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Within the field of nuclear magnetic resonance (NMR), it has long been considered that

using force-based detection instead of a pick-up coil for electromagnetic waves may be an intriguing

way to achieve nanoscale resolution for detection of nuclear spins. This idea, known as magnetic

resonance force microscopy (MRFM), is nonetheless a very difficult experimental proposition due

to the extremem sensitivities necessary. Silicon nitride membrane resonators are one potential way

that we want to explore increasing the force sensitivity of MRFM devices and improving imaging

resolution. Specifically, engineered silicon nitride resonators may have lower surface noise effects

due to higher frequencies and reduced force noise floors do to high quality factors. In my thesis,

we took a first step towards this goal, demonstrating observation of magnetic resonance of electron

spins in DPPH (a spin sample that is easier to detect both in concentration and gyromagnetic ratio)

and achieve force sensitivities as low as 67 aN/
√

Hz. Additonally, future membrane resonators are

introduced that hint at force sensitivities as low as 0.6 aN/
√

Hz with resonant frequencies above 1

MHz. Finally, discussion is opened around the integration of MRFM devices into an optical cavity,

for which silicon nitride membrane resonators as used in the Regal group are aptly fit. Benefits of

cavity optomechanical integration lie in passive damping of the mechanics to increase measurement

bandwidth and improved detection sensitivity.
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Chapter 1

Introduction

In 1922 Otto Stern and Walther Gerlach discovered the quantum nature of electron spins.

By passing a beam of silver atoms through a magnetic field, they observed that the displacement

of the atoms due to magnetic force was quantized. This insight suggests that the orientation of

the angular momentum about an elementary particle’s axis is quantized. The quantization of the

spin angular momentum comes with associated energy levels and eigen-states when the spin is

interacting with external fields. For example, when in a strong magnetic field, the spin will align

with the lowest energy eigen-state.

Magnetic Resonance is an interesting phenomena that occurs when the spin is then perturbed

from this low-energy state. Commonly done with a weaker magnetic field, this perturbation will

cause the spin to precess at a frequency defined by the strength of the magnetic field and the

particular particle. This resonance emits electromagnetic radiation that can be detected with a coil

or even by measuring magnetic force interactions, as is demonstrated in this thesis in a technique

known as Magnetic Resonanc Force Microscopy (MRFM).

Longstanding interest in measuring small forces has driven development of more precise

measuring techniques and devices. Optical interferometry is a valuable tool for measuring position

of objects to a high degree of precision. One salient example of the use of interferometry is the

detection of gravitational waves by the LIGO experiment, where the motion of kg scale mirrors

was observed. As mentioned above, spins (even nuclear spins, NMR) can be detected by measuring

magnetic forces from the spin magnetic moments. However, measuring this force requires advanced
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techniques and devices because it is a very small force. Interferometry can be used to measure the

motion of a mechanical resonator acted on by this force, but the methods of interferometry and

the mechanical resonator used affect the sensitivity of the device.

1.1 Magnetic Resonance Force Microscopy

Magnetic Resonance Force Microscopy (MRFM) is a niche field of study within NMR and

MRI. MRFM combines the techniques of magnetic resonance imaging (MRI) and scanning mi-

croscopy. Instead of using a pick-up coil to detect the electromagnetic signal from the resonant

spins, MRFM measures the force of the magnetization of a sample interacting with a nearby per-

manent magnet. The magnetic dipole of electron or nuclear spins interacts with a high magnetic

gradient to drive a resonator. The behavior of this resonator is then observed to calculate the

magnetic force and then measure the magnetization of the sample. MRFM is a desired imaging

technique because it reduces the number of spins required for imaging and thus increases the reso-

lution of imaging. Single-spin detection could lead to full 3-dimension imaging of proteins, bacteria,

and other microscopic subjects with atomic resolution [4, 5, 6].

MRFM has been demonstrated with optically observed micro-mechanical resonators includ-

ing cantilevers [7] and tensioned membrane resonators [8]. While it has been demonstrated that

MRFM can reach nm scale resolution and attonewton scale force detection [9, 10], employing

more advanced mechanical resonators and device geometries could push force noise floors to sub-

attonewton levels [11, 12, 13, 14]. Additionally, engineered mechanical membrane resonators have

higher frequency modes than previously used resonators. Surface noise effects are a large problem

withing MRFM; this noise scales as 1/f so the higher frequency membrane resonators have potential

promise in reducing the noise, allowing for closer positioning of the mechanics to the surface. The

Regal group also recognizes the potential for direct resonant coupling to spins at the 10 MHz level

and above. Yet, all of these possibilities are hypotheses to date in devleopment of this project, and

my goal was to develop tools to observe a first spin signal with an engineered membrane resonator.
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1.2 Problem Statement

This thesis describes a demonstration of MRFM with a silicon nitride (Si3N4) tensioned,

membrane resonator. The goal of the experiment, and this thesis, is to demonstrate magnetic

resonance force detection of electron spins in a test sample using a functionalized Si3N4resonator.

This proof of concept opens up discussion of steps to use a variety of developments in mechanical

resonators and their optical detection that have been developed in the Regal group, and other

groups around the world, in the field of cavity optomechanics to potentially make progress towards

long sought goals in the difficult task of MRFM with nuclear spins.

The work presented within is the culmination of efforts from many smarter minds than myself.

I am fortunate enough to have been apart of such an experiment. My main contributions to the

experiment, which this thesis will dive into, come in making the ideas a reality. Fabrication of the

presented devices is a difficult, precise task that was my main charge. I worked closely with Chris

in fabricating the engineered membrane resonators, especially the phononic crystal structures, and

Ran in fabricating the complete MRFM device. As I built the devices, it mandated a knowledge

of why I was building this device and why it was designed as it was. Following the successful

fabrication of the device came the experimentation and characterization of the magnetic force

sensing. Gabriel and I worked together in measuring the mechanical properties of the engineered

membrane resonators and measuring the magnetic forces and data taking. As with the fabrication,

this mandated learning what I was measuring and why I was measuring it. Presented in this work

are the skills, knowledge, and experiences gained in answering the question: how does one sense

electron spin realizations using a type of resonator that the Regal group works with, referred to as

engineered membrane resonators.

