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Universal exponent for transport in mixed Hamiltonian dynamics
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We compute universal distributions for the transition probabilities of a Markov model for transport in the
mixed phase space of area-preserving maps and verify that the survival probability distribution for trajectories
near an infinite island-around-island hierarchy exhibits, on average, a power-law decay with exponent γ = 1.57.
This exponent agrees with that found from simulations of the Hénon and Chirikov-Taylor maps. This provides
evidence that the Meiss-Ott Markov tree model describes the transport for mixed systems.
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I. INTRODUCTION

A typical Hamiltonian system with more than one degree of
freedom has a phase space that consists of regular and chaotic
regions intertwined in a fractal structure. In this paper we focus
on two-dimensional, area-preserving maps that may arise from
Hamiltonian dynamics by Poncaré section. For such 2D maps,
phase space is partitioned by invariant circles that are absolute
barriers, as well as by partial barriers formed from hyperbolic
invariant sets such as homoclinic trajectories or cantori [1].
Invariant circles can enclose elliptic islands of stability, and
these are typically embedded in chaotic zones in a complex,
island-around-island structure like that shown in Fig. 1(a).

Two paradigmatic models of this dynamics are Chirikov-
Taylor’s standard map:

(θ ′,J ′) = (θ + J + K sin θ,J + K sin θ ), (1)

and Hénon’s quadratic map:

(x ′,y ′) = ( − y + 2(κ − x2),x). (2)

The standard map was introduced by Chirikov and Taylor as
a model for interaction between plasmas and electromagnetic
radiation [2]; it models dynamics near any rank-one resonance.
Hénon proposed his map as a paradigm for local behavior near
an elliptic point [3]; Karney et al. showed that it is a normal
form for a generic saddle-center bifurcation [4].

Invariant structures in chaotic systems can be “sticky”; i.e.,
nearby trajectories may spend a long time in a neighborhood.
More precisely, we say a region of phase space is sticky if
its survival probability distribution—the probability that a
randomly chosen initial condition in the region remains up
to time t—has a power-law decay [5]:

Psur(t) ∼ t−γ . (3)

As Karney (and many others, subsequently) showed, the outer
boundary of an elliptic island is sticky in this sense, though
his numerical experiments showed strong fluctuations around
what was inferred to be a power-law [6,7].
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MacKay, Meiss, and Percival (MMP) proposed that trans-
port through a connected chaotic component bounded by
elliptic islands could be described by a Markov model [8].
It was later noted that the “states” in this model should
be connected to form a tree (e.g., Fig. 1), and transport
on a Markov tree was studied by Meiss and Ott [9,10].
Their model assumed that the tree was self-similar, based
on renormalization theory both for the flux through cantori
near boundary circles [11] and for islands-around-islands [12].
These calculations gave a power law Eq. (3) with γ = 1.97.

The self-similar tree model, however, does not explain
the commonly observed fluctuations first seen by Karney.
Ceder and Agam later showed that if there are uncorrelated
fluctuations in the Markov transition rates on the tree, there
will be fluctuations in γ that decay only slowly as t → ∞
[13]. Nevertheless, Cristadoro and Ketzmerick showed that
correlated fluctuations in the self-similar scalings of Markov
rates will result in a mean decay exponent, 〈γ 〉, that depends
upon the ensemble; moreover, if this ensemble is universal for
mixed phase spaces, then the mean exponent will be universal
as well [14]. Their numerical simulations of the dynamics of
the Hénon map (without using the Markov tree model) give
〈γ 〉 ≈ 1.57.

In Refs. [13] and [14] the ensembles used for the rates
were ad-hoc. In this paper, we calculate the transition rates
using an ensemble computed from the map Eq. (2). We find
for the Markov tree that for the true, dynamical-system-based
ensemble, 〈γ 〉 ≈ 1.57.

The outline of the paper is as follows: The Markov tree
model is presented in Sec. II. In particular the results for the
survival exponent γ are presented there. In Sec. III, the survival
exponent of the Hénon map is calculated from the standard
map. The results are summarized and discussed in Sec. IV.

