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Abstract

Trail bridges can improve access to critical services such as health care, schools, and mar-

kets. In order to evaluate the impact of trail bridges in rural Rwanda, it is helpful to objectively

know how and when they are being used. In this study, we deployed motion-activated digital

cameras across several trail bridges installed by the non-profit Bridges to Prosperity. We

conducted and validated manual counting of bridge use to establish a ground truth. We

adapted an open source computer vision algorithm to identify and count bridge use reflected

in the digital images. We found a reliable correlation with less than 3% error bias of bridge

crossings per hour between manual counting and those sites at which the cameras logged

short video clips. We applied this algorithm across 186 total days of observation at four sites

in fall 2019, and observed a total of 33,800 daily bridge crossings ranging from about 20 to

over 1,100 individual uses per day, with no apparent correlation between daily or total

weekly rainfall and bridge use, potentially indicating that transportation behaviors, after a

bridge is installed, are no longer impacted by rainfall conditions. Higher bridge use was

observed in the late afternoons, on market and church days, and roughly equal use of the

bridge crossings in each direction. These trends are consistent with the design-intent of

these bridges.

1 Introduction

Isolation caused by lack of transportation infrastructure makes access to basic social and eco-

nomic activities unreliable for rural communities. This uncertain access to markets, income-

generating opportunities, and health and education facilities contributes to persistent rural

poverty [1]. The World Bank estimates that one billion people worldwide lack access to an all-

weather road, illustrating the scope of the problem and the challenge of addressing it at scale

[2].

Bridges to Prosperity (B2P) is a non-profit organization that builds trail bridges to connect

isolated rural communities to road networks and critical destinations and services including
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markets, hospitals and schools. Fig 1 illustrates an example bridge location in Rwanda. B2P

has constructed 339 trail bridges in 21 countries. A study in Nicaragua established economic

and livelihood benefits attributable to these bridges [3].

In an effort to establish any economic, health or educational impacts of these trail bridges

in Rwanda, we conducted a matched-cohort study over a 12 month period in 2018-2019. As

part of this study, we installed motion-activated digital cameras at several of the bridge cross-

ings. The images collected are intended to support characterizing bridge use. Objective mea-

surement technologies and techniques are self-evidently important to develop and refine when

supporting claims of the effectiveness of environmental interventions.

A variety of technologies and analysis methods have been deployed and validated to count

pedestrians, bicycles and vehicles crossing bridges and other transportation infrastructure.

These methods include in-person observational counting [4, 5], motion-activated counters

[4], magnetic inductive loops [6], infrared light beams, pressure pads, thermal cameras [7],

and digital video [8, 9] and imagery analysis [10].

These methods have been almost entirely deployed in high income urban settings, and

often use technologies that would be cost-prohibitive or infeasible in a rural, low income set-

ting. Bridges to Prosperity’s standard bridge use monitoring methods typically rely on manual,

in-person data collection, which is time-consuming, produces temporally limited data, and is

labor intensive. In order to identify and track trends and magnitude of bridge use, a continu-

ous and automated method would be useful.

In this paper we describe the development, implementation, validation and findings of a

novel method using low-cost, readily available motion-activated digital cameras in combina-

tion with open-source computer vision algorithms for measuring the use of these bridges. We

Fig 1. An example trail bridge constructed by Bridges to Prosperity in Rwanda.

https://doi.org/10.1371/journal.pone.0241379.g001
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describe the technology deployed, the computer vision supported detection algorithm applied,

a human-validated error estimate, and early findings of bridge use patterns.

2 Methods

The following section details the technologies and methods deployed in this study. In brief,

human manual counting was collected at several bridge sites and cross-validated between two

manual counters. Digital cameras were installed at 12 total bridges, recording short video clips

or digital still images. Manual counting was then compared to a.) the timestamps of the digital

files from the cameras, b.) computer-vision supported counting of both the video clips and the

digital stills. Following this validation, analysis of bridge use trends was conducted. Fig 2 pres-

ents a flowchart of these data collection technologies and analysis methods applied.

