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The propagation of the error covariance is an important, but not well-understood, aspect

of the statistical estimation of dynamical systems, such as data assimilation. One problem of-

ten encountered during covariance propagation in data assimilation is spurious loss of variance,

in which the estimated variance under-approximates the exact variance. Current approaches to

understanding and combatting this issue are formulated primarily in discrete terms and often fall

short of addressing fundamental causes. In an effort to understand the root cause of this spurious

loss of variance, this thesis closely examines the underlying continuum covariance dynamics. Mo-

tivated by atmospheric data assimilation, the problem for states governed by the continuity and

other related hyperbolic partial differential equations is considered. By analyzing the continuum

covariance propagation, this thesis is the first to identify a discontinuous change in the continuum

covariance dynamics along the hyperplane x1 = x2. Through a series of numerical experiments

and error analysis of full-rank covariance propagation, this work then demonstrates that standard

methods of variance propagation are inherently inaccurate because of this discontinuous change in

the continuum covariance dynamics. The result in discrete space is inaccurate variance propaga-

tion, in which full-rank covariance propagation can produce both spurious loss and gain of variance

by approximating the incorrect continuum dynamics. Based on the insights gained from the con-

tinuum analysis and numerical experiments, an alternative method to mitigate this inaccurate

variance propagation is proposed. As part of this attempt, this thesis develops a new correlation

function required to implement the proposed alternative method of covariance propagation, and

with immediate uses in other areas of data assimilation.

By studying the continuum problem, this research provides a new perspective on covariance

propagation that can strengthen our understanding of its practice in data assimilation applications.
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functions of length scale L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



xii
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continuous spectrum equation Eq. (1.9) for b = vx at various times with velocity field
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in solid black, and the exact variances and correlations are given in black dashed.
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3.4 Trace time series for GC (top row) and FOAR (bottom row) for the spatially-varying

initial variance (the square of Eq. 3.4). Each panel corresponds to different values
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3.7 Propagated covariances at the final time T (slightly after a full period) for initial

covariances with zero initial correlation lengths (c = L = 0) for all four propaga-
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Chapter 1

Introduction

Data assimilation is an application of Bayesian estimation to a dynamical system. This

approach statistically combines a dynamical model and observational data, taking uncertainties

into account, to determine the best estimate of initial model states and unknown parameters (e.g.,

Kalman, 1960; Kalnay, 2003; Evensen, 2009). Data assimilation plays a key role in large-scale

geophysical applications and directly impacts society, for instance, through numerical weather

prediction (NWP) by improving forecast accuracy (Kalnay, 2003; Bauer et al., 2015).

Uncertainty is an essential component of data assimilation and is quantified through the

estimation error covariance. Data assimilation techniques evolve the estimation error covariance

along with the model state, either explicitly as in the Kalman filter, implicitly as in variational

methods, or using a reduced-rank approximation as in ensemble schemes (Kalman, 1960; Talagrand

and Courtier, 1987; Courtier and Talagrand, 1987; Evensen, 1994). To provide context for the

problem addressed in this thesis, consider a stochastic model state N -vector q that is propagated

forward discretely in data assimilation schemes from time tk−1 to tk as

qk = Mk,k−1qk−1, (1.1)

where Mk,k−1 is the deterministic N × N propagation matrix representing the model dynamics.

For simplicity, we consider here the linear case with no forcing, random or otherwise. From the

model state we can define the N × N symmetric positive semi-definite covariance matrix at time

tk,

P k = E[(qk − qk)(qk − qk)T], (1.2)
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where E[·] is the expectation operator, qk = E[qk] is the mean state, and superscript T denotes

transpose. The basic equation of discrete covariance propagation then follows directly from the

discrete state propagation in Eq. (1.1),

P k = Mk,k−1(Mk,k−1P k−1)T, (1.3)

where P k−1 and P k are the covariance matrices at times tk−1 and tk, respectively (Kalman, 1960;

Jazwinski, 1970, Ch. 6). We omit a process noise term in Eq. (1.3) and will address this in later

discussions.

Covariance propagation, Eq. (1.3), is a challenging mathematical problem that is highly

relevant to data assimilation applications. Explicit computation of Eq. (1.3) is computationally

expensive, even in modest-sized systems. Data assimilation is typically practiced in large-scale

geophysical settings, such as NWP, which currently has dimensionality N on the order of 109, for

example. In particular, inaccurate covariance propagation is a significant mathematical issue that

can have serious consequences in data assimilation applications. One such example is spurious loss

of variance, which if not addressed can lead to poor performance of data assimilation techniques and

even filter divergence in ensemble-based schemes (Maybeck, 1982; Houtekamer and Mitchell, 1998;

Furrer and Bengtsson, 2007). This variance loss is often attributed to reduced-rank approximations

of the covariance or to numerical dissipation or diffusion. Thus, current methods to combat variance

loss are formulated in discrete terms and can fall short of addressing fundamental causes.

It is typically assumed that if the numerical method accurately propagates the state, it is

sufficient for the covariance. Therefore, Eq. (1.3) itself is often overlooked as a source of inaccurate

covariance propagation in data assimilation applications. As shown in this thesis for advective dy-

namics, this assumption is incorrect because of the fundamental nature of the continuum covariance

dynamics. In fact, the problem is more than just spurious loss of variance, but rather is inaccurate

variance propagation. To demonstrate this requires returning to the continuum formulation of co-

variance propagation, which is not often done in the data assimilation literature. Through careful

analysis of the continuum covariance propagation, my thesis uncovers the fundamental cause of
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inaccurate variance propagation in advective systems.

1.1 Background and Motivation

In the past, spurious loss of variance has primarily been discussed in the context of ensemble

schemes (e.g., Maybeck, 1982; Tippett et al., 2003; Evensen, 2009, and references therein), where

it can be attributed to the use of reduced-rank covariance representations (Furrer and Bengts-

son, 2007). As a result, several auxiliary methods have been developed to circumvent spurious

loss of variance and prevent filter divergence (e.g., Anderson and Anderson, 1999; Mitchell and

Houtekamer, 2000; Tippett et al., 2003; Houtekamer and Mitchell, 2005; Cohn, 2010; Berner et al.,

2017; El Gharamti, 2018). It has been observed, however, that even full-rank covariance propaga-

tion can result in loss of variance, particularly for advective dynamics (Ménard and Chang, 2000;

Ménard et al., 2000; Lyster et al., 2004; Ménard et al., 2021). Figure 1.1 is one such example,

where Ménard et al. (2000) observes variance loss caused by full-rank covariance propagation (i.e.,

Eq. 1.3) in the case of the two-dimensional advection equation. Panel (a) of Fig. 1.1 plots the

variances extracted from full-rank covariance propagation (Eq. 1.3) in contrast to panel (b) which

computes the variance directly.

The difference between panels (a) and (b) of Fig. 1.1 suggests the loss of variance may

actually be caused by the dynamics and numerical propagation, rather than from reduced-rank

representations of the covariance. The loss of variance in Fig. 1.1 occurs globally but is most

pronounced in the southern hemisphere. In this region, strong horizontal wind shear elongates

correlation lengths along the direction of the flow while shrinking correlation lengths orthogonal to

the flow. As these correlation lengths orthogonal to the flow shrink, gradients near the covariance

diagonal become sharp and variance loss is observed (Ménard et al., 2000, pp. 2659–2660). Other

works, such as Lyster et al. (2004) and Ménard et al. (2021), observe a similar phenomenon: as

correlation lengths shrink, variance loss tends to becomes worse. As a consequence, the spurious loss

of variance observed during full-rank covariance propagation is attributed to numerical dissipation

or diffusion (Ménard et al. 2000, p. 2667; Pannekoucke et al. 2021, p. 8), or the inability to resolve



4

AUGUST 2000 2659M É N A R D E T A L .

FIG. 1. Forecast error variance after 4 days, starting from unit
variance. (a) The variance obtained from using M(MP)T, and (b) the
variance obtained by using the advection equation for variance.

skill (i.e., lower analysis error variance) in jet regions,
for instance, than what was actually supported by com-
parison with a control dataset. Spurious results of this
type will be shown later in this section.
To understand this problem, let us first consider the

evolution of the covariance function corresponding to
the continuum dynamics (2.9). In the absense of random
forcing f, the covariance function obeys generalized ad-
vection dynamics in a four-dimensional space (Cohn
1993), twice that of the spatial dimension of the trans-
port problem (2.9):

]P
1 V · = P 1 V · = P 5 0, (3.4)1 1 2 2]t

where P 5 P(x1, x2, t) is the covariance function of
two points, x1 5 (l1, f 1) and x2 5 (l2, f 2). Here V1
5 [u(x1, t), y(x1, t)] is the wind vector at the point x1,
and similarly for V2, and =1, =2 are the horizontal gra-
dient operators with respect to the points x1 and x2.
Since the operators V1 · =1 and V2 · =2 commute, the
resolvent operator of (3.4) is the product of two resol-
vent operators, one solving the advection problem with
respect to x1 and the other with respect to x2 (Cohn
1993, appendix B), which is in fact operator splitting.
If we were to discretize each of these resolvents as a
discrete operator Mk, we would get 5 Mk(Mk )Tf aP Pk11 k

with and stored as matrices, which is preciselya fP Pk k11
the discrete Kalman filter covariance evolution equation.
If, on the other hand, we were to discretize (3.4) directly,
we would in general obtain a different and possiblymore
accurate result. For example, solving a two-dimensional
advection equation by using operator splitting with one-
dimensional advection schemes is known to have ad-
verse consequences in general (e.g., Lin and Rood 1996,
section 2). Solving the two-dimensional equation in a
manner that obeys more directly the physics generally
leads to superior results.
To assess the numerical accuracy of the covariance

computed from Mk(Mk )T, we use some properties ofaPk

the analytical solution of the continuum covariance evo-
lution equation (3.4). Equation (3.4) can be solved by
the method of characteristics. Its solution has the prop-
erty that the covariance between a pair of material par-
ticles is conserved during transport (Cohn 1993); that
is, the covariance function is a Lagrangian-conserved
quantity. Consequently, the variance V(x, t)[ P(x, x, t),
which is the covariance of a material particle with itself,
is conserved along the particle trajectory. That is to say,
the variance obeys the advection dynamics:

]V
1 V · =V 5 0. (3.5)

]t

Let us compare the variance obtained from Mk(Mk )TaPk

with the variance obtained using the advection dynamics
(3.5) directly. Using a spatially uniform initial variance
field V [ 1, an integration on the 1100-K isentropic
surface was performed in pure transport mode, that is,

with no data assimilation, using the GEOS DAS winds
from 0000 UTC 6 September to 0000 UTC 10 Septem-
ber 1992. A first-order autoregressive (FOAR) corre-
lation model [see Eq. (5.2)] with a length scale of 3600
km was used as the initial correlation. This length scale
is typical and a discussion on how it was obtained will
be given in Part II. According to the Lagrangian con-
servative property, the variance should remain uniform
and of unit value regardless of the advecting wind field.
The results are displayed in Fig. 1. In Fig. 1a the var-
iance obtained from Mk(Mk )T is depicted. We observeaPk

a significant decrease in magnitude from unity, espe-
cially in the southern midlatitudes with values below
0.5. Figure 1b displays the variance obtained by apply-
ing the discrete transport model directly to the advection
equation (3.5). A departure from unity of at most 3%
is seen. These results show that the standard covariance
evolution equation (2.19) used in discrete Kalman fil-
tering can give rise to a significant and spurious loss of
variance.
To shed some light on this loss of variance, let us

take a closer look at the Mk(Mk )T computation, inaPk

which the covariance evolution is obtained by applying
the transport model on each column of P and then on
each row. Each column or row of P represents the co-
variance between a grid point and all the other grid
points of the domain. These columns and rows have
generally a near-zero value away from the diagonal,
which rises rapidly over a relatively short distance to-
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Figure 1.1: Figure 1 from Ménard et al. (2000), illustrating the variances σ2 associated with
covariances P on an isentropic surface of Earth’s atmosphere governed by the advection equation
(Eq. 1.6 for b1 = b2 = 0). Panel (a) plots the variances extracted from the full-rank covariance
propagation, Eq. (1.3), propagated forward in time 4 days with unit initial variance. Panel (b) plots
the variance obtained by numerically solving the variance equation, Eq. (1.8) for b = 0, directly up
to the same time as in panel (a) with unit initial variance.
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correlation lengths (Lyster et al., 2004, p. 2327).

Up to this point, the underlying cause of spurious loss of variance during the propagation

of covariances has been unclear. Most often it is attributed to reduced-rank representation of the

covariances, or in the case of advective systems, numerical dissipation during full-rank propagation.

My thesis shows that the fundamental source of variance loss in advective systems is not simply due

to low-rank approximations or numerical dissipation, but is caused by the continuum covariance

dynamics itself. My thesis demonstrates that standard methods of variance propagation, namely

that associated with Eq. (1.3), are inherently inaccurate because the hyperplane x1 = x2 is a

characteristic surface for advective dynamics. This characteristic surface results in a discontinuous

change in the continuum covariance dynamics, which then causes problems when evolving variances

according to Eq. (1.3). Therefore, the spurious loss of variance observed during full-rank covariance

propagation is actually a manifestation of inaccurate variance propagation.

We can gain an intuitive sense for why covariance propagation can cause inaccurate vari-

ance propagation by interpreting the problem through the lens of differential equations. Standard

methods of covariance propagation, i.e., Eq. (1.3), treat the covariance as two problems in N space

dimensions, where N is the dimension of the state: the propagation matrix Mk,k−1 is derived from

the state dynamics in N space dimensions, and then applied twice to the covariance, first along its

columns and then along its rows. The covariance, however, is a quantity in 2N space dimensions

with properties that cannot necessarily be captured in this way, such as the characteristic surface

x1 = x2 in advective systems. In addition, the discontinuity along the hyperplane x1 = x2 is not

treated carefully for standard implementations of Eq. (1.3), whereby acting along the columns and

rows, Eq. (1.3) approximates across this discontinuity. My thesis shows that the inherent structure

of Eq. (1.3), coupled with the discontinuous change in the continuum dynamics along x1 = x2, is

the underlying cause of inaccurate variance propagation. This is not a problem of numerics, per

se, but rather is a problem that occurs when passing from the continuous to discrete problem.

The objective of my thesis is to carefully present the problem of inaccurate variance propaga-

tion associated with covariance propagation, identify its source in advective systems, and open the
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door to potential solutions. By approaching covariance propagation from the continuum, my thesis

is able to rigorously demonstrate that the fundamental problem is caused by the continuum dy-

namics itself, affecting full-rank covariance propagation and therefore its low-rank approximations.

In its totality, this work provides a new perspective on covariance propagation for data assimilation

applications.

1.2 Research Objectives and Scope of Work

The results of this thesis directly impact geophysical data assimilation applications that rely

on advective dynamics, such as general circulation models and chemical transport models. Thus,

this work is scientifically relevant and impactful within the data assimilation community while

remaining mathematically rigorous.

Motivated by atmospheric and other large-scale, geophysical data assimilation applications,

consider states q = q(x, t) governed by the following hyperbolic partial differential equation (PDE)

on the surface of the sphere of radius r > 0, x ∈ S2
r ,

qt + v · ∇q + bq = 0, (1.4)

q(x, t0) = q0(x),

where the initial state q0 is stochastic, while scalar b = b(x, t) and velocity field v = v(x, t) are

deterministic. For b =∇ · v, Eq. (1.4) represents mass conservation (e.g. Holton and Hakim, 2013,

Ch. 2.5), and b = 0 yields the advection equation. The covariance P = P (x1,x2, t) is defined as

P (x1,x2, t) = E
{

[q(x1, t)− q(x1, t)][q(x2, t)− q(x2, t)]
}
, (1.5)

where E{·} is the expectation operator and q = E{q} denotes the mean state. From the state

equation, Eq. (1.4), and the covariance definition in Eq. (1.5), the covariance satisfies the following

hyperbolic PDE for x1,x2 ∈ S2
r ,

Pt + v1 ·∇1 P + v2 ·∇2 P + (b1 + b2)P = 0,

P (x1,x2, t0) = P0(x1,x2). (1.6)
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Subscripts 1, 2 denote quantities evaluated with respect to x1,x2, respectively, with ∇i denoting

the gradient with respect to xi for i = 1, 2.

Both the model state and covariance equations given in Eq. (1.4) and (1.6) are hyperbolic

PDEs, the former in two space dimensions and the latter in four. For the covariance equation, the

characteristic (or trajectory) equations that describe the coordinate vectors x1 and x2 of parcels

located initially at coordinates s1 and s2, respectively, both satisfy the same ordinary differential

equation,

dx

dt
= v(x(t), t), (1.7)

x(t0) = s,

(Shearer and Levy, 2015, following their Ch. 3 notation). The coordinate vectors xi for i = 1, 2 can

be written as xi = x(t; si), which is the solution to Eq. (1.7) that represents the arrival point xi at

time t of the characteristic (trajectory) departing from the point si at t0. In the case that initial

parameters for x1 and x2 are equal, s1 = s2, then it follows from Eq. (1.7) that x1 and x2 are also

equal, x1 = x(t; s1) = x(t; s2) = x2 . Therefore, initial covariances that start on the hyperplane

x1 = x2 (i.e., s1 = s2) remain on x1 = x2 for all time, implying that the x1,x2-hyperplane is

everywhere characteristic (Cohn, 1993, p. 3130).

As shown in Ch. 2, there is a discontinuous change in solutions to Eq. (1.6) along the x1,x2-

hyperplane in the limit as correlation lengths tend to zero, for example in the vicinity of sharp

gradients in the velocity field which can arise naturally, as seen for instance in Lyster et al. (2004).

For initial states q0 that are spatially correlated, meaning initial covariances P0 have nonzero

initial correlation lengths, the dynamics along the covariance diagonal satisfy the variance equation,

σ2 = σ2(x, t) for x ∈ S2
r ,

σ2
t + v · ∇σ2 + 2bσ2 = 0, (1.8)

σ2(x, t0) = σ2
0(x).

However, for initial states q0 that are spatially uncorrelated, we will see in Ch. 2, that the dynamics
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along the diagonal instead satisfy the continuous spectrum equation, for P c = P c(x, t) and x ∈ S2
r ,

P ct + v · ∇P c +
(
2b−∇ · v

)
P c = 0, (1.9)

P c(x, t0) = P c0 (x),

which is distinct from the variance equation for divergent velocity fields (i.e., ∇ · v 6= 0), as is the

case in most geophysical applications.

This discontinuous change in the continuum dynamics along the x1,x2-hyperplane as cor-

relation lengths tend to zero, as demonstrated in this thesis, is the direct cause of the inaccurate

variance propagation associated with Eq. (1.3). Chapter 3 illustrates numerically that as corre-

lation lengths become small, the discrete dynamics along the diagonal of the covariance matrix

change and do not approximate either Eq. (1.8) or Eq. (1.9). The inaccurate variance propagation

observed during discrete covariance propagation is not an issue of the numerical method. As shown

in Ch. 4, even for a numerical scheme that is chosen to preserve conservation properties of the

state, variance, and covariance, inaccurate variance propagation is still significant. These examples

are highly relevant in geophysical applications, particularly for chemical transport models, where

correlation lengths orthogonal to the flow shrink in regions of wind shear (e.g., Fig. 1.1). Increasing

the spatial resolution will not necessarily mitigate the resulting inaccurate variance propagation,

as correlation lengths in these regions will continue to shrink regardless of the grid resolution.

The cause of inaccurate variance propagation can be seen explicitly by analyzing how Eq. (1.3)

approximates the continuum dynamics along the covariance diagonal. For standard spatial dis-

cretizations, Eq. (1.3) will approximate diagonal elements with off-diagonal elements. Recall that

by positive semi-definiteness of the covariance, off-diagonal elements are necessarily smaller than

the diagonal elements: B2
ij ≤ BiiBjj for any symmetric positive semi-definite matrix B and any ar-

bitrary row and column indices i, j. Thus, as correlation lengths shrink or, more generally, as sharp

gradients form near the diagonal, one would expect that Eq. (1.3) would poorly approximate the

covariance diagonal. Since there is a discontinuous change in dynamics along the x1,x2-hyperplane

for advective systems, approximating diagonal elements with off-diagonal elements is even more
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problematic. Through careful error analysis of Eq. (1.3), we will see in Ch. 5 that the contin-

uum dynamics approximated along the diagonal defined by Eq. (1.3) change as a function the

grid length and correlation length. When the ratio of the grid length to the correlation length

approaches unity, error terms arise that completely alter the dynamics being approximated along

the covariance diagonal.

Motivated by the error analysis of Ch. 5, Ch. 6 explores a method of building a correction

to full-rank propagation from the continuum. Since the error terms involve powers of the ratio of

the grid length to the correlation length, correcting Eq. (1.3) is not straightforward. In light of

this, my thesis considers an alternative method of propagating covariances that directly addresses

the observed inaccurate variance propagation. Rather than evolving the covariance at full rank

or approximating its evolution using reduced-rank methods, the variance and correlation length

are evolved directly and covariances are reconstructed using a parametric correlation function.

First termed “local covariance evolution” in Cohn (1993, Sec. 4), this method mitigates inaccu-

rate variance propagation due to Eq. (1.3) by evolving the variance directly, is not plagued with

rank-deficiency issues and spurious correlations by construction, and is computationally efficient.

Chapters 7 and 9 describe this method in detail and present preliminary results. For this method,

a new correlation function is derived in Ch. 8, that in addition to being used for local covariance

evolution, can be applied to other areas of data assimilation, such as for covariance modeling and

localization.

The outline of this thesis is as follows. Chapter 2 establishes the foundation for this work

by deriving the discontinuous change in the continuum covariance dynamics along the x1,x2-

hyperplane in the limit as correlation lengths tend to zero. Chapter 3 explores the impact of

this discontinuous change in continuum dynamics during discrete covariance propagation in a sim-

ple one-dimensional example. This is followed by Ch. 4, which demonstrates that even when an

appropriate numerical scheme is chosen to preserve conservation properties, inaccurate variance

propagation is still quite severe. The results of Chs. 3 and 4 then motivate Ch. 5, where the con-

tinuum dynamics being approximated along the covariance diagonal by Eq. (1.3) is derived and
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its dependence on correlation length is revealed. Chapter 5 concludes with a discussion of recent

work by Pannekoucke et al. (2021) in the context of the error analysis in this chapter. Chapter 6

explores the potential of using this error analysis to correct full-rank propagation and addresses a

correction proposed by Ménard et al. (2021). The alternative method of covariance propagation is

introduced in Ch. 7, followed by its implementation in one space dimension in Ch. 9 and preliminary

results. Chapter 8 describes the new parametric correlation function whose derivation is motivated

by Ch. 7. Concluding remarks and discussion of future work is given in Ch. 10. Appendices A – D

provide additional information that supplement the work presented in the main text.



Chapter 2

Continuum Covariance Propagation

Chapter 2 serves as the theoretical foundation upon which this thesis is built, published in

Sec. 2 of Gilpin et al. (2022). From the continuum covariance equation in Eq. (1.6), we will identify

the discontinuous change in dynamics along the hyperplane x1 = x2 as correlation lengths tend

to zero and will derive the continuous spectrum equation, Eq. (1.9). To derive this discontinuous

change in dynamics requires recasting the initial value problem using integral operators and classical

results from functional analysis and spectral theory. Novel to this work is the derivation of the

continuum analogue of Eq. (1.3) in Sec. 2.1 and the use of the continuum polar decomposition of

the fundamental solution operator, Eq. (2.24). This continuum approach is necessary to provide

important insights into the behavior of the fundamental solution and covariance operators and

thus derive the discontinuous change in dynamics. Appendix A includes proofs and an additional

derivation of the continuous spectrum solution to supplement the discussion presented in this

chapter.

For this analysis, we will consider the state and covariance equations as PDEs with solutions

in the Hilbert space L2(S2
r) and L2(S2

r × S2
r), respectively, define the associated linear operators,

and use tools from functional analysis to study these equations and operators.
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2.1 Preliminaries

Let Ω = S2
r and take x ∈ Ω and t ≥ t0. We will consider the generalized advection equation

for the model state q = q(x, t) given by Eq. (1.4) in Ch. 1, reprised here,

qt + v · ∇q + bq = 0,

q(x, t0) = q0(x). (1.4 revisited)

Recall b = b(x, t) is a scalar, noting that setting b = ∇ · v yields the continuity equation. From

Eq. (1.4) we have

d

dt

∫
Ω
q2dx+

∫
Ω

(2b−∇ · v)q2dx = 0, (2.1)

which is derived via integration by parts, where we assume that 2b−∇ · v ∈ L∞(Ω) and q0 ∈ L2(Ω)

so that Eq. (1.4) has a unique solution q ∈ L2(Ω) for all time (e.g. using energy arguments applied

to Eq. 2.1 similar to those presented in Shearer and Levy, 2015, Sec. 5.3). We write this solution

as

q(x, t) = (Mtq0)(x), (2.2)

whereMt : L
2(Ω) 7→ L2(Ω) is the solution operator of Eq. (1.4),

(Mtf)(x) =

∫
Ω
M(x, t; ξ)f(ξ)dξ. (2.3)

The subscript t on all operators denoted using the calligraphy font style, as in Mt for example,

indicates the operator evaluated at time t, not the time derivative. The kernel of the operatorMt,

M = M(x, t; ξ), is the fundamental solution of Eq. (1.4),

Mt + v ·∇M + bM = 0,

M(x, t0; ξ) = δ(x, ξ), (2.4)

where the initial condition is the Dirac delta. Here, we simply view the Dirac delta as the kernel

of the identity operator I : L2(Ω) 7→ L2(Ω),

(If)(x) = f(x) =

∫
Ω
δ(x, ξ)f(ξ)dξ, (2.5)
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for all f ∈ L2(Ω).

Equation (2.2) is analogous to the discrete state propagation computed in data assimilation

schemes. We can propagate our discrete state q in Eq. (1.1) from time t0 to tk,

qk = Mk,k−1Mk−1,k−2...M2,1M1,0︸ ︷︷ ︸
Mk,0

q0, (2.6)

which is the discrete version of Eq. (2.2) evaluated at time t = tk; the operatorMtk is the continuum

version of the propagation matrix Mk,0.

With the model state now defined, we can derive the corresponding covariance evolution

equation for P = P (x1,x2, t) with x1,x2 ∈ Ω and t ≥ t0, given by Eq. (1.6) in Ch. 1, reprised here,

Pt + v1 ·∇1 P + v2 ·∇2 P + (b1 + b2)P = 0,

P (x1,x2, t0) = P0(x1,x2), (1.6 revisited)

where again,∇i refers to the gradient with respect to xi, and vi = v(xi, t), bi = b(xi, t) for i = 1, 2.

The solution of the covariance evolution equation Eq. (1.6) can be expressed using the fun-

damental solution operatorMt and its adjointM∗t . The adjoint fundamental solution operator is

defined using the inner product over the Hilbert space L2(Ω),

(M∗t f, g)2 = (f,Mtg)2 ∀f, g ∈ L2(Ω). (2.7)

The adjoint operator,M∗t : L2(Ω) 7→ L2(Ω), can be expressed as an integral operator whose kernel

M∗ is the solution to the adjoint final value problem associated with Eq. (1.4),

(M∗t f)(ξ) =

∫
Ω
M∗(ξ;x, t)f(x)dx. (2.8)

With respect to the method of characteristics, the fundamental solution operatorMt propagates

the solution forward along the characteristics determined by departure points, and the adjoint

fundamental solution operator M∗t propagates the solution backwards along the characteristics

determined by arrival points. This yields the symmetry property (Courant and Hilbert, 1962,

p. 729) that at any fixed time t the kernels satisfy

M(x, t; ξ) = M∗(ξ;x, t). (2.9)
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Using Eq. (2.9), we can express the covariance in terms of the kernels of the fundamental solution

and adjoint fundamental solution operators,

P (x1,x2, t) =

∫
Ω

∫
Ω
M(x1, t; ξ1)P0(ξ1, ξ2)M∗(ξ2;x2, t)dξ2dξ1, (2.10)

or simply

P t =MtP0M∗t , (2.11)

where P0 : L2(Ω) 7→ L2(Ω) is the operator whose kernel is P0,

(P0f)(x1) =

∫
Ω
P0(x1,x2)f(x2)dx2, (2.12)

and P t : L2(Ω) 7→ L2(Ω) is the resulting operator at time t,

(P tf)(x1) =

∫
Ω
P (x1,x2, t)f(x2)dx2. (2.13)

Thus, the covariance evolution equation Eq. (1.6) is interpreted as the evolution equation for the

kernel of the covariance operator P t. As with the state propagation, Eq. (2.11) evaluated at time

tk is the continuum version of the discrete covariance propagation,

P k = Mk,0P 0M
T
k,0, (2.14)

following from Eqs. (1.3) and (2.6).

2.2 The Polar Decomposition

We next define the (left) polar decomposition of the fundamental solution operator Mt,

which will bring to light important properties of the covariance evolution that will be discussed in

Sec. 2.3. The polar decomposition is a canonical form for all bounded linear operators on Hilbert

spaces (Reed and Simon, 1972, p. 196 – 198). It is the unique decomposition Mt = DtU t where

Dt = (MtM∗t )1/2 and U t is a partial isometry.

To derive the polar decomposition forMt, we first decompose the fundamental solution M

into

M(x, t; ξ) = d(x, t)u(x, t; ξ) (2.15)
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where d = d(x, t) and u = u(x, t; ξ) satisfy the following PDEs,

dt + v ·∇ d+

(
b− 1

2
∇ · v

)
d = 0,

d(x, t0) = 1, (2.16)

ut + v ·∇ u+
1

2
(∇ · v)u = 0.

u(x, t0; ξ) = δ(x, ξ), (2.17)

The solution u of Eq. (2.17) is quadratically conservative,

d

dt

∫
Ω
u2(x, t; ξ)dx = 0, (2.18)

and therefore defines a bounded linear operator U t : L2(Ω) 7→ L2(Ω) whose kernel is the solution

to Eq. (2.17),

(U tf)(x) =

∫
Ω
u(x, t; ξ)f(ξ)dξ. (2.19)

The operator U t is an invertible isometry and therefore unitary.

To obtain the operator Dt, consider the operator MtM∗t . From Eq. (2.11), the operator

MtM∗t is just the covariance operator P t when the initial covariance operator P0 is the identity

operator Eq. (2.5); equivalently, the kernel of the operatorMtM∗t is the solution to the covariance

equation Eq. (1.6) when the initial covariance P0(x1,x2) is the Dirac delta, δ(x1,x2). We show

in Appen. A.1 that the solution of Eq. (1.6) with the initial condition P0(x1,x2) = δ(x1,x2) is

P (x1,x2, t) = d2(x1, t)δ(x1,x2), where d is the solution to Eq. (2.16). In other words, according

to Eq. (2.11),MtM∗t is in fact a multiplication operator. A multiplication operator K : L2(Ω) 7→

L2(Ω) is defined as one for which

(Kf)(x) = k(x)f(x) =

∫
Ω
k(ξ)δ(x, ξ)f(ξ)dξ, (2.20)

where k(x) ∈ L∞(Ω) is the multiplication function. The operatorMtM∗t : L2(Ω) 7→ L2(Ω),

(MtM∗t f)(x) = d2(x, t)f(x), (2.21)
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is a multiplication operator, where the multiplication function satisfies the following differential

equation,

d2
t + v ·∇ d2 + (2b−∇ · v) d2 = 0,

d2(x, t0) = 1. (2.22)

As the operator MtM∗t is non-negative, its square root exists, and we define the operator

Dt : L
2(Ω) 7→ L2(Ω) as this square root,

(Dtf)(x) = ((MtM∗t )1/2f)(x) = d(x, t)f(x), (2.23)

with the multiplication function for Dt being the solution to Eq. (2.16). Note that because the

operatorDt is a multiplication operator with a real-valued multiplication function, it is self-adjoint.

The decomposition Eq. (2.15) of the kernel of the fundamental solution operator gives us the

(left) polar decomposition ofMt,

Mt = DtU t, (2.24)

with Dt and U t defined above. In the next section, we use this polar decomposition to study the

continuum covariance propagation.

Remark 1. The polar decomposition is a canonical form for all bounded linear operators on Hilbert

spaces (Reed and Simon, 1972, pp. 196 – 198) and is crucial for deriving the continuous spectrum

equation Eq. (1.9) in Sec. 2.3. Related to the polar decomposition is the continuum singular value

decomposition (SVD), which is a canonical form for compact linear operators on Hilbert spaces

(Reed and Simon, 1972, Thm. VI.17). The fundamental solution operator Mt defined for the

advective dynamics presented in this work, Eq. (1.4), is not compact, therefore the continuum SVD

does not apply. If a diffusion term were added to Eq. (1.4), say κ∇2q for κ > 0 a diffusion

coefficient and ∇2 the Laplacian operator, the corresponding fundamental solution operator would

become compact and a continuum SVD would exist. The discrete SVD is used widely in matrix

analysis, and particularly in NWP data assimilation literature (Lorenz, 1965; Buizza and Palmer,

1995; Ehrendorfer and Tribbia, 1997; Barkmeijer et al., 1998).
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2.3 The Discontinuous Change in the Continuum Covariance Dynamics

The solution of the continuum covariance evolution equation Eq. (1.6) depends on the initial

covariance P0(x1,x2), and we show in this section how the behavior of the solution changes as

the initial correlation length tends to zero. To do so, we will interpret the covariance function

P (x1,x2, t) as the kernel of the operator P t defined in Eq. (2.13), whose evolution can be written

in terms of the fundamental solution operator, its adjoint, and the initial covariance, as given in

Eq. (2.11).

Consider two cases for the initial covariance P0(x1,x2). First, assume the initial covariance

is continuous on Ω × Ω, and denote it as P d0 (x1,x2). Since P d0 is continuous, the solution to the

covariance equation Eq. (1.6) is a strong solution and has a bounded L2-norm. Therefore the

corresponding covariance operator, which we will denote as Pdt , is a self-adjoint Hilbert-Schmidt

operator (Reed and Simon, 1972, pp. 210 – 211). Hilbert-Schmidt operators are a subclass of the

compact operators, and it follows from spectral theory that self-adjoint Hilbert-Schmidt operators

only contain eigenvalues in their spectrum (Hunter and Nachtergaele, 2001, pp. 230 – 232) with the

possible exception of zero in the continuous spectrum. The set of eigenvalues is often referred to as

the discrete spectrum, hence we can refer to the covariance operator Pdt as the discrete spectrum

covariance operator.

Now, consider the case where the initial state q0 is spatially uncorrelated, whose covariance

we represent by P c0 (x1)δ(x1,x2), and assume that the function P c0 is continuous on Ω. The Dirac

delta in the initial covariance reduces the initial covariance operator Eq. (2.12) to a multiplication

operator Eq. (2.20) with multiplication function P c0 ; denote this operator as Pc0. We can see how

this impacts the corresponding covariance operator, which we denote as Pct , by applying the polar

decomposition Eq. (2.24) to Eq. (2.11) with P0 = Pc0,

Pct = DtU tPc0U∗tDt = DtP̃ tDt, (2.25)

where

P̃ t = U tPc0U∗t . (2.26)
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From the definition of U t in Eq. (2.19), it follows that the operator P̃ t : L2(Ω) 7→ L2(Ω) has kernel

P̃ = P̃ (x1,x2, t) given by

P̃t + v1 ·∇1 P̃ + v2 ·∇2 P̃ +
1

2
(∇1 ·v1 +∇2·v2)P̃ = 0,

P̃ (x1,x2, t0) = P c0 (x1)δ(x1,x2), (2.27)

whose solution is shown in Appen. A.1 to be

P̃ (x1,x2, t) = P̃ c(x1, t)δ(x1,x2) (2.28)

where

P̃ ct + v · ∇P̃ c = 0,

P̃ c(x, t0) = P c0 (x). (2.29)

Thus, P̃ t is a multiplication operator, and it follows from Eqs. (2.16) and Eq. (2.29) that Pct in

Eq. (2.25) is also a multiplication operator,

(Pctf)(x1) = P c(x1, t)f(x1) =

∫
Ω
P c(x1, t)δ(x1,x2)f(x2)dx2, (2.30)

where P c = d2P̃ is the solution to the continuous spectrum equation

P ct + v ·∇ P c + (2b−∇ · v)P c = 0,

P c(x, t0) = P c0 (x), (1.9 revisited)

(see Appen. A.2 for alternative derivation). Since multiplication operators contain only a continuous

spectrum (Hunter and Nachtergaele, 2001, pp. 219, 240), we will refer to Pct as the continuous

spectrum covariance operator and to P c as the continuous spectrum solution.

Thus, we have shown that the solution of the covariance evolution equation Eq. (1.6) for

initial condition P c0 (x1)δ(x1,x2) is P (x1,x2, t) = P c(x1, t)δ(x1,x2); white noise evolved under the

state dynamics Eq. (1.4) remains white. Further, we can see explicitly that the dynamics of the

covariance along the x1,x2-hyperplane are governed by the continuous spectrum equation Eq. (1.9)
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for spatially uncorrelated initial states, rather than by the variance equation

σ2
t + v ·∇ σ2 + 2bσ2 = 0,

σ2(x, t0) = σ2
0(x) = P d0 (x,x), (1.8 revisited)

which follows directly from Eq. (1.6) when the initial covariance is continuous on Ω× Ω . Only in

cases where the velocity field is divergence-free are the continuous spectrum equation and variance

equation identical. The dynamics of the covariance along the x1,x2-hyperplane are governed by the

variance equation Eq. (1.8) for all continuous initial covariances, independently of nonzero initial

correlation lengths, but at zero correlation length the dynamics change abruptly to those of the

continuous spectrum equation Eq. (1.9).

2.4 Conclusions and Discussion

Covariances associated with spatially uncorrelated initial states, which correspond to covari-

ances with zero initial correlation length scales, are limiting cases in our analysis, as well as in

practice. Atmospheric wind fields, for example, have sharp vertical correlation structures relative

to long horizontal correlations that need to be represented in covariances for NWP models (Phillips,

1986), and horizontal wind shear leads to tracer correlations that shrink in the direction perpen-

dicular to the flow such that they are no longer spatially resolved (Lyster et al., 2004). Through

careful analysis and use of the polar decomposition, we are able to derive the discontinuous change

in dynamics along the x1,x2-hyperplane as the correlation length approaches zero for covariances

governed by Eq. (1.6), which is not readily apparent when first considering the model state and

covariance equations nor when only considering these equations in discrete space.

The analysis performed in this chapter serves as the foundation for understanding covariance

propagation in both the continuum and discrete space. We will see in the next chapter thats

knowing the full, continuum behavior of the covariance will be essential to properly interpret the

numerical experiments.



Chapter 3

Numerical Demonstration Part I: Inaccurate Variance Propagation

With the discontinuous change in the continuum dynamics established in Ch. 2, one may

then ask how this behavior impacts covariance propagation in discrete space, and in particular how

it relates to the spurious loss of variance observed in Lyster et al. (2004) and Ménard et al. (2000,

2021), for example. In this chapter, published in Sec. 3 of Gilpin et al. (2022), we begin to answer

this question through a series of numerical experiments. We will consider a simple, one-dimensional

example so that the numerical results can be compared to a known exact solution. We will find that

inaccurate variance propagation is the actual problem, resulting in both loss and gain of variance

relative to the exact solution. This is also the case when initial covariances are diagonal, as the

covariance matrix diagonals extracted from Eq. (1.3) hardly resemble the continuous spectrum

solution. Thus, this chapter demonstrates that standard methods of variance propagation, i.e.

those associated with Eq. (1.3), are inherently inaccurate because of the discontinuous change in

the continuum covariance dynamics along the x1,x2-hyperplane.

3.1 Experimental Setup

For these experiments, we will consider the one-dimensional version of the continuity equation,

Eq. (1.4) for b = vx, over the unit circle S1
1. We take the velocity field to be independent of time

and spatially-varying,

v(x) = sin(x) + 2. (3.1)
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The exact solution to the one-dimensional continuity equation with this velocity field can be ob-

tained explicitly using the method of characteristics and is used as reference for our experiments;

see Appen. B.1 for further discussion.

The spatial domain S1
1 is discretized on a uniform grid, xi = i∆x, i = 0, 1, ..., N − 1 where

N = 200 and ∆x = 2π
N . The time discretization is given by tk = k∆t where the time step ∆t is

determined from the Courant-Friedrichs-Lewy number λ,

λ = max
x∈[0,2π]

|v(x)|∆t
∆x

= 3
∆t

∆x
≤ 1. (3.2)

For these experiments, we take λ = 1. We ran experiments with several other values of λ < 1 (not

shown) and found it did not have a significant impact on the results.

3.1.1 Numerical Covariance Propagation

We use two methods of propagation to illustrate the impact of numerical schemes on the dis-

crete covariance propagation Eq. (1.3) and to leverage insights from continuum covariance analysis

in the form of the polar decomposition. The covariance matrix is propagated discretely using either

of two methods:

(1) Traditional propagation: the covariance is propagated as in Eq. (1.3), where the matrix

Mk,k−1 is the finite difference discretization of the fundamental solution equation 2.4.

(2) Polar decomposition propagation: the polar decomposition of the fundamental solution

operator Eq. (2.24) is discretized and used in place of the matrix Mk,k−1 in Eq. (1.3).

In the polar decomposition propagation, Eq. (2.24) is discretized as follows. The operator

Dt of Eq. (2.23) is a self-adjoint multiplication operator, therefore when t = tk its corresponding

discretization is the diagonal matrix Dk,0 whose diagonal elements are (Dk,0)ii = d(xi, tk). Here

d(xi, tk) is the solution to Eq. (2.16) evaluated on the discrete spatial grid at time tk, which we

generate using the exact solution to Eq. (2.16), as discussed in Appen. B.1. The discretization

of the operator U t of Eq. (2.19) is done via finite differences to generate the propagation matrix
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Uk,k−1 corresponding to Eq. (2.17). The matrix Uk,k−1, which propagates the solution from time

tk−1 to tk, is independent of time by virtue of Eq. (3.1), therefore we will denote Uk,k−1 = U

for simplicity. To compute the covariance matrix at time tk, P k, we do not construct the matrix

Mk,k−1 explicitly using the polar decomposition, but instead compute the covariance as follows:

P k = Dk,0Uk,k−1Uk−1,k−2...U1,0P 0U
T
1,0...U

T
k,k−1Dk,0

= Dk,0U
kP 0(UT)kDk,0. (3.3)

The Lax-Wendroff (Lax and Wendroff, 1960) and Crank-Nicolson (Crank and Nicolson, 1947)

finite difference schemes are used to generate the matricesUk,k−1 andMk,k−1 corresponding to their

respective PDEs in Eqs. (2.17) and (2.4). Like Uk,k−1, Mk,k−1 is independent of time, therefore

through the rest of the chapter we will denote Mk,k−1 simply as M . We choose these two simple

finite difference schemes to illustrate their contrasting behaviors, particularly when generating

the matrix U . According to the continuum analysis, the operator U t is unitary. The Crank-

Nicolson discretization preserves the unitary property of U t because the scheme is quadratically

conservative, but the Lax-Wendroff scheme does not. In the numerical results, Secs. 3.2 and 3.3,

propagated covariances are labeled by the finite difference scheme used to construct the matrices

M and U (Lax-Wendroff or Crank-Nicolson) followed by the method of propagation (traditional

or polar decomposition) as described in the beginning of this section.

3.1.2 Initial Covariances

We generate four types of initial covariances from the following two different correlation kernel

functions: the Gaspari-Cohn (GC) compactly-supported, piecewise rational function (Gaspari and

Cohn, 1999, Eq. 4.10), and the first order autoregressive function (FOAR) (Gaspari et al., 2006,

their Eq. 23). Using each correlation function, we construct the initial covariance matrix with either

a constant initial variance or spatially-varying initial variance. Initial covariances with constant

initial variance take the initial variance to be one, while initial covariances with the spatially-varying
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Figure 3.1: Examples of the correlation functions used to generate the initial covariances for nu-
merical propagation. The GC correlation functions (left) are functions of compact support length
parameter c, where the FOAR correlation functions (right) are functions of length scale L.
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initial variance take the initial variance as the square of the standard deviation

σ0(x) =
sin(3x)

3
+ 1. (3.4)

The GC correlation function C0(r(xi, xj), 1/2, c) is a compactly supported approximation to

a Gaussian function, supported on the interval 0 ≤ r(xi, xj) ≤ 2c, where

r(xi, xj) = 2 sin(|xi − xj |/2) (3.5)

is the chordal distance between xi and xj on S1
1. On the uniform spatial grid of 200 grid points for

these experiments, values of c = 1, 0.25, and 0.05 correspond to 100, 16, and 3 grid lengths (∆x),

respectively, from the peak of the correlation function to where it becomes zero, and 33, 8, and just

1 grid length, respectively, from the peak value of 1 to values less than 0.2; see Fig. 3.1 for these

examples.

The FOAR correlation function given by

CFOAR(xi, xj) = e−r(xi,xj)/L (3.6)

is continuous but non-differentiable at the origin because of its cusp-like behavior (see Fig. 3.1).

As with the GC correlation function, the chordal distance Eq. (3.5) is used to reflect periodicity

of the domain. The FOAR correlation functions are nonzero on the full spatial domain. On the

spatial grid, L = 0.5, 0.25, and 0.03 correspond to 26, 12, and just 1 grid length, respectively, from

the peak of the correlation to where it becomes less than 0.2.

3.2 Experimental Results

From the continuum analysis, one might expect the diagonal of the covariance matrix P k to

behave according to the variance equation for covariances with nonzero initial correlation lengths

and according to the continuous spectrum equation for covariances with zero initial correlation

length. To establish a baseline, Fig. 3.2 illustrates the solutions to the variance equation (1D version

of Eq. (1.8) for b = vx) and continuous spectrum equation (1D version of Eq. (1.9) for b = vx) for
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Figure 3.2: Top: Solutions to the one-dimensional version of variance equation Eq. (1.8) and
continuous spectrum equation Eq. (1.9) for b = vx at various times with velocity field Eq. (3.1),
for unit initial condition (top row) and spatially-varying initial condition (bottom row) taken to
be the square of Eq. (3.4). Time T = 3.979 corresponds to slightly after a full period. Exact
solutions for each case are given in black dashed (variance) and black dot-dashed lines (continuous
spectrum). Green curves denote the solution to the variance equation computed with Crank-
Nicolson (abbreviated CN); blue curves are solutions to the continuous spectrum equation computed
with Crank-Nicolson. Regions highlighted in grey correspond to regions where the exact solution
to the variance equation is greater than the exact solution to the continuous spectrum equation,
i.e. σ2 > P c; unhighlighted regions correspond to regions where σ2 < P c.
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unit initial condition and for the spatially-varying initial condition given by the square of Eq. (3.4).

Considering the exact solutions first (black), we see that the dynamics of the variance solution and

continuous spectrum solution are quite different due to the spatially-varying velocity field Eq. (3.1).

