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Thesis directed by Associate Professor Eric Small Tilton 

 

We explore  a new technique to estimate vegetation growth and senescence using 

reflected GPS signals (multipath) measured by geodetic-quality GPS stations.   The operational 

GPS-IR statistic Normalized Microwave Reflection Index (NMRI), a measure of multipath 

scattering, exhibits a clear seasonal cycle as is expected for vegetation growth and senescence.  

The sensing footprint is ~1000 m
2
, larger than that provided by typical in situ observations but 

smaller than that from space-based products.  Since GPS satellites transmit L-band signals, the 

vegetation estimates derived from GPS reflections provide global phenology monitoring that is 

sensitive to changes in vegetation canopy water content and biomass.   However, GPS reflections 

are insensitive to plant greenness, clouds, atmosphere, and solar illumination constraints that 

adversely affect optical-infrared remote sensing vegetation indices like Normalized Difference 

Vegetation Index (NDVI).  

Temporal and spatial diffuse scattering of microwave GPS-IR index NMRI and MODIS-

based NDVI is documented at both the site-by-site and regional scale at 184 sites over the 

western United States.  We derive NMRI and NDVI range, correlation between NMRI and 

NDVI signals, and phenology parameters including: start of season, season length, and peak day 

of year of vegetation growth.  These phenology indexes are compared over a five water-year 

time series (2008 to 2012) to gauge spatial and temporal offsets. Average correlations 

(R
2
=0.527) were found with NMRI variations lagging NDVI by approximately 21 days.  This is 

consistent with the idea that greenup precedes plant growth.   Phenology metrics extracted by 

microwave NMRI record a later start of season, later peak day of year, and shorter season length 

than determined by optical NDVI.  Metrics are offset spatially with the largest offsets along 

Pacific Ocean coastline, decreasing inland and subdivided by region, supporting that plant 

growth cycles are controlled by regional climates.  This study is the first attempt to validate and 

compare GPS network derived reflectance index with optical-infrared remote sensing index 

NDVI, and highlights both opportunities and limitations offered by NMRI data. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

Vegetation state measurements are necessary for monitoring the phenology of ecosystem 

variables (Rondeaux et al., 1996; White et al., 2009; Jones et al., 2011), validating long-term 

land cover satellite estimates (Lu, 2006; Hobbs et al., 2007), and testing climate change and 

carbon cycle models (Cihlar et al., 1991; Sellers et al., 1992; Paruelo & Aguiar, 1993; Sellers et 

al., 1995; Nemani et al., 2003).  With increasing temperatures and amplified drought conditions 

expected in the long term (Karl et al., 2012) it is becoming necessary for ecohydrologists to 

understand how water is used by vegetation before characterizing climatic and soil-water 

interactions at regional and even global areas (Burke et al., 1991; Paruelo & Lauenroth, 1995; 

Rodriguez-Iturbe, 2000).    

Phenology, the study of the timing of biological events, integrates climate-biosphere 

relationships and is used to evaluate the effects of climate change (Schwartz et al., 2006; Cleland 

et al., 2007).  Understanding the timing, rate, and duration of vegetation growth events is key in 

the study of global change and the carbon cycle.  This timing relates directly to vegetation 

photosynthesis, carbon sequestration, and land–atmosphere water and energy exchange 

(Peñuelas, 2009; Morisette et al., 2009; Jones et al., 2011).  Variations in seasonal onset of 

vegetation growth have been documented at both the in situ measurement scale (Wolfe et al., 

2005) and the global satellite derived scale (Karl et al., 2012).  With recent climate change, 

phenologists have noted earlier spring onset and delays in the end of growing seasons (Parmesan, 

2007; Peñuelas, 2009).  In order to advance precise vegetation measurements, we need new 
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methods to remotely sense vegetation and derive phenology metrics at appropriate spatial and 

temporal scales. 

 

1.2 Optical remote sensing  

Normalized Difference Vegetation Index (NDVI), one of the most widely used vegetation 

remote sensing methods, is calculated as the difference between near-infrared (NIR) and visible 

(VIS) reflectance values normalized over the sum of the two (Eidenshink, 1992): 

     
         

         
 

Healthy green leaves have an internal mesophyll structure that reflects near-infrared radiation 

and also contain leaf chlorophyll to absorb red visible radiation (Wang et al., 2003).  This makes 

NDVI a good indicator of the ability of plant matter to absorb photosynthetically active 

radiation.  Therefore, NDVI is often used to estimate green biomass or phytomass (Gamon et al., 

2012; Al-Bakri and Taylor, 2003; Holm, 2003), leaf area index (Burke et al., 1991; Goetz, 1997), 

evapotranspiration (Cihlar et al., 1991), and primary productivity (Box et al., 1989; Rodriguez-

Iturbe, 2000; Paruelo et al., 1997).  For over 30 years, NDVI has provided direct measures of the 

phenological state of vegetation from landscape to global scales (Tarpley et al., 1984; Running & 

Nemani, 1988).   

While NDVI is documented as a successful “greenup” and seasonality index, it still has a 

variety of shortcomings: it has problems with background effects from soil (Paruelo et al., 1997), 

atmospheric effects (Rondeaux et al., 1996; Myneni & Williams, 1994), smoke and aerosol 

contamination (Jones et al., 2011), cloud cover (Champion and Guyot, 1993), areas of complex 

terrain (Box et al., 1989), weather (Brakke et al., 1981), time of day (Kim et al., 2012), and 

interruption of signals at high latitudes (Box et al., 1989).  Accurate derivation of phenology 
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metrics, such as vegetation start of season, suffer from the coarse time step of NDVI (Fischer, 

1994).  Additionally, NDVI has limited sensitivity to drought conditions due to its spatial 

compositing procedure which biases the high end of its spectral signature (Burke et al., 1991).  

As global phenology patterns and trends shift with climate change (Jones et al., 2011), dry 

conditions may become exacerbated (Enquist et al., 2012), increasing this problem.   

Other spectral vegetation indices such as Soil-Adjusted Vegetation Indices (SAVI) 

include soil-line parameters (Rondeaux et al., 1996).  Compared to NDVI, SAVI considerably 

reduces soil influences and surface roughness resulting in a lowered vegetation index signal 

(Huete, 1988).  Although SAVI reduces soil effects, it still has imprecise vegetation estimates, 

particularly when there is low vegetation cover (Rondeaux et al., 1996).   SAVI is not as 

commonly used as NDVI.  Normalized Difference Water Index (NDWI), another optical remote 

sensing method, utilizes an absorption band at 1.24   , whereas NDVI uses a channel at 0.66 

  .  NDWI measures interactions between liquid water molecules in vegetation canopies and 

incoming solar radiation (Chen et al., 2005).  However, NDWI is not a better predictor of 

vegetation water content than NDVI, especially at sites with soil background reflectance effects 

(Gao, 1996).  Therefore, only NDVI will be addressed further as a comparison index. 

 

1.3 Microwave remote sensing 

Remote sensing with microwave radar has advantages in that it is not limited by cloud 

cover, weather, or time of day (Ulaby & Wilson, 1985).  There are two types of microwave 

remote sensing: active and passive.  While active microwave sensing receives backscattering 

reflections from transmitted microwave signals on a plane, satellite, or ground surface, passive 
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microwave sensing gathers microwave radiation emitted directly from objects on the ground 

(Murai, 1993).   

Microwave data may be used to accurately determine vegetation water content and 

estimate biomass (Lu, 2006; Kim et al., 2012).  As the dielectric constant for water is an order of 

magnitude greater than for dry soil or vegetation at microwave wavelengths (Schmugge, 1978), 

changes in moisture content can results in significant changes in microwave scattering 

coefficients  (Brakke et al., 1981).  Thus, the primary challenges when using microwave data for 

vegetation studies include integrating heterogeneous plant dielectric properties through the 

canopy layer (O’Neill et al., 1984), and removing the effects of soil moisture and surface 

roughness (De Roo et al., 2001; Ulaby & Wilson, 1985; Ulaby et al., 1984). 