Fig 2. Flowchart describes the technologies and methods applied in this study. Digital cameras were installed at 12 total bridges, recording short

video clips or digital still images. 60-minute aggregations of manual counting was then compared to the timestamps of the digital files from the cameras,

and computer-vision supported counting of both the video clips and the digital stills. Following this validation, analysis of bridge use trends including

satellite-detected rainfall as a co-variant was conducted for 4 bridges over 2-14 weeks in fall 2019. Green blocks indicate manual counting, blue blocks

indicate digital data collection, and orange blocks indicate statistical analyses. Human manual counting was collected at several bridge sites in rural

Rwanda, and cross-validated between two manual counters.

https://doi.org/10.1371/journal.pone.0241379.g002
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2.1 Camera selection, installation and image collection

In this study, we examined if a motion-activated digital camera system could support bridge

use data collection. We reviewed several commercially available motion-activated digital cam-

eras marketed for outdoor long term monitoring of wildlife. After comparing cost, complexity,

battery lifetime and mechanical interfaces, we selected the Browning Spec Ops Advantage

(Browning Trail Cameras, www.browningtrailcameras.com), available retail for about $150. Fig

3 shows one of these cameras installed in a protective housing next to a trail bridge entry ramp.

These cameras were installed at 12 bridge crossing sites over varying periods in 2019. Two

modes of image data collection were employed—motion activated digital still images, and

motion-activated short (3 second) video clips. The cameras automatically employed infrared

LED lighting to support after-dark observations. Images were recorded on local data cards.

2.2 Manual counting

To support subsequent image analysis validation, at five sites we conducted daytime manual

counting over 9 days, for about 8 hours per day. Counting was recorded with time-stamp elec-

tronic clickers. Each count represented one observed crossing of an individual, in either direc-

tion. Four of these day-long observations included two staff members independently and

concurrently observing and recording bridge crossings in order to cross-validate this method.

2.3 Computer vision analysis

After varying periods of camera installation, the imagery files were recovered. For several sites,

the still and video images were then “stitched” together to create continuous data files, then

used to apply and refine computer vision algorithms for detecting and counting bridge users.

Fig 3. An example motion activated camera installed at a trail bridge in Rwanda in support of this study (co-

author Gerster pictured).

https://doi.org/10.1371/journal.pone.0241379.g003
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Computer-vision supported counting involves observing people in the video, tracking them

as they move, and determining their direction of motion based on their tracks. We used mod-

ern deep neural networks and other machine vision tools provided by the open source

OpenCV machine vision toolkit (www.opencv.org) to accomplish each of these steps automat-

ically. The first step, finding people in an image, is an example of object detection [11], in

which the goal is to find instances of specific types of objects and put bounding boxes around

them. In this case, we used the open source Darknet [12] implementation of the YOLO (You

Only Look Once) [13] object detection deep neural network that is pretrained to, among other

things, detect people at frame rate.

Object detection has many applications, and thus has received significant attention in the

machine vision community [11]. Popular approaches tend to yield algorithm “families”, such

as R-CNN [14], Fast R-CNN [15], Faster R-CNN [16], and Mask R-CNN [17]. The latter learns

to identify whether individual pixels belong to an object, a level of detail not needed for our

application, while the first three place bounding boxes around detected objects. Later members

of the R-CNN family tend to be faster, but not necessarily more accurate. The YOLO family

includes YOLO, YOLO v2 [18], and YOLO v3 [19]. We chose YOLO due to its superior run-

time performance over the R-CNN and the availability of pretrained models specifically for

the person detection use case.

For all deep object detection methods, people are detected independently across frames.

That is, the fact that a person is detected in frame i does not inform detections in frame i − 1 or

frame i + 1. Tracks must be built from consecutive frames for each person. That is accom-

plished by some form of an appearance model that characterizes the visual appearance in each

bounding box so that the matching bounding box, the one with the most similar appearance,

can be found in subsequent frames. Common choices for tracking with appearance models are

the DLIB correlation algorithm [20] and the Simple Online and Realtime Tracking with a

Deep Association Metric (DeepSort) algorithm [21]. We used the latter as it integrated more

easily with the rest of our system.

