
fpsyg-09-01600 September 4, 2018 Time: 9:45 # 1

ORIGINAL RESEARCH
published: 05 September 2018

doi: 10.3389/fpsyg.2018.01600

Edited by:
Antonino Vallesi,

Università degli Studi di Padova, Italy

Reviewed by:
Dawei Li,

Duke University, United States
Micaela Mitolo,

IRCCS Fondazione Ospedale
San Camillo, Italy

*Correspondence:
Andrew E. Reineberg

andrew.reineberg@colorado.edu

Specialty section:
This article was submitted to

Cognition,
a section of the journal
Frontiers in Psychology

Received: 08 February 2018
Accepted: 13 August 2018

Published: 05 September 2018

Citation:
Reineberg AE, Gustavson DE,

Benca C, Banich MT and
Friedman NP (2018) The Relationship

Between Resting State Network
Connectivity and Individual

Differences in Executive Functions.
Front. Psychol. 9:1600.

doi: 10.3389/fpsyg.2018.01600

The Relationship Between Resting
State Network Connectivity and
Individual Differences in Executive
Functions
Andrew E. Reineberg1,2* , Daniel E. Gustavson3, Chelsie Benca4, Marie T. Banich1,5 and
Naomi P. Friedman1,2

1 Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States, 2 Institute for
Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States, 3 Department of Psychiatry, University of
California, San Diego, San Diego, CA, United States, 4 Department of Psychology, Emory University, Atlanta, GA,
United States, 5 Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States

The brain is organized into a number of large networks based on shared function, for
example, high-level cognitive functions (frontoparietal network), attentional capabilities
(dorsal and ventral attention networks), and internal mentation (default network). The
correlations of these networks during resting-state fMRI scans varies across individuals
and is an indicator of individual differences in ability. Prior work shows higher cognitive
functioning (as measured by working memory and attention tasks) is associated with
stronger negative correlations between frontoparietal/attention and default networks,
suggesting that increased ability may depend upon the diverging activation of networks
with contrasting function. However, these prior studies lack specificity with regard
to the higher-level cognitive functions involved, particularly with regards to separable
components of executive function (EF). Here we decompose EF into three factors
from the unity/diversity model of EFs: Common EF, Shifting-specific EF, and Updating-
specific EF, measuring each via factor scores derived from a battery of behavioral tasks
completed by 250 adult participants (age 28) at the time of a resting-state scan. We
found the hypothesized segregated pattern only for Shifting-specific EF. Specifically,
after accounting for one’s general EF ability (Common EF), individuals better able to
fluidly switch between task sets have a stronger negative correlation between the
ventral attention network and the default network. We also report non-predicted novel
findings in that individuals with higher Shifting-specific abilities exhibited more positive
connectivity between frontoparietal and visual networks, while those individuals with
higher Common EF exhibited increased connectivity between sensory and default
networks. Overall, these results reveal a new degree of specificity with regard to
connectivity/EF relationships.
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INTRODUCTION

Executive functions (EFs) are a set of higher-level cognitive
abilities that contribute to the maintenance, implementation,
and modification of goals (Banich, 2009; Friedman and Miyake,
2017). Classically, EFs have been linked to frontal lobe function
based on both studies of individuals with localized lesions
(Stuss and Alexander, 2000; Alvarez and Emory, 2006) and on
task-based functional magnetic resonance imaging studies (fMRI;
Wager and Smith, 2003; Wager et al., 2004). Recent work has
begun to examine other potential neural correlates of EFs, in
particular, connectivity between large scale brain systems. Brain
systems can be studied in many contexts. For example, networks
of brain regions that are involved in similar processes (functional
networks) are observed in task-based fMRI studies when specific
cognitive constructs are targeted with subtraction-based methods
and in fMRI studies of resting-state functional connectivity.
Resting-state functional connectivity refers to the observation
that regions of related function have similar time courses of low
frequency BOLD signal when individuals are asked to merely
relax inside an fMRI scanner. The resting state is a particularly
interesting context because it is mostly free of instruction-related
demands on participants and provides a measure of coordination
(time course correlation) between functional networks that is
highly stable (Shehzad et al., 2009; Choe et al., 2015).

While an intact frontal system may be necessary for
performing EF tasks, high functioning may depend upon
the segregation of EF-related mechanisms from contrasting
mechanisms such as those related to internal mentation. Prior
work in the clinical domain has found that depression is
associated with co-activation of resting-state brain systems
responsible for cognitive control and internal mentation (Kaiser
et al., 2016), which is one possible explanation for EF-related
deficits that are frequently observed in individuals suffering from
depression and/or other forms of psychopathology (Snyder et al.,
2015). In addition, some preliminary work in neurologically
normal individuals has shown that variation in connectivity
between networks is linked to individual differences in cognitive
ability. For example, altered connectivity between networks
responsible for externally- versus internally directed attention
has been observed in individuals with high versus low working
memory ability as measured by both sequencing and span
tasks (Keller et al., 2015) and across individuals with variations
in attentional control ability (Kelly et al., 2008). The tasks
used in these studies index some cognitive abilities specific
to working memory and attentional mechanisms, respectively,
but also measure common mechanisms such as the ability
to learn/maintain complex rules or insulate task goals from
competing personal thoughts, abilities shared across many
EF tasks. Thus, the nature of these previously reported
brain/behavior relationships are imprecise due to task impurity,
leading to the question of whether network connectivity is a
neural correlate of processes common to many cognitive tasks or
those specific to a particular task or operation.

The current study utilizes a multitask EF battery to more
specifically investigate the link between network connectivity
and EFs. We utilize the Unity/Diversity model of EF, an

influential framework that re-parameterizes variance in three
commonly studied EF processes (prepotent response inhibition,
mental set shifting, and working memory updating) into three
orthogonal latent factors (Miyake and Friedman, 2012; Friedman
and Miyake, 2017). The first factor, Common EF, accounts for
performance on all EF tasks, and is thought to reflect the ability
to actively maintain and implement a task goal or attentional set.
Two orthogonal diversity factors predict additional variance in
the shifting and updating tasks. Shifting-specific EF is thought to
reflect the speed with which one can clear goals that are no longer
relevant, beyond those goal-management processes recruited in
Common EF. Similarly, Updating-specific EF reflects working
memory operations that are not captured by Common EF, such
as gating and possibly episodic retrieval. There is no evidence
for an inhibition-specific factor, suggesting that individual
differences in response inhibition are captured by Common EF
(Friedman and Miyake, 2017). Hence, this framework captures
both unity (Common EF) and diversity (Shifting-specific and
Updating-specific) of EFs.

