types of modules are identical except that edges C' and
« are reversed, so the O-module has two O-sets (the outermost set and its left child) where the
Z-module has two Z-sets.

(i1) A compound module consists of two modules combined as illustrated in Fig.2(b). As before
the module on the left (right) is a compound O-module (Z-module). Each of the two constituent
modules is a child module, and the new sets and edges form the parent module. The two module
types have the same edges except for the reversal of the three C' edges.

(137) A complete generic example consists of two modules combined as in Fig.2(c). Each of the
two constituent modules is a root module.

A generic example can be viewed as two binary trees combined at the root. Hence we can use
binary tree terminology, e.g., left child, left sibling, etc.

Fig.2 shows that every Z-set is entered by exactly three edges and every O-set is left by exactly
three edges. Hence taking every z. to be 1/3 gives every set of £ the desired in- or out-degree of
one. We will show this Z is the unique vector for which all sets of Z (O) have in-degree (out-degree)
equal to one.

Before proceeding we point out what’s important in the construction and what isn’t. Elementary
modules of both types are needed to get a rich enough set of constraints. We could omit compound
modules of one type from the generic example, but both types are needed to convert the example
to a graph.

Some asymmetry in the two halves of an elementary module must be present. If not the degree
requirements become linearly dependent and solutions other than & are introduced.

The last point applies if we wish to realize the example as a 1-ECSS problem. This outlaws
certain configurations. For instance consider an elementary O-module where S € O is the left child
of the outermost set, and Sy (S2) is its left (right) child. We cannot change S from an O-set to
an Z-set. To see this observe S € O, S51,52 € T implies no integral edge leaves S or enters S; or
S5. That makes S — S1 — S2 a set of out-degree zero wrt the integral edges. This would make &
infeasible since « is the only fractional edge leaving S — 51 — Sa.

Now we prove the uniqueness of Z. To simplify notation we will use the edge identifiers to
denote the corresponding values z., e.g., we write A instead of z 4, etc. We begin by writing the
degree requirements for an elementary module. The four leaves give these requirements, for both
O- and Z-modules:

5) A+a+vy=1 A+d+p=1
B+a+p=1 B +d+y=1

For an O-module the parents and grandparents of the leaves give these requirements,

(©) B+a+pB=1 A+a+p=1
B +C+~vy=1

12



(b)

(c)
Figure 2: Lower bound example. Every module has incident edges A, B, C, A’, B', which are drawn

a) Elementary modules of type O (left) and Z (right). (b) Compound modules of type O

T (right). (c) Root modules.
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dashed.
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O-module Z-module

compared equation | deduction || compared equation | deduction
A =B A=PB

(6) bottom v=B (8) bottom g=A

(5) bottom right a=C (5) top right a=C

(5) top right B=DB (5) bottom right v=A

(5) bottom left a=C (5) top left a=C

(5) top left A=DB (5) bottom left A'=B

(6) top left a=C (8) top left a=C

Table 1: Proof of Lemma 4.2(7).

and the outermost set gives this requirement:
(7) B+B +C=1
For an Z-module the requirements are similar:

(8) A+a+y=1 B +a+y=1,
A+C+p=1

(9) A+ A +C=1

Lemma 4.2 Consider any feasible values for a generic example.

(i) Any elementary module has A = B' and B = A'. Furthermore each of the five internal edges
equals one of the external edges A, B or C.

(ii) Any compound module has A = B' and B = A'. Furthermore each of the four internal
edges equals one of the external edges A, B or C.

(i1i) Every edge incident to a root module equals 1/3. Hence every edge of the entire generic
example has value 1/3.

Proof: (i) Consider an O-module. The top two equations of (6) both have o + 3 on the left-hand
side. Hence A’ = B. Similarly for an Z-module (8) gives A = B’. The rest of the argument is
similar: For O-modules we repeatedly compare an equation with (7) and deduce the value of a
variable. For Z-modules we repeatedly compare with (9). The argument is presented in Table 1.

(#2) In both modules of Fig.2(b) each edge identifier occurs three times. We differentiate them
by using the subscript 1 (2) to refer to the occurrence in the left (right) child module and no
subscript at all for the parent. So the leftmost edge is denoted A and also A;.

We first show that when both children have A = B’ and B = A’ so does the parent. The
argument is the same for both module types. Equating the two variables for each edge (in an order
we’ll use in a moment) gives

A=A, B/=A4, B,=B B=B, A\'=B, A,=A.

The first three quantities are equal since the assumption gives A1 = Bj, A2 = B}. Thus A = B’ as
desired. Similarly the second three quantities are equal, giving B = A'.