We also see that solving either the variance equation or continuous spectrum equation directly using

the Crank-Nicolson scheme (colored) produces solutions that are nearly indistinguishable from the

exact solutions. Solutions to the variance and continuous spectrum equations computed using

Lax-Wendroff differ very slightly from Crank-Nicolson and are not shown.

Figure 3.2 shows that propagating the diagonal of the covariance matrix P k numerically,

independently of the rest of the matrix, using the known dynamics of either the variance equation

or the continuous spectrum equation, produces minimal discretization error. Figure 3.3 illustrates

further that, at least for covariance matrices with relatively long initial correlation lengths, the

numerically propagated full covariance itself also contains only minor discretization errors typically

expected from finite difference approximations. Figure 3.3 shows results for the GC initial correla-

tion supported on the full spatial domain (c = 1). The dissipative behavior of both Lax-Wendroff

schemes are clear in the normalized spectra (left panels), whereas both the traditional Crank-

Nicolson propagation and polar decomposition propagation using the Crank-Nicolson U (hereafter

referred to as Crank-Nicolson polar decomposition) capture the normalized spectra quite well. The

small amount of variance loss and gain seen in both the constant initial variance and spatially-

varying initial variance cases (middle panels of Fig. 3.3) are consistent with dissipation and phase

errors expected from finite differences. The polar decomposition methods (dashed) reduce the er-

rors in the diagonals of the covariance matrices only slightly compared to the traditional methods

(solid). The correlations at row 150 (right panels), which corresponds to where the variance reaches

a maximum as the velocity field is at a minimum, are nearly identical to the exact correlations,

suggesting minimal errors in correlation propagation.

The accuracy of numerically propagated full covariances is much worse for short initial corre-

lation lengths, increasingly so as they approach zero. We monitor the total amount of variance lost

or gained over time through the trace of the covariance matrix, Tr(P k). Figure 3.4 shows the trace
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Figure 3.3: Propagated covariances at the final time T (slightly after a full period) for GC initial
correlations with c = 1 (supported on the full domain) for all four propagation methods. Top
row: constant initial variance. Bottom row: spatially-varying initial variance. The left panels
correspond to the normalized spectra (relative to largest eigenvalue), the middle panels show the
discrete variances (covariance matrix diagonals), and the right panels show the correlations at row
150 (location of maximum in variance in space and time). The exact normalized spectra are given
in solid black, and the exact variances and correlations are given in black dashed. Crank-Nicolson
(CN) and Lax-Wendroff (LW) M refer to traditional propagation using Crank-Nicolson or Lax-
Wendroff (solid). CN and LW PD refer to propagation using the polar decomposition (dashed)
with the matrix U constructed via the Crank-Nicolson or Lax-Wendroff scheme, respectively.
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time series for both the GC and FOAR cases with spatially-varying initial variance as initial corre-

lation lengths tend to zero (the constant initial variance case results are similar to Fig. 3.4 and not

shown). The GC and FOAR cases in Fig. 3.4 exhibit similar behaviors in the trace over time, even

though their initial correlation structures are quite different. As the initial correlation lengths tend

to zero, the amount of variance lost during propagation increases strikingly in the Lax-Wendroff

schemes. The polar decomposition propagation schemes (dashed) are an improvement over tradi-

tional propagation in some cases but are worse in others, and generally suffer similar amounts of

variance loss. We also observe that as initial correlation lengths tend to zero, the numerical schemes

gradually approach their own limiting behavior at c = L = 0, rather than a discontinuous change

in dynamics as seen in the continuum analysis.

Had we not performed the continuum analysis in Ch. 2, one might assume that the variance

loss in Fig. 3.4 is caused simply by dissipation. However, the Crank-Nicolson scheme is not dissi-

pative and yet produces significant variance loss. In fact, we see for the traditional Crank-Nicolson

propagation (solid light blue) that there are regions of both variance loss and gain. We also see

that for short, nonzero initial correlation lengths (c = 0.05, L = 0.03 in particular), the numerical

schemes better approximate the limiting case of c = L = 0 than the correct behavior for c, L > 0.

This suggests that inaccurate discrete diagonal propagation is particularly pronounced for short

correlation lengths.

The behavior of the trace time series in Fig. 3.4 indicates that covariance propagation itself

can be a source of spurious loss and gain of variance, however it does not indicate where exactly this

manifests itself. To gain a better understanding of the source of variance loss and gain, we examine

various aspects of the propagated covariance matrix for different types of initial covariances as we

did in Fig. 3.3, but now for covariances with shorter initial correlation lengths.

Figures 3.5 and 3.6 are final time snapshots (in the same format as shown in Fig. 3.3)

of propagated covariances specified using the GC correlation function with c = 0.25 and FOAR

correlation function with L = 0.25, respectively, which are initially well-resolved as described in

Sec. 3.1.2 and correspond to the mildest variance loss and gain cases shown in leftmost panels
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Figure 3.4: Trace time series for GC (top row) and FOAR (bottom row) for the spatially-varying
initial variance (the square of Eq. 3.4). Each panel corresponds to different values of c and L,
decreasing from left to right towards c = L = 0. Refer to Fig. 3.3 for description of the curves. For
the cases when c = L = 0 (rightmost panels), the exact solutions (solid black) are constant in time
due to the fact that continuous spectrum solution P c satisfies the continuity equation (Eq. 1.9 with
b = vx), hence its integral over space is constant.
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Figure 3.5: Same as Fig. 3.3 for c = 0.25.
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Figure 3.6: Same as Fig. 3.5 for the FOAR correlation function with L = 0.25.
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of Fig. 3.4. The normalized spectra in both of these cases are similar to the spectra seen in

Fig. 3.3, where the Lax-Wendroff schemes are severely dissipative and both Crank-Nicolson methods

approximate the exact spectrum moderately well.

The diagonals extracted from the numerically propagated covariances in Figs. 3.5 and 3.6 are

strikingly different from the exact solution. Though covariances with these values of c and L are

well-resolved initially, the extracted diagonals are smooth but wholly inaccurate. Across all four

methods of propagation we see regions of both variance loss and variance gain, clearly illustrating

that inaccurate discrete diagonal propagation is the problem more so than dissipation. The diagonal

propagation becomes worse when the initial covariance has a spatially-varying variance (bottom

rows of Figs. 3.5 and 3.6), which is a more realistic situation in practice. The errors we observe in

the diagonals of the covariance matrices, interestingly, are not reflected in the normalized spectra;

considering the normalized spectra alone would not even hint at the problems occurring in the

discrete diagonal propagation. The correlations, as expected, show dispersion off the diagonal. The

oscillatory behavior of both Crank-Nicolson schemes due to numerical dispersion is expected for

this finite difference scheme (Beylkin and Keiser, 1997, p. 46).

In the limiting case when the initial correlation lengths become zero, we see two contrasting

behaviors in the numerically propagated covariances depending on the initial variance; see Fig. 3.7.

When the initial variance is constant (i.e. the initial covariance is the identity matrix), the Crank-

Nicolson polar decomposition is the only scheme that correctly captures the behavior of the exact

covariance (top row of Fig. 3.7). This is expected from the definition of the Crank-Nicolson po-

lar decomposition in this case. Since the initial covariance is the identity matrix and the matrix

U constructed using the Crank-Nicolson scheme is unitary, the Crank-Nicolson polar decomposi-

tion propagation, Eq. (3.3), reduces to P k = Dk,0U
kI(Uk)TDk,0 = Dk,0U

k(Uk)TDk,0 = D2
k,0,

which is exact since the diagonal of Dk,0 is evaluated analytically. When the initial variance varies

spatially (bottom row of Fig. 3.2), the Crank-Nicolson polar decomposition propagation instead

behaves more similarly to the Crank-Nicolson traditional propagation and both have regions of vari-

ance loss and variance gain. Carefully comparing the diagonals extracted from the traditional and
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Figure 3.7: Propagated covariances at the final time T (slightly after a full period) for initial
covariances with zero initial correlation lengths (c = L = 0) for all four propagation methods. Top
row: constant initial variance (identity matrix). Bottom row: spatially-varying initial variance.
The left panels correspond to the normalized spectra (relative to largest eigenvalue), the middle
panels show the discrete variances (covariance matrix diagonals), and the right panels show the
correlations at row 150 (location of maximum in variance in space and time). The exact normalized
spectra are given in solid black, the exact diagonals (solutions to the continuous spectrum equation)
and correlations are given in black dashed. See Fig. 3.3 caption for description of the colored curves.
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polar decomposition propagated covariances, the Crank-Nicolson polar decomposition propagation

is a slight improvement over the Crank-Nicolson traditional propagation, but these differences are

relatively minor compared to their absolute errors. The Lax-Wendroff schemes are substantially

dissipative in all cases. We also observe that as the values of c and L decrease towards zero, the

normalized spectra in Figs. 3.3, 3.5 – 3.7 decay more slowly and become relatively flat. This sug-

gests that low-rank approximations would have difficulty capturing these covariances as correlation

lengths shrink.

Comparing the diagonals of the covariance matrices at the final time across a series of initial

correlation lengths in Figs. 3.8 and 3.9 demonstrates the severity of the variance loss and gain caused

by inaccurate discrete diagonal propagation and provides a closer look at the approach to a limiting

behavior seen in the trace time series. Without prior knowledge of the discontinuous change in

dynamics as the initial correlation length tends to zero, one might surmise from Figs. 3.8 and 3.9 that

the observed discrete diagonal behavior is caused by dissipation. Knowing the continuum behavior,

however, makes it clear that we are observing inaccurate discrete diagonal propagation associated

with the discontinuous change in continuum dynamics. The Crank-Nicolson polar decomposition

propagation for a constant initial variance is the only scheme that captures the correct diagonal

behavior when the initial covariance is the identity, and gradually approaches this behavior as the

initial correlation length decreases. For all other cases in Figs. 3.8 and 3.9, the resulting covariance

matrix diagonals are smooth, but grossly incorrect, and gradually approach their own limiting

behavior at c = L = 0 rather than changing abruptly as in the continuum case. The Lax-Wendroff

schemes are severely dissipative, hardly resembling the correct dynamics, and are not shown in

these and subsequent figures.

The errors in the discrete diagonal propagation are not limited to the final time; errors start

to accumulate early on in the propagation cycle. We show this for the GC case in Fig. 3.10, where

the FOAR results are similar but not shown. We can see clearly that rather than approximating

the variance for c > 0 (black dashed), the Crank-Nicolson schemes (blue) tend to approximate the

continuous spectrum (c = 0, brown), which is not the correct diagonal behavior for this case. Along
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Figure 3.8: Covariance diagonals extracted from Crank-Nicolson traditional and polar decomposi-
tion propagation methods at the final time T for GC initial correlations as c approaches zero. Top
row: constant initial variance. Bottom row: spatially-varying initial variance. Left column: prop-
agation via traditional Crank-Nicolson (CN M). Right column: propagation via Crank-Nicolson
polar decomposition (CN PD). Black curves are the exact diagonals, dashed for covariances with
nonzero initial correlation lengths (variance solution) and dot-dashed for covariances with zero ini-
tial correlation length (continuous spectrum solution). These exact curves here labeled as Exact
(c > 0) and Exact (c = 0) are the same exact curves labeled as Exact σ2(x, t) and Exact P c(x, t)
in Fig. 3.2. In the top right panel, the exact curve for c = 0 (black dot-dashed) and the CN PD
curve for c = 0 (magenta) identically overlap.
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Figure 3.9: Same as Fig. 3.8 for FOAR correlation function initial covariances.



37

Figure 3.10: Variance time series for GC case with c = 0.05. Top row: constant initial vari-
ance. Bottom row: spatially-varying initial variance. Diagonals extracted from the Crank-Nicolson
traditional and polar decomposition propagation are shown (solid and dashed blue) as well as prop-
agating the variance by solving the variance equation (one-dimensional version of Eq. 1.8 for b = vx)
independently using Crank-Nicolson (green). The exact solutions to the variance and continuous
spectrum equations are shown in black dashed and solid brown and denoted as Exact (c = 0.05)
and Exact (c = 0), respectively. Regions where the exact variance is larger (smaller) than the exact
continuous spectrum are highlighted in grey (white).



38

with the diagonals extracted from the propagated covariances in Fig. 3.10, we include the variance

propagated independently by solving the one-dimensional version of Eq. (1.8) with b = vx using

the Crank-Nicolson scheme, as was shown in Fig. 3.2. Including the variance solution computed

using the Crank-Nicolson scheme in Fig. 3.10 emphasizes that propagating the covariance diagonal

independently using the known diagonal dynamics significantly reduces the errors in the variance

compared to the diagonal extracted from the propagated covariance matrix.

3.3 Interpretation of the Experimental Results

Grey regions in Fig. 3.10 correspond to where the exact variance solution is larger than the

exact continuous spectrum solution, and these regions tend to correspond to where the numerically

propagated diagonal for the short, nonzero initial correlation length (blue) exhibits variance loss.

Further insight into this behavior can be gained by returning to the generalized continuum problem

presented in Ch. 2. Assuming P d0 (x,x) = P c0 (x), as is the case in Fig. 3.10, by multiplying the

variance equation Eq. (1.8) by P c and the continuous spectrum equation Eq. (1.9) by σ2, taking

the difference and dividing by (P c)2, we find from the quotient rule that the ratio

σ2(x, t)

P c(x, t)
= m(x, t) (3.7)

satisfies the continuity equation with unit initial condition,

mt + v · ∇m+ (∇ · v)m = 0,

m(x, t0) = 1, (3.8)

for all x ∈ Ω and t ≥ t0. From Eq. (3.8), the ratio σ2/P c must be conserved, and this holds for

the generalized variance and continuous spectrum equations Eqs. (1.8) and (1.9), not just those

presented in the numerical experiments. In regions where m > 1 we have σ2 > P c, and conversely in

regions where m < 1 we have σ2 < P c. In fact, the function m of Eq. (3.8) on S1
1 with velocity field

Eq. (3.1) can be expressed explicitly using Eq. (B.7), taking one as the initial condition. Solving

m = 1, or equivalently v(s(x, t))− v(x) = 0 (following the notation of Appen. B.1), determines the

boundaries between regions where m is less than or greater than one in S1
1 at every time t > t0.
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For short initial correlation lengths, if the numerical schemes are better approximating the

continuous spectrum solution P c, regions where m > 1 should correspond to variance loss and

regions where m < 1 should correspond to variance gain. Therefore, we refer to the ratio m as

the amplitude index, which can be used to interpret the variance loss and gain observed in our

numerical results. For example, regions where the index m is greater than one, i.e. σ2 > P c,

highlighted in grey in Fig. 3.10, generally do coincide with regions where we see variance loss in the

Crank-Nicolson traditional and polar decomposition schemes. Conversely, in the unshaded regions

of Fig. 3.10 where the index m is less than one, i.e. σ2 < P c, the Crank-Nicolson traditional and

polar decomposition schemes generally exhibit variance gain. Hence, we can exploit the amplitude

index m to indicate regions of variance loss and gain.

Since the amplitude index m must be conserved according to Eq. (3.8), for a typical velocity

field v there will always be regions of the spatial domain where m is greater than one and regions

where m is less than one at any given time t. This implies that we should see both loss and

gain of variance at individual times; whether there will be global variance loss or variance gain

depends on the details of the velocity field v. In all the numerical results, Figs. 3.3 – 3.10, we

see both spurious variance loss and gain as a result of inaccurate discrete diagonal propagation.

Data assimilation literature tends to focus on loss of variance because of its known negative impact

on data assimilation schemes (Jazwinski, 1970, Sec. 8.8; Maybeck, 1982, Sec. 9.2; Anderson and

Anderson, 1999; Houtekamer and Mitchell, 2000; Lyster et al., 2004). However, we see here for

a general advective system that both loss and gain occur as reflected by the conservation law

Eq. (3.8), cumulatively causing wholly inaccurate discrete diagonal propagation. Variance inflation,

a tool often used in data assimilation practice to combat variance loss by rescaling the variance,

typically by a multiplicative or additive factor, could perhaps be optimally adjusted in this context.

Distinguishing between regions where the index m is greater than or less than one in general isolates

the regions of variance loss and gain, respectively, thus the inflation factor could be tuned to only

inflate where we expect variance loss. This would avoid using a single scale-factor that inflates the

whole variance function and prevent variance inflation in regions where we already see variance
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gain.

3.4 Conclusions and Discussion

Comparison of the numerical results with the continuum analysis in this chapter clearly illus-

trates the problems caused along the covariance diagonal during full-rank covariance propagation

via Eq. (1.3). Standard methods of covariance propagation, like those considered in this chapter,

produce covariance matrix diagonals that can be severely inaccurate. The result is not only variance

loss, but also variance gain due to the inaccurate propagation along the diagonal.

It is important to recognize that the inaccurate diagonal propagation observed in these nu-

merical experiments is a result of the discontinuous change in continuum covariance dynamics

discussed in Ch. 2. Even when propagating covariance matrices using a fully Lagrangian scheme,

as done in Lyster et al. (2004), propagated covariances still suffer from spurious loss of variance.

This loss of variance is not due to the numerical scheme, but rather is due to the discontinuous

change in dynamics identified in Ch. 2. Data assimilation schemes that do not propagate the co-

variance explicitly may experience errors similar to what we observe here because the underlying

cause of these errors is the continuum covariance dynamics, not the numerical scheme. Studying

full-rank covariance propagation as in Eq. (1.3) isolates the spurious loss of variance as an issue with

covariance dynamics and implies that approximations of Eq. (1.3), such as in ensemble Kalman

filters, can suffer variance loss in a similar manner. The errors caused during the covariance propa-

gation may be a neglected source of the model error or “system error” observed in data assimilation

schemes (Houtekamer and Mitchell, 2005, p. 3285).

The continuum analysis of Ch. 2 and numerical experiments presented in this chapter bring

to light a fundamental issue associated with current approaches to discrete covariance propagation.

The source of the problem is not numerical dissipation, but rather is rooted to more fundamental

aspects of the propagation itself. Whether this is a problem that can be addressed by choosing an

appropriate numerical scheme will be addressed in the next chapter.



Chapter 4

Numerical Demonstration Part II: The Limitations of Full-Rank Covariance

Propagation

The numerical results in Ch. 3 demonstrate that standard methods of variance propagation,

namely that corresponding to Eq. (1.3), are inaccurate, producing covariance matrix diagonals

that hardly resemble the exact variance. One may ask, then, whether the inaccurate diagonal

propagation observed in Ch. 3 can be mitigated either by choosing an appropriate numerical scheme

or increasing the spatial resolution. In this chapter, we will address this first question by considering

a slightly different example than that considered in Ch. 3. This example will demonstrate that the

inaccurate diagonal propagation observed in Ch. 3 is not easily mitigated by the choice of the

numerical scheme and is fundamentally a problem caused by the continuum dynamics.

4.1 Continuum Problem

In this example, we will consider the case where b = 1
2∇ · v in Eq. (1.4), where for x ∈ S2

r ,

qt + v · ∇q +
1

2
(∇ · v)q = 0,

q(x, t0) = q0(x). (4.1)

This case can arise when the state of a system is a tracer density, for example. If the tracer density

satisfies the continuity equation (b =∇ · v in Eq. 1.4), then its square root satisfies Eq. (4.1).



42

We can express Eq. (4.1) in conservative form,

qt + Sq = 0,

q(x, t0) = q0(x). (4.2)

The operator S is skew-symmetric on L2(S2
r),

Sq =
1

2
∇· (vq) +

1

2
v · ∇q, (4.3)

meaning that for v ∈ C1(S2
r) and q ∈ H1(S2

r), where H1(S2
r) is the Sobolev space where the weak

first derivatives of q are in L2(S2
r), we have (q,Sq)2 = 0, where (·, ·)2 is the inner product on L2(S2

r).

Using Eq. (4.2) and the skew-symmetry of S, it follows that q has a quadratically conserved energy

functional,

d

dt

1

2
||q||22 =

d

dt

1

2

∫
S2r
q2(x, t) dx = 0. (4.4)

We can also define the associated continuum covariance equation using Eq. (1.6) and show (in a

similar manner as done for the state q) that the covariance P satisfies its own conservation property,

d

dt

∫
S2r

∫
S2r
P 2(x1,x2, t) dx1 dx2 = 0. (4.5)

The variance in this case satisfies the continuity equation, which implies that its L1 norm on S2
r is

conserved,

d

dt
||σ2||1 =

d

dt

∫
S2r
σ2(x, t) dx = 0. (4.6)

For initial states q0 that are spatially correlated, the total variance, which is defined by

Eq. (4.6), is conserved. Note that the trace of the operator Pdt (i.e., the total variance) is defined,

therefore the covariance operator Pdt is trace class (Reed and Simon, 1972, pp. 206–208). For

spatially uncorrelated initial states q0, the covariance P remains diagonal for all time (see Ch. 2.3)

and the dynamics along the diagonal satisfy the continuous spectrum equation, Eq. (1.9). When

b = 1
2∇ · v, the continuous spectrum solution P c satisfies the advection equation and is therefore

constant along the characteristics. In contrast with the discrete spectrum covariance operator Pdt ,

the continuous spectrum covariance operator Pct in Eq. (2.30) is not trace class, and the L1-norm
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of the continuous spectrum solution P c on S2
r is not constant in time unless the initial condition

P c0 is constant.

4.2 Numerical Demonstration and Discussion

When propagating the covariance discretely in Eq. (1.3), it is often best to choose a nu-

merical scheme that will preserve the continuum conservation properties, described in this case by

Eqs. (4.4) – (4.6). The Crank-Nicolson scheme implemented in Ch. 3, in fact, is well suited to pre-

serve the continuum properties of the state, variance, and covariance. To demonstrate this, we will

consider the one-dimensional version of Eq. (4.2) on the unit circle, S1
1, with the same experiment

setup as described in Ch. 3: the velocity v = v(x) is defined by Eq. (3.1) and the unit circle is

discretized uniformly into N = 200 grid points.

By applying the Crank-Nicolson scheme to the one-dimensional version of Eq. (4.2), the

(explicit) propagation matrix M (which does not depend on time since the velocity v is independent

of time) is

M =

(
I +

∆t

2
S

)−1(
I− ∆t

2
S

)
. (4.7)

The matrix I is the N × N identity matrix and ∆t is the time step associated with the time

discretization. The matrix S is a discretization of the continuum operator S according to the Crank-

Nicolson scheme. This discretization ensures that S is skew-symmetric, which is consistent with

the operator S. Since the matrix S is skew-symmetric, the propagation matrix M is unitary. Thus,

the Crank-Nicolson scheme applied to the state dynamics in Eq. (4.2) is quadratically conservative,

preserving the discrete counterpart of the continuum energy conservation defined in Eq. (4.4).

The unitary property of the propagation matrix M has important implications for the discrete

covariance propagation, Eq. (1.3), as well. The Schatten p-norms, which are defined for any N ×N

matrix A as

||A|| =

(
N∑
i=1

∣∣λi∣∣p)1/p

, (4.8)

where λi are the singular values of the matrix A, are unitarily invariant (Horn and Johnson, 1985,
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pp. 440–441). Therefore, all Schatten p-norms of the covariance matrix P for p <∞ are conserved

when the propagation matrix M is defined by the Crank-Nicolson scheme, Eq. (4.7). For p = 2,

Eq. (4.8) is the Frobenius norm, which is conserved and is the discrete counterpart of Eq. (4.5).

When p = 1, Eq. (4.8) is equivalent to the trace of the covariance matrix P, which is also conserved

for all time. This is consistent with the variance conservation defined by Eq. (4.6). Interestingly,

when the initial covariance matrix P0 is diagonal, the trace of the covariance matrix will still be

conserved during the discrete propagation. According to the continuum dynamics, the trace of

a diagonal covariance should not be conserved unless the initial covariance is constant along the

diagonal. Thus, inaccurate propagation along the diagonal should be expected in this case.

Without prior knowledge of the discontinuous change in the continuum covariance dynamics,

the Crank-Nicolson scheme seems well suited for discrete covariance propagation. One might expect

little or no variance loss during propagation since the Crank-Nicolson scheme is not dissipative and

will conserve total variance. We see, however, in Fig. 4.1, that this is not the case. Figure 4.1

is similar to Fig. 3.8 in Ch. 3.2, where covariance matrices with different initial cut-off lengths

(proportional to their correlation length) are propagated up to a fixed time T (slightly after a full

time period) using the Crank-Nicolson scheme and the matrix diagonals are extracted and plotted

along the unit circle.

As seen in Ch. 3.2, the covariance diagonal extracted from the Crank-Nicolson propagation

in Fig. 4.1 are smooth, but wholly inaccurate. First, consider the case where c = 1 (orange), in

which the initial covariances are supported on the full domain. Correlation lengths for c = 1 are

quite long, therefore it is expected that full-rank propagation will capture the variance well. We

see, however, that the extracted covariance diagonal for c = 1 exhibits significant loss and gain of

variance when compared to the exact variance (black), which is particularly pronounced when the

initial variance is spatially-varying (panel b).

For all cases in Fig. 4.1, the trace of the numerically propagated covariance is conserved,

though the diagonals themselves hardly resemble the exact variance solution (black). For initial

covariances with c > 0, the total amount of variance loss is exactly equal to the amount of variance
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Figure 4.1: Covariance diagonals extracted at time T = 3.98 (slightly after a full time period)
from the Crank-Nicolson covariance propagation defined for states with b = 1

2 vx (one-dimensional
version of Eq. 4.1). In both panels, the colored curves denote matrix diagonals extracted from
propagated initial covariances constructed with the Gaspari-Cohn (GC) correlation function with
different initial cut-off lengths c (denoted in the legend). Panel (a) corresponds to initial covariances
with unit initial variance, while panel (b) corresponds to a spatially-varying initial variance denoted
in the panel title. The exact solution to the variance equation (solid black) and continuous spectrum
equation (dashed black) are shown in both panels for reference, where in panel (a) both the c = 0
case (magenta) and continuous spectrum solution identically overlap.
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gain due to the conservation imposed by the Crank-Nicolson scheme. Simply taking the trace of

the covariance matrix as a diagnostic would not show the extent of inaccurate diagonal propagation

in this case, as the Crank-Nicolson scheme will ensure that the trace is preserved regardless of how

the scheme is actually approximating the diagonal.

The only case where the Crank-Nicolson scheme captures the correct diagonal dynamics is

when the initial covariance is the identity matrix, shown in the panel (a) (magenta curve). Since

the continuous spectrum solution satisfies the advection equation, a constant initial condition will

remain constant for all time. The Crank-Nicolson scheme captures this behavior exactly when the

initial covariance is the identity (or a scalar multiple of the identity matrix) since the propagation

matrix M is unitary, as the propagation reduces to MIMT = I for all time. When there is any

spatial variability along the diagonal, as shown for c = 0 in panel (b), the discrete propagation does

a very poor job of capturing the correct dynamics.

The main takeaway from Fig. 4.1 is that even though the numerical scheme, here the Crank-

Nicolson scheme, preserves important conservation properties and is not numerically dissipative, we

still observe considerably inaccurate diagonal propagation. The cause of this inaccurate diagonal

propagation, as we will see explicitly in the next chapter and Appen. C.3, is the discontinuous

change in the continuum dynamics along the x1,x2-hyperplane as correlation lengths tend to zero.



Chapter 5

Error Analysis of Full-Rank Covariance Propagation

Up to this point, we have observed that the discontinuous change in the continuum covariance

dynamics along the x1,x2-hyperplane identified in Ch. 2 results in inaccurate variance propagation

in discrete space. Chapters 3 and 4 demonstrate the severity of the inaccurate variance propagation

caused by discrete covariance propagation, Eq. (1.3). These numerical results motivate an inves-

tigation into the continuum dynamics being approximated along the covariance diagonal during

discrete covariance propagation. As mentioned in Ch. 1, discrete covariance propagation defined

by Eq. (1.3) indicates that its structure will be problematic because of the discontinuous change

in covariance dynamics along x1 = x2. The goal of this chapter is to investigate Eq. (1.3) further

by determining the continuum dynamics being approximated along the diagonal. Through careful

error analysis of Eq. (1.3), we will uncover the explicit cause of the observed inaccurate variance

propagation.

5.1 Introduction

Before we derive the continuum dynamics being approximated along the covariance diagonal

during discrete covariance propagation (i.e., Eq. 1.3), let’s return to its standard formulation to gain

an intuitive sense for how covariances are evolved in discrete space. To illustrate this in simplest

terms, consider a discrete stochastic model state N−vector q that is propagated forward in time

(forecasted) from time tk to tk+1 (equivalent to Eq. 1.1 with slightly different notation),

qk+1 = Mk+1,kqk, (5.1)
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where Mk+1,k is the deterministic N × N propagation matrix representing the discretized model

dynamics. For simplicity, we will assume the model dynamics are linear with no forcing, random

or otherwise. Unlike Eq. (1.1) in Ch. 1, the time indices in Eq. (5.1) are superscripts, rather than

subscripts, since subscripts will be used later in this chapter to denote the spatial discretization.

The corresponding N ×N covariance matrix at time tk, Pk, is defined in terms of qk using

the expectation operator E[·],

Pk = E
[
(qk − qk)(qk − qk)T

]
, (5.2)

where qk = E[qk] is the mean state and superscript T denotes the transpose. The covariance matrix

at time tk+1 can be derived from Eqs. (5.1) – (5.2),

Pk+1 = Mk+1,k(Mk+1,kPk)T. (5.3)

Equation (5.3) is the explicit, full-rank propagation of the covariance matrix derived from the

state dynamics (e.g. Kalman, 1960); this propagation is approximated at low rank using ensemble

statistics in ensemble-based schemes (e.g. Leith, 1974; Evensen, 1994).

We can gain an intuitive sense of how inaccurate variance propagation can occur during

covariance propagation by making a few observations from Eq. (5.3). Covariance propagation in

Eq. (5.3) can be interpreted as a sequence of two operations on the covariance matrix Pk. The first

operation inside the parentheses, Mk+1,kPk, is the propagation along the columns of the covariance

matrix. This is followed by the propagation along the rows after the transpose is computed.1 Since

the sequence of operations in Eq. (5.3) occurs along the columns and rows of Pk, diagonal elements

of the covariance matrix, i.e. the variances, are necessarily approximated by off-diagonal elements.

Recall that off-diagonal elements Pk
ij , i 6= j, are smaller than the corresponding diagonal elements,

(Pk
ij)

2 ≤ Pk
iiP

k
jj , because the covariance matrix is positive semi-definite. Thus, when correlation

lengths are small or, more generally, when there are sharp gradients near the diagonal, for instance,

one would expect Eq. (5.3) to approximate the covariance diagonal poorly. In this way, the spurious

1 Sometimes this interpretation of covariance propagation is termed “operator splitting” in the data assimilation
literature (e.g., Ménard et al., 2021, Sec. 2.1.1). We do not to use this terminology because Eq. (5.3) is derived from
first principles and without operator splitting as defined in the traditional sense (e.g. Iserles, 2009, pp. 378-380).
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loss of variance observed during Eq. (5.3) is not necessarily a problem of numerical dissipation, but

can also be caused by the structure of discrete covariance propagation itself.

Approximating diagonal elements with off-diagonal elements during covariance propagation,

as we will see in this chapter, is particularly problematic for states governed advective dynamics,

Eq. (1.4). Recall from Ch. 2 the hyperplane x1 = x2 is a characteristic surface for the corresponding

covariance evolution equation, Eq. (1.6). As a consequence, in the limit as correlation lengths

tend to zero, there is a discontinuous change in the continuum covariance dynamics along x1 =

x2. Approximating diagonal elements of the covariance with off-diagonal elements in Eq. (5.3)

is therefore problematic, as the approximation is made across the discontinuity. For standard

discretizations used to evaluate Eq. (5.3), we will find that Eq. (5.3) fails to approximate the

variance σ2, or even the continuous spectrum P c, when correlation lengths are small enough. The

result, therefore, is inaccurate variance propagation, as Eq. (5.3) is approximating the incorrect

dynamics along the covariance diagonal.

This chapter demonstrates that traditional methods of variance propagation, namely that

associated with Eq. (5.3), are inherently inaccurate for advective dynamics because of the discon-

tinuous change in the continuum covariance dynamics along the hyperplane x1 = x2. The loss

and gain of variance observed during covariance propagation is therefore a manifestation of the

inaccurate variance propagation caused by Eq. (5.3) and the continuum covariance dynamics. To

show this, we will perform an error analysis of the diagonal propagation defined by Eq. (5.3) in one

space dimension for two standard numerical schemes, one that is dissipative and one that is not.

The error analysis reveals that the continuum dynamics being approximated along the covariance

diagonal change as the ratio of the grid length to the correlation length becomes significant. When

the ratio of the grid length to the correlation length approaches unity, the approximated continuum

dynamics hardly resemble the continuum variance equation, Eq. (1.8), as several error terms that

are powers of this ratio become significant. Both discretizations we analyze here are identical up to

a highly dissipative-like term, indicating that the inaccurate variance propagation observed during

discrete covariance propagation is driven by the discontinuous change in the continuum covariance
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dynamics rather than the particular numerical scheme.

The goal of this chapter is to uncover the fundamental cause inaccurate variance propagation

observed during full-rank covariance propagation in advective systems. This chapter does not

present any explicit means to mitigate the inaccurate variance propagation, though we discuss the

potential of correcting Eq. (5.3) in Ch. 6. The intention with this chapter is to carefully present the

problem caused by standard methods of covariance propagation, identify the source of inaccurate

variance propagation in advective systems, and thereby open the door to potential solutions. The

results of this analysis have a direct impact in geophysical systems in which advective dynamics

defined by Eq. (1.4) are an important component, such as general circulation models and chemical

tracer transport models, for example.

This chapter is organized as follows. Section 5.2 establishes the preliminaries for the error

analysis presented in Sec. 5.3. We will consider two, standard spatial discretizations of the state

equation, and from these discretizations we will derive the associated discretizations for the covari-

ance and its diagonal in Secs. 5.2.1 and 5.2.2. Section 5.3 derives the continuum dynamics the two

numerical scheme are approximating along the covariance diagonal. Two cases are considered. Sec-

tion 5.3.1 presents the case for covariances that are continuously differentiable across its diagonal,

followed by the case when the covariance is not continuously differentiable across its diagonal in

Sec. 5.3.2. The results for both cases are similar, but require slightly different approaches in their

analysis due to their different differentiability assumptions. Section 5.4 discusses recent work by

Pannekoucke et al. (2021), which is similar to, but distinct from what is presented here. Conclu-

sions are given in Sec. 5.5. To supplement this chapter are Appen. C.1, which provides additional

derivations needed for the error analysis, Appen. C.2, which presents the error analysis for the state

equation in advection form to contrast with the main text which considers the state equation in

flux form. Appendix C.3 performs the error analysis for the state dynamics in Ch. 4, following the

analysis presented in this chapter.
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5.2 Derivation of Covariance Diagonal Discretizations

Covariance propagation as defined in Eq. (5.3) represents a discretization in both time (index

k) and space (represented by vectors and matrices in boldface). In this chapter, we will find that it

is the spatial discretization that causes inaccurate variance propagation, independent of the time

discretization. Therefore, we will study the semi-discretization of the diagonal of the covariance,

where we only discretize in space and leave time as a continuous variable. This yields a system of

ordinary differential equations to which several different time-integration schemes can be applied

(and thus producing different numerical PDE schemes). Thus, the results presented here are quite

general.

For this analysis, take the spatial domain to be the unit circle, S1
1, and consider two standard

spatial discretizations for the state that will define the subsequent semi-discretizations for the

covariance. The first is a first-order upwind spatial discretization, which is commonly applied to

advective dynamics (Iserles, 2009, p. 398). The second scheme is a second-order centered difference

scheme, which was the spatial discretization used for the experiments in Chs. 3 and 4. For this

analysis, we will consider the one-dimensional version of Eq. (1.4) on S1
1 in flux form,

qt + (vq)x + (b− vx)q = 0,

q(x, t0) = q0(x). (5.4)

Discretizing the state equation in flux form will help to preserve any conservative properties that

may arise depending on the choice of b (e.g. mass conservation if b = vx in the context of the

continuity equation, see Hesthaven, 2018, Ch. 4) and is often the approach taken when developing

dynamical cores for weather and climate models (e.g. Lin and Rood, 1996). Appendix C.2 discusses

the semi-discretization in advection form, by way of contrast.

The unit circle S1
1 is discretized into a uniform grid, xi = i∆x for i = 1, 2, . . . , N , ∆x = 2π/N ,

and assume periodicity. Quantities evaluated on the spatial grid are denoted by the subscript i, e.g.

q(xi, t) = qi(t), where the range i = 1, 2, . . . , N is included where needed for clarity. Sections 5.2.1

and 5.2.2 derive the semi-discretizations for the covariances using the upwind and centered difference
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schemes, respectively, before proceeding to the error analysis in Sec. 5.3.

5.2.1 Upwind Spatial Discretization

The upwind spatial discretization is applied to the spatial derivative (vq)x in Eq. (5.4) and

results in the following semi-discretization of the state,

d

dt
qi(t) =

1

∆x

[
vi−1(t)qi−1(t)− vi(t)qi(t)

]
−
[
bi(t)− (vx)i(t)

]
qi(t), i = 1, 2, . . . , N. (5.5)

It is assumed that v ≥ 0 throughout the domain, so that Eq. (5.5) does represent upwind differenc-

ing. The derivative of the velocity (vx)i(t) in the zeroth-order term of Eq. (5.5) is not discretized;

leaving this term exact will become important for the error analysis in Sec. 5.3.

To derive the covariance semi-discretization associated with Eq. (5.5), we first define the error

ε(x, t) = q(x, t)− q(x, t), (5.6)

where q = E[q] denotes the mean state. Using the definition of the error in Eq. (5.6) and the state

semi-discretization in Eq. (5.5), we can derive the semi-discretization for the error,

d

dt
εi(t) =

1

∆x

[
vi−1(t)εi−1(t)− vi(t)εi(t)

]
−
[
bi(t)− (vx)i(t)

]
εi(t), i = 1, 2, . . . , N. (5.7)

This semi-discretization for the error is identical to the state semi-discretization in Eq. (5.5) since

the discretization in Eq. (5.5) is linear and both b and v are deterministic. The covariance semi-

discretization follows from the definition of the covariance using the error ε(x, t),

P (x1, x2, t) = E[ε(x1, t)ε(x2, t)], (5.8)

which on the discretized spatial grid can be expressed as

P (xi, xj , t) = Pi,j(t) = E[εi(t)εj(t)], i, j = 1, 2, . . . , N. (5.9)

From Eq. (5.7), this yields the semi-discretization for the covariance,

d

dt
Pi,j(t) =

1

∆x

{
vi−1(t)Pi−1,j(t) + vj−1(t)Pi,j−1(t)−

[
vi(t) + vj(t)

]
Pi,j(t)

}
− [bi(t) + bj(t)− (vx)i(t)− (vx)j(t)]Pi,j(t), i, j = 1, 2, . . . , N. (5.10)
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We can see that the covariance semi-discretization reflects the action of the spatial discretization

in Eq. (5.5) in the i and j directions, coinciding with actions along the columns and rows described

by Eq. (5.3).

Since we are interested in the propagation along the diagonal of the covariance, we take i = j

in Eq. (5.10) to extract the semi-discretization for the diagonal of the covariance,

d

dt
Pi,i(t) =

1

∆x

{
vi−1(t)

[
Pi−1,i(t) + Pi,i−1(t)

]
− 2vi(t)Pi,i(t)

}
− 2
[
bi(t)− (vx)i(t)

]
Pi,i(t), i = 1, 2, . . . , N. (5.11)

There are two important aspects of Eq. (5.11) that arise from this derivation. First are the factors of

two that appear in front of vi(t)Pi,i(t) and the zeroth-order terms; the importance of these factors

of two will be discussed in Sec. 5.3. Second is the appearance of the term Pi−1,i(t) + Pi,i−1(t),

which represents an average across the diagonal. This averaging term is a second-order accurate

(centered) approximation of the diagonal element on the half-grid, 2P (xi−1/2, xi−1/2, t), which we

will discuss further in Sec. 5.3.

5.2.2 Centered Difference Spatial Discretization

Centered difference spatial discretizations are common in numerical solvers for differential

equations. Here, we apply a second-order centered difference scheme to the (vq)x term in Eq. (5.4).

Though this spatial discretization scheme is different from the upwind scheme, we will observe

similar behaviors in the resulting semi-discretization of the covariance diagonal.

As with the upwind spatial discretization, we begin by applying the centered difference spatial

discretization scheme to the term (vq)x in the state equation to produce its semi-discretization,

d

dt
qi(t) =

1

2∆x

[
vi−1(t)qi−1(t)− vi+1(t)qi+1(t)

]
−
[
bi(t)− (vx)i(t)

]
qi(t), i = 1, 2, . . . , N, (5.12)

where we keep the spatial derivatives of the velocity (vx)i(t) exact as done for the upwind case. To

derive the covariance semi-discretization associated with Eq. (5.12), we follow the same procedure

presented in Sec. 5.2.1. The error εi(t) satisfies the same semi-discretization as the state, Eq. (5.12),
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due to linearity, and using the procedure applied in Sec. 5.2.1, we have the centered difference semi-

discretization for the covariance,

d

dt
Pi,j(t) =

1

2∆x

[
vj−1(t)Pi,j−1(t)− vj+1(t)Pi,j+1(t) + vi−1(t)Pi−1,j(t)− vi+1(t)Pi+1,j(t)

]
−
[
bi(t) + bj(t)− (vx)i(t)− (vx)j(t)

]
Pi,j(t), i, j = 1, 2, . . . , N. (5.13)

Taking i = j yields the centered difference semi-discretization for the diagonal of the covariance,

d

dt
Pi,i(t) =

1

2∆x

{
vi−1(t)

[
Pi,i−1(t) + Pi−1,i(t)

]
− vi+1(t)

[
Pi,i+1(t) + Pi+1,i(t)

]}
− 2
[
bi(t)− (vx)i(t)

]
Pi,i(t), i = 1, 2, . . . , N (5.14)

Like the upwind semi-discretization for the covariance diagonal in Eq. (5.11), a factor of two

appears in front of the zeroth-order terms, but now there are two averaging terms, Pi,i−1(t)+Pi−1,i(t)

and Pi,i+1(t)+Pi+1,i(t), instead of just one. This pair of averaging terms resulting from the centered

difference scheme will be seen to play a key role in determining the continuum dynamics being

approximated along the diagonal.

5.3 Analysis of the Covariance Diagonal Propagation

The semi-discretizations of the covariance diagonal for the upwind and centered difference

schemes in Eqs. (5.11) and (5.14), respectively, both contain terms that average across the diagonal.

These averaging terms influence the continuum dynamics that the numerical schemes are approx-

imating, and we will show in this section how these terms manifest themselves during discrete

variance propagation.

For the error analysis, we will use Taylor series expansions, which is a common technique used

to study the continuum dynamics being approximated by numerical schemes. Since Taylor series

expansions require the existence and continuity of a certain number of derivatives, we will consider

two cases regarding the differentiability of covariances. The first case we consider are covariances

P (x1, x2, t) that are at least four times continuously differentiable across x1 = x2 in Sec. 5.3.1.

This is followed by Sec. 5.3.2, where we assume the covariance is not continuously differentiable
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across x1 = x2. Such discontinuities across x1 = x2 can occur when gradients are steep near the

diagonal or as correlation lengths become small, for example. A covariance model with a cusp along

x1 = x2, such as the First-Order Autoregressive (FOAR) correlation function, Eq. (3.6), is another

such example. Though these two cases differ in their assumptions on differentiability, they yield

similar results that describe the behavior observed along the diagonal during discrete covariance

propagation.

5.3.1 Continuously Differentiable Across x1 = x2

We begin with the case that the covariance P (x1, x2, t) is four times continuously differ-

entiable in space, i.e. P (x1, x2, t) ∈ C4(S1
1 × S1

1). We will also assume the velocity field v(x, t)

is four times continuously differentiable in space, v(x, t) ∈ C4(S1
1). Recall that the covariance

satisfies Pi,i−1(t) = P (xi, xi−1, t) and Pi,i+1(t) = P (xi, xi+1, t) and is spatially symmetric, e.g.

P (xi, xi−1, t) = P (xi−1, xi, t).

Upwind Spatial Discretization

The term we are interested in applying the Taylor expansions to is vi−1(t)
[
Pi−1,i(t)+Pi,i−1(t)

]
in Eq. (5.11). The covariance terms are averaging across the diagonal of the covariance to approxi-

mate the covariance at the half-grid point P (xi−1/2, xi−1/2, t). Therefore, we will expand the terms

in vi−1(t)
[
Pi−1,i(t) + Pi,i−1(t)

]
about xi−1/2, xi−1/2.

Since the covariance is continuously differentiable and symmetric, the Taylor series expansion

of the averaging term only contains even order derivatives as the odd order derivatives of the

covariance vanish due to symmetry. When expanding both covariance terms about xi−1/2, xi−1/2

and also expanding vi−1(t) about xi−1/2, we have the following,

vi−1(t)
[
Pi−1,i(t) + Pi,i−1(t)

]
= 2v(xi−1/2, t)P (xi−1/2, xi−1/2, t)−∆xvx(xi−1/2, t)P (xi−1/2, xi−1/2, t)

+

(
∆x

2

)2

v(xi−1/2, t)P2(xi−1/2, t)−
(

∆x

2

)3

vx(xi−1/2, t)P2(xi−1/2, t)

+ J−(xi−1/2, t) +K(xi−1/2, t) (5.15)

The terms J−(xi−1/2, t) and K(xi−1/2, t) are error terms defined in Eqs. (C.1) and (C.2), respec-
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tively. The term J−(xi−1/2, t) contains products of the covariance evaluated along the diagonal

and spatial derivatives of the velocity and is O(∆x2). In contrast, the term K(xi−1/2, t) contains

product of the velocity and its derivatives with derivatives of the covariance across the diagonal

and is O(∆x4) . We use the Landau notation, O(∆x4) for example, here to denote that the terms

are bounded by M∆x4 for some nonzero constant M due to the assumptions of differentiability.

Though K(xi−1/2, t) is O(∆x4) for correlation lengths bounded away from zero, we will see later

that these terms do become significant as correlation lengths become small for fixed ∆x.

In Eq. (5.15), we introduce the notation P2(xi−1/2, t), which is the following linear combina-

tion of second spatial derivatives,

P2(x, t) =

[
Px1x1(x1, x2, t)− 2Px1x2(x1, x2, t) + Px2x2(x1, x2, t)

]
x1=x2=x

. (5.16)

By substituting the expansion in Eq. (5.15) into the upwind covariance diagonal semi-discretization

in Eq. (5.11) and rearranging slightly, we have the following,

d

dt
P (xi, xi, t) =

1

∆x

[
2v(xi−1/2, t)P (xi−1/2, xi−1/2, t)− 2v(xi, t)P (xi, xi, t)

]
− 2
[
b(xi, t)− vx(xi, t)

]
P (xi, xi, t)− vx(xi−1/2, t)P (xi−1/2, xi−1/2, t) (5.17)

+
∆x

4
v(xi−1/2, t)P2(xi−1/2, t)−

∆x2

8
vx(xi−1/2, t)P2(xi−1/2, t)

+
1

∆x

[
J−(xi−1/2, t) +K(xi−1/2, t)

]
.