II. THE MARKOV TREE MODEL

Consider a phase space with a sticky region formed from an
island surrounding an elliptic fixed point such as that depicted
in Fig. 1(a). Here we recall the ideas and notation for the
Markov tree model for transport in the connected chaotic
component outside such an island [9].

The fixed point is enclosed by a family of “class-zero”
invariant circles, the outermost of which is the “boundary
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FIG. 1. An elliptic island of Eq. (2) and a Markov tree. Each node is labeled by the state S. Several transition probabilities pS→S′ related to
Eqs. (4) and (5) are also indicated. The illustrative transition probabilities correspond to state S = 10.

circle”; this circle is one component of the boundary of the
chaotic region. Typically there will be a family of broken
circles, “cantori,” which are outside the boundary circle and
that limit upon it [1]. The flux of trajectories through these
cantori limits to zero at the boundary circle. This gives rise to
a set of states in the chaotic region encircling each island, called
“levels,” which are bounded by “partial barriers.” In the Meiss-
Ott model, these layers correspond to successive rational
approximations of the rotation number of the boundary circle.

For the tree of states depicted in Fig. 1(b), the chaotic
region “far” from the sticky region corresponds to the “root”
of the tree, denoted S = ∅. For calculations of the survival
probabiity Eq. (3) ∅ is viewed as absorbing. The outermost
layer surrounding the class-zero boundary circle gives rise to
the state denoted by S = 1. Successive layers are denoted by
adding 1’s to the state, e.g., S = 111 denotes the third layer.

Within each chaotic layer there will be a largest island chain.
The Meiss-Ott model assumes there is only one such island
chain in each layer. Each chain also has a boundary circle, a
“class-one” circle. The cantori surrounding a class-one circle
gives rise to an additional set of chaotic layers. The outermost
of these class-one layers is denoted S = 10. Successive
layers approaching the class-one boundary in state 10 again
correspond to adding one’s to the state, e.g., S = 10111 . . ..

This construction generalizes to each layer: near a class-one
boundary there are encircling periodic orbits giving rise to
class-two islands, etc. The assumption that there is one island
chain in each layer implies that the tree is binary.

Transport in the connected chaotic region outside all of
the boundary circles is thus represented by a sequence of
transitions on the tree (levels and classes). If the transport
is Markov, it is defined by transition probabilities pS→S ′ for
each pair of connected states; recall Fig. 1. The probability of
such a transition is determined by the flux of trajectories, i.e.,
the area of the turnstile in the cantorus that separates the states
[8]. We denote this flux by �WS,S ′ = �WS ′,S ; it is symmetric
because the net flux through any region of phase space must

be zero. The flux through a cantorus can be computed by the
MMP action principle [8].

The average transit time through a state bounded by such
partial barriers is exactly equal to the area of the accessible
portion of phase space in the state S, AS , divided by the
exiting flux [15]. If these transit times are long enough that
correlations are unimportant, one can assume that the transition
probability is

pS→S ′ = �WS,S ′

AS

and that a Markovian approximation is valid.
The only nodes that are connected on the tree are parent-

daughter nodes. The daughters of a state S = s1s2s3 . . . sj are
denoted by concatenation: S0 and S1. The unique parent of
S, obtained by deleting the last symbol, is denoted DS. There
are two important transition probabilities, pS→DS for moving
“up” from state S to its parent, and pS→Si for moving “down”
from a state S to its ith daughter. It is convenient to categorize
the change in transition probabilities from state to state by the
two ratios

w
(i)
S = pS→Si

pS→DS

= �WS,Si

�WS,DS

, (4)

a
(i)
S = pS→Si

pSi→S

= ASi

AS

. (5)

When the tree is self-similar the ratios, Eqs. (4) and (5), are
independent of the state S, though they depend on the choice
of class, i = 0, or level, i = 1 [9].