1.3 Thesis Organization

This dissertation aims to open up a discussion surrounding MRFM. Ch. 2 reviews the field

of cavity optomechanics, focusing on notable past achievements and the basic science of interacting
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electromagnetic radiation and mircomechanical and nanomechanical resonators. Ch. 3 dives into

the physics surrounding spin modulation and the drive of the magnetic dipole moments. Following

understanding of the drive of the spins, Ch. 4 covers the method of detection - resonator mechanics,

including design, fabrication, measurement, and exploration of future, more elaborate devices. Ch.

5 brings these two elements together and discusses the design and geometry of the MRFM device.

Finally, I will conclude with a discussion of results and a brief consideration of the path forward

for further research.



Chapter 2

Optomechanics

2.1 Introduction

In 1619, Johannes Kepler published De Cometis Libelli Tres with his observations of the

behavior of comets. In De Cometis, Kepler observed that a comet’s tail always pointed away

from the sun, and thus postulated that light carries momentum. The radiation pressure force of

electromagnetic waves has more recently been studied in the twentieth and twenty-first centuries.

This radiation pressure force can interact with macroscopic objects, acting on a mechanical

resonator, or being acted on by said resonator. The force can also be used to trap or suspend

particles in a focused laser beam [15]. This effect can be used to cool atomic motion and reduce a

system to its ground state.

2.2 Optical Interferometry

An interferometer is a useful tool for scientists to measure the position of an object with

respect to another by the interference property of light. In MRFM, an interferometer is used to

detect the motion of the force sensing resonator. Similarly, our experiment uses a Michelson inter-

ferometer to observe the motion of the cantilever. A Michelson interferometer has monochromatic

light that is split by a beam splitter into two perpendicular beam paths. Each path is retroreflected

incidently onto the beam splitter and the two beams are combined, mathematically explained by

the superposition of the electromagnetic waves. While the waves will have the same phase when

they are first split, they will acquire different phases based on the length of each arm of the interfer-
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ometer. This phase difference will lead to constructive or destructive interference. The combined

beam is then directed towards some photodetector that analyzes the signal.

If one of the path lengths is changing with respect to the length of the other arm of the

interferometer, then the interference, and thus the intensity of the light will vary with time. Analysis

of the spectrum of the light yields information about the relative positions of the two mirrors. For

example, if one of the mirrors is a reflective micromechanical resonator, the modes of the resonator

will be seen in the power spectral density.

2.3 Cavity Optomechanics

Now we introduce a situation in which light is reflected back and forth many times between

two mirrors as seen in Fig. 2.1.b. This build up of power within the cavity can give rise to

nonnegligible radiation pressure forces needed for optical damping and more sensitive detection.

The most basic optical resonator is a Fabry-Pérot cavity, as seen in Fig. 2.1.b. Two parallel

mirrors form an optical cavity. Due to the interference of electromagnetic waves, only certain modes

of light exist within the cavity, whose wavelength and frequency are determined based on the length

of the optical cavity. The allowed frequencies are given by the relation:

ωcav,m =
mπc

L
(2.1)

These transverse modes differ in frequency space by a quantity called the Free Spectral Range

(FSR), equal to mc/L. For simplicity, one transverse mode is considered, labeled ωcav. When

monochromatic light of frequency ωL is input into one end of the cavity, the radiation pressure

then causes the movable mirror at the other end to oscillate. The interaction with the mechanical

object introduces a laser detuning of:

∆ = ωL − ωcav (2.2)

The frequency shift describes how the laser frequency is either closer to or farther from the
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cavity resonance. This will change the intensity or amount light that is inside the cavity. This

is equivalent to the difference between the pump tone frequency and the cavity frequency. When

these differ in frequency by the mechanical frequency, as seen in Fig. 2.1.c, then a photon from the

pump light and a phonon from the mechanics combine to create a phonon at the cavity resonance.

A more detailed discussion of this phenomenon can be found in [16, 17]. As the resonator gives up

phonons, it is damped or cooled by the loss of acoustic energy. This effect increases the linewidth

of the mechanical resonance without changing frequency significantly.

Radiation pressure cooling is not the only method of cooling; in fact active damping is a

very common technique in a variety of sensors, including MRFM devices. There are advantages to

passive damping so the discussion of other methods and coupling regimes is left to [16, 17].

2.4 Applications of Mechanical Damping

Optomechancial damping has been used to cool resonators down to near the quantum ground

state using radiation pressure cooling[18, 19, 20, 21, 22, 23]. Optomechanical damping of the me-

chanical resonator is beneficial to the experiment described in the following chapters as it increases

stability of the resonance and the bandwidth at which measurements can be made of the mechan-

ical object. While this does not directly benefit the force sensitivity of the resonator used, the

increase in bandwidth is preferred. While the following experiment is not to date integrated in an

optomechanical cavity, demonstrating detection of electron spins with the advanced membrane-type

mechanical resonators is the first step to achieving this. This serves as motivation for the discussed

experimental design as Si3N4membrane resonators are aptly fit for cavity optomechanics uses.
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Figure 2.1: a) Membrane-in-the-middle optomechanical cavity. b) Fabry-Pérot cavity with one
fixed and one movable mirror. c) Spectrum of optomechanical coupling in the resolved sideband
regime.



Chapter 3

Electron Ensemble Spin Mechanics

3.1 Introduction

An electron orbiting a nucleus has two forms of angular momentum. The first is orbital angu-

lar momentum that interacts with energy levels. The second is spin, the angular momentum of the

electron spinning much like the Earth rotates about its own axis. Because the electron is a charged

particle, the spin of the electron introduces a magnetic moment in the electron. This magnetic

moment can be measured by sending particles through an external magnetic field and observing

the trajectory. This experiment, known as the Stern-Gerlach experiment, first demonstrated the

quantum nature of spin by finding that there were only two trajectories that correlated to an up

and a down spin.