 

1.4 Benefits of GPS-IR 

Global Positioning System-Interferometric Reflectometry (GPS-IR), an active bistatic 

radar remote sensing technique, has shown great potential as a continuous, all-weather, and close 

to real-time microwave radar system for monitoring biomass (Small et al., 2010; Jin et al., 2011).  

GPS satellites transmit L‐band (microwave bands at 1.22760 and 1.57542 GHz) signals similar 

to those used in active microwave radar applications.  L-band signals have a higher correlation 

with vegetation water content (Kim et al., 2012) than C-band signals (4 to 8 GHz).  GPS-IR 

instruments can retrieve snow depth (Larson et al., 2009; Larson and Nievinski, 2012), soil 

moisture content (Larson et al., 2010) and even vegetation state (Hawkes and Finn, 2000; Small 

et al., 2010; Rodriguez-Alvarez et al., 2011).   Since GPS satellites transmit L-band signals, the 

vegetation estimates derived from GPS reflections are a measure of vegetation water content, not 

greenness as is the case for optical remote sensing methods.   
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GPS-IR is able to measure surface 

environmental variables through multipath 

delay, one of the main error sources for GPS 

navigation and positioning (Jin and 

Komjathy, 2010).  Multipath delay arises 

through interactions between the reflected 

ground signal and direct signal transmitted 

from the satellite to the antenna.  Geodetic 

GPS instruments optimized to track direct 

satellite signals and suppress multipath 

signals may be used to measure reflected 

signals (Larson et al., 2008).  These geodetic 

GPS (Fig. 1) systems, such as the tens of 

thousands worldwide and ~1000 currently 

operating under the National Science 

Foundation (NSF) EarthScope Plate 

Boundary Observatory (PBO), can be 

utilized to estimate biophysical parameters 

through multipath amplitude variations.  The majority of PBO sites are located in the western 

United States along active plate margins to measure deformation of the Pacific-North America 

plate boundary.  Thus the highest density of sites is in California.  Vegetation types at PBO sites 

are dominantly grass, woody savanna, and shrub.     

Figure 1. GPS antenna and radome in the 

foreground at site p208 in Williams, 

California.  This site was visited in 2012 to 

verify NMRI results.  On the top is lush 

green oatgrass on April 14
th

, 2012.  On the 

bottom is the same site three months later 

on July 22
nd

, 2012 with dry, brown 

vegetation. 

 



 

 

6 

 

GPS-IR has many benefits over other remote sensing techniques of vegetation sampling.  

The sensing footprint of GPS (~1000 m
2
) is smaller than that of spaced-derived remotely sensed 

products such as spectral vegetation indices (~25,000 m
2
), but larger than that of in situ 

observations (e.g. clipping and drying, ~1 m
2
).   Additionally, GPS instruments can provide daily 

estimates of vegetation state (Jones et al., 2011), which is more frequent than the, at best, four 

day composites of other sensing devices like NDVI (Jones et al., 2012).   

The operational GPS-IR statistic MP1rms, a measure of multipath scattering, exhibits a 

clear seasonal cycle as is expected for vegetation growth and senescence.  MP1rms is the root 

mean square of a linear combination of L1 and L2 carrier phase data with L1 pseudorange data 

(Estey and Meertens, 1999).  Normalized Microwave Reflection Index (NMRI) is the normalized 

version of MP1rms with a reverse in sign so that it increases during the growing season.   This 

normalization is discussed in more details in Section 2. 

 

1.5 Purpose of this study 

While the correlation between NMRI and vegetation has already been suggested (Small 

et al., 2010), the relationship between NMRI and NDVI signals needs further quantification.  The 

purpose of this study is to compare NMRI and NDVI signals spatially in terms of temporal signal 

variation and phenology.  We derive NMRI and NDVI range, correlation between NMRI and 

NDVI signals, and phenology parameters at both the site-by-site and regional scale for the 

western United States.  Phenology metrics include start of season day of year, season length, and 

peak day of year of vegetation growth.  The primary objectives of this study were to: 1) use 

range, correlation, and timing of phenology metrics to quantify spatial changes between NDVI 

and NMRI indexes, 2) measure temporal phenology changes between NMRI and NDVI for an 
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averaged five year record versus a drought year (2012), and 3) examine phenology variables as a 

function of climatic constrains including precipitation, temperature, and latitude. 
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CHAPTER 2 

Derivation of NMRI and NDVI metrics 

 190 sites from the NSF PBO Network in the western United States were initially chosen.  

Sites were selected in California, Oregon, Montana, Nevada, Utah, Idaho, Wyoming, and 

Colorado in non-forested, non-urbanized areas without seasonal snowpack.  Data from all sites 

was processed uniformly.  Through data acquisition and cleaning processes, described below, the 

number of study sites was reduced to 184.   

 

2.1 Data acquisition  

2.1.a  MP1rms 

Originally GPS was designed as a two-frequency system: L1 and L2 which operate at 

1.57542 and 1.22760 GHz, respectively.  Both of these frequencies consist of pseudorange data 

and carrier phase data.  Pseudorange data are a measurement of the time shift required to line up 

generated receiver code with code received from satellite multiplied by the speed of light (Wells 

et al., 1999).  Carrier phase data are the phase of the signal that remains when the incoming 

carrier is differenced with the constant frequency generated by the receiver (Wells et al., 1999). 

Pseudorange data (P) equals: 

   
    

            
 

  
        

   
    

            
 

  
        

Where P1 is the observed pseudorange on the L1 frequency (1.57542 GHz) and P2  is the 

observed pseudorange on the L2 frequency (1.22760 GHz) for a given receiver (r) and satellite 

(s).   A GPS receiver measures how long it thinks it took the signal to travel from the satellite to 
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the antenna, and multiplies this by  , the speed of light.  Atmospheric delays are represented by 

  (troposphere) and   (ionosphere), where the dependence on both the receiver and satellite is 

assumed.  The geometric range (  
 ) represents the path traveled by the satellite signal in a 

vacuum between the satellite and the antenna, δ represents clock errors for either the receiver or 

satellite.  Mulipath is represented by the   term.    is the intrinsic measurement error due to the 

ability of the GPS receiver to track the signal.  Carrier phase (   data equals: 

     
    

            
 

  
           

     
    

            
 

  
           

With the carrier phases (for the two frequencies) represented by    and   .       and    are the 

GPS L1 and L2 wavelengths (~0.19 and 0.244 m).     and    represent integer phase 

ambiguities. These uncertainties should be constant throughout a satellite arc so long as there are 

no cycle slips.   

Since the wavelength of the carrier phase is much shorter than the wavelength of either 

codes, carrier phase codes have much greater precision than pseudo-range codes (Wells et al., 

1999).     or multipath error on pseudorange data are of interest in this study as it is two orders 

of magnitude larger than carrier phase multipath errors.      may be isolated by subtracting 

pseudorange data from carrier phase data producing the following linear combination: 

       
  

    
 

  
    

      
  

    
 

  
    

      

This removes the geometrics range and clocks simplifying to: 
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Here   is a linear combination of the carrier phase bias terms.      can be estimated when all 

three GPS observables (          are known.  To avoid error, slips that could vary    and 

   values must be identified and repaired.   

Thus, MP1rms is the root mean square of a linear combination of L1 and L2 carrier phase 

data with L1 pseudorange data (Estey and Meertens, 1999).  Every day, MP1 is recorded from 

each GPS antenna in the PBO network for every satellite that passes overhead at a sampling 

interval of 15 seconds.  A constant is then removed; standard deviations are computed from these 

values, and ultimately averaged, producing one daily MP1rms value for each site.  MP1rms is 

unitless.  

