
SPATIO-TEMPORAL GESTURE RECOGNITION ON A DISTRIBUTED SENSING

SYSTEM

by

AKSHAY RAGHUNANDAN MYSORE

B.Tech., National Institute of Technology, Durgapur, India, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Master of Science

Department of Electrical, Computer and Energy Engineering

2014

This thesis entitled:
Spatio-Temporal Gesture Recogniton on a Distributed Sensing system

written by Akshay Raghunandan Mysore
has been approved for the Department of Electrical, Computer and Energy engineering

Dr. Nikolaus Correll (Committee chair)

Dr. Richard Han (Committee member)

Dr. Dirk Grunwald (Committee member)

Date

The final copy of this thesis has been examined by the signatories, and we
Find that both the content and the form meet acceptable presentation standards

Of scholarly work in the above mentioned discipline.

iii

ABSTRACT

Mysore, Akshay Raghunandan (M.S., ECEE)

Spatio-temporal gesture recognition on a distributed sensing system

Thesis directed by Assistant Professor Nikolaus Correll

Gesture recognition using in-network processing rather than centralized processing is of

importance in distributed sensor arrays embedded within systems such as tactile input devices,

sensing skins for robotic applications, and smart walls. We have implemented a gesture

recognition algorithm on a smart wall system with distributed sensing using capacitive touch

sensors. Each node records a sense event and shares it with other nodes in the network to

establish a sequence of sense events. Then each node builds up a chain vector array commonly

used in gesture recognition algorithms and compares it with a reference gestures to find out the

alphabet drawn on the wall. We studied the effect of gesture speed and number of vectors on

gesture recognition and found that as the number of vectors in a gesture increases, the

recognition becomes more reliable. A slower gesture speed allows for better sensing of touch and

hence also leads to better gesture recognition.

We also implemented a Hardware abstraction Architecture based on the TinyOS operating

system to achieve the goal of making the program platform independent.

iv

ACKNOWLEDGEMENTS

Foremost, I would like to thank Prof. Nikolaus Correll for the continuous support he

has provided me this past year. He helped me structure my project when I didn’t

know how and always pointed me in the right direction. His encouraging words and

jovial attitude helped me in difficult times to keep working on this thesis.

I would like to thank Prof. Richard Han for initializing me into the research

community at University of Colorado at Boulder by giving me the opportunity to

work on numerous projects and finally on the Smart wall. I would have been lost

without his mentorship.

I would also like to thank Prof. Dirk Grunwald for his encouragement and

insightful comments as a part of my thesis committee. Due to our discussions on

computer systems and coding, I was able to write good software and look at the

system from a different perspective.

Last but not the least, I would like to thank Homa Hosseimardi for laying the

groundwork for the gesture recognition algorithm and Nicholas Farrow for helping

me get started on the hardware for the Smart wall.

v

CONTENTS

CHAPTER

1. INTRODUCTION ... 1

1.1 RELATED WORK... 2

2. METHODS AND MATERIALS.. 4

2.1 HARDWARE ... 4

2.2 SOFTWARE .. 5

2.2.1 ALGORITHM.. 5

2.2.2 FUNCTIONAL REQUIREMENTS.............................. 8

2.2.3 HARDWARE ABSTRACTION ARCHITECTURE...... 9

3. RESULTS.. 11

4. DISCUSSION.. 14

4.1 TIME COMPLEXITY.. 14

4.2 LIMITATIONS.. 15

4.3 FUTURE WORK ... 16

5. CONCLUSION.. 17

6. REFERENCES.. 18

APPENDIX

A. FORMULATION OF GESTURE PACKET 20

B. CALCULATION OF VECTORS... 21

C. INTERPOLATION.. 22

D. EUCLIDEAN DISTANCE .. 24

vi

FIGURES

Figure

1. Artist impression of an amorphous computational facade made of smart
bricks and possible user interaction. .. 1

2. Smart facade test-bed consisting of 12 cells and networked with their local
neighbors. The color of cells change according to the input gesture 2

3. chain vector for different sensor densities 5

4. Input curve of arbitrary size at a motion node (left). Interpolation to get fixed gesture
length of N + 1 (right). ...6