For the internal edges we have deduced A = Bf = Ay and B = A} = B,. Consider an O-
module. Let 7 = 1,2. Since we have deduced B = B; and B’ = BJ, the parent requirement

14



B+ B'+ C =1 and the child requirement B; + B + C; = 1 give C = C;. The same argument
applies to an Z-module.

(131) We differentiate the edge identifiers in the top and bottom root modules (Fig.2(c)) by using
the subscript 1 and 2 respectively. Equating the two variables for each edge, in an appropriate order,
gives

Ci = AIQ By = All By = A, Bé = A Bi = (5.

(i) and (4i) show consecutive quantities are equal, A, = By, A} = By, Ay = B), A; = Bj. Thus
all ten quantities are equal. The in-degree equation By + B} + C; = 1 implies the common value
is 1/3.

Now the second parts of (7) and (i¢) imply that every edge of the entire example has value 1/3. O

We have shown that Z is the unique extreme point for the generic example.

k-ECSS Example

We show for any & > 1 the mincost k-ECSS problem can give rise to any generic example. We
start by showing how to construct the graph G for the k-ECSS problem corresponding to a given
generic example. As an overview, G will consist of “base edges” and “generic edges”, the latter
being those of the generic example. The extreme point Z will have z. equal to its upper bound
(i.e., the weight of e) for the base edges and z. = 1/3 for the generic edges.

As illustrated in Fig.3, G has six vertices for each elementary module and one vertex X for each
compound module (X is as illustrated in Fig2(b)). There is a slight difference in how elementary
and compound modules are joined to their parents. For that reason Fig.3(a)—(b) show both the
elementary module and the vertex X of its parent. Similarly Fig.3(c)—(d) assume that the two chil-
dren of the compound module are themselves compound modules. (As a minor point these figures
assume a compound module has two children that are either both compound or both elementary.
For convenience we restrict ourselves to this case.)

An elementary module and vertex X of its parent gives rise to the subgraph illustrated in
Fig.3(a) for O-modules and (b) for Z-modules. The base edges are on the left and the generic edges
are on the right. The correspondence between those generic edges and Fig.2(a) is clear.

Each compound module (Fig.2(b)) with two compound children gives rise to the subgraph of
Fig.3(c)—(d). The two root modules (Fig.2(c)) give rise to the subgraph of Fig.3(e). In all cases X}
and X5 are the X vertices of the two child modules. The generic edges incident to the subgraphs
of the child modules are identified exactly as indicated in Fig.2(b)—(c).

Note that when k& > 1 some base edges are parallel with generic edges: X7 X and X5 X in Fig.3(c)
and XX, XX5 in (d). We could eliminate parallel edges by, e.g., introducing more vertices. For
simplicity we keep the parallel edges.

The vector & that we have specified makes the sets of £ in the generic example tight. To verify
this first consider an elementary module (Fig.2(a)). The two leaf sets of required in-degree one in
L correspond to {v} and {v'} in Fig.3(a)—(b). These sets both have in-degree k — 1 wrt the integral
edges of Z (i.e., the base edges). This leaves a required in-degree of one for the generic edges, as
desired. Similarly the remaining sets of Fig.2(a) correspond to {w}, {w'}, {v,w, u}, {v',w', u'} and
{v,w, p,v',w', yu'} of Fig.3(a)-(b). The correspondence of Fig.2(b) with Fig.3(c), and Fig.2(c) with
Fig.3(d), is also similar.

To complete the claim that Z is an extreme point, we must show it is feasible to (LP), i.e., no
set separating two vertices has in-degree < k when edge weights are given by . We also need to
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Figure 3: Graph for a generic example. (a) Subgraph for elementary O-module and its parent
vertex X. X is drawn hollow as it is in a different module. (b) Subgraph for elementary Z-module
and its parent. (c) Subgraph for compound O-module with two compound children. (d) Subgraph
for compound Z-module with two compound children. (e) Subgraph for the root modules. The
generic edges for elementary modules are in the right graphs of (a) and (b); generic edges for
compound modules and the roots are in Fig.2(b)—(c). All generic edges have weight 1. Base edges
are in the left graphs of (a) and (b), and the graphs of (c)-(e). Base edges have weight either k
(drawn solid) or k — 1 (drawn dashed). 16



exhibit a feasible integral solution ¥ to (LP). (¥ will be a minimum cost k-ECSS.) Define y, to be
the upper bound on all base edges and on all A, B, A', B', C" edges. Set y. to 0 on the remaining
edges (a,d’, a, 3,7).

