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Abstract

We describe our impressions of the SUPRENUM project and of its primary
supercomputer result, the Suprenum-1 prototype. We comment on the significance
of the architecture, its role among contemporary systems and its relevance to
current systems. We similarly discuss the SUPRENUM software and its impact on
distributed systems. Finally we discuss the successes and failures observed
throughout this exciting project and relate these to the organizational decisions on
which SUPRENUM was based. |

As an illustration of Suprenum-1 capabilities, we describe the
implementation of a fluid dynamical benchmark on the 256 node Suprenum-1
parallel computer. The benchmark, the Shallow Water Equations, is frequently used
as a model for both oceanographic and atmospheric circulation. We describe the
steps involved in implementing the algorithm on the Suprenum-1 and we provide
details of performance obtained. For such regular grid-based algorithms the system
delivers a very impressive fraction (25%) of its theoretical peak rate of 5 Gflops.

Keywords: SUPRENUM, MPP, MIMD, parallel, supercomputer, performance,
atmospheric, shallow water, architecture, software, message passing.
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1. Introduction

The SUPRENUM project began in 1985 with the initial design formulation
and continued until 1990 when a fully configured 256-node prototype Suprenum-1
machine was available. We have frequently visited both the GMD and
SUPRENUM GmbH during this period and observed the project closely as it
developed. During the same period we have also been a user of almost all other
widely available MPP systems, and have been close to or involved in development
of several of these.

We review the SUPRENUM project from this perspective. In Section 2 we
discuss the origins, organization, successes and failures of SUPRENUM. We also
provide an analysis of the project plan and indicate how it impacted the eventual
outcome of the project. Section 3 describes the Suprenum-1 hardware and software.
This section is oriented towards highlighting those areas where SUPRENUM broke
new ground, or where it failed to achieve expectations.

To provide a more objective view we also present, in sections 4 and 5,
measurements of Suprenum-1 performance and comparisons to its contemporary
systems. We will describe simulations of the shallow Water Equations which
attained 1.28 Gflops, and 25% of peak CPU rate, on a 256 processor Suprenum-1
computer. We also provide comparisons to the same application implemented on
many of the other contemporary MPP systems.

In our discussion of Suprenum-1 hardware and software we will write in the
present tense, although by publication time Suprenum machines may well no
longer be running. We will use the upper case SUPRENUM name to denote the
project as a whole and the lower case Suprenum name to refer to the Suprenum-1
prototype hardware and software.

"Research supported in part by NSF Grand Challenges Applications Group grant ASC-9217394 and by
NASA HPCC Group Grant NAG5-2218.
t To appear in Parallel Computing, October 1994.
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2. The SUPRENUM Project

2.1. SUPRENUM Origins and Organization

The SUPRENUM project had its origins in several groups who together
provided complementary sources of expertise for the project. The initial group in
this regard was the Numerical Computation Group from GMD, St.-Augustin, led by
Dr. U. Trottenberg. This group had long experience in scientific supercomputing
and initial experience with parallel computing. The group became interested in
designing a parallel architecture that would be good for the multigrid algorithms
that were then becoming well accepted for PDE solution. In 1984 the German
government proposed a union of this group with a computer systems group in
Erlangen. Later the Architecture and Systems group from GMD First in Berlin, led
by Dr. W. Giloi, became interested in the project. These groups together created the
original SUPRENUM vision. After an initial study phase in 1985, the project was
formally initiated with a large grant from the German government. The
government funding was strongly motivated by the desire to make sure that
Germany remained at the forefront in advanced computing technologies.

The SUPRENUM mandate accompanying the funding was to create a project
that included both a research and a commercial side. For this reason a company,
SUPRENUM GmbH, was founded in Bonn. The SUPRENUM GmbH charge was to
manage the whole enterprise, to contribute to the software effort, to coordinate
software developments, and to exploit and market the results of the project. The
commercial goal required that companies with manufacturing expertise be
involved. The research aspects required that various university and government
research laboratories should participate. The final team consisted of about 15 groups
from institutions all over Germany, including several large companies as well as
the small SUPRENUM GmbH.