Equation (5.17) contains terms on the grid points xi and xi−1/2, therefore the final step

is to expand all terms to the common grid point xi. For example, the first group of terms on

the right-hand side of Eq. (5.17) represents a first-order upwind spatial discretization of −(vP )x

evaluated at x1 = x2 = xi, where the factors of two are a result of this approximation being made

with the points xi and xi−1/2. When rewriting Eq. (5.17) so that all terms are on the grid point

xi (see Appen. C.1.1 for details), we arrive at the continuum dynamics the numerical scheme is
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approximating,

d

dt
P (xi, xi, t) = −(vP )x

∣∣
x1=x2=xi

−
[
2b(xi, t)− 2vx(xi, t)

]
P (xi, xi, t)

− vx(xi, t)P (xi, xi, t)−
∆x2

8

(
vP2

)
x

∣∣
x=xi

− ∆x2

8
vx(xi, t)P2(xi, t) (5.18)

+
∆x

4
v(xi, t)P2(xi, t) +Gu(xi, t) +Hu(xi, t).

We have kept in Eq. (5.18) terms that are significant and defined new error terms Gu(xi, t) and

Hu(xi, t). The quantity Gu(xi, t) contains terms involving the covariance and its derivatives along

the diagonal and is O(∆x), while Hu(xi, t) contains the derivatives of the covariance across the

diagonal and is O(∆x3). See Appen. C.1.1 for further discussion and formulation of Gu and Hu.

Since the error terms in Eq. (5.18) are at least O(∆x), the scheme is first order, which is the same

as the order of the upwind semi-discretization.

Due to the similar behaviors of Eq. (5.18) and the centered difference case derived in the next

section, we save the discussion of this equation for Sec. 5.3.1.

Centered Difference Spatial Discretization

The error analysis of the centered difference semi-discretizaion of the covariance diagonal in

Eq. (5.14) is similar to the analysis presented for the upwind scheme in the previous section. In

this case, there are two sets of averaging terms to which we will apply Taylor series expansions.

The first averaging term vi−1(t)
[
Pi−1,i(t)+Pi,i−1(t)

]
is expanded about xi−1/2, xi−1/2, as was done

for the upwind scheme. The expansion for the other averaging term vi+1(t)
[
Pi+1,i(t) +Pi,i+1(t)

]
is

done in a similar manner about xi+1/2, xi+1/2,

vi+1(t)
[
Pi+1,i(t) + Pi,i+1(t)

]
= 2v(xi+1/2, t)P (xi+1/2, xi+1/2, t) + ∆xvx(xi+1/2, t)P (xi+1/2, xi+1/2, t)

+

(
∆x

2

)2

v(xi+1/2, t)P2(xi+1/2, t) +

(
∆x

2

)3

vx(xi+1/2, t)P2(xi+1/2, t)]

+ J+(xi+1/2, t) +K(xi+1/2, t). (5.19)

As before, J+ and K are error terms defined in Eqs. (C.1) and (C.2) and are O(∆x2) and O(∆x4),

respectively. Substituting Eqs. (5.15) and (5.19) into the semi-discretization in Eq. (5.14) is a bit

more involved than the upwind scheme; the details are given in Appen. C.1.2. Due to the expansions
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about xi−1/2, xi−1/2 and xi+1/2, xi+1/2, the centered difference semi-discretization produces two

types of terms. The odd-order terms in ∆x are centered difference approximation of first derivatives

at xi, while the even-order terms in ∆x are average approximations of those quantities at xi. See

Appen. C.1.2 for explicit examples.

By rewriting the pairs of odd and even terms obtained during the Taylor series expansion

into derivative and average approximations, respectively, we obtain the approximated diagonal

dynamics for the centered difference numerical scheme,

d

dt
P (xi, xi, t) = −(vP )x

∣∣
x1=x2=xi

−
[
2b(xi, t)− 2vx(xi, t)

]
P (xi, xi, t)

− vx(xi, t)P (xi, xi, t)−
∆x2

8

(
vP2

)
x

∣∣
x=xi

− ∆x2

8
vx(xi, t)P2(xi, t) (5.20)

+Gc(xi, t) +Hc(xi, t).

Similar to the upwind scheme, Gc(xi, t) contains derivatives of the covariance along the diagonal,

while Hc(xi, t) contains the derivatives of the covariance across the diagonal. In this case, however,

Gc(xi, t) is O(∆x2) and Hc(xi, t) is O(∆x4) as a result of the centered difference scheme; see

Appen. C.1 for their explicit formulation. Since the error terms are at least second order, Eq. (5.20)

is the same order of accuracy as the centered difference spatial discretization applied initially.

Approximated Dynamics and Their Relation to Correlation Length

The upwind and centered difference semi-discretizations produce similar approximated dy-

namics along the diagonal in Eqs. (5.18) and (5.20). The first two terms on the right-hand side in

both of these equations captures what looks like the continuous spectrum equation in flux form,

P ct + (vP c)x +
(
2b− 2vx

)
P c = 0,

P c(x, t0) = P c0 (x) (5.21)

rather than the variance equation,

σ2
t + (vσ2)x +

(
2b− vx

)
σ2 = 0,

σ2(x, t0) = σ2
0(x). (5.22)
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If we take a closer look at the second and third terms on the right-hand sides of Eqs. (5.18) and

(5.20), the additional zeroth-order term −vx(xi, t)P (xi, xi, t) appearing next is what allows the

schemes to approximate the variance equation. By canceling out one factor of vx(xi, t)P (xi, xi, t)

in the second term, this third term allows both schemes to recover what looks like the variance

equation in Eq. (5.22).

The additional terms on the right-hand sides of Eqs. (5.18) and (5.20) include terms involving

P2 and its spatial derivative, and as we will see, these can alter the dynamics along the diagonal.

To illustrate this, we can rewrite P2 by decomposing the covariance P (x1, x2, t) into the product of

the diagonal quantity2 P (x, x, t) and correlation C(x1, x2, t),

P (x1, x2, t) =
√
P (x1, x1, t)C(x1, x2, t)

√
P (x2, x2, t). (5.23)

After differentiating according to Eq. (5.16), we have

P2(xi, t) = P (xi, xi, t)
{

log[P (x, x, t)]
}
xx

∣∣
x=xi

+ P (xi, xi, t)C2(xi, t), (5.24)

where C2(x, t) is the same linear combination of derivatives used to define P2(x, t) in Eq. (5.16)

applied to the correlation C(x1, x2, t).

The term P2 directly relates to the correlation length through C2, where we can define the

correlation length L(x, t) as follows,

L2(x, t) = − 1

C2(x, t)
, (5.25)

as defined in Eq. (4.33) of Cohn (1993). Therefore, terms involving P2 in Eqs. (5.18) and (5.20)

2 We choose to use a general diagonal element P (x, x, t) rather than the standard deviation or variance in this
decomposition because of the discontinuous change in dynamics as correlation lengths tend to zero, as described in
Ch. 2. When states are initially uncorrelated, the dynamics along the diagonal are governed by the continuous spec-
trum equation, Eq. (1.9), not the variance equation, Eq. (1.8). Therefore, decomposing the covariance in Eq. (5.23)
using the standard deviation would not be correct for spatially uncorrelated initial states.
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can be rewritten in terms of the diagonal element and correlation length,

Upwind:

d

dt
P (xi, xi, t) = −(vP )x

∣∣
x1=x2=xi

[
1− ∆x2

8L2(xi, t)

]
−
[
2b(xi, t)− 2vx(xi, t)

]
P (xi, xi, t)

− vx(xi, t)P (xi, xi, t)

[
1− ∆x2

8L2(xi, t)

]
(5.26)

− ∆x

4L2(xi, t)
v(xi, t)P (xi, xi, t) + G̃u(xi, t) + H̃u(xi, t),

Centered Difference:

d

dt
P (xi, xi, t) = −(vP )x

∣∣
x1=x2=xi

[
1− ∆x2

8L2(xi, t)

]
− [2b(xi, t)− 2vx(xi, t)]P (xi, xi, t)

− vx(xi, t)P (xi, xi, t)

[
1− ∆x2

8L2(xi, t)

]
+ G̃c(xi, t) + H̃c(xi, t). (5.27)

The error terms Gu, Hu, Gc, and Hc have been updated after replacing P2 with its expansion in

Eq. (5.24) to define G̃u, H̃u, G̃c, and H̃c, which are given in Appen. C.1.

Both the flux term −
(
vP
)
x

and zeroth-order term −vx(xi, t)P (xi, xi, t) have a coefficient in

Eqs. (5.26) – (5.27) that now depends on the ratio of the grid length ∆x to the correlation length L.

For correlation lengths that are sufficiently large, ∆x2

L2(x,t)
is small and tends to zero as ∆x tends to

zero for this large, fixed L. This case yields an extra factor of −vx(xi, t)P (xi, xi, t) that combines

with the other zeroth-order terms in Eqs. (5.26) – (5.27) to recover the variance equation, Eq. (5.22).

When correlation lengths become small enough such that the ratio ∆x2

8L2(x,t)
≈ 1, both the flux term

−(vP )x and the extra −vx(xi, t)P (xi, xi, t) term vanish, reducing the partial differential equation

to an ordinary differential equation in time only.

We can write the behavior observed in Eqs. (5.26) – (5.27) concisely as

pt + λ(x, t)(vp)x + (2b− 2vx)p+ λ(x, t)vxp = 0, (5.28)

where p = p(x, t) = P (x, x, t) represents the general diagonal element of the covariance, and

λ(x, t) = 1− ∆x2

8L2(x, t)
. (5.29)

The coefficient λ(x, t) plays a primary role in the dynamics the numerical schemes are approximating

along the diagonal of the covariance as the correlation length L(x, t) evolves over space and time.
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As derived in Cohn (1993, Sec. 4b), the correlation length L(x, t) for states governed by Eq. (1.4)

satisfies its own differential equation,

Lt + vLx − vxL = 0,

L(x, t0) = L0(x). (5.30)

For spatially-varying velocity fields (vx 6= 0) the correlation length L will evolve over space and

time. In particular, from Eq. (5.30), 1/L satisfies the continuity equation. This implies that regions

of convergence (where (v/L)x < 0) will cause correlation lengths to shrink, balanced by regions

of divergence (where (v/L)x > 0) where correlation lengths grow since 1/L integrated over S1
1 is

conserved. Small correlation lengths can be expected to occur dynamically, therefore λ can become

significant enough to alter the dynamics being approximated along the diagonal of the covariance.

The difference between the upwind and centered difference approximated dynamics occurs

with the additional first-order error term, − ∆x
4L2(xi,t)

v(xi, t)P (xi, xi, t), in Eq. (5.26). This term

does not appear in the centered difference scheme, as it becomes a second-order error term when

performing the analysis (see Appen. C.1). The term − ∆x
4L2(xi,t)

v(xi, t)P (xi, xi, t) is a zeroth-order

dissipative term, which can be even more problematic than the second-order dissipative terms that

are commonly encountered during upwind differencing. Even for modest correlation lengths, this

dissipative term can be quite significant, changing the approximated dynamics along the diagonal

considerably. This zeroth-order dissipative term is a result of the discontinuous change in continuum

dynamics, and is different from the numerical dissipation often discussed in the context of covariance

propagation (i.e., a second-order dissipative term). Additional discussion on this in the context of

other data assimilation literature is given in Secs. 5.4 and 6.2.

The magnitude of λ depends on the correlation length L, which we know from its governing

dynamics in Eq. (5.30), can shrink for a spatially-varying velocity field. To gain an idea for how

large |λ| can become, we consider the following one-dimensional example in which the correlation

lengths can be computed exactly. We let states q satisfy the one-dimensional version of Eq. (1.4)

with b = vx, and take the velocity v = v(x) = sin(x) + 2 to vary in space, but not time. The
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Figure 5.1: Time snapshots (colors) of the ratio ∆x2

8L2(x,t)
as functions of space for different initial

correlation lengths L0 and number of grid points on the discretized unit circle. Correlation lengths
L(x, t) are exact solutions to Eq. (5.30) with constant initial correlation lengths L0, where L0

corresponds to the correlation length of the Gaspari-Cohn correlation function introduced in Ch. 3.
Each row corresponds to two different cut-off length parameters c, where c = 0.25 corresponds to
the initial correlation function being compactly-supported on a quarter of the domain, for example.
Each column plots solutions for two uniformally-spaced spatial grids, with 200 grid points on the
left and 500 grid points on the right. Solid black lines indicated where the ratio ∆x2

8L2(x,t)
is equal to

one, and black dotted when the ratio is one-tenth.
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solution to the state q in this case, as well as the correlation length L, can be solved exactly and

are given in Appen. B.2. For different initial correlation length and fixed grid lengths ∆x, we can

solve for the ratio ∆x2

8L2(x,t)
as a function of space and time. Figure 5.1 illustrates these results. Each

panel plots the ratio ∆x2

8L2(x,t)
on the unit circle at different times (colored lines) by solving for the

correlation length L from Eq. (5.30). Each row corresponds to a different initial correlation length,

which is constant and taken to be the correlation length of the Gaspari-Cohn correlation function

introduced in Ch. 3. Each column corresponds to two different uniform spatial discretizations,

equivalently, two different values of ∆x.

We can see in Fig. 5.1 that the ratio ∆x2

8L2(x,t)
evolves over time and can become quite large.

For the larger initial correlation length (top row), the values of the ratio ∆x2

8L2(x,t)
are small, but in

panel (a) can be significant enough to alter the dynamics along the diagonal in Eq. (5.28). This

becomes more pronounced for the short initial correlation length (bottom row), where values in

panel (c) vary significantly and become quite large. Values of ∆x2

8L2(x,t)
that are greater than one

reverse the direction of propagation, which we see can occur for the values shown in panel (c).

Even for a relatively dense spatial grid with nx = 500 in panel (d), the short initial correlation

length case produces values of ∆x2

8L2(x,t)
that can be significant, larger than the values shown in

panel (a). One could surmise here that increasing spatial resolution may not be an adequate

solution to combat inaccurate evolution along the covariance diagonal. Additionally, large-scale

data assimilation schemes are already computationally expensive, and increasing spatial resolution

such that the ratio ∆x2

8L2(x,t)
is small enough may be too costly.

From Fig. 5.1, we can also deduce the size of the dissipative first-order error term (fourth term

on the right-hand side) in Eq. (5.26). Since the ratio ∆x2

8L2(x,t)
can become large, this implies that

the first-order error term ∆x
4L2(x,t)

may also become quite large. If this term is large enough, it can

cause significant dissipation that manifests itself in what looks like variance loss during covariance

propagation. From Eq. (5.26) we see that along with this dissipative term, the approximated

continuum dynamics are changing as well, indicating that the underlying problem is inaccurate

propagation.
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The error terms H̃u and H̃c in Eqs. (5.26) and (5.27), which contain derivatives across the

covariance diagonal, also depend on powers of the ratio ∆x/L(x, t). Though we do not include the

explicit formulation of these error terms in Eqs. (5.26) and (5.27), they too can become large as

the ratio ∆x/L(x, t) approaches unity. Hence, Fig. 5.1 can provide insight into how these error

terms can behave and further alter the approximated diagonal dynamics when correlation lengths

become small for fixed ∆x.

Figure 5.1 quantitatively demonstrates that λ can significantly alter the dynamics along the

diagonal of the covariance even for modest initial correlation lengths and dense spatial discretiza-

tions. Therefore, the O(∆x2) coefficient in the first and third terms on the right-hand sides of

Eqs. (5.26) and (5.27) is not a negligible error term as it directly influences the continuum dynam-

ics along the diagonal of the covariance. The inaccurate variance propagation caused by the P2

error term is a consequence of averaging across the diagonal.

5.3.2 Discontinuous Across x1 = x2

Differentiability of covariances across x1 = x2 is not always guaranteed. For example, gradi-

ents near the diagonal can become sharp enough that differentiability across x1 = x2 is lost relative

to the size of the discrete grid, in which case the analysis of the previous section does not apply.

In this section, we assume that the covariance is not differentiable across x1 = x2 and instead take

advantage of the symmetry of the covariance function to derive results similar to those derived in

the continuously differentiable case.

We will now assume that the covariance is four times continuously differentiable away from

x1 = x2, but not across x1 = x2. The spatial derivatives from the left and the right of x1 = x2 are

assumed to exist and are defined as follows,

P±x1(x1, x2, t) = lim
x→x±1

∂P

∂x1
(x, x2, t); P±x2(x1, x2, t) = lim

x→x±2

∂P

∂x2
(x1, x, t), (5.31)

where the superscript + denotes derivative from the right and − the derivative from the left. Using

this notation, we will redefine P2 of Eq. (5.16), and introduce two new terms P1 and P3, which will
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now appear in the expansions,

P±1 (x, t) =

[
P±x1(x1, x2, t)− P∓x2(x1, x2, t)

]
x1=x2=x

, (5.32)

P±2 (x, t) =

[
P±±x1x1(x1, x2, t)− 2P±∓x1x2(x1, x2, t) + P∓∓x2x2(x1, x2, t)

]
x1=x2=x

, (5.33)

P±3 (x, t) =

[
P±±±x1x1x1(x1, x2, t)− 3P±±∓x1x1x2(x1, x2, t) + 3P±∓∓x1x2x2(x1, x2, t)− P∓∓∓x2x2x2(x1, x2, t)

]
x1=x2=x

.

(5.34)

By symmetry of the covariance, we have that

P−1 (x, t) = −P+
1 (x, t), P−2 (x, t) = P+

2 (x, t), P−3 (x, t) = −P+
3 (x, t), (5.35)

for all x and t. During the expansions, derivatives will either be taken from the left or the right de-

pending on where xi−1/2 and xi+1/2 lie on the spatial grid relative to the other spatial variables. We

still assume that the velocity field is four times continuously differentiable in its spatial argument.

We begin with the upwind spatial discretization. As before, we will expand the average term

vi−1(t)
[
Pi−1,i(t) + Pi,i−1(t)

]
about xi−1/2, xi−1/2, but this time taking partial derivatives from the

left for spatial variable xi and from the right for spatial variable xi−1. After computing these

expansions and invoking the symmetry property in Eq. (5.35) to rewrite derivatives in terms of

the right partials only (see Eq. C.20 in Appen. C.1.3, for example), we have the following semi-

discretization for the upwind scheme,

d

dt
P (xi, xi, t) =

1

∆x

[
2v(xi−1/2, t)P (xi−1/2, xi−1/2, t)− 2v(xi, t)P (xi, xi, t)

]
− 2
[
b(xi, t)− vx(xi, t)

]
P (xi, xi, t)

− vx(xi−1/2, t)P (xi−1/2, xi−1/2, t) + v(xi−1/2, t)P
+
1 (xi−1/2, t) (5.36)

+
∆x

4

[
v(xi−1/2, t)P

+
2 (xi−1/2, t)− 2vx(xi−1/2, t)P

+
1 (xi−1/2, t)

]
− ∆x2

8
vx(xi−1/2, t)P

+
2 (xi−1/2, t) +

1

∆x

[
J−(xi−1/2, t) + K̃−(xi−1/2, t)

]
.

Like in Eq. (5.17), we have two error terms J−(xi−1/2, t) and K̃−(xi−1/2, t), which are defined

in Eqs. (C.1) and (C.19), respectively. Here, J− is O(∆x2) and contains covariances evaluated
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along the diagonal, while K̃− is O(∆x4) and contains terms that are derivatives (from the right) of

the covariance across the diagonal. We observe here that Eq. (5.36) contains terms involving P+
1

and P+
3 that did not appear in Eq. (5.17), including in K̃−(xi−1/2, t). When the covariance has

continuous derivatives across x1 = x2, P+
1 , P+

2 , and P+
3 become full derivatives and P+

1 and P+
3

vanish, so that Eq. (5.17) and Eq. (5.36) are equivalent.

Like the continuously differentiable case, the first group of terms on the right-hand side of

Eq. (5.36) is a first-order upwind spatial discretization of −(vP )x evaluated at x1 = x2 = xi, and

there are additional terms evaluated on the half-grid that must be expanded to the grid point xi.

When expanding terms about xi in Eq. (5.36), the approximated dynamics along the diagonal of

the covariance for the upwind semi-discretization is the following,

d

dt
P (xi, xi, t) =− (vP )x

∣∣
x1=x2=xi

−
[
2b(xi, t)− 2vx(xi, t)

]
P (xi, xi, t)

− vx(xi, t)P (xi, xi, t)− vx(xi, t)

[
∆xP+

1 (xi, t) +
∆x2

4
P+

2 (xi, t)

]
(5.37)

+ v(xi, t)

[
P+

1 (xi, t) +
∆x

4
P+

2 (xi, t)

]
− ∆x

2
v(xi, t)

(
P+

1

)
x

∣∣
x=xi

− ∆x2

8
v(xi, t)

(
P+

2

)
x

∣∣
x=xi

+ Ĝu(xi, t) + Ĥu(xi, t).

The error terms Ĝu and Ĥu are of a similar definition to those in Sec. 5.3.1, with Ĝu being O(∆x)

and Ĥu being O(∆x2) due to the presence of P+
1 . See Appen. C.1.3 for further details.

There are important similarities and differences between the approximated dynamics in

Eq. (5.37) compared to its counterpart when the covariance is continuously differentiable, Eq. (5.18).

When the covariance is four times continuously differentiable, P+
1 and P+

3 vanish, and Eq. (5.37)

would reduce to Eq. (5.18). When P+
1 and P+

3 are nonzero, additional error terms are introduced

to Eq. (5.18) that are problematic. The zeroth-order term v(xi, t)P
+
1 (xi, t) on the right-hand side

of Eq. (5.37) is particularly problematic, as the scheme that governs the diagonal propagation is

no longer even first-order accurate because of this error term.

We see similar behaviors in the approximated dynamics for the centered difference spatial

discretization. As in the continuously differentiable case, there are two averaging terms that need
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to be expanded. The term vi−1(t)
[
Pi−1,i(t) + Pi,i−1(t)

]
was already expanded for the upwind

case, therefore we are left to expand the other averaging term, vi+1(t)
[
Pi+1,i(t) + Pi,i+1(t)

]
, about

xi+1/2, xi+1/2. In this case, derivatives are taken from the right for spatial variables xi+1 and

from the left for spatial variables xi−1. The details of the expansions are lengthy and presented

in Appen. C.1.3 for reference. The expansions produce P+
1 and P+

3 terms that appear due to the

discontinuity in the derivatives across x1 = x2 and would vanish when the covariance has at least

four continuous derivatives across x1 = x2. As a consequence, we retain odd-order error terms,

unlike the continuously differentiable case. The approximated dynamics for the diagonal of the

covariance from the centered difference spatial discretization scheme is as follows,

d

dt
P (xi, xi, t) =− (vP )x

∣∣
x1=x2=xi

−
[
2b(xi, t)− 2vx(xi, t)

]
P (xi, xi, t)

− vx(xi, t)P (xi, xi, t)− vx(xi, t)

[
∆xP+

1 (xi, t) +
∆x2

4
P+

2 (xi, t)

]
(5.38)

− ∆x

2
v(xi, t)

(
P+

1

)
x

∣∣
x=xi

− ∆x2

8
v(xi, t)

(
P+

2

)
x

∣∣
x=xi

+ Ĝc(xi, t) + Ĥc(xi, t),

with the error terms Ĝc and Ĥc defined in Appen. C.1.3.

As in the upwind case, there are now additional error terms involving P+
1 and P+

3 as a

consequence of the covariance having discontinuous derivatives across x1 = x2. The presence of the

first-order term −∆xvx(xi, t)P
+
1 (xi, t) in Eq. (5.38) renders the order of the diagonal propagation

to be first-order accurate, reducing the order of accuracy that would be expected from a centered-

difference scheme. The results for both the upwind and centered difference cases indicate that for

covariances that are not continuously differentiable across x1 = x2, neither scheme can approximate

the variance dynamics accurately, regardless of the magnitude of P+
1 . Similar to the continuously

differentiable case, the upwind scheme contains additional terms in Eq. (5.37) that are not present

in the centered difference scheme in Eq. (5.38), as they move to higher order.

Since the covariance is not continuously differentiable across x1 = x2, rewriting Eqs. (5.37)

and (5.38) in terms of the correlation length defined in Eq. (5.25) cannot be done. However, we can

gain a better idea of the behavior of the approximated dynamics in this case by rewriting P+
1 and

P+
2 in terms of the diagonal element P (x, x, t) and the correlations C+

1 and C+
2 , which are defined
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as in Eqs. (5.32) and (5.33) instead for the correlation C. First, we expand P+
1 and P+

2 as follows,

P+
1 (x, t) = P (x, x, t)C+

1 (x, t), (5.39)

P+
2 (x, t) = P (x, x, t) log(P )xx

∣∣
x1=x2=x

+ P (x, x, t)C+
2 (x, t). (5.40)

Thus, the approximated dynamics for the upwind and centered difference schemes can be rewritten

in terms of correlations,

Upwind:

d

dt
P (xi, xi, t) = −(vP )x

∣∣
x1=x2=xi

[
1 +

∆x

2
C+

1 (xi, t) +
∆x2

8
C+

2 (xi, t)

]
−
[
2b(xi, t)− 2vx(xi, t)

]
P (xi, xi, t)

− vx(xi, t)P (xi, xi, t)

[
1 +

∆x

2
C+

1 (xi, t) +
∆x2

8
C+

2 (xi, t)

]
− v(xi, t)P (xi, xi, t)

[
− C+

1 (xi, t)−
∆x

4
C+

2 (xi, t) (5.41)

+
∆x

2

(
C+

1

)
x

∣∣
x=xi

+
∆x2

8

(
C+

2

)
x

∣∣
x=xi

]
+ Ĝu(xi, t) +

∆x

4
v(xi, t)P (xi, xi, t) log(P )xx

∣∣
x1=x2=xi

+ Ĥu(xi, t)−
∆x2

8

[
vP log(P )xx

]
x

∣∣
x1=x2=xi

.

Centered Difference:

d

dt
P (xi, xi, t) = −(vP )x

∣∣
x1=x2=xi

[
1 +

∆x

2
C+

1 (xi, t) +
∆x2

8
C+

2 (xi, t)

]
−
[
2b(xi, t)− 2vx(xi, t)

]
P (xi, xi, t)

− vx(xi, t)P (xi, xi, t)

[
1 +

∆x

2
C+

1 (xi, t) +
∆x2

8
C+

2 (xi, t)

]
(5.42)

− v(xi, t)P (xi, xi, t)

[
∆x

2

(
C+

1

)
x

∣∣
x=xi

+
∆x2

8

(
C+

2

)
x

∣∣
x=xi

]
+ Ĝc(xi, t)−

∆x2

8

[
vP log(P )xx

]
x

∣∣
x1=x2=xi

+ Ĥc(xi, t).

The impact of averaging across the diagonal in Eqs. (5.41) and (5.42) is quite similar to that

of the continuously differentiable case discussed in Sec. 5.3.1 when the approximated dynamics

are written in terms of derivatives of the correlations. In fact, if the covariance is continuously
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differentiable across x1 = x2, then this collapses exactly to the equations in Sec. 5.3.1 as the

correlation length can then be defined. The presence of C+
1 and its derivative introduces additional

error terms that change the order of accuracy of the schemes and further alter the dynamics.

Though the correlation length L of Eq. (5.25) is not well-defined in this case, one could assign

a correlation length for C+
1 and C+

2 . For example, consider the First-Order Autoregressive (FOAR)

correlation function, first introduced in Eq. (3.6) and revisited here with slightly different notation,

CFOAR(x1, x2) = e−||x1−x2||/L, (Eq. (3.6), revisited)

where L > 0 is the length-scale parameter and || · || is a norm (e.g., chordal distance on the unit

sphere, Euclidean distance on the plane). The FOAR correlation function is not continuously

differentiable across x1 = x2 due to the cusp along x1 = x2. Unlike correlation functions that

are at least twice continuously differentiable across x1 = x2, the second derivative from the left

and the right of the FOAR correlation function is positive. Therefore, C+
1 and C+

2 for the FOAR

correlation function can be rewritten in terms of the length scale parameter L.

Generalizing the definition of a correlation length for C+
2 , however, is not straightforward.

For twice-continuously differentiable correlation functions, the second derivative of the correlation

must be negative along x1 = x2 since this is where the correlation is a maximum. However, when

the correlation function is not continuously differentiable across x1 = x2, the sign of C+
2 does

not matter. The FOAR correlation function, for example, has its second derivatives C+
2 and C−2

both positive. Therefore, defining a correlation length analogous to the continuously differentiable

case is not obvious. The correlation length scale associated with nonzero C+
1 , however, can be

generalized. Since x1 = x2 is a local maximum for correlation functions by definition, we can define

a correlation length whose sign will remain consistent for different correlation functions (similar to

the first derivative test for determining local extrema). We can define correlation length scale L1

to be

L1(x, t) = − 1

C+
1 (x, t)

, (5.43)



70

and express P+
1 in terms of this correlation length,

P+
1 (x, t) = P (x, x, t)C+

1 (x, t) = −P (x, x, t)

L1(x, t)
. (5.44)

P−1 (x, t) can be defined in terms C−1 , where the relation C+
1 = −C−1 will yield the a similar definition

of L1(x, t) as given in Eq. (5.44) so that L1(x, t) remains positive.

5.4 Discussion of Pannekoucke et al. (2021)

Recent work by Pannekoucke et al. (2021) (hereafter referred to as P21 in this section) seeks to

quantify the errors caused by numerical discretization during covariance propagation. The results of

P21 are similar to, but distinct from, the error analysis of this chapter in the motivation, approach,

and interpretation. In this section, we will discuss the results of P21 in the context of this thesis.

The motivation for P21 is to identify the contribution of numerical discretization of the

state dynamics to the model-error covariance matrix, often denoted as Q, which is added to the

discrete propagation in Eq. (1.3). The authors quantify the errors caused by numerical discretization

by determining the approximated variance dynamics. The authors compute the approximated

variance dynamics as follows: first, the authors discretize the state equation (in both space and

time) according to a chosen numerical scheme, then they Taylor-expand the state to recover the

continuum state equation that is being approximated to higher order. Finally, the authors then

derive the approximated dynamics for the variance from this approximated state equation. Though

the error terms P21 recover in their approximated variance equation are identical to those derived

in this chapter, their method of recovering these terms differs from this chapter’s analysis and falls

short of identifying the fundamental cause for these error terms, as described below.

We begin this section by showing that the error terms recovered by P21 are equivalent to

those derived in the error analysis of the state equation in advection form, Appen. C.2. With this

established, we conclude this section with further discussion of P21.
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5.4.1 Analysis of Their Approximated Variance Dynamics

The state dynamics in P21 satisfy the one-dimensional advection equation, Eq. (1.4) for b = 0.

The authors apply a first order semi-Lagrangian scheme with linear interpolation to compute the

full discretization for the state. Here, we will apply the discretization in space only, which is

a first-order upwind scheme, to recover the corresponding semi-discretization using the notation

established in this chapter,

d

dt
qi(t) =

vi(t)

∆x
[qi−1(t)− qi(t)] . (5.45)

In line with the analysis applied in P21, we expand the state qi−1(t) about xi to second order in

space, then substitute this expansion back into Eq. (5.45),

d

dt
q(xi, t) = −v(xi, t)qx(xi, t) +

1

2
∆xv(xi, t)qxx(xi, t) +O(∆x2). (5.46)

Equation (5.46) is what we will now use to determine the approximated dynamics for the variance.

In P21, the authors skip Eq. (5.46) and instead present the “modified equation,” which is the PDE

the numerical scheme is approximating to higher order. To remain consistent with error analysis

presented in this chapter, we will not do this and instead work directly with Eq. (5.46).

To proceed to the approximated dynamics for the variance, we will consider the error ε(x, t)

defined in Eq. (5.6). Due to linearity and v being deterministic, the error ε(xi, t) also satisfies

Eq. (5.46). Next, we can determine the associated equation for the product ε(xi, t)ε(xj , t),

d

dt
ε(xi, t)ε(xj , t) =− v(xi, t)εx(xi, t)ε(xj , t)− v(xj , t)εx(xj , t)ε(xi, t)

+
1

2
∆x
[
v(xi, t)εxx(xi, t)ε(xj , t) + v(xj , t)εxx(xj , t)ε(xi, t)

]
. (5.47)

To deviate slightly from P21 so that the derivation of the approximated variance dynamics is clear,

we will now adopt the notation used in this chapter. Observe the following relation for the sum of

the second partial derivatives of the covariance P ,

[
Px1x1(x1, x2, t) + Px2x2(x1, x2, t)

]
x1=x2=x

=
1

2

[
Pxx(x, x, t) + P2(x, t)

]
. (5.48)
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Since we have that Pxixi(xi, xj , t) = E [εxx(xi, t)ε(xj , t)], we can rewrite Eq. (5.47) after taking the

expectation and evaluating along i = j as follows,

d

dt
P (xi, xi, t) = −v(xi, t)Px(xi, xi, t) +

∆x

4
v(xi, t)Pxx(xi, xi, t) +

∆x

4
v(xi, t)P2(xi, t). (5.49)

By rewriting P2 in terms of the diagonal element and correlation length L, Eq. (C.8), and expanding

the derivative of log(P )xx, we have the following approximated dynamics along the covariance

diagonal,

d

dt
P (xi, xi, t) =− v(xi, t)Px(xi, xi, t) +

∆x

2
v(xi, t)Pxx(xi, xi, t)

− ∆x

4
v(xi, t)

(Px)2(xi, xi, t)

P (xi, xi, t)
− ∆x

4L2(xi, t)
v(xi, t)P (xi, xi, t). (5.50)

Let’s now compare Eq. (5.50) to Eq. (40a) of P21, which is their approximated dynamics for

the variance. Equation (40a) of P21 in their notation is given as

∂tV
p + U∂xV

p = −V
pκ

νp
+ κ∂2

xV
p − κ(∂xV

p)2

2V p
, (5.51)

Now, remapping to the notation used in this chapter, noting that P21 defines an anisotropic tensor

νp in their Eq. (25) that relates to the correlation length L,

V p 7→ P (x, x, t)

U 7→ v(x, t)− ∆t

2
vt(x, t) +

∆t

2
v(x, t)vt(x, t) ⇒ v(x, t),

κ 7→ v(x, t)

2
[∆x− v(x, t)∆t] ⇒ ∆x

2
v(x, t),

νp 7→ 1

2
L2(x, t).

Since we only discretize in space, we can drop the time-dependent errors. We can now rewrite

Eq. (5.51) to compare with Eq. (5.50),

Pt(x, x, t) + v(x, t)Px(x, x, t) = − ∆x

4L2(x, t)
v(x, t)P (x, x, t) +

∆x

2
v(x, t)Pxx(x, x, t)

− ∆x

4
v(xi, t)

(Px)2(x, x, t)

P (x, x, t)
. (5.52)
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The analysis presented in P21, therefore, recovers the same error terms (up to first order only) that

are derived from the error analysis in advection form, Appen. C.2.

Retaining only the first-order error terms is where P21 stops in their analysis, claiming that

the variance loss observed during covariance propagation is a result of numerical diffusion (see P21

p. 8). However, the error analysis in this chapter demonstrates that the second-order error terms

are equally as important because they can change the approximated dynamics entirely. We can

actually recover the second-order error terms in a similar process by expanding the state up to

third order in space,

d

dt
q(xi, t) = −v(xi, t)qx(xi, t) +

1

2
∆xv(xi, t)qxx(xi, t)−

1

6
∆x2v(xi, t)qxxx(xi, t) +O(∆x3). (5.53)

As before, the error ε(xi, t) satisfies the same equation as the state shown above. The equation for

the product ε(xi, t)ε(xj , t) is almost identical to the previous case but with an additional term of

order ∆x2,

d

dt
ε(xi, t)ε(xj , t) =− v(xi, t)εx(xi, t)ε(xj , t)− v(xj , t)εx(xj , t)ε(xi, t)

+
∆x

2
[v(xi, t)εxx(xi, t)ε(xj , t) + v(xj , t)εxx(xj , t)ε(xi, t)] (5.54)

− ∆x2

6
[v(xi, t)εxxx(xi, t)ε(xj , t) + v(xj , t)εxxx(xj , t)ε(xi, t)]

With a bit of algebra, one can derive the following relation,

[
Px1x1x1(x1, x2, t) + Px2x2x2(x1, x2, t)

]
x1=x2=x

=
1

4

[
Pxxx(x, x, t) + 3(P2)x(x, t)

]
(5.55)

Therefore, we can rewrite the new term in Eq. (5.54) as

E
{
− ∆x2

6
[v(xi, t)εxxx(xi, t)ε(xj , t) + v(xj , t)εxxx(xj , t)ε(xi, t)]xi=xj

}
=

− ∆x2

24
v(xi, t)Pxxx(xi, xi, t)−

∆x2

8
v(xi, t)(P2)x(xi, t).

we have now recovered the problematic P2 term originally derived in Sec. 5.3.1. In addition to the

first-order error terms recovered already, we have derived the same approximated dynamics as done

in the advection form case presented in Appen. C.2.
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5.4.2 Discussion

The approach presented in P21 for deriving the approximated variance dynamics contrasts

with the error analysis presented earlier in this chapter in two fundamental ways. The first is the

analysis itself. The approach taken in P21 to Taylor-expand the state, rather than the covariance,

is a logical choice from a data assimilation perspective since covariance propagation is defined

from the discretized state propagation. As demonstrated in Ch. 2, however, to fully understand

covariance propagation for advective dynamics requires careful analysis of the covariance itself

since the hyperplane x1 = x2 is a characteristic surface. In addition, the discontinuous change

in the continuum dynamics along x1 = x2 is only uncovered by carefully analyzing the continuum

covariance dynamics. Therefore, deriving the approximated dynamics along the covariance diagonal

from the covariance semi-discretization itself, as done in this chapter, is a more discerning approach

in light of the continuum behavior.

Second, there is the interpretation of the error terms. The method for deriving the error terms

that alter the variance dynamics in P21 bypasses the underlying issues that cause the observed

errors. Though the same error terms noted by P21 are recovered through the analysis performed

in this chapter, our approach shows that these terms are a result of using off-diagonal elements to

approximate diagonal elements, which is particularly problematic due to the discontinuous change in

the continuum dynamics along x1 = x2. Therefore, the errors we observe are not typical numerical

discretization errors; they are errors that are caused by the continuum dynamics and inherent

behavior of Eq. (1.3), independent of the numerical discretization. Including the second-order error

terms along the diagonal is essential to see that inaccurate variance propagation is the problem, not

dissipation. Only retaining the first-order error terms can be misleading, suggesting that numerical

diffusion is the source of the problem, as is claimed by P21. Though numerical diffusion may

dominate for first-order schemes, this is not the case in higher-order schemes.

The fact that P21 recovers the same first-order error terms along the covariance matrix diago-

nal further confirms that discrete covariance propagation causes variance loss in advective systems.
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However, P21 does not address the underlying issue causing this loss of variance, namely the in-

accurate variance propagation. To understand the full scope of the problem requires knowledge of

the continuum covariance dynamics and careful error analysis of discrete propagation.

5.5 Conclusions and Discussion

In this chapter, we see that standard methods of covariance propagation, i.e. Eq. (5.3), are

a direct cause of inaccurate variance propagation in advective systems. This inaccurate behavior is

not due to numerical dissipation, but rather is due to the discontinuous change in the continuum

covariance dynamics along x1 = x2 coupled with approximating the diagonal of the covariance

with off-diagonal elements. The result is that covariance propagation approximates the incorrect

continuum dynamics along the covariance diagonal as the correlation length approaches grid scale.

Hence, the spurious loss (and gain) of variance observed during covariance propagation in Ménard

et al. (2000); Ménard and Chang (2000); Lyster et al. (2004); Ménard et al. (2021), for exam-

ple, is a manifestation of the inaccurate variance propagation explicitly derived in this chapter.

Since ensemble-based schemes implement low-rank approximations of the full-rank propagation,

the issues presented here will still be present in addition to the problems that arise with low-rank

approximations.

The terms in the approximated continuum dynamics that differentiate across the covariance

diagonal (P2 for example) are the driving cause of the inaccurate variance propagation. We see in

Eqs. (5.18), (5.20), (5.37), and (5.38) how these derivative terms directly influence the approximated

continuum dynamics as they become large for fixed grid length. It’s important to note that the

error terms Hu, Hc, Ĥu, and Ĥc in these equations contain higher order derivatives that differentiate

across the covariance diagonal. As these derivatives become large for fixed grid length, they too

can be come significant enough to alter the approximated continuum dynamics even further.

Numerical schemes rely on differentiability for stability, convergence to the exact solution,

and to determine the scheme’s order of accuracy. As gradients along the covariance diagonal become

sharp, for example when correlation lengths become small, differentiability across the covariance
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diagonal is lost relative to the grid resolution. This loss of differentiability results in large (and even-

tually unbounded) derivatives across the diagonal, causing the error terms derived in Eqs. (5.18),

(5.20), (5.37), and (5.38) to become large and change the approximated continuum dynamics. We

see in this chapter the consequences of propagating covariances according to Eq. (1.3) when gra-

dients near the covariance diagonal become sharp. The question is whether this behavior can be

corrected now that we have an explicit equation for the approximated dynamics; this is the subject

of the next chapter.



Chapter 6

Developing a Correction to Full-Rank Propagation

The original motivation for the error analysis in Ch. 5 was to derive a correction to full-rank

covariance propagation in an effort to mitigate the observed inaccurate variance propagation. The

advantage of correcting full-rank covariance propagation is that it may be more readily adapted to

current data assimilation algorithms. Low-rank approximations of Eq. (1.3) obtained by ensemble-

based schemes are commonplace in today’s data assimilation schemes; therefore correcting the full-

rank propagation can in turn mitigate the variance loss caused by inaccurate variance propagation

in the low-rank approximations.

The approach for determining a correction to full-rank covariance propagation presented

in this chapter differs from current approaches in that it is derived directly from the continuum

covariance dynamics. Recall that error analysis in Ch. 5 resulted in a several error terms that

involve various derivatives of the covariance across the diagonal x1 = x2. These error terms are

ideal candidates to add back to the diagonal of the covariance during full-rank propagation and

(potentially) mitigate the inaccurate variance propagation. Since these error terms are common

to both the upwind and centered difference numerical schemes and when the differentiability of

the covariance across x1 = x2 changes, developing a correction using these error terms could likely

be adapted to other numerical schemes. In this chapter, we will explore the idea of building a

correction from the error terms accumulated from the error analysis in Ch. 5.
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6.1 Correcting Full-Rank Covariance Propagation

We observed in Ch. 5.3 that averaging across the diagonal can change the dynamics the

numerical schemes are approximating along the covariance diagonal, depending on the magnitude

of correlation lengths or partial derivatives. Both the upwind and centered difference spatial dis-

cretizations, though different discretizations, produce similar error terms in their approximated

dynamics. This suggests that the inaccurate variance propagation caused by Eq. (5.3) is funda-

mentally an issue of dynamics and may not be readily fixed by increasing spatial resolution or

changing the numerical scheme. The generality of these results are also emphasized by the fact

that they are derived from the semi-discretizations of the generalized advection equation, Eq. (1.4).

Both numerical schemes include averaging terms that are second-order (first-order in the

discontinuous case) approximations of diagonal elements evaluated on the half-grid. Taylor series

expansions we have computed in Ch. 5, in fact, reveal higher-order approximations of these diagonal

elements, given sufficient differentiability. For example, consider the case where the covariance is

not differentiable across x1 = x2 but is at least three times continuously differentiable away from

x1 = x2. We can expand the average approximation across the diagonal about the diagonal element

on the half-grid,

P (xi, xi+1, t)+P (xi+1, xi, t) = 2P (xi+1/2, xi+1/2, t)+∆xP+
1 (xi+1/2, t)+

∆x2

4
P+

2 (xi+1/2, t)+O(∆x3).

(6.1)

We can rewrite the above equation to approximate the diagonal quantity 2P (xi+1/2, xi+1/2, t),

2P (xi+1/2, xi+1/2, t) = P (xi, xi+1, t)+P (xi+1, xi, t)−∆xP+
1 (xi+1/2, t)−

∆x2

4
P+

2 (xi+1/2, t)+O(∆x3).

(6.2)

If the average term P (xi, xi+1, t) + P (xi+1, xi, t) poorly approximates the diagonal quantity

2P (xi+1/2, xi+1/2, t) when correlation lengths become relatively small, including higher-order terms

like P+
1 and P+

2 may be a viable option to try and correct the diagonal dynamics. For the state

dynamics in Eq. (1.4), we can derive explicit PDEs for P+
1 and P+

2 . This was first discussed in

Sec. 4 of Cohn (1993); here, the main points from this work will be presented here in the context
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this thesis.

Through a change of coordinates, we can more concisely define P+
1 and P+

2 as follows. First,

we define

x =
1

2
(x1 + x2), ξ =

1

2
(x1 − x2), (6.3)

with

∂

∂x
=

∂

∂x1
+

∂

∂x2
,

∂

∂ξ
=

∂

∂x1
− ∂

∂x2
. (6.4)

Now define a function P̂ that satisfies the following relation with the covariance P in the original

space,

P̂ (x, ξ, t) = P (x+ ξ, x− ξ, t). (6.5)

The dynamics along x1 = x2 fall naturally out of this coordinate system, where x1 = x2 implies

x = x1 = x2 and ξ = 0. We can then express P+
1 and P+

2 in terms of the partial derivatives of P̂

with respect to ξ evaluated at ξ = 0, i.e. along x1 = x2,

Pn(x, t) =
∂nP̂ (x, ξ, t)

∂ξn

∣∣∣∣
ξ=0

, (6.6)

P−n (x, t) = lim
ξ→0−

∂nP̂ (x, ξ, t)

∂ξn

∣∣∣∣
ξ=0

, (6.7)

P+
n (x, t) = lim

ξ→0+

∂nP̂ (x, ξ, t)

∂ξn

∣∣∣∣
ξ=0

, n = 1, 2, . . . (6.8)

The derivation of the PDEs that govern P+
1 and P+

2 are given in Sec. 4d, 4a of Cohn (1993),

respectively, and we suggest the reader refer to this work for further details. For the state dynamics

defined in Eq. (1.4), the PDEs for P+
1 = P1 and P+

2 = P2 are given below.