Partition the base edges into two sets: Fj consists of all base edges chosen up to weight k£ — 1
and F consists of the remaining base edges, i.e., F1 contains one copy of each weight k£ base edge.
Fp includes a collection of length 2 or 3 cycles that are weakly connected and span the entire graph.
Thus Fj is (kK — 1)-edge connected. Since Z and ¢ both contain all base edges it suffices to show
that these vectors, with Fy deleted, are both strongly connected. For the rest of the feasiblity proof
assume that & and g refer to these vectors with Fy deleted. So the only base edges that remain are
those of Fi, the solid base edges of Fig.3.

The elementary O-modules have a natural left-to-right order, since they are the leaves of a
binary tree. When discussing the O-modules we use M;, and Mg to denote the leftmost and
rightmost elementary (J-modules, respectively. The same applies to Z-modules, and we use M,
and Mp similarly when discussing them.

The following lemma will complete the proof that ¢ is strongly connected and so feasible to
(LP).

Lemma 4.3 F| plus all the edges A, B, A", B',C form a strongly connected spanning subgraph H
of G.

Proof: First notice in Fig.2(a)—(b) that the A, B edges of any elementary module are joined in H
by the base edge path v, u, w. Similarly edges A’, B' are joined by v/, u/, w'.

The five edges at the root (Fig.2(c)) are part of a cycle R. To see this observe that edges A1, By
at the root come from the same elementary module (My) and so are joined by a path v, u,w.
Similarly for the other pairs of edges at the root (Ay, Bo; AY, Bi; A5, BS). Hence the five edges in
the root module are part of a length 13 path from C; to Cs. The base edge from Cs to C; (Fig.3(e))
completes the cycle R.

Now we show that every vertex of G has paths to and from R. This is clear for a vertex
X of a combined module: C edges (Fig.2(b)) provide the path in one direction and base edges
(Fig.3(c)—(d)) in the other.

It remains to consider the vertices in elementary modules. Let M be an elementary module
distinct from M and let M’ be the elementary module immediately to its left. Fig.2(b) shows
that edges A, B of M are identified with A’, B’ of M’ (in the compound module that is the least
common ancestor of leaves M and M'). So vertices v, u,w of M and v', ', w" of M’ form a length
six cycle in H. Edges between X vertices and pu, ' complete paths that join this cycle to and from
R. (Specifically for O-modules use base edge Xy from M and C edge ' X from M'. For Z-modules
use base edge pX from M and C edge X' from M'.)

This argument accounts for all vertices of elementary modules except v, u, w of My, and v/, p’, w'
of Mg. But these vertices belong to the cycle R. We conclude H is strongly connected. O

Now we show 7 is feasible to (LP) too.
Lemma 4.4 % (with weights decreased by Fy) is strongly connected.

Proof: Say that two vertices s and t are strongly connected if there are st- and ts-flows of value
one. We will repeatedly choose two vertices s and ¢, show they are strongly connected, and then
contract s and ¢. Contracting the graph to one vertex will prove that Z is strongly connected.
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We start by defining a pair of cycles for the O-modules and a similar pair for the Z-modules.
For the O pair (Z pair) the cycles traverse all vertices of the elementary O-modules (Z-modules).
Furthermore the only edges common to both cycles of a pair are base edges.

The “rightward cycle”, denoted Yg for both O and Z, traverses the modules in left-to-right
order. For both O and Z, Yy traverses each elementary module along the path

(A) v, p,w (B) V', ', w'(B)

where the last edge B’ is edge A of the next module (Fig.2(b)). The rest of Yy is a path from B’
of Mg to A of Mj. We define it first for O and then for Z. For O the path is in the Z-module. In
terms of Fig.2(c) this path must go from B} = Cs to A; = B). This path consists of C' edges in
the Z-module (Figs.2(b) and 3(b)), ending in edge p'w’ of Mg. For 7 the path is in the O-module.
In terms of Fig.2(c) this path must go from B) = A; to A2 = By. This path is simply v, g, w in
the O-module M7y,.

The “leftward cycle” Yy, is similar. It traverses each elementary module along the path

(AN p' s w' (y) v,y w (B)

where the last edge B is edge A’ of the next module (Fig.2(b)). The rest of Y7, is a path from B
of My, to A" of Mg. For O the path is in the Z-module. In terms of Fig.2(c) this path goes from
By = Ay to A} = Bsy. So the path is simply v, u,w in the Z-module M. For Z the path is in the
O-module. In terms of Fig.2(c) the path goes from By = A} to A} = C;. This path consists of
edge v'y’ of Mg followed by C edges in the O-module (Figs.3(a) and 2(b)).

Observe that as claimed, Y7, and Yg for O have distinct generic edges. This includes the edges
of the root module. The same holds for Z.

We now show in steps (a)—(d) that the vertices of the elementary module M can be contracted
into its parent vertex X. The arguments of (a) and (b) apply to both O- and Z-modules M.

