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and aberrant glucose homeostasis in mice
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Abstract 

Background: Concerted hormone secretion is essential for glucose homeostasis and growth. The oocyte testis gene 
1 (Otg1) has limited information in mammals before. Human OTG1 has been identified as an antigen associated with 
cutaneous T cell lymphoma, while worm Otg1 is recently reported to be a vesicle trafficking regulator in neurons. To 
understand the physiological role of Otg1 and its potential relation to hormone secretion, we characterized a muta-
tion caused by the piggyBac transposon (PB) insertion in mice.

Results: Oocyte testis gene 1 encodes a Golgi localized protein that is expressed with a broad tissue distribution in 
mice. The PB insertion effectively blocks Otg1 expression, which results in postnatal lethality, growth retardation, hypo-
glycemia and improved insulin sensitivity in mice. Otg1 mutants exhibit decreased levels of insulin, leptin and growth 
hormone in the circulation and reduced hepatic IGF-1 expression. Decreased expression of Otg1 in pituitary GH3 cells 
causes reduced grow hormone expression and secretion, as well as the traffic of the VSVG protein marker.

Conclusions: Our data support the hypothesis that Otg1 impacts hormone secretion by regulating vesicle trafficking. 
These results revealed a previously unknown and important role of Otg1 in hormone secretion and glucose homeo-
stasis in mammals.
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Background
Glucose is the key source for energy production in mam-
mals. Under normal physiological conditions, the blood 
glucose level is well regulated by concerted actions of the 
pancreas, liver, adipose tissue, muscle and brain [1, 2]. 
Abnormal glucose homeostasis would result in hypergly-
cemia or hypoglycemia. Hyperglycemia is the character-
istic condition of diabetes, which has becoming a rapidly 
growing health threat in modern society [3]. Chronic 

hyperglycemia causes glycation of proteins or lipids, 
which causes many of the long-term complications in 
diabetic patients [4]. In contrast, since glucose supplies 
almost all the energy for the brain, hypoglycemia may 
quickly cause loss of consciousness or even death.

Peptide hormones such as insulin, glucagon, growth 
hormone and IGF-1 play critical roles in regulating 
glucose homeostasis [5–9]. Being expressed, peptide 
hormones are packaged in vesicles at the trans-Golgi net-
work (TGN), transported on microtubules toward the 
plasma membrane and loaded onto an actin/myosin sys-
tem for distal transport through the actin cortex to just 
below the plasma membrane. After tethered there, a sub-
population of vesicles are docked and primed to become 
the readily-releasable pools [10, 11]. Upon stimula-
tion, these vesicles in the readily-releasable pool would 
immediately fuse to the plasma membrane to release the 
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contents. This process is essential for activity-dependent 
hormone secretion to mediate various endocrinological 
functions. Despite of many identified proteins involved in 
vesicle budding, trafficking, tethering/docking and cargo 
secretion, the molecular mechanisms and molecules 
participating peptide hormone secretion remain to be 
explored.

The oocyte-testis gene 1 (Otg1) was originally identi-
fied in the RIKEN Mouse Gene Encyclopedia Project 
[12]. The full-length transcript has 16 exons that encode 
a 917-amino acid peptide. The OTG1 protein has several 
coiled-coil domains that occupy almost half of the pep-
tide. Other than these, no functional motifs have been 
predicted in OTG1 [13]. The human homologue of Otg1 
encodes the protein that has been recognized as a cuta-
neous T-cell lymphoma (CTCL) associated antigen [14]. 
Recently, the C. elegans homologue of Otg1 has been 
reported as a vesicle trafficking regulator in neurons 
[15]. Here we report that mouse Otg1 encodes a protein 
with prominent Golgi localization. Loss of Otg1 results 
in postnatal lethality, aberrant glucose homeostasis 
and defective hormone secretion in mice. These results 
revealed an unknown role of Otg1 in participating hor-
mone secretion and metabolic regulation in mammals.