(P1)t + v(P1)x + (vx + 2b)P1 = 0,

P1(x, t0) = (P1)0(x) (6.9)

(P2)t + v(P2)x + 2(vx + b)P2 + vxxxσ
2
x + 2bxxσ

2 = 0,

P2(x, t0) = (P2)0(x) (6.10)

The equation for P2 is coupled with the variance equation, but remains a PDE in the same number

of space dimensions as the state.
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Figure 6.1: Comparisons of different approximations of 2P (xi+1/2, xi+1/2, t) based on Eq. (6.2).
The solid lines in each panel are the exact solutions 2P (xi+1/2, xi+1/2, t) = 2σ2(xi+1/2, t) at three
different times and are the same in each panel. Dashed curves indicated the different approximations
at each time as indicated in the title of each column. Numerical values of the maximums are marked
for reference. Each row corresponds to two different initial correlation lengths used to construct
the initial covariances, which use the FOAR function defined in Eq. (3.6). Values of L0 are chosen
to be comparable to values of cut-off length c shown in Fig. 5.1.
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With explicit PDEs for P1 and P2 in Eqs. (6.9) and (6.10), these terms can be computed,

either analytically or numerically, and used in Eq. (6.2) to increase the order of the approxima-

tion the diagonal element. We can gauge how P1 and P2 can be used to improve the approxi-

mation of 2P (xi+1/2, xi+1/2, t) by considering the example in Fig. 6.1. In Fig. 6.1, we compare

2P (xi+1/2, xi+1/2, t) = 2σ2(xi+1/2, t) with several variations of approximations in Eq. (6.2) for

states governed by the one-dimensional continuity equation (Eq. B.9 with α = 1). All quantities in

Fig. 6.1 are exact solutions (see Appen. B.2 for explicit solutions), therefore these results represent

the best-case scenario of approximating the diagonal elements. Initial covariances are constructed

with a constant initial variance of one and correlations are constructed using the First-Order Au-

toregressive (FOAR) correlation function, Eq. (3.6). We choose the FOAR correlation function

because its derivatives are discontinuous across x1 = x2 due to the cusp along x1 = x2 so that its

P+
1 is nonzero.

Considering the first row of Fig. 6.1, which is the case for a modest initial correlation length,

adding a correction either with just −∆xP1 in (b), −∆x2

4 P2 in (c), or both in (d), improves the

approximation of twice the variance (solid lines) seen in panel (a), which is what the upwind and

centered difference schemes are currently implementing. It is important to note here that the

values used to compute the dashed-line approximations are exact solutions because these solutions

are available. Therefore, these results in Fig. 6.1 represent the best-case scenario of the proposed

corrections.

The impact of the various correction terms change drastically in the bottom row of Fig. 6.1,

which considers an initial covariance with a short initial correlation length. Panel (e), which is the

averaging term without any correction, is a very poor approximation of twice the variance. Interest-

ingly, panels (f) and (h) which include the −∆xP1 correction term, are over-approximations, with

the most severe over-approximation in panel (h). Panel (g), which only contains the −∆x2

4 P2 cor-

rection term, however, is a better correction in terms of not over-approximating twice the variance,

but the shapes are not ideal.

The results in Fig. 6.1 suggest that using the P1 and P2 terms that appear during the Taylor
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series expansions as corrections to the diagonal propagation may be helpful in some cases, but would

be of limited use in others. Determining the type of correction that needs to be implemented may

depend on space, time, grid length, the dynamics of the system, and the correlation structure of the

covariance. Recall that the error terms Hu, Hc, Ĥu, and Ĥc also contain derivatives of the covariance

across the diagonal. These error terms can become significant as well, making a correction to

Eq. (5.3) in this way even more difficult. In addition, developing an associated correction to

the full covariance propagation defined in Eq. (5.3), is not straightforward, particularly to ensure

positive semi-definiteness is maintained and correlation structures are not negatively impacted. The

correction proposed here is not the only method of correcting the full-rank covariance propagation,

though we suspect developing a correction may be quite complex.

6.2 Discussion of Ménard et al. (2021)

The results of Sec. 6.1 suggest that correcting the covariance diagonal during full-rank propa-

gation is not straightforward due to the structure of the error terms. There may be ways to correct

the covariance diagonal other than that presented in Sec. 6.1, though it is likely that any would be

difficult to formulate because of the discontinuous change in the continuum covariance dynamics

identified in Ch. 2.

A correction to full-rank propagation, however, has been identified by Ménard et al. (2021)

(hereafter referred to as M21 in this section), resulting in successful mitigation of variance loss in

their experiments. Closer inspection in the context of this work, however, suggests that the success

of the correction proposed in M21 is limited to their problem and not readily adapted to other

numerical schemes or dynamics. In this section, we will consider the correction presented in M21,

first by reprising the derivation of their correction and then discussing this correction in the context

of this thesis.

The state dynamics in M21 satisfy the advection equation (b = 0 in Eq. 1.4). In their

Sec. 2.2, the authors discretize the state in both space and time using a first-order semi-Lagrangian

discretization scheme with linear interpolation. From the full discretization of the state, the au-
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thors determine the associated discretization for the covariance diagonal (the equation immediately

following their Eq. 22). Their equation can be derived from Eq. (C.23) by applying a first-order

Euler time-integration scheme to the first-order upwind semi-discretization.

The analysis and derivation of a correction following the second equation after Eq. (22) in M21

deviates from that presented in this work as follows. Rather than determining the approximated

continuum dynamics along the covariance diagonal through Taylor expansion, the authors add

and subtract the diagonal element αni P
n
i−1,i−1, where αni = vni ∆t/∆x, the superscripts n denote

the time index, and the subscripts i the spatial index. As a consequence, the authors obtain in

their Eq. (23): a first-order semi-Lagrangian discretization scheme with linear interpolation for the

covariance diagonal, plus additional terms the authors denote as “HOT.” Their Eq. (23) is reprised

here using the notation of Ch. 5, with the boxed terms indicating the added and subtracted terms

that are not a part of the original diagonal propagation:

Pn+1
i,i =(1− αni )Pni,i +αni P

n
i−1,i−1 (6.11)

−αni Pni,i + (αni )2Pni,i + αni (1− αni )
(
Pni,i−1 + Pni−1,i

)
−αni Pni−1,i−1 + (αni )2Pni−1,i−1︸ ︷︷ ︸

HOT

. (6.12)

Therefore, their Eq. (23) recovers a numerical scheme that is a first-order approximation of the

continuum variance dynamics, plus remaining terms they denote as “HOT”. From these “HOT”

the authors derive a correction, which will be addressed later.

There are a few observations to be made about Eqs. (6.11) – (6.12). By adding and subtracting

the boxed term αni P
n
i−1,i−1, a first-order semi-Lagrangian scheme is recovered along the covariance

diagonal. The continuum variance in this case does satisfy the advection equation, therefore the

first-order semi-Lagrangian scheme approximates the continuum variance dynamics (up to first

order). The “HOT” in Eq. (6.12), therefore, are not necessarily higher-order terms in the sense that

they contain first-order terms in ∆x and ∆t, which are the same order as the discretization scheme.

However, isolation of these “HOT” terms allows for recovery of the first order semi-Lagrangian

scheme for the variance along the covariance matrix diagonal.

The correction proposed in Sec. 6 of M21 is defined by adding the “HOT” terms back to the
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covariance diagonal during full-rank propagation, defined by their Eq. (36). Their results Sec. 6.1 –

6.3 suggest that this correction mitigates the majority of the variance loss caused by the discrete

covariance propagation. The proposed correction in their Eq. (36) effectively enforces a first-order

approximation of the variance along the diagonal. Therefore, it is expected to see first-order

accurate propagation of the variance. The correction to the diagonal also impacts an important

property of the correlations due to the particular dynamics for their case. For states governed

by the advection equation, both the correlation C and covariance P satisfy the two-dimensional

version of the advection equation (i.e. Eq. 1.6 with b1 = b2 = 0). Thus, the correlation C satisfies

the same full discretization as the covariance, and its diagonal the same discretization defined in

Eqs. (6.11) – (6.12). It follows that in the context of the correlation propagation, their correction

term (i.e., adding back their “HOT” defined by their Eq. 35), will ensure that one is preserved

along the diagonal of the correlation during propagation.

In the context of the analysis presented in Ch. 5 and Appen. C, the correction term proposed

by M21 to the first-order scheme mitigates the dissipation errors caused by the upwind discretiza-

tion. In Ch. 5, we see this in the ∆x/L2 term that appears in the upwind scheme. This error term,

however, is not present in the centered difference scheme, as the centered difference scheme is not

dissipative. Therefore, a correction derived using the approach presented in M21 will not address

the errors observed for the centered difference scheme. Recall that the error terms we derive in

Ch. 5 and Appen. C involve powers of the ratio ∆x/L, and as this ratio approaches unity, there

are several terms that become significantly problematic, completely changing the approximated

continuum dynamics (while also introducing a zeroth-order dissipative term in the upwind case).

Therefore, the correction of M21 may work for first-order schemes by mitigating dissipative error

term, but will not be able to generalize to higher-order schemes, as the analysis presented here

demonstrates.



85

6.3 Conclusion and Discussion

Current data assimilation schemes implement covariance propagation defined by Eq. (1.3),

whether it be explicitly, implicitly, or approximated at low rank as in ensemble-based schemes.

Therefore, correcting full-rank propagation to mitigate the inaccurate variance propagation ob-

served in advective systems is a logical choice. We see in this chapter, however, that correcting

full-rank propagation may be possible, but is likely limited due to the structure of the error terms.

The results in Fig. 6.1 illustrate in a simple example that using higher-order derivatives of the co-

variance across its diagonal, which are derived from the error analysis, do not necessarily produce

more accurate covariance diagonals. Additional terms from the Taylor expansion may be necessary,

and the resulting correction may need to depend on both space and time. Though these error terms

are derived directly from the continuum, it is unlikely that formulating a correction using these

terms would be tractable in practice.

The approach taken in this chapter to derive a correction is just one method of correcting the

inaccurate variance propagation caused by Eq. (1.3). However, the continuum analysis of Ch. 2 and

error analysis of Ch. 5, together with this chapter, question whether standard methods of covari-

ance propagation can accurately propagate the variance in a manner suited for data assimilation

applications. Recall that data assimilation is typically practiced in high-dimensional geophysical

applications. The high dimensionality of data assimilation limits the choices for numerical schemes

simply due to computational costs. Thus, developing a correction to full-rank propagation that is

practical in a data assimilation framework adds an additional challenge.

In the next chapter, we will consider an alternative method of covariance propagation that

bypasses Eq. (1.3) altogether that is computationally tractable and derived directly from the con-

tinuum covariance dynamics.



Chapter 7

An Alternative Approach to Standard Covariance Propagation

The discontinuous change in the continuum covariance dynamics along the x1,x2-hyperplane

as correlation lengths tend to zero is the cause of inaccurate variance propagation associated with

Eq. (1.3) for advective dynamics. We see the severity of the inaccurate variance propagation in

the simple numerical experiments of Chs. 3 and 4, and derive the explicit cause of the inaccurate

propagation through the error analysis in Ch. 5. Correcting full-rank covariance propagation, as

discussed in Ch. 6, may be possible in certain situations, but in general, it can be quite compli-

cated due to the structure of the error terms. Current methods for propagating covariances have

not changed significantly since the 1990s, therefore deriving an alternative method of covariance

propagation that bypasses Eq. (1.3) entirely is relevant and timely.

Section 4 of Cohn (1993) introduces the theoretical foundation for an alternative method of

covariance propagation that can directly address inaccurate variance propagation. First introduced

as “local covariance evolution” (LCE), for spatial variables x1,x2 ∈ Rn, this method derives a

system of PDEs in n space dimensions from the governing dynamics that locally approximates the

covariance through the variance and correlation, rather than directly solving the covariance evolu-

tion equation in 2n space dimensions. Atmospheric, ocean, and other large-scale data assimilation

algorithms already solve PDEs in n space dimensions when evolving the model state, therefore

LCE is tractable in high-dimensional contexts. In particular, this method mitigates the inaccurate

variance propagation caused by Eq. (1.3) by evolving the variance directly.

To implement LCE in a data assimilation schemes requires reconstructing the full covariance
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P from the evolved local quantities, as the covariance P provides critical information for the mea-

surement update. This is where my thesis extends the theory introduced by Cohn (1993), in which

parametric correlation functions are used to approximate the full correlation fields. By relating the

local correlation quantities governed by the derived system of PDEs in n space dimensions to the

parameters of the correlation function, we can then approximate the correlation field. Rescaling

the approximated correlations with the evolved variance then reconstructs the full covariance P .

Local covariance evolution differs from standard methods of covariance propagation (i.e.,

Eq. 1.3 and its reduced-rank approximations) in that it is derived from the continuum covariance

dynamics. In this chapter, we will derive the LCE equations for the one-dimensional version of

Eq. (1.4) for three types of parametric correlation functions: continuously differentiable at x1 = x2,

discontinuous derivatives at x1 = x2, and the Hadamard product of two correlation functions. The

first two cases are discussed in Sec. 4 of Cohn (1993), where the Hadamard product case is novel

to this work. In this chapter, we will reprise and expand upon that presented in Sec. 4 of Cohn

(1993) in the context of this thesis.

7.1 Derivation of the LCE Equations in One Space Dimension

Consider states q that satisfy the generalized advective dynamics of Eq. (1.4) on the circle

of radius r > 0, S1
r . Its corresponding covariance P satisfies Eq. (1.6) for x1, x2 ∈ S1

r and can be

decomposed into the product of the standard deviation σ and correlation C,

P (x1, x2, t) = σ(x1, t)C(x1, x2, t)σ(x2, t). (7.1)

Using this decomposition and the covariance PDE, Eq. (1.6), the standard deviation σ satisfies the

same dynamics as the state q (i.e., Eq. 1.4 for σ). Thus, the variance σ2 satisfies Eq. (1.8), which

serves as the first equation needed for LCE.

The correlation function C satisfies the advection equation two space dimensions,

Ct + v1Cx1 + v2Cx2 = 0,

C(x1, x2, t0) = C0(x1, x2). (7.2)
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The goal now is to derive a system of PDEs, each in one space dimension in this case, that

locally approximates the correlation C. This local approximation is achieved by expanding the

correlation C about zero separation, x1 = x2, similar to the Taylor expansions performed in Ch. 5.

To streamline this expansion, we will use the following change of coordinates (which was first

introduced in Ch. 6),

x =
1

2
(x1 + x2), ξ =

1

2
(x1 − x2). (6.3 revisited)

Using this coordinate transformation, we can define a new function C̃ that relates to C as follows,

C̃(x, ξ, t) = C̃(x1(x, ξ), x2(x, ξ), t) = C(x+ ξ, x− ξ, t). (7.3)

From Eq. (7.2) and (7.3), we have a PDE for C̃,

C̃t +
1

2

[
v(x+ ξ, t) + v(x− ξ, t)

]
C̃x +

1

2

[
v(x+ ξ, t)− v(x+ ξ, t)

]
C̃ξ = 0,

C̃(x, ξ, t0) = C̃0(x, ξ) = C0(x+ ξ, x− ξ). (7.4)

To obtain the system of PDEs that locally approximates the correlation C, we expand C̃

about zero separation, ξ = 0. Like the error analysis in Ch. 5, we will consider two cases for the

differentiability of C̃ at zero separation. First assume that C̃ is at least four times continuously

differentiable at ξ = 0. Then, consider the case where C̃ is not continuously differentiable at ξ = 0,

but is four times continuously differentiable away from ξ = 0. In both cases, we will assume the

velocity field v is four times continuously differentiable in its spatial argument.

Remark 2. The derivation of the LCE system of PDEs can be done in the original space by

expanding the correlation C about x1 = x2. This approach, however, is quite messy, as seen in the

Taylor expansions derived in Ch. 5, but can be shown to be equivalent to the derivation presented

in the next two sections.

7.1.1 Continuously Differentiable at Zero Separation

Suppose the correlation C is at least four times continuously differentiable in both spatial

variables x1 and x2. Therefore, C̃ is also at least four times continuously differentiable in its spatial
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variables x and ξ. We can define the following derivatives of C̃ with respect to ξ which we will use

during the Taylor expansions,

Ck(x, t) =
∂kC̃

∂ξk
(x, ξ, t)

∣∣∣∣
ξ=0

, k = 1, 2, . . . ,K ≥ 4. (7.5)

Using Eq. (7.5), we can expand the transformed correlation C̃ about ξ = 0. The expansion of C̃

about ξ = 0 only contains even orders in ξ since C̃ is an even function (as a consequence of C

being symmetric). By also expanding the velocities about ξ = 0 and substituting each of these

expansions into Eq. (7.4), we can now collect terms in like powers of ξ. The zeroth-order term

satisfies C̃(x, 0, t) = 1 by definition of the correlation. The second-order terms in ξ yields the

following PDE for C2,

(C2)t + v(C2)x + 2vxC2 = 0,

C2(x, t0) = (C2)0(x). (7.6)

Observe that C2 is the same quantity defined in Ch. 5 by rewriting the derivatives with respect to x

and ξ in terms of x1 and x2. Equations for higher-order derivatives in C̃ can be derived as well (see

Cohn, 1993, Sec. 4b for further discussion), yielding the system of PDEs in one space dimension

that locally approximates the correlation C.

To reconstruct the full correlation fields (Ch. 9 will provide further discussion), C2 in Eq. (7.6)

may provide sufficient information for the chosen parametric correlation function. Alternatively,

C2 can be used to define the correlation length L(x, t) as we saw in Ch. 5,

L2(x, t) = − 1

C2(x, t)
, (5.25 revisited)

which satisfies its own PDE,

Lt + vLx − vxL = 0,

L(x, t0) = L0(x). (5.30 revisited)

The correlation length L is a parameter often used to describe correlation functions (e.g., Daley,

1991, p. 117), therefore the correlation length can be evolved instead of C2. Chapter 9 will describe
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how to use the evolved correlation length fields to reconstruct correlations using a parametric

correlation function.

7.1.2 Discontinuous Derivatives At Zero Separation

In certain geophysical applications, correlations can have cusp-like structures or sharp gradi-

ents near x1 = x2, and are therefore no longer continuously differentiable at zero separation (e.g.,

Ménard et al., 2000; Ménard and Chang, 2000; Waller et al., 2016). Thus, a new system of PDEs

must be derived to approximate the correlations locally for LCE. This derivation combines the

approach presented in the previous section with aspects of the error analysis in Ch. 5 for the case

where derivatives are discontinuous at x1 = x2.

Now suppose the correlation C is not continuously differentiable at x1 = x2, but is at least

four times continuously differentiable away from x1 = x2. Though the quantities Ck defined by

Eq. (7.5) do not exist, we can define their corresponding left and right derivatives,

C±k (x, t) = lim
ξ→0±

∂kC̃

∂ξk
(x, ξ, t), k = 1, 2, . . . ,K ≥ 4. (7.7)

From the definition of C̃, we have the following relationships for the even and odd derivatives,

C+
2k(x, t) = C−2k(x, t), C+

2k+1(x, t) = −C−2k+1(x, t), k = 1, 2, . . . ,K. (7.8)

Using Eqs. (7.7) and (7.8), we can proceed with the expansion of C̃. Due to the symmetry property

in Eq. (7.8), we can combine the expansions from the left and right of ξ = 0 into a single expression,

C̃(x, 0, t) = 1 + |ξ|C1(x, t) +
1

2
|ξ|2C2(x, t) + . . . , (7.9)

where Ck = C+
k for k = 1, 2, . . . ,K. Unlike the continuously differentiable case, the odd-order

derivatives of C̃ remain in its Taylor expansion.

Following the same procedure described in Sec. 7.1.1 using Eq. (7.9) and collecting like powers

of ξ, we obtain a new system of PDEs that locally approximates the correlation. The PDEs for

the even-order derivatives remain the same as in Sec. 7.1.1. Since the odd-order derivatives of the
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correlation C±k are nonzero, they satisfy PDEs as well. The PDE for C1 = C+
1 = −C−1 , for example,

is

(C1)t + v(C1)x + vxC1 = 0,

C1(x, t0) = (C1)0(x). (7.10)

Equations for the higher-order odd derivatives can also be derived (see Sec. 4d of Cohn, 1993,

applied to Eq. 7.2), where the PDEs for odd-order derivatives greater than one are coupled with

the previous odd-order derivative and are uncoupled from the even-order derivatives.

7.1.3 Hadamard Product

The theory of the previous two sections can be extended to the case where the initial cor-

relation C0 is the product of two correlation functions. In discrete space, this corresponds to

the Hadamard product of two correlation matrices. Constructing correlations from the Hadamard

product of two correlation functions is useful since the resulting product remains positive semi-

definite and inherits features from both functions. In this section, we will derive the equations to

implement LCE for this case, which is novel to this work.

Suppose that the initial correlation C0 is a product of two correlation functions,

C0(x1, x2) = F0(x1, x2)G0(x1, x2). (7.11)

From the correlation dynamics in Eq. (7.2), correlations are simply advected along the character-

istics. Thus, solutions to Eq. (7.2) are of the form

C(x1, x2, t) = C0

(
s(x1, t), s(x2, t)

)
, (7.12)

following the notation of Appen. B.1. If the initial correlation is defined by Eq. (7.11), we have

C(x1, x2, t) = F0

(
s(x1, t), s(x2, t)

)
G0

(
s(x1, t), s(x2, t)

)
= F (x1, x2, t)G(x1, x2, t), (7.13)

and the product is preserved with space and time. Equation (7.13) implies that both F and G

satisfy the advection equation in two space dimensions, Eq. (7.2).
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Since the correlation C remains the product of two correlations F and G, this implies that F

and G can be evolved independently, then at a fixed time t their solutions can be used to reconstruct

the correlation C according to Eq. (7.13). For LCE, the equations derived in Secs. 7.1.1 and 7.1.2

define the dynamics that can be used to approximate the solutions F and G depending on the

differentiability of F0 and G0 at x1 = x2.

7.2 Reconstructing Correlations with Parametric Correlation Functions:

Introduction

The final step of LCE is to reconstruct the full covariance P , first by reconstructing the

correlations from the evolved local quantities such as C1 or C2, then rescaling by the evolved

variance. We will accomplish this by using parametric correlation functions. In general, parametric

correlation functions are functions of spatial variables x1 and x2 (often as a normed difference ||x1−

x2||) and a finite number of parameters that influence the shape and behavior of the correlations.

The implementation of LCE will relate the evolved local quantities derived in Secs. 7.1.1 – 7.1.2 to

the parameters of the correlation function chosen to the approximate the full correlation field.

The specific implementation of LCE depends on the particular parametric correlation func-

tion. Since we are evolving local correlation quantities in space and time and then relating these

quantities to the parameters of the correlation function, we need to choose parametric correlation

functions that will allow its parameters to vary. Gaspari et al. (2006) gives several examples of

correlation functions that can work in this context. Chapter 9 will discuss how to implement LCE

with Eq. (23) of Gaspari et al. (2006).

One parametric correlation function commonly used in data assimilation is the Gaspari-

Cohn (1999) compactly-supported approximation to a Gaussian; in fact this function was used

to construct the initial correlations for the numerical experiments in Chs. 3 and 4 (abbreviated

in those chapters as GC). Gaspari and Cohn (1999) introduce a family of compactly-supported,

piecewise rational correlation functions in their Sec. 4(c) that depend on two parameters a and

c. The parameter c, as we have seen before, is the cut-off length that determines the region of
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compact support. The parameter a influences the shape of the correlation, where a = 1/2 yields

the compactly-supported approximation to a Gaussian. For fixed parameters a and c, the Gaspari-

Cohn correlation function has as a single, fixed correlation length L that depends on both a and

c. To use this function for LCE, however, requires a Gaspari-Cohn-like correlation function that

allows the correlation length L to vary. This motivates the next chapter, in which we will derive

a generalization of the Gaspari-Cohn correlation function to allow for variable correlation length

fields with the intention to use this correlation function later for LCE.

Remark 3. The Parametric Kalman Filter (PKF), first introduced by Pannekoucke et al. (2016),

is similar to, but distinct from, local covariance evolution (LCE). In general, the PKF is a data

assimilation filter that updates and evolves covariances that are parameterized by a variance and a

local anisotropic tensor (referred to as VLATcov in Pannekoucke et al., 2021). The dynamics for

these parameters are derived from the discrete state problem and often make particular assumptions

about the variance and structure of the correlations (e.g., “local homogeneity” of the variance and

Gaussian-like correlations, see Pannekoucke et al., 2016, 2018, 2021). Local covariance evolution is

different from the PKF in that the dynamics that approximate the covariance for LCE are derived

in the continuum, directly from the continuum covariance dynamics, with no assumptions on the

variance or correlations aside from differentiability. In addition, LCE applies to general classes of

correlation functions, where we do not need to make any assumptions on the correlation structure.

Though the PKF and LCE are related, LCE is arguably the mathematical foundation of the forecast

step of the PKF.



Chapter 8

A Generalized Gaspari-Cohn Correlation Function

In this chapter, we will derive a new, generalized version of the compactly-supported, piece-

wise rational correlation function introduced by Gaspari and Cohn (1999) and its subsequent gen-

eralization by Gaspari et al. (2006). The motivation for this new function is so that it to be used for

local covariance evolution, introduced in the previous chapter. However, this new correlation func-

tion stands on its own as a unique contribution to both the data assimilation and spatial statistics

communities. This work has been published in Gilpin et al. (2023).

8.1 Introduction

Parametric correlation functions play an essential role in data assimilation, where they are

used to model covariances given a set of tunable parameters or applied as tapering functions to local-

ize sample covariances in ensemble-based schemes (Daley, 1991; Gaspari and Cohn, 1999; Gneiting,

1999; Houtekamer and Mitchell, 1998, 2001; Hamill et al., 2001; Gaspari et al., 2006). Compactly-

supported correlation functions are particularly useful for modeling covariances wherein correlations

can be assumed identically zero after some distance while maintaining positive semi-definiteness. In

addition, correlation functions that do not have compact support can gain compact support through

the Hadamard (element-wise) product with compactly-supported correlation functions, which pre-

serves positive semi-definiteness by the Schur product theorem (Horn and Johnson, 1985, p. 458).

Compactly-supported correlation functions are particularly useful in high-dimensional contexts,

such as data assimilation and spatial statistics, as the resulting covariances are computationally
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tractable due to their sparsity.

One of the most commonly used compactly-supported correlation functions in data assimila-

tion is the Gaspari and Cohn (1999) (hereafter referred to as GC99) piecewise rational, compactly-

supported approximation to a Gaussian (their Eq. 4.10), which we will refer to as the GC99 func-

tion. This parametric correlation function depends on only two parameters: the tunable cut-off

length parameter c, and the parameter a that when taken to be one-half produces correlations with

Gaussian-like behavior. For covariance tapering applications such as localization, the GC99 func-

tion has been used frequently since it was first applied by Houtekamer and Mitchell (2001) because

of its Gaussian-like shape and compact support controlled through the cut-off length parameter c.

Though the GC99 function has several attractive features, it is limited by its homogeneity (invari-

ance under translations, GC99, p. 729) and isotropy (invariance under rotations, GC99, p. 729),

unless constructed using coordinate stretching (e.g., GC99, pp. 725, 732; Ménard et al., 2016,

pp. 882 – 883). The fixed cut-off length parameter c of the GC99 function typically requires special

tuning per application, and it has been shown that the optimal cut-off length, sometimes termed

cut-off radius or localization radius, depends on the observation type, spatial location, dynamics,

and whether localization is applied in model space or observation space (Evensen, 2009, Ch. 15 and

references therein).

There is thus a need for compactly-supported correlation functions with more flexible fea-

tures that can adjust to the situation. Several compactly-supported, parametric correlation func-

tions have been introduced that vary in their flexibility as correlation functions (e.g., Wu, 1995;

Wendland, 1995; Gaspari and Cohn, 1999; Gneiting, 1999; Buhmann, 2000; Gneiting, 2002; Gaspari

et al., 2006; Porcu et al., 2013; Kleiber and Porcu, 2015; Liang and Marcotte, 2016; Stanley et al.,

2021). In particular, the follow-on work to GC99, namely Gaspari et al. (2006) (hereafter referred

to as G06), presents a generalization of the GC99 function in which the parameter a can vary while

keeping c fixed (see their Eq. 33). This generalization introduces inhomogeneity and anisotropy

through variable a. However, like the GC99 function, the G06 function is limited by its fixed cut-off

length c.
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In this chapter, we further generalize the compactly-supported, piecewise rational correla-

tion functions introduced in GC99 and G06 by allowing both the parameters a and c to vary, as

functions, over the spatial domain. This correlation function, which we refer to as the General-

ized Gaspari-Cohn (GenGC) correlation function, is a compactly-supported parametric correlation

function where inhomogeneity and anisotropy are introduced as both a and c vary over space. By

now allowing the cut-off length c to vary over the domain, the GenGC correlation function gains

much more flexibility in its construction, and in particular is no longer restricted to support re-

gions of fixed spheres. The parameters a and c can be estimated, tuned manually, or derived from

dynamics. The added flexibility of GenGC while maintaining positive semi-definiteness and com-

pact support can be useful for covariance modeling and tapering in data assimilation and spatial

statistics applications.

We can see the impact of allowing both parameters a and c to vary over some spatial index

k by considering the correlation length Lk of GenGC,

Lk = ck

(
3(22a2

k + 3ak + 1)

40(8a2
k − 2ak + 1)

)1/2

. (8.1)

The correlation length Lk of GenGC varies spatially as ck and ak vary over space, and its linear

dependence on variable ck allows for direct control of the correlation length Lk. In contrast,

the correlation length of the GC99 function where a = 1/2 and c is fixed, remains constant at

L = c
√

0.3. For the G06 function, the correlation length Lk does vary over space as ak varies, but

its dependence on ak is such that Lk/ck in Eq. (8.1) is tightly bounded, 0.2297 ≤ Lk/ck ≤ 0.5485,

as discussed in Sec. 8.3.2. Therefore, varying ck yields more control and influence on the correlation

length, introducing flexibility that the GC99 and G06 functions lack.

This flexibility gained by allowing the correlation length Lk to vary through both ak and

ck can be particularly useful when reconstructing correlations from correlation lengths Lk that

are evolved dynamically. For example, Cohn (1993, pp. 3136 – 3144) derives explicit PDEs for

the correlation length field associated with state dynamics governed by the continuity equation

and related PDEs. By evolving the correlation length field according to its governing PDE and
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with additional information regarding ck or ak, GenGC and Eq. (8.1) can be used to reconstruct

full correlation functions, as we discuss in Sec. 8.3.2. Alternatively, correlation lengths Lk can be

obtained by estimating the local correlation tensor from an ensemble of states (Michel et al., 2016,

and references therein) and in a similar manner used to construct correlations with GenGC.

The layout of this chapter is as follows. In Sec. 8.2, we derive the GenGC correlation function,

beginning with definitions and theory in Sec. 8.2.1, followed by its construction in Sec. 8.2.2 using

convolutions and brief discussion of its evaluation. Section 8.3 discusses important consequences

of allowing both a and c to vary over space. Since the correlations modeled and tapered during

data assimilation are generally continuous, it is natural to consider the conditions on a and c

such that GenGC is continuous, which is done in Sec. 8.3.1. This is followed by Sec. 8.3.2, which

defines the correlation length Lk of GenGC and discusses methods for implementing GenGC given

Lk. In Sec. 8.4, we present two sets of examples, with one-dimensional examples in Sec. 8.4.1

and two-dimensional examples in Sec. 8.4.2, to highlight the flexibility gained by varying a and c.

Concluding remarks are given in Sec. 8.5, followed by two appendices, Appen. D.1 and D.2, which

contain a proof and an example to supplement Sec. 8.2, and the formulas for GenGC, respectively.

8.2 Derivation of the GenGC Correlation Function

The GC99 function (Eq. 4.10 of GC99) is constructed through self-convolution of a compactly-

supported, radially symmetric function over Euclidean 3-space, R3. The G06 function (Eq. 33 of

G06) and the Generalized Gaspari-Cohn (GenGC) correlation function in this chapter generalize

this approach as follows. Rather than constructing a correlation function using one compactly-

supported, radially symmetric function h, we build a correlation function by convolving functions

from a whole collection of m compactly-supported, radially symmetric functions hk, k = 1, 2, ...,m

on R3. Our particular choice of functions hk is given in Eq. (8.18), though this approach can be

generalized to other collections of radially symmetric functions, which we discuss at the beginning

of Sec. 8.2.2.

The derivation of the GenGC correlation function is presented in two parts. In Sec. 8.2.1,
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we reprise definitions and theory from G06 that establish the theoretical framework in which we

can build scalar covariance functions with inhomogeneous and anisotropic features. Using this

framework, in Sec. 8.2.2 we construct scalar covariance functions by convolving functions from a

collection of radially-symmetric functions hk, k = 1, 2, ...,m. With the general approach established

at the beginning of Sec. 8.2.2, we then specify the functions hk and construct the GenGC correlation

function, followed by a brief discussion on its evaluation.

8.2.1 Definitions and Theoretical Framework

We begin by revisiting some of the theory established in G06, where particular definitions and

discussions from G06 serve as the starting point for this chapter. We consider covariance functions

defined on a domain Ω ⊆ RN , which we take to be an open, connected set, with smooth boundary

∂Ω in the case that Ω is not all of RN , where the general theory applies. In later discussions, we

will restrict ourselves to R3 or to the surface of the sphere with radius r > 0 embedded in R3, which

we denote as S2
r , as needed by applications.

We start by defining covariance functions of vector random fields, which will serve as the

foundation for building inhomogeneous and anisotropic covariance functions.

Definition 1. (Def. 2.1 of G06) The multi-level covariance function of a vector random field

X(r) :=
[
X1(r), X2(r), ..., Xm(r)

]
, r ∈ Ω, (8.2)

is the m×m matrix function

B(r, s) :=
〈
Y(r)Y(s)T

〉
, r, s ∈ Ω, (8.3)

where

Y(r) :=
[
Y1(r), Y2(r), ..., Ym(r)

]T
, Yk(r) := Xk(r)−

〈
Xk(r)

〉
, (8.4)

where Xk(r), k = 1, 2, ...,m, are real-valued random fields on Ω, and where 〈·〉 denotes mathematical

expectation.
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The covariance defined in Eq. (8.3) is a matrix function, where we use boldface, e.g., B, to

denote matrices. We use the term “multi-level,” as done in G06, to give an intuitive sense of how

Eq. (8.3) will be used to generalize single-level, scalar covariance functions. As discussed in G06

(p. 1816), this terminology does not capture the full generality of this and the following definition,

but it is useful for our purposes.

The matrix structure of covariance functions defined in Eq. (8.3) becomes more explicit in

the following definition, which is equivalent to Def. 1 in the case of continuous covariance functions.

Definition 2. (Def. 2.2 of G06) The m×m matrix of functions

B(r, s) = {Bk`(r, s)}, r, s ∈ Ω, k, ` = 1, 2, ...,m, (8.5)

is a multi-level covariance function on Ω if, for each positive integer n, and for each choice of points

r1, ..., rn ∈ Ω, the mn×mn matrix

{Bk`(ri, rj)}, i, j = 1, 2, ..., n, k, ` = 1, 2, ...,m, (8.6)

is positive semi-definite, i.e., for arbitrary scalars cik with i = 1, 2, ..., n and k = 1, 2, ...,m,

m∑
k,`=1

n∑
i,j=1

cikcj`Bk`(ri, rj) ≥ 0. (8.7)

From any given matrix covariance function B(r, s) = {Bk`(r, s)}, we now want to extract a

scalar (i.e., single-level) covariance function to evaluate in practice. To build such a scalar covariance

function, we choose the indices k, ` = 1, 2, ...,m to index m subdomains, or subregions Ωk, Ω` ⊂ Ω,

which are open, connected sets with smooth boundaries ∂Ωk, ∂Ω`. These subregions partition the

domain Ω into m non-overlapping, non-empty subdomains, i.e.,

m⋃
k=1

Ωk = Ω, Ωk ∩ Ω` = ∅ ∀k 6= `, (8.8)

where the overbar denotes the closure, e.g., Ωk = Ωk ∪ ∂Ωk. Now, for every r ∈ Ωk and s ∈ Ω`,

and for each fixed k, ` = 1, 2, ...,m, we define the following scalar function B,

B(r, s) := Bk`(r, s). (8.9)
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Equation (8.9) is a piecewise-defined, scalar (single-level) covariance function on Ω, where the non-

boldface B denotes a scalar function. The proof that Eq. (8.9) is a covariance function is given in

Appen. D.1.

From the matrix covariance function in Eq. (8.5), we have extracted particular entries that

collapse the multi-level covariance function into the single-level covariance function1 defined in

Eq. (8.9). For r, s ∈ Ωk, B(r, s) = Bkk(r, s) is an auto-covariance, while if r ∈ Ωk, s ∈ Ω`, and

k 6= `, then B(r, s) = Bk`(r, s) is a cross-covariance. The piecewise nature of Eq. (8.9) is inherited

from the partitioning of Ω: different functions Bk`(r, s) are evaluated depending on the subregions

r and s belong to, piecing together a scalar covariance function that is defined over the full domain

Ω. In Appen. D.1, we illustrate how to construct Eq. (8.9) in a simple example, which makes the

piecewise nature of Eq. (8.9) more explicit.

The advantage of scalar covariance functions defined via Eq. (8.9) is that the subregions Ωk

can have different properties, such as length-scale or cut-off length. Therefore, as these properties

vary over the different subregions Ωk of the full domain Ω, inhomogeneous and anisotropic features

are introduced to the resulting scalar covariance function. The choice of subregions Ωk can be

quite general and can adapt to the needs of different applications. For example, Ω1,Ω2, ...,Ωm can

represent different vertical levels of a global circulation model, which motivated the terminology

“multi-level” in G06. Each vertical level can just as well be partitioned again into individual grid

cells, so that we represent the subregions Ωk with multi-index k = (klat, klon, kvert), for instance.

8.2.2 Construction

The construction of scalar covariance functions from matrix covariance functions described

in the previous section provides the framework in which we can introduce inhomogeneous and

anisotropic features by varying quantities such as length-scale or cut-off length over the different

subregions Ω1,Ω2, ...,Ωm. There are several different ways to use Eq. (8.9) to build inhomogeneous

1 A matrix covariance function, Eq. (8.3) for example, can be interpreted as “multi-level” in the sense that each k
corresponds to a “level” in which a single-level covariance function is defined over the full domain Ω with m different
levels as k = 1, 2, ...,m. Equation (8.9) extracts a portion from each of these k levels to collapse the multi-level
covariance function into a single-level, piecewise-defined, scalar covariance function on Ω.
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and anisotropic covariance functions, as illustrated in Exs. 2.3, 2.5, and 2.6 of G06, for instance.

The focus of the present work is on the construction of scalar covariance functions from a collection

of radially symmetric, compactly-supported functions. We will choose the functions Bk`(r, s) in

Eq. (8.9) to be the convolution of such functions, applying theory established in GC99 to the frame-

work introduced here in Sec. 8.2.1. We begin by describing the construction of scalar covariance

functions from convolutions first on RN for general N , then restricted to N = 3. This general

approach will lay the groundwork for the construction of GenGC on R3 and on the surface of the

sphere S2
r , which we describe at the end of this section.

Suppose we have a collection of functions hk : RN 7→ R, k = 1, 2, ...,m, with each hk ∈

L1(RN )∩L2(RN ). Assume each hk is radially symmetric on RN , meaning that there exists an even

function h0
k : R 7→ R such that for any r, s ∈ RN ,

hk(r − s) = h0
k(||r − s||), (8.10)

where each function h0
k depends only on the distance || · ||, which here denotes the Euclidean norm

on RN . Other norms can be used in Eq. (8.10), however the Euclidean norm is the natural choice

in this context. Now, for each fixed k, ` = 1, 2, ...,m, and all r, s ∈ RN , define Bk`(r, s) to be the

following convolution over RN of functions from this collection,

Bk`(r, s) = (hk ∗ h`)(r − s) =

∫
RN

hk(v)h`(r − s− v)dv. (8.11)

As shown in G06 (see Remarks on p. 1820), the resulting matrix of convolutions B(r, s) =

{Bk`(r, s)} = {(hk ∗ h`)(r − s)} for k, ` = 1, 2, ...,m defines a multi-level covariance function.

To extract the scalar covariance function from this matrix of convolutions, we partition the given

domain Ω ⊆ RN into subregions Ωk, k = 1, 2, ...,m, where these indices k correspond to the indices

of the radially symmetric functions hk. Equation (8.9) then defines the scalar covariance function

B(r, s) extracted from the matrix covariance function B(r, s) = {(hk ∗ h`)(r − s)} of Eq. (8.11).

That is, the scalar covariance function B(r, s) is obtained by evaluating Eq. (8.11) only for r ∈ Ωk

and s ∈ Ω`, for each fixed k, ` = 1, 2, ...,m.
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For high-dimensional applications, we are interested in constructing covariance functions in

which long-range correlations are identically zero. We can accomplish this by requiring the radially

symmetric functions hk to have compact support, i.e., each of these functions go to zero at some

fixed distance. For the rest of the section, we will require the functions hk to be supported on

spheres of fixed radius ck > 0, where ck is referred to as the cut-off length.

With our scalar covariance function B(r, s) defined through Eq. (8.9) by the convolutions in

Eq. (8.11), all that remains is to evaluate the convolution integrals. For evaluation, we will restrict

ourselves to R3, which is sufficient for most applications and will make explicit computation of

Eq. (8.11) feasible. To simplify the calculation of Eq. (8.11), observe that for each pair k, `, the

function Bk`(r, s) = (hk ∗ h`)(r − s) is radially symmetric, which is a property inherited from the

radial symmetry of hk and h` (see Thm. 3.a.1 in GC99). Therefore, for fixed k, `, and for r ∈ Ωk

and s ∈ Ω`, we can express Bk`(r, s) = B0
k`(||r−s||) for some even function B0

k` defined on the real

axis, which simplifies the evaluation of Eq. (8.11) significantly and is summarized in the following

theorem from GC99.

Theorem 1. (Theorem 3.c.1 of GC99) Suppose that hk ∈ L1(R3) ∩ L2(R3) is radially symmetric

and supported on a sphere of radius ck, 0 < ck ≤ ∞, for k = 1, 2, ...,m. Let h0
k and B0

k` denote the

even functions on R given by

h0
k(||r||) := hk(r), (8.12)

B0
k`(||r||) := (hk ∗ h`)(r) =

∫
R3

hk(v)h`(r − v)dv, (8.13)

for r ∈ R3 and k, ` = 1, 2, ...,m, where || · || denotes Euclidean distance. If ck ≤ c`, then

B0
k`(z) =

2π

z

∫ ck

0
rh0

k(r)

∫ r+z

|r−z|
sh0

` (s) ds dr, z > 0, (8.14)

B0
k`(0) = 4π

∫ ck

0
r2h0

k(r)h
0
` (r) dr. (8.15)

Therefore, for r ∈ Ωk, s ∈ Ω`, and ck ≤ c`, we evaluate the scalar covariance function

Bk`(r, s) = B0
k`(||r − s||) by evaluating Eqs. (8.14) – (8.15) with z = ||r − s||.
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The correlation function Ck`(r, s) can be computed by decomposing the covariance Bk`(r, s)

for r ∈ Ωk and s ∈ Ω` as follows,

Bk`(r, s) =
√
Bkk(r, r)Ck`(r, s)

√
B``(s, s), (8.16)

where Bkk(r, r) and B``(s, s) are the variances at r ∈ Ωk and s ∈ Ω`, respectively. Using Thm. 1,

we can therefore evaluate the correlation function explicitly for each k, ` and r ∈ Ωk, s ∈ Ω` as

follows,

Ck`(r, s) =
B0
k`(||r − s||)√
B0
kk(0)B0

``(0)
. (8.17)

Up to this point, we have described the construction of scalar covariance functions from

convolutions of arbitrary compactly-supported, radially symmetric functions hk. To construct the

Generalized Gaspari-Cohn (GenGC) correlation function, we specify the functions hk as follows.

Given scalars ak ∈ R and ck > 0, for k = 1, 2, ...,m, define hk : R3 7→ R as

hk(r; ak, ck) =



(
2(ak − 1)||r||/ck + 1

)
nk, 0 ≤ ||r|| ≤ ck/2,

2aknk(1− ||r||/ck), ck/2 ≤ ||r|| ≤ ck,

0, ck ≤ ||r||,

(8.18)

where nk = (44a2
k + 6ak + 2)−1/2. The functions hk(r; ak, ck) are piecewise linear, compactly-

supported, radially symmetric functions that are supported on a sphere of radius ck. Each hk(r; ak, ck)

is parametrized by the scalar ak and the cut-off length ck. Equation (8.18) generalizes the piecewise

linear functions defined in Sec. 4(c) of GC99 and Eq. (32) of G06 by letting both parameters ak

and ck vary over the index k. Examples of Eq. (8.18) are given in Fig. 8.1 for different values of ak.

The parameter ak determines the value of hk(r; ak, ck) at ||r|| = ck/2, subsequently determining

the slopes of each line in its piecewise definition.

To construct the GenGC correlation function, we partition the domain Ω ⊆ R3 into subregions

Ωk, k = 1, 2, ...,m, where each subregion Ωk has an associated cut-off length ck and parameter ak

used to define hk. The functions Bk`(r, s) for r ∈ Ωk, s ∈ Ω` are defined using Eq. (8.11) on R3 for

hk, h` given in Eq. (8.18). For fixed k, `, we can use Thm. 1 to evaluate Bk`(r, s). Equation (8.17)
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Figure 8.1: Examples of Eq. (8.18) for various values of ak, plotted as a function of ||r||. In panel
(a), hk(r; 1, ck) is constant on 0 ≤ ||r|| ≤ ck/2. For ak = 1/2 in panel (b), the function hk(r; 1/2, ck)
collapses to a single line on the full domain 0 ≤ ||r|| ≤ ck. In the case that ak = 0, as in panel (c),
hk(r; 0, ck) is zero for ck/2 ≤ ||r|| ≤ ck. Values of ak < 0 as shown in panel (d) are the only cases
in which the function hk(r; ak, ck) can become negative.
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then defines the GenGC correlation function. Like the GC99 and G06 functions, GenGC is sixth-

order piecewise rational (fifth-order near the origin)2 and three-times continuously differentiable in

space for fixed ak, a`, ck, c`. In the case that ck = c for k = 1, 2, ...,m is fixed while ak and a` vary,

GenGC is the G06 function; similarly if also ak = 1/2 for k = 1, 2, ...,m, GenGC is exactly the

GC99 function. For general choices of cut-off lengths ck and c`, GenGC is not supported on a sphere

of uniform radius. Rather, its support depends on the values of ck and c`. This, in combination

with the parameters ak and a`, allows for correlation functions that can be highly inhomogeneous

and anisotropic.

GenGC is a piecewise-defined scalar correlation function that is first split into six functions

depending on the relationship of ck and c`, and subsequently split again into twelve different

functions that depend on how ||r − s|| for r ∈ Ωk and s ∈ Ω` relates to the particular ck and c`.

Appendix D.2 describes the construction of GenGC in further detail and gives the explicit formulae.

We verified that this function is symmetric positive definite numerically by generating a variety of

different matrices and checking for symmetry and positive eigenvalues. Note that these formulae

reduce to those of the G06 function (their Eq. 33 and Appendix C) in the case that ck = c for

k = 1, 2, ...,m.