We previously computed the flux ratios Eq. (4) for a number
of states and a range of parameter values of the Hénon map in
Ref. [[16], Eq. (22) and Fig. 11]. The ratios were calculated
using fluxes through periodic orbits of Eq. (2) as a proxy for
the cantorus fluxes. The distributions of flux ratios are different
for class and level transitions, so we label them as f (i)(w); see
Fig. 2(a). Each distribution does not depend systematically
on the parameter κ of Eq. (2). In Ref. [16] we compared
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(a) (b)

FIG. 2. Distribution densities of (a) area scalings a and (b) flux scalings w for the Hénon map with −0.25 < κ < 0.75. Distributions for
levels are shown in (dark) gray, and for classes, in red (light gray).

the f (i)(w) distributions obtained by choosing the parameters
uniformly two intervals, −0.25 < κ < 0.25 and 0.25 < κ <

0.75 (see Fig. 10 and Eq. (22) there). For the current paper, we
repeated this computation using nonuniform κ distributions
(not shown here): the new f (i)(w) do not differ significantly
from those in Fig. 2(a). This gives us more confidence in the
assertion that there are “universal” distributions for class and
level flux ratios.

Here we also extend these results by computing the area
ratios Eq. (5) for a number of orbits of the Hénon map. Areas
were computed for the periodic orbits giving outer rational
approximations to the boundary circle rotation numbers up to
the states in the fourth generation on the tree (S = 1001, 1010,
etc.); for Eq. (2) with κ ∈ [−0.25,0.75] [16]. The “depth” in
the tree from which distributions were obtained was limited by
numerical considerations [16]. Similar to Ref. [14] we assume
that the fluxes deep in the tree are replaceable by an ensemble
of tree realizations, i.e., using different parameters of the
dynamical system. This assumption is reasonable considering
that the local structure around each island chain will be a new
quadratic map. Evidence for the validity of this assumption
is the close comparison between the results obtained by the
Markov tree and the long-time numerical simulations.

Another assumption is that the area of the chaotic regions
scales as the area of the corresponding regular islands. The
island area is estimated as that of a polygon defined by a
high-period approximation of the boundary circle. The island
area ratios Eq. (5) were computed up to the third generation
on the tree since these require knowing the fourth-generation
areas. Figure 2(b) shows the distributions of the area ratio for
class and level scalings. The f (i)(a) again differ significantly
for classes and levels, but they still appear to be universal in
the sense that they do not depend systematically on κ . Indeed,
Fig. 3 shows separate area distributions for the intervals
−0.25 < κ < 0.25 and 0.25 < κ < 0.75—again we see no
significant difference to the full distributions in Fig. 2(b).

Finally, we computed the joint probability distributions
f (i)(a,w); see Fig. 4. Note that the area and flux ratios
exhibit significant correlations, since the probabilities are
concentrated on irregular regions in (a,w) space.

Below we use these joint densities to draw values of a and
w to give Markov trees with random scalings that correspond,
at least according to these first-order statistics, to those of the
true map. That is, we assume that the scaling factors on the
different branches of the tree are independent random variables
drawn from the empirically computed f (i)(a,w) found from

(a) (b)

FIG. 3. Distribution densities of (a) class and (b) level area scalings for the Hénon map with parameters chosen in −0.25 < κ < 0.25, in
gray, and in 0.25 < κ < 0.75, in red (light gray).
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FIG. 4. Histograms of the joint probability distributions for w and a. (a) f (Class)(a,w) taken from 2629 class transitions. (b) f (Level)(a,w)
taken from 3608 level transitions.

the first three generations of islands and levels for Eq. (2). This
contrasts with Ref. [9], where the ratios for each level and each
class branch do not vary with depth on the tree.

It is important to note that we did not compute the true
flux through cantori, nor the true accessible area in any state:
we assume that the transition probability rates through the
turnstiles of the cantori scale in the same way as those through
the numerically computed periodic orbits. Computing the true
cantorus flux is considerably more difficult since it must
be done using a high-period approximation to the unstable,
quasiperiodic cantorus.

In the next subsection, we compute the survival probability
exponent γ from Monte Carlo simulations on random trees.
In Sec. II B we compare these results to a master equation
approach.