Results
Disruption of Otg1 results in postnatal lethality and growth 
retardation in mice
We identified an Otg1 mutant in a screen for mice bear-
ing metabolic defects [16]. The mutant carries a pig-
gyBac transposon (PB) insertion in the eighth exon of 
Otg1 (Otg1PB) that effectively disrupts gene expression 
(Fig. 1a). In wild-type animals, Otg1 proteins can be read-
ily detected in various organs such as the brain, heart, 
lung, stomach, liver, kidney, pancreas and gut. In tissues 
from homozygous mutants, Otg1 expression is no longer 
detectable (Fig. 1b). Similar changes were also observed 
by immunofluorescence staining in pancreatic cells and 
embryonic fibroblasts (MEFs) with different genotypes 
(Fig. 1c and Additional file 1: Figure S1). Similar as that of 
the C. elegans homologue, immunofluorescence staining 
in wild-type pancreatic cells and MEFs revealed co-local-
ization of OTG1 proteins with the Golgi compartment 
marker Giantin, confirming a Golgi localization of OTG1 
in mice (Fig. 1c) [15, 17].

Oocyte testis gene 1PB/PB animals were born in consist-
ent with a Mendelian pattern of inheritance (Additional 
file  2: Table S1). However, 46.5  % (53/114) homozygous 
Otg1 mutants could not survive throughout the first day 
after birth (P1), while others gradually died within the 
next 30 days. In contrast, 96.4 % (108/112) wild-type and 
94.2  % (196/208) heterozygous littermates kept alive at 
the age of one month (Fig. 2a). The external morphology 

of mutants died at P1 was apparently normal. In contrast, 
the most obvious morphological changes of other dead 
mutants were their small sizes (Fig.  2c). Further analy-
sis showed that Otg1PB/PB individuals had comparable 
body weight with their littermates both at the end of fetal 
development (embryonic day 18.5, Additional file 3: Fig-
ure S2C) and at birth (Fig. 2b). Soon after that, the survi-
vors suffered from severe growth retardation. The body 
weight of Otg1PB/PB mice increased much slower than 
that of the wild-type and heterozygous littermates. In 
fact, homozygous Otg1 mutants always exhibit lipohypo-
trophy and usually died before the body weight reaches 5 
grams (Fig. 2b, d).

Otg1 mutation leads to impaired glucose homeostasis
We then explored pathophysiological alterations that 
may lead to postnatal lethality and growth retarda-
tion in Otg1PB/PB mice. Alcian blue-alizarin red staining 
revealed normal skeleton structures in Otg1PB/PB mutants 
(Additional file 3: Figure S2A). This result, along with the 
normal body weight of newborn animals, suggests that 
severe embryonic developmental defects, such as abnor-
mal pattern formation, shall not be accounted for postna-
tal lethality and growth retardation. We often observed 
milk in the stomach of Otg1PB/PB pups, suggesting that 
feeding failure is unlikely the reason for growth retarda-
tion and lethality (Additional file 3: Figure S2B).

Given the critical role of glucose in supporting growth, 
we examined glucose homeostasis in mutant mice. We 
observed progressively developed hypoglycemia in Otg1 
mutants. The blood glucose level in free–fed Otg1PB/PB 
mice was similar as that in the wild-type and heterozy-
gous littermates at birth, then decreased to approxi-
mately 25  % blow normal within two days and further 
dropped to 58  % of that in the wild-type at the age of 
11 days (P11) (Fig. 3a, b). Fasted blood glucose levels of 
P11 Otg1PB/PB mice were only 47  % of that in the wild-
type mice. In intraperitoneal  glucose  tolerance  test 
(IPGTT), the blood glucose level of P11 Otg1PB/PB mice 
changed with the same tendency as that of the wild-type 
or heterozygous mice, but kept to be approximately 60 % 
lower at each time point (Fig. 3c). In addition to hypogly-
cemia, we recorded extremely low level of serum insulin 
and elevated insulin sensitivity in the mutants. Com-
pared with 0.66 and 0.57 ng/ml of serum insulin detected 
in wild-type and heterozygous littermates, respectively, 
ELISA analysis revealed an average insulin concentra-
tion of 0.02  ng/ml in P11 homozygotes (Fig.  3d). In the 
insulin  tolerance  test (ITT), the blood glucose level of 
P11 Otg1PB/PB mice dropped more rapidly than that of 
the wild-type and heterozygous littermates. In fact, it 
decreased to a level too low to be detected within 30 min 
(Fig.  3e). Finally, we observed hypoleptinemia in Otg1 
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mutants. Consistent with lipodystrophy, Otg1PB/PB mice 
had circulating leptin below detectable level (<0.2 ng/ml) 
at P11 (Fig. 3f ).

