
Received: 14 December 2021   Revised: 23 March 2022   Accepted: 21 May 2022

DOI: 10.33012/navi.537

NAVIGATION, 69(3).	 Licensed under CC-BY 4.0� © 2022 Institute of Navigation

O R I G I N A L A R T I C L E

Detecting GNSS Jamming and Spoofing on Android Devices

Nicholas Spens  Dong-Kyeong Lee  Filip Nedelkov  Dennis Akos

1  INTRODUCTION

The inability of Android devices to detect spoofing is a growing concern. Spoofing
may be performed intentionally by the device user or by an external source. One
malicious motivation behind location-based service self-spoofing is profitability.
Drivers for rideshare platforms such as Uber and Lyft can use a spoofed locations to
appear as if they are waiting at a “hot spot” before they are even there, securing the
rider ahead of other drivers who use their real locations (Hill, 2021). Drivers can
also use software to falsely report longer routes than were actually driven, inflating
the cost of the ride they provide (Adegoke, 2017).

External spoofing attacks can be performed as well. Zeng et al. (2017) presented
a method by which someone using a mobile navigation service could be subtly
misled up to a kilometer away from their initial destination and introduced the
malicious applications of such a tool. Currently, it is possible to spoof an Android
device’s location with only GPS signals, despite the availability of other constella-
tions and even network access points to aid in positioning (Miralles et al., 2020a).
Therefore, the need for protection from spoofing is rapidly growing.

Colorado Center for Astrodynamics
Research, University of Colorado Boulder

Correspondence
Nicholas Spens, Ann and H.J. Smead
Aerospace Engineering Sciences,
University
of Colorado Boulder, USA.
Email: Nicholas.Spens@colorado.edu

Abstract
Global navigation satellite system (GNSS) location engines on Android devices
provide location and navigation utility to billions of people worldwide. However,
these location engines currently have very limited protection from threats to
their position, navigation, and time (PNT) solutions. External sources of radio
frequency interference (RFI) can render PNT information unusable. Even
worse, false signals or spoofing can provide a false PNT solution to Android
devices. To mitigate this, four detection methods were developed and evaluated
using native location parameters within Android: Comparing the GNSS and net-
work locations, checking the Android mock location flag, comparing the GNSS
and Android system times, and observing the automatic gain control (AGC) and
carrier-to-noise density (C/N0) signal metrics. These methods provide a power-
ful means to significantly increase the robustness of the Android GNSS-based
PNT solution and are implemented in the GNSSAlarm Android application to
demonstrate real-time jamming and spoofing detection.

Keywords
Android, GNSS jamming, GNSS spoofing, robust navigation

mailto:Nicholas.Spens@colorado.edu

SPENS et al.    

The GNSSAlarm application is in the process of being developed by the RF &
SatNav Laboratory at the Colorado Center for Astrodynamics Research (CCAR) to
demonstrate and refine a variety of tests that can be performed in real time to detect
jamming/spoofing on Android devices. This application is a cumulative effort, con-
tinuing upon the work by Miralles et al. (2020a) and other research from the GNSS lab-
oratory, and is built with framework from the open source GNSSLogger application.

For comparison, another application attempting to provide real-time spoofing
detection is TORGI (Tactical Observation of RF GNSS Interference), which focuses
mainly on the use of automatic gain control (AGC) and carrier-to-noise den-
sity (C/N0) for spoofing detection (a test that is also explored with GNSSAlarm).
However, Miralles (2021) demonstrated that the TORGI application failed to indi-
cate a threat when a device running it was subject to radio frequency interference
(RFI) spoofing. This can be attributed to the app’s failure to consider AGC limita-
tions on Android and its narrow range of tests, both issues that are addressed by
GNSSAlarm.

2  LOCATION MEASUREMENTS ON ANDROID

Position data on Android is provided through the native LocationManager class
on Android. Through this class, listeners can be set up to constantly provide an
app with location data, raw GNSS measurements, and National Marine Electronics
Association (NMEA) messages. Basic location fix data comes in a data set orga-
nized by the location class such as latitude, longitude, altitude, bearing, accuracy,
provider (the source of the data), time, and more (Android Developers, n.d.a). This
class is all that is needed for an app to provide location-based functionality. It can
be used to detect some forms of location spoofing/jamming but lacks the informa-
tion required to evaluate the GNSS signals, themselves.