A. Monte Carlo simulations

For a Markov tree model, the vector of densities at each
state on the tree can be denoted by an infinite vector 
ρ =
(ρ∅,ρ1,ρ10,ρ11, . . . ,ρS, . . .), where ρS is the density at state
S. If the per-step transition probability is small, transport on
the tree is governed by the master equation

d 
ρ
dt

= W 
ρ , WS,S ′ = pS ′→S − δS,S ′
∑
S ′′

pS→S ′′ . (6)

The absorbing state, ∅, is treated by setting p∅→S = 0
for the daughter states S = 1 or 0. To set an overall time
scale we choose p1→∅ = 0.1. The remaining probabilities are
determined by the ratios Eqs. (4) and (5), which are drawn
from the distributions f (i)(a,w) shown in Fig. 4.

Though the tree is infinite, the probabilities for transitions
decrease rapidly with level and class, and thus it is reasonable
to truncate the tree at a finite number, B, of branches or
generations. The states in the Bth generation are connected
only to their parents: only pS→DS is nonzero. This gives a
finite tree with 2B states.

To perform the Monte Carlo experiment, we chose 108

particles with initial states drawn from a distribution satisfying
detailed balance on the tree [14]. This is an equilibrium of
Eq. (6) when the absorbing state is removed, and since transient
behavior is absent, algebraic decay is easier to observe. For

such a distribution, the survival probability exponent is γ − 1
[15]. For B = 17, and averaging over 70 realizations of the
tree we find γ ≈ 1.58. For B = 10 and 50 realizations we find
γ ≈ 1.56. That the results are nearly the same shows that the
results are asymptotic for high generations of the tree.

B. The master equation on the tree

Here we will compare the Monte Carlo simulations with a
direct calculation using eigenvalues λn and eigenstates 
ρn of
the 2B × 2B transition matrixW . The evolution of given initial
state 
ρ(0) then becomes


ρ(t) =
2B∑

n=1

An 
ρne
−λnt , An = 〈 
ρn

†| 
ρ(0)〉,

where 
ρn
† is the left eigenvector of W . The survival

probability is

Psur(t) =
∑
S �=∅

ρS(t) =
∑
S �=∅

2B∑
n=1

AnρnS
e−λnt , (7)

where ρS(t) and ρnS
are the Sth component of 
ρ(t) and of 
ρn,

respectively. To compute Eq. (7), a reasonable initial condition
is 
ρ = (0,1,0,0,0...).

As before we use the empirical distributions f (i)(a,w) for
the ratios Eqs. (4) and (5) to generate N = 200 realizations
of a Markov tree. Choosing B = 10, the decay of Psur(t)
appears to be a power law up to t = 1012; see Fig. 5. The
exponent, computed using a least-squares fit from the average
〈log10(Psur(t))〉 for 103.0 � t � 1012 (with equally spaced
points on a logarithmic scale) is γ = 1.50 ± 0.1.

The error in γ is estimated from individual realizations:
for the upper (lower) bound the product tγ±Psur(t) exhibits
an increasing (decreasing) behavior on a log-log scale for all
realizations but one; see Fig. 6. The computed value of γ does
not change significantly for larger B. The same result is found
if one first computes γ for each realization, recall Fig. 5, and
then average the results.

In Appendix A, we demonstrate how a power law can
arise from a sum of infinitely many exponential decays
accumulating on λ = 0.
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FIG. 5. Plot of the survival probability Psur vs time for 200
realizations of the sum Eq. (7). The heavy line is the average, decaying
asymptotically with the slope γ ≈ 1.5.

III. STICKINESS OF ACCELERATOR MODES

For large enough values of K , the standard map Eq. (1)
exhibits special, accelerator orbits for which the momentum
increases by a multiple of 2π each period [2,17,18]. These
are due to the vertical 2π periodicity of Eq. (1). Indeed,
taking J mod 2π , accelerator modes are periodic orbits
created in saddle-center bifurcations. The simplest of these,
at K = 2πn for integer n, creates two saddle-center pairs;
one pair accelerates upward and the other downward. Near
a saddle-center bifurcation the local dynamics are modeled
by the Hénon map [4]. The elliptic points created in these
bifurcations remain stable for a small range of K , and their
neighborhoods are therefore islands like that in Fig. 1(a).