Note that errors can occur anywhere in the pipeline. While false positives are rare in the

object detection stage, false negatives can and do occur, where people are missed in one or

more frames due to lighting conditions, occlusion, debris on the camera lens, etc. Appearance

models are often based on simple image descriptors, like color histograms, and can thus also

lead to false or missed matches. That said, the empirical results, described below, suggest that

the overall system is robust and accurate.

The geometric application of this algorithm is illustrated in Fig 4, wherein an object cen-

troid is tracked moving from one side of the frame to the other (i.e, left to right).

We start by defining a distance threshold between each object and two anchors placed at

(xt, yt) and (x1, y1). With these anchors, we can create unique lines and track the rotation they

make with the trackable centroids at (x3, y3) and (x4, y4). When a subject enters right, the

counter begins to count the angle defined by the points (xt, yt), (x1, y1) and (x2,y2). When a

subject enters left, the counter begins to count the angle defined by the points (xt, yt), (x1, y1)

and (x3, y3). Maintaining a unique id while counting is essential in this step. Each angle is

added to its corresponding trackable object queue. Once an object exits the trackable line

region, the sum of the difference between contiguous angles in their respective object queue

will be positive or negative. Positive indicates left direction while negative indicates right.

2.4 Ethics—Human research subjects

At the sites where cameras are installed, it was not practical to secure informed consent from

every person using the bridge. Instead, the cameras were installed in public locations, are
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highly visible, and include a placard in Kinyarwanda stating, “This camera was installed in

(month, year) for research approved by the Rwanda National Ethics Committee. It is recording

people crossing the bridge. This will help us to understand the impact the bridge is having on

surrounding communities. Please do not damage it or try to steal it.” Further, our research

protocol includes blurring the faces of people in any images or videos published. This state-

ment and approach was approved by the Rwanda National Ethics Committee on January 28,

2019. The individual pictured in Fig 3 (co-author Gerster) has provided written informed con-

sent (as outlined in PLOS consent form) to publish their image alongside the manuscript.

3 Results

3.1 Manual counting validation

Manual counting by two separate staff were conducted across 4 days and 3 sites. A total of

1,713 separate crossings were observed by the manual counters. These two independent man-

ual counts are compared to establish confidence in this method. Fig 5 illustrates a linear regres-

sion of each counter at each site, aggregated at 15 minute intervals. These results indicate

nearly total agreement between the two manual counts (R2 > 0.98). Therefore, in subsequent

analysis these manual counts are considered the ground-truth.

3.2 Motion activated event counting

In previous work, we and others have relied on motion-activated event counting applied to the

use of sanitation infrastructure [22–24]. The digital cameras used in this study create separate

files for each motion-activated image or video. We used these time-stamped image files to

establish if simple event detection similar to the latrine monitors deployed in other studies

(without image analysis) could be a sufficient measure of bridge use. Fig 6 shows manual

counting compared to motion-activated timestamp events (digital files) aggregated at 60 min-

ute intervals for 9 day-long observation periods at 6 bridge sites. As illustrated, there are poor

correlations between these counting methods across all tested sites. This poor correlation sug-

gests that motion-detector based counting would not be a reliable indicator of the total num-

ber of bridge crossing events.

Fig 4. Deep learning people counter for left and right direction on a bridge. The angle that a tracked object makes

with the line between two anchor points at the center of the bridge is tracked over time. The behavior of that value for a

given detection ID indicates whether the traversal is left-to-right or right-to-left.

https://doi.org/10.1371/journal.pone.0241379.g004
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3.3 Computer vision supported counting

Adapting the OpenCV computer vision people counter described above, we analyzed videos

and photos collected at these 6 sites over 9 day-long observation periods. Fig 7 presents six

example screen shots from this analysis, representing a range of camera installation positions,

bridge crossing behaviors, weather conditions, and lighting conditions. In each case, individu-

als are identified and counted when they cross the center of the frame.

Fig 8 shows manual counting compared to computer vision supported counting aggregated

at 60 minute intervals for 9 day-long observation periods at 6 bridge sites, while Fig 9 reflects

this same data aggregated across sites.

As illustrated, there is some variability in correlation between the computer vision counts

and the manual counts between sites. We found that the motion-activated video-clip files pro-

vided greater support for the computer vision algorithm compared to the stills. Table 1 pres-

ents error estimates disaggregating by the video and photo-still data types. The overall error

bias of the video-clip data type was 2.63% per hour of counting.