Location fixes in Android can be provided by three sources: The GPS Location
Provider (GLP, which uses all strong GNSS signals available), the Network Location
Provider (NLP), and the Fused Location Provider (FLP). The FLP uses both GNSS
and network signals to calculate a position and is the recommended location fix for
Android. It should be noted that within the FLP, GNSS contributions, when avail-
able, are heavily weighted in the fix calculation (Miralles et al, 2020a).

For more in-depth GNSS signal analysis, the GnssMeasurement class can be
used. Introduced in Android 7.0 (API 24), this class provides a data set contain-
ing metrics about an individual GNSS signal, including C/N0, AGC, satellite ID,
constellation type, carrier frequency, and more (Android Developers, n.d.b). Raw
GNSS measurements gathered this way can be powerful tools for detecting spoof-
ing/jamming, which will be demonstrated in this paper.

There are some limitations to this approach, however. First, it cannot be used
on all Android devices, as those on a version of Android below 7.0 have no way of
accessing the measurements. Approximately a quarter of all Android users are cur-
rently using a version below Android 7.0 (Rahman, 2020). Although this number is
declining, it is by no means insignificant. Second, even among phones that do pro-
vide raw measurements, capability is varied. The ability to report measurements
such as AGC and accumulated delta range (ADR) is dependent on the chipset used
by the phone to process GNSS signals. Third, various vendors of Android GNSS
chipsets have not fully standardized their measurements; an example is how AGC
is reported differently across devices (this is further explored in Section 3.4.1).

The progression of relevant GNSS measurements on Android is summarized in
Figure 1. The components used by the GNSSAlarm application are highlighted.

    SPENS et al.

As can be seen in the figure, however, Android is a dynamic environment when it
comes to the possible measurements, and it is possible that the application could
use new measurements in the future.

For older phones that do not support GNSS measurements, some information
can still be parsed out of National Marine Electronics Association (NMEA) mes-
sage strings, most notably the C/N0. NMEA is a standard used by most commercial
GNSS receivers to provide position, velocity, and time (PVT) information to users
and is the main alternative to raw GNSS measurements for signal information on
Android. However, there currently is no way to get AGC data without GNSS mea-
surements. One of the co-authors of this paper, Lee, has submitted a proposal to
add an AGC message to the NMEA standards, which could allow for an alternative
method of retrieving AGC data on Android (Lee et al., 2020).

3  DETECTION METHODS

The four detection methods will be summarized below, along with pertinent
details on their implementation and the limitations of each. None of the methods
have a particularly high computational cost and, as such, can all be run simultane-
ously for all GNSS-related data collected by the Android device.

3.1  GNSS vs Network Location

The first detection method takes advantage of a powerful feature available to
mobile phones: The ability to generate a location fix from both network signals and
GNSS signals. A location is calculated independently by each location engine and
the distance between the two is found. The test will alert when the discrepancy
between the two location fixes is greater than a defined threshold.

The fused location engine used to provide the location fix for most Android
applications currently prioritizes GNSS location information over the network
location as demonstrated by Miralles et al. (2020a). Therefore, a spoofer needs only
to replicate GNSS signals in order to mislead an Android device. By comparing

FIGURE 1 Development of GNSS measurements on Android over time

SPENS et al.    

the GNSS-based location to the location from the NLP, GNSS targeted attacks can
be detected.

The NLP position draws from two sources. The first is cell tower localization,
which is relatively inaccurate, but widely available. However, the introduction of
5G towers has the potential to increase accuracy due to the high density of towers
needed to support the network. The second source of NLP positioning data is Wi-Fi
fingerprinting. Received signal strength (RSS) from nearby Wi-Fi access points is
used in conjunction with a database of known access point locations to build a
location estimate.

Ideally, both methods are used, however, in rural areas cell tower localization
may be the only option, and in some areas there might not be enough cell towers or
Wi-Fi points to even generate an NLP position. Further information about how the
NLP is generated is provided by Nedelkov et al. (2020).

3.1.1  Network Location Model

To reliably use an NLP as a detection metric, the error in the NLP position must
be accounted for. This error is dependent on two factors: The availability of Wi-Fi
and cellular network access points and the NLP update rate (Nedelkov et al., 2020).
Naturally, the fewer access points there are, the greater the potential for error in
the position calculation. As for update rate, the NLP can only be updated every
5 seconds in Android. This means that if a user is traveling at a high speed, the
error contributed by this factor has time to grow to a significant value in the time
between fixes.

