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Abstract. A wealth of recent laboratory and field experi-

ments demonstrate that organic aerosol composition evolves

with time in the atmosphere, leading to changes in the in-

fluence of the organic fraction to cloud condensation nuclei

(CCN) spectra. There is a need for tools that can realistically

represent the evolution of CCN activity to better predict in-

direct effects of organic aerosol on clouds and climate. This

work describes a model to predict the CCN activity of or-

ganic compounds from functional group composition. Fol-

lowing previous methods in the literature, we test the abil-

ity of semi-empirical group contribution methods in Köh-

ler theory to predict the effective hygroscopicity parameter,

kappa. However, in our approach we also account for liquid–

liquid phase boundaries to simulate phase-limited activation

behavior. Model evaluation against a selected database of

published laboratory measurements demonstrates that kappa

can be predicted within a factor of 2. Simulation of homol-

ogous series is used to identify the relative effectiveness of

different functional groups in increasing the CCN activity

of weakly functionalized organic compounds. Hydroxyl, car-

boxyl, aldehyde, hydroperoxide, carbonyl, and ether moi-

eties promote CCN activity while methylene and nitrate moi-

eties inhibit CCN activity. The model can be incorporated

into scale-bridging test beds such as the Generator of Ex-

plicit Chemistry and Kinetics of Organics in the Atmosphere

(GECKO-A) to evaluate the evolution of kappa for a complex

mix of organic compounds and to develop suitable parame-

terizations of CCN evolution for larger-scale models.

1 Introduction

Organic compounds are an important contributor to the at-

mospheric submicron aerosol (Jimenez et al., 2009). The or-

ganic fraction is projected to increase in the future due to

the confluence of a decreasing sulfate and nitrate burden

and increases in the global secondary organic aerosol bur-

den (Heald et al., 2008). An important unanswered question

is how the organic influences the aerosol’s ability to serve

as cloud condensation nuclei (CCN), and in turn modulate

climate via indirect effects of aerosols on clouds and precip-

itation (Andreae and Rosenfeld, 2008). Realistic prescribed

variations in secondary organic aerosol hygroscopicity have

demonstrable impacts on CCN number concentration (Mei et

al., 2013) and can change the simulated global aerosol indi-

rect forcing (AIF) by approx. one-sixth of the AIF simulated

in a control case (Liu and Wang, 2010). To obtain a prognos-

tic understanding of the contribution of the organic fraction

to indirect aerosol forcing in future climates, models need

improved schemes that map simulated organic aerosol com-

position to hygroscopicity and CCN activity.

Several organic aerosol types (e.g., freshly emitted diesel

oil particles or first generation oxidation products of

sesquiterpenes) consist of mostly hydrophobic hydrocarbon

chains with few functional groups attached. Pure hydro-

carbons with a carbon number less than C30 are expected

to be semi-volatile and in the liquid phase. Over time the

compounds evolve by functionalization, fragmentation, and

oligomerization (Kroll and Seinfeld, 2008; Ziemann and

Atkinson, 2012). As functional groups are added to the car-

bon chain, the products usually, but not always, become less
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volatile (Goldstein and Galbally, 2007), more dense (Kuwata

et al., 2012), more viscous (Sastri and Rao, 1992), and more

CCN active (Suda et al., 2014).

Laboratory (George and Abbatt, 2010; Poulain et al.,

2010; Cappa et al., 2011; Massoli et al., 2010; Lambe et al.,

2011; Duplissy et al., 2011; Kuwata et al., 2013; Rickards

et al., 2013; Suda et al., 2014) and field studies (Jimenez et

al., 2009; Chang et al., 2010; Mei et al., 2013) have demon-

strated a robust link between the aerosol oxidation state and

the ability of the organic fraction to promote hygroscopic wa-

ter uptake and CCN activity. Proxies from mass spectrometry

such as the fragmentation peak f44 or the atomic oxygen-

to-carbon ratio are often used to model the increase in hy-

groscopicity. However, these correlations exhibit significant

variability between studies and break down when applied at

the compound level (Rickards et al., 2013; Suda et al., 2014).

Chemistry models are already capable of simulating the

molecular identities of species present in the condensed

phase during multi-day evolution of diluting air parcels (Lee-

Taylor et al., 2015). Mapping this speciated aerosol compo-

sition to the aerosol hygroscopicity should ultimately per-

mit quantification of changes in CCN number concentration

(provided that the size distribution is also simulated) and

associated effects on clouds and climate. Thermodynamic

models should be able to predict CCN activity. Many ther-

modynamic models have made use of activity coefficients

predicted by the universal functional group activity coef-

ficient (UNIFAC) group contribution method (Fredenslund

et al., 1975). Several investigators have compared UNIFAC

predictions of organic aerosol water content to experimental

data (Saxena and Hildemann, 1997; Ming and Russell, 2001;

Peng et al., 2001; Choi and Chan, 2002; Mochida and Kawa-

mura, 2004; Marcolli and Peter, 2005; Moore and Raymond,

2008). Some of these comparisons prompted proposed revi-

sions of specific group interaction parameters, e.g., [OH] and

[H2O]. Several thermodynamic models that treat complex

phase equilibria of multifunctional, multicomponent organic

mixtures are based on UNIFAC activity coefficients (Ming

and Russell, 2002; Raatikainen and Laaksonen, 2005; Top-

ping et al., 2005; Amundson et al., 2007; Zuend et al., 2008;

Compernolle et al., 2009). The development of these mod-

els has been driven by the need to enable predictions over a

wide range of conditions and compositions, including the ef-

fect of liquid–liquid phase separation on gas-to-particle par-

titioning (Zuend and Seinfeld, 2012; Topping et al., 2013).