(a) v and w are strongly connected: The vw-flow is just the base edge path v, yu, w. The wv-flow
routes 1/3 unit from w to v along each of the cycles Yz, Yg and 1/3 unit along edge a. Similarly v’
and w' are strongly connected.

(b) In G/{v,w} the contracted vertex {v,w} has base edges to and from p. Hence we can
contract {v,w,u}. Similarly for {v',w', u'}.

(c) The contracted vertices {v, w, u} and {v',w’, 4’} are strongly connected: For simplicity refer
to these vertices as p and ' respectively. Suppose M is an O-module, Z-modules are symmetric.
Both flows between u and p’ use the two cycles Y7, and Y. The third path is provided by edge a
for the pu'-flow and path u', X, u for the p'p-flow. Neither a nor edge ' X = C belongs to either
cycle, and Xy is a base edge. So the flows are valid.

(d) Now form the contracted vertex A = {v,w, u,v',w',u'}. A is strongly connected with its
parent X: First assume M is an O-module. An X A-flow is provided by the base edge Xu. The
AX-flow routes 1/3 unit on edge p'X and 1/3 unit on two other paths, constructed from Yz, (Yr)
and base edges. For Y, follow that path from A to B} = C3. Then use base edges to get to Cy
(Fig.3(e)) and then the goal vertex X (Fig.3(c)). For Yy, follow that path from A to B; = A,.
Follow base edges of the Z-module to get to Co (Fig.3(d)); then follow the same path as Yx.

Z-modules are symmetric: In the X A-flow the paths constructed from Y7, and Yx both start by
following base edges from X to the root O-module’s vertex X (Fig.2(d), (e)). Then following edge
Cy = Aj leads to Y. Following base edges in the O-module take us from the root X to By = A,
which is the start of Yg.

Now consider a compound module. Assume all descendants of X; have been contracted into
X1. X and X are strongly connected by exactly the same argument as in (d).
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Finally when the graph has been contracted to two vertices, Figs.2(c) shows that the vertices
are joined by three generic edges in both directions. O

To complete the definition of the k-ECSS problem we specify the cost function. Say that an
edge of an elementary module M is costly (wrt M) if it is labelled a,d’, «, 8,7, A’ or B'. Observe
that an edge labelled A’ or B’ at one of its ends is labelled differently at its other end — the second
end is either A or B (Fig.2(b)) or A, B or C (Fig.2(c)). This implies that any edge is costly for
only one elementary module. (Edge By = A; of Fig.2(c) is not costly — it is the only edge with an
end labelled A or B that is not costly.) Now define the cost of an edge to be 1 if it is costly (for
any elementary module). All other edges have cost 0.

Letting e denote the number of elementary modules, any feasible solution to (LP) costs > 2e.
In proof first note that in an elementary J-module edge w'y’ is the only cost 0 edge leaving w’,
and X' is the only cost 0 edge entering {v',w', u'}. Both of these cost 0 edges have weight k — 1.
Hence any feasible solution contains costly edges of weight > 1 leaving w', as well as costly edges
of weight > 1 entering {v',w', u'}. Thus each elementary O-module increases the cost by 2. The
same holds for each elementary Z-module, where we look at the edges entering v’ and those leaving
{v',w',u'}. This gives total cost > 2e.

Both Z and ¢ have costly edges of weight exactly 1 leaving w’ and entering {v',w’, 4’} in an
O-module, and entering v’ and leaving {v',w’, 4’} in an Z-module. Thus both vectors have total
cost 2e and both vectors are optimum for (LP). If our algorithm finds the extreme point Z it
can round up all costly edges, giving an integral solution of cost 6e. This gives the claimed the
approximation ratio of 3.

Finally we note that it is easy to modify the example to make Z the unique extreme point. In
detail, choose a value € > (. Increase the cost function by e times the in- or out-degree of each set
of L. For instance for {v} of an elementary module add €A + ea + €7 to the cost function. Lemma
4.2 shows that for any € > 0, Z is the unique optimum for the modified LP. So the algorithm finds
a k-ECSS of cost > 6e. The cost of the integral solution 7 approaches 2e as ¢ — 0. (Specifically, it
is easy to see that |£| = e + (e — 2) = 2e — 2, and any set of £ has degree < 3 wrt . Thus ¥ has
cost < 2e + (2e — 2)3e.)

5 Mixed Graphs

This section examines supermodular cut problems when the graph is mixed, i.e., both undirected
and directed edges are allowed. To put the results in perspective note that any algorithm with
approximation ratio r for directed supermodular cut implies an approximation ratio of < 2r on
mixed graphs: The mixed algorithm simply models each undirected edge of cost ¢ by two antiparallel
edges of cost c. Although one might hope that iterated rounding on mixed graphs would perform
at least as well, our main result suggests this is not true:

Theorem 5.1 For any integer k > 1, an infinite family of instances of the minimum cost k-EC

augmentation problem on mized graphs has % as the unique optimum solution to (LP). On these
instances round-the-highest has approzimation ratio n/2.