Prior work by Nedelkov et al. (2020) established the nominal accuracy of the
NLP position in a variety of environments. Testing data was taken from two
Android devices placed inside a vehicle driving in various environments. One
device logged NLP data with the Wi-Fi enabled and the other did the same with
Wi-Fi disabled.

Note the similarities in suburban and urban environments, as both have suf-
ficient access points to generate a reasonably accurate solution. If Wi-Fi access
points are not available or blocked by the user, the accuracy drops significantly,
even more so for the less dense suburban environment.

3.1.2  GNSS vs Network Location Test Implementation

To implement this test, a listener function was set up and location updates were
requested at the maximum rate from both the GNSS and network location provid-
ers (every 1 s and 5 s, respectively). When a location update was received by the lis-
tener function, it was distributed to other classes through a custom interface. The
spoofing detection class then received the updated fix and stored it, converting the
most recent GNSS fix and the most recent network fix from geodetic coordinates
to Earth-centered Earth-fixed (ECEF) coordinates. A distance could then be calcu-
lated and compared to the specified threshold.

For this test to be effective, the environment must be considered. From the tests
used to generate Table 1, it was determined that if there were many Wi-Fi and
cellular access points, this threshold could be set at or below 100 m without pre-
senting many false flags. With an increased set of test data, better models could be
established and the threshold could be determined dynamically in response to the
available network access points.

    SPENS et al.

Timing must also be considered. If the device is moving at a high speed, the
test will only be valid at the time of the NLP update, as the true position and the
GLP position (with its higher update rate) would diverge from the NLP position
in-between fixes.

3.2  Mock Location

The mock location test alerts when the device’s current location fix is from a
mock provider. A mock provider is a separate application on Android that over-
rides the standard GNSS engine and substitutes in user defined latitude/longitude/
altitude location parameters to the GNSS location fix. This process is allowed on
Android devices as long as it has been enabled in the Developer Options settings.

A wide variety of applications that generate mock locations are available on the
Google Play Store and many also provide functionality to set routes that move the
mock location over time. Location spoofing can, therefore, be performed without
any hacking or modification of the Android platform.

In order to detect this, the boolean isFromMockProvider() can be used, which is
a flag attached to every location fix provided by the location class. This incredibly
easy to implement test provides a basic defense against software-based location
attacks and should be the minimum layer of security for any location-dependent
application. However, as will be shown later in Section 5.2, many applications do
not appear to check for locations from mock providers as of December 2021.

3.2.1  Mock Location Test Implementation

To implement this test, the same listener/interface setup was used as in
Section 3.1.2. When a GNSS fix is received, the spoofing detection class checks the
isFromMockProvider() flag, and alerts if it is true.

3.3  GNSS vs System Time

The third test compares the time stamp from the received GNSS message to the
system time. One method to simplify the complexity of GNSS spoofing is to per-
form a replay attack wherein signals are received at one location and sent at a later
time to a re-radiator near the target device (Papadimitratos & Jovanovic, 2008).

Minimizing the time delay significantly increases the complexity required. This
check of time synchronization is a methodology to increase the challenge for a
potential spoofer. Similarly, spoofing attacks may target the time, as opposed to the
position, reported by the receiver.

GNSS signals can be compared to the system clock within Android for consis-
tency. Naturally, the system clock has some drift which limits how accurately the
incoming time signals can be evaluated. However, Android devices can increase

TABLE 1
NLP Error in Various Environments

Environment Mean Error (m) Wi-Fi & Cellular Mean Error (m) Cellular Only

Suburban Navigation 43.86 348.3

Urban Navigation 40.93 193.4

SPENS et al.    

accuracy by pulling time from the network (over cellular or Wi-Fi). Figure 2 shows
a histogram of nominal time differences over a multi-hour test on the Samsung
S20+ device.

3.3.1  GNSS vs System Time Test Implementation

GNSS measurements are received through a callback function and, then, sent
to the custom interface. The spoofing detection function must then convert the
received SV time to the same time convention as the system clock before compar-
ing the values (this conversion is different for all constellations). The largest time
difference is kept and compared to the threshold. If the clock has recently been
synchronized with the network, the error can be expected to be below 100 mil-
liseconds. If the clock has not been synchronized recently, this error is harder to
characterize, as there is variation between device clocks.