2.1.b  NDVI 

NDVI data are derived from NASA’s Moderate Resolution Imaging Spectroradiometer 

(MODIS), MOD13Q1, 250 meter pixel, 16-day composite products.   250 meter spatial 

resolution is used because the 250 meter bands detect light in the near infrared and red portions 

of the electromagnetic spectrum.  Each NDVI data point is a composite created using the 

Maximum Value Composite (MVC) technique.  This technique is frequently performed on 

NDVI data to reduce both cloud contamination and data volume (Swets et al., 2001).   Using the 

MVC technique, points with the highest NDVI from daily images over 16-day periods are 

selected and reported (Holm, 2003).  For this study, data points are extracted and averaged from 

one pixel surrounding a stationary centroid of each sampling domain.  NDVI is unitless. 

2.1.c Precipitation and temperature 

Mean annual precipitation (MAP, mm) and mean annual temperature (MAT, ºC) are 

extracted from hourly North America Land Data Assimilation System (NLDAS-2) modeled data 

at each site (Mitchell et al., 2003).  Daily values are computed (maximum, minimum, and 
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average) for each of these quantities.  This data has 32 km spatial resolution and one hour 

temporal frequency (NLDAS; http://ldas.gsfc.nasa.gov/nldas/NLDAS2model.php). 

 

2.2 Data cleaning 

NDVI is minimally edited.  Negative NDVI values are set to zero and data are removed 

on days that NLDAS data record snow events.  NLDAS snow events are identified when the 

temperature falls below 1 ºC and there is more than 2 mm of daily precipitation. 

MP1rms data are cleaned in the same fashion for NLDAS snow events, but is also 

cleaned for NLDAS heavy rain events (>10 mm/day) and signal detrending.  Since reflected GPS 

signals are influenced by terrain, and a reflected GPS range signal depends directly on the extra 

path length, MP1rms metrics have been normalized to become NMRI.  At each site, the bare 

vegetation state is determined empirically by estimating the mean value of data in the top 5
th

 

percentile of MP1rms over the six-year period (MP1max).  Then, with raw MP1rms data defined 

as MP1, NMRI is normalized as follows: 

     
             

      
 

Normalizing NMRI this way removes the extra path length term to a first order approximation. 

Since NMRI values are influenced by precipitation, soil moisture, surface roughness, and 

receiver malfunctions, signal noise is variable from site to site.  It is challenging to extract 

metrics at sites with high signal noise.  To eliminate these sites, signal noise deviations are 

determined by computing the standard deviation between the raw NMRI signal and NMRI data 

after smoothing and linear interpolation.  Standard deviations in signal noise range from 0.005 to 

0.024 with a mean value of 0.011 (unitless).   
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Signal noise standard deviations are then compared to the change in NMRI signals, or 

range, over the six year record (2007-2012).  A noise metric picks out sites with high noise 

standard deviations and low range values; these sites are labeled as “noisy”.  Noisy sites (n=6) 

were excluded from metric analysis reducing the number for sites from 190 to 184. 

 

2.3 Range, correlation, and lag metric derivation 

 After NMRI and NDVI data cleaning and normalization, three metrics are derived on 

both a site by site (n=184) and region average scale: range, correlation between NMRI and 

NDVI data, and correlation lag.  Range is calculated for NMRI and NDVI for each site as the 

difference between maximum and minimum data values over the entire data set (2007-2012).  

Correlation values are found by extracting NMRI data on days that also have NDVI data and 

computing a standard R
2
 coefficient of determination statistic.  To take into account lag between 

NMRI and NDVI signals, NMRI points are extracted for days that have NDVI data plus a 

specified lag value (in days).  R
2
 correlation was computed for each lag amount and compared.  

Lag was tested from zero to 45 days to determine the amount of lag necessary for maximum 

correlation.  180 sites had positive lag days; four sites had zero or negative lag days.  Lag 

analysis is not exact, as the NDVI data represents a smoothed ~16 day window.    

 

2.4 NMRI and NDVI seasonality metric derivation 

 Clean and daily NMRI and NDVI data are needed to compute phenology metrics.  This 

poses as a challenge as raw NDVI data are only available as a 16 day composite, making 

anywhere between one and 31 days between sample points.  Likewise, daily NMRI data can be 

noisy due to variations unrelated to vegetation.  In order to overcome these problems and 



 

 

13 

 

produce directly comparable data, the same method, outlined below, is used for both NMRI and 

NDVI phenology metrics. 

2.4.a  Smoothing NMRI and NDVI  

Metrics for NMRI are produced to be directly comparable to NDVI.  Examples of 

smoothing are presented for site p208 in California which has a large range and low noise and 

site p041 in Colorado which has smaller range and noisier signal (Fig. 2).  First, raw NMRI data 

(Fig. 2a and e) is smoothed with a moving 5-day median (Fig. 2b and f).  Next, data are extracted 

for days that NDVI data was present on a site-by-site basis (Fig. 2c and g), and using linear curve 

fitting, interpolated for missing data (Fig. 2d and h).  It was found that smoothed NMRI 

extracted on NDVI days matched closely with smoothed NMRI not extracted on correlated 

NDVI days.  Thus for simplification, results are presented in terms of NMRI, not NMRI 

extracted from days with NDVI.  For direct comparison to NMRI, NDVI data are interpolated 

between missing points using linear curve fitting.   

2.4.b  Phenology variables 

NMRI phenology metrics are then defined with a threshold method (Fig. 2d and h, green 

line) that requires the data to remain above a fixed 25% of the seasonal amplitude for a minimum 

of 40 days (Jones et al., 2012).  This threshold method was tested against a third derivative 

approach from an asymmetric Gaussian fitting routine in TIMESAT (Jönsson and Eklundh, 

2004).  Whereas TIMESAT requires previous and following year data to pad the current year 

matric, the threshold approach was not limited by padding and able to compute metrics for five 

water-years, 2008-2012.  Each water-year goes from day of year (doy) 275 of the previous year 

to doy 274 of the current year (for example, the water-year 2012 goes from doy 275 in 2011 to 

doy 274 in 2012).  Annual NDVI metrics are produced using an identical procedure. 
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Three phenology variables are considered: start of season (SOS), season length, and peak 

vegetation doy.  The SOS or greenup date signifies the first pulse of greenness or increase in 

vegetation water content.  SOS was determined to be when the NMRI or NDVI variable first 

crosses the 25% threshold (Fig. 2d and h, green line).  As a function of each year’s minimum 

signal, the 25% threshold changes from year to year, constructing a moving boundary (e.g., 

Stein, 1999).  

Though 50% is the most often used threshold, as the increase in greenness is believed to 

be most rapid at this cutoff, we used 25% as to capture the first growth pulse (De Beurs, 2008).  

E 

F 

G 

H 

Site p041                                        Site p208 

Figure 2. NMRI seasonality metric derivation for sites p041 and p208.  Site p041 has a smaller 

NMRI signal varying from 0-0.1 and has been cleaned for snow while p208 has an uninterrupted 

record and larger signal range (0-0.3).  The red in the bottom panel identifies annual phenology 

data. 
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Our criteria also required that the index stay above this percentage for 40 consecutive days (Fig. 

2d and h, red dots), as to eliminate any early season increases that may be falsely associated with 

soil moisture after a heavy precipitation events.  Season length (Fig. 2d and h, length of red dots) 

is computed as the time between SOS and end of season or senescence when the index falls 

below the 25% threshold.  Peak vegetation doy is derived from the doy of the local maximum of 

the NDVI or NMRI index (Fig. 2d and h, maximum red dot height).   