3.2 Quantum States of Electron Spins

The behavior of an electron spin is described by the Schrödinger equation

i~|ψ(t)〉 = H(t)|ψ(t)〉 (3.1)

The solution to the Schrödinger equation with a time-independent Hamiltonian is given by

|ψ(t)〉 =
∑
n

cne
−iEnt/~|En〉 (3.2)
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The probability of measuring each energy level, P (En) = |cn|2, is time-independent. However,

if a perturbation, for example an observable that does not commute with the Hamiltonian, is

introduced, then the new eigenstates would be a superposition of the Hamiltonian eigenstates

and the probabilities would become time dependent. The time dependence is given by the Bohr

frequency, which is the difference between energy levels divided by ~.

With a spin-1/2 system such as the electron, the Hamiltonian is given by the negative of

the dot product of the magnetic dipole from spin and the external magnetic field. In a uniform

magnetic field along x̂, this is simplified as:

H = −µ ·B0 = ω0Sx (3.3)

Here we define ω0 = γB0 as the Larmor Frequency and will set the angular frequency of spin

precession. The two energy levels are ±~ω0/2, seperated by an energy difference of ~ω0. If we

consider any general, time dependent superposition state

|ψ(t)〉 =

 e−iE+t/~cos(θ/2)

e−iE−t/~eiφsin(θ/2)

 (3.4)

= e−iω0t/2

 cos(θ/2)

ei(φ+ω0t)sin(θ/2)

 (3.5)

While the expectation value 〈Sx〉 is constant in time (~cos(θ)/2), the perpendicular spin

components are not. The time-dependent expectation values are included below and visualized in

Fig. 3.1.

〈Sz〉 =
~
2

sinθsin(φ+ ω0t) (3.6)

〈Sy〉 =
~
2

sinθcos(φ+ ω0t) (3.7)

The expectation values of spin are then reduced to classical descriptions that rotate at the
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Figure 3.1: Expectation value of spin in precession. Note McIntyre has the external magnetic field
in the ẑ. I use x̂ for translation to MRFM and membrane mechanics. From [2]
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Larmor frequency, ω0. The precession can be treated as classical dynamics. The equation of motion

of the angular momentum is given by the torque of a magnetic moment in a uniform magnetic field.

dµ

dt
= γµ×B (3.8)

The sample overall magnetization has the same behavior as the individual moments described

in Eq. 3.8. Further, Ehrenfests Theorem allows us to treat the expectation values of the spin

components classically.

3.3 Precession in a General Direction

The above section considers the behavior of a single spin in a uniform magnetic field in the x̂

direction. To understand the driving of spins in magnetic resonance, a magnetic field in a general

direction is considered. To start, we maintain the initial field B0x̂ and add a smaller field in a

perpendicular direction

B = B0x̂+B1ẑ (3.9)

The field can be treated as a superposition of two fields. Then decomposing the components,

we get two Larmor Frequencies ω0 = γB0, ω1 = γB1.

The resulting Hamiltonian is simply:

H =
~
2

ω0 ω1

ω1 −ω0

 (3.10)

This can be similarly written in the n̂ basis along the direction of the resulting magnetic field

direction. Applying a rotation matrix with angle θ defined as that between B and x̂. Considering

this rotation, we can write the eigen-states of the spin in the n̂ basis as a superposition of spin up

and spin down states in the x̂ direction.
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|+〉n = cos
θ

2
|+〉+ sin

θ

2
|−〉 (3.11)

|−〉n = sin
θ

2
|+〉 − cos

θ

2
|−〉 (3.12)

To take a step back, our goal is to use magnetic resonance to cause a spin to flip back and

forth in a manner that we can detect using magnetic force interactions with a nearby resonator.

So then it follows that we consider a spin starting in the |+〉 state in the x̂ direction and derive

the probability of observing it in the |−〉 state in the x̂ direction. Take then a spin starting in the

spin up state in the x̂ direction written in the n̂ basis and consider it over time as in Eq. 3.2.

|ψ(t)〉 = e−iE+t/~cos
θ

2
|+〉n + e−iE−t/~sin

θ

2
|−〉n (3.13)

The time dependence is described by the energy levels E± found by solving for the eigen-

values of Eq. 3.10. The probability of the spin flip is then given by Rabi’s formula:

P+→− = |〈−|ψ(t)〉|2 =
ω2

1

ω2
0 + ω2

1

sin2

(√
ω2

0 + ω2
1

2
t

)
(3.14)

However, for this probability to be of any significance our secondary magnetic field needs to

be very large compared to B0. To avoid this, we consider a time dependent magnetic field with

frequency at or near the Larmor frequency set by B0. In doing so, a change of coordinates to a

rotating frame at the Larmor frequency allows a simplification of the precession and the ability to

drive spin flips with perturbation fields of small magnitude.

3.4 The Rotating Wave Approximation

To make the spins flip without applying a large perturbation field, a time dependence with

frequency ω is introduced instead of a constant field. This rotating field takes the form of

Brot = B1(cos(ωt)ẑ + sin(ωt)ŷ) (3.15)
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Then, with the uniform magnetic field introduced in Sect. 3.2, B0, the effective magnetic

field can be written as

Beff = Brot +B0x̂ (3.16)

However, this gives rise to a time-dependent Hamiltonian. To combat this and use the

framework that we have established so far, we reconsider the Schródinger equation, still in the x̂

basis. This yields two coupled differential equations

i~
dc+(t)

dt
=

~ω0

2
c+(t) +

~ω1

2
e−iωtc−(t) (3.17)

i~
dc−(t)

dt
=

~ω1

2
eiωtc+(t)− ~ω0

2
c−(t) (3.18)

These differential equations are more easily solved when considered in the rotating frame. To

do so, we consider the state

|ψ̃(t)〉 = α+(t)|+〉+ α−(t)|−〉 (3.19)

Where α±(t) = c±(t)e±iωt. The differential equations in equations 3.17 and 3.18 can be

written in terms of α±(t) with the new term ∆ω ≡ ω − ω0.

i~
d+(t)

dt
= −~∆ω

2
α+(t) +

~ω1

2
α−(t) (3.20)

i~
dα−(t)

dt
=

~ω1

2
α+(t) +

~∆ω

2
α−(t) (3.21)

Solving this equation and revisiting Rabi’s formula, the probability of a spin flipping from

up to down with an oscillating perturbation field is

P+→− =
ω2

1

(ω − ω0)2 + ω2
1

sin2

(√
(ω − ω0)2 + ω2

1

2
t

)
(3.22)

Now it can be seen that when ω ≈ ω0 that the probability given by Rabi’s formula is allowed

to reach unity at various times.
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3.5 Bloch Equations

The probability given above by Rabi’s formula in a rotating frame describes the idealized

case of particle spin precession. In the laboratory, the nuclear magnetization is seen to have

relaxation times in which the spin returns to the lowest energy state. Additionally, we move to

the magnetization, M , of the spin ensemble, which can be mathematically treated the same as µ.