5. Accuracy vs Gesture speed for ‘C’ .. 11

6. Accuracy vs Gesture speed for ‘O’ .. 12

7. Accuracy vs Number of Gesture points for ‘C’............................... 12

8. Accuracy vs Number of Gesture points for ‘O’ 13

9. Small gestures vs Large gestures .. 16

1

CHAPTER I

INTRODUCTION

Gesture-based control, ranging from simple directional swipes to input of

complex characters has emerged as a standard method for human-computer

interaction. Most systems however are spatially limited to sensor arrays, e.g.,

tactile displays, range-finding cameras such as the Xbox Kinect, and require

information processing in a central unit. We wish to make gesture recognition

available to a wider range of surfaces, which embed limited memory, computation

and communication capabilities and can therefore function without a central

processing unit. Examples of such surfaces range from a building wall made of

smart bricks, robotic sensing skins, or smart paint [Butera et al].

In the short term, we are interested in smart building facades that allow users

to control environmental conditions using gestural input without a central computer

processing the data and independent of the arrangement of the smart bricks. An

artist’s impression of such a system as well as a distributed computing test-bed is

shown in Fig 1 and Fig 2.

Fig. 1: Artist impression of an amorphous computational facade made of
smart bricks and possible user interaction.

2

Fig. 2: Smart facade test-bed consisting of 12 cells and networked with
their local neighbors. The color of cells change according to the input

gesture.

Here, gestures would allow users to change the appearance of the wall, open a

window or change the temperature. Similarly, when embedded in clothes [profita et

al], gestures might allow communication with other devices such as music players

or cell phones in an intuitive manner.

1.1 RELATED WORK

There exists a large body of work on gesture recognition and online

handwriting recognition in touchpads, tablets, tablet computers [Wu and Huang

1999; Mitra and Acharya 2007] or other electronic devices [Davis and Lyall 1986].

We are not specifically interested in recognition of letters; stroke-based character

recognition is a mature field and allows encoding and recognizing a large variety of

gestures. These algorithms deal exclusively with a centralized representation of the

gesture, that is gestures are recorded by a specific device such as a camera, range-

finding device or inertial-measurement unit (IMU) [Schlömer et al. 2008], co-located

with a computer and processed thereon. [Nagi et al. 2012] introduces a distributed

decentralized gesture recognition algorithm to overcome the processing power

limitation of swarm devices. In this work we aim to off-load both gesture recording

3

and processing to an input surface embedded with a sensor array without requiring

a central computing device. This allows such a surface to be amorphous, scalable

and potentially robust to failure of individual units.

A common approach to encode gestures/hand-written characters is to use a

“chain code” [Ozer et al. 2001; Confer and Chapman 2004]. For this, consecutive

points of a gesture are sampled at regular intervals, and a discrete number, e.g., 0-7

to encode angles in 45 degree intervals, will be assigned based on the angle of the

two consecutive samples. The resulting number streams can then be classified, e.g.,

using Hidden Markov models [Ozer et al. 2001; Lee and Kim 1999;Wilson and

Bobick 1999], support vector machines [Bahlmann et al. 2002] or neural networks

[Murakami and Taguchi 1991].

In this work, we are building upon [Confer and Chapman 2004], which

provides a simple algorithm for online alphabet recognition based on direction of

writing. Unlike [Confer and Chapman 2004], which implements this algorithm on a

touchpad device, we study extensions that allow us to divide the sensing load across

a facade of distributed nodes.

4

CHAPTER II

MATERIALS AND METHODS

2.1 HARDWARE

A smart wall system was designed as a test bed for the distributed algorithms.

It is composed of hexagonal blocks made of acrylic, 11.3 inches in width and 9.6

inches in Height. One Hexagonal face of the block is completely transparent

whereas the other face is made of Polymer dispersed liquid crystal materials, also

called smart glass. The PDLC material is generally opaque as the random

alignment of the liquid crystal materials causes light to scatter, but when an

electrical field is applied to them, they align in the same direction and allow light to

pass through the material making it transparent.