The prediction of CCN activity of organic compounds has re-

ceived less attention. Rissman et al. (2007) used the aerosol

diameter-dependent equilibrium model (ADDEM; Topping

et al., 2005) with an underlying UNIFAC core to predict the

relationship between critical supersaturation and dry for sev-

eral dicarboxylic acid aerosols. To our knowledge no study

to date has systematically focused on the prediction of CCN

activity from thermodynamic models.

Here we build on this body of work to predict the con-

tribution of a compound with known chemical structure to

the CCN activity of a particle of known size. The pro-

posed model uses the UNIFAC equations (Fredenslund et

al., 1975) with group interaction parameters form Hansen

et al. (1991), Raatikainen and Laaksonen (2005), and Com-

pernolle et al. (2009) to model activity coefficients and free

energy of mixing. Liquid–liquid phase boundaries are deter-

mined using the area method of Eubank et al. (1992). Molec-

ular volume is estimated from elemental composition and

adjustments for functional group composition using the ap-

proach of Girolami (1994). The relationship between criti-

cal supersaturation and dry diameter is then predicted us-

ing Köhler theory (Seinfeld and Pandis, 2006). The basic

model mechanics are similar to those employed in multicom-

ponent phase equilibrium models (Ming and Russell, 2002;

Raatikainen and Laaksonen, 2005; Topping et al., 2005;

Amundson et al., 2007; Zuend et al., 2008) but limited in

scope to binary compositions and with focus on accurately

representing phase and water activity at conditions relevant at

the point of CCN activation only. These predictions are val-

idated by manually mapping chemical composition to UNI-

FAC groupings and comparing modeled CCN activity against

observations from a compiled library of recently published

CCN data of mostly weakly oxidized hydrocarbons contain-

ing a mixture of alcohol, carbonyl, aldehyde, ether, carboxyl,

nitrate, and hydroperoxide moieties. The model is used to

predict how the addition of one or more functional groups

to otherwise similar molecules promotes CCN activity. Envi-

sioned application to multi-component aerosols and contrasts

with more complete thermodynamic models are discussed.

2 Model description

2.1 Köhler theory

The saturation ratio over a curved droplet is given by the

Köhler equation

S = aw× exp

(
4σs/a(T )Mw

ρwRTD

)
, (1)

where aw is the water activity, σs/a is the surface tension of

the solution/air interface, T is temperature,Mw is the molec-

ular weight of water, ρw is the density of pure water, R is

the universal gas constant, and D is the wet drop diameter.

Water activity depends on the water content and the amounts

and identities of solutes in the nucleus. The principle water

content variable used in this work is the mole fraction

xw =
nw

nw+
∑
ins,i

, (2)

where xw is the mole fraction of water, nw and ns,i are the

number of moles of water and solutes, and i is the number

of dry components. The wet drop diameter can be calculated

from xw if the dry diameter,Dd, is specified and it is assumed
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that the particle is spherical and that the volume of water and

solute are additive:

D = 〈(xw− 1)−1
(
xw− xw

∑
i
(εivwv

−1
s,i )− 1

)
D3

d〉
1/3. (3)

In Eq. (3) vw and vs,i are the molar volume of the water and

solutes and εi are the volume fractions in the dry particle.

Equation (3) is obtained by rearranging Eq. (7) in Petters et

al. (2009a). The critical supersaturation required for an aque-

ous solution droplet to activate into a cloud droplet is found

by combining Eqs. (1) and (3) and finding the xw (or D) that

maximizes sc

sc = {max[aw

×exp

 4σs/a(T )Mw

ρwRT 〈(xw − 1)−1
(
xw − xw

∑
i (εivwv

−1
s,i )− 1

)
D3

d 〉
1/3

× 100 %

xw ∈ [0,1],

(4)

where sc is the critical supersaturation in %. The variables

that control sc are vs, aw, and σs/a. In this work it is assumed

that surface tension is that of pure water. Discussion on this

and other assumptions are provided at the end of this section.

First the prediction of vs and aw for organic compounds with

known chemical structure is described.

2.2 Molar volume

Molar volume is calculated from the molecular formula us-

ing the method of Girolami (1994). Each element is assigned

a relative volume based on its location in the periodic table.

The elemental volumes are summed and scaled by a con-

stant factor to compute vs. If the oxygen is bound in the

form of alcohol [OH] or carboxyl [C(=O)OH] moieties, the

actual vs is smaller due to intramolecular bonding. There-

fore, vs is decreased by 10 % for each [OH] or [C(=O)OH]

group but by no more than 30 % of the molar volume derived

from the elemental composition. Girolami (1994) tested this

method for 166 liquids and reports agreement with observa-

tions vs ∼± 10 %. Barley et al. (2013) reviewed the perfor-

mance of various methods for predicting molar volume using

a test set of 56 multifunctional organic compounds and report

similar scatter.