The Bloch equations are a set of equations describing the sample magnetization as a function of

time considering these relaxation times. For a strong magnetic field B0x̂ and weak time-dependent

perturbing magnetic field, the three differential equaitons are:

dMx(t)

dt
= γ(M(t)×Beff (t))x −

Mx(t)−M0

T1
(3.23)

dMy(t)

dt
= γ(M(t)×Beff (t))y −

My(t)

T2
(3.24)

dMz(t)

dt
= γ(M(t)×Beff (t))z −

Mz(t)

T2
(3.25)

Notice that as T1 and T2 approach infinity, Eqs. 3.23 - 3.25 reduce to the equation of motion

of the sample magnetization given by Eq. 3.8. Now, we consider only Eq. 3.23 as the MRFM

device will only detect force in the x̂ direction. The derivation of the solution to the differential

equations is found by setting the derivatives equal to zero to find a steady-state solution. This

requires that manipulation of the spins allows for spins to relax thermally, discussed more in the

following section. When T1 ≈ T2 = τ the magnetization in the x̂ direction is given by the relation

Mx = M0
1 + (ω − ω0)2τ2

1 + (γ2B2
1 + (ω − ω0)2)τ2

(3.26)

M0 is the thermal polarizaiton of the spins that the magnetization decays to. Assuming

Maxwell-Boltzmann statistics, the expected value of the ensemble magnetization is proportional to

the magnetic field strength, B0.
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3.6 Cyclic Saturation and Driving of Spins

There are many ways that external drives are used to create MRFM signals that can be

detected by a mechanical resonator with a lower frequency than the Larmor frequency. Three

popular detection schemes are iOscar, adiabatic rapid passage, and cyclic saturation. iOscar applies

a fixed microwave tone to the perturbation field source that drives the resonator via magnetic

force. Adiabatic rapid passage sweeps the microwave signal frequency around the Larmor frequency

at the rate of the mechanical frequency. Cyclic saturation amplitude or frequency modulates

the microwave signal in the perturbation field source at the frequency of the mechanics. Cyclic

saturation is the simplest detection scheme, but requires short relaxation times of 10 to 100 ns. This

is not well suited for the ultimate systems of interest (electron or nuclear spins) that have longer

relaxation times and is the reasoning behind the choice of using diphenylpicrylhydrazil (DPPH)

with a relaxation time estimated at 62 ns. DPPH also has the property that T1 ≈ T2 = τ .

More on cyclic saturation and the modulation scheme used will be given in Ch. 5



Chapter 4

Silicon Nitride Membrane Resonators

4.1 Introduction and Theory

MRFM uses mechanical resonators to detects NMR as opposed to pick-up coils. Specifically

considered in this work are Si3N4membrane resonators that have been studied extensively in the

Regal group and have promising parameters suited for MRFM. Previously, [8] demonstrated MRFM

with a Si3N4membrane resonator. The Regal group aims to take this a step further with engineered

membrane resonators. In this chapter, I briefly explore some of the basics of these engineered

membrane resonators to motivate their ability to further the detection abilities of MRFM.

These can be treated as damped harmonic oscillators. The equations of motion are then:

meff
d2x

dt2
+meffΓm

dx

dt
+meffω

2
mx(t) = Fext(t) (4.1)

Where Γm is the energy damping rate. The equation of motion can be solved in frequency

space with the Fourier transform of the displacement [17]

x(ω) =

∫ ∞
−∞

x(t)eiωtdt = χm(ω)Fext(ω) (4.2)

We introduce the mechanical succeptability, χm(ω) which is given by [17]

χm(ω) = [meff (ω2
m − ω2)− imeffΓmω]−1 (4.3)

Here we consider the motion of these resonators in the plane of displacement. When no

external force is applied to the resonator, there is still this zero-point fluctuations of the amplitude
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and random forces due to the thermal energy of the resonator and Brownian motion. while there

is nothing particularly quantum about the below descriptions and use of the mechanical resonator,

we find the zero- oint length scale to be a convenient unit to discuss sensitivity

xzpf =

√
~

2meffωm
(4.4)

Here, meff of a given mode, j, and location are given by a weighted mass of the mode shape

integrated over the resonator times the physical mass.

meff,j(x, y) = mphys

∫
Stot

w2
j (u, v)dudv/

∫
Stot

dudv

w2
j (x, y)

, (4.5)

First, we consider the spectral density of position given by a white noise driving force. It is

useful for us to consider this representation and not the position representation, as it is useful to

consider the spectrum of motion. Considering the Fourier transform of the resonator amplitude as

a function of time and frequency written as

x(ω) =
1√
2π

∫ ∞
−∞

x(t)eiωtdt (4.6)

In measuring the mechanics, it is often beneficial to consider the measurement of a finite time

period, τ . This manifests in the form of

x̃(ω) =
1√
τ

∫ τ

0
x(t)eiωtdt (4.7)

This in turn can be used to find the spectral density by the expected value of the square

amplitude. In the limit of τ approaching infinity, this converges to the Fourier transform of the

auto-correlation function [17].

Sxx(ω) =

∫ +∞

−∞
〈x(t)x(0)〉e−iωtdt (4.8)
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Under quantum mechanical considerations, the power spectral density is given by the fluctu-

ation dissipation theorem, which is further detailed in [24]

Sxx(ω) =
2~

1− e−~ω/kBT
Im(χxx(ω)) (4.9)

This power spectral density can be related to the force power spectral density, SFF given the

spring constant of the resonator [17].