In a regime where there are accelerator islands, the vertical
transport in the chaotic component outside the islands is
dominated by the stickiness of the islands: trajectories are
trapped near the islands with a survival probability (3). This
results in super-diffusion of the momentum [6,19–21].

Whenever there is an island with positive acceleration,
there is one with negative acceleration, and the momentum
transport can be treated as a random walk between these

modes; statistically this is a drunkard’s [6,20] or a Lévy
[19] walk. When trajectories are not stuck, they diffuse in
momentum, but the contribution of this gives a negligible
contribution to momentum transport.

To estimate the exponent γ , we divide each trajectory
into segments that are trapped either near an upward or a
downward propagating accelerator island. Since the upward
propagating mode occurs near θ = π/2 and the downward
one near θ = −π/2, if we take −π � θ < π , a transition
between the upward and downward motion corresponds to a
change in sign of θ . When a trajectory is not trapped near
an accelerator island, the probability to stay in the same half
of the cylinder decays exponentially; therefore, the long-time
survival probabilities in each half of the cylinder will be
dominated by the power-law decay due to the accelerator
islands. Computations averaged over 45 parameter values give
a survival exponent γ ≈ 1.573. These results are in agreement
with those of Ref. [14] for Eq. (2). For details of the calculation,
see Appendix B.

IV. RESULTS AND DISCUSSION

We have computed the joint probability distribution of
flux Eq. (4) and area Eq. (5) ratios for states defined by the
island-around-island structure of the Hénon map Eq. (2). To do
this, we assumed that the ratios for cantori scale in the same
way as those for periodic orbits. These distributions appear
to be universal: they do not depend the parameter κ of the
Hénon map Eq. (2) in any systematic way, and this map is the
universal local model for an island of an area-preserving map.

Using the Markov tree model, we computed the resulting
power-law decay for the survival probability Eq. (3) both by
Monte Carlo simulations and directly from diagonalization of
the transition matrix. The mean survival exponent γ depends
only on the distributions of the scaling ratios and not on the
particular realization of the tree, in agreement with Ref. [14].
Since the scaling distributions are universal, the survival
exponent γ is universal as well.

Our results are consistent with γ = 1.57. This is also the
value found by direct simulations of the Hénon map in Ref. [14]
and of the standard map in Ref. [22]. Here, we also found this
same exponent for the stickiness of accelerator modes of the
standard map.
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FIG. 6. Plot of the survival probability tγ±Psur (a) γ+ = 1.6 and (b) γ− = 1.4, vs time for 200 realizations of the sum Eq. (7).
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Thus it appears that the Markov model successfully predicts
the algebraic decay exponent observed in simulations. The
assumptions of the Markov property, the similarity of the
distributions for all generations of the tree, the binary structure
of the tree, and the use of periodic orbits instead of cantori for
the ratios do not negatively impact the results. Therefore, the
Markov tree is an effective model for the long-time dynamics
of transport in area-preserving maps with a mixed phase space.

It remains an open question whether the fluctuations in γ

are real: namely, do they survive the t → ∞ limit?
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APPENDIX A: EIGENVALUE ASYMPTOTICS

A natural question is: how can the master Eq. (6) give rise
to power-law decay? Indeed, for any finite matrix size, the
long-time decay of Psur(t) will be exponential, at the rate of
the smallest eigenvalue of W , say λ1. Nevertheless, if B is
large enough, then the decay does look like the power-law
Eq. (3) for a finite time, as we saw in Fig. 5.