The section ends with two more positive results for the special cases K = 1 and all edges undirected,
respectively.

We sketch the proof of Theorem 5.1. As in Section 4 we start with a generic example, illustrated
in Fig.4(a)—(c). There are n = 2h vertices, with h vertices v1,...,v, on the left and a symmetric
group of vertices wy, ..., wp on the right. Vertex v1 (w1) is joined to every other vertex on the left
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Figure 4: Mixed graph example. (a) Generic undirected edges. (b) Generic directed edges. All
generic edges have weight 1. (c) Typical set of £ belongs to Z N O, drawn as rounded rectangle.
The set consists of the first ¢ vertices. There are h + 7 incident generic edges. Of these, h — ¢ are

undirected, 7 are directed into the set and i leave the set. (d) Base edges. All base edges have
weight k — 1.

20



(right) by an undirected edge (Fig.4(a)). There is a cycle of directed edges, each edge joining a left
vertex with a right (Fig.4(b)). For each i, 1 <i < h, {v,...,v;} ({w,...,w;}) belongs to TN O
with in-degree and out-degree both required to be 1 (Fig.4(c)).

Observe that % is the unique solution for £. In proof, this vector clearly satisfies all degree
constraints. For uniqueness, the two directed edges incident to v; must have the same weight,
since p({v1}) and by ({v1}) are identical except for those two edges. Repeating this argument for
increasing i shows the two directed edges incident to each v; have the same weight (compare the
two boundaries of {vi,...,v;}). The same holds for the two directed edges at w;. Hence the
cycle of directed edges forces all directed edges to have the same weight. The in-degree constraint
for {v1,...,vp} show that weight is 1/h. Finally comparing the in-degrees of {vi,...,v;—1} and
{v1,...,v;} shows each undirected edge has weight 1/h.

When k£ > 1 we can model the generic example as a mincost k-EC augmentation problem. The
base edges form a Hamiltonian path as shown in Fig.4(d), each edge having weight & — 1. (This
introduces two copies of edges v1vy and wiwy. We could easily avoid this by changing each of the
two base edges to two antiparallel directed edges.) All directed edges cost 1 and all undirected
edges cost 0.

For this problem any solution to (LP) costs > 2 because of the in-degree constraints for
{v1,...,vp} and {wi,...,wp}. Define Z to be k — 1 on all base edges and 1/h on all generic
edges. Define i to be k — 1 on all base edges and 1 on undirected edges vivp, wiwy, and directed
edges viwi, wpv1. It is easy to see that both vectors cost 2. Also both vectors are feasible (i.e.,

they make the graph k-edge connected) because of the assumption & > 1. Z is an optimum extreme

point, and once we fix its integral components we get the vector % as an optimum extreme point.

As usual a perturbation of the cost function makes it the unique optimum.
Our example leaves open the case £ = 1. Perhaps surprisingly in this case iterated rounding
does better than doubling the approximation ratio:

Theorem 5.2 For any minimum cost 1-EC augmentation or internal augmentation problem on
mized graphs, any nonzero extreme point to (LP) has Lo-norm > 1/4. This bound is tight on an
infinite family of instances.

The theorem is proved in the Appendix.

Finally consider the supermodular directed cut problem when the given graph G is undirected.
This can model mixed graph problems such as mincost k-EC undirected-edge augmentation for
digraphs. Jain’s algorithm [8] provides a 2-approximation. To see this recall that a function
f:2V > Ris weakly supermodular if

(10) f(A) + f(B) <max{f(ANB) + f(AUB), f(A=B)+ f(B—A4)}

for any two sets A, B C V. Jain’s iterated rounding algorithm gives a 2-approximation for super-
modular directed cut when f is weakly supermodular and G is undirected. So the applicability
of Jain’s algorithm is guaranteed by the next proposition. For this proposition A denotes the
complementary set V — A.

Proposition 5.3 Let f be a crossing supermodular function on 2V. Then the function g defined
by g(A) = max{f(A), f(A)} is weakly supermodular.