Though the explicit formulae for the GenGC correlation function are lengthy (see Appen D.2),

its evaluation can be implemented efficiently in practice, for instance as an operator acting on a

vector (Gilpin, 2023). The evaluation of the GenGC correlation function can be formulated as a

two step process: first, there are the two sets of conditional statements that determine the correct

piecewise function to evaluate based on ck, c`, and ||r−s||, then a small number of scalar operations

are done to evaluate the chosen function. These two steps are not computationally expensive, which

can be optimized per coding language, and simply extend existing implementations of the GC99

and G06 functions.

2 The GenGC, GC99, and G06 correlation functions are sixth-order piecewise rational functions in that the highest-
degree terms are of the form z6/z (near the origin, the highest-degree terms are z5 since the 1/z terms vanish and
are therefore fifth-order). We therefore correct the mis-stated order of the GC99 function in Sec. 4(c) of GC99 and
the G06 function in G06, p. 1821.
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Remark 4. As the GenGC correlation function is constructed via convolution over the Euclidean

space R3, for r, s ∈ R3 the norm ||r− s|| is taken to be the Euclidean norm. Restricting r, s ∈ R3

to S2
r for r > 0 embedded in R3 requires restricting the Euclidean norm to S2

r, which is chordal

distance,

||r − s||cd := 2r sin(θ/2), 0 ≤ θ ≤ π, r, s ∈ S2
r (8.19)

where θ is the angle between the vectors r and s,

r2 cos(θ) = rTs, r, s ∈ S2
r , (8.20)

(GC99, pp. 730 – 732, 737). This implies that the cut-off length ck should also be specified in terms

of chordal distance.

8.3 Continuity Properties Involving a and c

With the GenGC correlation function derived in the previous section, we now discuss two of

its properties resulting from ak and ck varying over the domain. Since correlation modeling and

tapering applications in data assimilation typically require continuity, we first study the influence of

ak and ck on the continuity behavior of GenGC. We show that GenGC is not, in general, continuous

at the boundaries ∂Ωk of the subregions Ωk. If, however, ak and ck are defined as discretizations

of continuous functions a and c on Ω, then continuity of GenGC, in an appropriate sense, ensues.

We conclude this section with a discussion of the correlation length of GenGC, first introduced

in Eq. (8.1), and of implementation of GenGC when the correlation length is available over the

domain.

8.3.1 Continuity of a and c as Functions on Ω

The GenGC correlation function is defined piecewise on the domain Ω. The piecewise nature

is inherited from the partitioning of Ω into subregions Ω1,Ω2, ...,Ωm, with each subregion assigned

constants ak and ck used to define the functions hk for k = 1, 2, ...,m in Eq. (8.11). For fixed

k, `, the scalar function Bk`(r, s) in Eq. (8.11) used to define GenGC in Eq. (8.17) is continuous
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for r ∈ Ωk, s ∈ Ω`, since the functions hk and h` are continuous in their arguments. However,

continuity of Bk`(r, s) over the full domain Ω (i.e., as k, ` vary), and hence that of the GenGC

correlation function, is not always guaranteed. Rather, the continuity of Bk`(r, s) over Ω depends

on the behavior of Bk`(r, s) across the boundaries of the subregions Ω1,Ω2, ...,Ωm.

To see this, fix k, ` with k 6= ` and let r∗ ∈ ∂Ωk and s∗ ∈ ∂Ω` with r∗ = s∗ a point in

common to the two boundaries. We define Bkk(r∗, r∗) and B``(s∗, s∗) in terms of limits,

Bkk(r∗, r∗) := lim
r→r∗, r∈Ωk

Bkk(r, r) =

∫
R3

h2
k(v; ak, ck) dv, (8.21)

B``(s∗, s∗) := lim
s→s∗, s∈Ω`

B``(s, s) =

∫
R3

h2
` (v; a`, c`) dv, (8.22)

where the last equality in each case comes from the convolutions defined in Eq. (8.11). We also

define Bk`(r∗, s∗) in a similar manner,

Bk`(r∗, s∗) := lim
r→r∗, r∈Ωk

lim
s→s∗, s∈Ω`

Bk`(r, s) =

∫
R3

hk(v; ak, ck)h`(v; a`, c`) dv. (8.23)

The limits in Eqs. (8.21) – (8.23) exist due to the continuity of Bk`(r, s) for r ∈ Ωk, s ∈ Ω` and

fixed k, `.

For the covariance function to be well-defined over all of Ω, including at the boundaries

between subregions, and in particular for the variance to exist at each common boundary point

r∗ = s∗, we must have that Bkk(r∗, r∗) = B``(s∗, s∗) = Bk`(r∗, s∗). It is clear, however, from

Eqs. (8.21) and (8.22) that Bkk(r∗, r∗) 6= B``(s∗, s∗) in general, since hk and h` under the integral

signs are different functions if ak 6= a` or ck 6= c`. We also have

|Bk`(r∗, s∗)| ≤ |Bkk(r∗, r∗)B``(s∗, s∗)|1/2, (8.24)

by the Cauchy-Schwartz inequality. Though the quantity Bk`(r∗, s∗) is defined at the common

boundary point r∗ = s∗ when ak 6= a` or ck 6= c`, it is not the variance, and all we are guaranteed

is the bound given in Eq. (8.24).

We illustrate the consequences of specifying ak and ck arbitrarily over the different subregions

in the top row of Fig. 8.2. For this example, we consider the GenGC correlation function on the
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domain (0, 1), which is discretized into 201 equally-spaced grid points (including both endpoints 0

and 1). We then partition the one-dimensional line segment (0, 1) into two subregions Ω1 = (0, 1/2)

and Ω2 = (1/2, 1), where a1 6= a2 and c1 6= c2 (values shown in the top left panel). The GenGC

correlation matrix produced for this case, shown in the top middle panel, is continuous within the

four blocks (which correspond to fixed k, ` = 1, 2), but is discontinuous where the boundaries of

the subregions meet at r∗ = s∗ = 1/2. This is more explicit in the one-dimensional correlations

shown in the top right panel, where we see away from the boundary at 1/2, the correlations are

continuous, but each correlation has a jump discontinuity at 1/2.

Though a1, a2, ..., am and c1, c2, ..., cm can be arbitrarily specified on the different subregions

Ω1,Ω2, ...,Ωm, the covariance function, and hence the GenGC correlation function, will not neces-

sarily be continuous over the full domain Ω. Since data assimilation applications typically require

continuous covariance functions, we must impose conditions on ak, a` and ck, c` so that the covari-

ance function is well-defined and continuous where the boundaries of the subregions Ωk and Ω`

meet. This requires defining ak, a` and ck, c` from continuous functions on Ω, which we describe in

the following theorem.

Theorem 2. Let a : Ω 7→ R and c : Ω 7→ (0,∞) be continuous functions on Ω, and for each

k = 1, 2, ...,m, define

ak :=

∫
Ωk
a(r) dr∫

Ωk
1 · dr

, ck :=

∫
Ωk
c(r) dr∫

Ωk
1 · dr

. (8.25)

Fix k 6= ` and suppose r∗ ∈ ∂Ωk, s∗ ∈ ∂Ω` with r∗ = s∗. In the limit as Ωk and Ω` shrink towards

the common boundary point r∗ = s∗, then Bkk(r∗, r∗) = B``(s∗, s∗) = Bk`(r∗, s∗).

Proof. In the limit as Ωk and Ω` shrink towards their boundary points r∗ and s∗, respectively,

it follows from Eq. (8.25) that ak → a(r∗), ck → c(r∗), a` → a(s∗), and c` → c(s∗). Since the

boundary points satisfy r∗ = s∗, we have that ak = a` and ck = c` in the limiting case. Therefore,

as Ωk and Ω` shrink to their common boundary point r∗ = s∗, it follows from Eqs. (8.21) – (8.22)

that Bkk(r∗, r∗) = B``(s∗, s∗), i.e., the variances are equal and well-defined. In addition, it follows

from Eqs. (8.21) – (8.23) that Bk`(r∗, s∗) = Bkk(r∗, r∗) = B``(s∗, s∗).
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Figure 8.2: One-dimensional examples of the GenGC correlation function on (0, 1) for different
choices of functions for a and c (and subsequently partitions of (0, 1)). In both cases, the domain
(0, 1) is discretized into 201 equally-spaced grid points (including both endpoints 0 and 1). Top row:
the domain is partitioned into two subregions, Ω1 = (0, 1/2) and Ω2 = (1/2, 1), where values of a and
c are constant over these two domains and chosen to mimic the constant values of the continuous
case, shown on the bottom left panel. The middle panel illustrates the corresponding GenGC
correlation matrix, with horizontal lines indicating the selected one-dimensional correlations shown
on the right at rows 50 (grey), 100 (orange), and 170 (yellow). Bottom row: both a and c vary
continuously over (0, 1) according to the functions specified in the subplot title. The corresponding
GenGC correlation matrix is in the middle (see text for the description of its construction), with
the right panel illustrating rows 50, 100, and 170 from the correlation matrix.
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Therefore, the variances are continuous throughout Ω when ak and ck are chosen as appro-

priate discretizations of continuous functions, in the sense described in Thm. 2, and this implies

continuity of the GenGC correlation function in the same sense. In practice, the integrals in

Eq. (8.25) can be approximated numerically, such as with the midpoint rule, for example.

Theorem 2 provides the framework to construct continuous GenGC correlation functions on

Ω. Suppose the domain Ω is discretized into m grid cells. Take each grid cell to be a subregion Ωk

for k = 1, 2, ...,m, then define ak and ck according to Eq. (8.25) given continuous functions a and c

on Ω. The bottom row of Fig. 8.2 constructs GenGC on (0, 1) in this framework. The bottom left

panel plots the functions a(r) and c(r) for r ∈ (0, 1), both constructed using a hyperbolic-tangent

function to allow for a smooth transition between two constant values on either side of 1/2. The

domain (0, 1) is discretized into 201 equally-spaced grid points (including both endpoints 0 and 1),

and the subregions Ωk for k = 1, 2, ..,m = 200 are the grid intervals of width 1/200 centered half-

way between each grid point. Values of ak and ck in Eq. (8.25) are evaluated using the midpoint

rule with four subintervals within each subregion Ωk. The resulting GenGC correlation matrix is

shown in the bottom center panel, along with selected rows of the correlation matrix on the right.

We can see that when a and c are continuous functions and each subregion is taken to be a grid cell

on the discrete grid, the GenGC correlation matrix does not have the jump discontinuities seen in

the top row, and instead has a smooth transition across 1/2 corresponding to the smooth behavior

in a and c shown on the left. In fact, by choosing hyperbolic tangent to construct a and c, we have

created a continuous version of the discontinuous case shown in the top row of Fig. 8.2, as is clear

under mesh-refinement (not shown).

We emphasize here that the choice of a and c and the partitioning of the domain have a

significant impact not only on the inhomogeneity and anisotropy of the GenGC correlation function,

but also on its continuity over space, which is not readily available from convolution theory alone.

For applications where continuity of the GenGC correlation function is required, choosing a and

c to be continuous functions over the spatial domain will ensure that continuity holds. In cases

where a and c are not continuous functions, such as the piecewise-constants shown in the top row
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of Fig. 8.2, the GenGC correlation function will not be continuous across the boundaries of the

subregions. There are applications where jump discontinuities like those shown in Fig. 8.2 may be

suitable, for instance at the interface between different fluids, such as the atmosphere and ocean

(e.g., Stanley et al., 2021). Care should be taken to ensure that the GenGC correlation function

constructed satisfies the requirements of the particular application.

8.3.2 Correlation Length

Evaluation of the GenGC correlation function requires specifying a1, a2, ..., am and c1, c2, ..., cm

over the different subregions of the domain. The GenGC correlation function does not impose re-

strictions on how a1, a2, ..., am and c1, c2, ..., cm are specified, therefore these quantities can be

specified arbitrarily. If GenGC must be continuous over the full domain, the only restriction is

that ak and ck for k = 1, 2, ..,m are defined from continuous functions, as described in the previous

section, but these functions can also be arbitrary.

In some applications, the cut-off length values ck for k = 1, 2, ...,m may be readily specified

from physical or computational considerations, while specifying each ak may be less straightforward

and might instead be computed from other known quantities. The desired correlation length values

Lk, for instance, may be available while holding the cut-off length constant. For example, for state

dynamics governed by the continuity equation and related hyperbolic partial differential equations

(PDEs), an explicit PDE can be derived for the correlation length field (see Cohn, 1993, pp. 3137 –

3138). Therefore, if the PDE for the correlation length field is solved and the cut-off field is

known or specified, correlations can be reconstructed using GenGC, provided that we can relate

the correlation length Lk and cut-off length ck to ak. We derive an expression here that does so,

and we discuss methods of reconstructing correlations with GenGC in this context.

For fixed k, ` and r ∈ Ωk, s ∈ Ω`, the GenGC correlation function, Eq. (8.17), can be

expressed as Ck`(r, s) = C0
k`(z) for an even function C0

k` defined on the real axis with z = ||r− s||.

Therefore, we can define the correlation length for GenGC in terms of its second derivative with

respect to z for k = ` and at z = 0 (Daley, 1991, p. 110; Michel et al., 2016, special case of their
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Eq. 2),

Lk =

(
− d2

dz2
C0
kk(z)

∣∣∣∣
z=0

)−1/2

, k = 1, 2, ...,m. (8.26)

From the explicit formula for GenGC (see Appen. D.2), we derive an expression for the correlation

length Lk as a function of ak and ck,

Lk = ck

(
3(22a2

k + 3ak + 1)

40(8a2
k − 2ak + 1)

)1/2

. (8.27)

As the quantities ak and ck vary over the different subregions Ωk for k = 1, 2, ...,m, the correlation

length Lk also varies. In particular, if ak and ck are defined from continuous functions on Ω, for

example by Eq. (8.25), then it follows from Eq. (8.27) that the correlation length Lk is also. Observe

that while Lk depends linearly on ck for fixed ak, Lk depends only weakly on ak away from ak = 0,

but strongly near ak = 0, as shown in the left panel of Fig. 8.3.

In applications where the cut-off lengths ck and correlation lengths Lk are available, to

construct GenGC one would need to recover ak. From Eq. (8.27), we can solve for ak as a function

of Lk and ck, which yields a quadratic equation with the following two solutions,

a±k =
80 + 9κ2

k ±
√

(80 + 9κ2
k)

2 − 4(320− 66κ2
k)(40− 3κ2

k)

640− 132κ2
k

, (8.28)

where we define κk = ck/Lk, and a+
k (κk) (a−k (κk)) refers to the solution where the square root is

added (subtracted).

Since the values of ak in Eq. (8.28) are solutions to a quadratic equation, there are restrictions

on ck and Lk so that the solutions remain real, as well as restrictions on the choice of a+
k and a−k

that should be considered. The right panel of Fig. 8.3 plots a+
k and a−k as functions of κk = ck/Lk

and illustrates these restrictions. For the solutions in Eq. (8.28) to remain real and bounded, we

require that the discriminant remain positive and the denominator to be non-zero. It follows that

two real roots a+
k and a−k do not exist for all values of κk. Rather, we obtain two sets of restrictions

on values of a+
k and a−k in Eq. (8.28) and the corresponding values of κk, which we will denote as
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Figure 8.3: Left: Equation (8.27) solved for 1/κk = Lk/ck plotted as a function of ak. Right:
Solutions a+

k (grey) and a−k (orange) to Eq. (8.28) as functions of κk = ck/Lk. The vertical dotted

line marks the vertical asymptote at κk =
√

160/33 for a+
k . The horizontal black lines mark the

transitions between the roots a+
k and a−k .
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κ+
k and κ−k for a+

k and a−k , respectively,

a+
k ∈ (−∞,−0.1348) ∪ (0.5463,∞) for κ+

k ∈ (1.8233, 2.2019) ∪ (2.2019, 4.3536) (8.29)

a−k ∈ (−0.1348, 0.5463) for κ−k ∈ (1.8233, 4.3536) (8.30)

The root a+
k (grey curves in the right panel of Fig. 8.3) is asymmetric about the vertical asymptote

at κ+
k =

√
160/33 ∼= 2.2019 (dotted line in the right panel of Fig. 8.3). Therefore, values of a+

k

that cross the vertical asymptote at κ+
k will produce a GenGC correlation function that is not

continuous. The root a−k (orange curve), however, remains continuous for all values κ−k specified in

Eq. (8.30), but the values of a−k that can be achieved are limited, bounded by the black horizontal

lines in the right panel of Fig. 8.3. As κk varies between the limits expressed in Eqs. (8.29) – (8.30),

1/κk = Lk/ck is restricted to vary only between 1/4.3536 ∼= 0.2297 and 1/1.8233 ∼= 0.5485.

Solving for ak directly from Eq. (8.28) given κk is possible, but has the limitation expressed

by Eqs. (8.29) – (8.30) and illustrated in the right panel of Fig. 8.3. For applications where ak

may not vary substantially, an alternative to solving for ak directly would be to fix κk = κ as

constant, which is equivalent to fixing ak = a. Given a set of correlation lengths Lk, one could

then solve for the cut-off lengths by evaluating ck = κLk, making sure to observe the restrictions

presented in Eqs. (8.29) – (8.30) when choosing κ. For example, correlation lengths Lk may be

obtained dynamically, as in Cohn (1993, Sec. 4b), and fixing κ = 1.8233, the lower bound of κ−

and κ+, we recover the cut-off lengths ck and fix a. This choice of κ allows for recovery of the

smallest possible cut-off lengths ck given the correlation lengths Lk, which may be advantageous to

reduce computational expense. Alternatively, one could simply take a = 1/2 fixed as in the GC99

correlation function, which according to the right panel of Fig. 8.3, would be nearly the same as

choosing κ at its minimum κ = 1.8233.

8.4 Examples

The advantage of GenGC is that both ak and ck can vary over the subregions Ωk, producing

correlations that can be markedly inhomogeneous and anisotropic over the full domain Ω. This



115

section presents simple examples that highlight the anisotropy of GenGC on the sphere by allowing

these quantities to vary, first through a series of one-dimensional examples, followed by a two-

dimensional example on the surface of the Earth.

8.4.1 One-Dimensional Examples

We begin with one-dimensional examples on the discretized unit circle S1
1 with m = 200

equally-spaced grid points. The subregions Ωk for k = 1, 2, ...,m = 200 are the grid intervals

of width π/100 centered at the grid points. We choose c(r) and a(r) to be continuous functions

on the unit circle and evaluate c(r) and a(r) at each grid point to define ck and ak, respectively

(which is equivalent to evaluating Eq. 8.25 using the midpoint rule with one subinterval equal to

the subregion). The corresponding GenGC correlation matrices are constructed using the chordal

distance, Eq. (8.19), for different choices of functions a(r) and c(r). We give three examples that

illustrate the results of allowing a and c to vary as continuous functions over the spatial domain.

Example 1

Figure 8.4: Example of the GenGC correlation function on the unit circle S1
1 constructed using

continuous functions for a (solid black) and c (dashed grey) shown in the left-panel. The correlation
matrix is shown in the center, constructed using chordal distance defined in Eq. (8.19). The white
region corresponds to correlations between −0.003 and 0.003, highlighting the regions where the
correlations become zero. Horizontal lines on the correlation matrix mark the row 50 (grey), 125
(orange), and 150 (yellow) shown in the right panel, with the dotted black line marking zero.
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The first example, shown in Fig. 8.4, constructs the GenGC correlation matrix with a and

c defined using simple sine functions illustrated in the left panel. The resulting correlation matrix

in the middle panel of Fig. 8.4 has a non-uniform region where correlations vanish (white), with

larger non-zero regions in the right half of the domain and smaller non-zero regions on the left.

This reflects the choice of function for c and its impact on the region of compact support. The

specific one-dimensional correlations, as we see in the right panel, also illustrate the impact of the

spatial variability of the cut-off parameter c, where the correlations are compactly supported and

asymmetric about zero separation. Though a also varies over space in this example, these values

of a do not have a significant impact on the shape of the resulting correlations.

Correlation functions like the GenGC correlation function shown in Fig. 8.4 may be useful

for covariance tapering, particularly for localization in ensemble-based data assimilation schemes.

Current data assimilation schemes often implement the GC99 function for localization, which is

isotropic on the sphere since c is fixed and a = 1/2 is held constant. Alternate means of localization

have been proposed, such as adaptive localization (Bishop and Hodyss, 2007), spatially-dependent

localization (Buehner, 2012), scale-dependent localization (Buehner and Shlyaeva, 2015), empirical

localization functions (Anderson and Lei, 2013), and cross-localization for coupled data assimilation

(Stanley et al., 2021)3 . The GenGC correlation function removes the restriction of a single cut-off

length and produces correlations that can be anisotropic and asymmetric about zero separation, as

illustrated in Fig. 8.4.

Example 2

We can see the impact of allowing a to vary over space on the anisotropy of the GenGC

correlation function more clearly in Fig. 8.5. In this example, the function a varies significantly

on the unit circle and attains values less than zero. As a result, the GenGC correlation matrix

shown in the middle panel of Fig. 8.5 is highly anisotropic and has negative correlations, all while

remaining compactly supported (white region). The one-dimensional correlations for this case are

3 The mulitvariate Gaspari-Cohn localization function introduced by Stanley et al. (2021) is in fact a rescaled
version of the GenGC correlation function for two subregions with different values of c on the two subregions while
a = 1/2 is fixed.
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Figure 8.5: Same as Fig. 8.4 for different functions a and c shown in the left panel.
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much more asymmetric about zero separation (right panel of Fig. 8.5) and vary significantly in their

behavior. The grey correlation of row 50 is quite narrow, as it is in part of the domain with the

smallest values of c, while the correlation at row 150 (yellow) is very broad close to zero separation.

The GenGC correlation function becomes negative for values of a less than zero, due to the

behavior of the piecewise linear functions defined in Eq. (8.18). Correlations that become negative

over certain regions occur naturally in several contexts, such as for geostrophically balanced wind

fields (Daley, 1991, pp. 160 – 161, 163), for instance. Allowing a to vary across a = 0 significantly

changes the interior shape of the correlations and can be tuned to suit different applications.

Example 3 A common application of correlation functions with compact support is to

Figure 8.6: Hadamard product of the First-Order Autoregressive (FOAR) correlation function,
Eq. (8.31), with correlations computed in Fig. 8.5. Left: original FOAR correlation matrix with
length-scale L0 = π/4. Left-middle: GenGC correlation matrix, same as middle panel of Fig. 8.5.
Right-middle: correlation matrix corresponding to the Hadamard product of the FOAR correlation
matrix (left) and GenGC correlation matrix (left-middle). Right: colored lines are correlations
corresponding to horizontal colored lines in right-middle panel; dashed-black lines correspond to
same rows in the FOAR correlation matrix (rows 50, 125, and 150). The dashed lines are identical
since the FOAR correlation function used here is isotropic.

compute the Hadamard (element-wise) product with a correlation function that does not have

compact support. Figure 8.6 is an example of such a case, showing the Hadamard product of the

GenGC correlation function in Fig. 8.5 with the First Order Autoregressive (FOAR) correlation

function. The FOAR correlation function is defined as

CFOAR(r, s; L0) = e−||r−s||/L0 (8.31)
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where L0 is commonly referred to as the length-scale (not to be confused with the correlation length

L defined in Sec. 8.3.2). The FOAR correlation function is not differentiable due to the cusp at

zero separation and never becomes zero. We see in Fig. 8.6 that taking the Hadamard product of

the correlations of Fig. 8.5 and the FOAR correlation with L0 = π/4 produces correlations that

have compact support and a mixture of features from both functions. The cusp-like behavior of

the FOAR is preserved by the Hadamard product, but it is now asymmetric about zero separation,

contains negative correlations, and is compactly supported. The Hadamard product of GenGC with

the FOAR combines the unique features from each function into one correlation function, which can

be a powerful tool for covariance modeling, particularly for applications in which cusp-like behavior

can be expected (e.g., Ménard et al., 2000; Ménard and Chang, 2000; Waller et al., 2016).

8.4.2 Two-Dimensional Example

In addition to one-dimensional examples, we consider a simple two-dimensional case moti-

vated by the example presented in Paciorek and Schervish (2006). We construct correlations over

the state of Colorado, which we divide into two regions: a western mountainous region with short

cut-off lengths, and an eastern plains region with long cut-off lengths. Figure 8.7 plots the corre-

sponding a and c fields as functions of latitude and longitude, where both fields are constructed

using hyperbolic tangent (as we did in Fig. 8.2) and are latitudinally invariant. These are rela-

tively homogeneous fields in both the mountainous and plains regions, with a smooth, sharp but

continuous, transition between the two.

We consider correlations at three different locations, indicated by the marked points in

Fig. 8.7, and compare four different cases of GenGC depending on the choice of a and c, Figs. 8.8–

8.10. Panels (a) of Figs. 8.8–8.10 plot the correlations constructed using the GC99 function (Eq. 4.10

of GC99), where GenGC is evaluated with c fixed at the value at the center location and a fixed at

one-half. Panels (b) plot correlations constructed using the G06 function (Eq. 33 of G06), which is

GenGC with c constant (as in panel a) but with a varying according to the background field in the

left panel of Fig. 8.7. Panels (c) evaluate GenGC where a is fixed at one-half, and c is allowed to
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vary according to the background field in the right panel of Fig. 8.7. Finally, panels (d) are the full

GenGC correlation function which uses the full c and a background fields shown in Fig. 8.7. These

examples highlight the anisotropy gained by letting a and c vary over the surface of the Earth and

illustrate how this affects the correlation function when compared with the case where either one

or both are fixed.

Figure 8.7: Fields a (left) and c (right) as functions of latitude and longitude over the state
of Colorado, plotted on the surface of the Earth using a Mercator projection. Both fields are
latitudinally invariant and are constructed in the longitudinal direction using hyperbolic tangent:
a(lon) = −0.2 tanh(10(lon − 105.05◦W )) − 0.3, c(lon) = 40 tanh(10(lon − 105.05◦W )) + 60; c is
expressed in km. Marked points indicate locations where the two-dimensional correlations are
constructed: + for Fig. 8.8, × for Fig. 8.9, and ? for Fig. 8.10.

The western location in Fig. 8.7 (marked +) is in a region of relatively constant values of a

and values of c that are small. As a result, the correlations in Fig. 8.8 are nearly identical, as the

long-range behavior of a and c have little influence because of the very short local cut-off lengths.

Panels (a) and (c) are nearly identical but differ slightly from panels (b) and (d) in their interior

behavior because each pair uses different a values for their construction. The correlations in this

case are all fairly isotropic and decay to zero relatively quickly beyond the 0.05 contour.

Moving eastward to the central marked point in Fig. 8.7 (× point), we obtain the correlations

shown in Fig. 8.9. This location sits on the western edge of the steep gradients in a and c, which

heavily influences the behavior of the correlations that allow for a and/or c to vary (panels b – d).

The GC99 function in panel (a), as expected, is isotropic and only differs from panel (a) in Fig. 8.8

in how fast it decays to zero. Panels (b) and (d) have the most strikingly different interior behaviors
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Figure 8.8: Two-dimensional correlations with respect to (107.3◦W, 38◦N) (plus-sign + in Fig. 8.7)
given background fields in Fig. 8.7. Panel (a) is the GC99 function with a = 1/2 fixed and the
value of c taken to be the value at (107.3◦W, 38◦N). Panel (b) is the G06 function using the a field
of Fig. 8.7 and c at (107.3◦W, 38◦N), fixed. Panel (c) is GenGC with a = 1/2 fixed and c varying
according to Fig. 8.7, while panel (d) is the full GenGC using both a and c fields from Fig. 8.7.
The colorbar indicates the value of the correlations, along with selected values marked by contour
lines defined in the legend. Correlations are plotted on the surface of the Earth using a Mercator
projection.
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Figure 8.9: Same as Fig. 8.8, evaluated at (105.275◦W, 39.025◦N) (× in Fig. 8.7).
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due to the spatial dependence of a, where structures are no longer radially symmetric. Panels (c)

and (d) capture the changes in c, noting that to the west of the center location cut-off lengths are

small and increase when moving east. This is reflected in the eastward expansion of the correlations

in panels (c) and (d), whereas the correlations in panels (a) and (b) go to zero within a fixed radius

determined by the value of c at the center. Examining Fig. 8.9 in its totality shows the step-by-step

progression of the GC99 function to its most general form of GenGC in panel (d).

Correlations in Fig. 8.10 are evaluated at the starred location in Fig. 8.7 (? point) on the

eastern edge of the steep gradient in both the a and c fields. In this region, we obtain correlations

that become negative for both the G06 function in panel (b) and GenGC in panel (d), which are

not captured when a is fixed at one-half in panels (a) and (c). As in Fig. 8.9, we see the influence

of the gradient in the cut-off length field c, where correlations that allow the cut-off length field to

vary (i.e., panels c and d) exhibit expansion eastward towards larger cut-off lengths and shrinkage

westward for shorter cut-off lengths, relative to the fixed cut-off lengths in panels (a) and (b).

8.5 Concluding Remarks

This chapter presents a generalized version of the Gaspari and Cohn (1999) compactly-

supported, piecewise rational correlation function (the GC99 function) and its subsequent extension

in Eq. (33) of Gaspari et al. (2006) (the G06 function). The function presented here, which we refer

to as the Generalized Gaspari-Cohn (GenGC) correlation function, extends the GC99 and G06

functions to let the cut-off length c and parameter a vary over arbitrary subregions Ω1,Ω2, ...,Ωm,

such as individual grid cells, that partition the domain Ω on which GenGC is defined. As a

consequence, the GenGC correlation function is a piecewise-defined, scalar correlation function

that can be inhomogeneous and anisotropic while remaining compactly-supported. In particular,

by allowing the cut-off length c to vary over the different subregions, GenGC can be compactly-

supported on regions other than spheres of fixed radius with more direct control of the correlation

lengths, introducing features that the GC99 and G06 functions lack.

The general framework to construct GenGC and other scalar covariance functions that allows
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Figure 8.10: Same as Fig. 8.8, evaluated at (104.825◦W, 40◦N) (? in Fig. 8.7).
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parameters to vary over the domain is built from matrix covariance functions of vector random fields.

As we describe in Sec. 8.2.1, matrix covariance functions provide the initial structure in which we

can introduce inhomogeneity and anisotropy, and from these matrix functions we can extract the

piecewise-defined scalar covariance function evaluated in practice. In this way, we build the GenGC

correlation function from the convolution of compactly-supported, radially-symmetric functions, as

done in Sec. 8.2.2.

Since GenGC is defined piecewise, continuity over the full domain is not always guaranteed,

as discussed in Sec. 8.3.1. In practice, choosing the subregions Ω1,Ω2, ...,Ωm to be the grid cells

of the discretized domain and allowing a and c to vary continuously over the full domain will

ensure the GenGC correlation function remains continuous, in an appropriate sense. The one-

and two-dimensional examples in Sec. 8.4 are constructed in this manner. These examples are

intended to illustrate the flexibility of the GenGC correlation function while maintaining its compact

support. They suggest potential areas of application where this function may be useful, such as

for localization or covariance modeling. In particular, the GenGC correlation function can play

an important role in reconstructing covariances from correlation length fields and variance fields,

which will be described in the next chapter.

The increased flexibility of the GenGC correlation function compared to the GC99 and G06

functions is reflected in its correlation length, Eq. (8.27), which varies over the domain Ω as ak and

ck vary over the different subregions Ωk for k = 1, 2, ...,m. This correlation length is a scalar value,

independent of the dimensionality of Ω, due to the radial symmetry of the functions hk in Eq. (8.18)

used to construct GenGC. This implies that for Ω in two and three dimensions, GenGC is still locally

isotropic, in the sense that in each subregion Ωk, there is only one, scalar correlation length defined,

independent of direction. To be fully anisotropic in two and three dimensions requires correlation

lengths that depend on direction (for example: Cohn, 1993, Sec. 5b, Eqs. 5.34a,b; local correlation

tensors defined in Michel et al., 2016, Sec. 2.4). Though the GenGC correlation function is a

generalization of the GC99 and G06 functions, further work is needed to construct a version that

is fully anisotropic in two and three dimensions.



Chapter 9

Implementation of Local Covariance Evolution and Preliminary Results

Chapter 7 introduces the theoretical framework for local covariance evolution (LCE), followed

by Ch. 8, which derives a new parametric correlation function that can be used to reconstruct

correlations from variable correlation length fields. In this chapter, we will now implement LCE

in one space dimension. Since the implementation of LCE depends on the parametric correlation

function, in this chapter we will develop the methodology for two parametric correlation functions:

the Generalized Gaspari-Cohn (GenGC) correlation function defined in Ch. 8, and the First-Order

Autoregressive (FOAR) correlation function. In addition, we will implement LCE for the Hadamard

product of these two parametric correlations. This yields a total of three LCE methodologies, in

which their implementation is described and preliminary results for each case are presented.

9.1 Methodology

We begin by discretizing the domain, taken to be the unit circle S1
1, into open intervals Ωk

for k = 1, 2, . . . ,m = 200 of uniform width of π/100. The grid point xk ∈ S1
1 is taken to be at the

midpoint of Ωk for k = 1, 2, . . . ,m.

Reconstructing covariances using LCE consists of two parts, mirroring the decomposition of

the covariance P into the standard deviation σ and correlation C in Eq. (7.1). The first part of LCE

is the evolution of the variance, σ2. This is done by solving the variance equation, Eq. (1.8), either

analytically or numerically. The second part is the evolution and reconstruction of the correlations.

The covariance is then recovered by rescaling the correlations by the variance.
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Evolving and reconstructing the correlations for LCE is more involved than evolving the

variance since it depends on the particular parametric correlation function. Therefore in the next

three sections, we will see how to evolve and reconstruct the correlations for three different cases.

9.1.1 Generalized Gaspari-Cohn (GenGC)

Since the standard Gaspari-Cohn correlation function (referred to as GC99 in Ch. 8) is

compactly supported and frequently used in the data assimilation community, implementing LCE

for the Gaspari-Cohn correlation function is a natural choice. This motivates the derivation of the

GenGC correlation function in Ch. 8. By allowing both parameters ak and ck to vary over the

domain, the correlation length Lk of the GenGC correlation function has the full flexibility needed

for LCE in one space dimension.

The correlation length Lk of GenGC defined in Eq. (8.27) depends on both parameters ak

and ck. Therefore, the correlation length field alone is not sufficient to determine both ak and

ck. Even if both the correlation length Lk and cut-off length ck for k = 1, 2, . . . ,m are known,

the restrictions on the values of ak for fixed Lk and ck (as discussed in Ch. 8.3.2) make choosing

an appropriate value of ak difficult. One option would be to include the dynamics for a higher-

order derivative of the correlation at zero separation, C4 for example, in addition to solving for

the correlation length. Solving for ak with an additional equation for C4, however, is algebraically

complicated. For fixed Lk and ck, ak satisfies a quartic equation with even more restrictions due

to the nonlinear relationship of ak with the ratio Lk/ck.

Rather than solving for both ak and ck over the full spatial domain, we will fix the values

of ak = a to be constant for k = 1, 2, ...,m. By assuming the parameter ak = a is constant over

space and time, we are now able to compute the cut-off length field ck for k = 1, 2, . . . ,m from the

evolved correlation lengths. For cases where the shape of the correlations depends primarily on the

cut-off length or when the values of a are in a regime such that the shape of GenGC does not vary

(see Fig. 8.4, for example), this assumption is sufficient. We will see the impacts of this assumption

in the examples presented in Sec. 9.2.
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The implementation of LCE with the GenGC correlation function must be done using the

framework described by Thm. 2 in Ch. 8.3.1 to ensure the resulting correlations are continuous.

Since ak = a for k = 1, 2, . . . ,m is constant over the domain, a can be directly evaluated in GenGC.

The values of ck, however, should be evaluated as the average value of the function c(x, t) over the

subregion Ωk, Eq. (8.25). Since the grid points xk are the midpoints of the subregions Ωk, simply

evaluating ck = c(xk, t) is sufficient, as it is equivalent to computing Eq. (8.25) with the midpoint

rule over one subinterval equal taken to be the full subregion Ωk. Evaluating Eq. (8.25) to determine

ck using more than one subinterval in Ωk could be done using appropriate mesh-refinement methods.

The general implementation of LCE for the GenGC correlation function with fixed ak = a is

summarized by the following three steps:

(1) Define the initial correlation C0(x1, x2) using GenGC for initial cut-off values c0
k and a0

k = a

fixed for k = 1, 2, . . . ,m, where the superscript zero indicate the values of ck and ak at the

initial time t0. The initial correlation lengths L0
k are computed from ak = a and c0

k for

k = 1, 2, ...,m using Eq. (8.27).

(2) At time t > t0, the correlation length field L(xk, t) is evaluated by solving Eq. (5.30) with

the initial condition from step (1). With fixed atk = a, k = 1, 2, . . . ,m and correlation

lengths L(xk, t), the cut-off length field c(xk, t) is computed using Eq. (8.27). The values

ctk are then computed from c(xk, t) using Eq. (8.25), where the superscript t denotes the

value of ck at time t.

(3) GenGC is evaluated using the fixed value of atk = a and computed cut-off length field ctk

for k = 1, 2, . . . ,m at time t.

Remark 5. In practice, one would likely not solve the correlation length PDE given by Eq. (5.30)

directly. Instead, one would solve the PDE for 1/L since it satisfies the continuity equation and a

numerical scheme that will preserve its continuum conservation properties can be implemented.
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9.1.2 First Order Autoregressive (FOAR)

Another parametric correlation function that can be used for LCE is the First-Order Au-

toregressive (FOAR) correlation function, first introduced in Eq. (3.6) in Ch. 3.1. Its definition is

repeated here with slightly different notation,

CFOAR(x1, x2) = e−||x1−x2||/L, (3.6 revisited)

where L is the length-scale parameter and ||x1 − x2|| is the normed distance between points x1

and x2, which is taken to be chordal distance on the unit circle defined by Eq. (3.5). The FOAR

correlation function has a cusp at x1 = x2, therefore its derivatives at x1 = x2 are discontinuous.

The dynamics for LCE in this case are therefore defined in Ch. 7.1.2.

We can implement LCE using the FOAR correlation function by making use of the general-

ization in Eq. (23) of Gaspari et al. (2006) referred to as the “multi-level FOAR.” The multi-level

FOAR generalizes Eq. (3.6) to allow the length-scale parameter L = Lk to vary over the spatial

domain, similar to how ak and ck vary in the GenGC correlation function. For a given length-scale

field Lk, Eq. (23) of Gaspari et al. (2006) can be used to reconstruct FOAR-like correlations that

can be inhomogeneous and anisotropic.

At zero separation (i.e., x1 = x2), the multi-level FOAR correlation function reduces to

Eq. (3.6). Therefore, we can compute C1 from Eq. (3.6) and find it only depends on the length-

scale parameter L,

C1(x, t) = − 1

L(x, t)
, (9.1)

where we now allow the length-scale parameter L to vary over space and time. Using the relation

between C1 and the length-scale L in Eq. (9.1), we can derive an explicit PDE for the FOAR

length-scale,

Lt + vLx − vxL = 0,

L(x, t0) = L0(x), (9.2)
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which happens to satisfy the same dynamics as the correlation length L in the continuously differ-

entiable correlation case.

Like the GenGC correlation function, the multi-level FOAR correlation function is con-

structed by convolving functions from a collection of radially-symmetric functions on R3 (see the

proof on pp. 1821 – 1822 of Gaspari et al., 2006). Therefore, to ensure that the resulting correlation

is continuous, the values of Lk used in Eq. (23) of Gaspari et al. (2006) should be evaluated using

the average value of L(x, t) over the subregion Ωk. In fact, Thm. 2 can be generalized for arbitrary

parameters and then applied to the multi-level FOAR correlation function to ensure continuity.

The implementation of LCE for the FOAR correlation function is more straightforward than

the GenGC case since the length-scales L(x, t) can be solved directly. Given initial length-scales

L0
k = L0(xk), we can solve Eq. (9.2) for L(x, t) at some time t > t0, then evaluate Ltk using Eq. (8.25)

for L(x, t) in place of c(x, t). Finally, we can use Eq. (23) of Gaspari et al. (2006) to recover the

full correlations.

9.1.3 Hadamard Product of GenGC and FOAR

Though the cusp-like behavior of the FOAR correlation function is useful for certain geo-

physical applications, the resulting correlation matrix is dense since the exponential is everywhere

nonzero. Therefore, considering correlations built from the Hadamard product of the FOAR correla-

tion function with a compactly-supported correlation function, such as GenGC, is computationally

beneficial, particularly in high-dimensional settings. We can implement LCE for initial correlations

C0 that are the Hadamard product of the FOAR correlation and GenGC correlation following the

analysis presented in Ch. 7.1.3.

Following the notation of Ch. 7.1.3, assume that F0 in Eq. (7.11) is the FOAR correla-

tion function (standard or multi-level) and G0 is the GenGC correlation function. Since the

correlation C remains the product of these two correlation functions for all time, C(x1, x2, t) =

F (x1, x2, t)G(x1, x2, t), it is sufficient to evolve the FOAR and GenGC correlations independently,

then reconstruct the full correlation as their product. The implementation in LCE in this case



131

reduces to implementing Sec. 9.1.1 and Sec. 9.1.2 simultaneously to approximate G and F , respec-

tively.

9.2 Preliminary Results

The primary goal of LCE is to evolve covariances in a way that mitigates the inaccurate

variance propagation we observed during full-rank covariance propagation. This is accomplished

by evolving the variance directly, which can be done to any desired accuracy given the dynamics

(here by Eq. 1.8) and an appropriate numerical scheme. To determine if LCE is an effective means

of covariance propagation then requires testing the its ability to approximate the full correlation

fields. This section presents preliminary results that implement the evolution and reconstruction

of full correlation fields as described in this chapter.

For these experiments, consider the same one-dimensional problem described in Ch. 3 for

the discretization described at the beginning of Sec. 9.1. The exact solutions to the correlation

C, correlation length L, and length-scale L are known and their solutions are given explicitly in

Appen. B.2. For each of the three correlation function cases (GenGC, FOAR, and the Hadamard

product of the two), the initial correlation C0 is taken to be isotropic, meaning the initial correlation

length L0(x, t) or length-scale L0(x, t) is constant over the domain. Using the exact solutions to

either the correlation length or length-scale PDE, we can then compute L(x, t) and L(x, t) at time

t = T , then reconstruct the correlations following the procedures outlined in Secs. 9.1.1 – 9.1.3.

In Ch. 3, we observe that full-rank propagation produces the most significant errors in both

the variance and correlations when initial correlation lengths are small (see Figs. 3.5 – 3.6 for exam-

ple). The first set of LCE experiments, therefore, targets these regimes, where we will consider cases

where the initial correlation length and length-scale parameters are relatively small. Figure 9.1 con-

tains examples of the correlation matrices obtained in the LCE experiments for each of the three

parametric correlation function cases, where the discrete values c0
k = 0.25 and L0

k = 0.25 for all

k = 1, 2, . . . ,m = 200. Each row shows the exact correlation matrix (left), the LCE-approximated

correlation matrix (middle), and selected rows from each to illustrate the explicit one-dimensional
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correlations (right).

We see for the cases in Fig. 9.1 that the LCE-approximated correlations reconstruct the exact

correlation fields accurately and eliminate the major problems observed in the full-rank propagation

examples of Ch. 3. Recall that the full-rank propagation results in diffusion of information off

the diagonal, or numerical dispersion in the Crank-Nicolson case, that is particularly problematic

when correlation lengths shrink in regions of convergence (see Figs. 3.5 – 3.6, for example). In the

region around row 150, where full-rank propagation performs quite poorly due to the extremely

sharp gradient near the diagonal, LCE captures the correlations quite well. Overall, the LCE-

approximated correlations are quite accurate and are able to capture anisotropy simply from the

evolved correlation length or length-scale fields.

Though LCE is “local” in the sense that the evolved parameters are derived from a local

approximation of the correlation, we see in Fig. 9.1 that correlations are well approximated away

from the diagonal. The FOAR case (middle row) has the largest errors away from zero separation,

but these errors are still relatively small. The GenGC and Hadamard product cases (top and

bottom rows of Fig. 9.1, respectively), capture the full correlations very well, indicating that for

these dynamics fixing a as constant is sufficient to recover the cut-off length fields from the evolved

correlation lengths.

Though most geophysical applications will consider cases where the initial cut-off lengths c0
k

for GenGC or length-scale L0
k for the FOAR are relatively small over the different subregions, it is

worth considering other values of c0
k and L0

k to test the ability of LCE to reconstruct correlations.

In Fig.9.2, we consider the case for c0
k = 1 and L0

k = 1 for all k = 1, 2, . . . , 200, in which the full-rank

propagation examples in Ch. 3 have minimal errors in the variance and correlations.

The LCE-reconstructed correlations in Fig. 9.2 have more notable errors than those in Fig. 9.1

for smaller initial correlation lengths and length-scales. For these long initial correlation lengths

and length-scales, it is the region around row 50 in which the LCE-approximated correlations

have the largest errors. Interestingly, around row 150 where full-rank covariance propagation is

generally poor due to the sharp gradient near the diagonal, the LCE-approximated correlations
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Figure 9.1: Preliminary results for the LCE experiments for three correlation functions: GenGC
(top row), FOAR (middle row), Hadamard product of GenGC and FOAR (bottom row) for
c0
k = 0.25 and L0

k = 0.25 for all k = 1, 2, . . . , 200. In each row title, italicized L denotes the
correlation length for GenGC while roman L denotes the correlation length scale for the FOAR
correlation function. In each row, the left panel is the exact correlation matrix, the middle is
the LCE-approximated correlation matrix, and the right panel are rows 49 and 100 corresponding
to the horizontal lines in each correlation matrix. All matrices are evaluated at time t = π/

√
3,

corresponding to half a time period.
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Figure 9.2: Same as Fig. 9.1 for c0
k = 1, L0

k = 1 for all k = 1, 2, . . . , 200. The left panels show rows
49 and 150.
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are still accurate. Near the correlation diagonal, the LCE-approximated correlations are accurate,

though further from the diagonal the errors start to increase, indicating the extent of the “local”

approximation. Further investigation into the LCE approximated correlations for larger initial

correlation lengths and length-scales is the subject of future work.

Overall, the preliminary results for the LCE-approximated correlations suggest that LCE

is a viable alternative to standard methods covariance propagation in advective systems, particu-

larly when correlation lengths become small or sharp gradients form near the covariance diagonal.

LCE largely eliminates the errors observed in the correlations produced during standard covari-

ance propagation and is a significant cost reduction for evolving correlations relative to full-rank

propagation and even to low-rank approximations. This work establishes the foundation for further

investigation into LCE, which is addressed in more detail in Ch. 10.3.



Chapter 10

Conclusions and Future Work

10.1 Summary

In this thesis, the fundamental cause of inaccurate variance propagation associated with

standard methods of covariance propagation has been investigated. Through careful analysis of the

continuum covariance dynamics for advective systems, Ch. 2 identifies a discontinuous change in

dynamics along the hyperplane x1 = x2 in the limit as correlation lengths tend to zero. The impacts

of this discontinuity on discrete covariance propagations is then observed in the following chapters.