3.4  AGC and C/N0

The fourth test uses the GnssMeasurements class to examine incoming signal
quality. Although there exist multiple methods using raw GNSS measurements
to detect and mitigate potential RFI, the two measurements used in this applica-
tion are AGC and C/N0. AGC provides an indication of how much power is com-
ing into the receiver. When RFI is introduced, whether it is noise from jamming
or signals from spoofing, the thermal noise floor is raised and AGC applies less
gain (the measurement should decrease). C/N0 also decreases in the presence of
noisy interference, but a spoofing attack requires an artificial signal to overpower
the real GNSS signal, so C/N0 should remain the same or even increase in that
scenario (Lee et al., 2021).

Manfredini et al. (2018) describe how the combination of these relationships
enables receivers to distinguish between spoofing and jamming. If AGC decreases
and C/N0 decreases, jamming is likely. If AGC decreases and C/N0 is relatively
constant, spoofing is more likely. And if AGC is unchanged, then any form of

FIGURE 2 Difference between space vehicle (SV) time and system time under nominal
conditions

    SPENS et al.

interference is unlikely and poor signal may be attributed to attenuation. Figure 3
shows how AGC can be plotted against C/N0 to clearly visualize the expected trends.

To flag a threat to the user, a set of indicators is used, one for each constellation/
band that receives distinct AGC and C/N0 values. The indicators have two stages of
alerts. If the AGC drops below a set threshold for interference and C/N0 drops an
equal amount or more, interference is likely and the respective indicators will turn
yellow. If the same scenario happens but C/N0 does not drop proportionally, the
indicators will turn red to alert the spoofing threat. This test is powerful because
it can isolate the source of an issue to a specific constellation or band, something
that could potentially be used to screen out bad measurements and generate a safe
solution in the future.

3.4.1  Obtaining a Useful AGC Measurement

AGC measurement implementation in Android is still somewhat immature.
There are a number of inconsistencies and shortcomings in how measure-
ments are reported across different hardware vendors, with three major issues at
the moment.

First, the directional change of AGC under RFI is not consistent. For most phones,
increased power results in a decrease in AGC but, for some (like the Huawei P30),
an increase in power results in an increase in AGC.

Second, most chipsets report AGC on a relative scale, where the reported AGC
is periodically re-scaled to a baseline value. This is demonstrated in Figure 4, first
shown by Lee et al. (2021).

In the test, both phones started logging AGC data in the presence of RFI in the L1
band from a noisy notebook (this section of time is shown with a red background).
Then, the RFI source was removed and the AGC predictably increased due to the
decrease in observed power. However, after a short period of time, the Pixel 4 (and
most other phones tested) returned to a value similar to that reported before (under
RFI). This is an issue because if you were using AGC to detect spoofing or inter-
ference, you would not be able to see the impact after the AGC value was reset.
Transient detection would be the only possible use.

Third, AGC is only available when GNSS measurements are received under
the current implementation, despite it being a persistent measurement. If no

FIGURE 3 Expected AGC and C/N0 trending

SPENS et al.    

measurements are being received, AGC should be able to indicate if it is due to
interference (low AGC) or simply attenuation (nominal AGC). This is demon-
strated in Figure 5, where a ublox device with persistent AGC measurements pro-
vides a clear indication of the difference between the interference scenario and
attenuation scenario (Lee et al., 2021). However, the Android device lacks AGC
measurements in both scenarios so the distinction cannot be made. This issue
could be fixed if the AGC is reported through a different class, which is possible
due to the constant improvement of GNSS measurements on Android discussed
in Section 2.

In addition to the improvement brought by hardware providers adhering to more
consistent reporting standards, newer devices continue to provide a more sensitive,
less noisy AGC measurement. In Figure 6, it can be seen that, in addition to the
newer Pixel 6 (Broadcom BCM47765 GNSS chipset) reporting a greater mean AGC
than the S20+ (Broadcom BCM47755), it also has a standard deviation of less than
half of all the measurements collected in the same conditions. While the variation
in AGC implementation is a limiting factor for this measurement and the test that
depends on it, the current state is promising and will be powerful as the measure-
ment improves.

FIGURE 4 AGC reaction to removal of RFI

FIGURE 5 Android AGC response to attenuation and spoofing

    SPENS et al.