Fig 5. Scatterplots and linear regressions of two independent manual counters for four day-long observation

periods at three bridge sites in November 2019. Counts are aggregated at 15 minute intervals. These results indicate

nearly total agreement between the two manual counts (R2 > 0.98).

https://doi.org/10.1371/journal.pone.0241379.g005
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3.4 Bridge use trends

Based on the findings that our computer vision algorithm supported by the motion-activated

video clips has a low error bias per hour of counting, we then conducted computer vision peo-

ple counting for the 4 sites for which we had video-clip data types across longer observational

periods ranging between 17 and 51 days of continuous observation during August—Novem-

ber 2019. Fig 10 illustrates these estimated total daily crossings, along with daily rainfall at

these sites. Rainfall estimates are provided using the remote-sensing based Climate Hazards

Group InfraRed Precipitation with Station data (CHIRPS) [25]. Table 2 presents statistics on

the observed crossings at these four sites.

Fig 6. Scatterplots and linear regressions of manual counting versus motion-activated timestamps of image files for nine day-long observation periods at six

bridge sites in November 2019. Manual and digital file timestamps are aggregated at 60 minute intervals. Poor correlations (R2 range 0–0.4) between these counting

methods are observed across all tested sites, suggesting that motion-detector based counting is not a reliable indicator of bridge crossings.

https://doi.org/10.1371/journal.pone.0241379.g006
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Site-level and aggregated linear regressions of daily bridge crossings compared to daily rain-

fall or 7-day mean rainfall did not indicate any correlation, indicating that bridge use during

these observation periods at these sites was not dependent on rainfall. As these observation

periods captured only part of the year, we sought to establish if the rainfall variability and

extremes observed during this period were representative of likely rainfall patterns throughout

the year. Table 3 presents the observed rainfall mean, standard deviation, minimums and

Fig 7. Example camera frames and computer vision supported people counting at four bridge crossings in Rwanda. Faces have been blurred to protect identities

consistent with research protocols. In (a), We see four people are identified crossing the centerline to the left. In (b) we see the same site at night, where the infrared

illumination is sufficient to capture individuals, including distinguishing those socializing versus crossing the bridge. In (c), observe the same site in the morning while

condensation is apparent on the camera lens. The algorithm is still able to identify and count individuals. In (d), another site where people are identified and counted

while animals are not. In (e) and (f) two other example bridges with varying camera locations and angles, and subjects.

https://doi.org/10.1371/journal.pone.0241379.g007
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maximums recorded for each site during the observation periods, and for July 2017 to June

2018. An unpaired t-test of the total sample for these four sites of the rainfall during the obser-

vation period and over a 3-year period indicated no significant difference, suggesting that the

observational period may be sufficient in capturing typical rainfall variability and any subse-

quent attribution of rainfall to bridge use.

Fig 8. Scatterplots and linear regressions of manual counting versus computer vision supported counting of both video-clip and digital-stills for nine observation

periods at six bridge sites in November 2019. Manual and computer counts are aggregated at 60 minute intervals. Strong correlations between manual counting and

computer-vision counting are observed (R2 range 0.82–0.99).

https://doi.org/10.1371/journal.pone.0241379.g008
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We then examined site-level and aggregate bridge use trends. Fig 11 shows the percentage

of bridge crossings per hour of day for each site over the observation period. The trends indi-

cated in the plot suggest high late afternoon use at all sites. Fig 12 shows the percentage of

bridge crossings for each day of the week at each site. These trends indicate higher use on Sun-

days, which are market and church days in these communities. Finally, Fig 13 shows the per-

centage of bridge crossings in each direction for each hour of the day. “Towards Village”

Fig 9. Scatterplot and linear regression of aggregated manual counting versus computer vision supported

counting of both video-clip and digital-stills across nine observation periods at six bridge sites in November 2019.

Manual and computer counts are aggregated at 60 minute intervals and show strong overall correlation (R2 = 0.89).

https://doi.org/10.1371/journal.pone.0241379.g009

Table 1. Computer-vision supported hourly aggregated counting of pedestrian crossings using motion-activated

short videos and photographic stills compared to manual in-person counting. Error estimates for variance and bias

indicate a lower error using the videos compared to stills.