2.2. SUPRENUM: Success or Failure?

There is no doubt that the research side of SUPRENUM was very successful.
Some of the outputs are by now household words in the parallel computing area -
for example PARMACS. Furthermore the project certainly achieved the major goal
of moving Germany into the forefront of supercomputing developments. Many
scientists trained in SUPRENUM have gone on to run other successful projects, or
to develop machines and software in industry. Germany now has a large number of
applications scientists who understand the issues involved in parallelizing real
applications. '

On the other hand, SUPRENUM hardware was not a commercial success
with the result that the original SUPRENUM GmbH is no longer actively in
business as a supercomputer vendor. Effectively, SUPRENUM GmbH, through a
management buyout, has been transformed into a software company, Pallas GmbH,



which specializes in software for parallel systems. The Suprenum-1 supercomputer
was produced and by 1990, five systems had been delivered. However the cost per
Mflops was too high in relationship to competitors. Additionally there was no
incentive to buy one because no successor machine, or line of machines, was ever
announced. While concrete plans were developed for Suprenum-1+ and
Suprenum-2 machines, no funding was ever available to develop either.
Furthermore the prototypes were unstable, especially with respect to system
software (e.g. the compiler) and certain hardware components (node boards failed
randomly) and were not generally usable without some further effort. Unlike the
situation in the USA, there was no German program to acquire significant numbers
of Suprenum machines to be located at research centers.

SUPRENUM has attracted considerable negative press, sometimes even with
suggestions that large sums of money were wasted because it failed. This is an
inappropriate conclusion because it presupposes that SUPRENUM failed. Certainly
the hope that the SUPRENUM experiment would create a successful German
supercomputer company was not fulfilled. However the project as a whole was a
success. All of the main software and hardware design goals were achieved. A
working prototype was developed that for some months was the fastest MIMD MPP
in the world. Trained scientists and engineers have spread from SUPRENUM to
many other organizations in Germany, and a whole generation of students has been
introduced to parallel processing.

Finally the SUPRENUM project has spun off many successful enterprises. As
examples we cite: GENESIS, Pallas GmbH, Manna, PPPE and RAPS. Pallas in fact
can be seen as a continuation of all of the software aspects of SUPRENUM, and as
such shows that this part of SUPRENUM was commercially successful. The GMD
FIRST project Manna is similarly a continuation of the operating system and some
of the architecture aspects of SUPRENUM, again very successful, although this time
in a research environment. Also the Meiko CS-2 machine, originally developed
within GENESIS, involves many elements of the Suprenum-2 design from
SUPRENUM, and indeed there were serious plans at one point to merge Meiko and
SUPRENUM. Unfortunately this concept was ultimately rejected by the
shareholders of SUPRENUM GmbH, who at that time also decided to withdraw
from SUPRENUM. Finally the applications side of SUPRENUM evolved into
GENESIS, and now PPPE and RAPS, so that again this aspect of SUPRENUM has
shown itself to be of long-term viability.

Taking into account all of these achievements across a broad spectrum of
computing technology, one can only conclude that SUPRENUM was highly
successful, even while not achieving all of the goals originally established by the
government.

2.3. SUPRENUM: An Outsiders Analysis

The "failure” of SUPRENUM was already determined quite early in the
project by the requirement to have both a large distributed research aspect and a
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commercial aspect. This immediately placed SUPRENUM in competition with
many other MPP vendors such as Thinking Machines Corp., and Intel and even
with vector supercomputer manufacturers such as CRAY Research. No successful
commercial computer project has been developed by a team of 15 disparate groups,
scattered throughout a country, with vastly different timelines and concepts of
deliverability. The competitors typically develop a machine within a single
building, with software, hardware, marketing and sales teams all in close and
continuous contact.

In fact this was not the original view of SUPRENUM as proposed initially by
Dr. U. Trottenberg and Dr. N. Szyperski, which was based on two phases. The first
phase (3 years) was to be a research project, with some substantial industrial
involvement, followed by an industry evaluation. The result of the evaluation was
to be to either cancel the project, or to begin a second phase (2 years) as an industrial
project, with some substantial research involvement. This proposal was accepted by
the German ministry as an interesting experiment. However, due to a change in
responsibilities in the ministry, the switch from Phase 1 to Phase 2 was never
realized. Therefore after the first phase the project became a strange mixture of
research and commercially oriented activities.

The SUPRENUM project model is typical of large consortium research
projects - and this is indeed exactly where it was successful. Commercial success was
further stymied by the absence of follow on funding for a second generation system.
In fact even the Suprenum-1 prototype ran into problems just as it was about to
become usable - funding dried up, when only about a man-year of extra effort could
have enormously improved the system by fixing known serious compiler bugs. It is
not so well-known that the German government provided no funds to Suprenum
partners after 1989, long before the development effort was complete.