3.4.2  AGC and C/N0 Test Implementation

Raw GNSS measurements are received through the same mechanism described
in Section 3.3.1. The set of measurements is iterated through to find the AGC of
each constellation and the maximum C/N0 of a satellite in each constellation.
These measurements are, then, scaled by pre-determined nominal values, which
must be determined for each device model. The AGC is, then, checked against a
threshold and the C/N0 relative to the AGC is also observed.

While current nominal AGC values and thresholds are device dependent, further
standardization of the measurement may make these consistent across devices. The
logic for this implementation is shown in Figure 7, where the AGC_THRESHOLD
value sets the line that indicates RFI, while the CN0_THRESHOLD and CN0_
SCALE values define the line that distinguishes between jamming and spoofing.
CN0_SCALE determines the slope of the line (a slope of 1 is used unless testing
can demonstrate otherwise) and CN0_THRESHOLD determines the offset. Points
below/right of the line are considered abnormal for random interference.

Note that sometimes AGC is shared by constellations/bands with similar fre-
quencies. For the S20+, GPS and Galileo share AGC for their L1 and L5 measure-
ments. This means that in a given epoch, all GPS and GAL L1 measurements will
report the same AGC value, which will falsely flag both constellations as problem-
atic even when only one is being spoofed.

FIGURE 6 AGC values in nominal open-sky conditions

FIGURE 7 Logic for comparison of AGC and C/N0 values

SPENS et al.    

4  THE GNSSALARM APPLICATION

The GNSSAlarm application applies all four metrics to incoming location data
using the implementations described. Each metric was not applicable to every
spoofing attack on its own, however, when combined, the scope of possible spoof-
ing attacks was significantly narrowed. The app is still undergoing testing and
development, but will be publicly available once the authors are comfortable with
its performance.

4.1  Application Structure

Location data from the location class, the GNSSMeasurement class, and NMEA
messages are distributed through a custom interface (GNSSListener). Classes for
logging (FileLogger) and UI/display (UILogger) implement GNSSListener and
have access to the stream of data from the aforementioned sources. The FileLogger
class records data of interest to a text file (when logging has been started),
while the UILogger class displays additional metrics on the screen. Then, the
SpoofingDetection class runs four different tests, the results of which are presented
to allow the user to determine the likelihood of location manipulation as well as
the type of attack. The app structure can be visualized in Figure 8.

4.2  User Interface

The application’s user interface (UI) is shown in Figure 9 with significant
components labeled. Positioning information and a general spoofing/jamming
indicator lie at the top with a map in the middle. Below it are the metrics used

FIGURE 8 GNSSAlarm application structure

    SPENS et al.

to identify spoofing/jamming and controls for the logging functionality are at
the bottom.

The general indicator shows the highest threat level observed by any test at the
time. An informed user can then use the other provided metrics to determine the
nature of the threat. All values are updated once every second, except for those
dependent on network location, as network location may only be updated once
every five seconds. The UI can be used to check the results of GNSS RFI alarm tests
in real time.

When “START LOG” is selected, a text file and an SQLite database file are
opened in the phone’s storage. The data recorded here is easily customizable to
meet the needs of different experiments. Currently, every GNSS measurement
received at each epoch is recorded individually, and the time, constellation,
frequency, satellite vehicle ID (SVID), C/N0, and AGC is saved. A satellite may
appear twice per epoch if a signal is received in both the L1 and L5 bands.
After the file is closed, a MATLAB script can be used to parse and post-process
the data.

To adjust the thresholds used by the tests in the app, the “SETTINGS” button can
be selected. An example configuration used on the S20+ is shown in Figure 10. Note
that there are different C/N0 and AGC offsets for each constellation/band. These
should be determined empirically for each device unless further standardization is

FIGURE 9 GNSSAlarm UI

SPENS et al.    

implemented. As can be seen in the figure, the nominal C/N0 and AGC values can
vary greatly even within one device.

4.3  Application Scope

The indicators in the GNSSAlarm application are capable of identifying a wide
range of attacks. Software location spoofing and time spoofing can be detected by
the methods in Sections 3.2 and 3.3, respectively. Spoofing or jamming with a rea-
sonable power advantage can be detected and classified by the AGC and C/N0 test.
Any location spoofing in an environment with plentiful network access points will
be negated by the GNSS vs network location test.