2.3 Water activity

Water activity is related to the mole fraction via

aw = γwxw, (5)

where γw is the activity coefficient of water. Activity coef-

ficients are estimated using the semi-empirical group con-

tribution method UNIFAC (Fredenslund et al., 1975). The

UNIFAC model describes a liquid solution that consists of i

components. Each component is divided into k groups. The

activity coefficient of component i in solution (γi) has con-

tributions from combinatorial (γ C) and residual parts (γ R)

lnγi = lnγ C
i + lnγ R

i . (6)

The combinatorial part is computed via

lnγ C
i = ln

8i

xi
+
z

2
qi ln

θi

8i
+ li −

8i

xi

∑
j
xj lj , (7a)

li =
z

2
(ri − qi)− (ri − 1); z= 10, (7b)

θi =
qixi∑
jqjxj

; 8i =
rixi∑
j rjxj

, (7c)

ri =
∑

k
v
(i)
k Rk; qi =

∑
k
v
(i)
k Qk. (7d)

In Eqs. (7), xi is the mole fraction of component i, θi , and8i
are the average surface and segment fraction, z is the lattice

coordination number, v
(i)
k is the number of groups of type k in

component i, Rk , and Qk are the group volume and surface

area parameters derived from Bondi (1964), and ri and qi
are the normalized van der Waals volume and surface area.

The summation i or j is over all components in the mixture,

including component i.

The residual part is computed via

lnγ R
i =

∑
k
v
(i)
k

[
ln0k − ln0

(i)
k

]
, (8a)

ln0k =Qk −

[
1− ln

(∑
m
2m9mk

)
−

∑
m

2m9km∑
n2n9nm

]
, (8b)

2m =
QmXm∑
nQnXn

, (8c)

Xm =

∑
iv
(i)
m xi∑

i

∑
kv
(i)
k xi

, (8d)

9mn = exp
(
−
amn

T

)
. (8e)

In Eqs. (8), amn are empirically determined parameters, 9mn
is the group interaction parameter of group m with n, Xm is

the mole fraction of group m in the mixture, 2m is the area

fraction of group m, 0k is the group residual activity coeffi-

cient, and 0
(i)
k is the residual activity coefficient of group k

in a reference solution containing only molecules of type i.

Equations (8) are also used to compute 0
(i)
k . The summation

n or m is over all different groups in the mixture, and the

summation k is over all groups in component i.

Groups within UNIFAC are represented as main groups

and subgroups. The main groups evaluated in this work
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are alkane [CHn], alcohol [OH], water [H2O], carbonyl

[CHnC(=O)], aldehyde [HC(=O)], ether [CHn(O)], car-

boxyl [C(=O)OH], nitrate [CHnONO2], and hydroperoxide

[CHn(OOH)]. Interaction parameters amn between the main

groups that are used in this work are tabulated in Table S1

in the Supplement. Some of the main groups have several

subgroups, with each subgroup having unique volume and

surface area parameters Rk andQk . These are summarized in

Table S2.

2.4 Phase equilibrium

For some xw liquid–liquid phase separation can occur. The

normalized Gibbs free energy of the mixture, defined as the

actual Gibbs free energy divided by the thermal energy, is

needed to compute the number of thermodynamically stable

phases in the system. For a binary system consisting of wa-

ter (w) and a single solute (s), Gibbs energy is calculated

from the activity coefficients via standard thermodynamic re-

lationships (Prausnitz et al., 1999; Petters et al., 2009a)

1gmix
=1gideal

+1gexcess, (9a)

1gideal
= xw lnxw+ (1− xw) lnxs, (9b)

1gexcess
= xw lnγw+ (1− xw) lnγs, (9c)

where 1gmix is the normalized change in Gibbs free energy

of the mixture, 1gideal is the change in ideal Gibbs free en-

ergy of the mixture (Raoult’s law), and 1gexcess is the ex-

cess Gibbs free energy of mixing quantifying the deviation

from Raoult’s law. In highly non-ideal solutions liquid–liquid

phase separation may occur. Two compositions xa and xb de-

fine the water mole fraction of the two co-existing phases.

Computationally, xa and xb can be obtained from 1gmix us-

ing the area method (Eubank et al., 1992). Briefly, the state

space is evaluated by computing the following area for all

possible combinations xI and xII

A(xI,xII)=

∣∣∣∣[1gmix(xII)+1g
mix(xI)

][xII− xI

2

]∣∣∣∣
−

∣∣∣∣∫ xII

xI

1gmix(x)dx

∣∣∣∣ . (10a)

Phase boundaries xa and xb exist if condition

A(xa,xb)=maxA(xI,xII); A> 0 (10b)

is satisfied. If multiple phases coexist in phase equilibrium,

the Gibbs–Duhem relationship dictates that the chemical po-

tential of each component is equal in all phases. Therefore

the water activity inside the miscibility gap is constant and

the values entering Eq. (4) are subject to the constraint

aw =

{
aw (xa)= aw (xb) for xa ≤ xw ≤ xb
γwxw else.

(11)

We note that Eubank et al. (1992) algorithm can be ex-

tended to n components. Other numerically efficient ap-

proaches to find phase equilibrium, including those of n com-

ponent mixtures, are available in the literature (e.g., Amund-

son et al., 2005, 2007; Zuend et al., 2010). Comparison for

phase boundaries (xa , xb) calculated using standard UNI-

FAC parameters and the Eubank method used in this model,

and standard UNIFAC parameter and the algorithm in the

UHAERO model (Amundson et al., 2007) are in good agree-

ment and summarized in the Supplement.

2.5 Model implementation

The model was implemented to run on a personal com-

puter using the commercial MATLAB environment (Math-

Works, Inc.). Alternatively, the code runs under the Octave

environment, which is available as free software under the

GNU General Public License. Correct implementation of

the UNIFAC model was confirmed by comparing results

from test mixtures against output from existing implementa-

tions, which is further described in the Supplement. A com-

pound is defined by specifying a count of subgroups com-

prising the molecule. Equations (6)–(8) are solved to find

γw for n linearly spaced values within the domain xw ∈

[0.0001, 0.9999]. Resulting γw are parsed through Eqs. (9)–

(11) to find the number of stable phases and to define aw over

the entire domain. These aw are interpolated onto a higher

resolution linearly gridded domain (m points) to improve the

accuracy of the computation of sc using Eq. (4). Values for

n and m are selected to balance computational speed and

solution accuracy. Equations (6)–(8) have linear time com-

plexity. Equations (9)–(11) have quadratic time complexity.