Embedded in each of these blocks is a circuit board with an ATxmega128A3U

processor which is a low power, high performance 8/16-bit AVR microcontroller

featuring a 128KB self-programming flash program memory. This is the central

computing unit of each block. The microcontroller is interfaced with many different

peripherals such as a touch controller, accelerometer, RGB leds, LCDs and

speakers. For the purpose of our experiment we use the Touch controller as the

sensor, and the RGB leds along with the PDLC material as actuators. The touch

controller is connected to 6 electrodes which are affixed on the six edges of the

hexagonal block. These electrodes can be used as either touch sensors or proximity

sensors with a sensing distance of around 6 inches.

Each block is connected to its neighbors via a UART port running at 115200

baud which acts as the communication channel for all the nodes in the system.

Every block can communicate with every other block in the system.

5

2.2 SOFTWARE

2.2.1 Algorithm:

For our gesture recognition algorithm, we consider a distributed array of

sensing nodes arranged as a lattice, with each node in the lattice having limited

computational abilities and arbitrary, local connectivity to its immediate neighbors.

We further assume that all nodes involved in a gestural event can communicate

with each other by multi-hop multi-cast communication [Hosseinmardi et al. 2012;

Ma et al. 2012]

As in centralized gesture recognition, pattern recognition will be based on

comparison of an input stream with a dataset of sample vectors. A key challenge

here is that gestures may have different sizes and therefore require scaling as a pre-

processing step. In our scenario, gesture size is determined by the number of motion

nodes as shown in Fig. 3. Therefore, data vectors inside motion node tables need to

be interpolated (Fig. 4) or extrapolated to match the template length. Classification

can then be performed by finding the template that minimizes a distance metric

with the measurement vector.

Fig. 3: chain vector for different sensor densities

In order to create a feature vector, a motion node emits a data packet upon a

sensing event such as touch or light. Such an event packet conveys spatio-temporal

information of a node that has detected an event, which can then be used to

reconstruct a feature vector on each node receiving the packet.

6

Fig. 4: Input curve of arbitrary size at a motion node (left). Interpolation to get fixed
gesture length of N + 1 (right).

When someone draws a gesture, each motion node that senses the gesture also

needs to learn about other nodes that sense the motion. After detecting an event,

each motion node will share its spatial and order information with other motion

nodes. Each node gathers the spatio-temporal information into a table that will be

used later to extract feature vectors.

Because different directions of input gestures might have different meanings,

all nodes need to know the order in which events were recorded. Nodes will sort

member vectors and their spatial information based on their temporal order for the

purpose of feature extraction. Each node ‘m’ will maintain two vectors on its table:

(x-coordinate, y-coordinate).

We compute Xm and Ym vectors, i.e the sequence of x-axis changes and y-axis

displacements describing the gesture. These vectors will be compared in the next

phase with the corresponding vectors in our dataset of possible gestures. Therefore

they need a unique size, equal to the length of samples in the dataset. For this

purpose each node m will interpolate Xm and Ym vectors to achieve a fixed unique

gesture length ‘N+1’.

Each node m will retrieve a certain number of gesture points ‘M’ collecting

shared packets by other nodes sensing the same gesture. Since some of the packets

7

might not be properly recorded or delivered, each node has a potentially different

number of gesture points, and consequently a different view of the same gesture.

We employ the chain technique to extract the feature in which each node will

construct a fixed-length gesture consisting of ‘N + 1’ interpolated samples of the

gesture points that it has collected. In this way, the fixed-sampling technique is

fairly robust within limits both to how small a gesture is made, as well as to packet

loss or sensor failure.

Considering that users may draw gestures with different sizes, or that

different group members may have different numbers of nodes in their table (due to

packet loss), input gestures are likely to have different vector lengths. For example,

in Figure 3, any number of gestural sensing events may be collected at a particular

node, but these are interpolated to produce an ‘N+1’ point gesture.

A gesture can now be represented by the ‘N’ vectors connecting the samples.

We denote a chain of vectors recorded by node m as Vm.

Here, each element of Vm is calculated by the coordinates of the nodes involved.

vxi = (xi+1-xi) and vyi = (yi+1-yi)

where i and i+1 are adjacent points in the sequence.