The two industrial shareholder companies that were partners in SUPRENUM
GmbH were not really a great asset. To some extent they consumed more resources
than they gave, and were in many ways a factor in failure of the effort, particularly
because they were not willing to continue to support the effort at the critical point
when development of a production quality Suprenum-2 machine was considered.
In this respect, later EU Esprit projects were better planned because these typically
require 50% matching from corporate partners, so that participating companies tend
to be highly committed since they are spending their own funds. It seems
unfortunate that a very strong company such as Siemens could not have taken over
the primary role of developing, or at least funding development of a commercial
Suprenum-2 product, after the initial government funding had created the
Suprenum-1 prototype.

Saddled with such unrealistic conditions for commercial success, it is
astounding that SUPRENUM was able to accomplish as much as it did. The final
product was for a period in 1992 the fastest MIMD supercomputer in the world.



2.4. Conclusions

The clearest point to be learned from SUPRENUM is the importance of
having a well-defined, focused and consistent plan for any such project which
includes real product development. A project cannot be all things to everyone - e.g.
both a university research project and a competitive commercial project
simultaneously. High-tech projects have further constraints involving rapidly
changing technology and the associated need to honor strict timelines, and these
require an even narrower focus in order to bring the project to a successful
conclusion. Had SUPRENUM been organized as an initial research effort followed
by a largely commercial product phase, the outcome might have been quite
different.

3. The Suprenum-1 SUPERCOMPUTER

3.1. Suprenum-1 Hardware

The Suprenum-1 computer prototype couples up to 16 processor clusters with
a network of 200 Mbit/sec busses. The busses were intended to be arranged as a
rectangular grid with 4 horizontal and 4 vertical busses, although other
configurations have also been employed (see below). Each cluster consists of 16
processors connected by a fast bus, along with I/O devices for communication to the
global bus grid and to disk and host computers. There can be a dedicated disk for
each cluster. Individual processors can deliver up to 20 Mflops (64-bit chained) or 10
Mflops (64-bit unchained) of computing power and support 8 Mbytes of memory.
The high bandwidth of the bus network makes this an interesting machine for a
wide range of applications, including those requiring long-range communication.
No more than four communication steps are ever required between remote nodes,
with four steps needed only if both a horizontal and a vertical bus must be
traversed.

While Suprenum clusters are well defined by their interconnection bus, the
connectivity between clusters is modifiable by rewiring the connections
appropriately. In principle this is simple, although in practice it turns out to be a
major undertaking because there are severe physical constraints on the length of the
buses involved, plus the fact that each bus must actually connect to form a ring.
Each ring must visit from 4 to 6 clusters. During 1991, the Suprenum-1 clusters
were connected in a simple ring (actually four parallel rings, although it was not
possible to fully utilize the parallelism). In January 1992 the Suprenum-1 was re-
configured as a full double matrix of busses. In June 1992 the Suprenum-1 topology
was changed to provide a topology where each cluster has a direct connection to
every other one so that all communication operations required at most three steps.
We have used the machine in all of these configurations. Our measurements



indicated that the latter interconnection network is best as this provided the best
overall performance from the three interconnection schemes which were studied.

Suprenum-1 hardware is generally about as reliable as similar products from
other vendors. The system can sustain prolonged computations at times before
developing one or another error state. In the most serious of these, node boards
randomly fail with a mysterious and not fully understood condition called 'Trap
71", which renders the boards permanently damaged. (This problem may have
disappeared recently when the 256 node system was split into two 128 node systems)

3.2. Suprenum-1 Software

Suprenum-1 software was developed on many levels:
Operating System
Vectorizing Compilers
Message Passing
Applications

The operating system for Suprenum-1 is PEACE, a new operating system
developed specifically for the project. PEACE was designed from the start to support
efficient low-latency message passing as well as multitasking. While PEACE
appeared to be a satisfactory operating system, message latency never was as low as
desired. Typical latency overheads are of order 1 millisecond. While asynchronous
communication was a design goal for SUPRENUM, we were never able to overlap
communication with computation on Suprenum-1 due to a mailbox conflict within
PEACE.