Thus, the two algorithms have an order of O(n) and O(n2),

respectively. For n> 200, the overall model time complexity

is O(n2). For n >∼ 800 andm= 10000, the resolution is suf-

ficiently high so that the computed sc becomes independent

of the choice of n. All computations in this work were car-

ried out for n= 1000 andm= 10000. Total model execution

times for a single compound on an Intel(R) Core(TM) i7-

2600 3.4 GHz microprocessor using a single core were 39 s

with MATLAB version R2013a (8.1.0.604) 64 bit and 282 s

with GNU Octave version 3.8.1 configured for 64 bit.

2.6 Hygroscopicity parameter

Equation (4) is solved to find sc for a specified dry diameter,

fixed T = 298.15 K and σs/a = 0.072 J m−2. The result is ex-

pressed in terms of the hygroscopicity parameter κ (Petters

and Kreidenweis, 2007) that is defined via

sc =

{
max

[
D3
−D3

d

D3−D3
d(1− κ)

exp

(
4σs/a

ρwRTD

)]
− 1

}
× 100%

D ∈ [Dd,∞].

(12)

The hygroscopicity parameter is obtained by iteratively seek-

ing the κvalue that satisfies Eq. (12) for a given Dd, sc pair.
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Kappa values obtained by fitting aDd, sc pair to Eq. (12) with

the assumed temperature and surface tension conceptually

correspond to “apparent hygroscopicity at standard state”

(Christensen and Petters, 2012). All values in this work are

apparent κ’s. For simplicity these are denoted as κ without

further qualification. Observations against which the model

is evaluated are summarized in the Supplement and will be

discussed further in Sect. 3.

2.7 Model assumptions and limitations

The model approach presented here is limited to liquid or-

ganic compounds. This assumption is implied in both molar

volume and UNIFAC activity coefficient calculations. Com-

parison with observational CCN data where the reference

phase state may be crystalline should be interpreted with cau-

tion. For example, CCN experiments performed with crys-

talline dicarboxylic acids demonstrate that for some com-

pounds deliquescence, i.e., a solubility-controlled phase tran-

sition, must precede droplet activation (Petters and Kreiden-

weis, 2008). The UNIFAC approach is unable to accurately

predict the solubility of these compounds if they existed in

their crystalline solid state. If, however, the compound is

in metastable aqueous solution, the UNIFAC prediction is

expected to be valid to within the general accuracy of the

specific model implementation. Under atmospheric condi-

tions where the organic compounds are embedded in a ma-

trix comprising a multitude of organic compounds, a liquid

or amorphous solid is the prevailing stable phase (Marcolli

et al., 2004). Furthermore, since metastable states with hy-

groscopically bound water appear to dominate in the atmo-

sphere (Rood et al., 1989; Nguyen et al., 2014) the liquid

assumption may not be a serious limitation. Nonetheless, it

is unclear whether the assumption of a liquid-like reference

state is a serious limitation if the organic particles are highly

viscous (Vaden et al., 2011; Shiraiwa et al., 2011; Zobrist et

al., 2011; Renbaum-Wolff et al., 2013).

Other limitations of the UNIFAC method are the problems

of accounting for group proximity effects and the inability to

distinguish between isomers. Proximity effects occur when

polar groups are separated by less than three to four car-

bon atoms (Topping et al., 2005). Since only the number of

groups of type i are specified, all isomers are modeled to

have identical κ values. Although experiments show that the

location of the functional group has a small and systematic

effect on the observed κ (Suda et al., 2014), those effects are

relatively small and beyond the resolution of the model pre-

sented here.

The application of Eq. (4) assumes that the surface ten-

sion is that of pure water. Many organic compounds found

in ambient organic aerosol lower the surface tension at the

solution–air interface (Tuckermann and Cammenga, 2004;

Tuckerman, 2007). However, several studies have demon-

strated via experiment and theory that surfactant partition-

ing between the bulk solution and the Gibbs surface phase

greatly diminishes the effect one would predict by apply-

ing macroscopic surface tensions in Köhler theory (Li et

al., 1998; Rood and Williams, 2001; Sorjamaa et al., 2004;

Prisle et al., 2011). Neglecting to account for reduced sur-

face tension and using water activity to estimate CCN activ-

ity results in an underestimate of κ by ∼ 30 % for the strong

surfactant sodium dodecyl sulfate (Petters and Kreidenweis,

2013). We note that estimates of surface tension reduction

for pure organic liquids can be obtained from critical pres-

sure and boiling point (Sastri and Rao, 1995) and the Sprow

and Prausnitz (1966) expression coupled with UNIFAC ac-

tivity coefficients (Topping et al., 2005; Rafati et al., 2011).

Combined with predictions of critical properties from func-

tional group data (Joback and Reid, 1987), predicted binary

surface tensions could be obtained for each compound. In-

cluding surfactant partitioning in Eq. (4) is possible using

the expressions in Petters and Kreidernweis (2013) or similar

approaches (Sorjamaa et al., 2004; Raatikainen and Laakso-

nen, 2011). Thorough validation against experimental data,

including measurements of surface tension and CCN activ-

ity, is needed before this approach should be adopted.