In order to recognize what gesture is made, we use a 1-nearest neighbor (1-

NN) clustering algorithm to find the sample ‘s’ that has the least distance from

gesture ‘m’.

Let ∆ms=|Vm-Vs| be the distance between a measurement at node m and

sample s Є DS, a dataset containing all samples. The function f(Vm) will return the

lowest distance of input gesture m from dataset samples s, such that

f(Vm)=min|Vm-Vs|

Here, |.| is the Euclidian distance between vectors.

8

The vector for the gesture of the sample dataset with the minimum Euclidean

distance from the input is concluded as the gesture drawn on the wall.

2.2.2 Functional Requirements for algorithm:

In order to implement the gesture recognition algorithm we need to have the

following mechanisms in place:

1. Co-ordinate system: To get the spatial location of the node

2. Synchronization between nodes: To determine the order in which events take

place

3. Message passing: To share information with other nodes

Co-ordinate system: Since our system is reconfigurable, we had to make

sure the coordinate system would work for any configuration of the system. When

the nodes start up, they are devoid of coordinates. On waking up, each node queries

neighboring nodes to find if they have been assigned coordinates, if they do, the

querying node acquires the information from the queried node and informs its

surrounding nodes of the change in its coordinates. Thus each node gets it’s

coordinates with reference to a node which already knows its coordinates. The

origin can be hard coded as a node which will always be available in the system or

can be set by a command from the user or can be set to be settled by the nodes

themselves through arbitration for. In case of arbitration, the node with the

smallest ID gets to be origin.

Synchronization: Synchronization is the means by which nodes determine

the sequence in which the sensing events occurred. The nodes are connected to each

other by means of UART running at 115200 baud. This speed is much faster than

the speed at which a gesture can be drawn on the wall. Every time a touch electrode

senses a touch, it sends out a message with the co-ordinate of the electrode and a

sequence number. Whenever a node receives such a packet, it increments the

9

sequence no. and sends this number out as the sequence no. in case it senses a

touch. Thus when the packets are arranged in the increasing order of their sequence

number, they represent the gesture as a sequence of coordinate points.

Message Passing: Each node sends out a packet containing the sequence

number and the coordinates of the electrode touched. These packets are transmitted

using the UART to all the surrounding nodes, thus providing a multi hop path from

every node to every other node in the system.

2.2.3 Hardware abstraction architecture:

In order to make our application platform independent we implemented a hardware

abstraction layer. The hardware abstraction layer was based on the TinyOS model

[Handziski et al. 2005] but simplified to increase ease of use and readability.

1. Hardware presentation layer: The lowest layer of the architecture which deals

directly with the registers via get, set and clear functions. This was implemented as

inline functions to reduce function calls and make the register access faster.

2. Hardware Adaptation layer: This layer provides functions which deal with a

particular peripheral. It accesses peripherals with read_device, write_device

functions which utilize the underlying layer as interface to implement

communication protocols like I2C etc.

3. Hardware Interface Layer: This layer utilizes the interfaces provided by the

Hardware Adaptation layer to provide generic interfaces to the hardware

independent application code. For eg. Get_sensor_input, set_actuator, etc.

Using the interface provided by the Hardware interface layer, a user can write code

which will work on any hardware, given that the underlying layers provide the

right interfaces to the higher layers.

10

CHAPTER III

RESULTS

3.1 IMPLEMENTATION

The main body of the code is a loop in which the sensor is polled to check if it

has sensed a touch. If there has been a touch, we get the coordinates of the sensor

and increment the current sequence number. Then we combine the two into a

packet and send it out to all the surrounding nodes (Appendix A). After sending out

the packet, we start a counter to check if we receive a packet within 2.1 seconds. If

no other sensor packet is received within 2.1 seconds, we send out a command

packet to all the nodes involved in the gesture to start their computation. Since

every node which is a part of the gesture will receive a packet from the next point in

the gesture within 2.1 seconds, only the last node of the gesture will send out the

command to start the computation.