For an infinite chain, a power-law decay over infinite
time can occur. For a Markov chain (e.g., keeping only the
level transitions), the power law can arise from a sum of the
form Psur(t) ∼ ∑

n

δne−εnt , implying that the eigenvalues and

weights decrease geometrically [23]. Inspired by this idea,
we note that the long-time behavior of the survival probability
depends upon the density of small eigenvalues. Approximating

the discrete spectrum by a continuum, then the sum over
eigenstates in Eq. (7) becomes an integral,

Psur(t) ∼
∫ λ1

0

∑
S �=∅

ρn(λ)S An(λ)e
−λt

∣∣∣∣dλ

dn

∣∣∣∣
−1

dλ. (A1)

We now suppose that for large n, instead of the geometric
decay of Ref. [23], we have

λn ∼ n−δ1 ,∑
S �=∅

ρnS
An ∼ n−δ2 . (A2)

To support this hypothesis, we again use the distributions of
Fig. 4 to compute the eigenvectors and eigenvalues of W .
The results, shown in Fig. 7 for one realization of the tree,
show that both of these quantities decrease algebraically with
the estimates δ1 = 5.1 and δ2 = 8.8. Given the asymptotic
behavior of Eq. (A2), (A1) becomes

Psur(t) ∼
∫ λ1

0
ληe−λtdλ ∼ t−η−1, η = δ2−δ1−1

δ1
. (A3)

For the realization in Fig. 7 this gives η = 0.529.
We now average the curves, like the one found in Fig. 7,

over N = 200 realizations. This assumes that the distributions
of δ1, δ2, and thus of η, are narrow so that one can use the
average curve to estimate δ1 and δ2. Computing the exponents
for the averaged curves from points uniformly distributed on
a log scale for n, we find 〈η〉 ≈ 0.7635 ± 0.16 where the
standard deviation is taken as the error. Therefore, for the
average exponent, Eqs. (A3) and (3) imply γ = 〈η〉 + 1 =
1.76 ± 0.16. Alternatively if the fit is done using all values of
n (i.e., uniform on the scale of n), we obtain 〈η〉 ≈ 0.490 and

γ = 〈η〉 + 1 ≈ 1.49. (A4)

Finally, if we instead calculate slopes for each realization
and then compute 〈δ1〉 and 〈δ2〉 and then use Eq. (A3) to
find 〈η〉, we find γ ≈ 1.70 and γ ≈ 1.48 for the two fitting
methods described above, respectively (uniform in log10(n),
and uniform in n). Of the two fits, the latter seems to more
appropriately weight the long-time behavior due to the small
eigenvalues.
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FIG. 7. Empirical verification of the power laws Eq. (A2) for a single realization of the matrix W in Fig. 5. (a) Plot of
∑

S �=∅
AnρnS

vs n,
and a fit with slope δ2 = 8.8. (b) Plot of the eigenvalues λn of W vs n, leading to the slope δ1 = 5.1.
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FIG. 8. The survival probability Eq. (B1) for simulations of
Eq. (1). The heavy line is the average over 45 parameter values (see
text) resulting in γ ≈ 1.573.

APPENDIX B: SURVIVAL EXPONENT FOR
THE STANDARD MAP

Following Karney in Ref. [6], we can compute the survival
probability from the statistics of the duration of the trapped
segments. For example, for a single trajectory of length
T with N segments, denote the number of segments of

duration τ by Nτ . Then the probability that a segment has
length τ is pτ = Nτ/N . However, to correct for the finite
time of the simulations—which overestimates the probability
of observing a short trajectory, Karney showed that one
should use

pτ = Nτ

N

T

T + 1 − τ
.

The cumulative survival probability is then

Psur(t) =
T∑

τ=t+1

pτ . (B1)

Following the method discussed in the main text to compute
Nτ , we computed the Psur for 30 values of K chosen
from equal steps of 0.025 in the interval [2π,7.8] for those
cases that had well established super-diffusion; that is, for
which no “singular” islands were present [21,24]. Singular
islands correspond to parameters near the saddle-node, tripling
(twistless) and period doubling bifurcations. The omitted
parameters also correspond to cases in which the calculation
of boundary circles in Ref. [16] failed. Using a fit with points
chosen uniformly in log t in the interval 102 � t � 104 gives
γ values that range over [1.5,1.7] with an average γ = 1.604.
Adding 15 more values of K in the interval [6.4,6.9], where
again there were no singular islands, leads to

γ ≈ 1.573.

The results for all 45 parameter values are shown Fig. 8.
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