Although prior work has focused on the correlation of
specific regions of interest within the functional networks
implicated in externally and internally directed attention, we
utilize a whole-cortex network approach so as to not limit
ourselves to specific, subjectively chosen functional regions of
interest. This approach also affords the potential to reveal novel
network connectivity/EF relationships. There is overwhelming
evidence of functional networks from parcellation studies of
brain activity during resting-state scans (Power et al., 2011; Yeo
et al., 2011). For the current analysis, we chose a popular low-
dimensionality solution as determined by a clustering analysis
of resting-state scans from over 1000 individuals; this solution
describes seven networks: visual, sensory/somatomotor, dorsal
attention, ventral attention, salience, default, and frontoparietal
networks (Yeo et al., 2011; the authors also provide a 17-network
solution we utilize to provide more detail on EF-related
connections).

Within this framework, visual and sensory-somatomotor
networks are well-characterized and contain regions located in
close proximity to V1 and the sensory/motor strips, respectively.
The limbic network contains predominantly orbitofrontal cortex
(Mega et al., 1997), which is involved in affect, valuation, and
decision-making. The remaining networks of the seven-network
parcellation can broadly be categorized as task positive or task
negative based on whether or not their activation typically
increases or decreases, respectively, during difficult, externally
directed cognitive control tasks when compared to baseline.
In the parcellation provided by Yeo and colleagues, there
are three task-positive networks — the frontoparietal, dorsal
attention, and ventral attention networks — that are implicated
in the various levels of control needed to perform directed
tasks. The dorsal attention network is involved in top-down
biasing of attention during goal pursuit, whereas the ventral
attention network is involved bottom up attentional processes
such as reorienting or filtering of attention toward sensory
information in the environment that may be goal-related
(Vossel et al., 2014). The frontoparietal network is implicated
in higher-level functions such as fine adjustment of current
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behavior in response to changes in task demands (Dosenbach
et al., 2008). The task-negative network is the default network,
which is a set of midline frontal, posterior cingulate, and
middle temporal areas implicated in a family of self-related
processes such as imagination and reminiscence (Andrews-
Hanna, 2011). The typical decrease in BOLD signal of the
default network during difficult externally directed tasks is
explained as a decreased focus on the internal world and
redirection of attention to the demanding task (Fox et al.,
2005).

We examined the hypothesis that individual differences in
EFs are associated with individual differences in correlation
strength between task-positive and task-negative networks. Prior
studies have found evidence of hypoconnectivity (decreased
positive/increased negative connectivity) in individuals with
higher working memory span and sequencing ability (e.g., Keller
et al., 2015). However, due to ambiguity in the exact EF processes
measured by these previous studies, we examine three EF factors
to determine whether task-positive-to-task-negative network
connectivity is linked to EF mechanisms that are common to
many tasks (Common EF) or to a more specific EF ability such
as Updating-specific or Shifting-specific abilities. Specifically, we
test for connectivity-EF relationships in six models predicting
each of six pairwise relationships between the frontoparietal,
dorsal attention, ventral attention, and default networks from
three EF factors, reporting only those relationships that withstand
correction for the six models.

One advantage of the current study is that it used a larger
sample size (N = 250) than typically employed in prior studies
of this nature. This approach afforded us the opportunity
to investigate two supplemental research questions regarding
connectivity-EF relationships that might not have emerged in
previous studies of small samples and single EF measures. First,
does high Common EF, Shifting-specific, or Updating-specific
ability relate to hyperconnectivity (increased positive/decreased
negative connectivity) between systems with complementary
functions such as the frontoparietal and the dorsal/ventral
attention networks or between the dorsal and ventral attention
networks themselves? This question is motivated by a finding
that stronger positive connectivity between dorsal attention and
frontoparietal networks is associated with higher performance
on the stop signal task, which is typically considered a measure
of inhibitory control (Tian et al., 2013), as well as evidence
that task-positive regions become and stay hyperconnected
after a challenging EF task (Gordon et al., 2012). Second,
is hypo- or hyperconnectivity between lower-level sensory and
higher-level cognitive networks related to individual differences
in EFs? This question is motivated by prior resting-state
work from our group in a younger and smaller sample in
which we found Common EF and Shifting-specific ability
was linked to the functional connectivity characteristics of
lower-level sensory areas (Reineberg and Banich, 2016). Finally,
we follow up our primary analyses using a finer-grained
network parcellation (n = 17) to test spatial specificity (e.g.,
are brain-EF relationships isolated to particular subcomponents
of task-positive networks versus the network at coarse level of
analysis?).

MATERIALS AND METHODS

Participants
Participants were 250 individuals from the ongoing Colorado
Longitudinal Twin Study [LTS; M(age) = 28.7 years,
SD(age) = 0.57 years; 97 males], who completed a resting
state scan as part of a larger testing session. Data from an
additional 15 participants were excluded, because they showed
excessive levels of movement during the scanning session based
on the criteria of greater than 2 mm translation (motion in X,
Y, or Z plane) or 2 degrees rotation (roll, pitch, or yaw motion)
(n = 14), and failure of the presentation computer to display
a fixation cross during the resting scan (n = 1). Of the 250
individuals, there were 54 pairs of monozygotic (MZ; identical)
twins, 45 pairs of same-sex dizygotic (DZ; fraternal) twins, 24
MZ twin singletons, and 28 DZ twin singletons. Singletons are
members of twin pairs whose co-twins either did not participate
or were excluded from analysis. All LTS participants were
recruited from the Colorado Twin Registry based on birth
records, and is representative of the Colorado population at the
time of recruitment (see Rhea et al., 2006, 2013 for additional
details). Based on self-report, the LTS sample is 92.6% White,
5.0% “more than one race,” <1% American Indian/Alaskan
Native, <1% Pacific Islander; 1.2% did not report race. Hispanic
individuals composed 9.1% of the sample. Participants were
paid $150 for participation in the 3-h study; those who did not
finish the entire protocol were paid $25 per half hour. All study
procedures were approved by the Institutional Review Board of
the University of Colorado Boulder.