2.4.c Uncertainty and sensitivity to parameters 

Six percent of all sites (n=11) were not included for all five water-years for each 

phenological index due to inadequate extraction of metrics. This occurred when the index did not 

exceed the 25% threshold for 40 continuous days for the entire year as was often the case at sites 

with low amplitude variations.  Analysis suggests that there is not significant improvement with 

changes in threshold percent or days above threshold.   When computing five water-year 

averages for the phenological variables, sites were not considered if two or more years had 

inadequately extracted data, reducing the number of sites analyzed from 184 to 173. 

As there is no direct measurement of vegetation biomass at the GPS PBO sites, NMRI 

and NDVI phenology measurements will only be compared to one another.  Any correlation 

between NMRI and NDVI metrics is not causal and only exists via linkages between plant 

biomass and water content.  We expect that there will be a lag in relations as NMRI is sensitive 

to the total amount of vegetation water content in the area surrounding the GPS antenna, 

regardless of the concentration of chlorophyll in the biomass (Small et al., 2010). 
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2.5 North America level III/IV ecoregions 

The Commission for Environmental Cooperation has defined North American level III 

ecoregions according to climate, hydrology, vegetation, wildlife, and land use/human activities 

(Wiken et al., 2011).  This data set has 181 ecoregions that stretch over the United State, Canada, 

and Mexico.  A further subdivision of level IV ecoregions has been recommended by the U.S. 

Environmental Protection Agency (Omernik, 1987; U.S. Environmental Protection Agency, 

2011).  Clustered regional 

phenology is useful for 

analyzing phenological 

responses to climate change 

on the ecosystem level 

(White, 2005; Hargrove & 

Hoffman, 1999).  

While this study aims 

to elucidate ecoregional 

phenological responses, 

because of the irregular 

spacing of test GPS antenna 

sites (n=184) in the PBO 

Network, only sites in 

California, Oregon, Montana, 

Nevada, Utah, Idaho, 

Wyoming, and Colorado are 

GPS Station 

p398 

p042 

p048 

Figure 3. Map showing location of GPS stations used in this 

study.  Six sites of interest are highlighted in red.  Ecoregions 

are identified in black text and color coded. 
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utilized, spanning 25 level-III ecoregions (Fig. 3).  These sub-grouped sites will be referred to by 

common land-type labels: Mountain (n=25), Coast (n=14), Prairie (n=8), Desert (n=38), and 

Mediterranean California (n=99).  The majority of these stations (n=99) fall into the subdivision 

of Mediterranean California: California Coastal Sage, Chaparral, and Oak Woodlands.  These 

level III Mediterranean California sites have been subdivided into grassland (n=66) and shrub 

(n=33) sites based on evaluation of photographs and MODIS land cover classifications.  The 

grassland division contains two cropland sites.  By clustering sites into these ecoregions we 

highlight vegetation phenological responses to climate constraints and reduce the effects of 

spatial heterogeneity between sites. 
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CHAPTER 3 

Results 

3.1 NMRI and NDVI range 

3.1.a  Range values 

Range values highlight the spread of measureable photosynthetic vegetation activity 

(Reed et al. 1994).  NMRI and NDVI range values for each region are reported as a mean of the 

2007-2012 data set (Table 1).  The average NMRI range value for all sites was 0.25±0.1.  The 

average NDVI range value for all sites was 0.47±0.1.  NMRI and NDVI range values should not 

have equal magnitude as they are normalized independently.   

By region, average NMRI and NDVI ranges cluster around the total population mean 

(Table 3).  However, each metric has one regional outlier.  For all regions, NDVI ranges are all 

close to 0.5 except for desert sites that are abnormally low (0.342±0.13).  NMRI regional ranges 

Region 

Name 

Population 

Size 

NMRI 

Mean 

Range 

NDVI 

Mean 

Range 

Mean R
2
 

Max. 

Mean R
2
 

Lag 

Days 

Average 

(2008-2012) 
184 0.247±0.09 0.466±0.13 0.310±0.21 0.527±0.20 21±13 

Mountain 25 0.216±0.07 0.521±0.10 0.460±0.18 0.606±0.23 9±7 

Coast 14 0.170±0.04 0.516±0.16 0.099±0.14 0.280±0.16 26±16 

Prairie 8 0.204±0.04 0.470±0.07 0.492±0.14 0.718±0.07 10±6 

Desert 38 0.204±0.07 0.342±0.13 0.366±0.21 0.535±0.21 15±9 

Med. CA 99 0.285±0.09 0.492±0.10 0.261±0.18 0.519±0.17 27±11 

Grassland 66 0.315±0.09 0.522±0.09 0.271±0.17 0.543±0.17 28±11 

Shrubs 33 0.227±0.07 0.437±0.09 0.242±0.18 0.476±0.15 25±12 

Table 1. Mean NMRI and NDVI parameters separated by region.  Mediterranean California has 

been further subdivided into grassland and shrub sites.  Outliers identified in bold. 
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are all approximately 0.2 with the exception of Mediterranean California sites that have a higher 

value (0.285±0.09). 

3.1.b  Spatial trends 

Viewed site by site, location appears to have a first-order effect on NMRI and NDVI 

metric ranges (Fig. 4).   NDVI range corresponds differently by region than NMRI range.   

NMRI range (Fig. 4a) increases with a decrease in latitude while NDVI does not have a 

consistent pattern (Fig. 4b).  The largest NMRI range variations (Fig. 4a, blue points) occur in 

precipitation-limited Mediterranean California sites (0.29±0.1).  Within Mediterranean 

California the grassland sites have higher mean range (0.32±0.1), with range decreasing towards 

Figure 4. NMRI (a) and NDVI (b) average range for 2007-2012 data series.   

(A)  NMRI Average Range (2008-2012) B (B)   NDVI Average Range (2008-2012) 

NMRI Range NDVI Range 
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the coast.  The highest range values cluster around the agricultural Central Valley in California.  

Mountain sites also have relatively high NMRI range (0.22±0.1).  The lowest range values (Fig. 

4a, red points) are in water-limited western California and the insolation-limited coasts of 

western Washington and Oregon (0.17±0.0).  Desert areas in Nevada and Utah (Fig. 4a, green 

points) display intermediate values (0.20±0.1).   Overall for NMRI, range values within regions 

are moderately heterogeneous as all regions have standard deviations below 0.1. 

Unlike NMRI, NDVI range does not seem to correspond with latitude (Fig. 4b). The 

highest NDVI values (Fig. 4b, blue points) occur in mountain and coastal regions (0.52±0.1 and 

0.52±0.2, respectively).  This is in direct contrast to the low NMRI values in the same region 

(Fig. 4a, red points).  The lowest NDVI values (Fig. 4b, red points) cluster around desert areas 

(0.34±0.1).  Intermediate 

values (Fig. 4b, green points) 

are found in the prairie and 

Mediterranean California 

sites, with values decreasing 

towards the coast.  However, 

this pattern is not as 

dramatically as it was for 

NMRI.  There is greater range 

heterogeneity within region 

found by NDVI than for 

NMRI (standard deviations ≤ 

0.16).   

Range (n=184) 

Figure 5. NMRI and NDVI average range for 2007-2012 data 

series.  Each point represents one of 184 sample sites.  Filled are 

averages for each region (see Table 1).   
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Coast sites have the largest discrepancy 

between NMRI and NDVI range values.  When 

averaged, this region has the lowest NMRI range 

value and one of the highest NDVI values (Fig. 

5, green diamond).  A similar discrepancy is 

notable in mountain sites (Fig. 5, blue triangle).   

Since few sites have low NDVI and high NMRI 

values while many sites have high NDVI and 

low NMRI values, there is an unequal 

relationship between NMRI and NDVI ranges 

that creates a triangular skew in the data as seen 

in Figure 5.   