√
SFF =

4kBTk

ωmQ
=

2~kBT
Qx2

zpf

(4.10)

Therefore, in the pursuit of lower force sensitivity, both a high quality factor and high zero-

point fluctuations are desireable. There are two methods in which this can be approached: resonator

material and resonator design. In this chapter, the promise of tensioned silicon nitride (Si3N4)

resonators are explored and advanced mechanical designs are studied.

The reported devices are not the only advanced mechanical resonators applicable for force

sensing: other silicon nitride membranes and strings [25, 13, 12, 26, 27, 28, 29, 30, 31, 32], silicon

cantilever [33], and nano-wires [34]. The SiN devices range in thickness from 20 to 80 nm and

in width and length from hundreds of micrometers to several millimeters. The membranes have

achieved a force sensitivity as low as 10 aN/
√

Hz at room temperature [25] while string resonators

were demonstrated to have a force noise floor of 3 aN/
√

Hz [13]. The silicon cantilever resonators

were shown to have a force noise floor of ≈10 aN/
√

Hz[35] while the nanowires of smaller mass

were shown to have a force noise floor of 2 aN/
√

Hz [34]. Larger devices correlate with better

force sensitivities, but the much lower frequencies below 150 kHz [26, 25] do not move towards

the 10 MHz frequency needed for resonant coupling with nuclear spins that smaller device tend

towards [13, 12].
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4.2 Trampoline Resonators

Mechanical resonators come in every shape and every size, from the large kg-scale mirrors at

the LIGO observatory to the vibrations of an optically suspended atom [17]. Of particular interest

to this experiment is two-dimensional Si3N4membrane resonators. Due to low optical absorption

and high quality factors, tensioned Si3N4strings and drums are ideally suited for optomechanical

sensing[36]. As mentioned in the introduction to this section, the desirable trait in a mechanical

resonator is a low force noise floor and high frequency. Referring back to Eq. 4.10 we see that to

lower our force noise floor, we want to simply increase guality factor and zero-point fluctuations

(lower mass). While I say simply, and the equation supports this, the actual process of designing

a low mass, high Q resonator is difficult.

Force detection of the magnetization of a sample due to magnetic resonance has been detected

with Si3N4membrane resonators [8]. In an effort to further reduce the force noise floor, mass is

removed from the membrane to form a trampoline resonator [37, 25, 26, 1]. The trampoline design

removes large sections of the Si3N4to reduce the mass. Four tethers from each corner of a square

frame suspend a central pad.

4.2.1 Design

Trampoline resonators have been shown to have low force noise floors and have promise as

force sensing devices. However, the devices presented in [37, 25, 26] are made in varying sizes. As

force sensitivity depends in part on xzpf , a trampoline should have high xzpf in not only the pad,

but the tether so that one location can be used for optical probing and the other for magnetic

coupling.
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Figure 4.1: Finite element simulation (COMSOL) of a 500 µm wide and 30 nm thick trampoline

with a pad size of 30 µm and a tether width of 2 µm. We note S1, T1, A1, S2 as the first symmetric,

first torsional, first asymmetric and second symmetric modes, with frequencies of 359 kHz, 912

kHz, 936 kHz and 1140 kHz, respectively. (a) Trampoline mode shapes. Arrows indicate the cavity

mode position and the magnetic coupling position, i.e. the position where the magnetic grain or

spin sample are deposited on the trampoline. (b) Simulated zero-point fluctuation of the trampoline

pad (blue circles) and tether (red circles) for the first trampoline modes, up to S4, ordered from

left to right by increasing resonant frequencies. From [1]

The trampoline resonator was modeled with COMSOL Multiphysics and the zero-point fluc-

tuations of the resonator were simulated for various modes, as shown in Fig. 4.1. In particular,

we see that in the normal mode (S1) of the trampoline, both the tether and the central pad have

high xzpf . This makes the S1 mode of that particular design favorable for coupling action from two

locations on the resonator.

4.2.2 Fabrication

Trampoline resonators are fabricated in a multi-step process, shown schematically in Fig.

4.2, and described in detail here. Double-side polished silicon wafers are commercially coated with

high-stress stoichiometric silicon nitride (Si3N4). The silicon has a crystaline axis defined by 〈1 0 0〉.

The commercial wafers are diced with a saw into 5 mm by 5 mm square chips. The chips undergo a

rigorous cleaning, briefly detailed here: one minute rigourous stirring in each of acetone, isopropyl
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alcohol, methanol and water; one hour suspended in Nano-strip at a plate temperature of 150°C

and gentle stirring; two minutes gentle stirring in each of three clean water baths and an isopropyl

alcohol bath; dried with pressurized nitrogen.

The cleaned chips are then coated in a negative UV photoresist, S1813, on both sides, with

the following recipe: 1000 rpm for 5 seconds, 4500 rpm for 30 seconds, cure at 115°C for one minute.

Then the chip is exposed to UV radiation for 30 seconds with a negative resist to develop a square

window. The back window is developed with gentle stirring in 2% TMAH developer for one minute

and the rinsed in water. This process is repeated for an e-beam resist to pattern the trampoline

resonator in a direct write SEM. After the resist is developed, the same RIE recipe is used. The

chip is then cleaned in solvents and put in a 30% KOH bath at 180 °C to release the Si3N4. The

chips are then gently stirred in water baths and cleaned in Nano-strip as detailed above.



23

(a) Coat 5 mm square chip with electron beam resist on top, photo-definable resist on the bottom.

(b) Expose resists with desired pattern: resonator profile on top of chip, square window on bottom.

(c) Develop resists.

(d) Dry etch exposed Si3N4in reactive ion etcher.

(e) Remove resists and etch exposed silicon with 30% concentration KOH solution from both sides.

(f) Final cross section of fabricated resonator.

Figure 4.2: Cross sections of fabrication steps for 500 µm trampoline. Materials: grey (silicon), blue

(Si3N4) brown (photoresist), green (electron-beam resist). Exposures: yellow (UV light, electron

beam), green (KOH solution).
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Figure 4.4: (a) SiN Trampoline resonator. (b) Zoom in of functionalized resonator with NdFeB

magnetic grain deposited. [1]

4.2.3 Trampoline Characterization

The trampolines are characterized using a Michelson interferometer, which induces two volt-

ages on a balance detector. This is then output to a network analyzer. A network analyzer is

used so that a piezo electric transducer (PZT) can drive the mechanics to resonance. The ther-

mal spectrum of the resonator is first analyzed to determine the frequencies of various modes of

the resonator. The normal modes of the two trampoline devices studied are reported in table 4.1.