Procedure
The study session involved the administration of behavioral tasks
that measured EF ability as well as acquisition of anatomical
and functional brain data via MRI. Testing took place in a
single 3-h session. Following informed consent, participants
were familiarized with the imaging procedures including practice
versions of the behavioral tasks to ensure comprehension later
in the scanner. They also completed some interviews and
questionnaires, then completed a 1.5-h scanning session that
began with a structural scan followed by a 6-min resting state,
three EF tasks (antisaccade, keep track, and number–letter, in that
order), and a diffusion tensor imaging sequence (not analyzed
here). The current study only utilizes behavioral data (i.e.,
reaction time, accuracy) acquired during functional scanning
of the antisaccade, keep track, and number-letter tasks. After
the scan, participants returned to a behavioral testing room to
complete three additional EF tasks (Stroop, category-switch, and
letter memory, in that order). If both twins of a pair participated
on the same day, the twins completed the protocol sequentially
(twin order randomized) with the same ordering of behavioral
testing and imaging acquisition.

Brain Imaging
Participants were scanned in a Siemens Tim Trio
3T scanner. Neuroanatomical data were acquired
with T1-weighted MP-RAGE sequence [acquisition
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parameters: repetition time (TR) = 2400 ms, echo time
(TE) = 2.07, matrix size = 320 × 320 × 224, voxel
size = 0.80 mm × 0.80 mm × 0.80 mm, flip angle (FA) = 8.00
deg., slice thickness = 0.80 mm]. Resting state data was
acquired with a T2∗-weighted echo-planar functional
scan [acquisition parameters: number of volumes = 816,
TR = 460 ms, TE = 27.2 ms, matrix size = 82 × 82 × 56,
voxel size = 3.02 mm × 3.02 mm × 3.00 mm, FA = 44.0 deg.,
slice thickness = 3.00 mm, field of view (FOV) = 248 mm].
During the resting-state scan, participants were instructed
to relax and stare at a fixation cross while blinking as they
normally would. We based this decision on suggestions in the
literature indicating that eyes open and fixated is the optimal
instruction for maximizing reliability (Zou et al., 2015). In
addition, this approach is thought to minimize the variability
that is observed in the visual processing stream when participants
are instructed to keep their eyes closed versus open during the
resting scan. Visual network variability seemingly comes from
top-down imagination/visualization processes, although the
exact mechanism is unknown (Patriat et al., 2013).

Measures
A strength of the LTS sample is a detailed characterization of EF
ability. Specifically, rather than measuring EFs with only a single
task, we calculated EF factor scores from the six tasks completed
on the day of the scan.

Antisaccade Task
This task was adapted for fMRI from Roberts et al. (1994). Only
behavioral performance was analyzed for the current manuscript.
Antisaccade captures the ability to maintain and execute a
task set in the face of distracting information; specifically, it
requires inhibiting prepotent eye movements (Miyake et al.,
2000). In the scanner version, participants completed 20 s blocks
of prosaccade, antisaccade, and rest (fixation) trials (12 blocks of
each across two runs; 5 trials per block for the prosaccade and
antisaccade blocks), each was preceded by a jittered instruction
(TOWARD, AWAY, or FIXATION for 2, 4, or 6 s). On each
trial, after a jittered fixation lasting 1–3 s, a small visual cue
flashed on one side of the computer screen for 234 ms, followed
by a target (a digit from 0 to 9) that appeared for 150 ms
before being masked. The mask lasted 1650 ms, during which
time the participant vocalized the target. The cue and target
appeared on the same side of the screen during prosaccade trials
and opposite sides during anti-saccade trials. Hence, in order
to identify the number on the antisaccade trials, participants
had to avoid the automatic tendency to saccade to the cue
and instead immediately look in the opposite direction. The
dependent measure was the proportion of correctly identified
targets on the 60 anti-saccade trials.

Stroop Task
This task was adapted from Stroop (1935). Stroop captures the
ability to maintain a task set in the face of pre-potent distracting
information, specifically, inhibiting the prepotent tendency to
read words. Participants verbally indicated the font color (red,
blue, or green) of text presented on a black screen as quickly as

possible, with reaction time measured via a ms-accurate voice
key. Trials were divided up into three types: a block of 42 neutral
trials consisting of asterisks (3–5 characters long) presented in
one of three colors (red, blue, and green); a block of 42 congruent
trials consisting of color words that matched the font color (e.g.,
the word “RED” displayed in red font); and two blocks of 42
trials each of incongruent trials consisting of color words that did
not match the font color (e.g., the word “RED” displayed in blue
ink). Each word disappeared as soon as the voice key detected
the response, and the next word appeared after a 250 ms white
fixation. The dependent measure was the mean reaction time
difference between correct incongruent and neutral trials.

Keep Track Task
This task was adapted for fMRI from Yntema (1963). Only
behavioral performance was analyzed for the current manuscript.
Keep track captures the ability to maintain and update
information in working memory. On each trial in the scanner
version, participants were given 3 or 4 target categories (animals,
colors, countries, distances, metals, or relatives) that remained on
the screen throughout the trial. After viewing a serial list of 16
words drawn from 6 categories (one word every 2 s), they saw
a “???” prompt on the screen for 10 s, during which they orally
recalled the last exemplar of each target category. Because each
list contained 1–3 exemplars of each category, they had to update
which words to remember and ignore words from irrelevant
categories. In addition to these “Remember” trials, the scanner
version of the task included baseline conditions of “Read” trials,
in which participants just silently read the words without trying
to remember them, and 20 s rest (fixation) trials. Each trial type
was preceded by a jittered instruction (REMEMBER, READ, or
FIXATION for 2, 4, or 6 s). There were three runs, each with 3
recall trials (two with 4 words to recall and one with 3), 3 read
trials, and 3 rest trials. The behavioral dependent measure was the
proportion of the 45 words correctly recalled out of all remember
trials.