Growth retardation, hypoinslulinemia, hypoglycemia 
and increased insulin sensitivity have been reported in 
mice with defective growth hormone receptors (GHRs) 

[7, 9]. This raises the possibility that growth hormone 
(GH) signaling is aberrant in Otg1PB/PB mice. We meas-
ured the expressions of GH and its downstream mediator 
IGF-1. Compared with those of the wild-type littermates, 
ELISA revealed approximately 35  % reduction of serum 
GH levels in P11 Otg1PB/PB mice, while real-time RT-PCR 
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Fig. 1 A PB insertion effectively abolished Otg1 expression. a Schematic representation of the genomic sequence flanking PB insertion site in Otg1. 
White box: exon. b Western blot did not detect OTG1 expression in either E13.5 Otg1PB/PB embryos or tissues of P1 Otg1PB/PB mice. c Immunofluores-
cence staining showed co-localization of OTG1 protein and Giantin in both pancreatic tissues of MEFs from wild-type mice
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detected 50 and 87 % decrease of hepatic IGF-1 expres-
sion in P1 and P11 mutants, respectively (Fig.  3g, h). 
Taken together, the results above suggest that disruption 
of Otg1 leads to impaired glucose homeostasis in mice.

Otg1 mutation leads to aberrant vesicle trafficking
Given its Golgi localization and the reported role of the 
C. elegans homologue in neurons [15], Otg1 is likely to 
be involved in vesicle trafficking, a process that is criti-
cal for protein hormone secretion in mammals. Consist-
ent with this predicted role, we found Otg1PB/PB mice had 
islet cells 48 % of the sizes of their wild-type littermates 
(Fig.  4a, b). This is likely the consequence of defective 
vesicle trafficking rather than the result of smaller body 
size, since Otg1PB/PB hepatocytes are of similar sizes as 
those of the Otg1+/PB animals (Additional file  4: Figure 
S3). Electron microscopy also revealed a greatly reduced 
number of insulin granules in the cytoplasm of mutant 
β cells (Fig.  4c). To mask the possible effect on insulin 
secretion from reduced GH signaling in  vivo, we iso-
lated islets from newborn mutants and examined their 
response to glucose challenge by measuring secreted 

insulin in the culture medium. There was no significant 
difference between Otg1PB/PB and the wild-type islets 
when they were provided with basal level (3 mM) of glu-
cose. However, when challenged by 25  mM of glucose 
for 1 h, the insulin concentration in the culture medium 
of Otg1PB/PB islets was only 25 % of that of the wild-type 
islets (Fig. 4d). Altogether, these results suggest that the 
smaller islet cells are likely the result of defective vesicle 
trafficking caused by the Otg1 mutation.