 

3.2 Correlation between NDVI and NMRI 

3.2.a  Site-by-site correlation 

We report average data series (2007-

2012) R
2
 correlation values between NDVI and 

NMRI signals for each region (Table 1).  Three 

different sites are presented as examples of 

correlation: p041, p046, and p208 (Fig. 6).  At 

site p041 in Marshall, Colorado (R
2
=0.65) the 

NDVI and NMRI values are not stratified by 

month (see Figure 2 for time series).  Prairie site 

Figure 6.  Annual correlation cycles for p041, 

p046, and p208 (see Fig. 3 for locations).  

Each point represents one NDVI sample day 

on which NMRI data has also been extracted 

for 2007-2012.  Dashed lines represent 

vegetation greenup while solid lines illustrate 

vegetation decline following senescence. 
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p046 in Bonner, Montana has a lower correlation than p041 (R
2
=0.54) due to cyclical 

stratification by month (Fig. 6, middle plot).  In April and May, NDVI respond strongly while 

NMRI signals increase only slightly.  In early June, NMRI increases and NDVI remains 

constant.  For the remainder of the growing season, NMRI and NDVI decline together.  We 

observe a similar but more extreme pattern at Mediterranean California site p208 (see Figure 2 

for time series) in Williams, California (R
2
=0.25).  Here (Fig. 6, bottom plot) NDVI signals 

respond sooner than NMRI at the start of the growing season.  Then both signals trend linearly 

together after senescence.  Greenup occurs earlier in the season at this site than at the Colorado 

(p041) and Montana (p046) sites.  This site has a lower correlation value due to both the change 

in slope immediately after late season senescence, and the large amount of time the vegetation is 

dry and with a stagnant, low signal.    

These three sites, each with different cycles, illustrate temporal variation in vegetation 

growth.   They also serve to highlight vegetation complexities that are not conveyable in 

correlation values.   Correlation results, presented below, need to be regarded with this 

heterogeneity in mind. 

3.2.b  Correlation by region 

Site-by-site average R
2
 values range from 0.00 to 0.78 (mean=0.31±0.2, median=0.28) 

(Table 1).  Correlation results are distinct when viewed by regional averages.  Those regions that 

fall in temperature-limited areas such as Montana, northern Utah, Idaho, Colorado, Wyoming, 

and eastern Oregon (mountains and prairies) exhibit high R
2
 values (0.46±0.2 and 0.49±0.1, 

respectively).  Western California sites (Mediterranean California) in precipitation-limited 

regimes display low R
2
 values (0.26±0.2); shrub sites have a lower correlation value than 

grasslands.  The lowest R
2
 correlations are in insolation-constrained sites in western Oregon and 
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Washington (coast: 0.10±0.1).  In addition to these end-member populations, desert sites in 

Nevada and eastern California with noisy, low range signals also have an intermediate R
2
 

(0.37±0.2).  When viewed more closely, Mediterranean California (n=99) sites subdivide into 

lower R
2
 values towards to coast, and high values inland, ranging from 0.00 to 0.67 (mean= 0.25, 

median=0.23).  

3.2.c  Lag effects and correlation 

Obtaining NMRI points with a specified lag time from NDVI data produces an increase 

Figure 7. NDVI versus NMRI correlations grouped by land cover type.  For each land 

cover type, correlations without lag are on the left in blue and maximum lagged 

correlations are on the right in black.   Plot displays outliers (+), median, quartiles, 

maximum, and minimum values.  Inset histogram shows correlation results increase with 

a lag up to 21 days and then decrease.  The highest lag days (>40 days) are found at 

coastal sites both in the coast and Mediterranean California subdivisions. 
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in correlation (Fig. 7).  Correlation increases with lag at many sites; the strongest correlation is at 

an average lag of 21 days.  When including lag effect, maximum R
2
 values increase, ranging 

from 0.08 to 0.86 (mean= 0.53±0.2, median =0.57) (Table 1).  The highest and lowest R
2
 values 

remain in the same regions: prairies and coasts (0.72±0.1 and 0.28±0.2, respectively) (Fig. 7).  

Overall, R
2
 values and lag times are inversely correlated (Fig. 8): maximum R

2
 values (Fig. 8a, 

blue points) are highest in the prairies and mountains where lag days are the least (Fig. 8b, 

yellow points).  Minimum R
2
 values (Fig. 8a, tan points) are in the coast regions where lag days 

are the most (Fig. 8b, red points).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B)   NMRI v. NDVI Max. Lag Days (A)               NMRI v. NDVI  

Figure 8.  The left panel shows maximum R
2
 values ranging from 0.082 to 0.863 with a mean value 

of 0.527.  The right panel displays the number of days required site-by-site to produce the strongest 

correlation.  The coast and Mediterranean California sites (see Table 1) increase in correlation 

results as lag increases up to 27 days, though many still have relatively low R
2
 values.  Prairie, 

desert, and mountain sites require only 9 to 15 days of lag to achieve their maximum R-squared 

value which has higher correlation than coast sites. 
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 When lag days are clustered by region (Fig. 9) regional trends from Figure 8b become 

more apparent.  On average sites in the mountains region peak at 9 days, coast at 27 days, prairie 

at 10 days, deserts at 15 days, and sites in Mediterranean California at 27 days.  The highest lag 

days (>40 days) are found at coastal sites both in the coast and Mediterranean California 

subdivisions. Zero or potentially negative lag days are found in the desert, coast, and mountain 

sites.  Coast sites have the greatest variability between lag days.  Mediterranean California sites 

most closely match the average trend of the whole population seen in Figure 7. 

 

  

Figure 9.  These hisotrgrams display the number of days required by region to produce the 

strongest correlation.  Region names and total  population numbers are reported in the upper left 

hand corner for each plot. 

Mountain, n=25 

Coast, n=14 

Prairie, n=8 

Desert, n=38 

Med. CA, n=99 
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Results are consistent with the conceptual model for vegetation influences on NMRI 

(Small et al., 2010).  Initial greening of leaves and increases in photosynthetic activity yields 

early, high NDVI results whereas the effect of vegetation growth on NMRI is only apparent after 

increasing photosynthetic activity produces additional plant growth.  The average lag between 

these two increases is 21 days.  This observation is consistent with previous measures that 

support multipath variations lag NDVI by approximately three weeks (Small et al., 2010). 

 

3.3 Relationship between NMRI and NDVI phenology metrics 

3.3.a  Phenology metrics: Five water-year time series (2008-2012) 

Phenology metric results are presented in Table 2 and Figure 10.  NMRI and NDVI SOS 

dates are slightly correlated for the five water-year record (R
2
=0.16, p=0, n=865).  On average 

increases in NDVI precede that of NMRI by 52 days.  NDVI SOS has an average doy of 18 

 (A)                Start doy (n=865) (B)            Peak doy (n=865) 

Figure 10. SOS doy and peak vegetation doy NDVI versus NMRI colored by regions.  Each point 

represents one water-year of data for one site (173 sites for 5 water-years yields 865 points).   

R
2
=0.16  

p=0.00 

R
2
=0.43 

p=0.00 
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while NMRI SOS has an average doy of 70 (Table 2).  Low correlation suggests the data are a 

mix of regionally grouped populations.   