The Suprenum nodes posed a major problem for compiler writers because of
their inherent complexity. Furthermore the vector nodes involve various
restrictions, of which the most serious is the need for very long vector lengths to
achieve high performance. Frequently "very long" means length 1024 words or
more. For data that is arranged as a square 2D or 3D grid this typically exceeds the
memory of a Suprenum node. This means that in decomposing a large square or
cubic grid into subgrids, with each subgrid assigned to a Suprenum node, it is
essential that the subgrids not be square, but rather be elongated rectangles, with the
longer length in the contiguous direction to maximize vector speed.

The node compiler supports both Fortran 77 and Fortran 90 array extensions.
Suprenum-1 is the first MPP machine to support Fortran 77 on a vector node. The
compiler includes powerful automatic vectorization which works well in our
experience - i.e. it detects vectorizable code and generates efficient vector
instructions. Unfortunately the compiler is in a development state only. There are
many remaining bugs, some quite serious, and there is no funding available to fix
these. . This, and the previously mentioned “Trap 71" hardware problem, are
probably the most unfortunate features of the project, since they effectively render
the machine unusable. No one with a large scientific application is ready to port it
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to the machine because the compiler is so undependable. Small applications on the
other hand run really well, once one finds any compiler bugs and recodes
judiciously to avoid them. The failure by the government to allocate minimal extra
funding to complete the compiler effort was probably a major mistake, because it
prevented Suprenum-1 from being used effectively even in the research
community (as noted earlier all Government support to SUPRENUM GmbH
terminated in 1989).

Suprenum-1 is a message passing system. Unlike all other MIMD message
passing systems, Suprenum-1 embedded message passing into the programming
language. SUPRENUM Fortran uses message statements similar to Fortran I/0
statements for this purpose. As a result the compiler is free to optimize the use of
buffers and possibly even overlap communication with computation (this is not in
fact done). As a simple example, an I/O statement can specify that a set of arrays and
scalars of mixed data types be sent to another node, and the compiler takes care of
packing these items into a single message to minimize startup overhead. In-another
Suprenum-1 Fortran extension, task control is provided at the language level.
Addition of tasks to the language is essential if communication is to be fully
represented at the language level, since the destination for messages is always
another task.

One disadvantage of this approach is that SUPRENUM Fortran programs are
not portable since no other system supports all of these various extensions. To
overcome this problem, SUPRENUM software also supports a message passing
library, callable from C or Fortran, providing an alternate to the use of Fortran task
and messaging extensions. The compiler also generates these same calls so that a
program can mix both styles of programming, although the interface is not well
documented. This message passing system is very similar to other vendors products
such as Intel NX.

Perhaps the most important aspect of SUPRENUM software was the
emphasis on portable programming (this appears to contradict our previous
paragraphs!). The SUPRENUM evaluation and application teams spent much effort
in comparing rival MPP systems among each other and with Suprenum, and thus
became familiar with competitors message passing systems (e.g. Intel NX). This led
to a realization of the importance of message passing standards that would allow a
single source code to run on all of these systems. The PARMACS portability
platform evolved naturally from this start. The initial PARMACS developed from
a collaboration between GMD and Argonne National Laboratory researchers, who
had previously developed the P4 macro package. PARMACS significantly extended
the functionality of P4 and focused on providing an easy to learn environment that
would be highly portable, yet efficient on all platforms, and which provides support
for grid-oriented computation. The success of PARMACS is shown by its wide
adoption for most European MPP projects in the early 90's time frame.
Furthermore PARMACS has had a strong influence on the new MPI message
passing standard, which now includes the virtual processor topology aspects of
PARMACS, among other features.



In addition to Fortran, SUPRENUM software was characterized by the best
support for MIMD scientific applications to be found among the various distributed
memory MIMD vendors. The effort invested in development of libraries of high-
level grid and communication primitives greatly eases the effort of moving
applications to the computer, and also provides substantial high-level portability to
other systems, since the communication library can be implemented in terms of low
level primitives on any distributed system. These developments arose naturally as
the GMD group that initiated SUPRENUM were already involved in Multigrid
development. They carried this experience to SUPRENUM with a realization of the
special importance of 2D and 3D topologies in scientific computing. The COMLIB
software is a high-level library, written on top of PARMACS, which allows users to
efficiently organize MPP systems using virtual processor grids, and to map physical
grids onto these processor grids.