The role of Otg1 in hormone secretion was further con-
firmed in rat pituitary GH3 somatolactotropes, a popu-
lar model to study GH secretion [18]. We first knocked 
down Otg1 expression with small hairpin RNAs (shR-
NAs), then measured GH released into the medium 
within a period of two hours. Compared with cells trans-
fected with scramble shRNAs, shRNA-1 and shRNA-2 
transfected cells produced 55 and 58 % less Otg1 proteins, 
respectively (Fig. 4e). As expected, shRNA-1 transfection 
resulted in a reduction of GH content and secretion by 
52 and 58  %, respectively, while shRNA-2 transfection 
resulted in a reduction of GH content and secretion by 43 
and 56 %, respectively (Fig. 4f, g).
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Decreased hormone secretion in both mouse islet and 
rat GH3 suggested a critical role of Otg1 in hormone 
secretion in mammals. To monitor the effect of Otg1 
on intracellular transport, we used VSVG-mEmerald, 
a fluorescent reporter that translocates from endoplas-
mic reticulum to the plasma membrane via the Golgi 
apparatus at 37  °C [19]. Live-cell imaging showed that 
the transportation of VSVG-mEmerald was signifi-
cantly blocked in Otg1 knockdown GH3 cells (Addi-
tional file  5: Video S1 and Additional file  6: Video S2). 
The average transport speed of VSVG-mEmerald vesi-
cles (n  =  110) was 0.068  μm/sec in shRNA-1 treated 
cells, but 0.186 μm/sec in scramble shRNA treated cells 
(Fig. 5a). Standard deviations of the transport speed in 
each shRNA-1 treated cell (n = 11) were also decreased 

(Fig. 5b and Additional file 7: Figure S4). These results 
suggest that Otg1 is required for vesicle trafficking in 
mammalian cells.

Discussion
In the present study, we have shown that Otg1 encodes 
a Golgi protein that is required for normal vesicle traf-
ficking in mammalian cells. Disruption of Otg1 results in 
growth retardation and postnatal lethality in mice. Vari-
ous abnormalities related to glucose homeostasis, such 
as hypoinslulinemia, hypoglycemia, increased insulin 
sensitivity, decreased serum growth hormone level and 
reduced hepatic IGF-1 expression, could be observed in 
mutant animals before death. These results revealed an 
unknown function Otg1 in metabolic regulation.
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Oocyte testis gene 1 is ubiquitously expressed with a 
prominent Golgi localization. Almost half of the peptide 
sequence is occupied by coiled-coil regions with short 
interruptions. OTG1 is a conserved protein during evolu-
tion and the human homologue has been identified as a 
tumor antigen. These features are reminiscent of those of 

the golgin coiled-coil proteins, which are known as mem-
brane and cytoskeleton tethers [20, 21]. Although the 
C-terminus of OTG1 lacks a transmembrane or a small 
GTPase interacting signal, which are usually presented 
in a typical goglin, OTG1 may still be involved in similar 
intracellular activities by serving as molecular partners 
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of typical golgins. Under this scenario, OTG1 may be 
involved not only in capturing incoming vesicles, but also 
in providing specificity to the tethering step.

Hypoglycemia is normal during the first hours of mam-
malian life. However, prolonged neonatal hypoglycemia 
would cause long-term neuronal deficits [22]. In contrast 
to extensively recognized hyperinsulinemic hypoglyce-
mia, hypoinsunlinemic hypoglycemia is an extrememly 
rare condition in human. Limited cases of hypoinsunline-
mic hypoglycemia are usually related to impaired insulin 
signaling pathway. For example, a hyperactive mutation 
of AKT2, the gene required for insulin-induced translo-
cation of GLUT4 to the plasma membrane, caused hypo-
insunlinemic hypoglycemia in four patients [23, 24]. On 
the other hand, non-islet cell tumor-induced hypoglyce-
mia (NICTH) is caused by the secretion of incompletely 
processed precursors of IGF-II, which has an insulin-like 
hypoglycaemic activity [25]. We have shown that disrup-
tion of Otg1 caused hypoinsunlinemic hypoglycemia in 
mice, which implies a possible role of Otg1 mutations in 
human patients. The fact that Otg1 mutation blocked ves-
icle trafficking also suggests a new etiology of this rarely 
observed disease condition. Examine other regulators of 
vesicle trafficking in human patients may identify more 
causative mutations of hypoinsunlinemic hypoglycemia 
in the future.