For the sake of simplicity, as the packets are received, we store them in an

array according to their sequence number. Once the start computation command is

received, we calculate the sequence of vectors from the array of gesture points and

store them in another array. Since in our system the adjacent sensors of adjacent

blocks are encoded to the same coordinate, while calculating the vectors we make

sure that the current point is different from the next point (Appendix B). We then

call the interpolation function with the array of vectors as input. In the

interpolation function (Appendix C), we find the magnitude of all vectors (square

the x component and y component, add them, compute square root). Then we add

the magnitudes together and divide it by the number of vectors required (number of

vectors in gestures in the reference dataset). We divide the whole gesture into

pieces of the resulting magnitude. To do that we divide each vector into smaller

11

vectors using the ratio of the original magnitude of the vector to the value we get by

dividing the accumulated magnitude by number of vectors.

Once we have a gesture represented by the same number of vectors as the

samples in the reference dataset, we compute the euclidean distance between

corresponding vectors of the input data set and the reference sample (Appendix D).

As we are computing the distance of the input from each sample, we keep a track of

the lowest distance and the class that the corresponding sample lies in. Thus once

we have calculated the distance with all the samples, we will have a decision

regarding the gesture drawn on the wall. This decision is then sent out to all the

other nodes in the system and the appropriate action associated with the particular

gesture is taken, which in our case is lighting the appropriate led.

3.2 EXPERIMENTAL RESULTS

We implemented the gesture recognition algorithm on the Smart wall test bed

to identify the alphabets ‘C’’ and ‘O’ and a swiping gesture from right to left. Each

alphabet has eight samples in the reference data sets against which every input

gesture was compared. Each reference sample was composed of 10 vectors and the

input gestures were interpolated to 10 vectors for comparison. Depending on the

gesture identified by the system, we actuated the PDLC screen to open or close and

the RGB leds to light different colors. We also retrieved the vector data of the input

gesture to confirm our results.

After the gesture recognition algorithm was implemented on the Smart wall

system, we tested it against different gesture speeds to test its reliability and

different number of gesture points to simulate sensor failure and packet loss. Fig. 5

and Fig. 6 display the accuracy of the of the algorithm with respect to the time

taken to draw the gestures.

12

Fig. 5: Accuracy vs Gesture speed for ‘C’

Fig. 6: Accuracy vs Gesture speed for ‘C’

For determining the accuracy of the algorithm with respect to the gesture

points, we selected the biggest vectors in the sample dataset for each alphabet and

tested the output of the system for subsets of points in the gesture. The biggest

vector for ‘C’ is composed of 5 points and the biggest vector for ‘O’ is composed of 6

points.

13

Fig. 7: Accuracy vs Number of Gesture points for ‘C’

Fig. 8: Accuracy vs Number of Gesture points for ‘O’

14

CHAPTER IV

DISCUSSION

In our experiments we found out that as the number of gesture points in an

input gesture decreases, the gesture recognition reliability decreases. In our case,

the alphabet C is mistaken for the sideswipe gesture. Since both the gestures start

with the same direction, if the only points detected by the sensor are on a horizontal

line, the algorithm classifies the input gesture into the sideswipe class. Thus the

reliability of the algorithm increases when sufficiently different gestures are chosen.

In the sample dataset, the gesture with the smallest length is the letter C. Thus

most incomplete gestures are classified to be ‘C’ as it usually has the smallest

Euclidean distance.

As for the speed with which a gesture is drawn, slower the gesture better is

the recognition. In a slower motion, the sensors can more accurately detect if a

touch has occurred. This leads to more number of gesture points in the input

gesture and thus better recognition.

4.1 TIME COMPLEXITY

The algorithm can be divided into three main computation intensive stages 1)

the sorting stage, 2) the interpolation stage and 3) the comparison stage. Of the

sorting stage would have complexity O(nlogn), the interpolation stage would have

complexity O(n) and the comparison stage would have complexity O(v*s), where n is

the number of nodes in the gesture, v is the number of vectors in each sample

gesture in the reference dataset and s is the number of samples in the reference

dataset. Thus the time required for this algorithm is dependent on three factors, the

number of nodes involved in the gesture, the number of vectors in each sample

15

gesture in the reference dataset and the number of samples in the reference

dataset. We have observed in our experiments that more the number of nodes,

better the recognition thus ‘n’ and ‘v’ will have the most effect for the computation

time for a reliable distributed gesture sensing algorithm.