Parameter Variance Bias

Video-supported Error 25.05% 2.63%

Sites 4

Manual Counts 319

Still Photo-supported Error 53.66% 50.06%

Sites 5

Manual Counts 838

https://doi.org/10.1371/journal.pone.0241379.t001
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indicates individuals crossing the bridge in the direction of the community identified as most-

impacted by the bridge, while “Away from Village” indicates individuals traveling out of the

community. These trends indicate roughly equal use of the bridge crossings in each direction.

4 Discussion and forward work

This study developed and validated an accurate and useful method for counting and character-

izing the use of trail bridges in rural Rwanda. In this study, we deployed motion-activated digi-

tal cameras across several trail bridge sites in Rwanda. We conducted and validated manual

counting of bridge use to establish a ground truth. We adapted an open source computer

Fig 10. Daily total bridge crossings detected with computer vision algorithm, and daily CHIRPS remotely observed rainfall for four bridge crossings

over about 2-14 weeks in fall 2019. Non-zero rainfall is observed only for the Ruharazi and Kabere bridge sites, for which observations were available

during the rainfall season September-November. Site-level and aggregated linear regressions (not shown) of daily bridge crossings compared to daily rainfall

or 7-day mean rainfall did not indicate any correlation, indicating that bridge use during these observation periods at these sites was not dependent on

rainfall.

https://doi.org/10.1371/journal.pone.0241379.g010
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Table 2. Computer vision algorithm counted bridge crossings using motion-activated video clips at four sites over about 2-14 weeks in fall 2019. Average daily bridge

crossings range 85-478, daily standard deviations range 45-249.

Site /Parameter Kabere Rukarakara Ruharazi Mugeri

Daily Crossings

Mean 478 287 85 218

Standard deviation 249 161 45 91

Minimum 87 91 23 41

Maximum 1138 676 251 684

Sample (days) 17 23 95 51

https://doi.org/10.1371/journal.pone.0241379.t002

Table 3. Rainfall variability during camera observation periods and over 2017-2020. Unpaired t-test comparing 3-year rainfall variability to rainfall observed during

camera-observation period in 2019 indicated no significant difference, suggesting the observational period captures typical rainfall variability and any subsequent attribu-

tion of rainfall to bridge use.

Site /Parameter Kabere Rukarakara Ruharazi Mugeri

Daily rainfall -observation period (mm)

Mean 1.71 0 3.28 5.15

Standard deviation 4.84 0 6.22 8.14

Minimum 0 0 0 0

Maximum 14.57 0 26.91 38.25

Mean daily rainfall -July 2017—June 2020 (mm)

Mean 4.56 4.65 4.14 3.27

Standard deviation 8.11 8.43 7.76 5.73

Minimum 0 0 0 0

Maximum 64.47 78.71 77.74 49.73

https://doi.org/10.1371/journal.pone.0241379.t003

Fig 11. Percentage of bridge crossings per hour of day for four bridge sites over the observation period in fall 2019. Trends

indicate high late afternoon use.

https://doi.org/10.1371/journal.pone.0241379.g011
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Fig 12. Percentage of bridge crossings per day of week for four bridge sites over the observation period in fall 2019. Hourly use

trends indicate higher use on Sundays, which are market and church days in these communities.

https://doi.org/10.1371/journal.pone.0241379.g012

Fig 13. Percentage of bridge crossings in each direction for each hour of the day for four bridge sites over the observation

period in fall 2019. These trends indicate roughly equal total use of the bridge crossings in each direction, suggesting that

individuals return across the bridge.

https://doi.org/10.1371/journal.pone.0241379.g013
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vision algorithm to identify and count bridge use reflected in the digital images. We found a

reliable correlation with low mean error of bridge crossings per hour between manual count-

ing and those sites at which the digital cameras collected short video clips when triggered.

We then applied this algorithm across 186 total days of observation at four sites in fall 2019,

and observed a total of 33,800 daily bridge crossings ranging from about 20 to over 1,100 indi-

vidual uses per day, with no apparent correlation between daily or weekly rainfall and bridge

use. Bridge use trends were consistent with the design-intent of these bridges indicating higher

use on market and church days, and roughly equal use of the bridge crossings in each

direction.