Letter Memory
This task was adapted from Morris and Jones (1990). Letter
memory captures the ability to maintain and update items in
working memory. In each trial, participants saw a series of 9, 11,
or 13 consonants, with each letter appearing for 3 s. As each letter
appeared, they had to say aloud the last four letters, including
the current letter. The dependent measure was the proportion of
132 sets correctly rehearsed (i.e., the last 4 letters reported in the
correct order) across 12 trials.

Number–Letter Task
This task was adapted for fMRI from Rogers and Monsell (1995).
Only behavioral performance was analyzed for the current
manuscript. Number–letter captures the ability to shift between
mental sets. In each trial of the scanner version, participants
saw a box sectioned into four quadrants. The borders of
one quadrant were darkened (i.e., cued) for 350 ms, then a
number–letter or letter–number pair (e.g., 4K) appeared inside
until it was categorized. The participant had to categorize the
number (top 2 quadrants) or letter (bottom 2 quadrants) as

Frontiers in Psychology | www.frontiersin.org 4 September 2018 | Volume 9 | Article 1600

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01600 September 4, 2018 Time: 9:45 # 5

Reineberg et al. Executive Functions and Network Connectivity

odd/even or consonant/vowel, respectively, using two buttons
on a button box. The stimuli disappeared from the screen
when categorized, and there was a 350 ms response-to-cue
interval. The trials were arranged in blocks, and rest blocks
(20 s) were intermixed with the task blocks. Each block was
preceded by a jittered instruction (TOP, BOTTOM, MIXED, or
FIXATION for 2, 4, or 6 s) that indicated where the stimuli
would appear for that block. In mixed blocks, half the trials
were repeat trials in which the task stayed the same as the
previous trial; the other trials required a switch in categorization
task. Each block consisted of 13 trials, with the first trial not
counted because it was neither switch nor repeat. There were
two runs, each containing eight mixed blocks, eight single-task
blocks (four each number and letter blocks), and rest blocks.
The behavioral dependent measure was the local switch cost —
the difference between average response times on correct switch
and no-switch trials within mixed blocks (96 trials of each
type).

Category-Switch Task
This task was adapted from Mayr and Kliegl (2000). Category-
switch captures the ability to shift between mental sets. In
each trial, participants categorized a word according to animacy
(i.e., living vs. non-living) or size (i.e., smaller or larger than
a soccer ball), depending on a cue (heart or crossed arrows,
respectively) that preceded the word by 350 ms and remained
above the word until the participant responded with one
of two buttons on a button box. The stimuli disappeared
from the screen when categorized, and there was a 350 ms
response-to-cue interval. A 200-ms buzz sounded for errors.
The task began with two single-task blocks of 32 trials each,
in which participants categorized words only by animacy then
only by size. Then participants completed two mixed blocks
of 64 trials each, in which half the trials required switching
the categorization criterion. The dependent measure was the
local switch cost — the difference between average response
times on correct switch and no-switch trials within mixed
blocks.

Data Analysis
EF Data
Scores on the six EF tasks were subjected to the same trimming
and transformation used in prior studies to improve normality
and reliability (Friedman et al., 2016). Specifically, correct
reaction times were trimmed within-subject to obtain the best
measures of central tendency within conditions (Wilcox and
Keselman, 2003). Additionally, within the number-letter and
category-switch tasks, trials following error trials were excluded,
as determining switch versus repeat trials is dependent on the
preceding trial. Following within-subject reaction time trimming,
extreme high and low scores at the between-subjects level
(greater than 3 SDs from the group mean) were Windsorized
(replaced with the cutoff value of 3 SDs above or below
the mean, respectively) to improve normality and reduce the
impact of extreme scores while maintaining these scores in the
distribution.

Factor scores were extracted via a confirmatory factor
analysis in Mplus 8.0 (Muthén and Muthén, 1998–2017), with
all six EF tasks loading on Common EF, the keep track and
letter memory tasks loading on the orthogonal Updating-
specific factor, and the number–letter and category-switch
tasks loading on the orthogonal Shifting-specific factor.
The loadings were equated (after scaling the measures
to have similar variances) within the Updating-specific
and Shifting-specific factors to identify these two-indicator
factors.

Preprocessing
All processing of brain data was performed in a standard
install of FSL build 5.09 (Jenkinson et al., 2012). To account
for signal stabilization, the first 10 volumes of each individual
functional scan were removed, yielding 806 volumes per subject
for additional analysis. The functional scans were corrected
for head motion using MCFLIRT, FSL’s motion correction
tool. Brain extraction (BET) was used to remove signal
associated with non-brain material (e.g., skull, sinuses, etc.).
FSL’s FLIRT utility was used to perform a boundary-based
registration of each participant’s functional scan to his or
her anatomical volume and a six-degree-of-freedom affine
registration to MNI152 standard space. LTS scans were
subjected to AROMA, an automated independent components
analysis-based, single-subject de-noising procedure (Pruim et al.,
2015). Signal was extracted from masks of the lateral ventricles,
white matter, and whole brain volume and regressed out
along with a set of six motion regressors and associated first
and second derivatives. The scans were band-pass filtered
(0.001–0.08 Hz band). Finally, time courses for each of the
functional networks of interest were extracted for each individual
with FSL’s “fslmeants” command (Jenkinson et al., 2012) using
the network templates provided by Yeo and colleagues as a
mask.

Statistical Models
We used the time courses generated by the procedure
outlined above to determine whether or not individual
differences in network-to-network connectivity are associated
with variation in EF ability. We calculated network-to-network
connectivity as Fisher’s z-corrected Pearson’s r-values for
all pairwise relationships between functional networks of
interest. We then performed a multiple regression analysis
regressing network-to-network connectivity on Common EF,
Shifting-specific, and Updating-specific factor scores as well as
gender and mean translation and rotation movement during
the resting-state scan. To account for non-independence of twin
pairs, we utilized the “type = complex” option in Mplus. This
option uses a sandwich estimator to obtain standard errors
corrected for familial clustering. The relevant measures were
treated as approximately continuous variables using the robust
maximum likelihood (MLR) estimator.