4.2 LIMITATIONS

1. Due to the large size of the blocks on the smart wall, smaller gestures are

difficult to be identified due to lack of sufficient gesture points as shown in Fig. 9.

2. Multiple gestures cannot be drawn simultaneously, but this can be

remedied by restricting the messages to only nodes part of the current gesture using

Multicast groups or chain messaging.

3. The algorithm is not capable of detecting whether the input gesture is not a

match to any gesture in the reference dataset. In our algorithm the gesture is

always classified to its closest match. Therefore the alphabet ‘G’ will be classified to

‘C’ if the dataset contains only C, O and 4. For our current algorithm the reference

dataset needs to contain samples of different sizes to reliably identify gestures of

different size. This shortcoming can be eliminated by normalizing the size of all the

gestures to the same gesture length.

4. As the node density increases, the chance that a number of nodes that may

be excited at the same time increases. In such a case, our implementation will not

be able to find the correct sequence of events as it depends on the gesture being

slower than the communication between the nodes. In such a case, we will have to

aggregate all the nodes excited at the same time to one particular point so that a

proper gesture sequence can be derived from the gesture points.

16

Fig. 9: Small gestures vs Large gestures

4.3 FUTURE WORK

We plan on implementing a bloom filter to help segregate multiple gestures

drawn simultaneously. This will also help in faster identification of words as the

user will not have to input one alphabet at a time.

The following algorithms still need to be tested on the smart wall.

1. Distributed Dataset: The reference dataset is divided such that each node has

access to parts of the dataset through its neighbors. This reduces the memory

requirement of the algorithm on each node.

2. Distributed Computation: Each node only operates on a part of the input vector

and shares its results with the other nodes in the gesture to come to a decision. This

reduces the computation required of each node.

3. Hybrid: Combination of Distributed dataset and Distributed computation

We are also planning on migrating from a touch based system to a touch less

system so that a user does not have to be present next to a wall to interact with it.

17

CHAPTER V

CONCLUSION

In the course of this study we implemented a distributed gesture recognition

algorithm on a real world distributed sensing system called the smart wall. The

algorithm works by recording a sequence of sense events across the distributed

system and then comparing it against a reference dataset to determine the gesture

drawn on the system. Each node of the smart wall has six touch sensors, which on

sensing a touch send out a packet with the sequence number and the location of the

sensor. Then all the nodes involved in the gesture share these messages to get a

table with all the gesture points. A vector table is then derived from these points

and interpolated to match the number of vectors present in the dataset. The sample

in the reference dataset with least Euclidean distance from the input gesture is

determined to be the gesture drawn.

We then ran the algorithm with different gesture point sizes and at different

motion speeds. We found that the reliability of the algorithm is directly proportional

to input points and inversely proportional to gesture speed.

18

CHAPTER VI

REFERENCES

1. C. Bahlmann, B. Haasdonk, and H. Burkhardt. 2002. Online handwriting
recognition with support vector machines-a kernel approach. In Frontiers in
Handwriting Recognition, 2002. Proceedings. Eighth International Workshop on.
IEEE, 49–54.

2. W. Butera. 2002. Programing a paintable computer. Ph.D. Dissertation. Ph. D.
dissertation, Program in Media Arts and Sciences, School of Architecture and
Planning, MIT.

3. W.J. Confer and R.O. Chapman. 2004. System and method of handwritten
character recognition. (April 13 2004). US Patent 6,721,452.

4. RH Davis and J. Lyall. 1986. Recognition of handwritten characters—a
review. Image and Vision Computing 4, 4 (1986), 208–218.

5. H. Hosseinmardi, N. Correll, and R. Han. 2012. Bloom Filter-Based Ad Hoc
Multicast Communication in Cyber-Physical Systems and Computational Materials.
Wireless Algorithms, Systems, and Applications (2012), 595–606.

6. H.K. Lee and J.H. Kim. 1999. An HMM-based threshold model approach for
gesture recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 21, 10 (1999), 961–973.