Bridges to Prosperity’s theory of change posits that rural communities are periodically and

dangerously isolated by flooding events, and that trail bridges eliminate this isolation and risk.

The analysis presented in this paper suggests that bridge use is not dependent on rainfall,

potentially indicating that communities prefer the trail bridges to alternative or baseline river

crossings. However, while no rainfall dependence on bridge use was observed, further investi-

gation is required to establish if there are any seasonal attributes to bridge use (such as harvest)

or extreme weather events (flooding).

The work presented in this paper was conducted in support of a large scale (approximately

200 site) randomized controlled trial currently being conducted and scheduled for completion

in 2024. As part of the large-scale study, we plan to deploy about 50 of these camera systems at

bridge sites. The findings presented in this paper suggest that between-site variability in bridge

use may be more significant than within-site variability. This may motivate moving camera

systems between sites. Further, this large scale study will provide an opportunity to compare

bridge use patterns to community level economic, health and educational outcomes.

The computer vision algorithm we deployed also detected the direction (left-to-right and

right-to-left) movement of the subjects. Additionally, as illustrated in the example images pro-

vided above, the nature of bridge use can be in part deduced through review of the collected

images. The cameras also record local ambient temperature and barometric pressure. These

additional data and capabilities may support further opportunities for bridge use characteriza-

tion and modeling.

Supporting information

S1 File.

(ZIP)

Acknowledgments

The authors thank Bridges to Prosperity, Wyatt Brooks, Kevin Donovan, Laura MacDonald,

Marie-Claire Nikuze,Laurien Ngwinondebe, Christian Ituze, Jean D’Amour Kwizera, Pie Nku-

bito, Denyse Niragire, and Jean De Dieu Bineza.

Author Contributions

Conceptualization: Evan Thomas, Lambert Mugabo, Tim Oates.

Data curation: Evan Thomas, Sally Gerster, Lambert Mugabo, Huguens Jean.

Formal analysis: Evan Thomas, Huguens Jean.

Funding acquisition: Evan Thomas.

Investigation: Evan Thomas, Sally Gerster.

PLOS ONE Computer vision supported pedestrian tracking: A demonstration on trail bridges in rural Rwanda

PLOS ONE | https://doi.org/10.1371/journal.pone.0241379 October 26, 2020 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241379.s001
https://doi.org/10.1371/journal.pone.0241379


Methodology: Evan Thomas, Sally Gerster, Tim Oates.

Project administration: Evan Thomas, Lambert Mugabo.

Supervision: Evan Thomas.

Visualization: Evan Thomas.

Writing – original draft: Evan Thomas, Huguens Jean, Tim Oates.

Writing – review & editing: Sally Gerster, Lambert Mugabo.

References
1. Gollin D, Lagakos D, Waugh ME. The agricultural productivity gap. Quarterly Journal of Economics.

2014; https://doi.org/10.1093/qje/qjt056

2. The World Bank. Transport;. Available from: https://www.worldbank.org/en/topic/transport/overview#:

~:text=Accessibility and affordabilityMore than 1.25, the world’s roads every year.

3. Brooks W, Donovan K. Eliminating Uncertainty in Market Access: Evidence from New Bridges in Rural

Nicaragua. Econometrica (in revision). 2019;.

4. Schneider RJ, Arnold LS, Ragland DR. Methodology for Counting Pedestrians at Intersections. Trans-

portation Research Record: Journal of the Transportation Research Board. 2009; https://doi.org/10.

3141/2140-01

5. Schasberger MG, Raczkowski J, Newman L, Polgar MF. Using a bicycle-pedestrian count to assess

active living in downtown Wilkes-Barre. American Journal of Preventive Medicine. 2012; https://doi.org/

10.1016/j.amepre.2012.06.029 PMID: 23079274

6. Cherrett T, Bell H, McDonald M. Traffic management parameters from single inductive loop detectors.

Transportation Research Record. 2000; https://doi.org/10.3141/1719-14

7. Greene-Roesel R, Diogenes MC, Ragland DR, Lindau La. Effectiveness of a Commercially Available

Automated Pedestrian Counting Device in Urban Environments: Comparison with Manual Counts. TRB

2008 Annual Meeting. 2008;.

8. Ma Z, Chan AB. Counting people crossing a line using integer programming and local features. IEEE

Transactions on Circuits and Systems for Video Technology. 2016; https://doi.org/10.1109/TCSVT.