3.3. Suprenum-1 Delivery and Performance

The first 32-processor prototype system was exhibited at the Hanover fair in
April 1989, with the first 64-node system delivered in Fall 1989. The full-scale 256
processor system at the GMD became available in December 1990, although essential
upgrades to the hardware continued into 1991. The full system has a 5 Gflops peak
rating and has remarkably high realizable efficiency in appropriate applications,
namely those where communication is relatively infrequent and where long vector
lengths predominate.

We have benchmarked a number of applications on the system, of which the
Shallow Water Equations (SWE) is a good example. The SWE is a standard model
for atmospheric and oceanographic processes. Implementations of the algorithm
have been used as benchmarks for vector and parallel supercomputer performance
for many years. thus allowing effective comparisons among machines. The
algorithms involved are typical of all explicit regular grid-based CFD codes, or of
implicit codes that use iterative solution methods.

The rest of this paper will focus on our measurements of SWE performance
on Suprenum-1. To summarize, we achieved 1.28 Gflops realized speed on large
grids, or about 25% of peak performance. This is very high compared to most other
MPP systems and indicates that Suprenum-1 was fundamentally well designed at
both the hardware and software level.

4. The Shallow Water Equations Benchmark

As an example of the capabilities of the Suprenum-1 system, we describe the
implementation of a standard two-dimensional atmospheric model - the Shallow
Water Equations - on the machine. These equations provide a primitive but useful
model of the dynamics of the atmosphere. Because the model is simple, yet captures
features typical of more complex codes, the model is frequently used in the
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atmospheric sciences community to benchmark computers [1-7]. Many of the results
described here are presented in more detail in [5-7]. The SWE model has also been
extensively analyzed mathematically and numerically [8-9].

The Shallow Water Equations, without a Coriolis force term, take the form:

duldt—gv+dH/dx =0,
ov/dt—cu+dH/ dy=0,
OP | dt+ dPu/ dx+dPv/ dy =0,

where u and v are the velocity components in the x and y directions, P is pressure,
¢ is the vorticity: ¢=0v/dx—du/dy, and H, related to the height field, is given by:
H=P+w*+v*)/2. It is required to solve these equations in a rectangle a < x<b.
c<y<d. Periodic boundary conditions are imposed on u,v,P, each of which satisfies
fx+by)=fx+ay), f(x,y+d)=f(x.y+c).

A scaling of the equations results in a slightly simpler format. Introduce mass

fluxes U= Pu,V=Pv and the potential velocity Z=¢/P, in terms of which the
equations reduce to:

U oH

——ZV4+—=
ot +8x 0
A oH

Al 1.0
&t+ZU+C_)y ,
P I IV _,
ot dx dy '

4.1. Discretization

The SWE are usually discretized on a rectangular staggered grid with periodic
boundary conditions. The variables P and H have integer subscripts, Z has half-

integer subscripts, U has integer and half-integer subscripts, and V has half-integer
-and integer subscripts respectively.

Initial conditions are chosen to satisfy V.-v=0 at all times. We time
difference the equations using the Leap-frog method. We then apply a time filter to
avoid weak instabilities inherent in the Leap-frog scheme:

F(n) - f(n) + a(f(nH) __2f(n) + f(n~l)),

where « is a filtering parameter. The filtered values of the variables at the previous
time-step are used in computing new values at the next time-step. For a complete
description of this discretization we refer to [1].



4.2. Serial Fortran Implementation

The Fortran code implementing the above algorithm involves a 2D
rectangular grid with variables: u(i,j), v(ij), p(i,j), z(i,j), psi(ij), h(ij). There are three
main loops, two corresponding to the Leap-frog time propagation of various
quantities, and one for the filtering step. Execution of these three loops completes a
single time step, which is then repeated until the desired temporal simulation
interval has been achieved. A typical code sequence, used in the updating of the U,
V and P variables, is:

do10j=1,My
do10i=1 Mx
unew(i+1,j) =uold(i+1,j)+tdts8* (z(i + L, j+ D+ z(i+ 1) *
(ev(i+Lj+D+cev(i, j+ D +ov(i, ) +ev(i+1,))) —tdesdx * (h(i + 1, )Y = h{i, ))
wzew(i,j+ D=vold(i,j+ 1) —tdts8* (z(i+ 1L, j+ D+z(i,j+ 1)) *
(culi+1,j+ 1)+ culi, j+ 1) +cui, j) + cui + L)) —tdesdy* (h(i, j + 1) = h(i, j))
pnew(i, j) = pold(i, j) = tdtsdx * (cu(i +1, j) — cu(i, j)) — tdtsdy * (cv(i, j + 1} = cv(i, J))
10 continue

Here the various coefficients such as rdts8 are constants, determined by the
discretization. Each such loop is followed by code to implement the periodic
boundary conditions. Excluding the boundary computations, the three major loops
in a time step involve 65 arithmetic operations per grid point. Furthermore 14
physical variables must be stored per grid point, which significantly limits the
largest grid size that can be accommodated in a single node.