There are still a few scenarios in which the application may not be able to detect
a threat. The primary example is an environment with little to no network access

FIGURE 10 GNSSAlarm settings menu

    SPENS et al.

in conjunction with a matched power spoofing attack that is difficult to detect with
coarse AGC measurements provided by current smartphones. There are signal
quality monitoring methods that perform well under the matched power attacks
that AGC struggles to identify, however, it is unlikely that the multiple correlator
measurements for such analysis will be included in Android in the near future
(Miralles et al., 2020b). However, matched power attacks are difficult to perform
outside of controlled environments, and the AGC measurements provided by
Android devices will continue to improve (as demonstrated in Figure 6).

5  TESTING

The results of two testing scenarios are presented. These are used to validate the
implementation of their respective tests in GNSSAlarm.

5.1  Application Response to Interference

To test the reaction to interference, a Samsung S20+ running GNSSAlarm was
brought close to a laptop that produces radio frequency emissions around the GPS
L1 band. Shown in Figure 11, as the phone approached the laptop, the AGC for
the L1 frequencies of GPS, GLONASS, Galileo, and BeiDou satellites dropped over
5 dB from nominal levels and C/N0 dropped proportionally. Thus, jamming was
detected and the respective indicators turned yellow.

The 5-dB threshold was set based on the range of AGC values observed during
nominal testing on the S20+. This threshold will be different for all phones as
shown with the improvement for the Pixel 6, so it can be easily changed in the app
for the specific platform.

5.2  Application Response to Software Spoofing

The screenshots in Figure 12 show the effect of a location spoofing applica-
tion. On the left, the spoofing application is set to overwrite the user’s real posi-
tion (Boulder, CO) with a determined position (Albuquerque, NM). In the middle

FIGURE 11 GNSSAlarm reaction to RFI jamming

SPENS et al.    

screenshot, it can be seen that the spoofing application has successfully replaced
the user’s location in the Google Maps application. On the right-hand screenshot,
the GNSSAlarm application is shown (with the spoofer still active).

The GNSS and network position test has effectively identified the spoofer, and
this can be seen in two ways. First, the “Delta Pos.” value (center, left) is red, dis-
playing a value that far exceeds the 100-m threshold set for this test. Second, a clear
discrepancy can be seen on the map between the GNSS position (in black) and the
network position (in blue, displaying the true position).

6  CONCLUSION

The GNSSAlarm application is being developed with the goal of implementing
effective tests for spoofing/jamming detection and providing a standalone appli-
cation to visualize those test results in real time. The app takes advantage of the
powerful GNSS insight added to Android by the GnssMeasurements class, as well
as the more standard location information.

GNSSAlarm implements four tests based on prior work by Miralles and the RF
& SatNav Laboratory. The app has validated its implementation by successfully
detecting software-based mock location spoofing and hardware-based RFI jam-
ming in real time, then communicating the threats effectively to the user. The pro-
posed application is expected to provide Android device users and developers a
robust tool for protection against potential GNSS RFI, facilitating a high accuracy
and integrity location system for our society.

r e f e r e n c e s
Adegoke, Y. (2017). Uber drivers in Lagos are using a fake GPS app to inflate rider fares. Quartz

Africa. https://qz.com/africa/1127853/
Android Developers. (n.d.a). Location. https://developer.android.com/reference/android/

location/Location

FIGURE 12 GNSSAlarm reaction to software spoofing scenario

https://qz.com/africa/1127853/
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/Location

    SPENS et al.

Android Developers. (n.d.b). GnssMeasurement. https://developer.android.com/reference/
android/location/GnssMeasurement

Hill, S. (2021). How Uber Drivers Use Fake GPS Apps for Quicker Ride Requests. iMyFone. https://
www.imyfone.com/change-location/fake-gps-on-uber/

Lee, D. -K., Miralles, D., Akos, D., Konovaltsev, A., Kurz, L., Lo, S., & Nedelkov, F. (2020). Detection
of GNSS spoofing using NMEA messages. 2020 European Navigation Conference, Dresden,
Germany, 1–10. https://doi.org/10.23919/ENC48637.2020.9317470

Lee, D. -K., Spens, N., Gattis, B. G., & Akos, D. M. (2021). AGC on Android devices for GNSS. Proc.
of the 2021 International Technical Meeting of the Institute of Navigation, 33–41. https://doi.
org/10.33012/2021.17823

Manfredini, E., Akos, D. M., Chen, Y. -H., Lo, S., Walter, T., & Enge, P. (2018). Effective GPS spoofing
detection utilizing metrics from commercial receivers. Proc. of the 2018 International Technical
Meeting of the Institute of Navigation, Reston, VA, 672–689. https://doi.org/10.33012/2018.15595

Miralles, D. (2021). Reliable satellite radionavigation in the Android operating system (Order
No. 28416117) [Doctoral thesis, University of Colorado at Boulder]. ProQuest Dissertations &
Theses Global.