Chapter 3 illustrates in a simple, one-dimensional example with a known exact solution, that the

diagonals produced during full-rank covariance propagation are smooth, but wholly inaccurate.

The errors observed result in both spurious loss and gain of variance, which are a manifestation of

inaccurate variance propagation more so than numerical dissipation. One may surmise these errors

can be mitigated by choosing an appropriate numerical scheme. However, Ch. 4 demonstrates that

even when a numerical scheme is chosen to suit the continuum conservation properties, inaccurate

variance propagation is still a considerable problem. Thus, inaccurate variance propagation is not

simply a problem of numerics per se, but rather is due to the discontinuous change in the continuum

covariance dynamics.

Motivated by the numerical results in Chs. 3 and 4, Ch. 5 performs an error analysis of

full-rank covariance propagation in order to identify the explicit sources of inaccurate variance

propagation. Although the original intent of Ch. 5 was to derive a correction to full-rank propaga-

tion, the results in Ch. 5 provide important insights into variance propagation and clearly explain
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the behavior observed in Chs. 3 and 4. The development of a correction, motivated by the results

of Ch. 5, is discussed in Ch. 6. Though Chs. 5 and 6 suggest that correcting full-rank covariance

propagation may be quite challenging, the findings in Ch. 5 provide a new and important perspec-

tive on covariance propagation. These results are particularly relevant to the data assimilation

applications that include advective dynamics, such chemical tracer transport models, for example.

Chapters 2 – 6 demonstrate that standard methods of variance propagation, namely that

associated with Eq. (1.3), are inherently inaccurate. This motivates the investigation into an al-

ternative approach to covariance propagation that bypasses Eq. (1.3) entirely. Chapters 7 and

9 present an alternative method of covariance propagation that can directly address inaccurate

variance propagation. Termed “local covariance evolution” (LCE), this method is different from

current approaches in that it is derived from the continuum covariance dynamics and evolves the

variance directly. The preliminary results presented in Ch. 9 demonstrate that LCE can accurately

reconstruct correlations in regions where full-rank covariance propagation behaves poorly. In ad-

dition, LCE is computationally efficient and therefore tractable in data assimilation applications.

To implement LCE requires parametric correlation functions that allow for variable parameters,

therefore Ch. 8 introduces a new correlation function to then use for reconstructing correlations in

Ch. 9.

In its totality, my thesis provides a new perspective on covariance propagation, which is a

mathematically significant problem that is highly relevant to data assimilation. My thesis shows

that the spurious loss of variance often observed during covariance propagation in advective systems

is more than just loss of variance. Rather, the underlying problem is inaccurate variance propaga-

tion, caused by the discontinuous behavior of the continuum dynamics coupled with the structure

of discrete covariance propagation. To uncover the root of this problem requires returning to

the underlying mathematics that govern both the continuum and discrete covariance propagation.

From this perspective, my thesis provides new insights that help us better understand covariance

propagation for data assimilation applications.
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10.2 Main Contributions

Issues with variance propagation associated with standard methods of discrete covariance

propagation are investigated in this thesis. In data assimilation practice, this problem arises as

spurious loss of variance and is often interpreted and addressed in discrete terms. My thesis

demonstrates the importance of returning to the continuum formulation of covariance propagation,

in particular to understand the propagation of covariance matrices in space and time. My thesis

shows that the spurious loss of variance associated with covariance propagation in advective sys-

tems is not simply caused by reduced-rank representations or the numerical method. Rather, the

fundamental cause of this loss of variance is rooted within the continuum dynamics itself. With-

out returning to the continuum formulation of covariance propagation, the source of the observed

spurious loss of variance in advective systems cannot be properly identified.

Below is a summary of the original contributions and new perspectives that address inaccurate

variance propagation in advective systems:

• Chapter 2 identifies the discontinuous change in the continuum covariance dynamics along

the x1,x2-hyperplane in the limit as correlation lengths tend to zero. This result is math-

ematically novel and highly relevant to geophysical data assimilation applications.

• Through a series of numerical experiments, Chs. 3 and 4 shows that inaccurate variance

propagation is a considerable problem during full-rank covariance propagation in discrete

space. The inaccurate variances are due to the tendency of discrete, full-rank covariance

propagation to approximate the incorrect continuum dynamics.

• The error analysis in Ch. 5 explicitly demonstrates that inaccurate variance propagation

observed during full-rank covariance propagation is not caused by numerical dissipation

or the particular numerical method employed, but is due to the nature of the continuum

covariance dynamics and structure of covariance propagation itself.

• Chapters 7 and 9 propose and implement an alternative method of covariance propagation



139

in one space dimension. This method is derived directly from the continuum covariance

dynamics in an effort to mitigate inaccurate variance propagation and is computationally

tractable when scaled to high-dimensional geophysical systems. Preliminary results sug-

gest this method can eliminate the major problems associated with full-rank covariance

propagation.

• Also, Ch. 8 introduces a new compactly-supported correlation function that generalizes

the Gaspari-Cohn correlation function. This function is used in Ch. 9 for the alternative

method of covariance propagation, and can be useful in other data assimilation applications,

such as for covariance modeling and localization.

Covariance information plays a critical role in data assimilation schemes. My work uncovers the

source of inaccurate variance propagation for advective systems, with the hope of providing a

framework to develop tractable solutions for data assimilation applications.

10.3 Future Work

This thesis lays the groundwork for several different research directions that address inaccu-

rate variance propagation in data assimilation schemes. Additional research directions that stem

from this thesis are described below.

Continuum Covariance Propagation for Stochastic v and Systems of Hyperbolic

PDEs The analysis presented in Ch. 2 considers a PDE for a single state variable q and a

background velocity field v that is deterministic. There are two immediate directions in which this

work can be extended. The first is to consider the case where v is stochastic. This will introduce two

new covariance quantities: an auto-covariance for the velocity v and cross-covariance between the

state q and velocity v. One can perform an analysis of these PDEs for this case in a similar manner

to that done in Ch. 2 in order to uncover the continuum covariance dynamics. Since stochastic v

is often the case in physical applications, this analysis can provide further insights into behaviors

observed in data assimilation applications that implement advective dynamics.
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The second direction to consider is covariance propagation for systems of hyperbolic PDEs.

Several questions arise in this case: what are the continuum covariance dynamics? What are the

characteristic surfaces? What additional behaviors arise in the covariance dynamics that are not

present in the single state variable case? There is a vast amount of analytical work that can be

done here that builds upon the work established in Ch. 2. To begin, one can consider states that

satisfy the standard wave equation on a periodic domain. Like the generalized advection equation,

the wave equation is a hyperbolic PDE, and due to the two time derivatives, the wave equation

can be rewritten as a system of two PDEs with one time derivative in each equation. Analysis

of the covariance dynamics in this case is likely a tractable first step to understanding covariance

propagation for systems of equations. On its own, analysis of the covariance dynamics associated

with the wave equation is an important component of understanding covariance propagation for

hyperbolic PDEs.

Continued Error Analysis of Full-Rank Covariance Propagation The error analysis

of the full-rank covariance propagation in Ch. 5 considers two spatial discretization schemes, a first-

order upwind spatial discretization and a second-order centered difference spatial discretization.

Though both spatial discretizations approximate the incorrect continuum dynamics as correlation

lengths become small, it is possible that there are other numerical schemes that are able to approxi-

mate the correct continuum dynamics along the covariance diagonal. Attempting to construct such

schemes and performing error analysis for other numerical schemes is worth pursuing, particularly

for schemes that are tractable in high-dimensional contexts. This additional error analysis has

the potential to uncover numerical schemes that are better suited for covariance propagation or to

further demonstrate that covariance propagation is unable to accurately propagate the variance in

advective systems.

Two projects stem from the work presented in Ch. 5. The first is to investigate whether

an alternative numerical scheme can be used for full-rank covariance propagation that can accu-

rately propagate the variance when correlation lengths become small. Before determining such a

scheme, one would first need to derive the conditions in which the correlation length L is bounded
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from below. This information will be necessary to understand whether a numerical method can

be developed that can “sense” when correlation lengths become small and adapt accordingly. Nu-

merical methods to consider are multi-grid methods, for example, which can adapt in their spatial

resolution and can yield sparse matrices.

The second project is to perform a convergence analysis on the approximated continuum

diagonal dynamics derived in Ch. 5. This convergence analysis can help determine whether standard

spatial discretizations for Eq. (1.3), under appropriate conditions on ∆x, L, and velocity v, will

converge to the correct continuum diagonal dynamics. The lower bound analysis for the correlation

length L, as discussed above, will be useful here. Since the approximated dynamics presented in

Ch. 5 depend on powers of the ratio ∆x/L, careful analysis will be needed when considering the

limiting cases for this ratio. This project will help to further our understanding of the inaccurate

variance propagation caused by Eq. (1.3) and whether it can be mitigated.

Generalized Gaspari-Cohn in Two and Three Space Dimensions As mentioned at

the end of Ch. 8, the Generalized Gaspari-Cohn (GenGC) correlation function is locally isotropic,

meaning that in two and three space dimensions, GenGC has a single, scalar correlation length

that is independent of direction and the dimension of the space. This is due to GenGC (and its

predecessors in Gaspari and Cohn (1999) and Gaspari et al. (2006)) depending on the normed

distance between grid points, enforcing radial symmetry that results in correlations being locally

isotropic in more than one space dimension. The GenGC correlation function derived in Ch. 8 may

be sufficient in certain applications. However, a fully anisotropic and inhomogeneous version in

two and three space dimensions may also be needed. This generalization is particularly relevant

for implementing local covariance evolution in two and three dimensions, in which the evolved

correlation length fields will depend on direction and the dimension of the space.

To derive a fully generalized Gaspari-Cohn-like function for two and three space dimensions

is likely more involved than the generalization presented in Ch. 8. The theory of Ch. 8.2.1, which

builds scalar covariance functions from matrix covariance functions, holds for both two and three

space dimension. The construction of the scalar covariance functions in Ch. 8.2, needs to be
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modified so that the correlation length scales can depend on the dimension of the space. One

first step would be to choose a different collection of functions for the convolutions in Eq. (8.11),

for example, by altering the radial symmetry assumption on hk. By generalizing the framework

presented in Ch. 8.2.2, this project can result in the derivation of several different fully anisotropic

correlation functions for two and three space dimensions, including new versions of the Gaspari-

Cohn and FOAR correlation functions.

Further Development of LCE For Evolving Covariances The local covariance evo-

lution (LCE)-approximated correlations presented in Ch. 9 are preliminary results. Further exper-

imentation is necessary to fully test the ability of LCE to approximate correlations governed by

the advection equation in one space dimension. This includes testing different initial conditions

and implementing LCE for other parametric correlation functions that are relevant to the data

assimilation community. In addition, more can be explored regarding the parameter a used to

reconstruct correlations with the GenGC correlation function. For example, further analysis and

experiments can be done to determine whether holding a constant is a sufficient assumption, or if

one can derive equations that evolve a over space and time. It is possible, however, that developing

LCE for 2D may provide better insights into developing LCE for a spatially dependent a.

For LCE to be applied in geophysical data assimilation applications, it is necessary to extend

the LCE methodology to two and three space dimensions. Moving from 1D to 2D is non-trivial:

correlation length fields require careful definition in 2D, and it is possible that, unlike the 1D

case, variance and correlation length information may not be sufficient to capture covariances in

2D. Michel et al. (2016), for example, may be a useful starting point to define correlation length

fields in two and three space dimensions. In addition, LCE in 2D (and in 3D) requires a careful

choice of parametric correlation functions that allow for correlation length fields that depend on

direction. One approach would be to assume that the parametric correlation function is separable

in the latitudinal and longitudinal components: in 2D, for example, we can construct a correlation

function in two space dimensions the product of two GenGC correlation functions, each in one

space dimension. If this assumption is not sufficient, derivation of a fully anisotropic, non-separable
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GenGC correlation function may be necessary.

LCE in 2D can then be tested for the advection equation on an isentropic surface of Earth’s

atmosphere using background wind fields from a numerical weather model or reanalysis data set.

These experiments can then establish a LCE methodology that can be adapted for chemical tracer

transport data assimilation applications, for instance. With the theory developed for 2D, the

extension to 3D may be more readily achieved. Once LCE for 2D and 3D is complete for advective

dynamics, the next step is to consider other geophysical systems, for example the advection-diffusion

equation.

A New Data Assimilation Filter Built Upon Local Covariance Evolution Lo-

cal covariance evolution (LCE) establishes the mathematical foundation for a new, transformative

approach to data assimilation by replacing full-rank covariance propagation and its low-rank ap-

proximation in the data assimilation cycle. To fully incorporate LCE in data assimilation, however,

requires an associated measurement-update step, in which the evolved continuum quantities, such

as the variance and correlation length, are updated. Current measurement updates are built to

update the covariance matrix. Therefore, a new measurement update step is needed in order to

update the quantities evolved from LCE. This problem will be formulated in the continuum, defin-

ing the appropriate functional spaces and necessary closure assumptions to derive the measurement

update for a general class of observation operators.

10.4 Final Remark

Covariance propagation, namely the evolution of the covariance according to partial differen-

tial equations, is overlooked in both the mathematics and data assimilation communities. There is a

gap in the theory of covariance propagation, particularly for the case where there is a discontinuity

along the covariance diagonal. In an effort to address this gap, my thesis opens the door to a new

area of mathematics where covariance propagation can be formally investigated.

There is also a gap in knowledge regarding covariance propagation in the data assimilation

community that serves as the motivating application for this work. The fundamental, mathematical



144

nature of this thesis provides a new perspective on covariance propagation for the data assimilation

community, bringing to light important issues that have gone mostly unnoticed. The results of this

work are immediately impactful in chemical tracer data assimilation, whose dynamical models are

governed by the advective dynamics considered here. By providing a new perspective on covariance

propagation for data assimilation, this work can help to improve uncertainty quantification, which

can ultimately help increase forecasting accuracy. This work, therefore, sets the stage to have a

lasting impact in mathematics, data assimilation, and the broader community.
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Appendix A

Supplement to Chapter 2

This appendix contains additional discussion of the continuous spectrum solution presented

in Ch. 2. Appendix A.1 is published in Gilpin et al. (2022). Appendix A.2 provides an alternative,

direct approach, to deriving the continuous spectrum solution in Ch. 2.

A.1 Proofs of Solutions with Dirac Delta Initial Conditions

We begin by verifying that P (x1,x2, t) = d2(x1, t)δ(x1,x2), where d2 satisfies Eq. (2.22), is

the solution to the covariance evolution equation Eq. (1.6) for P0(x1,x2) = δ(x1,x2).

Proof. The function P (x1,x2, t) = d2(x1, t)δ(x1,x2) is a weak (distribution) solution of Eq. (1.6)

with P0(x1,x2) = δ(x1,x2) if

(L∗φ, P ) = 0 (A.1)

for all test functions φ ∈ C1(Ω×Ω× [t0, T ]) with period t = T , where L∗ is the adjoint differential

operator

L∗ = −∂t − v1 ·∇1 −v2 ·∇2 +b1 + b2 −∇1 ·v1 −∇2·v2 (A.2)

corresponding to the differential operator

L = ∂t + v1 ·∇1 +v2 ·∇2 +b1 + b2 (A.3)

of Eq. (1.6). Here we denote (·, ·) as the inner product over L2(Ω × Ω × [t0, T ]) and we will

denote (·, ·)′ as the inner product over L2(Ω× [t0, T ]). Substituting P = d2(x1, t)δ(x1,x2) into the
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expression for (L∗φ, P ), applying the Dirac delta, and expanding the result yields

(L∗φ, P ) = (−φt(x1,x1, t)−∇1 · (v1φ(x1,x1, t)) + (2b1 −∇1·v1)φ(x1,x1, t), d
2(x1, t))

′, (A.4)

where we note that ∇2 ·v2 |x2=x1 =∇1·v1 and

∇1φ(x1,x1, t) = ∇1φ(x1,x2, t)|x2=x1 +∇2φ(x1,x2, t)|x2=x1 . Using integration by parts to move

derivatives off of the test function φ onto d2 in Eq. (A.4) gives us

(L∗φ, P ) = (φ(x1,x1, t), d
2
t + v1 ·∇1 d

2 + (2b1 −∇1·v1)d2)′ = 0, (A.5)

since d2 satisfies Eq. (2.22). Thus, P (x1,x2, t) = d2(x1, t)δ(x1,x2) is a weak solution to Eq. (1.6).

To show that P̃ = P̃ c(x1, t)δ(x1,x2) is the solution to 2.27 for P̃0 = P c0 (x1)δ(x1,x2) follows

an identical proof as given above, where we take

bi 7→
1

2
∇i·vi, i = 1, 2 (A.6)

d2(x1, t) 7→ P̃ c(x1, t), (A.7)

where P̃ c satisfies Eq. (2.29).

A.2 Direct Approach to Deriving the Continuous Spectrum Equation

There are several ways to derive the continuous spectrum solution, Eq. (1.9) and its associated

covariance operator Pct . This section presents an alternative approach to the previous derivation

that is a direct approach to deriving the continuous spectrum solution and operator Pct .

We begin with the operator U t and its adjoint U∗t . From Eq. (2.17), we can express the

kernel of the operator U t, namely u(x, t; ξ), as follows,

u(x, t; ξ) = δ(s(x, t), ξ)r1/2(x, t). (A.8)

Here, s(x, t) represents the inverse of the solution to the characteristic equation, Eq. (1.7), where

x(t0) = s(x, t) (following the notation of Shearer and Levy, 2015, Ch. 3). In addition, we have
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defined the function

r(x, t) = e
−

∫ t
t0
∇·v(x(τ,s),τ)dτ

, (A.9)

which follows directly by rewriting Eq. (2.17) into its corresponding ODE along the characteristics.

By defining the kernel u as in Eq. (A.8), we can derive an explicit expression for the adjoint

operator U∗t . We compute the adjoint over L2(Ω) for f, g ∈ L2(Ω) and Ω = S2
r ,

(g,U tf)2 =

∫
Ω

∫
Ω
g(x)f(ξ)u(x, t; ξ) dξ dx

=

∫
Ω

∫
Ω
g(x)f(ξ)δ(s(x, t), ξ)r1/2(x, t) dξ dx

=

∫
Ω
g(x)f(s(x, t))r1/2(x, t) dx

=

∫
Ω

∫
Ω
g(x)f(ξ)r−1/2(x, t)δ(s−1(ξ, t),x) dx dξ = (U∗t g, f)2.

The derivation of the adjoint operator U∗t makes use of the change of variables ξ = s(x, t). For this

change of variables we have that dξ = r(x, t)dx and x = s−1(ξ, t), where in particular, the solution

r of Eq. (A.9) is the determinant of the Jacobian of the coordinate transformation (Coddington

and Levinson, 1955, Ch. 1). Therefore, we can define the adjoint operator for f ∈ L2(Ω)

(U∗t f)(ξ) =

∫
Ω
u∗(ξ, t;x)f(x) dx, (A.10)

with the kernel

u∗(ξ, t;x)r−1/2(x, t)δ(s−1(ξ, t),x). (A.11)

We can now compute an explicit expression for Pct . For this computation, we will use the

polar decomposition of Mt. Recall that the operator Dt is a self-adjoint multiplication operator
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defined in Eq. (2.23), which we will apply first, then proceed as follows:

(Pctf)(x1) = (DtU tPc0U∗tDtf)(x1)

=

∫
Ω
f(x2)

∫
Ω

∫
Ω

[
d(x1, t)δ(s(x1, t), ξ1)r1/2(x1, t)P

c
0 (ξ1)δ(ξ1, ξ2)

· r−1/2(x2, t)δ(s
−1(ξ2, t),x2, )d(x2, t) dξ1 dξ2

]
dx2

=

∫
Ω
f(x2)d(x1, t)d(x2, t)r

1/2(x1, t)r
−1/2(x2, t)

∫
Ω

[
P c0 (s(x1, t))δ(s(x1, t), ξ2)

· δ(s−1(ξ2, t),x2) dξ2

]
dx2

=

∫
Ω
f(x2)d(x1, t)d(x2, t)r

1/2(x1, t)r
−1/2(x2, t)P

c
0 (s(x1, t))δ(x1,x2) dx2

= f(x1)d2(x1, t)P
c
0 (s(x1, t))

Thus, the continuous spectrum operator Pct is a multiplication operator whose multiplying function

P c(x, t) = d2(x1, t)P
c
0 (s(x1, t)) satisfying the continuous spectrum equation, Eq. (1.9). This implies

that for initial covariances of the form P0(x1,x2) = P c0 (x1)δ(x1,x2, ), the corresponding covariance

operator P t is the continuous spectrum operator, and the Dirac delta is preserved for all time.



Appendix B

Exact Solutions to One-Dimensional Equations

This appendix includes the exact solutions to the various one-dimensional equations used to

generate the numerical results in Chs. 3, 6, and 9. Appendix B.1 is published in Gilpin et al. (2022).

B.1 Solution to the One-Dimensional Continuity Equation

We begin by solving the one-dimensional version of Eq. (1.4) for b = vx used in the numerical

experiments,

qt + vqx + v′q = 0, x ∈ S1
1,

q(x, t0) = q0(x), (B.1)

v = sin(x) + 2.

To solve Eq. (B.1), we start by rewriting the equation in terms of the Lagrangian/total

derivative

D

Dt
≡ ∂t + v∂x. (B.2)

By doing so, Eq. (B.1) becomes the ODE,

Dq(x(t), t)

Dt
= −v′(x(t))q(x(t), t),

q(x, t0) = q0(x). (B.3)
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Associated with Eq. (B.3) are the Lagrangian trajectories, or characteristic equations, that deter-

mine how the spatial variable x evolves over time,

dx(t)

dt
= v(x(t)),

x(t0) = s. (B.4)

Here, we take s as a general initial parameter and define our solutions to Eq. (B.4) as x(t; s),

following the notation of (Shearer and Levy, 2015, Ch. 3) and discussion in Ch. 1.

Since the state equation is reduced to an ODE in Eq. (B.3), solutions are of the form

q(x, t) = q0(x(t0))e
∫ t
t0
−v′(x(τ))dτ

. (B.5)

We can solve the integral in the exponential of Eq. (B.5) using a simple u−substitution of u = x(t)

along with Eq. (B.4), ∫ t

t0

−v′(x(τ))dτ =

∫ x(t)

s
−v
′(u)

v(u)
du = ln

(
v(s)

v(x(t))

)
. (B.6)

To rewrite Eq. (B.6) in terms of (x, t), we first solve for x(t; s) using the characteristic

equation Eq. (B.4), then invert to determine s = s(x, t), which can be done since the velocity field

v is continuously differentiable (Shearer and Levy, 2015, Ch. 3). Therefore, substituting Eq. (B.6)

and x(t0) = s(x, t) into Eq. (B.5), we have the explicit solution to Eq. (B.1),

q(x, t) = q0(s(x, t))

(
sin(s(x, t)) + 2

sin(x) + 2

)
, (B.7)

s(x, t) = 2 tan−1

(√
3

2
tan

(
tan−1

(
2 tan(x/2) + 1√

3

)
−
√

3t

2

)
− 1

2

)
. (B.8)

The function tan−1 refers to the principle branch of inverse tangent, where y = tan−1(x), x ∈

R, y ∈ (−π/2, π/2), defined by solving x = tan(y) (Zwillinger, 1996, Sec. 6.3.3). Figure B.1 plots

Eq. (B.7) for two different initial conditions, along with solving Eq. (B.1) using Lax-Wendroff and

Crank-Nicolson schemes on a uniform grid of 200 grid points and unit Courant-Friedrichs-Lewy

number.

The amplitude index m of Eq. (3.8) on S1
1 with velocity field Eq. (3.1) can be expressed

explicitly using Eq. (B.7) taking one as the initial condition. The exact solution d of Eq. (2.16) on
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Figure B.1: Solutions to Eq. (B.1) for q0(x) = 1 (top row) and q0(x) = sin(3x)/3 + 1 (bottom
row) at four different times. The exact solution (black dashed) is shown along with finite-difference
solutions using Crank-Nicolson (blue) and Lax-Wendroff (orange). The finite difference solutions
are nearly indistinguishable from the exact solution.
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S1
1 for b = vx, as in the numerical experiments, can also be computed explicitly from Eq. (B.7) (as

d2 in this case satisfies Eq. B.1 with unit initial condition).

B.2 Exact Solutions to Additional One-Dimensional Equations

Figures 5.1–6.1 illustrates use of exact solutions to Eqs. (5.30), (6.9), and (6.10). This

appendix details how to compute the exact solutions to these equations and gives explicit formulas.

For this appendix, we will consider the following PDE for the state p = p(x, t) on the unit

circle,

pt + vpx + αvxp = 0,

p(x, t0) = p0(x), (B.9)

v(x) = sin(x) + 2,

where α ∈ R is a scalar that does not depend on space or time. We include the scalar α so that

solutions to Eq. (B.9) can represent the different equations observed in this thesis; for α = −1,

Eq. (B.9) represent correlation length equation, Eq. (5.30), for example. Solutions to Eq. (B.9)

can be computed explicitly for v(x) = sin(x) + 2, though solutions to the PDE in this case can

be derived for a general, time-independent velocity field v(x). We will use the general velocity

field v(x) to derive the solutions to Eq. (B.9), with explicit solutions using v(x) = sin(x) + 2 when

necessary.

To solve Eq. (B.9), we first transform the equation using the following change of variables,

p(x, t) = g(x, t)α. (B.10)

By the chain rule, the partial derivatives of with respect to time and space satisfy

pt(x, t) = αg(x, t)α−1gt(x, t), px(x, t) = αg(x, t)α−1gx(x, t). (B.11)

Inserting Eqs. (B.10) – (B.11) into Eq. (B.9), then dividing by αg(x, t)α−1, we have that g = g(x, t)
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satisfies the continuity equation,

gt + vgx + vxg = 0,

g(x, t0) = g0(x) = p
1/α
0 (x, t), . (B.12)

Calculating the explicit solution to Eq. (B.12) is given in the previous section, where following its

notation we have

g(x, t) = g0(s(x, t))

(
v(s(x, t))

v(x)

)
, (B.13)

where s(x, t) are the inverted solutions to the characteristic equation, Eq. (B.4), given an initial

parameter s. We can then recover p, where

p(x, t) = p0(s(x, t))

(
v(s(x, t))

v(x)

)α
(B.14)

This approach is used to compute the correlation lengths in Fig. 5.1 (where α = −1) and for P1 in

Fig. 6.1, where for b = vx, the solution P+
1 satisfies Eq. (B.9) with α = 3.

In Fig. 6.1, P2 is the exact solution the following equation,

(P2)t + v(P2)x + 4vxP2 + vxxxσ
2
x + 2vxxσ

2 = 0,

P2(x, t0) = (P2)0(x), (B.15)

v(x, t) = sin(x) + 2.

Equation (B.15) is an inhomogeneous PDE that can be solved using Duhamel’s principle (e.g.,

Appen. A Cohn, 1993; Shearer and Levy, 2015, Sec. 5.5). To do so, we first rewrite Eq. (B.15) as

its corresponding ODE along the characteristics,

DP2

Dt
= −4vxP2 − vxxxσ2

x − 2vxxσ
2, (B.16)

where the Lagrangian (total) derivative is defined in Eq. (B.2). To solve Eq. (B.16), we define the

integrating factor

Φ(t, τ ; s) = exp

{
−4

∫ t

τ
v(x(y; s))dy

}
=

(
v(x(τ ; s))

v(x(t; s))

)4

(B.17)
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where s is the initial parameter defining the characteristic equation, Eq. (B.4). The second equality

comes from evaluating the integral itself using the methodology presented in Sec. B.1.

By multiplying both sides of Eq. (B.16) by the integrating factor Φ(t, τ ; s) and integrating in

τ from the initial time t0 to t, we have the following,

P2(x, t) = Φ(t, t0; s)(P2)0(s(x, t)) +

∫ t

t0

(
Φ(t, τ ; s)

·
[
−v′′(x(τ))σ2

x(x(τ), τ)− 2v′′′(x(τ))σ2(x(τ), τ)
])

dτ,

(B.18)

where the spatial derivatives of the velocity v are replaced with primes ′ since the velocity only

depends on space. The first term in Eq. (B.18) is the homogeneous solution to Eq. (B.15), while the

integral in Eq. (B.18) is the inhomogeneity that produces the particular solution. This integral can

be solved analytically since the explicit solution to the variance equation can be evaluated using

Eqs. (B.9) and (B.12) where p = σ2 and α = 2. Through careful factoring and observing that

ds

dx
=
v(s(x, t))

v(x)
, (B.19)

the integral in Eq. (B.18) can be evaluated an explicit solution for P2 governed by Eq. (B.15)

becomes

P2(x, t) = (P2)0(s(x, t))

(
v(s(x, t))

v(x

)4

(B.20)

+
2v(s(x, t))2

v(x)4

(
cos2(s(x, t))− cos(s(x, t)) cos(x)− 2 sin(s(x, t)) + sin(x)

)
.

The explicit formulation of s(x, t) is given in Eq. (B.8).



Appendix C

Supplement to Chapter 5

In this appendix, we provide further discussion of the Taylor series expansions and their

error terms to supplement what is described in the body of the text. There are three sections to

this appendix. Appendix C.1 provides additional details on the error analysis conducted in Ch. 5,

including more detailed derivations and formulations of the error terms. Appendix C.2 performs

the error analysis for the state equation in advection form, in contrast to Ch. 5. The analysis of

covariance propagation in advection form is referenced in both Ch. 5.4 and 6.2. We conclude with

Appen. C.3, which performs an error analysis for the state dynamics considered in Ch. 4 in their

conservative form, Eq. (4.2).

C.1 Taylor Series Expansions

First, we define the error terms common to both the upwind and centered difference scheme

that appear in Eqs. (5.15) and (5.19). For general spatial variable x, these are

J±(x, t) =

(
∆x

2

)2

P (x, x, t)

[
vxx(x, t)± ∆x

6
vxxx(x, t) +

∆x2

48
vxxxx(x, t)

]
, (C.1)

K(x, t) =

(
∆x

2

)4 [ 1

12
v(x, t)P4(x, t) +

1

2
vxx(x, t)P2(x, t)

]
. (C.2)

Here, P4 is defined by Eq. (6.6) for n = 4, which contains a linear combination of fourth derivatives

of the covariance across its diagonal.
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C.1.1 Upwind, Continuously Differentiable Across x1 = x2

To arrive at the approximated dynamics given in Eq. (5.18) requires expanding its precursor in

Eq. (5.17) about xi. Recall that we assume the velocity field is four times continuously differentiable

in its spatial argument and the covariance is four times continuously differentiable in both spatial

arguments.

For example, the first line of Eq. (5.17) represents a first-order upwind approximation of the

first derivative,

1

∆x

[
2v(xi−1/2, t)P (xi−1/2, xi−1/2, t)− 2v(xi, t)P (xi, xi, t)

]
=−

(
vP
)
x

∣∣
x1=x2=xi

+
∆x

4

(
vP
)
xx

∣∣
x1=x2=xi

− ∆x2

24

(
vP
)
xxx

∣∣
x1=x2=xi

+O(∆x3),

(C.3)

where the first term is kept in the approximated dynamics while the last two terms are the resulting

error terms. When expanding all terms involving the velocity v and the covariance about the grid

point xi (including 1
∆xJ

−(xi−1/2, t)) in Eq. (5.17), we arrive at Eq. (5.18). In Eq. (5.18), we define

Gu(xi, t) as the error terms that involve only derivatives of the covariance along the diagonal,

Gu(xi, t) =
∆x

4

(
vP
)
xx

∣∣
x1=x2=xi

− ∆x2

24

(
vP
)
xxx

∣∣
x1=x2=xi

+
∆x

2

(
vxP

)
x

∣∣
x1=x2=xi

− ∆x2

8

(
vxP

)
xx

∣∣
x1=x2=xi

+
∆x3

48

(
vxP

)
xxx

∣∣
x1=x2=xi

+ Ju(xi, t). (C.4)

Here, Ju(xi, t) is the expansion of 1
∆xJ

−(xi−1/2, t) about xi and is O(∆x). Since we assume the

both the covariance and velocity are four times continuously differentiable, Gu(xi, t) is bounded

and tends to zero in the limit as ∆x tends to zero for fixed, nonzero correlation length L.

Expanding the terms involving P2(xi−1/2, t) about xi in Eq. (5.17) yield important terms to

consider,

∆x

4
v(xi−1/2, t)P2(xi−1/2, t) =

∆x

4
v(xi, t)P2(xi, t)−

∆x2

8

(
vP2

)
x

∣∣
x=xi

(C.5)

−∆x2

8
vx(xi−1/2, t)P2(xi−1/2, t) = −∆x2

8
vx(xi, t)P2(xi, t) +

∆x3

16

(
vxP2

)∣∣
x=xi

(C.6)

In Eq. (5.18), we keep both terms in Eq. (C.5) and only the first term in Eq. (C.6). We then

define the error term Hu(xi, t) as the second term in Eq. (C.6) plus the expansion of the error term
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1
∆xK(xi−1/2, t) about xi, which we will define as Ku(xi, t)

Hu(xi, t) =
∆x3

16

(
vxP2

)∣∣
x=xi

+Ku(xi, t). (C.7)

Here, Ku(xi, t) remains O(∆x3). Thus, Hu contains all error terms that involve derivatives of the

covariance across its diagonal.

Since we assume the covariance is four times continuously differentiable in both spatial ar-

guments, we can redefine P2 in terms of the correlation length according to Eqs. (5.24) and (5.25),

P2(x, t) = P (x, x, t) log(P )xx|x1=x2=x −
P (x, x, t)

L2(x, t)
. (C.8)

In doing so, the error terms Gu(xi, t) and Hu(xi, t) can be redefined to include new terms accumu-

lated by expanding P2 in this way. When doing so, we have the following,

G̃u(xi, t) = Gu(xi, t)−
∆x2

8
vx(xi, t)P (xi, xi, t) log

(
P
)
xx

∣∣
x1=x2=xi

− ∆x2

8

[
vP log

(
P
)
xx

]
x

∣∣
x1=x2=xi

,

+
∆x3

16

[
vxP log(P )xx

]
x

∣∣
x1=x2=xi

(C.9)

H̃u(xi, t) = − ∆x2

4L2(xi, t)
v(xi, t)P (xi, xi, t) log

(
L
)
x

∣∣
x=xi

− ∆x3

16L2(xi, t)
vx(xi, t)Px(xi, xi, t)

+
∆x3

8L2(xi, t)
vx(xi, t)P (xi, xi, t) log(L)x

∣∣
x=xi

+Ku(xi, t). (C.10)

Now, G̃u(xi, t) contains terms evaluated on the diagonal, while H̃u(xi, t) contains all terms involving

the correlation length L and derivatives across the diagonal. Under the differentiability assump-

tions, G̃u(xi, t) is bounded and tends to zero as ∆x tends to zero for fixed, nonzero correlation

length L. The term H̃u(xi, t), however, can become large as correlation lengths L become small for

fixed ∆x.

C.1.2 Centered Difference, Continuously Differentiable Across x1 = x2

Section 5.3.1 derives the centered difference semi-discretization for the diagonal of the covari-

ance. When expanding the pairs of terms that average across the covariance diagonal, one about

xi−1/2, xi−1/2 and the other about xi+1/2, xi+1/2, as well as the corresponding velocities about
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xi−1/2 and xi+1/2, we have the following,

d

dt
P (xi, xi, t) =

1

∆x

[
v(xi−1/2, t)P (xi+1/2, xi+1/2, t)− v(xi+1/2, t)P (xi−1/2, xi−1/2, t)

]
− 1

2

[
vx(xi−1/2, t)P (xi−1/2, xi−1/2, t) + vx(xi+1/2, t)P (xi+1/2, xi+1/2, t)

]
−
[
2b(xi, t)− 2vx(xi, t)

]
P (xi, xi, t)

+
∆x

8

[
v(xi−1/2, t)P2(xi−1/2, t)− v(xi+1/2, t)P2(xi+1/2, t)

]
(C.11)

− ∆x2

16

[
vx(xi−1/2, t)P2(xi−1/2, t) + vx(xi+1/2, t)P2(xi+1/2, t)

]
+

1

2∆x

{[
J−(xi−1/2, t)− J+(xi+1/2, t)

]
+
[
K(xi−1/2, t)−K(xi+1/2, t)

]}
, (C.12)

with J± and K defined in Eqs. (C.1) and (C.2).

There is a pattern for reducing Eq. (C.11): odd-order terms in ∆x are centered difference

approximation of derivatives at xi, while even-order terms in ∆x are average approximations at of

those quantities xi. For example, the first-order terms in ∆x (the fourth group of terms on the

right-hand side) in Eq. (C.11) produce centered difference approximations of two derivatives,

∆x

8

[
vxx(xi−1/2, t)P (xi−1/2, xi−1/2, t)− vxx(xi+1/2, t)P (xi+1/2, xi+1/2, t)

+ v(xi−1/2, t)P2(xi−1/2, t)− v(xi+1/2, t)P2(xi+1/2, t)

]
(C.13)

= −∆x2

8
(vxxP )x

∣∣
x1=x2=xi

− ∆x2

8
(vP2)x

∣∣
x=xi

+O(∆x4).

By approximating first derivatives, the odd-order terms in ∆x increase in order by one and become

even-order error terms of the next degree.

The even-order terms in ∆x are average approximations of terms about xi and remain at

that even order. For example, consider the second-order terms in ∆x,

−∆x2

16

[
vx(xi−1/2, t)P2(xi−1/2, t) + vx(xi+1/2, t)P2(xi+1/2, t)

+
1

3
vxxx(xi−1/2, t)P (xi−1/2, , xi−1/2, t) +

1

3
vxxx(xi+1/2, t)P (xi+1/2, , xi+1/2, t)

]
= −∆x2

8
vx(xi, t)P2(xi, t)−

∆x2

24
vxxx(xi, t)P (xi, xi, t) +O(∆x4). (C.14)
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These average terms remain at their original order. By collapsing each line in Eq. (C.11), we recover

only even-order error terms and subsequently the approximated dynamics in Eq. (5.20).

Like the upwind case, we can collect quantities we do not include in Eq. (5.20) in the term

Gc(xi, t), and perform a similar analysis as discussed in the latter half of Appen. C.1.1). We

define Gc(xi, t) as the error terms involving the derivatives of the covariance along its diagonal and

Hc(xi, t) as the error terms involving derivatives across the covariance diagonal,

Gc(xi, t) =− ∆x2

24

(
vP )xxx

∣∣
x1=x2=xi

− ∆x2

8

(
vxP )xx

∣∣
x1=x2=xi

+ Jc(xi, t) (C.15)

Hc(xi, t) = Kc(xi, t). (C.16)

The term Jc(xi, t) is the expansion of 1
2∆x

[
J−(xi−1/2, t)− J+(xi+1/2, t)

]
about xi and is O(∆x2).

Here, Hc(xi, t) is only defined byKc(xi, t), which is the expansion of 1
2∆x

[
K(xi−1/2, t)−K(xi+1/2, t)

]
about xi and is O(∆x4).

When we rewrite P2 in terms of the correlation length, we obtain H̃c(xi, t) that contains terms

involving the correlation length. To see this, we follow the same procedure as done in Appen. C.1.1

by expanding P2, and we obtain the following new error terms,

G̃c(xi, t) = Gc(xi, t)−
∆x2

8
vx(xi, t)P (xi, xi, t) log(P )xx

∣∣
x1=x2=xi

− ∆x2

8

[
vP log(P )xx

]
x

∣∣
x1=x2=xi

(C.17)

H̃c(xi, t) = − ∆x2

4L2(xi, t)
v(xi, t)P (xi, xi, t) log(L)x

∣∣
x=xi

+Kc(xi, t). (C.18)

The new term in H̃c is a consequence of expanding −∆x2

8 (vP2)x
∣∣
x=xi

in Eq. (5.20).

C.1.3 Discontinuous Across x1 = x2

The Taylor expansions become a bit more complicated when the covariance is no longer

continuously differentiable across x1 = x2, but the results are quite similar. We introduce a new
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term

K̃±(x, t) =

(
∆x

2

)3 [
vxx(x, t)P+

1 (x, t) +
1

3
v(x, t)P+

3 (x, t)

]
+

(
∆x

2

)4 [
± 1

6
vxxx(x, t)P+

1 (x, t) +
1

2
vxx(x, t)P+

2 (x, t) (C.19)

± 1

3
vx(x, t)P+

3 (x, t) +
1

12
v(x, t)P+

4 (x, t)

]
.

In the case that the covariance is four times continuously differentiable across its diagonal, then

K̃± becomes K exactly as P+
1 and P+

3 become zero.

Partial derivatives of the covariance need to be taken from the left and the right as necessary,

but can be simplified using the symmetry property in Eq. (5.35) to only include derivatives from

the right. For example, if we expand P (xi−1, xi, t) about xi−1/2, xi−1/2 we can rewrite partial

derivatives from the left in terms of partial derivatives from the right,

P (xi−1, xi, t) = P (xi−1/2, xi−1/2, t) +
∆x

2

(
P+
x2(xi−1/2, xi−1/2, t)− P−x1(xi−1/2, xi−1/2, t)

)
︸ ︷︷ ︸

=−P−1 (xi−1/2,t)=P
+
1 (xi−1/2,t)

+
1

2

(
∆x

2

)2(
P+
x1x1 − 2P+−

x1x2 + P−x2x2

)
(xi−1/2, xi−1/2, t)︸ ︷︷ ︸

=P−2 (xi−1/2,t)=P
+
2 (xi−1/2,t)

(C.20)

+
1

6

(
∆x

2

)3(
− P−x1x1x1 + 3P−−+

x1x1x2 − 3P−++
x1x2x2 + P+

x2x2x2

)
(xi−1/2, xi−1/2, t)︸ ︷︷ ︸

=−P−3 (xi−1/2,t)=P
+
3 (xi−1/2,t)

+O(∆x4)

By following this procedure for the quantities in the upwind semi-discretization, Eq. (5.11), we
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arrive at the approximated dynamics given in Eq. (5.37) with the following error terms,

Ĝu(xi, t) =
∆x

4

(
vP
)
xx

∣∣
x1=x2=x

− ∆x2

24

(
vP
)
xxx

∣∣
x1=x2=x

+
∆x4

4! · 16
(vP )xxxx

∣∣
x1=x2=xi

+
∆x

2

(
vxP

)
x

∣∣
x1=x2=x

− ∆x2

8

(
vxP

)
xx

∣∣
x1=x2=x

+
∆x3

48
(vxP )xxx

∣∣
x1=x2=xi

+ Ĵu(xi, t)

Ĥu(xi, t) =
∆x2

8
vxx(xi, t)P

+
1 (xi, t) +

∆x2

8
(vP+

1 )xx
∣∣
x=xi

− ∆x3

48
(vP+

1 )xxx
∣∣
x=xi

+
∆x3

32
(vP+

2 )xx
∣∣
x=xi

− ∆x3

16
(vxP

+
1 )xx

∣∣
x=xi

+
∆x4

96
(vxP

+
1 )xxx

∣∣
x=xi

− ∆x3

16
(vxP

+
2 )x|x=xi +

∆x4

64
(vxP

+
2 )xx

∣∣
x=xi

+ K̂u(xi, t)

Since P+
1 and P+

3 are nonzero, Ĝu and Ĥu contain more terms than their counterparts Gu and Hu.

Ĵu(xi, t) is the expansion of 1
∆xJ

−(xi−1/2, t) about xi and remains O(∆x), while K̂u(xi, t) is the

expansion of 1
∆xK̃

−(xi−1/2, t) about xi and is O(∆x3).

The centered difference semi-discretization requires Taylor-expanding four different covari-

ance quantities. Following the procedure shown in Eq. (C.20) for each of these terms and substi-

tuting these expansions into the centered difference semi-discretization, we have the following,

d

dt
P (xi, xi, t) =

1

∆x

[
v(xi−1/2, t)P (xi+1/2, xi+1/2, t)− v(xi+1/2, t)P (xi−1/2, xi−1/2, t)

]
− 1

2

[
vx(xi−1/2, t)P (xi−1/2, xi−1/2, t) + vx(xi+1/2, t)P (xi+1/2, xi+1/2, t)

]
+

1

2

[
v(xi−1/2, t)P

+
1 (xi−1/2, t)− v(xi+1/2, t)P

+
1 (xi+1/2, t)

]
+

∆x

8

[
v(xi−1/2, t)P2(xi−1/2, t)− v(xi+1/2, t)P2(xi+1/2, t)

− 2vx(xi−1/2, t)P
+
1 (xi−1/2, t)− 2vx(xi+1/2, t)P

+
1 (xi+1/2, t)

]
(C.21)

+
∆x2

16

[
− vx(xi−1/2, t)P2(xi−1/2, t)− vx(xi+1/2, t)P2(xi+1/2, t)

]
+

1

2∆x

{[
J−(xi−1/2, t)− J+(xi−1/2, t)

]
+
[
K̃−(xi−1/2, t)− K̃+(xi+1/2, t)

]}
,

with J± and K̃± defined in Eqs. (C.1) and (C.19), respectively.

Reducing Eq. (C.21) to its approximated continuum dynamics is a bit more involved than

the continuously differentiable case. There are pairs of terms that are average approximations and



167

pairs of terms that approximate first derivatives, however, we will retain odd-order error terms due

to the presence of P+
1 and P+

3 . For example, the zeroth-order terms in Eq. (C.21) consist of an

average term and derivative term,

− 1

2

[
vx(xi−1/2, t)P (xi−1/2, xi−1/2, t) + vx(xi+1/2, t)P (xi+1/2, xi+1/2, t)

]
+

1

2

[
v(xi−1/2, t)P

+
1 (xi−1/2, t)− v(xi+1/2, t)P

+
1 (xi+1/2, t)

]
(C.22)

= −vx(xi, t)P (xi, xi, t) +
∆x

2

(
vP+

1

)
x

∣∣
x=xi

+O(∆x2)

Therefore, we retain a first-order error term that involves P+
1 , which would vanish if the covariance

was continuously differentiable across x1 = x2. The same approach used to derive Eq. (C.22) can

be applied to the other orders in Eq. (C.21) to recover the approximated dynamics in Eq. (5.38)

with the following error terms,

Ĝc(xi, t) = −∆x2

24
(vP )xxx

∣∣
x1=x2=xi

− ∆x2

4
(vxP )xx

∣∣
x1=x2=xi

+ Ĵc(xi, t)

Ĥc(xi, t) = −∆x3

48
(vP+

1 )xx
∣∣
x=xi

− ∆x2

16
(vxP

+
1 )xx

∣∣
x=xi

− ∆x4

64
(vxP

+
2 )xx

∣∣
x=xi

+ K̂c(xi, t)

Like the continuously differentiable case, Ĵc(xi, t) is the expansion of the second-to-last term on the

right-hand side of Eq. (C.21) and K̂c(xi, t) the expansion of the last term on the right-hand side of

Eq. (C.21). These error terms are O(∆x2) and O(∆x3), respectively, with K̂c(xi, t) being O(∆x3)

due to the presence of P+
1 .