4.3. Suprenum-1 Implementation

The SWE code was developed for a generic class of MIMD parallel computers,
based on the assumption of a single process per node model. The code was
developed and tested using a simulator for the generic model developed previously
[10-12]. The simulator supports versions of the Intel iPSC NX communication
protocols among others.

Suprenum supports a library interface allowing Intel NX communication
interfaces to be utilized. It suffices to declare the main program of both the host and
node processes to be Suprenum tasks, while the rest of each program may remain as
a pure Intel iPSC program. This allowed the code to be ported and fully working
within hours. The program ran immediately and gave correct results on the first
try. This demonstrates the advantages of developing MIMD codes initially using
simulators, and transferring to hardware only when the simulations are running
correctly.

Since the code involves rectangular grid arrays, and a nine-point stencil, the
parallelization of the code is straightforward. A logical mapping of the processors to
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a two dimensional array is utilized. If P=p p,, is a factorization of the number of
processors P, then we regard the processors as arranged in a p, xp, logical grid.

Large arrays representing physical variables (u,v, etc.) are then decomposed into
equal sized rectangular blocks, with one block assigned to each processor. For
simplicity we assume that the X and Y grid dimensions are exact multiples of the
corresponding processor numbers p, and p,. Each such block is then stored in an

array of the same shape, but which has an extra boundary row or column provided
on each of the four sides. These extra boundary points are used to maintain copies
of the true (i.e. interior) boundary points of the four neighboring processors. The
three main loops of the time step are decomposed into equivalent loops performed
by each processor on the interior points of the block assigned to that processor. Prior
to each loop, the boundary values are updated by exchanging appropriate values
between neighboring processors, following a synchronization to ensure that all
neighbors have completed updates. All data for each side of a variable block may be
exchanged in a single packet to minimize communication latency costs.

There is an essential simplification that occurs in the case that either p, or p,

is 1 - in which case the logical rectangular processor array reduces to a line of
processors. In this case two of the four communications required within each main
loop are not needed, reducing substantially the communication overhead.
Normally periodic boundary conditions require copying data between processors at
opposite edges of the processor array. In the case that one or other of p, or p, is 1,

the periodic boundary condition in the corresponding dimension may be
implemented by in-memory copying, rather than by communication.

A final optimization of the communication structure was required to get the
peak performance. Before each of the main loops in the algorithm, the boundary
data for the various physical variables (P, U, V, Z, H) used in that loop need to be
copied from neighboring processors. Typically two or three variables are needed
from a specific direction, although the number needed may depend on the direction.
Because of the high communication startup cost of Suprenum-1 (close to 2 msecs), it
is essential to limit the number of individual communication requests. This was
accomplished by packaging several communications of different physical variables
in a single direction into one large communication package. For some steps this
reduced startup overhead by a factor of three. In the final implementation we also
replaced the Intel iPSC communication calls for this one exchange operation by
explicit calls to SUPRENUM Fortran equivalents, thereby saving an extra copying of
each data array to a communication buffer. SUPRENUM Fortran supports explicit
communication operations using a standard Fortran I/O control list syntax.

There is potential in the Shallow Water Equations to overlap communication
with computation, provided the underlying hardware supports asynchronous
communication modes. In this case one would begin each major loop by an
asynchronous exchange of boundary data. Following this one executes the main
body of the loop, however iterating only over the "interior points" of the subgrid. It
is then necessary to await completion of the exchange operation, after which the
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loop iteration may be completed on the outermost rows and columns. In principle
such an approach can yield 100% computational efficiency - i.e. communication
effects become negligible. We implemented such an algorithm on Suprenum-1.
However due to inherent design aspects of the PEACE operating system we were
unable to effectively use asynchronous communication in the current version of
PEACE. This appeared to be due to a mailbox conflict.