7. S. Ma, H. Hosseinmardi, N. Farrow, R. Han, and N. Correll. 2012.
Establishing Multi-Cast Groups in Computational Robotic Materials. In IEEE
International Conference on Cyber, Physical and Social Computing (2012-11-20).
Besancon, France.

8. S. Mitra and T. Acharya. 2007. Gesture recognition: A survey. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 37, 3
(2007), 311–324.

19

9. K. Murakami and H. Taguchi. 1991. Gesture recognition using recurrent
neural networks. In Proceedings of the SIGCHI conference on Human factors in
computing systems: Reaching through technology. ACM, 237–242.

10. Jawad Nagi, Hung Ngo, Alessandro Giusti, Luca Maria Gambardella, Jrgen
Schmidhuber, and Gianni A. Di Caro. 2012. Incremental learning using partial
feedback for gesture-based human-swarm interaction. In RO-MAN. IEEE, 898–905.

11. O.F. Ozer, O. Ozun, C.O. Tuzel, V. Atalay, and A.E. Cetin. 2001. Vision-based
single-stroke character recognition for wearable computing. Intelligent Systems,
IEEE 16, 3 (2001), 33–37.

12. H. Profita, N. Farrow, and N. Correll. 2012. In Adjunct Proceedings of the
16th International Symposium on Wearable Computers (ISWC) (2012-06-14). 44–
46. http://correll.cs.colorado.edu/wp-content/uploads/ISWC2012
AdjunctProceedings.pdf

13. T. Schlömer, B. Poppinga, N. Henze, and S. Boll. 2008. Gesture recognition
with a Wii controller. In Proceedings of the 2nd international conference on
Tangible and embedded interaction. ACM, 11–14.

14. A.D. Wilson and A.F. Bobick. 1999. Parametric hidden markov models for
gesture recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 21, 9 (1999), 884–900.

15. Y. Wu and T. Huang. 1999. Vision-based gesture recognition: A review.
Gesture-based communication in human-computer interaction (1999), 103–115.

16. V. Handziski, J.Polastre, J.H.Hauer, C.Sharp, A.Wolisz and D.Culler. 2005.
Flexible Hardware Abstraction for Wireless Sensor Networks. In Proceedings of the
2nd European Workshop on Wireless Sensor Networks (EWSN 2005).

20

APPENDIX A

FORMATION OF GESTURE PACKET

gest_pkt pkt_g;
pkt_g.gest_coor = get_electrode_coordf(work_detail);
current_rank += 1;
my_rank = current_rank;
pkt_g.rank=current_rank;
Xgrid::Packet touch_pkt;
touch_pkt.type = MESSAGE_TYPE_GESTURE;
touch_pkt.flags = 0;
touch_pkt.radius = 6;
//generic_pkt.data = (uint8_t *)str;
touch_pkt.data = (uint8_t*)&pkt_g; // 'data' field is of type uint8_t*
touch_pkt.data_len = sizeof(gest_pkt);
xgrid.send_packet(&touch_pkt);
points[my_rank-1]=pkt_g;
start_count=true;
gest_count=0;

21

APPENDIX B

CALCULATION OF VECTORS

for(iter=1,iter1=0;iter<current_rank;iter++){
vec_in[iter1].vec_x = (double)(points[iter].gest_coor.x-points[iter-1].gest_coor.x);
vec_in[iter1].vec_y = (double)(points[iter].gest_coor.y-points[iter-1].gest_coor.y);
iter1++;
if((vec_in[iter1-1].vec_y==0.0)&&(vec_in[iter1-1].vec_x==0.0)){
iter1--;
}
printf_P(PSTR("%f\t%f\t%d\n\r"), vec_in[iter1-1].vec_x, vec_in[iter1-1].vec_y,iter1);
_delay_ms(1);
fflush(stdout);

}

22

APPENDIX C

INTERPOLATION

void interpolation (int num,vector* vec)
{

int interp_num,interp_mod,i=0,j,k=0;
double xx,yy,total=0,part,mag[SAMPLE_SIZE],rem;
vector* vec_out_inter=vec_out;
for(i=0;i<num;i++)
{

mag[i]=sqrt((vec[i].vec_x*vec[i].vec_x)+(vec[i].vec_y*vec[i].vec_y));
total=total+mag[i];