Then, the trampoline is driven to resonance by the network analyzer and PZT. The drive is stopped

suddenly, and a ringdown measurement is taken. To find the Q of the resonator, an exponential

decay is fit to the time trace of the resonance peak. The energy decay time of the resonator, τm, is

then used to calculate Q = ωmτm.

4.3 Phononic Crystal Structures

The trampoline resonator is a good force sensor. However, in the pursuit of sub-attonewton

force sensitivities, we aim to increase Q further. To approach this goal, we consider Si3N4membrane

resonators that are patterned with a crystal lattice. This lattice is engineered to have a band gap

in spectrum at which the resonator does not have modes. A defect is then introduced in the center

of the lattice that perturbs the system and has modes with frequency in the band gap. Following,
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Table 4.1: Critical dimensions of each trampolines in devices A and B. t is the SiN thickness, w is
window size, ro is the outer fillet radius, d the central pad length, a is the tether width, and meff

is the calculated resonator’s effective mass of the fundamental mode, at the pad position, using
Eq. 4.5. Dimensions are depicted in Fig. 4.4. From [1]

Device A B

t 30 nm 70 nm
w 500 µm 500 µm
ro 36 µm 15 µm
d 28 µm 28 µm
a 5 µm 5 µm
meff 0.5 ng 0.9 ng
fS1 429.1 kHz 389.8 kHz
Q 4.5 ×106 1.8 ×106
√
SFF 67 aN/

√
Hz 102 aN/

√
Hz

I discuss how the phononic crystal (PnC) structure allows for increased Q in a Si3N4resonator.

There are two main types of loss in a Si3N4membrane resonator, here called bending and

radiative loss. Bending loss arises from the curvature of the resonator’s mode shape. Radiative

loss is considered as the acoustic waves moving into the surrounding silicon chip and environment.

Since loss mechanisms adds in series, Q adds as in parallel:

Q−1
tot = Q−1

bend +Q−1
rad (4.11)

The bandgap in the PnC crystal controls the radiative loss. Another effect is called soft

clamping and minimizes the bending losses in the resonator, maximizing Q. Current research is

exploring the mathematical treatment of values including Q and loss in PnC structures [12, 3]. For

simplicity, this thesis will table theoretical models of the resonators and focus on the first successful

experimental realization of PnC structures and their parameters.

We studied five principle designs based on two main crystal structures. These five designs

are detailed in Fig. 4.5 and briefly summarized here. There are two different PnC structures, one

lattice similar to [12] seen in 4, ©, 5 and one lattice that removes more mass seen in + and × in

Fig. 4.5. Each PnC has a characteristic defect shape that resembles the central pad of a trampoline

of varying sizes. These are shown in the maps of Fig. 4.5 and described in detail in [3].
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Figure 4.5: The top row shows pictures of devices. [3] Bottom: Localized mode of +, visualizing

soft clamping effects.

4.3.1 Fabrication

The PnC resonators were fabricated similarly to the trampoline resonators (Fig. 4.2), with

a few changes. The crystal structures were patterned in 100 nm thick LPCVD Si3N4on 385 µm

silicon. Instead of electron beam and UV-mask photolithography, the resist was patterned with a

direct write photolithography system in a grid on the wafer. The Si3N4was then released using a

single-sided etch from the non-resonator side of the wafer in 70 °C KOH for 6 hours. After KOH

exposure, the Si3N4was optically determined to be 85 nm.

Single side etching is necessary with the more complicated geometry of PnC structures relative

to trampoline resonators because of the crystallographic axis of 〈1 0 0〉 silicon. The single side etch

is done by protecting the resonator side of a patterned wafer in a PEEK wafer chuck. In Fig.

4.3f, it is seen that the KOH etches the silicon at an angle, specifically 54.3°. In this manner,

KOH does not etch beneath Si3N4and it etches along the axis of the silicon. During a double-sided

etch process, this leaves unetched silicon suspended on the back of the resonator. This added mass
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breaks the structure, and is avoided by protecting one side of the wafer during the wet etch process.

4.3.2 Results

PnC structures were measured using an etalon interferometer both at room temperature

(10−7 mBarr chamber) and 4K (closed cycle cryostat). The resonator is mounted on a mirror on

a piezo electric transducer (PZT) to form the etalon. The power spectral density of the signal

from the etalon interferometer is analyzed to determine the amplitude and frequency of mechanical

modes.

The mechanical spectra of all devices were taken to verify the presence of a band gap and to

see the presence of defect modes within the band gap. To capture the full spectrum, each resonator

was measured at two locations, one on the defect (orange) and one in the crystal (blue). The

locations measured and the mechanical spectra for + and 4 are shown in Fig. 4.6. Measurements

were taken both near the defect and in the crystal structure to illustrate the defect mode locations

within the band gap.

It should be noted that Fig. 4.6 shows the measurement location to be on the tether of both

the defect and the crystal. This was done to capture modes with frequency above the band gap, as

these primarily manifest in tether movement and not in the pads. Quality factors were then taken

via ringdown measurements and the same fitting process outlined in Sect. 4.2.3. The fabricated

resonators and an example of soft clamping effects are shown in Fig. 4.5. In the plot of out of plane

displacement, it is seen that the mode is well isolated to the defect. This verifies that the defect

mode is internal loss limited and therefore we can neglect radiative losses [3].

It was observed that at 4 K, all but one device recorded normal mode quality factors above Q

= 106. Given the thickness of the Si3N4used compared with other devices [25, 13, 12, 26, 28, 29, 31,

32] that reach down to 20 nm thick, these quality factors are desirable. We estimate that by using

20 nm Si3N4the quality factor will increase by two orders of magnitude, given that Q ∝ h−3 [3].