Because we had genetically informative data, we evaluated
whether significant associations were present within-families
and/or between-families, using a multilevel twin difference model
(Vitaro et al., 2009). Specifically, we used a random intercepts
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model of the connection strength, with level 1 (within-family)
predictors of each twin’s deviation from his or her family mean of
Common EF, Shifting-specific, and Updating-specific score (i.e.,
cluster-centered), as well as grand-mean-centered translation
and rotation. The slopes for the within-family Common EF,
Shifting-specific, and Updating-specific effects were allowed to
vary by zygosity, but were not allowed to have residual variance
(i.e., we specified these slopes as random, regressed them on
zygosity at level 2, and fixed their residual variances to zero).
At level 2 (between), we regressed the random intercept on the
family means for Common EF, Shifting-specific, and Updating-
specific scores, as well as sex (which did not vary within
families). We standardized all continuous variables to obtain
parameter estimates in standard deviation units. The Mplus

syntax for this model is provided in the Supplementary
Material.

RESULTS

Behavioral Data
Descriptive statistics for all behavioral tasks are provided
in Table 1A, while the factor scores for Common EF,
Shifting-specific EF, and Updating-specific EF are provided in
Table 1B. In latent variable form, Common EF, Shifting-specific,
and Updating-specific are orthogonal; however, their factor
scores are moderately correlated because they are imperfect
approximations of latent variables (factor score indeterminacy).

TABLE 1 | Descriptive statistics for executive function tasks, measures, and correlations among resting-state networks.

Descriptive statistics

Mean Std Minimum Maximum Skewness Kurtosis Reliability

(A) Antisaccade 43.87% 21.35 5.00 96.67 0.37 −0.67 0.90∗

Stroop 154.44 ms 77.34 −3.14 395.60 0.81 0.67 0.96∗

Keep track 75.63% 14.12 34.22 100.00 −0.66 0.03 0.74∧

Letter memory 71.48% 14.01 35.61 100.00 0.06 −0.87 0.93∧

Number-letter 171.12 ms 106.01 −41.36 508.88 0.84 0.89 0.81∗

Category switch 203.79 ms 175.29 −64.78 744.85 1.33 1.49 0.94∗

Mean Std Minimum Maximum Skewness Kurtosis

(B) Common EF 0.017 0.830 −2.202 2.083 0.027 −0.415

Shifting-specific −0.015 0.748 −2.571 1.566 −0.717 0.359

Updating-specific 0.011 0.602 −1.938 1.624 −0.343 0.092

Mean Std Minimum Maximum Skewness Kurtosis

(C) V_to_SM −0.224 0.341 −1.172 0.844 0.215 0.229

V_to_DAN 0.254 0.310 −0.529 1.017 0.010 −0.560

V_to_VAN −0.092 0.359 −1.173 0.729 −0.333 0.086

V_to_L −0.372 0.293 −1.364 0.492 −0.200 0.322

V_to_FP −0.431 0.289 −1.280 0.265 −0.243 −0.101

V_to_DEF −0.496 0.287 −1.202 0.365 −0.038 −0.075

SM_to_DAN −0.054 0.303 −1.260 0.769 −0.304 0.483

SM_to_VAN 0.407 0.337 −0.733 1.266 −0.019 0.603

SM_to_L −0.101 0.314 −0.948 0.720 −0.152 −0.126

SM_to_FP −0.387 0.296 −1.111 0.348 0.021 −0.349

SM_to_DEF −0.227 0.301 −0.943 0.726 0.196 −0.196

DAN_to_VAN 0.360 0.335 −0.635 1.293 −0.249 0.264

DAN_to_L −0.393 0.292 −1.140 0.515 0.130 −0.022

DAN_to_FP 0.144 0.327 −0.663 0.968 −0.104 −0.471

DAN_to_DEF −0.917 0.289 −1.628 −0.030 0.369 0.006

VAN_to_L −0.323 0.303 −1.059 0.553 0.246 −0.346

VAN_to_FP 0.069 0.321 −0.737 0.976 −0.002 −0.170

VAN_to_DEF −0.823 0.332 −1.663 0.360 0.397 0.184

L_to_FP −0.096 0.336 −1.024 0.833 −0.032 −0.333

L_to_DEF 0.614 0.331 −0.318 1.687 −0.030 −0.158

FP to DEF −0.020 0.332 −0.875 0.979 0.131 −0.243

(A) Descriptive statistics for six EF tasks. (B) Descriptive statistics for Common EF, Shifting-specific EF, and Updating-specific EF. (C) Descriptive statistics for
correlations amongst seven resting-state networks. V, visual network; SM, sensory/somatomotor network; DAN, dorsal attention network; VAN, ventral attention
network; FP, frontoparietal network; DEF, default network. For example, the mean for V_to_SM is Fishers’ z-transformation of Pearson’s correlation between visual
and sensory/somatomotor networks. ∗Split-half reliability (odd/even for Stroop and Category-switch or run1/run2 for antisaccade and number–letter), adjusted with the
Spearman-Brown prophecy formula. ∧Chronbach’s alpha across 3 runs for keep track and 4 sets of trials for letter memory.
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Factor score determinacy estimates for the complete data pattern
were 0.83, 0.75, and 0.60 for Common EF, Shifting-specific
EF, and Updating-specific EF, respectively. Common EF was
positively correlated with Updating-specific EF (r = 0.33,
p < 0.001) and Shifting-specific EF (r = 0.20, p < 0.001), whereas
Updating-specific EF and Shifting-specific EF were negatively
correlated (r =−0.33, p < 0.001).

Mean Network Connectivity
Average connectivity among all seven functional networks
provides some assurance the current sample is consistent
with prior work and serves as a validity check. Figure 1
shows all group average pairwise correlations between each
of the seven functional networks, while descriptive statistics
for all network-to-network connectivity measures are provided
in Table 1C. As expected, there is an average positive
connectivity between dorsal and ventral attention networks, and
an average negative connectivity between the default network
(i.e., implicated in internally directed attention) and attention
networks (i.e., implicated in external attention). However,

the relationship between the frontoparietal and default network
was slightly positive, on average.