5. Performance Results on Suprenum-1

All measurements were performed on a 256-processor Suprenum-1 system at
the GMD, in St. Augustin, Germany. The Shallow Water Code was exactly the
standard sequential code, modified only to take account of communication. No
attempt was made to introduce Fortran 90 vectorization constructs, or to otherwise
adapt the code to known features of the SUPRENUM compiler, other than in one
line as mentioned above. The code was compiled with both the vectorizer and
optimizer switches.

Because Suprenum nodes are vector processors, there is a substantial
advantage to arranging the subgrids in each node such that the grid columns are as
long as possible. In practice, Fortran columns longer than about 1024 words are not
an advantage. This is because the vector registers are limited to a total of 7K words,
and Shallow Water requires 7 registers for efficient code generation. Thus there is a
tradeoff between register use and vector length. A larger vector register cache would
have improved performance further.

In order to maximize computational efficiency (by minimizing
communication words sent per Mflops), it is desirable to solve as large a problem as
will fit in each node. For SWE, this turns out to be a problem with 32K grid points
in a node which consumes approximately 6 Mbytes of the Mbytes of node memory.
All measurements presented here utilize subgrids of maximal size, although their
rectangular shape may vary. We maximize both vector performance and
computational efficiency on a node by using a 32x1024 subgrid in each processor.
To indicate the importance of preserving a long vector length we note that
performance on a single node goes from 2.69 Mflops on a 128x256 grid to 5.33
Miflops on a 32x1024 grid, essentially a factor 2 improvement (see Table 1 below).

As discussed earlier, the number of communications per node can be reduced
by a factor of two by choosing a one-dimensional processor grid, which may be
aligned with either the X or Y axis. If the processors are in a line in the X direction,
then the communication packets will be of size 1024 words (Y dimension of the
subgrids) per variable, while if aligned along the Y axis, only 32 words are
communicated per physical variable.

More generally we can expect lower performance as the subgrids tend towards
a square shape, such as 128 x256, due to the shorter vector lengths. Also using fully
two-dimensional processor grids such as a 16x16 grid will double the number of
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communications per node, resulting in poorer performance. All of these
phenomena are illustrated in the measured results.

The final effect which we have studied is the influence of cluster
interconnection topology on performance. The Suprenum-1 has been
interconnected in three different ways as described in section 2 - ring, full matrix and
full interconnect, and we have measured Shallow Water Equations performance in
all cases. There is a significant dependence of performance on the topology used.
For example the worst-case efficiency measured with the double matrix topology
was 39% while with the full interconnect topology, the worst case efficiency is 70%.
On the other hand for the most efficient (linear) cases, performance with the full
connection topology is slightly worse, dropping from 96% to 94% efficiency. Clearly
the advantages of the full interconnect topology outweigh the disadvantages. We
give only the measured data for the full interconnect topology.

We present the measured results in Tables 1-4. The tables indicate the
number of processors P, their arrangement as a logical Px X Py rectangular processor
array, the computational domain size MxxMy, the resulting computational
efficiency and the Mflops generated. The computational efficiency in all cases is
defined as:

E=T,.()/(PT(P)),

where T(P) is the solution time with P processors and 7,,,(l) is the best possible
single-node performance with a subgrid of the same size but optimal shape.

Table 1 presents the effect of varying the grid shape in a single node. This
demonstrates clearly the importance of maximizing vector length. Indeed the
almost square 256 x128 grid provides only 77% of the performance of the elongated
321024 grid with the same number of grid points. At the other extreme, the
1024 x 32 grid delivers only 43% of the performance of the 32 x1024 grid.

TABLE 1: SINGLE NODE PERFORMANCE AS FUNCTION OF SHAPE

P Px Py Mx My Efficiency Mflops
1 1 1 1024 32 0.430 2.29
1 1 1 256 128 0.768 4.09
1 1 1 128 256 0.883 4.71

1 1 1 64 512 0.955 5.09
1 1 1 32 1024 1.000 5.33

Table 2 describes the performance of Shallow Water on grids of optimal shape
for the system. Each node contains an optimal 32x1024 grid and the processors are
arranged in a line parallel to the Y direction in order to minimize communication.
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TABLE 2: PROCESSOR GRID ALIGNED WITH Y AXIS

P Px Py Mx My Efficiency Mflops

1 1 1 32 1024 1.000 5.33

2 1 2 32 2043 0.949 10.11
4 1 4 32 4096 0.948 20.21

8 1 8 32 8192 0.948 40.41
16 1 16 32 16384 0.946 80.61
32 1 32 32 32768 0.945 161.10
64 1 64 32 65536 0.947 322.74
128 1 128 32 131072 0.945 644.87
256 1 256 32 262144 0.940 1280.37