Miralles, D., Akos, D. M., Lee, D. -K., Konovaltsev, A., Kurz, L., & Lo, S. (2020a). Robust satellite
navigation in the Android operating system using the Android raw GNSS measurements engine
and location providers. 2020 European Navigation Conference, Dresden, Germany. https://doi.
org/10.23919/ENC48637.2020.9317434

Miralles, D., Bornot, A., Rouquette, P., Levigne, N., Akos, D. M., Chen, Y. -H., Lo, S., & Walter,
T. (2020b). An assessment of GPS spoofing detection via radio power and signal quality
monitoring for aviation safety operations. IEEE Intelligent Transportation Systems Magazine,
12(3), 136–146. https://doi.org/10.1109/MITS.2020.2994117

Nedelkov, F., Lee, D. -K., Miralles, D., & Akos, D. M. (2020). Accuracy and performance of
the network location provider in Android devices. Proc. of the 33rd International Technical
Meeting of the Satellite Division of the Institute of Navigation, 2152–2165. https://doi.
org/10.33012/2020.17523

Papadimitratos, P., & Jovanovic, A. (2008). GNSS-based positioning: Attacks and countermeasures.
Milcom 2008 – 2008 IEEE Military Communications Conference, San Diego, CA. https://doi.
org/10.1109/MILCOM.2008.4753512

Rahman, M. (2020). Android Version Distribution. XDA Developers. https://www.xda-developers.
com/android-version-distribution-statistics-android-studio/

Zeng, K. C., Shu, Y., Liu, S., Dou, Y., & Yang, Y. (2017). A practical GPS location spoofing attack
in road navigation scenario. Proc. of the 18th International Workshop on Mobile Computing
Systems and Applications, 85–90. https://doi.org/10.1145/3032970.3032983

How to cite this article: Spens, N., Lee, D. -K., Nedelkov, F., & Akos, D.
(2022). Detecting GNSS jamming and spoofing on Android devices.
NAVIGATION, 69(3). https://doi.org/10.33012/navi.537

https://developer.android.com/reference/android/location/GnssMeasurement
https://developer.android.com/reference/android/location/GnssMeasurement
https://www.imyfone.com/change-location/fake-gps-on-uber/
https://www.imyfone.com/change-location/fake-gps-on-uber/
https://doi.org/10.23919/ENC48637.2020.9317470
https://doi.org/10.33012/2021.17823
https://doi.org/10.33012/2021.17823
https://doi.org/10.33012/2018.15595
https://doi.org/10.23919/ENC48637.2020.9317434
https://doi.org/10.23919/ENC48637.2020.9317434
https://doi.org/10.1109/MITS.2020.2994117
https://doi.org/10.33012/2020.17523
https://doi.org/10.33012/2020.17523
https://doi.org/10.1109/MILCOM.2008.4753512
https://doi.org/10.1109/MILCOM.2008.4753512
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://doi.org/10.1145/3032970.3032983
https://doi.org/10.33012/navi.537

	Detecting GNSS Jamming and Spoofing on Android Devices
	Abstract
	Keywords
	1 INTRODUCTION
	2 LOCATION MEASUREMENTS ON ANDROID
	3 DETECTION METHODS
	3.1 GNSS vs Network Location
	3.1.1 Network Location Model
	3.1.2 GNSS vs Network Location Test Implementation

	3.2 Mock Location
	3.2.1 Mock Location Test Implementation

	3.3 GNSS vs System Time
	3.3.1 GNSS vs System Time Test Implementation

	3.4 AGC and C/N0
	3.4.1 Obtaining a Useful AGC Measurement
	3.4.2 AGC and C/N0 Test Implementation

	4 THE GNSSAlarm APPLICATION
	4.1 Application Structure
	4.2 User Interface
	4.3 Application Scope

	5 TESTING
	5.1 Application Response to Interference
	5.2 Application Response to Software Spoofing

	6 CONCLUSION
	References