Grouped by region, SOS is earliest for Mediterranean California sites (Fig. 10a, black 

circles), followed by coast (green diamonds), desert (purple square), mountain (blue triangle), 

and finally prairie sites (Fig. 10a, red triangle).  Results differ depending on the metrics used: 

NMRI places SOS for mountain sites 25 days later than NDVI (Table 2).  Coast sites differ by  

2008-2012 SOS (doy) Season Length (days) Peak Doy 

NDVI Avg. 18 171 110 

NMRI Avg. 70 133 137 

Mountain (n=22) 

 NDVI 87 138 169 

NMRI 112 118 176 

Coast (n=14) 

 NDVI 4 233 135 

NMRI 106 130 167 

Prairie (n=8) 

 NDVI 110 124 176 

NMRI 130 105 189 

Desert (n=30) 

 NDVI 60 140 142 

NMRI 107 119 161 

Mediterranean California (n=99) 

 NDVI -16 179 83 

NMRI 42 136 111 

Grasslands (n=66) 

 NDVI -13 177 83 

NMRI 47 128 113 

Shrubs (n=33) 

 NDVI -20 182 82 

NMRI 32 150 107 

 

 

 

Table 2. Phenology metrics extracted for NDVI and NMRI.  

Overall NMRI has a later SOS, later peak doy, and shorter season 

length.  Mediterranean California sites are subdivided into 

grasslands and shrubs. 



 

 

28 

 

102 days, prairie sites by 21 days, and desert and Mediterranean California sites by 26 days each 

(Table 2).  Figure 11 illustrates these results spatially.  Sites farther north and west have a later 

SOS doy (Fig.11a, blue points) while sites in California have an earlier SOS doy (Fig.11a, red 

points).  The difference between SOS extracted by NDVI and NMRI, respectively, is greater in 

western sites (Fig. 11b, red points) than eastern ones (Fig.11b, blue points). 

Season length has lower correlation between indices (R
2
=0.08, p=0, n=865) than SOS.   

When found by NMRI, average season length is 133 days compared to 171 days by NDVI 

(Table 2).  Season length is longer at all regional sites when recorded by NDVI instead of NMRI.  

The maximum difference in season length by region is 103 days at coast sites.  The minimum 

difference is 19 days at desert sites (Table 2).  Season length is not plotted, as results duplicate 

those of SOS.     

NMRI and NDVI peak vegetation growth dates exhibit the highest correlation for the five 

water-year record (R
2
=0.43, p=0, n=865).  On average, NMRI finds that vegetation peaks on doy 

137 and NDVI on doy 110 (Table 2).  By region, sites in Mediterranean California peak earlier 

than other sites (Fig. 10b, black diamonds).  NMRI and NDVI place mountain and prairie sites 

vegetation peaks on relative equal days (Fig.10b, blue triangle and red triangle are on 1:1 line).  

Peak doy for these two regions is later than other sites (Fig. 11c, blue points).  NMRI determines 

that coast and desert sites vegetation peak later than NDVI (by 32 and 19 days, respectively).  

These sites still cluster around the 1:1 line (Fig. 10b, green diamond and purple square), and are 

spread, especially in desert sites, from the maximum to minimum peak doy (Fig. 10b, purple 

square).  Figure 11c illustrates distinct peak doy clusters by region.  Sites to the north peak later 

(Fig. 11c, blue points) while sites throughout California peak earlier (Fig. 11c, green points).  

The earliest peak doy is in the Central Valley (Fig. 11c, yellow and red points).   Overall, 
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A B 

C D 

Figure 11. Phenology metrics extracted for NDVI and NMRI: (a) Start of season (SOS) doy from 

NMRI; (b) change in SOS doy (NMRI-NDVI), positive numbers have a later NMRI SOS doy than 

NDVI; (c) peak vegetation doy extracted from NMRI; (d) change in peak doy (NMRI-NDVI). 
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phenology metrics extracted by microwave 

NMRI record a later start of season, later 

peak day of year, and shorter season length 

than determined by optical NDVI. 

3.3.b  2012 drought variability 

High temperature and low 

precipitation patterns in the spring and 

summer of 2012 not only set many climatic 

records across the United States, but created 

a drought which affected a historically large 

fraction of the country (Karl et al., 2012).  

In Figure 12 sites p208, p042, and p048 

highlight the variability of drought extent.  

Both p208 and p042 were classified as 

having a “severe drought” in 2012 while 

p048 was only “abnormally dry” (National 

Drought Mitigation Center; 

http://droughtmonitor.unl.edu/).   Site p208 

in Williams, California (see Fig.3 for 

location) had 669 mm of precipitation in 

2012 (Fig. 12a, blue circle), an increase of 

249 mm from average (2008-2012).  With 

an increase in precipitation in 2012, NMRI 

A 

B 

Figure 12. NMRI and NDVI record for sites (a) 

p208, (b) p042, (c) p048.  Note the 2012 above 

average precipitation at p208 (dashed blue circle) 

and below average precipitation at p042 (solid red 

circle) and the effect on NMRI and NDVI signals.  

P048 has below average precipitation (dotted green 

circle) but this does not affect NDVI and NMRI 

metrics. 

C 
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and NDVI responses are constant from previous years (Fig. 12a, blue arrows).   Site p042 in 

Wheatland, Wyoming (see Fig. 3 for location) had 162 mm of precipitation in 2012, a decrease 

of 228 mm from average (Fig. 12b, red circle).  This decrease in precipitation caused a drastic 

decrease in NMRI and NDVI responses (Fig. 12b, red arrows).  Site p048 in Bozeman, Montana 

(see Fig. 3 for location) had 328 mm of precipitation in 2012, a decrease of 122 mm from 

average (Fig. 12c, green circle).  Here, decreased precipitation did not influence the 2012 NMRI 

and NDVI signals (Fig. 12c, green arrows).  It may, however, have an effect on 2013 data.   Due 

to variability in drought influence, as suggested by these sample sites, results below need to be 

regarded as an approximation.    

3.3.c  2012 drought results 

The effect of the 2012 drought averaged over all stations (n=173) strongly influences 

metric amplitude but not phenology indexes.  In 2012 NMRI and NDVI SOS and peak doy did 

not deviate far from average values.  Season length was shorter in 2012 due to an earlier end of 

season.   

In 2012 NMRI and NDVI SOS dates (Table 3) are slightly later than average (NDVI: doy 

21 (2012) v. 18 (average); NMRI: doy 66 v. 70).  NDVI SOS dates are earlier than NMRI, 

consistent with data from the five water-year time series.  Peak doy was later overall in 2012 

2008-2012 SOS (doy) Season Length (days) Peak Doy Amplitude 

NDVI Avg. 18 171 110 0.265 

NMRI Avg. 70 133 137 0.133 

     2012 SOS (doy) Season Length (days) Peak Doy Amplitude 

NDVI Avg. 21 148 112 0.203 

NMRI Avg. 66 123 141 0.117 

Table 3.  Seasonality parameters for 2012 verse 2008-2012 averages.  Season 

length was shorter in 2012 and peak vegetation doy was slightly later.  2012 

amplitude values were lower compared to average. 
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than average (NDVI: doy 112 v. 110; NMRI: doy 141 v. 137).  This relationship was more 

prevalent in the NMRI than the NDVI data, though not significantly.  Season length in 2012 was 

less than average, although the deviation was larger for NDVI (NDVI: 148 v. 171 days; NMRI: 

123 v. 133 days).   

Seasonality amplitude varies more than phenology indexes with drought.  Whereas in 

Section 3.1 reported range amounts represent the difference between maximum and minimum 

values throughout the entire data set, those obtained in Table 3 are from the maximum and 

minimum values of the seasonality data and only extend through the SOS doy and EOS doy for 

each year.  This causes smaller values than values reported previously (Table 1).  Both NMRI 

and NDVI minimum amplitude values are presented for 2012 (Table 3).  Data in 2012 deviated 

by 33% from the mean (2008-2012) for NDVI and 22% for NMRI. 

 

3.4 NMRI and NDVI seasonality metrics as a function of climatic variables 

 The effects of climate variables on NMRI and NDVI SOS and peak doy are presented in 

Figure 13.  Statistics are presented in Table 4.  Mean annual temperature will be discussed, 

followed by mean annual precipitation, and finally, latitude. 