2015.2489418

9. Li J, Shao C, Xu W, Li J. Real-time system for tracking and classification of pedestrians and bicycles.

Transportation Research Record. 2010; https://doi.org/10.3141/2198-10

10. Crouzil A, Khoudour L, Valiere P, Truong Cong DN. Automatic vehicle counting system for traffic moni-

toring. Journal of Electronic Imaging. 2016; https://doi.org/10.1117/1.JEI.25.5.051207

11. Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, et al. Deep Learning for Generic Object Detection:

A Survey. International Journal of Computer Vision. 2020; https://doi.org/10.1007/s11263-019-01247-4

12. Redmon J. Darknet: Open Source Neural Networks in C; 2016. Available from: https://pjreddie.com/

darknet/.

13. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In:

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition;

2016.

14. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and

semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition; 2014.

15. Girshick R. Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision;

2015.

16. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Pro-

posal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017; https://doi.org/

10.1109/TPAMI.2016.2577031

17. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. IEEE Transactions on Pattern Analysis and

Machine Intelligence. 2020; https://doi.org/10.1109/TPAMI.2018.2844175

18. Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. In: Proceedings—30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017; 2017.

19. Redmon J, Farhadi A. Yolov3. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. 2017;.

PLOS ONE Computer vision supported pedestrian tracking: A demonstration on trail bridges in rural Rwanda

PLOS ONE | https://doi.org/10.1371/journal.pone.0241379 October 26, 2020 16 / 17

https://doi.org/10.1093/qje/qjt056
https://www.worldbank.org/en/topic/transport/overview#:~:text=Accessibility
https://www.worldbank.org/en/topic/transport/overview#:~:text=Accessibility
https://doi.org/10.3141/2140-01
https://doi.org/10.3141/2140-01
https://doi.org/10.1016/j.amepre.2012.06.029
https://doi.org/10.1016/j.amepre.2012.06.029
http://www.ncbi.nlm.nih.gov/pubmed/23079274
https://doi.org/10.3141/1719-14
https://doi.org/10.1109/TCSVT.2015.2489418
https://doi.org/10.1109/TCSVT.2015.2489418
https://doi.org/10.3141/2198-10
https://doi.org/10.1117/1.JEI.25.5.051207
https://doi.org/10.1007/s11263-019-01247-4
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1371/journal.pone.0241379


20. King DE. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research. 2009;.

21. Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. In:

Proceedings—International Conference on Image Processing, ICIP; 2018.

22. Sinha A, Nagel CL, Thomas E, Schmidt WP, Torondel B, Boisson S, et al. Assessing latrine use in rural

India: A cross-sectional study comparing reported use and passive latrine use monitors. American Jour-

nal of Tropical Medicine and Hygiene. 2016; https://doi.org/10.4269/ajtmh.16-0102

23. O’Reilly K, Louis E, Thomas E, Sinha A. Combining sensor monitoring and ethnography to evaluate

household latrine usage in rural India. Journal of Water, Sanitation and Hygiene for Development. 2015;

5(3):426–438. https://doi.org/10.2166/washdev.2015.155

24. Turman-Bryant N, Clasen TF, Fankhauser K, Thomas EA. Measuring progress towards sanitation and

hygiene targets: A critical review of monitoring methodologies and technologies; 2018.

25. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, et al. The climate hazards infrared

precipitation with stations—A new environmental record for monitoring extremes. Scientific Data. 2015;

https://doi.org/10.1038/sdata.2015.66

PLOS ONE Computer vision supported pedestrian tracking: A demonstration on trail bridges in rural Rwanda

PLOS ONE | https://doi.org/10.1371/journal.pone.0241379 October 26, 2020 17 / 17

https://doi.org/10.4269/ajtmh.16-0102
https://doi.org/10.2166/washdev.2015.155
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1371/journal.pone.0241379