Table 3 is similar except that the processors are arranged in a line parallel to
the X axis, resulting in more square grids, and slightly increased communication
cost. :

Table 3: PROCESSOR GRID ALIGNED WITH X AXIS

P Px Py Mx My Efficiency Mflops

1 1 1 32 1024 1.000 5.33

2 2 1 64 1024 0.940 10.01

4 4 1 128 1024 0.934 19.89

8 8 1 256 1024 0.932 39.68
16 16 1 512 | 1024 0.931 79.29
32 32 1 1024 1024 0.919 156.76
64 64 1 2048 1024 0.920 313.24
128 128 1 4096 1024 0.912 621.83
256 256 1 8192 1024 0.905 1234.73

In Table 4, we compare the effect of varying the shape of the processor grid for
256 node computations. Each node is maintained at the optimal 32 x1024 grid. The
almost square 4096 x2048 grid on a 128 X2 processor array is seen to deliver 1117
Mflops. The alternative of creating a near square global grid from 256 near square
subgrids would have yielded about 25% less performance as indicated by Table 1.

TABLE 4: 256-NODE PERFORMANCE AS FUNCTION OF PROCESSOR GRID

P Px Py Mx My Efficiency Mflops
256 256 1 8192 1024 0.905 1234.73
256 128 2 4096 2048 0.820 1117.40
256 64 4 2048 4096 0.709 967.34
256 32 8 1024 8192 0.815 1110.72
256 16 16 512 16384 0.738 1007.87
256 8 32 256 32768 0.866 1180.16
256 4 64 128 65536 0.883 1202.52
256 2 128 64 131072 0.885 1206.58
256 1 256 32 262144 0.940 1280.37
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5.1. A Comparison of 5 MPP Architectures

We have compared the Suprenum-1 performance with that on the CRAY X-
MP and Y-MP computers, on the Intel iPSC/860 hypercube and on the CM-200 and
CM-5 computers. Results are presented in Table 5. We compare Suprenum-1 only
with machines that came out in the same generation or time period. Thus we omit
measurements for example on the Intel Paragon or Cray Research T3D.

The CRAY-Y-MP with 8 processors runs the Shallow Water Equations at 1,530

Mflops on a 5122 grid. The iPSC/860 performance was 543 Mflops on 128 nodes
using the largest grid size that would fit in memory. Finally Suprenum-1
performance of 1280 Mflops was measured on a 256-node machine, again using the
largest grid possible. The rationale for using such large grids is that the benchmark
is a guide to behavior of realistic 3D applications where such grid sizes would be
quite realistic. From the performance viewpoint, it is essential to use a maximal
grid size per processor in order to minimize the interprocessor communication
overheads on most machines. The CRAY measurements were made by Dr. R. Sato
of the National Center for Atmospheric Research. The iPSC/860, CM-200, CM-5 and
Suprenum results are described in more detail in [5-7,12].

TABLE 5: COMPARISON OF ARCHITECTURES

Machine Processors Grid Size Mflops
CM-5 (32-bit) 1024 256M 23971
CM-5 (64-bit) 1024 64M 22139
CM-200 (32-bit) 2048 32M 8086
CM-200 (64-bit) 2048 16M 5249
CRAY Y-MP 8 256K 1530
CRAY X-MP 4 256K 560
Suprenum-1 256 8M 1280
Intel iPSC/860 128 M 543

To relate Suprenum-1 to other systems, it is fair to say that for most of 1992
this system was probably the most powerful available MIMD system. However the
SIMD CM-200 was far more powerful on SIMD problems. With the arrival of vector
nodes for the Thinking Machines CM-5 computer, Suprenum-1 was no longer in
this position in late 1992. Since then, faster systems such as the CRAY T3D, and IBM
SP-2 have of course appeared. However for the purpose of this paper it seems most
realistic to compare Suprenum-1 with contemporary machines of that time.

The performance measurements also should be qualified by the cost per
Mflops of the different systems, which we have not considered in detail. However it
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does appear that Suprenum-1 loses much of its performance advantage relative to
the iPSC/860 if pricing is considered. This is due to the fact that the Suprenum
nodes involve essentially more complex hardware (e.g. vector nodes) than the
iPSC/860. The Suprenum node design was formulated long before the much
cheaper i860 processor appeared.
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