The force sensitivities for all five devices were calculated at both room temperature and

at cryogenic temperatures. It was seen that lower xzpfgives a higher force noise floor and less
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sensitivity. Moving forward, these devices will be adapted for functionalization and improved

quality factors such that they are ideal for cavity optomechanical integration for enhanced spin

detection.
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(c)

(d)

(e)

(f)

(a) (b)

Figure 4.6: (a) Low contrast PnC resonator with (b) High contrast PnC resonator. Dots show
location of measurement of spectra.(c-f) Mechanical spectra for the two resonators at the colored
locations. [3]



Chapter 5

Magnetic Resonance Force Detection with SiN Membrane Resonators

5.1 Introduction

So far, we have discussed the motivation behind the experiment in Ch. 1. We briefly intro-

duced Optomechanics and related fields in Ch. 2 to frame the context for the experiment. Chapters

3 and 4 give background and context as to how we drive spin and how we measure that resonance.

Having covered what we drive, what it couples too, and how we measure that coupling, it is now

time to dive into the manifestation of these three components as integrated into a single device.

After diving into the geometry and fabrication of the MRFM device, I will present the results of

the experiment and the successful detection of electron spins with a micromechanical trampoline

resonator. As menitoned in the introduction, this experiment demonstrates a first success at sens-

ing electron spins in DPPH, which provides a large force signal. This allows us in the Regal group

to benchmark group capabilities of MRFM detection.

5.2 Device

The MRFM device, referred to as a flip chip consists of three main components: two thin

chips that are brought in close proximity and the external magnetic fields that set the energy levels

in the Hamiltonian in Eq. 3.3. One of the two chips we have already been introduced to briefly

- the trampoline resonator. The second chip hosts the electron spins the drive for the alternating

magnetic field, B1, described in 3.9.
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Figure 5.1: Schematic of MRFM experimental device (flip chip).

5.3 Functionalized Trampoline Resonators

The trampoline resonators are functionalized by securing a 3-4 µm diameter grain of NdFeB

on one of the tethers with an epoxy glue, 100 µm from the center of the central pad. The deposited

magnetic grain is pictured in Fig. 4.4b. One the epoxy cures, the trampoline is put inside a strong

electromagnet to induce a permanent magnetization in the grain.

Deposition of the magnetic grain onto the tether of the resonator changes the mechanical

properties of the resonator, primarily the quality factor, Q, and the mechanical frequency, Ωm.

Fig. 5.2 depicts the change in both the mode shape and frequency of the first asymmetric mode

of the trampoline. Particularly, in Fig. 5.2b, the frequency of the asymmetric mode in which the

tether with the grain has greatest displacement (pictured in Fig. 5.2a) is shifted more than the

asymmetric mode in which the tether has small amplitude.
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Figure 5.2: Torsional-mode (T1) mode shapes and frequencies prior to (grey) and after (blue) depo-

sition of a magnetic grain. (a) Simulated mode shapes of a free trampoline (grey) and a trampoline

deposited with a cubic magnetic grain with an edge size of 2.5 µm(blue). The position of the de-

posited magnetic grain is marked by a red circle. (b) Measured trampoline displacement spectrum

showing resonance location after deposition in blue. The original position of the resonances prior

to deposition appear as vertical grey lines. The arrow show the reduction of the mode frequencies

after deposition. From [1]

While not pictured in Fig. 5.2, the fundamental mode of the trampoline resonators is im-

pacted to a lesser degree than the asymmetric mode. The frequency is decreases by 10 kHz and

the quality factor decreases by a factor of 2, as seen in Table 5.1. The small impact on frequency

and quality factor of the magnetic grain deposition maintains the desirable properties outlined in

Sect. 4.1.

5.3.1 External Magnetic Fields

The magnetic bias field B0 is created using a permanent NdFeB commercial magnet. A field of

approximately 1 kG along the x-axis is created by the 1
2”× 1

2”× 1
8” NdFeB cube. The gyromagnetic

ratio, γ, for an electron is 2.8 MHz/G. The bias field is the dominant factor in determining the

Larmor frequency at ω0 ≈ γB0.
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Table 5.1: Fundamental mode frequencies and quality factors of the resonators before and after
deposition of the NdFeB magnetic grain, calculated spring constant and zero-point fluctuation
(derived from the effective mass of Table 4.1) and the corresponding room-temperature force
sensitivity, after deposition. From [1]

Device A B

Trampoline fS1 429.1 kHz 389.8 kHz
Q 4.5× 106 1.8× 106

Trampoline with magnet fS1 413.2 kHz 379.6 kHz
Q 2.4× 106 1.7× 106

k 3.4 N/m 5.3 N/m
xzpf 6.3 fm 4.9 fm√
SF 67 aN/

√
Hz 102 aN/

√
Hz

5.3.2 Microwave Drive

In Secs. 3.3 and 3.4 I discuss the perturbation field (B1) necessary for magnetic resonance.

The desired characteristics include a magnitude smaller than the bias magnetic field and alternating

at a frequency close to the Larmor frequency. To deliver this field to the spins, we establish an

alternating current across a gold strip line on a sapphire chip.

The strip line pattern is defined with a photodefineable lift-off resist. Then 5 nm of Titanium

is evaporated onto the chip, followed by 400 nm of gold. The titanium is included as a bonding

agent between the gold and the sapphire substrate. The excess metal and resist is removed with

a lift-off solvent. The final strip line is pictured in the inset of Fig. 5.3. In these studies, devices

A and B had slightly different gold patterns. In initial designs, the curved elbow at the corner

of the strip line was included as a partial cavity to increase signal. However, separation distance

was not precise enough and the effect was diminishing. It was observed that the signal in device

B was lower than expected. For device A, the curved elbow reflector was removed and replaced

with a through-hole in the sapphire chip. The bottom chip was modified for two reasons. First, as

mentioned in Ch. 2, tensioned Si3N4resonators are aptly fit for cavity optomechanics integration.

Benefits of cavity optomechanical integration include damping of mechanics, the benefits of which

are discussed in Ch. 2.

Then, an approximately 12 µm radius cylindrical grain of DPPH is placed at the elbow of



34

the strip line, seen in the inset to Fig. 5.3. The DPPH is secured in epoxy resin. This epoxy gives

a separation distance in x such that the spins are not immediately touching the strip line. This

separation distance, Dws, is seen in the inset of Fig. 5.1. This distance is critical to estimating the

magnitude of B1, which is fit to experimental data.