Relationship Between Network
Connectivity and EF
Analysis of Higher-Level Cognitive Networks –
General
The primary analyses used to investigate network connectivity
and individuals differences in levels of EF were six multiple
regression models in which each pairwise connection between
the default, frontoparietal, dorsal attention, and ventral attention
networks was regressed on the Common EF, Shifting-specific,
and Updating-specific factor scores while controlling for
a summary of motion during the resting-state scan and
gender. After Bonferroni correcting for these six models
(alpha = 0.05/6 = 0.0083), we found one EF parameter
estimate was statistically significant: Individuals with higher
Shifting-specific scores had reduced connectivity between the
ventral attention and default networks (Figure 2; standardized
beta =−0.181, p = 0.005). This particular connection was strongly

FIGURE 1 | Average network connectivity. Fisher’s z-transformation of Pearson’s correlation between each pair of seven functional networks. V, visual network; SM,
sensory/somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; FP, frontoparietal network; DEF, default network.
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FIGURE 2 | Relationship between Shifting-specific factor scores and ventral attention-to-default network connectivity.

negatively correlated across the group, so, individuals with
better Shifting-specific ability had stronger negative correlations
between these two systems.

To further explore this finding, we investigated the spatial
specificity of the connectivity between the ventral attention
network and the default network as it relates to Shifting-specific
EF, by using the multiple ventral attention and default network
subcomponents from Yeo et al. (2011) 17-network parcellation.
This parcellation divides the ventral attention network into
two subcomponents that are primary differentiated by involving
anterior as compared to posterior divisions of all the key
cingulate, insular, and temporal/parietal areas. The default
network is divided into four subcomponents: three are divisions
of the midline hubs and lateral parietal aspects of the default
network, and another is best described as the temporal
lobe subsystem of the default network. Our supplemental
analysis found higher Shifting-specific was associated with more
negative connectivity of the posterior ventral attention subsystem
(Figure 3, blue) and the hub subsystems of the default network
(Figure 4, blue), but notably not the temporal lobe subsystem of
the default network.

Additionally we considered some other aspects of our
findings. While statistically significant but not passing correction
for multiple comparisons we found that individuals with
higher Shifting-specific scores had reduced connectivity between
frontoparietal and ventral attention networks (standardized
beta = −0.159, p = 0.032), See Table 2A for standardized beta
weights for all models of a priori interest.

Moreover, due to multiple reports of frontoparietal-to-
default hypoconnectivity being significantly associated with
working memory span/sequencing, we specifically interrogated

this relationship. Although the direction of the relationship for
Common EF was consistent with these prior reports, such that
higher Common EF scores were associated with hypoconnected
frontoparietal and default networks, the effect was not significant
(standardized beta =−0.110, p = 0.142).

Analysis of Higher-Level Cognitive Networks –
Genetic Influences
Because we had genetically informative data, we evaluated
whether the significant association between Shifting-specific
ability and the connectivity of ventral attention and default
networks was influenced by genetic factors. To do so, we used
a multilevel twin difference model (Vitaro et al., 2009). If the
effect is significant within MZ twin pairs (i.e., the twin with the
higher Shifting-specific score has a more negative connection
between ventral attention and default networks), it suggests
the effect is due to non-shared environmental influences that
affect both connection strength and Shifting-specific ability.
Such a finding would be consistent with, but not assuring
of, a causal effect. A between-family effect suggests that
differences between families (which can include genetic and
shared environmental effects such as socioeconomic status)
drive the association. We found a significant between-family
effect (beta = −0.159, p = 0.022) of Shifting-specific EF on the
connection strength between the ventral attention and default
networks. The within-family effect was not significant averaging
across zygosity (beta = −0.126, p = 0.303), but there was a
marginally significant interaction of the within effect by zygosity
(beta = 0.468, p = 0.053), such that there is a marginally
significant within effect for MZ pairs (simple effect beta =−0.354,
p = 0.055) but not DZ pairs (simple effect beta = 0.114,
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FIGURE 3 | Spatial specificity of ventral attention network subsystems. The ventral attention network from the 7-network parcellation (blue + green) breaks into two
subsystems in the 17-network parcellation: anterior (green) and posterior (blue).

FIGURE 4 | Spatial specificity of default network subsystems. The default network from the 7-network parcellation (blue + purple + red + green) breaks down into
four subsystems in the 17-network parcellation: hub subsystem (blue), superior and lateral frontal/inferior temporal cortex subsystem (purple), superior temporal lobe
subsystem (red), and posterior cingulate/precuneal (green) subsystems.

p = 0.469). Together, these effects are evidence suggesting genes
and shared environments influence the relationship between
Shifting-specific EF and connectivity and preliminary evidence
of non-shared environmental influences.

Exploratory Analysis of Sensory Networks
Our final analyses explored associations of connectivity
between higher-level and lower-level systems and Common
EF, Shifting-specific EF, and Updating-specific EF. Specifically,
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we used the same multiple regression models described above to
predict pairwise connections between the higher-level cognitive
networks discussed above and the visual and somatomotor
networks, respectively. We found higher Shifting-specific was
associated with greater positivity connectivity between the
visual network and the frontoparietal network (standardized
beta = 0.172, p = 0.017), the visual network and dorsal attention
network (standardized beta = 0.173, p = 0.010), and the
visual network and ventral attention network (standardized
beta = 0.176, p = 0.007). Hence, higher Shifting-specific EF
is associated with greater positive connectivity between the
visual network and higher-order executive/attention networks.
In addition, higher Common EF was associated with a more
negative relationship between activity in the somatomotor
and dorsal attention network (standardized beta = −0.171,
p = 0.014) and with a more positive relationship between
the somatomotor and default network activity (standardized
beta = 0.203, p = 0.005). However, no exploratory results were
significant after Bonferroni correction for the six original and
eight additional models (alpha = 0.05/14 = 0.0036). See Table 2B
for standardized beta weights for all models of exploratory
interest.

DISCUSSION

We investigated the associations between three EF components
and coordination among large scale brain systems, with a
particular focus on brain systems involved in higher-level
cognition. We found that better abilities specific to quickly
shifting between task sets, as measured by a Shifting-specific

TABLE 2 | Standardized beta weights for models predicting network-to-network
connectivity from three EF factor scores.