Proof: When h is symmetric (h(A) = h(A) for all A) inequality (10) for h and sets A and B
implies (10) for sets A and B as well as A and B. Now consider g and sets A, B. If A and B
do not cross then, by possibly complementing A and/or B, we can assume A and B are disjoint.
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Then trivially g(A) + g(B) = g(AN B) + g(AU B). If A and B cross, by possibly complementing
A and/or B we can assume g(A) = f(A) and ¢g(B) = f(B). Then crossing supermodularity gives

9(4) +9(B) < f(ANB) + f(AUB) < g(ANB) 4+ g(AU B). O
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Appendix A The 1-EC Augmentation Problem for Mixed Graphs

We begin by proving the first part of Theorem 5.2: For any minimum cost 1-EC augmentation or
internal augmentation problem on mixed graphs, any nonzero extreme point to (LP) has Ly-norm
> 1/4. To restate the problem, we are given a host graph H = (W, F'), a subset of vertices V C W,
and a set of potential edges E on V with costs. We seek a minimum cost subset E' C E such that
V is 1-edge connected in the graph (W, E'UF). The sets E and F are mixed, i.e., they may contain
both directed and undirected edges.

Let us also describe the supermodular requirement function f for our problem. The range of f
is the set of integers < 1 (where only sets with f(S) = 1 give a relevant constraint in (LP)). For
any set S #0,V,

f(S) =1 if and only if no path goes from V — S to S.

The graph referred to in this characterization is H. When we are solving a 1-EC internal aug-
mentation problem by iterated rounding we can enlarge H by all edges that have been added to
the solution so far. The characterization follows easily from the fact that by definition, f(S) =1
exactly when some set T C W —V has p(SUT) =0.

As in Section 3 we prove Theorem 5.2 by contradiction. Assume every z. is < 1/4.

We change some basic definitions from Section 3. L is represented by a forest F, where each
set of L corresponds to one node of F. So unlike Section 3 a set of Z N O has only one node in F.
An end of an edge is available to the smallest node of F that contains it. (This is unlike Section 3
but is the same notion as ownership in [8].)

A t-set is a set of L that is the disjoint union of one or more sets of ZN O. For example a set of
ZN O is the simplest of t-sets. Assume (as in [7]) that the family £ is light — it minimizes the total
size of all its sets. A set in Z N O contributes twice to the total size. Clearly lightness guarantees
that £ is a minimal family, i.e., the constraints of the system (1) are linearly independent.

The following lemma gives the facts that we need about available edges.

Lemma A.1 Let S be a node with children A;, i=1,...,r, r > 0.

(i) S has > 5 available ends if it is a leaf, and > 6 available ends if it is a leaf in TN O.

S has > 5 available ends if any of the following conditions holds:

(i1) S is an I-set, each A; is an O-set or the disjoint union of O-sets, and S # UA;. Symmet-
rically for S an O-set.

(iii) S is not a t-set but every child A; is.

(iv) S € TN O and every child A; but possibly one is a t-set.

Proof: (i) No integral edge enters a set of Z or leaves a set of O. Hence S — UA; has no entering
integral edge. Since 7 is feasible, the fractional edges entering S — UA; weigh > 1. So if < 4 edges
enter then some z, > 1/4.

(i) Part (i7) shows S has > 5 available ends. Suppose S € ZN O. At least one directed edge e
is incident to S, since the vectors 5(S) and 6(S) are distinct. Assume wlog that e enters S. Part
(77) gives an additional 5 edges that leave S.

(131) S # UA; since equality makes S a t-set. Each A; is the disjoint union of sets of Z N O.
Now part (iz) applies to S.

(1v) S satisfies the first two hypotheses of (i7). (For the second hypothesis we can assume by
symmetry that the child which is not a t-set belongs to 0.) So we need only show S # UA;. We
claim a slightly more general statement: A node S € ZN O cannot be written as the disjoint union
of sets B;, 0 <¢<r,where B, ¢ ZNQO fori>1 and By € L.
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To prove the claim assume that S is partitioned into the sets B;. This makes the vectors
5(S), 7(S),0(B;) and §(B;) linearly dependent, by Proposition 3.6(ii). Hence By € Z & O, since
the constraints of the system (1) are linearly independent.

In the rest of this argument say that a set S is tight if its constraint in (LP) is satisfied with
equality for our extreme point Z. (Recall that a set S € Z is necessarily tight, and a set S € O
has V — S tight.) Assume momentarily that By and V — By are both tight. Form the family £’ by
starting with £ and removing S from O and adding By to the family Z or O that doesn’t currently
contain it. Let (1) continue to refer to the linear system of Lemma 3.2 using our laminar family L.
Form a new linear system (1) that corresponds to £', where the two constraints for By in (1') are
equivalent to tightness of By and V — By respectively. Our assumption implies Z remains a solution
to (1'). (1') has only one solution (since (1) has a unique solution, and the constraint vector 6(9) in
(1) is spanned by the constraint vectors of (1), by Proposition 3.6(i)). So Z is the unique solution
to (1’). This makes £’ a valid choice of laminar family for Z. But this contradicts the lightness of
the family L.