Figure 5.3: Image of final flip chip. Inset: Bottom chip with Au microwave strip line and deposited

DPPH grain.

5.3.3 Flip Chip Assembly

The final assembly is achieved by bringing the two chips in close proximity to each other. The

functionalized trampoline resonator is ”flipped” over so that the magnetic grain can be brought to

approximately Dms = 10 µm from the top of the DPPH spins as seen in the inset of Fig. 5.1. The

resonator is aligned so that the magnetic grain is directly over the DPPH grain. The separation

is fixed with stycast epoxy on three corners of the chip. Finally, the flip chip is placed in front of

the permanent magnet described in Sect. 5.3.1 at a distance such that the magntiude of the field

is approximately 1 kG.
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5.4 Experiment and Results

There are two MRFM detection schemes that we use in the context of cyclic saturation -

amplitude and frequency modulation of the perturbation field. Each of these schemes are carried out

either by setting the Larmor frequency of the spins and sweeping the perturbation field frequency

from ω � ω0 to ω � ω0 or by setting the perturbation field frequency and sweeping the magnetic

field that sets the Larmor frequency of the spins. Here, I report results from three of the four

possible experimental configurations.

5.4.1 Amplitude Modulation Detection

The perturbation field described in Eq. 3.15 is amplitude modulated at the mechanical

frequency, ωm/2π. As the perturbation field is amplitude modulated at the mechanical frequency,

the field is turned on and off such that the magnetization oscillates between M0 and M0 − δMx

given by the minimum of Eq. 3.26. Since this modulation is done at the mechanical frequency,

Mx must reach steady state quickly. This is why the relaxation time must be short compared to

the time scale of 2π/ωm [33]. The force from the oscillations in the presence of a magnetic field

gradient G is described primarily by the first harmonic Fourier component of the magnetization

and given by the integral over the volume of the spins [33]:

F =
2

π

∫
M0γ

2B2
1τ

2

1 + [γB0(x)− ω]2τ2 + γ2B2
1τ

2
GA(x)dx (5.1)

Here A(x) is the cross-sectional area of the spin sample.

The AM drive was swept over the resonant frequency and the motion of the normal mode

recorded as seen in the spectra in Fig. 5.4 for device B. It is noted that as the magnitude of B1 is

increased, there are substantial sources of noise due to spurious electrical forces [1].
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Figure 5.4: MRFM resonance using an AM microwave drive of device B. We show a sweep of the

MW frequency at a fixed magnetic field at three different MW powers of -8 dBm (full green), -3

dBm (dotted blue), and 0 dBm (dashed blue). Particularly using the AM technique, the spin-

resonance signal can easily be overwhelmed by spurious electrical forces, as observed at the higher

powers (dotted blue, dashed blue). [1]

5.4.2 Frequency Modulation Detection

Frequency moculation (FM) cyclic saturation is done by varying the frequency by a small

amount (Ω) at the mechanical frequency. Similarly to AM detection, the first harmonic Fourier

component is dominant in the magnetizaiton of the sample and therefore the force. This is given

by the derivative of Eq. 3.26 in frequency space [33]. The force as a function of frequency is then

given by:

F =

∫ ∞
0

ΩM0
∂

∂ω

[ γ2B2
1τ

2

1 + (γ[B0(0) +Gx]− ω)2τ2 + γ2B2
1τ

2

]
ω=0(0)

GAdx (5.2)

Device A was measured using FM cyclic saturation, with spectra given in Fig. 5.5 in units

of force. Additionally plotted in Fig. 5.5 is a fit to the measured force and the adjusted phase shift

that was not directly measured.
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Figure 5.5: MRFM resonance from device A using an FM microwave drive. The MW frequency

is swept at a fixed magnetic field. Shown are the mechanical displacement (full blue), the corre-

sponding force signal (dashed red), and a fit of the FM signal (dotted black). The input microwave

drive power is -7 dBm. From [1]

The values used in the fit are given in table 4.1 and the dimensions are illustrated in the inset

of Fig. 5.1. These agree to within fabrication uncertainties to the geometries of the flip chip.

5.4.3 Varying Larmor Frequency

The two data sets given use the method of sweeping over the microwave frequency to capture

the resonance and determine the Larmor frequency. As mentioned above, the resonance can also be

detected by sweeping the Larmor frequency and holding the microwave frequency constant. This

is done with the introduction of an additional permanent magnet. A micrometer feed through was

added to the chamber that was able to position the additional magnet along the x-axis relative to

the flip chip pictured in Fig. 5.6.
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Figure 5.6: Image of the magnetic feed-through for varying the Larmor frequency at the location

of the spins in relation to the location to the experimental set up.

The secondary magnet was positioned at least 1 cm from the flip chip to the the contribution

to the magnetic gradient was minimal and greater precision in magnetic field could be obtained.

The gradient was on the order of 10 G/mm for the entire sweep which is small compared to the

≈ 200 G/mm gradient from the primary magnet. The results of the sweep are plotted in Fig. 5.7

along with the fit and phase shift accommodation, as in Fig. 5.5.



39

Figure 5.7: Same as Fig. 5.5, but here we sweep the magnetic field at a fixed microwave frequency

of 2.564 GHz and use device B. The input microwave drive power is -7 dBm. From [1]

The values used in the fit are given in table 4.1 and the dimensions are illustrated in the inset

of Fig. 5.1. These agree to within fabrication uncertainties to the geometries of the flip chip.



Chapter 6

Conclusion

In this work, I present the successful realization of an experiment to detect electron spins

in DPPH via MRFM techniques. Specifically, patterned Si3N4membrane resonators were utilized

to both push force sensitivity lower and provide the opportunity for future cavity optomechanical

integration. This experiment used a trampoline resonator to couple magnetic interactions between

a magnetic grain and driven electron spins to the optomechanical interactions of light incident on

a mechanical resonator. By using the cyclic saturation MRFM detection scheme, we measure both

AM and FM signals with force noise floors as low as 67 aN/
√
Hz. Additionally, there is clear

path forward for the demonstration of < 1 aN/
√
Hz force sensitivities with the integration and

funtionalization of Si3N4PnC resonators.
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