3.4.a  Mean Annual Temperature 

Mean annual temperature (MAT, ºC) plays a moderate role (R
2
=0.26, p=0, n=865) in 

correlation with SOS doy from NMRI metric (Fig. 13g).  As MAT decreases, NMRI SOS 

increases.  Correlation values between MAT and NDVI are slightly higher (R
2
=0.30, p=0, 

n=865) and exhibit negative relationship; as MAT decreases, SOS doy increases (Fig. 13e).  

Stratification is evident around 4ºC (Fig. 13e).    
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MAT has the most significant relationship to peak doy (R
2
=0.59, p=0, n=865) for the 

NMRI metric (Fig. 13h) and the NDVI metric (R
2
=0.45, p=0, n=865) (Fig. 13 f).  Both have a 

linear, negative relationship: as MAT decreases peak doy increases, with NMRI doy occurring 

slightly after NDVI peak doy.  Season length does not have significant correlation with MAT 

and is not shown in Figure 13 (Table 4).   

A 

E F 
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Figure 13. Start doy (a,c,e,g) and peak vegetation doy (b,d,f,h) organized by mean annual 

precipitation (a-d) and mean annual temperature (e-h) and NMRI (c,d,g,h) or NDVI (a,b,e,f) 

and stratified by latitude.  Each point (n=865) represents one water-year of data for one site 

(2008-2012).   
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3.4.b  Mean Annual Precipitation 

 Mean Annual Precipitation (MAP, mm) does not exert a significant influence on 

phenology metrics.  With an increase in MAP, SOS doy generally increases (Fig. 13a and c).  

This relationship corresponds equally to NMRI and NDVI indexing (NMRI R
2
=0.01, p=0.05; 

NDVI R
2
=0.01, p=0.04, n=865).  Season length also exhibits a positive linear relationship, but 

with stronger NDVI correlation (NMRI R
2
=0.09, p=0; NDVI R

2
=0.29, p=0, n=865).  This is in 

stark contrast to the low correlation of season length with MAT (Table 4).  MAP correlates 

linearly with peak doy (Fig. 13b and d), as sites with greater MAP have a later peak doy (NMRI 

R
2
=0.08 p=0; NDVI R

2
=0.02 p=0, n=865).  As evidence by reported correlation values, there is 

not significant correlation between peak doy and MAP. 

 

 

 

 

 

 

 

 

 

 

3.4.c  Latitude 

With direct correlation to MAT and MAP, latitude influences NMRI and NDVI extracted 

phenology indexes (Fig. 13).  With an increase in latitude, NMRI and NDVI determined SOS 

Climate 

Variable 

Phenology 

Metric 
Index R

2
 p-value 

Mean Annual 

Temperature 

SOS 
NMRI 0.26 0.00 

NDVI 0.30 0.00 

Season Length 
NMRI 0.00 0.23 

NDVI 0.00 0.21 

Peak doy 
NMRI 0.59 0.00 

NDVI 0.45 0.00 

Mean Annual 

Precipitation 

SOS 
NMRI 0.01 0.05 

NDVI 0.01 0.04 

Season Length 
NMRI 0.09 0.00 

NDVI 0.29 0.00 

Peak doy 
NMRI 0.08 0.00 

NDVI 0.02 0.00 

Table 4.  Phenology correlation and p-values, p≤0.05 for R
2
 to 

be significant (n=865).  
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doy increases (Fig. 13a,c,e, and g; cool colors increase to the right).  For SOS metrics (Fig. 13a 

and c) MAP has a stratified, direct correlation with latitude while MAT does not (Fig. 13e and 

g).  Season length does not correlate with latitude for NMRI or NDVI, though it stratifies by 

MAT.  As latitude increases, vegetation peak doy increases for both NMRI and NDVI (Fig. 

13b,d,f,h).   NMRI predicts relative later peak doy than NDVI (Fig. 13d points are clustered 

further to the right than Fig.13b).  MAT separates sites along peak doy where low latitude sites 

have higher MAT than high latitude sites (Fig. 13f and h).  MAP does not stratify by latitude for 

peak doy (Fig. 13b and d). 
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CHAPTER 4 

Discussion 

NMRI and NDVI correlation, lag, and phenology are spatially variable.  Correlation 

between NMRI and NDVI is lowest in the coast region and highest inland in mountain and 

prairie regions.  NMRI variations lag NDVI by approximately 21 days, causing an increase in 

correlation for all regions.  When determined by NMRI versus NDVI, phenology metrics are 

offset spatially with the largest offsets along Pacific Ocean coastline, decreasing inland and 

subdivided by region.  Thus we see that coast regions have the low correlation, longest lag days, 

and biggest offset of phenology metrics.  Mountain and prairie sites represent the opposite end 

member.  Mediterranean California and desert sites have intermediate results. 

 These results will be expanded and discussed in the conceptual lens of regional climate 

influences on vegetation.  First, we will present temperature-limited sites including the regions of 

mountain, prairie, and desert, followed by precipitation-limited regions of Mediterranean 

California and deserts, and finally, a discussion of insolation-limited costal sites.  We will 

conclude with remarks on the 2012 drought. 

 

4.1 NMRI constrains and bias  

4.1.a  Temperature-limited regions 

Temperature-limited regions such as Montana, eastern Washington, eastern Oregon, and 

Idaho (subdivisions of mountain, prairie, and some desert) are characterized as having a MAT of  

1°C to 10°C  with MAP of 700-3,000 mm (Wiken et al., 2011).  From our analysis, these sites 

have intermediate NMRI and NDVI range values.  They have the highest R
2
 correlation values 

with NDVI, and improve in correlation with increase in data lags of 9 to 15 days.  At example 
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site p046 there is a well correlated, cyclical greenup and post-senescence cycle (Fig. 6).  

Phenological metrics from these sites have a slightly later SOS doy and peak doy determined by 

NMRI than NDVI, and a longer season length recorded by NDVI than NMRI.  This deviation is 

less evident than for other regions.  Compared to other regions, the SOS doy and peak doy is 

later and season length is shorter.  There is an inverse relationship between MAT and SOS doy 

and peak doy. 

In temperature-limited areas, winter temperatures prevent vegetation growth until there is 

an increase in soil and air temperatures (Nemani et al., 2003).  After thawing, transpiration rates 

drive water into existing branches and leaves causing an increase in vegetation water content 

prior to new green leaf construction (Jones et al., 2012).  This suggests that there should be an 

increase in vegetation water content before greenness.   However, our phenology results support 

that in these temperature-limited regions plants generally grow and green concurrently.  Thus we 

see a response in microwave NMRI that echoes the timing of that of optical NDVI.  These 

responses to greening and growing occur later in the season than in regions constrained by 

insolation or precipitation.  This, however, may be attributed to our selection of grassy sites, and 

exclusion of shrubs sites and those with >50% woody vegetation cover. 

4.1.b  Precipitation-limited regions 

 Water constrained regions such as those in Mediterranean California have a high MAT of 

14°C to 18°C and MAP of 200-1,400 mm, though many GPS sites are located within the lower 

end of this precipitation range (Wiken et al., 2011).  Results suggest that these sites have high 

NMRI and intermediate NDVI range values, and relatively low R
2
 values, with correlation 

decreasing towards the coast.  Site p208, an example of a water-limited site, exhibits relatively 

low correlation due to its rapid greenup period where NDVI and NMRI indexes do not correlate 
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(Fig. 6).  Correlation increases at these sites with an increase of lag time by as much as 28 days.  

Mediterranean California sites have a later SOS doy for NMRI than NDVI records.  These sites 

also have a later peak doy when determined by NMRI.  Season length is shorter for NMRI than 

NDVI.  Compared to other regions, SOS and peak doy is earlier and season length is longer.  