It remains only to verify our assumption that By and V — By are tight. Each set S,V — S,
B; and V — B; (1 > 0) is tight since S,B; € ZN O, ¢ > 0. Suppose By € O and we need to
show that By is tight. (When By € Z we need to show that V' — By is tight — this argument is
symmetric). Proposition 3.6(i%) gives §(S)—p(S) = > i—¢ §(B;) —p(B;) when all in- and out-degrees
are computed using weights given by the edges of host graph F' plus those of Z. For these weights
all terms are exactly 1 except for p(By) which is unknown. So this implies p(By) also equals 1. To
show By is tight we need only show f(By) = 1.

Our opening characterization of f shows that we want to prove that no vertex s € V — By can
reach a vertex of By (in graph H). We proceed by contradiction. Any such s must belong to S,
since f(S) = 1. Hence s belongs to some set B;,i # 0. Now s shows f(V — B;) # 1. But B; € O
implies f(V — B;) = 1. O

As before classify the nodes of F as leaf, chain or branching. (A node of ZN O can be any of
these types.)

We now show how to pay for all the L£-sets and derive the desired contradiction. We begin by
assigning two edge ends to every node of F. Specifically, each chain node S has 2 available ends
as before (by Lemma 3.5, since with the new definition of F we can consider S to be a 1-node).
Assign these ends to S itself. Each leaf node has 5 available ends (Lemma A.1(:)). We use 4 of
them, and assign 2 ends to each leaf and 2 ends to each branching node. Just as before there are
> 2 ends from leaves still unassigned (Lemma 3.4) which we set aside for the contradiction.

To complete the proof we need only assign 2 more ends to each node S € TN O. We will use
the following rule:

(*)  Assign any end that is currently unassigned to the smallest set of Z N O that contains it.

Note that a node of Z N O will be assigned any ends available to it, and possibly others. (x) does
not apply to the 2 ends from leaves that were set aside.
To show that (%) pays for the remaining sets S € Z N O we examine three cases:

Case 1. S a leaf. Lemma A.1(i) shows S began with 6 available ends, of which only 4 were assigned
(or put aside). (x) assigns the extra 2 to S.

Case 2. S a chain node. Lemma A.1(i7) shows S began with 5 available ends (since whichever
family its child is in, S belongs to the other). Only 2 ends were assigned. (%) assigns the extra 3
to S, although only 2 are needed.
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Case 3. S a branching node. Let the children of S be A;. If all but at most one child is a t-set
Lemma A.1(iv) shows S began with 5 available ends. None were assigned and (*) assigns them all
to S.

We can now assume > 2 children of S are not t-sets. Let A; be such a child. Let B; be a
maximal descendant of A; that is not a t-set, but all its children are. (Maximality refers to viewing
B; as a vertex set. In particular note that maximality makes S the first ancestor of B; that belongs
to ZN . B; exists since a leaf has no children.) Lemma A.1(4i7) shows B; began with 5 available
ends. At most 4 of these were assigned (if B; is a leaf; for a chain (branching) node only 2 (0) were
assigned, respectively). (*) assigns the extra end to S since as noted, S is the first ancestor of B;
in ZN O. Since there are two sets B;, S gets the necessary 2 ends. This concludes the proof of the
first part of Theorem 5.2.

Tight Example

We sketch the tight example for Theorem 5.2. The generic example is illustrated in Fig.5 (for now
ignore v and w in Fig.5(a)). It is built up by combining two simple modules (Fig.5(a)) into an
elementary module (Fig.5(b)), and forming compound modules (Fig.5(c)) from two smaller elemen-
tary or compound modules. We complete the example by forming a mazimal compound module
(Fig.5(d)) from two compound modules, and then forming the entire example (Fig.5(e)) from two
maximal compound modules. Every in- or out-degree constraint in £ has value 1.

% is the unique solution for the edges of the generic example. In proof, first observe that as
indicated in Fig.5(a) the 2 undirected edges incident to a simple module must have the same weight
a as the internal directed edge. (The right leaf and its parent have the same in-degree, 1. They
have the same entering edges except for the internal directed edge and the leftmost undirected edge.
Hence these two edges have the same weight.) The elementary module of Fig.5(b) is composed of
two simple modules which are forced to have the same value of a (because of the internal undirected
edge). The 2 edges labelled « are then forced to have the same weight o (since the leftmost and
rightmost leaves have the same degree constraint, 1). Similarly for the 2 edges labelled 8. The
same logic forces the labels in Fig.5(c). In Fig.5(d) the two constituent modules are forced to have
the same value for a, but the weights o/, 8’ of the right module need not be the same as a, 8. In
Fig.5(e) the 8 edges are arranged in a cyclic fashion with consecutive edges equal (e.g., the two
edges of weight «). This forces all 8 edges to have the same weight. Since the two modules in
Fig.5(e) belong to Z this common weight must be 1/4. It is now easy to see that a = 1/4 (e.g.,

from the dashed edges of Fig.5(c)). This also shows that 1 is feasible, i.e., all degree constraints of
L are satisfied.