C.2 Semi-Discretization in Advection Form

The derivation of the approximated dynamics along the diagonal in Sec. 5.3 is done when the

state equation in flux form, Eq. (5.4). In this appendix, we present the results for discretizing the

state in advection form. These results apply, for example, to the advection equation (i.e., b = 0)

where discretizing in advection form is the more natural choice. We assume that the velocity v is

four times continuously differentiable in its spatial argument and the covariance P is four times

continuously differentiable in both spatial arguments. We leave the case where the covariance is

not differentiable across x1 = x2 to the interested reader.
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We begin with the first-order upwind spatial discretization applied to qx in one-dimensional

version of Eq. (1.4). This yields the following semi-discretization of the state,

d

dt
qi(t) =

vi(t)

∆x

[
qi−1(t)− qi(t)

]
− bi(t)qi(t). (C.23)

The two differences between the state semi-discretization of the advection form, Eq. (C.23), and

the flux form case, Eq. (5.5), are that the velocity remains on the grid point xi and that there is

no zeroth-order term involving the spatial derivative of the velocity, vx.

Following the same procedure performed in Sec. 5.3.1, but here applied to Eq. (C.23), we

arrive at the semi-discretization for the covariance diagonal,

d

dt
Pi,i(t) =

vi(t)

∆x

{[
Pi−1,i(t) + Pi,i−1(t)

]
− 2Pi,i(t)

}
− 2bi(t)Pi,i(t). (C.24)

Like the flux form case, the pair Pi−1,i(t) + Pi,i−1(t) averages across the diagonal to approximate

the covariance at the half grid point xi−1/2, xi−1/2. By substituting the Taylor expansions of these

averaging terms about xi−1/2, xi−1/2 into Eq. (C.24), including the first error term involving P2,

and we obtain the following,

d

dt
P (xi, xi, t) =

2v(xi, t)

∆x

[
P (xi−1/2, xi−1/2, t)− P (xi, xi, t)

]
− 2b(xi, t)P (xi, xi, t)

+
∆x

4
v(xi, t)P2(xi−1/2, t) +

v(xi, t)

∆x
D(xi−1/2, t). (C.25)

Here, D(xi−1/2, t) contain the additional derivatives of the covariance across the diagonal when

expanding the averaging term and is O(∆x4).

All that remains is to expand terms on the half-grid back to the grid point xi. In this case,

the expansion back to xi only applies to the first and third terms in Eq. (C.25). Concluding by

rewriting P2 in terms of correlation length yields the approximated dynamics along the diagonal,

d

dt
P (xi, xi, t) = −v(xi, t)Px(xi, xi, t)

[
1− ∆x2

8L2(xi, t)

]
− 2b(xi, t)P (xi, xi, t)

− ∆x

4L2(xi, t)
v(xi, t)P (xi, xi, t) +Au(xi, t) +Bu(xi, t). (C.26)
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The error terms Au and Bu are of the form

Au(xi, t) = −∆x

4
v(xi, t)Pxx(xi, xi, t) +

∆x

4
v(xi, t)P (xi, xi, t) log(P )xx

∣∣
x1=x2=xi

(C.27)

− ∆x3

24
v(xi, t)Pxxx(xi, xi, t)−

∆x2

8
v(xi, t)

[
P log(P )xx

]
x

∣∣
x1=x2=xi

Bu(xi, t) = − ∆x2

4L2(xi, t)
v(xi, t)P (xi, xi, t) log(L)x

∣∣
x=xi

+Du(xi, t), (C.28)

where Du(xi, t) expands the last term on the right-hand side of Eq. (C.25) about xi and is O(∆x3).

The approximated dynamics resulting from discretizing the state in advection form yields the

same coefficient in front of the spatial derivative vPx that depends on correlation length, and the

zeroth-order dissipative term with coefficient − ∆x
4L2 . Equation (C.26) does not, however, have any

zeroth-order terms involving the spatial derivative of the velocity, vx.

The centered difference semi-discretization of the state in advection form is similar,

d

dt
qi(t) =

vi(t)

2∆x

[
qi−1(t)− qi+1(t)

]
− bi(t)qi(t), (C.29)

which then yields the following semi-discretization for the covariance diagonal,

d

dt
Pi,i(t) =

vi(t)

2∆x

{[
Pi−1,i(t) + Pi,i−1(t)

]
−
[
Pi+1,i(t) + Pi,i+1(t)

]}
− 2bi(t)Pi,i(t). (C.30)

By expanding both pairs of averaging terms, as done in Sec. 5.3.1, we arrive at the approximated

dynamics for the centered difference scheme,

d

dt
P (xi, xi, t) = −v(xi, t)P (xi, xi, t)

[
1− ∆x2

8L2(xi, t)

]
− 2b(xi, t)P (xi, xi, t)

+Ac(xi, t) +Bc(xi, t), (C.31)

with error terms

Ac(xi, t) = −∆x2

8
v(xi, t)Pxxx(xi, xi, t)−

∆x2

8
v(xi, t)

[
P log(P )xx

]
x

∣∣
x1=x2=xi

(C.32)

Bc(xi, t) = − ∆x2

L2(xi, t)
v(xi, t)P (xi, xi, t) log(L)x

∣∣
x=xi

+Dc(xi, t). (C.33)

Similar to the flux form case, we define Dc(xi, t) as the O(∆x4) term that contains derivatives of

the covariance across the diagonal resulting from the expansion of the pair of averaging terms in
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Eq. (C.30). Like the upwind case in Eq. (C.26), the approximated dynamics derived from states in

advection form contain the same terms as that derived from flux form except for the zeroth-order

terms involving vx.

Though the approximated dynamics derived from flux form and advection form are similar,

they are distinct when the velocity field is divergent, vx 6= 0. When correlation lengths become

small, the two sets of discretizations will approximate different dynamics. Though these approx-

imated dynamics are different when vx 6= 0, the similarity in the error terms obtained from both

approaches does suggest that the underlying problem is the same, namely the discontinuous change

in continuum dynamics.

C.3 Semi-Discretization for Ch. 4 State Dynamics

To supplement the results presented in Ch. 4, in this appendix we will derive the approx-

imated continuum dynamics for states governed by Eq. (4.2). We begin with the error analysis

for the centered difference spatial discretization, since that is the discretization applied in Ch. 4,

followed by the error analysis for the upwind spatial discretization at the end of this section for

completeness. We will only consider the case where the covariance and velocity are four times

continuously differentiable in their spatial arguments and leave the case where the covariance is not

continuously differentiable across x1 = x2 to the interested reader.

We begin by applying a second-order centered difference spatial discretization to the two

spatial derivative terms the state in Eq. (4.2) to obtain the following semi-discretization,

d

dt
qi(t) =

1

2∆x
[vi−1(t)qi−1(t)− vi(t)qi(t)] +

1

2∆x
vi(t) [qi−1(t)− qi(t)] , i = 1, 2, . . . , N. (C.34)

Following the same procedure outline in Ch. 5.2.2, we can derive the corresponding semi-discretization
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for the covariance,

d

dt
Pi,j(t) =

1

4∆x

[
vi−1(t)Pi−1,j(t)− vi+1(t)Pi+1,j(t)

]
+

1

4∆x
vi(t)

[
Pi−1,j(t)− Pi+1,j(t)

]
+

1

4∆x

[
vj−1(t)Pi,j−1(t)− vj+1(t)Pi,j+1(t)

]
+

1

4∆x
vj(t)

[
Pi,j−1(t)− Pi,j+1(t)

]
, (C.35)

i, j = 1, 2, . . . , N.

Now, let i = j and we have the semi-discretization for the covariance diagonal,

d

dt
Pi,j(t) =

1

4∆x

{
vi−1(t)

[
Pi−1,i(t) + Pi,i−1(t)

]
− vi+1(t)

[
Pi+1,i(t) + Pi,i+1(t)

]}
+

1

4∆x
vi(t)

{[
Pi−1,i(t) + Pi,i−1(t)

]
−
[
Pi+1,i(t) + Pi,i+1(t)

]}
, i = 1, 2, . . . , N. (C.36)

To obtain the approximated continuums dynamics along the covariance diagonal requires

expanding the pairs of averaging terms (grouped in square braces) in Eq. (C.36) about the half-

grid points xi−1/2 and xi+1/2. This analysis mirrors that presented in Ch. 5.3.1 for the first group

of terms in curly braces and Appen. C.2 for the second group of terms in curly braces. In both

cases, we obtain second-order average approximations for the even-order terms in ∆x, and centered

difference approximations of first derivatives for the odd-order terms in ∆x. Rewriting these average

and derivative terms about the grid point xi, we obtain the following approximated continuum

dynamics along the covariance diagonal,

d

dt
P (xi, xi, t) = −

(
vP
)
x

∣∣
x1=x2=xi

− 1

2

(
∆x

2

)2 (
vP2)x(xi, t) +Gs,c(xi, t) +Hs,c(xi, t). (C.37)

The error terms are defined as follows,

Gs,c(xi, t) = −∆x2

48
(vP )xxx

∣∣
x1=x2=xi

− ∆x2

48
v(xi, t)Pxxx(xi, xi, t)

− ∆x2

8
(vxP )xx

∣∣
x1=x2=xi

+
1

2
Jc(xi, t) (C.38)

Hs,c(xi, t) = − ∆x4

16 · 24
(vP2)xxx(xi, t)−

∆x4

16 · 8
(vxP2)xx(xi, t) +

1

2
Kc(xi, t) +

1

2
Dc(xi, t), (C.39)

where Jc and Kc, are given in Appen. C.1.2 and Dc is given in Appen. C.2. Here, Gs,c(xi, t) is

O(∆x2) while Hs,c(xi, t) is O(∆x4).



172

The final step is to rewrite P2 in terms of the correlation length L,

d

dt
P (xi, xi, t) = −

(
vP
)
x

∣∣
x1=x2=xi

[
1− ∆x2

8L2(xi, t)

]
+ G̃s,c(xi, t) + H̃s,c(xi, t), (C.40)

where

G̃s,c(xi, t) = Gs,c(xi, t)−
∆x2

8
[vP log(P )xx]x

∣∣
x1=x2=xi

, (C.41)

H̃s,c(xi, t) = Hs,c(xi, t)−
∆x2

4L2(xi, t)
v(xi, t)P (xi, xi, t) log(L)x

∣∣
x=xi

. (C.42)

For the state dynamics defined by Eq. (4.2), the variance, σ2, satisfies the continuity equation.

Therefore, for fixed grid length ∆x and long correlation lengths L, Eq. (C.40) does approximate

the correct continuum variance dynamics. As the ratio of the grid length to the correlation length

approaches unity, however, the dynamics along the covariance diagonal change completely, either

becoming constant in time when the ∆x2

8L2(xi,t)
is exactly one, or reversing wave propagation when

this ratio is greater than one. The continuous spectrum solution P c associated with Eq. (4.2)

satisfy the advection equation; the approximated dynamics in Eq. (C.40) will only approximate

the continuous spectrum solution correctly when the initial covariance is the identity matrix (or

scalar multiple of the identity matrix) and the ratio ∆x2

8L2(xi,t)
is one, as Eq. (C.40) in this case will

ensure the covariance diagonal does not evolve over time. In general, however, Eq. (C.40) will not

approximate the correct continuous spectrum dynamics.

The approximated dynamics defined in Eq. (C.40) and results in Fig. 5.1 provide additional

insights into the covariance diagonals produced by the Crank-Nicholson covariance propagation in

Fig. 4.1. Panels (a) and (c) of Fig. 5.1 plot the magnitude of the ratio ∆x2

8L2(xi,t)
at different times

for the c = 0.25 and c = 0.05 cases; the impact of ∆x2

8L2(xi,t)
can then be seen in the diagonals

extracted in panel (a) of Fig. 4.1 (blue and green curves, respectively). The magnitude of ∆x2

8L2(xi,t)

for the c = 0.05 case in panel (c) of Fig. 5.1 is large, in fact becomes larger than one, which

we can see significantly alters on the diagonal propagation in panel (a) of Fig. 4.1. Even though

the magnitude of ∆x2

8L2(xi,t)
of the c = 0.25 case (panel a of Fig. 5.1) is relatively small (no larger

than about 0.075), it is large enough to alter the dynamics being approximated along the diagonal
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during discrete covariance propagation. These results suggest that the discontinuous change in

the continuum covariance dynamics, which is the source of the errors in Eq. (C.40), can cause

considerably inaccurate variance propagation, even for modest correlation lengths.

For completeness, the error analysis for the upwind spatial discretization is included to com-

pare with the centered difference spatial discretization. As before, we will begin with the upwind

spatial discretization of the state equation defined by Eq. (4.2). The semi-discretization for the

state in this case is as follows,

d

dt
qi(t) =

1

2∆x
[vi−1(t)qi−1(t)− vi(t)qi(t)] +

1

2∆x
vi(t) [qi−1(t)− qi(t)] , i = 1, 2, . . . , N. (C.43)

Following the same procedure applied in Ch. 5.2.1, we have the semi-discretization for the full

covariance,

d

dt
Pi,j(t) =

1

2∆x
[vi−1(t)Pi−1,j(t)− vi(t)Pi,j(t)] +

1

2∆x
vi(t) [Pi−1,j(t)− Pi,j(t)]

+
1

2∆x
[vj−1(t)Pi,j−1(t)− vj(t)Pi,j(t)] +

1

2∆x
vj(t) [Pi,j−1(t)− Pi,j(t)] , (C.44)

i, j = 1, 2, . . . , N.

The semi-discretization for the covariance diagonal then follows,

d

dt
Pi,i(t) =

1

2∆x

{
vi−1(t) [Pi−1,i(t) + Pi,i−1(t)]− 2vi(t)Pi,i(t)

}
+

1

2∆x
vi(t)

{
[Pi−1,i(t) + Pi,i−1(t)]− 2Pi,i(t)

}
, i = 1, 2, . . . , N. (C.45)

To obtain the approximated continuum dynamics along the covariance diagonal requires

expanding the two groups of terms in the curly braces in Eq. (C.45) about the half grid point

xi−1/2. Since this is done in Ch. 5.2.1 and Appen. C.2 for the first and second groups of terms,

respectively, we will proceed directly to the approximated dynamics,

d

dt
P (xi, xi, t) = −(vP )x

∣∣
x1=x2=xi

+
∆x

4
v(xi, t)P2(xi, t)−

∆x2

8
(vP2)x(xi, t)

+Gs,u(xi, t) +Hs,u(xi, t), (C.46)
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where

Gs,u(xi, t) =

[
∆x

8
(vP )xx −

∆x2

48
(vP )xxx +

∆x3

24 · 6
(vP )xxxx +

∆x

4
(vxP )x

− ∆x2

16
(vxP )xx +

∆x3

12 · 8
(vxP )xxx

]
x1=x2=xi

(C.47)

+
∆x

8
v(xi, t)Pxx(xi, xi, t)−

∆x2

48
v(xi, t)Pxxx(xi, xi, t) +

∆x3

16 · 24
v(xi, t)Pxxxx(xi, xi, t),

+
1

2
Ju(xi, t)

Hs,u(xi, t) =
∆x3

32
(vP2)xx(xi, t) +

∆x3

32
(vxP2)x(xi, t)−

∆x4

4 · 16
(vxP2)x(xi, t) +

∆x4

4 · 16
v(P2)xx(xi, t)

+Du(xi, t). (C.48)

The terms Ju and Ku are the same terms defined in Appen. (C.1.1) and are O(∆x) and O(∆x3),

respectively, while Du is defined in Appen. C.2 and is also O(∆x3).

Since we assume the covariance is at least four times continuously differentiable across x1 =

x2, we can rewrite Eq. (C.46) in terms of correlation length,

d

dt
P (xi, xi, t) = −(vP )x

∣∣
x1=x2=xi

[
1− ∆x2

8L2(xi, t)

]
− ∆x

4L2(xi, t)
v(xi, t)P (xi, xi, t)

+ Ĝs,u(xi, t) + Ĥs,u(xi, t), (C.49)

where

Ĝs,u(xi, t) = Gs,u(xi, t)−
∆x

4
v(xi, t)P (xi, xi, t) log(P )xx

∣∣
x1=x2=xi

− ∆x2

8
[vP log(P )xx]x

∣∣
x1=x2=xi

, (C.50)

Ĥs,u(xi, t) = Hs,u(xi, t)−
∆x2

4L2(xi, t)
v(xi, t)P (xi, xi, t) log(L)x

∣∣
x=xi

. (C.51)

As we saw in Ch. 5.3.1, the upwind spatial discretization results in coefficient in front of the

flux term that depends on correlation length and a zeroth-order dissipative term (namely the second

term on the right-hand side of Eq. C.49). Like the centered difference case, for fixed grid length

∆x and long correlation lengths L, Eq. (C.49) will approximate the correct continuum variance

dynamics. The dynamics along the covariance diagonal change, however, as correlation lengths

become small for fixed ∆x, and in particular will result in strongly dissipative behavior due to the

second term on the right-hand side of Eq. (C.49).



Appendix D

Supplement to Chapter 8

This appendix includes an additional discussion on matrix and scalar covariance functions,

followed by the computation of the Generalized Gaspari-Cohn correlation function to supplement

Ch. 8. Both sections of this appendix are published in Gilpin et al. (2023).

D.1 Matrix and Scalar Covariance Functions

Section 8.2.1 describes the general methodology for extracting a scalar covariance function,

Eq. (8.9), from a matrix covariance function. In this appendix, we prove that Eq. (8.9) is in fact

a covariance function, followed by a concrete example of a matrix covariance function and the

extracted scalar covariance function.

We begin by proving that Eq. (8.9) is a covariance function, elaborating the discussion on

pp. 1818 – 1819 in G06.

Proof. Let r1, r2, ..., rn ∈ Ω and let Ωk ⊂ Ω for k = 1, 2, ...,m be non-overlaping, non-empty

subregions that partition the domain Ω into m regions. Each subregion Ωk contains nk points,

where r1, r2, ..., rn1 ∈ Ω1, rn1+1, ..., rn1+n2 ∈ Ω2, and so on, where n1 +n2 + ...+nm = n. Consider

the matrix covariance function B(r, s) defined in Eq. (8.5). It is positive semi-definite, in that for

arbitrary scalars cik for i = 1, 2, ..., n and k = 1, 2, ...,m, Eq. (8.7) is satisfied. In particular, if

we take the coefficients ci1 = 0 for i > n1, ci2 = 0 for i < n1 + 1, i > n1 + n2, ... , cim = 0 for



176

i < n1 + n2 + ...+ nm−1 + 1 while keeping the rest arbitrary, then

m∑
k,`=1

Nk∑
i=Nk−1+1

N∑̀
j=N`−1+1

cikcj`Bk`(ri, rj) ≥ 0, N0 = 0, Nk = n1 + n2 + ...+ nk, k = 1, 2, ...,m.

(D.1)

It follows that the function B(r, s) defined in Eq. (8.9) is positive semi-definite, i.e.,

n∑
i,j=1

ĉiĉjB(ri, rj) ≥ 0, (D.2)

where ĉ1 = c11, ĉ2 = c21, ... , ĉn1 = cn11, ĉn1+1 = cn1+12, ... , ĉn1+n2 = cn1+n22, ... , and so on, and

is therefore a covariance function.

In the following example, we will illustrate how to extract a scalar covariance function defined

in Eq. (8.9) from a matrix covariance function.

Example 1. Suppose we partition the domain Ω into m = 2 subregions Ω1 and Ω2. The matrix

covariance function B(r, s) for r, s ∈ Ω is the following 4 × 4 block matrix, whose arguments in

each block we represent abstractly with the subregions Ω1 and Ω2,

B(r, s) =



B11(Ω1,Ω1) B11(Ω1,Ω2) B12(Ω1,Ω1) B12(Ω1,Ω2)

B11(Ω2,Ω1) B11(Ω2,Ω2) B12(Ω2,Ω1) B12(Ω2,Ω2)

B21(Ω1,Ω1) B21(Ω1,Ω2) B22(Ω1,Ω1) B22(Ω1,Ω2)

B21(Ω2,Ω1) B21(Ω2,Ω2) B22(Ω2,Ω1) B22(Ω2,Ω2)


. (D.3)

The boxed terms correspond to the entries we extract to build the piecewise-defined scalar covariance

function in Eq. (8.9),

B(r, s) =

B11(Ω1,Ω1) B12(Ω1,Ω2)

B21(Ω2,Ω1) B22(Ω2,Ω2)

 . (D.4)

D.2 Computation Example and Formulae

The explicit computation of GenGC is very lengthy. In this appendix, we give an example

of how to compute one of the functions using Eq. (8.17), followed by the complete formulae for

GenGC.
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For these computations, assume that ck ≤ c`. In the case that c` ≤ ck, the indices in the

functions below simply need to be switched. Computation of Ck`(r, s) for r ∈ Ωk, s ∈ Ω` in

Eq. (8.17) is first split into the following six cases depending on the relationship between ck and c`,

with twelve subcases each:

Ck`(r, s) =



f1j(z), 0 < ck ≤ c`
4 ,

f2j(z),
c`
4 ≤ ck ≤

c`
3

f3j(z),
c`
3 ≤ ck ≤

c`
2

f4j(z),
c`
2 ≤ ck ≤

2c`
3

f5j(z),
2c`
3 ≤ ck ≤

3c`
4

f6j(z),
3c`
4 ≤ ck ≤ c`,

z = ||r − s||, j = 1, 2, ..., 12. (D.5)

The six different cases and twelve corresponding subcases can be determined by considering figures

such as Fig. D.1. This figure shows the (z, r)−plane (with z and r defined as in Eq. 8.14), where

the solid black lines mark the regions that determine the bounds of Eq. (8.14) and the piecewise

portion of h`(z; a`, c`). The intersections of r = ck/2 and r = ck in grey (which for Fig. D.1 are

shown for 0 < ck ≤ c`/4) with the solid black lines divide the z-axis into twelve different intervals

which define twelve different sets of Eq. (8.14) integrals to evaluate. These are the j = 1, 2, ..., 12

cases in fpj(z). The twelve intersections shift along the z−axis as ck changes with respect to c`,

defining the six functions fpj(z), p = 1, 2, ..., 6.

All functions fpj(z) for p = 1, 2, ..., 6 and j = 1, 2, ..., 12 in Eq. (D.5) are of the form

fpj(z) = nkn`

(
b
(5)
pj z

5 + b
(4)
pj z

4 + b
(3)
pj z

3 + b
(2)
pj z

2 + b
(1)
pj z + b

(0)
pj + b

(−1)
pj z−1

)
(ckc`)

−3/2, (D.6)

where

nk = (44a2
k + 6ak + 2)−1/2, (D.7)

and similarly for n`. The coefficients b
(i)
pj for p = 1, 2, ..., 6, j = 1, 2, ..., 12, i = −1, 0, 1, ..., 5 are

given in Tables D.1–D.19 at the end of this appendix. When ck = c`, GenGC reduces to Eq. (33)

of G06, see Appendix C of G06 for the explicit formulae.
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Figure D.1: Diagram in the (z, r)−plane used to evaluate the integrals for the function f1j(z)
(0 < ck ≤ c`/4). Solid black lines denote boundaries in z and r that define either the bounds in
Eq. (8.14) or different piecewise definitions of h`. Grey horizontal lines mark r = ck/2 and r = ck
for the case that 0 < ck ≤ c`/4. The intersections of the solid black lines and r = ck/2 and the
r = ck grey lines (indicated by the black dashed lines) mark the different sub-intervals in z that
define f1j(z), where the evaluation of Eq. (8.14) changes.
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We begin by computing the normalization constant
√
B0
kk(0)B0

``(0) in Eq. (8.17). To do so,

we first compute B0
kk(0), which is equivalent to B0

``(0) for k = `. From Eq. (8.15), we evaluate the

following integral,

B0
kk(0) = 4π

∫ ck

0
r2h2

k(r) dr = 4π

[∫ ck/2

0
r2h2

k,1(r) dr +

∫ ck

ck/2
r2h2

k,2(r) dr

]
=
πc3

k

120
, (D.8)

where for simplicity we have written hk,1(z) =
(
2(ak − 1)z/ck + 1

)
nk for 0 ≤ z ≤ ck/2 and

hk,2(z) = 2aknk(1− z/ck) for ck/2 ≤ z ≤ ck; see Eq. (8.18). Therefore, the normalization constant

becomes √
B0
kk(0)B0

` (0) =
π
√
c3
kc

3
`

120
. (D.9)

For illustration, we now show how to compute f11(z). The j = 1 interval in z, which

determines f11(z), is 0 ≤ z ≤ ck/2. From Fig. D.1, we see three distinct regions which determine

the bounds on the outer-most integral: r = z ≤ ck/2, r = ck/2 and r = ck. All three regions

satisfy r < c`/2− z, implying that r+ z < c`/2, so h`(s; a`, c`) = h`,1(s) for the inter-most integral

in all cases. The lower bound |r − z| is split into three cases: r − z < 0, 0 ≤ r − z ≤ ck/2, and

ck/2 ≤ r − z ≤ ck. Thus, Eq. (8.14) reduces to the following:

B0
k`(z) =

2π

z

[∫ z

0
rhk,1(r)

∫ r+z

z−r
sh`,1(s) ds dr +

∫ ck/2

z
rhk,1(r)

∫ r+z

r−z
sh`,1(s) ds dr

+

∫ ck

ck/2
rhk,2(r)

∫ r+z

r−z
sh`,1(s) ds dr

]
, (D.10)

where again for simplicity we have used hk,1(z) and hk,2(z) as defined above. The coefficients

for f11(z) are computed by evaluating Eq. (D.10) and normalizing by Eq. (D.9). These are given

explicitly in the first row of Table D.1.

All other functions fpj(z) are computed in a similar manner, although the integrals become

more complicated, as do the resulting coefficients. Tables D.1–D.19 summarize the coefficients in

each case. Again, in the case that ck = c`, GenGC reduces to Eq. (33) of G06, see Appendix C of

G06 for the formulae in this case. For these computations, we evaluated the integrals symbolically

using Mathematica (Wolfram Research, Inc., 2022).
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Since an explicit, analytical formula for GenGC is defined by Tables D.1–D.19, it can be

implemented efficiently in a discrete setting. Once the coefficients in Tables D.1–D.19 are written,

two sets of conditionals are necessary to then determine which coefficients to evaluate. Since GenGC

is a scalar covariance function, only scalar operators are necessary for its evaluation. Therefore,

GenGC can be evaluated efficiently in practice, typically as a linear operator acting on a vector

(e.g., Gilpin, 2023).



181

Table D.1: Coefficients for the function
f1j(z) = nkn`

(
b
(5)
1j z

5 + b
(4)
1j z

4 + b
(3)
1j z

3 + b
(2)
1j z

2 + b
(1)
1j z + b

(0)
1j + b

(−1)
1j z−1

)
(ckc`)

−3/2 for 0 < ck ≤
c`/4.

Interval f1j Coefficients

0 ≤ z ≤ ck
2 f11 b

(5)
11 = 32

3ckc`
(−1 + ak + a` − aka`), b

(4)
11 = 16

c`
(1− a`), b

(3)
11 = 0,

b
(2)
11 =

40c2k
3c`

(−1− 6ak + a` + 6aka`), b
(1)
11 = 0,

b
(0)
11 = 5c3k(1 + 14ak) +

3c4k
c`

(−1− 30ak + a` + 30aka`), b
(−1)
1j = 0

ck
2 ≤ z ≤ ck f12 b

(5)
12 = 32

3ckc`
(aka` − ak), b

(4)
12 = 32

c`
(ak − aka`), b

(3)
12 = 0,

b
(2)
12 =

320c2k
3c`

(aka` − ak), b
(1)
12 =

10c2k
c`
,

b
(0)
12 = (−1 + 2ak + a` − 2aka`) + 5c3k(1 + 14ak) +

96c4k
c`

(aka` − ak),

b
(−1)
12 =

c5k
3c`

(−1 + 2ak + a` − 2aka`)

ck ≤ z ≤ c`
2 − ck f13 b

(5)
13 = 0, b

(4)
13 = 0, b

(3)
13 = 0, b

(2)
13 = 0,

b
(1)
13 =

10c3k
c`

(−1− 14ak + a` + 14aka`),

b
(0)
13 = 5c3k(1 + 14ak), b

(−1)
13 =

c5k
3c`

(−1− 62ak + a` + 62aka`)
c`
2 − ck ≤ z ≤

c`−ck
2 f14 b

(5)
14 = 16

3ckc`
(2aka` − ak), b

(4)
14 = 8

ck
(ak − 2aka`) + 16

c`
(2aka` − ak),

b
(3)
14 = 20(ak − 2aka`), b

(2)
14 =

160c2k
3c`

(ak − 2aka`) +
20c2`
3ck

(2aka` − ak),

b
(1)
14 = 40c2k(2aka` − ak) +

10c3k
c`

(−1− 6ak + a` − 2aka`) + 10c2`(2aka` − ak)

+
5c3`
ck

(ak − 2aka`),

b
(0)
14 = 5c3k(1 + 6ak + 16aka`) +

48c4k
c`

(ak − 2aka`) + 5c3`(ak − 2aka`)

+
3c4`
2ck

(2aka` − ak),

b
(−1)
14 = 12c4k(2aka` − ak)

c5k
3c`

(−1− 30ak + a` − 2aka`)

+
10c2kc

2
`

3 (ak − 2aka`) +
3c4`
4 (2aka` − ak) +

c5`
6ck

(ak − 2aka`)
c`−ck

2 ≤ z ≤ c`
2 f15 b

(5)
15 = 16

3ckc`
(−1 + ak + 2a` − 2aka`),

b
(4)
15 = 8

ck
(1− ak − 2a` + 2aka`) + 8

c`
(2a` − 1), b

(3)
15 = 10(1− 2a`),

b
(2)
15 =

20c2k
3c`

(1 + 6ak − 2a` − 12aka`) +
20c2`
3ck

(−1 + ak + 2a` − 2aka`),

b
(1)
15 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(−1− 14ak) + 5c2`(2a` − 1)

+
5c3`
ck

(1− ak − 2a` + 2aka`),

b
(0)
15 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(1 + 30ak − 2a` − 60aka`)

+
5c3`
2 (1− 2a`) +

3c4`
2ck

(−1 + ak + 2a` − 2aka`),

b
(−1)
15 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(−1− 62ak)

+
5c2kc

2
`

12 (1 + 6ak − 2a` − 12aka`) +
3c4k
8 (2a` − 1)

+
c5`
6ck

(1− ak − 2a` + 2aka`)
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Table D.2: Coefficients for the function
f1j(z) = nkn`

(
b
(5)
1j z

5 + b
(4)
1j z

4 + b
(3)
1j z

3 + b
(2)
1j z

2 + b
(1)
1j z + b

(0)
1j + b

(−1)
1j z−1

)
(ckc`)

−3/2 for 0 < ck ≤
c`/4.

Interval f1j Coefficients
c`
2 ≤ z ≤

c`+ck
2 f16 b

(5)
16 = 16

3ckc`
(1− ak − 2a` + 2aka`),

b
(4)
16 = 8

ck
(−1 + ak + 2a` − 2aka`) + 8

c`
(2a` − 1),

b
(3)
16 = 10(1− 2a`), b

(2)
16 =

20c2k
3c`

(1 + 6ak − 2a` − 12aka`)

+
20c2`
3ck

(1− ak − 2a` + 2aka`),

b
(1)
16 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(−1− 14ak) + 5c2`(2a` − 1)

+
5c3`
ck

(−1 + ak + 2a` − 2aka`),

b
(0)
16 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(1 + 30ak − 2a` − 60aka`)

+
5c3`
2 (1− 2a`) +

3c4`
2ck

(1− ak − 2a` + 2aka`),

b
(−1)
16 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(−1− 62ak)+
5c2kc

2
`

12 (1 + 6ak − 2a` − 12aka`) +
3c4`
8 (2a` − 1)

+
c5`
6ck

(−1 + ak + 2a` − 2aka`)
c`+ck

2 ≤ z ≤ c`
2 + ck f17 b

(5)
17 = 16

3ckc`
(ak − 2aka`), b

(4)
17 = 8

ck
(2aka` − ak) + 16

c`
(2aka` − ak),

b
(3)
17 = 20(ak − 2aka`), b

(2)
17 =

160c2k
3c`

(ak − 2aka`) +
20c2`
3ck

(ak − 2aka`),

b
(1)
17 = 40c2k(2aka` − ak) +

10c3k
c`

(2aka` − a` − 8ak) + 10c2`(2aka` − ak)

+
5c3`
ck

(2aka` − ak),

b
(0)
17 = 10c3k(4ak + a` + 6aka`) +

48c4k
c`

(ak − 2aka`) + 5c3`(ak − 2aka`)

+
3c4`
2ck

(ak − 2aka`),

b
(−1)
17 = 12c4k(2aka` − ak) +

c5k
3c`

(−32ak − a` + 2aka`) +
10c2kc

2
`

3 (ak − 2aka`)

+
3c4`
4 (2aka` − ak) +

c5`
6ck

(2aka` − ak)
c`
2 + ck ≤ z ≤ c` − ck f18 b

(5)
18 = 0, b

(4)
18 = 0, b

(3)
1j = 0, b

(2)
18 = 0,

b
(1)
18 =

10c3k
c`

(−a` − 14aka`),

b
(0)
18 = 10c3k(a` + 14aka`), b

(−1)
18 =

c5k
3 (−a` − 62aka`)

c` − ck ≤ z ≤ c` − ck
2 f19 b

(5)
19 = −16

3ckc`
(aka`), b

(4)
19 = 16

ck
(aka`) + −16

c`
(aka`), b

(3)
19 = 40aka`,

b
(2)
19 =

160c2k
3c`

(aka`) +
−160c2`
3ck

(aka`),

b
(1)
19 = −80c2k(aka`) +

10c3k
c`

(−a` − 6aka`) + 80c2`(−aka`) +
80c3`
ck

(aka`),

b
(0)
19 = 10c3k(a` + 6aka`) +

48c4k
c`

(aka`) + 80c3`(aka`) +
48c4`
ck

(−aka`),
b
(−1)
19 = −24c4k(aka`) +

c5k
3c`

(−a` − 30aka`) +
80c2kc

2
`

3 (aka`) + 24c4`(−aka`)
+

32c5`
3ck

(aka`)
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Table D.3: Coefficients for the function
f1j(z) = nkn`

(
b
(5)
1j z

5 + b
(4)
1j z

4 + b
(3)
1j z

3 + b
(2)
1j z

2 + b
(1)
1j z + b

(0)
1j + b

(−1)
1j z−1

)
(ckc`)

−3/2 for 0 < ck ≤
c`/4.

Interval f1j Coefficients

c` − ck
2 ≤ z ≤ c` f110 b

(5)
1j = 16

3ckc`
(aka` − a`), b

(4)
1j = 16

ck
(a` − aka`) + 8

c`
(−a`),

b
(3)
110 = 20a`, b

(2)
110 =

20c2k
3c`

(a` + 6aka`) +
160c2`
3ck

(aka` − a`),
b
(1)
110 = 10c2k(−a` − 6aka`) +

5c3k
c`

(−a` − 14aka`) + 40c2`(−a`)
+

80c3`
ck

(a` − aka`),
b
(0)
110 = 5c3k(14akak + a`) +

3c4k
2c`

(a` + 30aka`) + 40c3`(a`) +
48c4`
ck

(aka` − a`),
b
(−1)
110 =

3c4k
4 (−a` − 30aka`) +

c5k
6c`

(−a` − 62aka`) +
10c2kc

2
`

3 (a` + 6aka`)

+12c4`(−a`) +
32c5`
3ck

(a` − aka`)
c` ≤ z ≤ c` + ck

2 f111 b
(5)
111 = 16

3ckc`
(a` − aka`), b

(4)
111 = 16

ck
(aka` − a`) + 8

c`
(−a`),

b
(3)
111 = 20a`, b

(2)
111 =

20c2k
3c`

(a` + 6aka`) +
160c2`
3ck

(a` − aka`),
b
(1)
111 = 10c2k(−a` − 6aka`) +

5c3k
c`

(−a` − 14aka`) + 40c2`(−a`)
+

80c3`
ck

(−a` + aka`),

b
(0)
111 = 5c3k(a` + 14aka`) +

3c4k
2c`

(a` + 30aka`) + 40c3`(a`) +
48c4`
ck

(a` − aka`),
b
(−1)
111 =

3c4k
4 (−a` − 30aka`) +

c5k
6c`

(−a` − 62aka`) +
10c2kc

2
`

3 (a` + 6aka`)

+12c4`(−a`) +
32c5`
3ck

(aka` − a`)
c` + ck

2 ≤ z ≤ c` + ck f112 b
(5)
112 = 16

3ckc`
aka`, b

(4)
112 =

(
−16
ck

+ −16
c`

)
aka`, b

(3)
112 = 40aka`,

b
(2)
112 =

(
160c2k
3c`

+
160c2`
3ck

)
aka`, b

(1)
112 = −80

(
c2k +

c3k
c`

+ c2` +
c3`
ck

)
aka`,

b
(0)
112 = (80c3k +

48c4k
c`

+ 80c3` +
48c4`
ck

)aka`,

b
(−1)
112 =

(
−24c4k −

32c5k
3c`

+
80c2kc

2
`

3 − 24c4` −
32c5`
3ck

)
aka`
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Table D.4: Coefficients for the function
f2j(z) = nkn`

(
b
(5)
2j z

5 + b
(4)
2j z

4 + b
(3)
2j z

3 + b
(2)
2j z

2 + b
(1)
2j z + b

(0)
2j + b

(−1)
2j z−1

)
(ckc`)

−3/2 for c`/4 ≤ ck ≤
c`/3.

Interval f2j Coefficients

0 ≤ z ≤ ck
2 f21 b

(5)
21 = 32

3ckc`
(ak + a` − aka` − 1), b

(4)
21 = 16

c`
(1− a`), b

(3)
21 = 0,

b
(2)
21 =

40c2k
3c`

(−1− 6ak + a` + 6aka`), b
(1)
21 = 0,

b
(0)
21 = 5c3k(1 + 14ak) +

3c4k
c`

(−1− 30ak + a` + 30aka`),

b
(−1)
21 = 0,

ck/2 ≤ z ≤ c`
2 − ck f22 b

(5)
22 = 32

3ckc`
(aka` − ak), b

(4)
22 = 32

c`
(ak − aka`), b

(3)
22 = 0,

b
(2)
22 =

320c2k
3c`

(aka` − ak), b
(1)
22 =

10c3k
c`

(−1 + 2ak + a` − 2aka`),

b
(0)
22 = 5c3k(1+14ak)+

96c4k
c`

(aka`−ak), b
(−1)
22 =

c5k
3c`

(−1+2ak+a`−2aka`)
c`
2 − ck ≤ z ≤ ck f23 b

(5)
23 = 16

3ckc`
(4aka` − 3ak), b

(4)
23 = 8

ck
(ak − 2aka`) + 16

c`
ak,

b
(3)
23 = 20(ak − 2aka`), b

(2)
23 =

160c2k
3c`

(−ak) +
20c2`
3ck

(2aka` − ak),

b
(1)
23 = 40c2k(2aka` − ak) +

10c3k
c`

(−1 + 10ak + a` − 18aka`)

+10c2`(2aka` − ak) +
5c3`
ck

(ak − 2aka`),

b
(0)
23 = 5c3k(1 + 6ak + 16aka`) +

48c4k
c`

(−ak) + 5c3`(ak − 2aka`)

+
3c4`
2ck

(2aka` − ak),

b
(−1)
23 = 12c4k(2aka` − ak) +

c5k
3c`

(−1 + 34ak + a` − 66aka`)

+
10c2kc

2
`

3 (ak − 2aka`) +
3c4`
4 (2aka` − ak) +

c5`
6ck

(ak − 2aka`)

ck ≤ z ≤ c`−ck
2 f24 b

(5)
24 = 16

3ckc`
(2aka` − ak), b

(4)
24 = 8

ck
(ak − 2aka`) + 16

c`
(2aka` − ak),

b
(3)
24 = 20(ak − 2aka`), b

(2)
24 =

160c2k
3c`

(ak − 2aka`) +
20c2`
3ck

(2aka` − ak),

b
(1)
24 = 40c2k(2aka` − ak) +

10c3k
c`

(−1− 6ak + a` − 2aka`) + 10c2`(2aka` − ak)

+
5c3`
ck

(ak − 2aka`),

b
(0)
24 = 5c3k(1 + 6ak + 16aka`) +

48c4k
c`

(ak − 2aka`) + 5c3`(ak − 2aka`)

+
3c4`
2ck

(2aka` − ak),

b
(−1)
24 = 12c4k(2aka` − ak) +

c5k
3c`

(−1− 30ak + a` − 2aka`)

+
10c2kc

2
`

3 (ak − 2aka`) +
3c4`
4 (2aka` − ak) +

c5`
6ck

(ak − 2aka`)
c`−ck

2 ≤ z ≤ c`
2 f25 b

(5)
25 = 16

3ckc`
(−1 + ak + 2a` − 2aka`),

b
(4)
25 = 8

ck
(1− ak − 2a` + 2aka`) + 8

c`
(2a` − 1), b

(3)
25 = 10(1− 2a`),

b
(2)
25 =

20c2k
3c`

(1 + 6ak − 2a` − 12aka`) +
20c2`
3ck

(−1 + ak + 2a` − 2aka`),

b
(1)
25 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(−1− 14ak) + 5c2`(2a` − 1)

+
5c3`
ck

(1− ak − 2a` + 2aka`),

b
(0)
25 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(1 + 30ak − 2a` − 60aka`)

+
5c3`
2 (1− 2a`) +

3c4`
2ck

(−1 + ak + 2a` − 2aka`),

b
(−1)
25 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(−1− 62ak)

+
5c2kc

2
`

12 (1 + 6ak − 2a` − 12aka`) +
3c4`
8 (2a` − 1)

+
c5`
6ck

(1− ak − 2a` + 2aka`)
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Table D.5: Coefficients for the function
f2j(z) = nkn`

(
b
(5)
2j z

5 + b
(4)
2j z

4 + b
(3)
2j z

3 + b
(2)
2j z

2 + b
(1)
2j z + b

(0)
2j + b

(−1)
2j z−1

)
(ckc`)

−3/2 for c`/4 ≤ ck ≤
c`/3.

Interval f2j Coefficients
c`
2 ≤ z ≤

c`+ck
2 f26 b

(5)
26 = 16

3ckc`
(1− ak − 2a` + 2aka`),

b
(4)
26 = 8

ck
(−1 + ak + 2a` − 2aka`) + 8

c`
(2a` − 1), b

(3)
26 = 10(1− 2a`),

b
(2)
26 =

20c2k
3c`

(1 + 6ak − 2a` − 12aka`) +
20c2`
3ck

(1− ak − 2a` + 2aka`),

b
(1)
26 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(−1− 14ak) + 5c2`(2a` − 1)

+
5c3`
ck

(−1 + ak + 2a` − 2aka`),

b
(0)
26 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(1 + 30ak − 2a` − 60aka`)

+
5c3`
2 (1− 2a`) +

3c4`
2ck

(1− ak − 2a` + 2aka`),

b
(−1)
26 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(−1− 62ak)

+
5c2kc

2
`

12 (1 + 6ak − 2a` − 12aka`) +
3c4`
8 (2a` − 1)

+
c5`
6ck

(−1 + ak + 2a` − 2aka`)
c`+ck

2 ≤ z ≤ c` − ck f27 b
(5)
27 = 16

3ckc`
(ak − 2aka`), b

(4)
27 = 8

ck
(2aka` − ak) + 16

c`
(2aka` − ak),

b
(3)
27 = 20(ak − 2aka`), b

(2)
27 =

160c2k
3c`

(ak − 2aka`) +
20c2`
3ck

(ak − 2aka`),

b
(1)
27 = 40c2k(2aka` − ak) +

10c3k
c`

(−8ak − a` + 2aka`) + 10c2`(2aka` − ak)

+
5c3`
ck

(2aka` − ak),

b
(0)
27 = 10c3k(4ak + a` + 6aka`) +

48c4k
c`

(ak − 2aka`) + 5c3`(ak − 2aka`)

+
3c4`
2ck

(ak − 2aka`),

b
(−1)
27 = 12c4k(2aka` − ak) +

c5k
3c`

(2aka` − a` − 32ak) +
10c2kc

2
`

3 (ak − 2aka`)

+
3c4`
4 (2aka` − ak) +

c5`
6ck

(2aka` − ak)

c` − ck ≤ z ≤ ck + c`
2 f28 b

(5)
28 = 16

3ckc`
(ak − 3aka`), b

(4)
28 = 8

ck
(4aka` − ak) + 16

c`
(aka` − ak),

b
(3)
28 = 20ak, b

(2)
28 =

160c2k
3c`

(ak − aka`) +
20c2`
3ck

(ak − 10aka`),

b
(1)
28 = 40c2k(−ak) +

10c3k
c`

(10aka` − a` − 8ak) + 10c2`(−ak − 6aka`)

+
5c3`
ck

(18aka` − ak),

b
(0)
28 = 10c3k(4ak + a` − 2aka`) +

48c4k
c`

(ak − aka`) + 5c3`(ak + 14aka`)

+
3c4`
2ck

(ak − 34aka`),

b
(−1)
28 = 12c4k(−ak) +

c5k
3c`

(34aka` − a` − 32ak) +
10c2kc

2
`

3 (ak + 6aka`)

+
3c4`
4 (−ak − 30aka`) +

c5`
6ck

(−ak + 66aka`)
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Table D.6: Coefficients for the function
f2j(z) = nkn`

(
b
(5)
2j z

5 + b
(4)
2j z

4 + b
(3)
2j z

3 + b
(2)
2j z

2 + b
(1)
2j z + b

(0)
2j + b

(−1)
2j z−1

)
(ckc`)

−3/2 for c`/4 ≤ ck ≤
c`/3.

Interval f2j Coefficients

ck + c`
2 ≤ z ≤ c` −

ck
2 f29 b

(5)
29 = −16

3ckc`
aka`, b

(4)
29 = 16

ck
aka` − 16

c`
aka`, b

(3)
29 = 40aka`,

b
(2)
29 =

160c2k
3c`

(aka`)− 160c2`
3ck

(aka`),

b
(1)
29 = −80c2k(ak) +

10c3k
c`

(−a` − 6aka`)− 80c2`(aka`) +
80c3`
ck

(aka`),

b
(0)
29 = 10c3k(a` + 6aka`) +

48c4k
c`

(aka`) + 80c3`(aka`)− 48c4`
ck

(aka`),

b
(−1)
29 = −24c4k(aka`) +

c5k
3c`

(−a` − 30aka`) +
80c2kc

2
`

3 (aka`)− 24c4`(aka`)

+
32c5`
3ck

(aka`)

c` − ck
2 ≤ z ≤ c` f210 Same as f110, see Table D.3.

c` ≤ z ≤ c` + ck
2 f211 Same as f111, see Table D.3.

c` + ck
2 ≤ z ≤ c` + ck f212 Same as f112, see Table D.3.
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Table D.7: Coefficients for the function
f3j(z) = nkn`

(
b
(5)
3j z

5 + b
(4)
3j z

4 + b
(3)
3j z

3 + b
(2)
3j z

2 + b
(1)
3j z + b

(0)
3j + b

(−1)
3j z−1

)
(ckc`)

−3/2 for c`/3 ≤ ck ≤
c`/2.