The mechanism through which Otg1 modulates vesi-
cle trafficking remains to be investigated. The C. elegans 
homologue of Otg1 works as a partner of Rab-2 and 
Rund-1 in regulating neuronal vesicle trafficking [15]. 
However, mutations of the homologues of Rab-2 (Rab-
2a and Rab-2b) or Rund-1 (Rundc-1) showed differ-
ent phenotypes from that of Otg1 mutants in mice [26, 
27]. Unlike the C. elegans mutant, Otg1PB/PB mice did 
not show gross behavioral defects. The observation that 
Otg1PB/PB pups are capable of sucking milk suggests they 
may have normal neuronal functions (Additional file  3: 
Figure S2B). In addition, the human orthologue of Otg1 
is a tumor antigen. Thus, further studies of Otg1 may not 
only shed light on the mechanisms of vesicle trafficking 
in mammals, but also contribute to the study of related 
diseases such as metabolic abnormalities or cancer.

Conclusions
Our results revealed an essential role of Otg1 in vesicle 
trafficking, which is critical for peptide hormone secre-
tion, metabolic regulation and postnatal survival in mice.

Methods
Mice
All animal experiments were performed in accordance 
with protocols approved by the Animal Care and Use 
Committee of the Institute of Developmental Biology and 

Molecular Medicine (IDM), Fudan University. The Otg1 
mutant strain (H66eR12) was generated on the FVB/
NJ background and maintained on 12/12-hour light/
dark cycles. The Otg1 mutation carried by H66eR12 was 
induced with a piggyBac transposon (PB) insertion in the 
eighth exon. Mapping information of the PB insertion in 
Otg1 and the mutant genotyping protocol could be found 
from the PBmice database [16]. All assays were per-
formed in a mixed population of both males and females.

Metabolic assays
Blood glucose levels were analyzed with Glucometer Elite 
(LifeScan). For glucose tolerant tests (GTTs), animals 
were fasted two hours before receiving intraperitoneal 
injection of 20  % glucose saline solutions (2  g glucose 
per kg body weight). Tail vein blood was then sampled 
at 0, 15, 30, 60, 90 and 120 min after injection for blood 
glucose tests. For insulin tolerance tests (ITTs), 2-hour 
fasted mice received an intraperitoneal injection of insu-
lin (Humulin, Lilly) (0.75 U/kg body weight), then had tail 
vein blood glucose levels measured at 0, 15, 30, 45 and 
60  min later. ELISA was performed following the man-
ufacturer’s protocol to measure serum insulin (Crystal 
Chem Inc.), leptin (Crystal Chem Inc.) and growth hor-
mone (Millipore) concentrations. All samples were col-
lected from female mice at the age of P11.

Islet culture and glucose stimulated insulin secretion (GSIS)
Pancreatic islets were isolated by collagenase perfu-
sion in  situ, digested for 28  min and then purified by 
single layer histopaque (Sigma). Isolated islets from dif-
ferent mice were mixed and cultured in RPMI 1640 
medium supplemented with 11 mM glucose, 7.5  % FCS 
and 10 mM HEPES (Sigma). For GSIS assay, islets were 
washed in PBS and incubated in a 96-well plate with 
glucose-free Krebs–Ringer bicarbonate (KRB) medium 
(125  mM NaCl, 4.74  mM KCl, 1  mM CaCl2, 1.2  mM 
KH2PO4, 1.2  mM MgSO4, 5  mM NaHCO3, 25  mM 
HEPES, pH 7.4, with 0.1 % BSA) at 37 °C for 30 min, then 
incubated in KRB containing 3  mM or 25  mM glucose 
at 37 °C for 30 min with 5 islets per well. The amount of 
insulin released into the incubation medium in each well 
was assayed using ELISA (Crystal Chem Inc.). At least 5 
wells were examined for each genotype with each glucose 
concentration.