2.8 Relationship to other thermodynamic models and

application to multicomponent systems

The basic model functionality described here can also be

obtained by appropriately initializing other multicomponent

equilibrium models (Ming and Russell, 2002; Raatikainen

and Laaksonen, 2005; Topping et al., 2005; Clegg and Sein-

feld, 2006; Amundson et al., 2007; Zuend et al., 2008) with

a set of binary water/organic solutions, parsing the output

through a phase equilibrium module (if not included in the

thermodynamic model itself) and the Köhler model. The pre-

dicted CCN activity mostly depends on the underlying set of

group interaction parameters. The output should match with

the solution presented here if the same interaction parame-

ter matrix is used. The main conceptual distinction between

the approach proposed here and the approach employed by

the more complex multicomponent models is our focus on

predictions for binary organic/water solutions and limitation

of the scope to a narrow range of water activities relevant

to CCN activation only. Accurate representation of hygro-

scopic growth at aw <∼ 0.99 is not required and would be of

secondary concern when tuning interaction parameters.

We envision that the proposed specialized model approach

can be used to categorize individual compounds into three

miscibility regimes, analogous to the solubility regimes de-

fined in Petters and Kreidenweis (2008). Regime I: the com-

pound is CCN inactive and can be effectively modeled as

κ = 0. Regime II: the compound is CCN active without any

additional phase constraints. In turn κ is mostly determined

by molar volume and slightly modulated by activity coeffi-

cients. Regime III: the compounds’ CCN activity is limited

due to miscibility constraints. In turn κ is highly sensitive to

overall water content and can either have κ ∼ 0 or express

www.geosci-model-dev.net/9/111/2016/ Geosci. Model Dev., 9, 111–124, 2016
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κ according to its molar volume. Once pure component κ’s

are predicted and stored in a database, the overall organic

aerosol (OA) κ in mixed particles can be calculated quickly

using the volume-weighted mixing rule (Petters and Krei-

denweis, 2007). This compound-by-compound treatment of

multicomponent mixtures assumes that solute–solute inter-

actions are negligible. Salting-in and salting-out of solution

effects are not captured. Effective κ values for compounds

falling into the limited miscibility regime may be misrepre-

sented in this treatment. Whether such effects are important

will depend on the fraction of compounds in a mixture that

fall into the limited miscibility regime and whether the pro-

posed approach of intermediate complexity – modeling bi-

nary solutions coupled with a linear mixing rule – ultimately

proves sufficiently accurate to model the evolution of ambi-

ent OA. In the following we use experimental data to demon-

strate that the outlined UNIFAC model is suitable to catego-

rize compounds into these three regimes.

3 Results and discussion

Experimental data for validation were compiled from the lit-

erature. A detailed summary of the compound names, chem-

ical structures, physicochemical properties, CCN observa-

tions, and observed κapp’s is provided in the Supplement (Ta-

bles S3–S7). This set features compounds with mostly lin-

ear carbon backbones C4 to C18 and O : C ratio between 0.1

and 1. The data are grouped into model compounds for pri-

mary organic aerosol (POA; Table S3), functionalized hy-

droperoxy ethers (Table S4), hydroxy nitrates (Table S5),

carboxylic acids (Table S6), and carbohydrates (Table S7).

Compounds included in Table S3 are long-chain molecules

that have hydrophobic tails (> 14 methylene groups) and

a single terminal carboxyl or hydroxyl group. Representa-

tive example compounds are oleic acid or cetyl alcohol.

Compounds in Table S4 are C14 functionalized hydroperoxy

ethers that have 10–12 methylene groups, at least one hy-

droperoxide and ether group, and a second carbonyl, hydrop-

erxide, or carboxyl group. Compounds in Table S5 are func-

tionalized hydroxy nitrates featuring C10 to C15 carbon back-

bones with 1–3 hydroxyl and 1–4 nitrate groups. Compounds

in Table S6 are C4–C10 carboxylic acids that have 1–2 car-

boxyl and up to one carbonyl group attached to the carbon

backbone. Finally, compounds in Table S7 are C4–C18 car-

bohydrates that have hydroxyl groups approximately equal

to the number of carbon atoms. Data in Table S3 are taken

from Raymond and Pandis (2002) and Shilling et al. (2007).

Data in Tables S4 and S5 are taken from the Supplement of

Suda et al. (2014). Data in Tables S6 and S7 are from vari-

ous sources and are summarized in the Supplement of Petters

et al. (2009b), which was updated with new compounds from

Christensen and Petters (2012), and data were re-screened for

quality. The compounds were selected to provide systematic

variation in the number and type of functional groups with

otherwise similar structure, i.e., linear or weakly branched

alkane backbone with variable carbon chain length.

To illustrate model initialization and model output, two ex-

ample compounds from the Supplement, C12 dihydroxy ni-

trate and C13 trihydroxy nitrate, are presented in Table 1. For

some of the compounds density and solubility data are avail-

able and those data are included in the Supplement. Table 1

shows how the molecular structure is decomposed into the

subgroups understood by the UNIFAC and Girolami (1994)

model framework. Detailed model output for the two exam-

ple compounds is illustrated in Fig. 1. The predicted mole

fraction dependence of 1gmix suggests that the C13 trihy-

droxy nitrate is miscible with water in all proportions while

the C12 dihydroxy nitrate is not. The dashed black line con-

necting xa and xb encloses the maximum positive area with

the 1gmix line and defines the two-phase region. Water ac-

tivity derived from 1gmix is graphed in the middle panel.