Interval f3j Coefficients

0 ≤ z ≤ c`
2 − ck f31 b

(5)
31 = 32

3ckc`
(−1− aka` + ak + a`), b

(4)
31 = 16

c`
(1− a`), b

(3)
31 = 0,

b
(2)
31 =

40c2k
3c`

(a` − 1 + 6aka` − 6ak), b
(1)
31 = 0,

b
(0)
31 = 5c3k(1 + 14ak) +

3c4k
c`

(−1− 30ak + a` + 30aka`), b
(−1)
31 = 0

c`
2 − ck ≤ z ≤

ck
2 f32 b

(5)
32 = 16

3ckc`
(ak + 2a` − 2),

b
(4)
32 = 8

ck
(ak − 2aka`) + 16

c`
(1− ak − a` + 2aka`), b

(3)
32 = 20(ak − 2aka`),

b
(2)
32 =

40c2k
3c`

(a` − 2ak − 1− 2aka`) +
20c2`
3ck

(2aka` − ak),

b
(1)
32 = 40c2k(2aka` − ak) +

80c3k
c`

(ak − 2aka`) + 10c2`(2aka` − ak)

+
5c3`
ck

(ak − 2aka`),

b
(0)
32 = 5c3k(1 + 6ak + 16aka`) +

3c4k
c`

(−1− 14ak + a` − 2aka`)

+5c3`(ak − 2aka`) +
3c4`
2ck

(2aka` − ak),

b
(−1)
32 = 12c4k(2aka` − ak) +

32c5k
3c`

(ak − 2aka`) +
10c2kc

2
`

3 (ak − 2aka`)

+
3c4`
4 (2aka` − ak) +

c5`
6ck

(ak − 2aka`)
ck
2 ≤ z ≤

c`−ck
2 f33 b

(5)
33 = 16

3ckc`
(−3ak + 4aka`), b

(4)
33 = 8

ck
(ak − 2aka`) + 16

c`
(ak),

b
(3)
33 = 20(1− 2a`), b

(2)
33 =

160c2k
3c`

(−ak) +
20c2`
3ck

(2aka` − ak),

b
(1)
33 = 40c2k(2aka` − ak) +

10c3k
c`

(−1 + 10ak + a` − 18aka`)

+10c2`(2aka` − ak) +
5c3`
ck

(ak − 2aka`),

b
(0)
33 = 5c3k(1 + 6ak + 16aka`) +

48c4k
c`

(−ak)

+5c3`(ak − 2aka`) +
3c4`
2ck

(2aka` − ak),

b
(−1)
33 = 12c4k(2aka` − ak) +

c5k
3c`

(−1 + 34ak + a` − 66aka`)

+
10c2kc

2
`

3 (ak − 2aka`) +
3c4`
4 (2aka` − ak) +

c5`
6ck

(ak − 2aka`)
c`−ck

2 ≤ z ≤ ck f34 b
(5)
34 = 16

3ckc`
(2a` − ak − 1),

b
(4)
34 = 8

ck
(1− ak − 2a` + 2aka`) + 8

c`
(−1 + 4ak + 2a` − 4aka`),

b
(3)
34 = 10(1− 2a`),

b
(2)
34 =

20c2k
3c`

(1− 10ak − 2a` + 4aka`) +
20c2`
3ck

(−1 + ak + 2a` − 2aka`),

b
(1)
34 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(18ak − 1− 32aka`)

+5c2`(2a` − 1) +
5c3`
ck

(1− ak − 2a` + 2aka`),

b
(0)
34 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(1− 34ak − 2a` + 4aka`)

+
5c3`
2 (1− 2a`) +

3c4`
2ck

(−1 + ak + 2a` − 2aka`),

b
(−1)
34 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(−1 + 66ak − 128aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` − 12aka`) +
3c4`
8 (2a` − 1)

+
c5`
6ck

(1− ak − 2a` + 2aka`)
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Table D.8: Coefficients for the function
f3j(z) = nkn`

(
b
(5)
3j z

5 + b
(4)
3j z

4 + b
(3)
3j z

3 + b
(2)
3j z

2 + b
(1)
3j z + b

(0)
3j + b

(−1)
3j z−1

)
(ckc`)

−3/2 for c`/3 ≤ ck ≤
c`/2.

Interval f3j Coefficients

ck ≤ z ≤ c`
2 f35 b

(5)
35 = 16

3ckc`
(−1 + ak + 2a` − 2aka`),

b
(4)
35 = 8

ck
(1− ak − 2a` + 2aka`) + 8

c`
(2a` − 1), b

(3)
35 = 10(1− 2a`),

b
(2)
35 =

20c2k
3c`

(1 + 6ak − 2a` − 12aka`) +
20c2`
3ck

(−1 + ak + 2a` − 2aka`),

b
(1)
35 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(−1− 14ak) + 5c2`(2a` − 1)

+
5c3`
ck

(1− ak − 2a` + 2aka`),

b
(0)
35 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(1 + 30ak − 2a` − 60aka`)

+
5c3`
2 (1− 2a`) +

3c4`
2ck

(−1 + ak + 2a` − 2aka`),

b
(−1)
35 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(−1− 62ak)

+
5c2kc

2
`

12 (1 + 6ak − 2a` − 12aka`) +
3c4`
8 (2a` − 1)

+
c5`
6ck

(1− ak − 2a` + 2aka`),
c`
2 ≤ z ≤ c` − ck f36 b

(5)
36 = 16

3ckc`
(1− ak − 2a` + 2aka`),

b
(4)
36 = 8

ck
(−1 + ak + 2a` − 2aka`) + 8

c`
(2a` − 1), b

(3)
36 = 10(1− 2a`),

b
(2)
36 =

20c2k
3c`

(1 + 6ak − 2a` − 12aka`) +
20c2`
3ck

(1− ak − 2a` + 2aka`),

b
(1)
36 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(−1− 14ak) + 5c2`(2a` − 1)

+
5c3`
ck

(−1 + ak + 2a` − 2aka`),

b
(0)
36 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(1 + 30ak − 2a` − 60aka`)

+
5c3`
2 (1− 2a`) +

3c4`
2ck

(1− ak − 2a` + 2aka`),

b
(−1)
36 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(−1− 62ak)

+
5c2kc

2
`

12 (1 + 6ak − 2a` − 12aka`) +
3c4`
8 (−1 + 2a`)

+
c5`
6ck

(−1 + ak + 2a` − 2aka`)

c` − ck ≤ z ≤ c`+ck
2 f37 b

(5)
37 = 16

3ckc`
(1− ak − 2a` + aka`),

b
(4)
37 = 8

ck
(−1 + ak + 2a`) + 8

c`
(−1 + 2a` − 2aka`),

b
(3)
37 = 10(1− 2a` + 4aka`),

b
(2)
37 =

20c2k
3c`

(1 + 6ak − 2a` − 4aka`) +
20c2`
3ck

(1− ak − 2a` − 6aka`),

b
(1)
37 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(−1− 14ak + 16aka`)

+5c2`(−1 + 2a` − 16aka`) +
5c3`
ck

(−1 + ak + 2a` + 14aka`),

b
(0)
37 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(1 + 30ak − 2a` − 28aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(1− ak − 2a` − 30aka`),

b
(−1)
37 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(−1− 62ak + 64aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (−1 + 2a` − 64aka`)

+
c5`
6ck

(−1 + ak + 2a` + 62aka`)
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Table D.9: Coefficients for the function
f3j(z) = nkn`

(
b
(5)
3j z

5 + b
(4)
3j z

4 + b
(3)
3j z

3 + b
(2)
3j z

2 + b
(1)
3j z + b

(0)
3j + b

(−1)
3j z−1

)
(ckc`)

−3/2 for c`/3 ≤ ck ≤
c`/2.

Interval f3j Coefficients
c`+ck

2 ≤ z ≤ c` − ck
2 f38 b

(5)
38 = 16

3ckc`
(ak − 3aka`), b

(4)
38 = 8

ck
(4aka` − ak) + 16

c`
(aka` − ak),

b
(3)
38 = 20ak, b

(2)
38 =

160c2k
3c`

(ak − aka`) +
20c2`
3ck

(ak − 10aka`),

b
(1)
38 = −40c2k(ak) +

10c3k
c`

(−8ak − a` + 10aka`) + 10c2`(−ak − 6aka`)

+
5c3`
ck

(18aka` − ak),

b
(0)
38 = 10c3k(a` + 4ak − 2aka`) +

48c4k
c`

(ak − aka`) + 5c3`(ak + 14aka`)

+
3c4`
2ck

(ak − 34aka`),

b
(−1)
38 = −12c4k(ak) +

c5k
3c`

(−32ak − a` + 34aka`) +
10c2kc

2
`

3 (ak + 6aka`)

+
3c4`
4 (−ak − 30aka`) +

c5`
6ck

(−ak + 66aka`)

c` − ck
2 ≤ z ≤ ck + c`

2 f39 b
(5)
39 = 16

3ckc`
(ak − a` − aka`), b

(4)
39 = 8

ck
(2a` − ak) + 8

c`
(4aka` − 2ak − a`),

b
(3)
39 = 20(ak + a` − 2aka`),

b
(2)
39 =

20c2k
3c`

(8ak + a` − 10aka`) +
20c2`
3ck

(ak − 8a` + 6aka`),

b
(1)
39 = 10c2k(−4ak − a` + 2aka`) +

5c3k
c`

(−16ak − a` + 18aka`)

+10c2`(−ak − 4a` + 2aka`) +
5c3`
ck

(−ak + 16a` − 14aka`,

b
(0)
39 = 5c3k(8ak + a` − 2aka`) +

3c4k
2c`

(32ak + a` − 34aka`)

+5c3`(ak + 8a` − 2aka`) +
3c4`
2ck

(ak − 32a` + 30aka`),

b
(−1)
39 =

3c4k
4 (−16ak − a` + 2aka`) +

c5k
6c`

(−64ak − a` + 66aka`)

+
10c2kc

2
`

3 (ak + a` + 4aka`) +
3c4`
4 (−ak − 16a` + 2aka`)

+
c5`
6ck

(−ak + 64a` − 62aka`)

ck + c`
2 ≤ z ≤ c` f310 b

(5)
310 = 16

3ckc`
(aka` − a`), b

(4)
310 = 16

ck
(a` − aka`) + 8

c`
(−a`),

b
(3)
310 = 20a`, b

(2)
310 =

20c2k
3c`

(a` + 6aka`) +
160c2`
3ck

(aka` − a`),
b
(1)
310 = 10c2k(−a` − 6aka`) +

5c3k
c`

(−a` − 14aka`) + 40c2`(−a`)
+

80c3`
ck

(a` − aka`),
b
(0)
310 = 5c3k(a` + 14aka`) +

3c4k
2c`

(a` + 30aka`) + 40c3`(a`) +
48c4`
ck

(aka` − a`),
b
(−1)
310 =

3c4k
4 (−a` − 30aka`) +

c5k
6c`

(−a` − 62aka`)

+
10c2kc

2
`

3 (a` + 6aka`) + 12c4`(−a`) +
32c5`
3ck

(a` − aka`)
c` ≤ z ≤ c` + ck

2 f311 Same as f111, see Table D.3.
c` + ck

2 ≤ z ≤ c` + ck f312 Same as f112, see Table D.3.



190

Table D.10: Coefficients for the function
f4j(z) = nkn`

(
b
(5)
4j z

5 + b
(4)
4j z

4 + b
(3)
4j z

3 + b
(2)
4j z

2 + b
(1)
4j z + b

(0)
4j + b

(−1)
4j z−1

)
(ckc`)

−3/2 for c`/2 ≤ ck ≤
2c`/3.

Interval f4j Coefficients

0 ≤ z ≤ ck − c`
2 f41 b

(5)
41 = 32

3ckc`
(−1 + ak + a` − aka`),

b
(4)
41 = 16

ck
(ak − 2aka`) + 16

c`
(1− 2ak − a` + 4aka`), b

(3)
41 = 0,

b
(2)
41 =

40c2k
3c`

(−1 + 2ak + a` − 10aka`) +
40c2`
3ck

(2aka` − ak), b
(1)
41 = 0,

b
(0)
41 = 5c3k(1− 2ak + 32aka`) +

3c4k
c`

(−1 + 2ak + a` − 34aka`)

+10c3`(ak − 2aka`) +
3c4`
ck

(2aka` − ak), b
(−1)
41 = 0

ck − c`
2 ≤ z ≤

c`−ck
2 f42 b

(5)
42 = 16

3ckc`
(−2 + ak + 2a`),

b
(4)
42 = 8

ck
(ak − 2aka`) + 16

c`
(1− ak − a` + 2aka`), b

(3)
42 = 20(ak − 2aka`),

b
(2)
42 =

40c2k
3c`

(−1− 2ak + a` − 2aka`) +
20c2`
3ck

(2aka` − ak),

b
(1)
42 = 40c2k(2aka` − ak) +

80c3k
c`

(ak − 2aka`) + 10c2`(2aka` − ak)

+
5c3`
ck

(ak − 2aka`),

b
(0)
42 = 5c3k(1 + 6ak + 16aka`) +

3c4k
c`

(−1− 14ak + a` − 2aka`)

+5c3`(ak − 2aka`) +
3c4`
2ck

(2aka` − ak),

b
(−1)
42 = 12c4k(2aka` − ak) +

32c5k
3c`

(ak − 2aka`) +
10c2kc

2
`

3 (ak − 2aka`)

+
3c4`
4 (2aka` − ak) +

c5`
6ck

(ak − 2aka`)
c`−ck

2 ≤ z ≤ ck
2 f43 b

(5)
43 = 16

3ckc`
(−3 + 3ak + 4a` − 4aka`),

b
(4)
43 = 8

ck
(1− ak − 2a` + 2aka`) + 8

c`
, b

(3)
43 = 10(1− 2a`),

b
(2)
43 =

20c2k
3c`

(−1− 6ak) +
20c2`
3ck

(−1 + ak + 2a` − 2aka`),

b
(1)
43 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(1 + 14ak − 2a` − 28aka`)

+5c2`(2a` − 1) +
5c3`
ck

(1− ak − 2a` + 2aka`),

b
(0)
43 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(−1− 30ak) +
5c3`
2 (1− 2a`)

+
3c4`
2ck

(−1 + ak + 2a` − 2aka`),

b
(−1)
43 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(1 + 62ak − 2a` − 124aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` − 12aka`) +
3c4`
8 (2a` − 1)

+
c5`
6ck

(1− ak − 2a` + 2aka`)
ck
2 ≤ z ≤ c` − ck f44 b

(5)
44 = 16

3ckc`
(−1− ak + 2a`),

b
(4)
44 = 8

ck
(1− ak − 2a` + 2aka`) + 8

c`
(−1 + 4ak + 2a` − 4aka`),

b
(3)
44 = 10(1− 2a`),

b
(2)
44 =

20c2k
3c`

(1− 10ak − 2a` + 4aka`) +
20c2`
3ck

(−1 + ak + 2a` − 2aka`),

b
(1)
44 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(−1 + 18ak − 32aka`)

+5c2`(2a` − 1) +
5c3`
ck

(1− ak − 2a` + 2aka`),

b
(0)
44 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(1− 34ak − 2a` + 4aka`)

+
5c3`
2 (1− 2a`) +

3c4`
2ck

(−1 + ak + 2a` − 2aka`),

b
(−1)
44 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(−1 + 66ak − 128aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` − 12aka`) +
3c4`
8 (2a` − 1)

+
c5`
6ck

(1− ak − 2a` + 2aka`)
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Table D.11: Coefficients for the function
f4j(z) = nkn`

(
b
(5)
4j z

5 + b
(4)
4j z

4 + b
(3)
4j z

3 + b
(2)
4j z

2 + b
(1)
4j z + b

(0)
4j + b

(−1)
4j z−1

)
(ckc`)

−3/2 for c`/2 ≤ ck ≤
2c`/3.

Interval f4j Coefficients

c` − ck ≤ z ≤ c`
2 f45 b

(5)
45 = 16

3ckc`
(−1− ak + 2a` − aka`),

b
(4)
45 = 8

ck
(1− ak − 2a` + 4aka`) + 8

c`
(−1 + 4ak + 2a` − 6aka`),

b
(3)
45 = 10(1− 2a` + 4aka`),

b
(2)
45 =

20c2k
3c`

(1− 10ak − 2a` + 12aka`) +
20c2`
3ck

(−1 + ak + 2a` − 10aka`),

b
(1)
45 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(−1 + 18ak − 16aka`)

+5c2`(−1 + 2a` − 16aka`) +
5c3`
ck

(1− ak − 2a` + 18aka`),

b
(0)
45 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(1− 34ak − 2a` + 36aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(−1 + ak + 2a` − 34aka`),

b
(−1)
45 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(−1 + 66ak − 64aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (−1 + 2a` − 64aka`)

+
c5`
6ck

(1− ak − 2a` + 66aka`)
c`
2 ≤ z ≤ ck f46 b

(5)
46 = 16

3ckc`
(1− 3ak − 2a` + 3aka`),

b
(4)
46 = 8

ck
(−1 + ak + 2a`) + 8

c`
(−1 + 4ak + 2a` − 6aka`),

b
(3)
46 = 10(1− 2a` + 4aka`),

b
(2)
46 =

20c2k
3c`

(1− 10ak − 2a` + 12aka`) +
20c2`
3ck

(1− ak − 2a` − 6aka`),

b
(1)
46 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(−1 + 18ak − 16aka`)

+5c2`(−1 + 2a` − 16aka`) +
5c3`
ck

(−1 + ak + 2a` + 14aka`),

b
(0)
46 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(1− 34ak − 2a` + 36aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(1− ak − 2a` − 30aka`),

b
(−1)
46 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(−1 + 66ak − 64aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (−1 + 2a` − 64aka`)

+
c5`
6ck

(−1 + ak + 2a` + 62aka`)

ck ≤ z ≤ c` − ck
2 f47 b

(5)
47 = 16

3ckc`
(1− ak − 2a` + aka`),

b
(4)
47 = 8

ck
(−1+ak+2a`)+ 8

c`
(−1+2a`−2aka`), b

(3)
47 = 10(1−2a`+4aka`),

b
(2)
47 =

20c2k
3c`

(1 + 6ak − 2a` − 4aka`) +
20c2`
3ck

(1− ak − 2a` − 6aka`),

b
(1)
47 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(−1− 14ak + 16aka`)

+5c2`(−1 + 2a` − 16aka`) +
5c3`
ck

(−1 + ak + 2a` + 14aka`),

b
(0)
47 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(1 + 30ak − 2a` − 28aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(1− ak − 2a` − 30aka`),

b
(−1)
47 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(−1− 62ak + 64aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (−1 + 2a` − 64aka`)

+
c5`
6ck

(−1 + ak + 2a` + 62aka`)
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Table D.12: Coefficients for the function
f4j(z) = nkn`

(
b
(5)
4j z

5 + b
(4)
4j z

4 + b
(3)
4j z

3 + b
(2)
4j z

2 + b
(1)
4j z + b

(0)
4j + b

(−1)
4j z−1

)
(ckc`)

−3/2 for c`/2 ≤ ck ≤
2c`/3.

Interval f4j Coefficients

c` − ck
2 ≤ z ≤

c`+ck
2 f48 b

(5)
48 = 16

3ckc`
(1− ak − 3a` + 3aka`),

b
(4)
48 = 8

ck
(−1 + ak + 4a` − 4aka`) + 8

c`
(a` − 1), b

(3)
48 = 10,

b
(2)
48 =

20c2k
3c`

(1 + 6ak − a` − 6aka`) +
20c2`
3ck

(1− ak − 10a` + 10aka`),

b
(1)
48 = 5c2k(−1− 6ak) +

5c3k
c`

(−1− 14ak + a` + 14aka`) + 5c2`(−1− 6a`)

+
5c3`
ck

(−1 + ak + 18a` − 18aka`),

b
(0)
48 =

5c3k
2 (1 + 14ak) +

3c4k
2c`

(1 + 30ak − a` − 30aka`) +
5c3`
2 (1 + 14a`)

+
3c4`
2ck

(1− ak − 34a` + 34aka`),

b
(−1)
48 =

3c4k
8 (−1− 30ak) +

c5k
6c`

(−1− 62ak + a` + 62aka`)

+
5c2kc

2
`

12 (1 + 6ak + 6a` + 36aka`) +
3c4`
8 (−1− 30a`)

+
c5`
6ck

(−1 + ak + 66a` − 66aka`)
c`+ck

2 ≤ z ≤ c` f49 b
(5)
49 = 16

3ckc`
(ak − a` − aka`),

b
(4)
49 = 8

ck
(2a` − ak) + 8

c`
(4aka` − a` − 2ak), b

(3)
49 = 20(ak + a` − 2aka`),

b
(2)
49 =

20c2k
3c`

(8ak + a` − 10aka`) +
20c2`
3ck

(ak − 8a` + 6aka`),

b
(1)
49 = 10c2k(−4ak − a` + 2aka`) +

5c3k
c`

(−16ak − a` + 18aka`)

+10c2`(−ak − 4a` + 2aka`) +
5c3`
ck

(−ak + 16a` − 14aka`),

b
(0)
49 = 5c3k(8ak+a`−2aka`)+

3c4k
2c`

(32ak+a`−34aka`)+5c3`(ak+8a`−2aka`)

+
3c4`
2ck

(ak − 32a` + 30aka`),

b
(−1)
49 =

3c4k
4 (−16ak − a` + 2aka`) +

c5k
6c`

(−64ak − a` + 66aka`)

+
10c2kc

2
`

3 (ak + a` + 4aka`) +
3c4`
4 (−ak − 16a` + 2aka`)

+
c5`
6ck

(64a` − ak − 62aka`)

c` ≤ z ≤ ck + c`
2 f410 b

(5)
410 = 16

3ckc`
(ak + a` − 3aka`),

b
(4)
410 = 8

ck
(−ak − 2a` + 4aka`) + 8

c`
(−2ak − a` + 4aka`),

b
(3)
410 = 20(ak + a` − 2aka`),

b
(2)
410 =

20c2k
3c`

(8ak + a` − 10aka`) +
20c2`
3ck

(ak + 8a` − 10aka`),

b
(1)
410 = 10c2k(−4ak − a` + 2aka`) +

5c3k
c`

(−16ak − a` + 18aka`)

+10c2`(−ak − 4a` + 2aka`) +
5c3`
ck

(−ak − 16a` + 18aka`),

b
(0)
410 = 5c3k(8ak+a`−2aka`)+

3c4k
2c`

(32ak+a`−34aka`)+5c3`(ak+8a`−2aka`)

+
3c4`
2ck

(ak + 32a` − 34aka`),

b
(−1)
410 =

3c4k
4 (2aka` − a` − 16ak) +

c5k
6c`

(−64ak − a` + 66aka`)

+
10c2kc

2
`

3 (ak + a` + 4aka`) +
3c4`
4 (2aka` − 16a` − ak)

+
c5`
6ck

(66aka` − ak − 64a`)
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Table D.13: Coefficients for the function
f4j(z) = nkn`

(
b
(5)
4j z

5 + b
(4)
4j z

4 + b
(3)
4j z

3 + b
(2)
4j z

2 + b
(1)
4j z + b

(0)
4j + b

(−1)
4j z−1

)
(ckc`)

−3/2 for c`/2 ≤ ck ≤
2c`/3.

Interval f4j Coefficients

ck + c`
2 ≤ z ≤ c` + ck

2 f411 b
(5)
411 = 16

3ckc`
(a` − aka`), b

(4)
411 = 16

ck
(aka` − a`) + 8

c`
(−a`),

b
(3)
411 = 20a`, b

(2)
411 =

20c2k
3c`

(a` + 6aka`) +
160c2`
3ck

(a` − aka`),
b
(1)
411 = 10c2k(−a`−6aka`)+

5c3k
c`

(−a`−14aka`)+40c2`(−a`)+
80c3`
ck

(aka`−a`),
b
(0)
411 = 5c3k(a` + 14aka`) +

3c4k
2c`

(a` + 30aka`) + 40c3`(a`) +
48c4`
ck

(a` − aka`),
b
(−1)
411 =

3c4k
4 (−a` − 30aka`) +

c5k
6c`

(−a` − 62aka`) +
10c2kc

2
`

3 (a` + 6aka`)

+12c4`(−a`) +
32c5`
3ck

(aka` − a`)
c` + ck

2 ≤ z ≤ c` + ck f412 b
(5)
412 = 16

3ckc`
aka`, b

(4)
412 =

(
− 16

ck
− 16

c`

)
aka`, b

(3)
412 = 40aka`,

b
(2)
412 =

(
160c2k
3c`

+
160c2`
3ck

)
aka`, b

(1)
412 = 80

(
−c2k −

c3k
c`
− c2` −

c3`
ck

)
aka`,

b
(0)
412 =

(
80c3k + 48

c4k
c`

+ 80c3` + 48
c4`
ck

)
aka`,

b
(−1)
412 =

(
−24c4k −

32c5k
3c`

+
80c2kc

2
`

3 − 24c4` −
32c5`
3ck

)
)
aka`
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Table D.14: Coefficients for the function
f5j(z) = nkn`

(
b
(5)
5j z

5 + b
(4)
5j z

4 + b
(3)
5j z

3 + b
(2)
5j z

2 + b
(1)
5j z + b

(0)
5j + b

(−1)
5j z−1

)
(ckc`)

−3/2 for 2c`/3 ≤
ck ≤ 3c`/4.

Interval f5j Coefficients

0 ≤ z ≤ c`−ck
2 f51 b

(5)
51 = 32

3ckc`
(−1 + ak + a` − aka`), b

(4)
51 = 16

ck
(ak − 2aka`) + 16

c`
(1− 2ak −

a` + 4aka`),

b
(3)
51 = 0, b

(2)
51 =

40c2k
3c`

(−1+2ak+a`−10aka`)+
40c2`
3ck

(2aka`−ak), b
(1)
51 = 0,

b
(0)
51 = 5c3k(1−2ak +32aka`)+

3c4k
c`

(a`+2ak−1−34aka`)+10c3`(ak−2aka`)

+
3c4`
ck

(2aka` − ak), b
(−1)
51 = 0

c`−ck
2 ≤ z ≤ ck − c`

2 f52 b
(5)
52 = 16

3ckc`
(−3 + 4ak + 4a` − 6aka`),

b
(4)
52 = 8

ck
(1−2a`)+ 8

c`
(1−2ak +4aka`), b

(3)
52 = 10(1−2ak−2a` +4aka`),

b
(2)
52 = 20

c2k
3c`

(−1 + 2ak − 16aka`) +
20c2`
3ck

(2a` − 1),

b
(1)
52 = 5c2k(−1 + 2ak + 2a` − 4aka`) +

5c3k
c`

(1− 2ak − 2a` + 4aka`)

+5c2`(−1 + 2ak + 2a` − 4aka`) +
5c3`
ck

(1− 2ak − 2a` + 4aka`),

b
(0)
52 =

5c3k
2 (1− 2ak + 2a` + 60aka`) +

3c4k
2c`

(2ak − 1− 64aka`)

+
5c3`
2 (1 + 2ak − 2a` − 4aka`) +

3c4`
2ck

(2a` − 1),

b
(−1)
52 =

3c4k
8 (−1 + 2ak + 2a` − 4aka`) +

c5k
6c`

(1− 2ak − 2a` + 4aka`)

+
5c2kc

2
`

12 (1− 2ak − 2a` + 4aka`) +
3c4`
8 (−1 + 2ak + 2a` − 4aka`)

+
c5`
6ck

(1− 2ak − 2a` + 4aka`)

ck − c`
2 ≤ z ≤ c` − ck f53 b

(5)
53 = 16

3ckc`
(−3+3ak +4a`−4aka`), b

(4)
53 = 8

ck
(1−ak−2a`+2aka`)+ 8

c`
,

b
(3)
53 = 10(1− 2a`), b

(2)
53 =

20c2k
3c`

(−1− 6ak) +
20c2`
3ck

(−1 + ak + 2a`− 2aka`),

b
(1)
53 = 5c2k(−1− 6ak + 2a` + 12aka`) +

5c3k
c`

(1 + 14ak − 2a` − 28aka`)

+5c2`(2a` − 1) +
5c3`
ck

(1− ak − 2a` + 2aka`),

b
(0)
53 =

5c3k
2 (1 + 14ak + 2a` + 28aka`) +

3c4k
2c`

(−1− 30ak) +
5c3`
2 (1− 2a`)

+
3c4`
2ck

(−1 + ak + 2a` − 2aka`),

b
(−1)
53 =

3c4k
8 (−1− 30ak + 2a` + 60aka`) +

c5k
6c`

(1 + 62ak − 2a` − 124aka`)

+
5c2kc

2
`

12 (1+6ak−2a`−12aka`)+
3c4`
8 (2a`−1)+

c5`
6ck

(1−ak−2a`+2aka`)

c` − ck ≤ z ≤ ck
2 f54 b

(5)
54 = 16

3ckc`
(−3 + 3ak + 4a` − 5aka`),

b
(4)
54 = 8

ck
(1−ak−2a`+4aka`)+ 8

c`
(1−2aka`), b

(3)
54 = 10(1−2a`+4aka`),

b
(2)
54 =

20c2k
3c`

(−1− 6ak + 8aka`) +
20c2`
3ck

(−1 + ak + 2a` − 10aka`),

b
(1)
54 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(1 + 14ak − 2a` − 12aka`)

+5c2`(−1 + 2a` − 16aka`) +
5c3`
ck

(1− ak − 2a` + 18aka`),

b
(0)
54 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(−1− 30ak + 32aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(−1 + ak + 2a` − 34aka`),

b
(−1)
54 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(1 + 62ak − 2a` − 60aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (2a` − 1− 64aka`)

+
c5`
6ck

(1− ak − 2a` + 66aka`)
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Table D.15: Coefficients for the function
f5j(z) = nkn`

(
b
(5)
5j z

5 + b
(4)
5j z

4 + b
(3)
5j z

3 + b
(2)
5j z

2 + b
(1)
5j z + b

(0)
5j + b

(−1)
5j z−1

)
(ckc`)

−3/2 for 2c`/3 ≤
ck ≤ 3c`/4.

Interval f5j Coefficients
ck
2 ≤ z ≤

c`
2 f55 b

(5)
55 = 16

3ckc`
(−1− ak + 2a` − aka`),

b
(4)
55 = 8

ck
(1− ak − 2a` + 4aka`) + 8

c`
(−1 + 4ak + 2a` − 6aka`),

b
(3)
55 = 10(1− 2a` + 4aka`),

b
(2)
55 =

20c2k
3c`

(1− 10ak − 2a` + 12aka`) +
20c2`
3ck

(−1 + ak + 2a` − 10aka`),

b
(1)
55 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(−1 + 18ak − 16aka`)

+5c2`(−1 + 2a` − 16aka`) +
5c3`
ck

(1− ak − 2a` + 18aka`),

b
(0)
55 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(1− 34ak − 2a` + 36aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(−1 + ak + 2a` − 34aka`),

b
(−1)
55 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(−1 + 66ak − 64aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (−1 + 2a` − 64aka`)

+
c5`
6ck

(1− ak − 2a` + 66aka`)
c`
2 ≤ z ≤ c` −

ck
2 f56 b

(5)
56 = 16

3ckc`
(1− 3ak − 2a` + 3aka`),

b
(4)
56 = 8

ck
(ak − 1 + 2a`) + 8

c`
(−1 + 4ak + 2a` − 6aka`),

b
(3)
56 = 10(1− 2a` + 4aka`),

b
(2)
56 =

20c2k
3c`

(1− 10ak − 2a` + 12aka`) +
20c2`
3ck

(1− ak − 2a` − 6aka`),

b
(1)
56 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(−1 + 18ak − 16aka`)

+5c2`(2a` − 1− 16aka`) +
5c3`
ck

(ak − 1 + 2a` + 14aka`),

b
(0)
56 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(1− 34ak − 2a` + 36aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(1− ak − 2a` − 30aka`),

b
(−1)
56 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(−1 + 66ak − 64aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (2a` − 1− 64aka`)

+
c5`
6ck

(ak − 1 + 2a` + 62aka`)

c` − ck
2 ≤ z ≤ ck f57 b

(5)
57 = 16

3ckc`
(1− 3ak − 3a` + 5aka`),

b
(4)
57 = 8

ck
(ak − 1 + 4a` − 4aka`) + 8

c`
(4ak − 1 + a` − 4aka`), b

(3)
57 = 10,

b
(2)
57 =

20c2k
3c`

(1− 10ak − a` + 10aka`) +
20c2`
3ck

(1− ak − 10a` + 10aka`),

b
(1)
57 = 5c2k(−1− 6ak) +

5c3k
c`

(18ak − 1 + a` − 18aka`) + 5c2`(−1− 6a`)

+
5c3`
ck

(ak − 1 + 18a` − 18aka`),

b
(0)
57 =

5c3k
2 (1 + 14ak) +

3c4k
2c`

(1− 34ak − a` + 34aka`) +
5c3`
2 (1 + 14a`)

+
3c4`
2ck

(1− ak − 34a` + 34aka`),

b
(−1)
57 =

3c4k
8 (−1− 30ak) +

c5k
6c`

(−1 + 66ak + a` − 66aka`)

+
5c2kc

2
`

12 (1 + 6ak + 6a` + 36aka`) +
3c4`
8 (−1− 30a`)

+
c5`
6ck

(−1 + ak + 66a` − 66aka`)
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Table D.16: Coefficients for the function
f5j(z) = nkn`

(
b
(5)
5j z

5 + b
(4)
5j z

4 + b
(3)
5j z

3 + b
(2)
5j z

2 + b
(1)
5j z + b

(0)
5j + b

(−1)
5j z−1

)
(ckc`)

−3/2 for 2c`/3 ≤
ck ≤ 3c`/4.

Interval f5j Coefficients

ck ≤ z ≤ c`+ck
2 f58 b

(5)
58 = 16

3ckc`
(1− ak − 3a` + 3aka`),

b
(4)
58 = 8

ck
(ak − 1 + 4a` − 4aka`) + 8

c`
(a` − 1), b

(3)
58 = 10,

b
(2)
58 = (

20c2k
3c`

(1 + 6ak − a` − 6aka`) +
20c2`
3ck

(1− ak − 10a` + 10aka`),

b
(1)
58 = 5c2k(−1− 6ak) +

5c3k
c`

(−1− 14ak + a` + 14aka`) + 5c2`(−1− 6a`)

+
5c3`
ck

(−1 + ak + 18a` − 18aka`),

b
(0)
58 =

5c3k
2 (1 + 14ak) +

3c4k
2c`

(1 + 30ak − a` − 30aka`) +
5c3`
2 (1 + 14a`)

+
3c4`
2ck

(1− ak − 34a` + 34aka`),

b
(−1)
58 =

3c4k
8 (−1− 30ak) +

c5k
6c`

(−1− 62ak + a` + 62aka`)

+
5c2kc

2
`

12 (1 + 6ak + 6a` + 36aka`) +
3c4`
8 (−1− 30a`)

+
c5`
6ck

(−1 + ak + 66a` − 66aka`)
c`+ck

2 ≤ z ≤ c` f59 Same as f49, see Table D.12.
c` ≤ z ≤ ck + c`

2 f510 Same as f410, see Table D.12.
ck + c`

2 ≤ z ≤ c` + ck
2 f511 Same as f411, see Table D.13.

c` + ck
2 ≤ z ≤ c` + ck f512 Same as f412, see Table D.13.



197

Table D.17: Coefficients for the function
f6j(z) = nkn`

(
b
(5)
6j z

5 + b
(4)
6j z

4 + b
(3)
6j z

3 + b
(2)
6j z

2 + b
(1)
6j z + b

(0)
6j + b

(−1)
6j z−1

)
(ckc`)

−3/2 for 3c`/4 ≤
ck ≤ c`. For ck = c`, the function f63 is equal to f1 of Appendix C in G06.

Interval f6j Coefficients

0 ≤ z ≤ c`−ck
2 f61 b

(5)
61 = 32

3ckc`
(−1 + ak + a` − aka`), b

(4)
61 = 16

ck
(ak − 2aka`) + 16

c`
(1− 2ak −

a` + 4aka`),

b
(3)
61 = 0, b

(2)
61 =

40c2k
3c`

(−1+2ak+a`−10aka`)+
40c2`
3ck

(2aka`−ak), b
(1)
61 = 0,

b
(0)
61 = 5c3k(1−2ak+32aka`)+

3c4k
c`

(−1+2ak+a`−34aka`)+10c3`(ak−2aka`)

+
3c4`
ck

(2aka` − ak), b
(−1)
61 = 0

c`−ck
2 ≤ z ≤ c` − ck f62 b

(5)
62 = 16

3ckc`
(−3 + 4ak + 4a` − 6aka`),

b
(4)
62 = 8

ck
(1− 2a`) + 8

c`
(1− 2ak + 4aka`),

b
(3)
62 = 10(1− 2a` − 2ak + 4aka`),

b
(2)
62 =

20c2k
3c`

(−1 + 2ak − 16aka`) +
20c2`
3ck

(2a` − 1),

b
(1)
62 = 5c2k(−1 + 2ak + 2a` − 4aka`) +

5c3k
c`

(1− 2ak − 2a` + 4aka`)

+5c2`(−1 + 2ak + 2a` − 4aka`) +
5c3`
ck

(1− 2ak − 2a` + 4aka`),

b
(0)
62 =

5c3k
2 (1− 2ak + 2a` + 60aka`) +

3c4k
2c`

(−1 + 2ak − 64aka`)

+
5c3`
2 (1 + 2ak − 2a` − 4aka`) +

3c4`
2ck

(2a` − 1),

b
(−1)
62 =

3c4k
8 (−1 + 2ak + 2a` − 4aka`) +

c5k
6c`

(1− 2ak − 2a` + 4aka`)

+
5c2kc

2
`

12 (1− 2ak − 2a` + 4aka`) +
3c4`
8 (−1 + 2ak + 2a` − 4aka`)

+
c5`
6ck

(1− 2ak − 2a` + 4aka`)

c` − ck ≤ z ≤ ck − c`
2 f63 b

(5)
63 = 16

3ckc`
(−3 + 4ak + 4a` − 7aka`),

b
(4)
63 = 8

ck
(1− 2a` + 2aka`) + 8

c`
(1− 2ak + 2aka`),

b
(3)
63 = 10(1− 2a` − 2ak + 8aka`),

b
(2)
63 =

20c2k
3c`

(2ak − 1− 8aka`) +
20c2`
3ck

(2a` − 1− 8aka`),

b
(1)
63 = 5c2k(−1 + 2ak + 2a` − 20aka`) +

5c3k
c`

(1− 2ak − 2a` + 20aka`)

+5c2`(−1 + 2ak + 2a` − 20aka`) +
5c3`
ck

(1− 2ak − 2a` + 20aka`),

b
(0)
63 =

5c3k
2 (1− 2ak + 2a` + 28aka`) +

3c4k
2c`

(−1 + 2ak − 32aka`)

+
5c3`
2 (1 + 2ak − 2a` + 28aka`) +

3c4`
2ck

(−1 + 2a` − 32aka`),

b
(−1)
63 =

3c4k
8 (−1 + 2ak + 2a` − 68aka`) +

c5k
6c`

(1− 2ak − 2a` + 68aka`)

+
5c2kc

2
`

12 (1− 2ak − 2a` + 68aka`) +
3c4`
8 (−1 + 2ak + 2a` − 68aka`)

+
c5`
6ck

(1− 2ak − 2a` + 68aka`)

ck − c`
2 ≤ z ≤

ck
2 f64 b

(5)
64 = 16

3ckc`
(−3 + 3ak + 4a` − 5aka`),

b
(4)
64 = 8

ck
(1−ak−2a`+4aka`)+ 8

c`
(1−2aka`), b

(3)
64 = 10(1−2a`+4aka`),

b
(2)
64 =

20c2k
3c`

(−1− 6ak + 8aka`) +
20c2`
3ck

(−1 + ak + 2a` − 10aka`),

b
(1)
64 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(1 + 14ak − 2a` − 12aka`)

+5c2`(−1 + 2a` − 16aka`) +
5c3`
ck

(1− ak − 2a` + 18aka`),

b
(0)
64 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(−1− 30ak + 32aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(−1 + ak + 2a` − 34aka`),

b
(−1)
64 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(1 + 62ak − 2a` − 60aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (−1 + 2a` − 64aka`)

+
c5`
6ck

(1− ak − 2a` + 66aka`)
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Table D.18: Coefficients for the function
f6j(z) = nkn`

(
b
(5)
6j z

5 + b
(4)
6j z

4 + b
(3)
6j z

3 + b
(2)
6j z

2 + b
(1)
6j z + b

(0)
6j + b

(−1)
6j z−1

)
(ckc`)

−3/2 for 3c`/4 ≤
ck ≤ c`. For ck = c`, the function f67 is equal to f2 of Appendix C in G06.

Interval f6j Coefficients
ck
2 ≤ z ≤

c`
2 f65 b

(5)
65 = 16

3ckc`
(−1− ak + 2a` − aka`),

b
(4)
65 = 8

ck
(1 − ak − 2a` + 4aka`) + 8

c`
(−1 + 4ak + 2a` − 6aka`), b

(3)
65 =

10(1− 2a` + 4aka`),

b
(2)
65 =

20c2k
3c`

(1− 10ak − 2a` + 12aka`) +
20c2`
3ck

(−1 + ak + 2a` − 10aka`),

b
(1)
65 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(−1 + 18ak − 16aka`)

+5c2`(−1 + 2a` − 16aka`) +
5c3`
ck

(1− ak − 2a` + 18aka`),

b
(0)
65 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(1− 34ak − 2a` + 36aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(−1 + ak + 2a` − 34aka`),

b
(−1)
65 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(−1 + 66ak − 64aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (−1 + 2a` − 64aka`)

+
c5`
6ck

(1− ak − 2a` + 66aka`)
c`
2 ≤ z ≤ c` −

ck
2 f66 b

(5)
66 = 16

3ckc`
(1− 3ak − 2a` + 3aka`),

b
(4)
66 = 8

ck
(−1 + ak + 2a`) + 8

c`
(−1 + 4ak + 2a` − 6aka`),

b
(3)
66 = 10(1− 2a` + 4aka`),

b
(2)
66 =

20c2k
3c`

(1− 10ak − 2a` + 12aka`) +
20c2`
3ck

(1− ak − 2a` − 6aka`),

b
(1)
66 = 5c2k(−1− 6ak + 2a` − 4aka`) +

5c3k
c`

(−1 + 18ak − 16aka`)

+5c2`(−1 + 2a` − 16aka`) +
5c3`
ck

(−1 + ak + 2a` + 14aka`),

b
(0)
66 =

5c3k
2 (1 + 14ak + 2a` − 4aka`) +

3c4k
2c`

(1− 34ak − 2a` + 36aka`)

+
5c3`
2 (1− 2a` + 32aka`) +

3c4`
2ck

(1− ak − 2a` − 30aka`),

b
(−1)
66 =

3c4k
8 (−1− 30ak + 2a` − 4aka`) +

c5k
6c`

(−1 + 66ak − 64aka`)

+
5c2kc

2
`

12 (1 + 6ak − 2a` + 52aka`) +
3c4`
8 (−1 + 2a` − 64aka`)

+
c5`
6ck

(−1 + ak + 2a` + 62aka`)

c` − ck
2 ≤ z ≤ ck f67 b

(5)
67 = 16

3ckc`
(1− 3ak − 3a` + 5aka`),

b
(4)
67 = 8

ck
(−1 + ak + 4a`− 4aka`) + 8

c`
(−1 + 4ak + a`− 4aka`), b

(3)
67 = 10,

b
(2)
67 =

20c2k
3c`

(1− 10ak − a` + 10aka`) +
20c2`
3ck

(1− ak − 10a` + 10aka`),

b
(1)
67 = 5c2k(−1− 6ak) +

5c3k
c`

(−1 + 18ak + a` − 18aka`) + 5c2`(−1− 6a`)

+
5c3`
ck

(−1 + ak + 18a` − 18aka`),

b
(0)
67 =

5c3k
2 (1 + 14ak) +

3c4k
2c`

(1− 34ak − a` + 34aka`) +
5c3`
2 (1 + 14a`)

+
3c4`
2ck

(1− ak − 34a` + 34aka`),

b
(−1)
67 =

3c4k
8 (−1− 30ak) +

c5k
6c`

(−1 + 66ak + a` − 66aka`)

+
5c2kc

2
`

12 (1 + 6ak + 6a` + 36aka`) +
3c4`
8 (−1− 30a`)

+
c5`
6ck

(−1 + ak + 66a` − 66aka`)
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Table D.19: Coefficients for the function
f6j(z) = nkn`

(
b
(5)
6j z

5 + b
(4)
6j z

4 + b
(3)
6j z

3 + b
(2)
6j z

2 + b
(1)
6j z + b

(0)
6j + b

(−1)
6j z−1

)
(ckc`)

−3/2 for 3c`/4 ≤
ck ≤ c`. For ck = c`, the functions f610 and f612 are equal to f3, and f4 of Appendix C in
G06, respectively.

Interval f6j Coefficients

ck ≤ z ≤ c`+ck
2 f68 b

(5)
68 = 16

3ckc`
(1− ak − 3a` + 3aka`),

b
(4)
68 = 8

ck
(−1 + ak + 4a` − 4aka`) + 8

c`
(a` − 1), b

(3)
68 = 10,

b
(2)
68 =

20c2k
3c`

(1 + 6ak − a` − 6aka`) +
20c2`
3ck

(1− ak − 10a` + 10aka`),

b
(1)
68 = 5c2k(−1− 6ak) +

5c3k
c`

(−1− 14ak + a` + 14aka`) + 5c2`(−1− 6a`)

+
5c3`
ck

(−1 + ak + 18a` − 18aka`),

b
(0)
68 =

5c3k
2 (1 + 14ak) +

3c4k
2c`

(1 + 30ak − a` − 30aka`) +
5c3`
2 (1 + 14a`)

+
3c4`
2ck

(1− ak − 34a` + 34aka`),

b
(−1)
68 =

3c4k
8 (−1− 30ak) +

c5k
6c`

(−1− 62ak + a` + 62aka`)

+
5c2kc

2
`

12 (1 + 6ak + 6a` + 36aka`) +
3c4`
8 (−1− 30a`)

+
c5`
6ck

(−1 + ak + 66a` − 66aka`)
c`+ck

2 ≤ z ≤ c` f69 Same as f49, see Table D.12.
c` ≤ z ≤ ck + c`

2 f610 Same as f410, see Table D.12.
ck + c`

2 ≤ z ≤ c` + ck
2 f611 Same as f411, see Table D.13.

c` + ck
2 ≤ z ≤ c` + ck f612 Same as f412, see Table D.13.
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