Western blot
Protein extraction was prepared with the RIPA lysis 
buffer and quantified with the BCA Protein Assay Kit 
(Pierce). Equal amounts of samples were separated by 
SDS/PAGE, transferred onto PVDF membranes (Mil-
lipore) and immunoblotted following standard proto-
cols. The antibodies used were: rabbit anti-OTG1 (Sigma 
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HPA018019, 1:1000), mouse anti-GAPDH (KangCheng 
Biotech KC-5G4, 1:10,000) rabbit anti-β-actin (Santa 
Cruz sc-1616-R, 1:2000), goat anti-mouse IgG-HRP 
(Santa Cruz sc-2005, 1:5000) and goat anti-rabbit IgG-
HRP (Santa Cruz sc-2004, 1:5000).

Histology and immunohistochemistry
Frozen sections were prepared by fixing tissues overnight 
in 4 % paraformaldehyde, followed by cryoprotection in 
30  % sucrose at 4  °C for two days and sectioning with 
given thickness for histological and immunofluorescence 
analysis. For morphological analysis, Section  (5  μm) 
were stained with hematoxylin and eosin to have images 
acquired with a Leica DMRXA2 microscope. For immu-
nofluorescence analysis, Section  (6–8  μm) were treated 
following the standard protocol with following antibod-
ies: rabbit anti-OTG1 (Sigma HPA018019, 1:1000), Alexa 
488 conjugated rabbit-anti-Giantin (Covance A488-114L, 
1:1000), rabbit anti-insulin (Santa Cruz sc-9168, 1:1000), 
goat anti-glucagon (Santa Cruz sc-7780, 1:1000), donkey 
anti-goat IgG-FITC (Chemicon AP180F, 1:2000), donkey 
anti-rabbit IgG-Cy3 (Millipore AP182C, 1:2000).

Electron microscopy
Pancreas tissues were fixed in a fresh fixative solution 
consisting of 2 % glutaraldehyde and 4 % paraformalde-
hyde, postfixed with 1 % osmium tetroxide in phosphate 
buffer at 4 °C and dehydrated in ascending concentrations 
of methanol and propylenoxide before being embedded 
in Epoxy resin. Ultra-thin sections were prepared using a 
Reichert ultramicrotome, contrasted with uranyl acetate 
and lead citrate and examined under a Philips CM120 
electron microscope.

Cell culture and live imaging
Rat pituitary GH3 cells were cultured at 37  °C in a 
humidified atmosphere containing 95 % air and 5 % CO2. 
The culture medium was DMEM supplemented with 
10 % fetal bovine serum, 100 U/ml penicillin and 100 mg/
ml streptomycin. GH3 cells were transfected with small 
hairpin RNA (shRNA) constructs (Sigma-Aldrich) or the 
VSVG-mEmerald plasmid (modified from Addgene plas-
mid #31947) with Lipofectamine 2000 (Invitrogen). For 
growth hormone secretion assay, cells were transferred to 
serum free medium 48 h after transfection and incubated 
for 2  h before ELISA. Live cell confocal images were 
acquired 48 h after transfection, using spinning disk con-
focal scan head (CSU-X/M2 N, Yokogawa) attached to an 
inverted microscope (IX-81, Olympus) and an EMCCD 
camera (DU897BV, Andor) controlled by Micro-Manager 
software. Images (512 × 512 pixels, voxel size 0.0946 μm/
pixel) were taken every 0.5 s for 400 frames. Live images 
were analyzed in NIH ImageJ with the MTrackJ plugin. 

VSVG containing vesicles (10/cell) were randomly 
selected in 11 Otg1 knockdown cells and 11 scramble 
shRNAs treated cells. Directionality of each vesicle was 
defined as its real transport distance divided by linear 
distance between the start and end positions.

Statistics
GSIS data were compared by two-way ANOVA analysis. 
All other data were compared by unpaired two-tailed 
Student’s t test. Results were shown as mean  ±  SEM. 
P < 0.05 was considered statistically significant.
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