MAP exhibits a positive linear relationship with SOS doy and has higher correlation in this 

region than others.   

 In seasonally-arid ecosystems, activation of photosynthetic material and resultant 

greening occurs rapidly after initial precipitation events (Huxman et al., 2004).  This results in 

concurrent greenup and vegetation water content responses.  However, areas dominated by 

croplands have a delay in greenup followed by an increase in water content (Jones et al., 2012).  

In these agricultural settings, greenup occurs at seed germination often before biomass 

accumulation; increases in vegetation water content are delayed until the plant puts on above-

ground biomass (Wigneron et al., 1997).  After initial plant growth, plants senescence quickly, 

and thus have a relatively short season length.  Similarly, there is a delay in water content 

responses in areas with high woody vegetation cover (Jones et al., 2012).  Many of our 

Mediterranean California sites are croplands or contain natural woody vegetation including 

chaparral and oak woodlands and should therefore, echo these observations (Wiken et al., 2011).  

Indeed, the delayed, quick response of NMRI to phenology metrics and lack of correlation 

between NDVI and NMRI matches these observations: greenup occurs before increases in 

vegetation water content.  

An analysis of water-limited populations would be incomplete without mention of desert 

sites in the central Great Basin.  This region occupies a large portion of Nevada and western 

Utah, with small extensions into California and southern Idaho. These sites have a MAT of 2°C 
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on high mountains to 14°C in southern lowland and MAP of 4-1,000 mm (Wiken et al., 2011).  

Sites here have low NMRI range and especially low NDVI range signals.  They have a relatively 

low to medium R
2
 correlation (0.32 to 0.42) that improves with a 15 day lag.  Many of these sites 

have low annual vegetation growth and greening, creating noisy, low amplitude NDVI data and 

sporadic NMRI data.  This makes it difficult to extract phenology parameters and correlation 

values.  Some sites in this region may have an inexact NMRI normalization; we see higher 

amplitude variation than we would predict for NMRI, thus the normalization is overemphasizing 

the NMRI signal.   These sites should not necessarily be clustered with other water-limited 

population without first evaluating total amount of vegetation biomass and NMRI normalization. 

4.1.c  Insolation-limited regions 

Though not a very spatially homogenous, sites in western Washington and Oregon 

(coast) with alpine to temperate rainforests, highlight the influence of insolation-limitations on 

NMRI and phenology metrics.  Sites have MAT of 7°C to 14°C and MAP of 900-5,000 mm 

(Wiken et al., 2011).  Vegetation at these sites is dominated by woody cover with oak savanna 

and oak woodlands (Wiken et al., 2011). These sites have the lowest NMRI range values, but the 

second highest NDVI range values, generating the lowest R
2
 correlation values (Fig. 4a and b).  

Similar to water-constrained locations, correlation at these sites increases with an increase of lag 

time by as much as 26 days.  Sites have a later SOS and peak doy for NMRI than NDVI records.  

Season length is almost half as long when found by NMRI.  Due to large differences between 

NMRI and NDVI determined phenology, compared to other regions, event timing ranges from 

early (by NDVI) to late (by NMRI).  Season length determined by NDVI is longer than for any 

other region.   
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NMRI records at these 

sites with woody vegetation 

cover are similar to those in 

Mediterranean California; they 

highlight the delay between 

greenup and addition of water 

content.   However uniquely 

from those in California, these 

sites also emphasis the short-

comings of NDVI in insolation-

limited, cloud covered regions.  Site p398 in Aberdeen, Washington located approximately six 

miles from the Pacific Ocean (see Fig. 3 for location) has a clean NMRI signal but very noisy 

NDVI signal (Fig. 14).   A noisy NDVI signal at insolation-limited sites like p398 is likely due to 

the fact that NDVI has a different footprint size than NMRI and is influenced by forests or other 

land cover types.  The high average NDVI value (~0.7) at site p398 (Fig. 14) likely reflects the 

presence of forested areas. 

 

4.2 Drought  

 The 2012 drought recorded early spring warmth that led to early greenup (SOS) followed 

by rapid deterioration of vegetation greenness across much of the United States (Karl et al., 

2012).  Our phenology analysis for 2012 versus 2008-2012 averages does not show any clear 

relationships in an early SOS or peak doy.  It does, however, trend towards a shorter season 

length in 2012.   

c

c

Figure 14.  Clean NMRI and NDVI signal for site p398.  

Note the outlier NDVI points around 0.2 (solid red circles) 

and the NDVI versus NMRI late season peak in 2010 

(dashed green circles). 
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While the 2012 drought did affect a historically large fraction of the country, only 39% of 

the country was classified as being in severe to extreme drought.  This is in stark contrasts to the 

1930s when as much as 63% of the country was experiencing extreme drought (Karl et al., 

2012). Early on, the 2012 drought affected mostly Texas and the southern United States (Fig. 

15a).  Some of California was influenced, but not where the majority of our GPS sites are 

located.  No sites in Montana, Wyoming, Utah, or Colorado were considered under “moderate 

drought”.   By July 3
rd

, a greater percent of the country was under drought conditions, including 

more locations with GPS stations (Fig. 15b).   

A)   Drought Extent January  3
rd

, 2012  B)   Drought Extent July 3
rd

, 2012   

Figure 15. Extent of 2012 drought on January 3
rd

 (left) and July 3
rd

 (right).  Note how few 

GPS sites are in a drought intensity of two or higher.  Intensity of zero is abnormally dry, 

one is drought-moderate, two is drought-severe, three is drought-extreme, and four is 

drought-exceptional (National Drought Mitigation Center at the University of Nebraska-

Lincoln). 
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The increase in late season drought extent caused quick deterioration of vegetation, 

making end of season dates earlier than previous years.  This resulted in a shorter season length 

for vegetation at GPS sites.   Thus, as observable in our NMRI and NDVI data, we see that the 

drought in 2012 had a limited effect on SOS but did influence the end of season, which is 

recorded by a shortening of season length.  This is supported by our amplitude data that deviated 

from the mean in 2012 by 33% for NDVI and 22% for NMRI.  
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CHAPTER 5 

Conclusions 

 The scattering index NMRI provides a daily monitoring tool that has shown great 

potential as a continuous, all-weather, and close to real-time microwave radar system for 

monitoring vegetation state.  NMRI is sensitive to plant growth in vegetation types that together 

cover a majority of the Earth’s land surface, including croplands, grasslands, and shrublands.   

Phenology metrics extracted from NMRI data are sensitive to biomass changes that are 

independent of, yet linked with, plant chlorophyll content from satellite optical remote sensing 

NDVI.   

Overall, NMRI has improved retrievals over NDVI and is particularly better for 

retrieving clean signals at insolation-limited coastal sites.  NMRI and NDVI correlation is a 

function of location where NMRI variations lag NDVI by approximately 21 days; consistent 

with the idea that greenup precedes plant growth.  In terms of phenology metrics, NMRI 

extracted SOS is later, peak doy is later, and season length is shorter than when determined by 

optical NDVI.  This suggests that greenup lasts for longer than plant growth.  Phenology metrics 

are offset spatially with the largest offsets along Pacific Ocean coastline, decreasing inland and 

subdivided by region, supporting that plant growth cycles are controlled by regional climates.  

Drought has a variable influence on regional vegetation and needs further understanding before 

drought years can be accurately recorded by NMRI and NDVI indexes.  

These results, along with previous GPS-IR analyses and success from other satellite 

microwave detection system indicate a strong prospect for satellite microwave remote 

monitoring of vegetation.  GPS-IR systems should be further evaluated, particularly in the 

Midwest and eastern United States for accuracy.   
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