}

part=total/(double)SAMPLE_SIZE;

for(i=0;i<num;i++)
{

if(i!=0)
{
rem=part-rem;
vec_out_inter->vec_x=(vec_out_inter->vec_x)+(vec[i].vec_x*rem/mag[i]);
vec_out_inter->vec_y=(vec_out_inter->vec_y)+(vec[i].vec_y*rem/mag[i]);
vec_out_inter++;
mag[i]=mag[i]-rem;
}
rem=mag[i];
for(j=0;rem>part;j++)
{

rem=rem-part;

}
interp_num=j;
xx=vec[i].vec_x*part/mag[i];
yy=vec[i].vec_y*part/mag[i];

for(j=0;j<interp_num;j++)
{

vec_out_inter->vec_x=xx;
vec_out_inter->vec_y=yy;
vec_out_inter++;

23

}
vec_out_inter->vec_x=vec[i].vec_x*rem/mag[i];
vec_out_inter->vec_y=vec[i].vec_y*rem/mag[i];

}
printf_P(PSTR("\n\r"));
for(i=0;i<SAMPLE_SIZE;i++){

printf_P(PSTR("%f,"),vec_out[i].vec_x);

_delay_ms(1);
}
printf_P(PSTR("\n\r"));
for(i=0;i<SAMPLE_SIZE;i++){

printf_P(PSTR("%f,"),vec_out[i].vec_y);

_delay_ms(1);
}

}

24

APPENDIX D

EUCLIDEAN DISTANCE

if(euc_flag==1){
result=0;
for(i=0;i<14;i++)
{

if(i%2==0)
{

result_x=0;
for(k=0;k<SAMPLE_SIZE;k++)
result_x=result_x+((C[i][k])-vec_out[k].vec_x)*((C[i][k])-

vec_out[k].vec_x);
}
if(i%2==1)
{

result_y=0;
for(k=0;k<SAMPLE_SIZE;k++)
result_y=result_y+((C[i][k])-vec_out[k].vec_y)*((C[i][k])-

vec_out[k].vec_y);
result=sqrt((result_x)+(result_y));

if(i==1){
least=result;

}

if(!(result>least)){
count_vec=i/2;
least=result;
}

}
}

for(i=0;i<16;i++)
{

if(i%2==0)
{

result_x=0;
for(k=0;k<SAMPLE_SIZE;k++)
result_x=result_x+((O[i][k])-vec_out[k].vec_x)*((O[i][k])-

vec_out[k].vec_x);
}
if(i%2==1){

result_y=0;

25

for(k=0;k<SAMPLE_SIZE;k++)
result_y=result_y+((O[i][k])-vec_out[k].vec_y)*((O[i][k])-

vec_out[k].vec_y);
result=sqrt((result_x)+(result_y));
if(result<least){

count_vec=7+(i/2);
least=result;

}
}

}
for(i=0;i<4;i++)
{

if(i%2==0)
{

result_x=0;
for(k=0;k<SAMPLE_SIZE;k++)
result_x=result_x+((close[i][k])-vec_out[k].vec_x)*((close[i][k])-

vec_out[k].vec_x);
}
if(i%2==1)
{

result_y=0;
for(k=0;k<SAMPLE_SIZE;k++)
result_y=result_y+((close[i][k])-vec_out[k].vec_y)*((close[i][k])-

vec_out[k].vec_y);
result=sqrt((result_x)+(result_y));
if(result<least){

count_vec=15+(i/2);
least=result;

}
}

}
if(count_vec<7){

set_rgb(0,255,0);
printf_P(PSTR("\n\r\t\t\t\t\t<7\t\t\t\t\n\r"));

}
else if ((count_vec>7)&&(count_vec<15)){

set_rgb(255,255,0);
printf_P(PSTR("\n\r\t\t\t\t\t>7 <15\t\t\t\t\n\r"));

}
else{

set_rgb(0,0,0);
printf_P(PSTR("\n\r\t\t\t\t\t>15\t\t\t\t\n\r"));

}
euc_flag=0;

}