It shows that the miscibility gap for the C12 dihydroxy ni-

trate occurs at water activity close to unity. Phase gaps at

water activity near unity may result in miscibility-controlled

cloud droplet activation (Petters et al., 2006), which is anal-

ogous to solubility-/deliquescence-limited cloud droplet ac-

tivation (Shulman et al., 1996; Hori et al., 2003; Bilde and

Svenningsson et al., 2004; Kreidenweis et al., 2006; Petters

and Kreidenweis, 2008). Köhler curves in the right panel

demonstrate miscibility-limited activation behavior. For the

C13 trihydroxy nitrate, the Köhler curve is smooth and ex-

hibits a single maximum corresponding to the model criti-

cal supersaturation. For the C12 dihydroxy nitrate two max-

ima appear. The first maximum corresponds to the point of

incipient phase separation xa . The height of the miscibil-

ity barrier depends on the dry diameter. For large dry par-

ticles where the Kelvin term does not play a significant role,

the supersaturation of point xa is reduced and the second

classical Köhler maximum will control droplet activation.

Similar complex Köhler curves have been reported previ-

ously (e.g., Bilde and Svenningsson, 2004; Petters and Krei-

denweis, 2008). Experiments with pure crystalline sparingly

soluble organic compounds have demonstrated convincingly

that the larger maximum indeed controls cloud droplet acti-

vation for solubility-limited cases (Hori et al., 2003; Bilde

and Svenningsson, 2004; Hings et al., 2008). The sc vs. Dd

relationship for phase-controlled activation does not result in

κapp that is independent with respect toDd (Petters and Krei-

denweis, 2008). Therefore, for compounds having κ <∼ 0.06

where phase separation might play a role, the observed sc,

Dd pair is included in the data tables (Tables 1, S3–S7) and

κ values are computed from the observation and the model

(Eq. 12) at the same Dd. Note that the Dd-dependent κ only

plays a role in a narrow range of miscibilities. Sufficiently

soluble and truly insoluble substances are not affected. In

summary, Table 1 and Fig. 1 demonstrate model input, il-

lustrate model mechanics, and identify model outputs.

How well do data-derived and model-derived κapp com-

pare? For numerical comparison both κ’s are included in Ta-
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Table 1. Properties for two example chemical compounds. UNIFAC representation indicated the number and type of subgroups to represent

the chemical structure: MW denotes molecular weight (g mol−1) and vs denotes the model predicted molar volume (cm3 mol−1). CCN

reflects the observed supersaturation and dry diameter data pair obtained from the source (Suda et al., 2014) from which observed κ was

determined.
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Figure 1. Modeled 1gmix (left), water activity (middle), and Köhler curves (right) for C12 dihydroxy nitrate and C13 trihydroxy nitrate

(see Table 1). Open circles denote the mole fractions xa and xb that correspond to the envelope of compositions where liquid–liquid phase

separation is predicted for the C12 dihydroxy nitrate.

bles S3–S7. A graphical illustration of these is presented in

Fig. 2. To improve clarity, compounds with predicted and

modeled κ < 0.001 are clustered in the lower left corner. Such

low κ’s correspond to compounds that are effectively CCN

inactive. The range between κ = 10−3 and 10−5 spans a nar-

row range in the sc–Dd–κ state space that characterizes CCN

activity (cf. Fig. 1 in Petters and Kreidenweis, 2007). Re-

solving these differences is not particularly meaningful for

organic dominated particles that typically haveDd < 300 nm.

Furthermore, the κ of an internally mixed particle is approx-

imately the weighted volume fraction in the mixture. For

κ < 10−3 the contribution to a mixed particle’s κ is insensi-

tive to the exact value. Finally, although state-of-the-science

size-resolved CCN measurements can resolve differences in

κ < 10−3, compound impurities can interfere. A 1 % impu-

rity having κ similar to ammonium sulfate would contribute

∼ 0.06 to a measured particle κ . In addition, solvent residuals

(Huff Hartz et al., 2006; Shilling et al., 2007; Rissman et al.,

2007) and control over the dry particle phase state (Raymond

and Pandis, 2002; Hori et al., 2003; Broekhuizen et al., 2004;

Bilde and Svenningson, 2004) can disproportionally bias the

characterization of low κ’s. Combined these points justify

the definition of κ < 0.001 as effectively CCN inactive. Com-

pounds in the CCN inactive corner include all compounds

from Table S3, the C14 and C15 hydroxnitrate, and the C14

trinitrate. These compounds all have 11 or more methylene

groups and O : C ratios between 0.11 and 0.65. CCN activity

of these compounds is satisfactorily predicted by the model.

Nine compounds are predicted to be CCN inactive but

have measurements indicating 0.001 > κobs >∼ 0.03. These

are graphed below the dashed line and include C14 di- and

tetra-nitrate, C13 hydroxy nitrate, C14 and C15 dihydroxy ni-

trate, the remaining hydroperoxide ethers from Table S4, and

cis-pinonic acid. The observed C14 di- and tetra-nitrate are
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Figure 2. Model predicted vs. experimentally determined κ values. Values κ < 0.001 are classified as CCN inactive and are clustered in

the lower left corner of the graph. Colors are used to delineate the grouped source data in the Supplement. Selected structures from the

Supplement are included in the graph. CxHN, CxDHN, and CxTHN denote hydroxy nitrate, dihydroxy nitrate, and trihydroxy nitrate and

x denotes the total number of carbon atoms. C14DiN, C14TriN, C14TetraN denote the C14 dinitrate, trintrate, and tetranitrate, respectively.