To convert the generic example into a mincost 1-ECSS or 1-EC augmentation problem problem
we modify each simple module (Fig.5(a)) as follows. Change each of the two leaves into singleton
sets. So (as in Fig.5(a)) we have two vertices v, w joined by the internal directed edge vw. Add
the reverse edge wv as a base edge. Every generic edge costs 1 and every base edge costs 0.

Let n be the number of vertices in the example graph. Then n/2 lowerbounds the optimum
of (LP). (O contains n/2 singleton sets, each requiring outgoing edges of cost 1.) Define Z to be
1 on every base edge and 1/4 on every generic edge. Define § to be 1 on every base edge, every
undirected edge, and on 2 directed edges at the root module, one in each direction. The cost of
these two vectors is n/2 and n/2 + 2, respectively. Assume for the moment that both vectors
are feasible to (LP). Then # is an optimum solution and ¥ upperbounds the optimum integral
solution. Applying round-the-highest to Z gives a solution of cost 2n. Hence the approximation
ratio is > 2n/(n/2 + 2), which approaches 4 as n — oo.

It is easy to see that i is feasible, i.e., it gives a strongly connected graph: A simple induction
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Figure 5: Generic example for 1-EC mixed graph augmentation. Edges incident to a module are
drawn dashed. (a) Simple module. (b) Elementary module. (¢) Compound module. (d) Maximal

compound module. (e) Root module.
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shows that every simple, elementary and compound module has a Hamiltonian path from right to
left. Hence each maximal compound module has a Hamiltonian cycle. The 2 directed edges at the
root tie these cycles together into a strongly connected graph.

The proof that 7 is feasible is longer and again we only sketch it. First some terminology. Let
M range over the two maximal compound modules (Fig.5(d—e)). Let M; range over the two halves
of M (Fig.5(d)). In an elementary module Fig.5(b) label the 2 currently unlabelled edges just like
Fig.5(c): the upper, right-to-left edge is an « edge and the lower, left-to-right edge is a (3 edge.
Define the following paths (C'L has already been used in the previous paragraph).

CR: a “rightward” Hamiltonian cycle through M, formed by the a-edges;

CL: a “leftward” Hamiltonian cycle through M, formed by the undirected edges and
the base edges;

Pa: a path through all vertices of M;, formed by the o edges and the base edges;
Pg: a path through all vertices of M;, formed by the 8 edges and the base edges.

We start by showing vertices v and w of a simple module are strongly connected. Considering
base edge wv, we need only exhibit a vw-flow of value 1. Switch now to an elementary module
E, with vertices vy, w; in the left half and v, ws in the right half. We will exhibit a v;w;-flow for
1 = 1,2. We will form the flow from 4 paths, Pi,..., P, that are edge-disjoint except for base
edges.

P, is the generic edge v;w;. P, consists of 3 edges internal to E (specifically the o and 3 edges
and the base edge w;v;, j # 1). P3 is CL — w;v;. For P, assume F is contained in the maximal
compound module M and let M’ be the other maximal compound module. Then P, for i = 1
starts at v; and follows P« until it enters M’ (along an edge of Fig.5(e)). It then follows CL (of
M') to the edge of Pj that enters M from M'. It then follows PS to wy. Py for i = 2 is similar,
but beginning on PS8 and ending on Pa.

Next consider a compound module C' (Fig.5(c) and assume its two submodules have been
contracted to single vertices, say C; on the left and Co on the right. (A special case is when C' is
an elementary module and we have contracted vy, w; and also ve,ws.) We will show Cy and Cy
are strongly connected. C; and Cs are joined by 2 one-edge paths P;, P; inside C in each direction
(using edges a,a, 3). Ps is provided by the C;Cs-subpath of C'L or the CoC;-subpath of CR. Py
is constructed like the previous case, except that the C;Cs-path (CoCi-path) begins and ends on
Pa (Pp) respectively.

Finally suppose that the graph has been contracted into 4 vertices, specifically the two halves
of the two maximal modules (Fig.5(d)). It is easy to check this graph is strongly connected by
examining every possible cut. For instance the “diagonal” cut ({My, M}}, {M], My}, where the
top module (bottom module) of Fig.5(e) has left half My (Mj7) and right half My (MJ)) is crossed
by the 4 a-edges.
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