Beta (CEF) Beta (SHI) Beta (UPD)

(A) DAN_to_VAN −0.124 0.092 0.037

DAN_to_FP 0.032 −0.079 0.021

DAN_to_DEF 0.023 −0.050 −0.117

VAN_to_FP 0.140 −0.159∗ −0.073

VAN_to_DEF 0.067 −0.181∗∗∗ −0.047

FP_to_DEF −0.110 0.009 −0.056

Beta (CEF) Beta (SHI) Beta (UPD)

(B) V_to_DAN 0.066 0.173∗∗ 0.144

V_to_VAN −0.056 0.176∗∗ 0.085

V_to_FP 0.007 0.172∗ 0.115

V_to_DEF −0.040 −0.051 −0.054

SM_to_DAN −0.171∗ 0.035 0.021

SM_to_VAN −0.015 −0.006 −0.071

SM_to_FP −0.117 0.071 0.054

SM_to_DEF 0.203∗∗ −0.043 −0.076

(A) Results from 6 models involving higher-level cognitive networks of a priori
interest. (B) Results from 8 models involving connectivity between higher-level
cognitive and visual/sensory-somatomotor networks. V, visual network; SM,
sensory/somatomotor network; DAN, dorsal attention network; VAN, ventral
attention network; FP, frontoparietal network; DEF, default network. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < Bonferroni corrected alpha [0.0083 for (A) and 0.0036 for (B)].

factor score, are related to more negative connectivity between a
brain system involved in internal mentation (the default network)
and the ventral attention network. We will first discuss this
principal finding in more detail and then discuss this result in the
context of prior reports of behavior-related hypoconnectivity of
higher-level cognitive networks with default networks in both the
clinical domain and in neurologically normal individuals. Finally,
we discuss findings of exploratory analyses regarding network
connectivity between higher-level cognitive networks and lower-
level networks such as the visual network and the somatomotor
network.

Our primary analysis revealed a novel relationship between
Shifting-specific ability and connectivity between the default
and ventral attention networks. A test of spatial specificity
further revealed the effect may be primarily driven by
connectivity between the midline regions of the default
network hubs — ventromedial prefrontal (vmPFC) and posterior
cingulate cortices (PCC) — and a posterior subsystem of the
ventral attention network.

To put this finding in perspective, we consider the purported
functions of these regions. A review of the functions of the default
network suggests that the midline hubs of the default network
are involved in many aspects of self-referential processing
including self-reflection, mentalizing, autobiographical memory,
and episodic future thinking among others (Andrews-Hanna,
2011).

The ventral attention network, in the context of the Yeo
et al. (2011) parcellation, contains at least three main subsystems:
higher-level visual/attention areas (temporo-parietal junction),
right lateral prefrontal cortex, and the cingulo-opercular system
(predominantly insula and dorsal anterior cingulate cortex). One
popular theory of the function of the ventral attention system
suggests this part of cortex specializes in detection of behaviorally
relevant stimuli (Corbetta and Shulman, 2002) and reorientation
of attention toward relevant environmental information (Vossel
et al., 2014). However, our examination of spatial specificity of
the effect we observed using a finer-grained network parcellation
revealed that although Shifting-specific EF was related to
connectivity of the ventral attention network as a whole, the
effect may be driven more specifically by connectivity of the
cingulo-opercular subsystem. Characterization of the functions
of the cingulo-opercular system is a topic of considerable
interest and current controversy. The cingulo-opercular system
has unique cytoarchitectonic properties (Seeley et al., 2012)
and is often implicated in very broad cognitive constructs such
as alertness, maintenance, and awareness (Dosenbach et al.,
2007; Craig, 2009; Craig, 2011; Sadaghiani and D’Esposito, 2015;
Coste and Kleinschmidt, 2016), perhaps in part due to insula’s
high base rate of activation in fMRI studies (Yarkoni et al.,
2011). A detailed functional description of anterior and posterior
subsystems of the ventral attention network does not currently
exist. However, a meta-analysis of the insula using thousands
of fMRI studies as ascertained from Neurosynth (Yarkoni et al.,
2011) revealed the posterior portion of the insula identified in the
current report may be functionally distinguished from anterior
portions by processing related to switching, inhibition, error
processing, conflict, feedback, somatosensory, and other terms
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(Chang et al., 2013). That is, although anterior and posterior
insula are involved in very similar types of processing, the
posterior region may be activated more than anterior portions
in certain EF-related contexts (i.e., switching, inhibition, etc.).
Regarding EFs more directly, it has been proposed that the
insula may play a critical role in regulating the coordination of
frontoparietal and default network functions (Sridharan et al.,
2008; Goulden et al., 2014). Work in the clinical domain
supports the notion that ventral attention network functioning is
compromised in disorders that often have comorbid EF deficits,
such as anxiety (Sylvester et al., 2012) and depression (Kaiser
et al., 2016).

Considering the functions of the default and ventral attention
networks, one must ask how coordination of the default and
ventral attention networks translates to increased performance
in a specific aspect of EF that involves the rapid/fluid shifting
between task/mental sets and rules, over and above goal
maintenance or other general EF abilities (Common EF).
Intrinsic network connections in high shifting ability individuals
could be a specific, optimized state that places that individual
metabolically closer to the brain states required when performing
difficult cognitive tasks. Prior work has shown that better
performers in a variety of cognitive domains have smaller
changes in functional connectivity when going from rest to
a task-directed state, possibly reflecting more efficient neural
configurations (Schultz and Cole, 2016). In the context of
the current study, perhaps more negative default to ventral
attention connectivity is a brain state uniquely beneficial for
shifting functions. From the perspective that stable resting-state
connectivity reflects a history of co-activation (Wig et al., 2011),
better shifters may have a stronger history of suppressing default
network activity during times when interference from internal
mentation functions may be disadvantageous (for a review of
default network deactivation and hypoconnectivity see Anticevic
et al., 2012), for example, when mind wandering might be
detrimental to performance on a demanding task (Weissman
et al., 2006). However, the exact mechanism through which
network connectivity translates to increased performance is still
an open question.