Points below the dashed line corresponds to compounds with predicted κ < 0.001 and observed κ > 0.001. Typical range of observed κ CCN

for peroxides is indicated by the horizontal bar.

barely larger than the cutoff for CCN inactive. Variation of κ

between the C14 di-, tri- and tetra-nitrate (cf. Fig. 2 in Suda

et al., 2014) implies that the trinitrate has lower κ than the

di- and tetra-nitrate, which suggests that some random vari-

ability in the data is superimposed on the trend. Similarly,

the observations show that the C14 and C15 dihydroxy ni-

trate are slightly more CCN active than the C13 dihydroxy ni-

trate. Although this is possible such behavior is not plausible

due to the well-established hydrophobic nature of the added

CHx groups. One possible explanation for the discrepancies

is the sensitivity of observed κ’s to trace contamination. Each

of the compounds was purified via high-performance liquid

chromatography (HPLC; Suda et al., 2014) but degree of

purification likely varied between compounds. Furthermore,

experimental uncertainty for the HPLC-CCN method used is

slightly larger than for standard methods since it requires ap-

plication of fast-flow scans. Finally, the data are from a single

set of experiments. More data are needed before attributing

the mismatch to either model or measurement error.
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Another notable outlier is adipic acid. Here, the observed

κ < 0.01 corresponds to the solubility-limited value that is

referenced against its solid crystalline phase state. In con-

trast, the predicted value κ = 0.14 is in good agreement with

the molar volume prediction (κ = 0.17; cf. Fig. 4 in Chris-

tensen and Petters, 2012) and observed κ that adipic acid

particles express when solubility limitations are removed

(cf. Fig. 1 in Hings et al., 2008). This scenario was se-

lected to illustrate the inability of the UNIFAC model to treat

solid phases. It therefore cannot capture deliquescence and

deliquescence-/solubility-limited activation. In atmospheric

OA multiple organic compounds likely form an amorphous

supercooled melt (Marcolli et al., 2004) and metastable aque-

ous solutions are ubiquitous (Rood et al., 1989). Thus the

metastable prediction would be valid to account for adipic

acid in the context of atmospheric OA.

A series of carboxylic acids and carbohydrates cluster near

the 1 : 1 line at κ >∼ 0.06. These compounds are generally

highly functionalized having at least two carboxyl, hydroxyl,

or carbonyl groups for every four carbon atoms. The O : C ra-

tio always exceeds 0.5 and is close to 1 for many of the com-

pounds. For the predictions, activity coefficients approach

unity, compounds are miscible in water in all proportions,

and model κ’s closely track the prediction based on estimated

molar volume. Overall comparison of predicted vs. observed

κ is approximately within a factor of 2 and this range is sim-

ilar to predictions that are based on actual molar volume (cf.

Fig. 2 in Petters et al., 2009b).

The series of hydroxy nitrates, dihydroxy nitrates, and tri-

hydroxy nitrates for different carbon chain lengths also clus-

ters near the 1 : 1 line. The spread is within approximately

a factor of 2 and similar to that of the carboxylic acids and

carbohydrates. These compounds span the entire range from

κ < 0.001 to κ ∼ 0.1 and have as few as two hydroxyl and

one nitrate group per 13 carbon atoms (C13 dihydroxy ni-

trate). The model appears to accurately predict the influence

of the methylene and hydroxyl groups on the transition from

immiscible and CCN inactive to sufficiently miscible and

CCN active according to the molar volume of the compound.

For the C11, C12, and C13 dihydroxy nitrates, the predicted

miscibility-limited activation demonstrated in Fig. 1 seems

to adequately explain the transition. The accurate model pre-

diction of this sensitive transition regime is encouraging, es-

pecially since no adjustment was made to the amn group in-

teraction parameters for [OH], [CHx], and [H2O] groups.

In summary, Fig. 2 demonstrates four capabilities of the

model. First, the model has good skill in correctly classi-

fying effectively CCN inactive compounds (κ < 0.001). Sec-

ond, the model captures the molar volume-dependent acti-

vation of highly functionalized compounds (low molecular

weight dicarboxylic acids and polysaccharides). Scatter be-

tween predicted and observed κ is approximately within a

factor of 2 and considered acceptable taking into account the

considerable diversity in the underlying CCN data. We note

that uncertainties in molar volume estimation of vs ∼±10 %

stemming from the Girolami (1994) method correspond to

±10 % error in predicted κ for these compounds, which is

significantly less than the observed scatter in the data (Pet-

ters et al., 2009b). Third, the model predicts that miscibility

limitations are the cause for poor CCN activity of weakly

functionalized hydrocarbons, and the phase separation in-

formation can be used to quantitatively predict the transi-

tion between sufficiently miscible and effectively immisci-

ble species. Finally, the model seems to accurately capture

the main functional group dependencies observed previously

(Suda et al., 2014): a strong promoting effect of hydroxyl,

a weak promoting effect for hydroperoxides, a negligible or

inhibiting effect of nitrate, and inhibiting effect of methy-

lene groups on CCN activity. How, then, can one quantify the

model sensitivity of κ to the addition of functional groups to

otherwise similar molecules?

Simulation of homologous series can be used to derive

these sensitivities. Figure 3 shows modeled κ’s for a series

of functionalized n-alkanes. The gradual decreasing trend

of κ with increasing carbon number is due to the increase

in molar volume. A steep decline is observed when a

critical carbon number is exceeded. Beyond this point the

additional methylene groups reduce the miscibility with

water and render the compound effectively CCN inactive.