Our study also provided an example of how genetically
informative data can be used to provide insights about the
causes of inter-individual variation in network connectivity. Prior
work utilizing a large sample of twins revealed the cross-twin
correlation of default-to-cingulo-opercular connectivity was
moderate and significant for both MZ (r = 0.336) and DZ
(r = 0.245) twins, stronger for MZ twins, and substantially lower
than 1 (Yang et al., 2016). This pattern of results indicates
mixed influences of genes, shared environments and non-shared
environments. Although a classic twin model to estimate the
genetic, shared environmental, and non-shared environmental
influence on ventral attention-to-default connectivity could
be applied to the data in current study, due to small
sample size we opted to perform a multilevel twin difference
model. This analysis revealed that the ventral attention-to-
default network connectivity relationship with Shifting-specific
EF is primarily driven by between-family differences, which
include both genetic and shared environmental influences.

We also observed a marginally significant within-family effect
for MZ twins (but not DZ twins), which suggests the non-
shared environmental influences that cause one MZ twin
to have higher Shifting-specific ability than his or her co-
twin may be the same non-shared environmental influences
that cause that MZ twin to have more negative ventral
attention-to-default connectivity. Future work using larger twin
samples should continue this line of research to tease apart
genetic and environmental influences on network and regional
connectivity.

Regarding other associations between higher-level cognitive
network connectivity and EFs, we did not find any other
strong associations after correcting for multiple comparisons.
Nonetheless, there were some results worth noting. First, we
did find that individuals with higher Shifting-specific scores had
increased negative connectivity between the frontoparietal and
ventral attention systems, which reached a univariate level of
significance (p < 0.05) but did not when Bonferroni-corrected. At
first glance, increased Shifting-Specific EF ability and a reliance
upon non-simultaneous activation of two closely related systems
might seem counterintuitive, as one might have expected higher
EF ability to be associated with greater co-activation of closely
related, higher-level cognitive systems. However, prior work has
established that EF requires a trade-off between cognitive stability
and flexibility, with stability required to impose and maintain
a task set, and flexibility required to switch between tasks
and subgoals (Goschke, 2000) with flexibility-related measures
(such as Shifting-specific EF) sometimes showing the opposite
relationship with outcomes than measures of stability (see Herd
et al., 2014; Friedman and Miyake, 2017). Examples of such
findings are studies that found a relationship between increased
shifting-specific ability and increased substance use (Gustavson
et al., 2017), decreased intelligence, and poorer self-restraint
(Friedman et al., 2011). Although speculative, perhaps this
brain-behavior relationship is a neural manifestations of the
flexibility-stability tradeoff.

Based on prior findings in the clinical domain and
limited work with neurologically normal individuals (e.g., Kelly
et al., 2008), we expected to find that higher Common EF
or Updating-specific EF would be associated with reduced
connectivity between the frontoparietal and default networks.
We did not find this result. However, we did find a trend for
individuals with higher Common EF to have a more negative
relationship between activation in the frontoparietal and default
networks, consistent with expectations. Although our results
suggest there is no reliable association between default-to-
frontoparietal network connectivity and EFs, we did not test
for association between EFs and connectivity at the level of
small and specific regions-of-interest (as in Keller et al., 2015)
or between larger conglomerate networks that might combine
signal across many task-positive networks (e.g., frontoparietal,
dorsal attention, and cingulo-opercular regions; as in Kelly et al.,
2008). In summary, the results of the current study complement
prior research in the area of EF-connectivity relationships by
providing an alternative measurement of both EF behavior (i.e.,
in the context of the Unity/Diversity model) and connectivity at
the level of seven functional networks.
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In an exploratory analysis, we investigated associations
between EFs and connectivity between higher-level cognitive
and lower-level sensory networks. We found higher Shifting-
specific EF was associated with increased positive connectivity
between the visual network and each of the task-positive
networks (frontoparietal, dorsal attention, and ventral attention).
These results are novel but complement prior work from
our group in a younger sample in which we showed
individuals with higher Shifting-specific ability had more
diffusely connectivity visual cortices as quantified by local
clustering coefficient, a graph theoretic measure (Reineberg
and Banich, 2016). We also found higher Common EF
was associated with more positive connectivity between the
somatomotor and default networks as well as more negative
connectivity between the somatomotor and dorsal attention
networks. These findings are both novel and should be
replicated/explored in future work. Generally, the results of our
exploratory analysis suggest EFs may rely on broad patterns
of connectivity across many brain systems, including those
that are not typically associated with inter-individual variation
on EF tasks (e.g., visual network and sensory/somatomotor
network).

It is important to consider some limitations of the current
work. As alluded to earlier, the mechanism through which
network connectivity influences behavior is unclear. The stability
of resting-state measures suggests high-EF individuals may have
intrinsic brain characteristics that foster or allow for their
higher behavioral performance. But in contrast, a substantial
literature shows the malleability of connectivity in the face
of specific cognitive challenges and state inductions (Spreng
et al., 2010; Fornitoa et al., 2012; Cocchi et al., 2013). This
literature suggests high-EF individuals could be in cognitive
states during resting-state scans that differentiate them from
low ability individuals – for example, simulating, planning,
or rehearsing rules for cognitive tasks that are part of the
testing session. Future work could utilize experience sampling
or experimental manipulations of task instructions/order to rule
out these possible mechanisms. Another limitation of the current
study is quantification of resting-state connectivity in a static
manner. Dynamic connectivity methods are an alternative that
measure changes in network connectivity over the course of a
resting-state scan rather than as a single summary of the entire
scan (Allen et al., 2014; Dixon et al., 2017). Preliminary work
in this area suggests dynamics may be related to individual
differences in cognitive abilities (Liu et al., 2017; Nomi et al.,

2017), so future work could build upon the current study by
measuring these dynamics in relation to multiple EF factors.
Finally, although we utilized a large sample for investigating the
neural basis of individual differences in EFs, we will be able to
more accurately estimate genetic and environmental influences
on the behaviorally relevant brain signals described in the current
work as we increase the sample size of this ongoing study.

In summary, using a large sample of twins with thoroughly
measured EF abilities, we have provided a new perspective
on cognitively relevant signals in the connectome, particularly
connectivity among large scale networks with broadly
defined higher-level cognitive functions. Our work suggests
“hypoconnectivity” or “anticorrelation” of functional networks
may be an important indicator of skill/ability. Individuals who
are better able to fluidly shift between mental task sets had more
negatively correlated default and ventral attention networks than
their less skilled peers.
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