For example, CCN activity for a C16 trihydroxy alkane is

controlled mostly by molar volume while C18 trihydroxy

alkane is effectively CCN inactive. The critical carbon

number is C7, C12, C16, C20, and C24 for the mono-,

di-, tri-, tetra-, and penta-hydroxy alkanes, respectively.

Starting with an n-alkane, the most dramatic effect of

adding functional groups is to render the molecule miscible

with water. Contrasting the critical carbon number for

different homologous series can be used as a measure of a

particular groups’ ability to transform the molecule such

that it is sufficiently miscible in water and can express its

molar volume κ . The hydroxy alkane series shows that

approximately one hydroxyl group is needed to compensate

for the addition of four methylene groups (i.e., to maintain

miscibility at the composition of the critical carbon number),

expressed as a ratio, 1[CHn] /1[OH]∼−4/1. Similar

ratios for the other groups are derived from the shifts in

the dihydroxy alkane series upon further functionalization:

1[CHn] /1[C(=O)OH] ∼−5/2, 1[CHn] /1[CHnC(=O)]

∼−2/3, 1[CHn] /1[HC(=O)] ∼−4/2,

1[CHn] /1[CHn(O)] ∼−2/4, 1[CHn] /1[CHn(OOH)]

∼−2/2, 1[CHn] /1[CHnC(=O)] ∼−2/3, and

1[CHn] /1[CHnONO2] ∼ 2/3. This leads to a sorting

of relative effectiveness of the groups in promoting mis-

cibility, hydroxyl (−4) > acid (−2.5) > aldehyde (−2)

> hydroperoxide (−1) > carbonyl (−0.66) > ether (−0.5)

> nitrate (0.66), where the number in parentheses corre-

sponds to the 1[CHn] /1[n]. According to this model

the addition of nitrate groups is in the same direction as

methylene groups; i.e., it reduces miscibility. This finding is

consistent with CCN experiments on alkenes reacted with
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NO3 radicals (Suda et al., 2014, their Supplement), and the

known low miscibility of organic nitrates in water (Boschan

et al., 1955). Furthermore, sorting of the different functional

groups is qualitatively consistent with the sensitivity of κ

to the addition of functional groups derived from CCN data

(Table S5, Suda et al., 2014).

Treatment of OA evolution in the atmosphere

The computational speed of the model is relatively slow. The

slow speed is due to the need to evaluate the entire range

of mole fractions in order to determine the phase bound-

aries. Improvement in model execution speed is likely pos-

sible via algorithm optimization. Furthermore, parallel ex-

ecution of the code is possible. With a regular workstation

it is feasible to perform offline computation of ∼ 106κ’s

for a large set of compounds produced by the Generator of

Explicit Chemistry and Kinetics of Organics in the Atmo-

sphere (GECKO-A) or similar models. Once pure compo-

nent κ’s are predicted, the evolution of the overall OA κ

in mixed particles can be calculated quickly using the lin-

ear mixing rule (Petters and Kreidenweis, 2007), subject to

the limitations of this approach discussed in Sect. 2. One

additional limitation is the need for algorithms that auto-

matically map the computer-generated simplified molecular-

input line-entry system (SMILES) structures (e.g., Table 3 in

Lee-Taylor et al., 2015) to UNIFAC groups. Several of these

structures are bridged and even manual mapping of those

structures to UNIFAC groupings will necessitate definition

of new groups with unknown volume, surface, and interac-

tion parameters. Separate studies are needed to establish the

minimal number of new groups that would be needed to ob-

tain optimal coverage for the set of compounds of interest.

4 Summary and conclusions

This paper describes how functional group contribution

methods can be used to estimate the CCN activity of pure or-

ganic compounds. Group interaction parameters were taken

from a mix of sources and used without further tuning. Model

fidelity was evaluated against a database of published CCN

data. Weakly functionalized alkanes are correctly classified

as effectively CCN inactive (defined as κ < 0.001). Highly

functionalized and water-soluble molecules are predicted to

activate in accordance with the estimated molar volume and

generally predictions agree with observations within a factor

of 2. Liquid–liquid phase separation is predicted to occur for

compounds with few functional groups and phase separation

is predicted to control κ . The model adequately reproduces

the observation that hydroxyl groups strongly promote CCN

activity while nitrate groups inhibit CCN activity. A few out-

liers in the model evaluation may be explained by the com-

bination of CCN measurement uncertainty, compound pu-
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rity, uncertainty in dry particle phase state, and insufficiently

tuned group interaction parameters. However, more system-

atic data on weakly functionalized compounds, including re-

peat studies, are needed before a retuning of parameters is

justified. The model makes new predictions about the relative

effectiveness of the groups in promoting miscibility. Most

notably, it predicts that hydroperoxides have much less of an

effect than hydroxyl, which is slightly surprising since one

would expect the hydrogen bonding to be similar. The model

state space can serve as a rough guide to define test condi-

tions to quantify via experiment the effectiveness of adding

one or more functional groups to a carbon backbone.

Although this work is limited to a few functional groups,

the presented framework is general since interaction parame-

ters are available for a wide range of groups. For atmospheric

purposes, amines, olefins, and aromatic compounds are the

most relevant groups that need to be added. Few, if any, sys-

tematic CCN data for these groups are available. However,

the success of the current model to estimate κ without the

need to tune parameters could be taken as an indication that

first-order predictions can be obtained until such data become

available.

5 Code availability

Source code and example scripts demonstrating model ini-

tialization for the compounds presented in this study are

available as Supplement to this manuscript.

The Supplement related to this article is available online

at doi:10.5194/gmd-9-111-2016-supplement.
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