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Abstract –Current operational forecasts of solar eruptions are made by human experts using a combination
of qualitative shape-based classification systems and historical data about flaring frequencies. In the past
decade, there has been a great deal of interest in crafting machine-learning (ML) flare-prediction methods
to extract underlying patterns from a training set – e.g. a set of solar magnetogram images, each character-
ized by features derived from the magnetic field and labeled as to whether it was an eruption precursor.
These patterns, captured by various methods (neural nets, support vector machines, etc.), can then be
used to classify new images. A major challenge with any ML method is the featurization of the data:
pre-processing the raw images to extract higher-level properties, such as characteristics of the magnetic
field, that can streamline the training and use of these methods. It is key to choose features that are infor-
mative, from the standpoint of the task at hand. To date, the majority of ML-based solar eruption methods
have used physics-based magnetic and electric field features such as the total unsigned magnetic flux, the
gradients of the fields, the vertical current density, etc. In this paper, we extend the relevant feature set to
include characteristics of the magnetic field that are based purely on the geometry and topology of 2D mag-
netogram images and show that this improves the prediction accuracy of a neural-net based flare-prediction
method.
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1 Introduction

Sunspot active regions manifest as large-scale, high-
magnitude, dipolar structures in images of the magnetic field
at the surface, or “photosphere,” of the sun. They are the source
regions for the largest solar magnetic eruptions, which produce
flares, Coronal Mass Ejections (CMEs), and energetic particle
events that can drive important space weather events. Photo-
spheric magnetograms are 2D samples of the structure of the
full 3D solar magnetic field and thus can provide important
clues about the increasing complexity of the magnetic field in
the lead-up to a magnetic eruption – information that can poten-
tially be leveraged for the purposes of prediction. While there
has been a great deal of recent work on machine-learning based
algorithms for predicting solar eruptions from magnetogram
data, the features used by these algorithms have been predomi-
nately physics-based: taking the curl of the magnetic field to get

currents, computing its gradient, summing up its absolute
values, etc.

We propose a new approach to this task: computing the
topology and geometry of the structures in 2D magnetograms.
Instead of deriving physical quantities from these data sets on a
per-pixel basis, or attempting to model the full 3D coronal
magnetic field or field line connections from the 2D information
that is captured in magnetograms, we formally quantify their
structure using the fundamental mathematics of shape. We
argue that – even though this procedure ignores the 3D structure
or connectivity of the full field – it enhances the predictive skill
of current methods. Indeed, it is the current operational practice
for human forecasters to predict solar eruptions by examining
sunspot images and/or magnetograms and using the McIntosh
(1990) or Hale et al. (1919) classification systems to categorize
active region complexity using alphabetical designations. Each
category of active region has a statistical “24-h eruption
probability” derived from historical records that is then reported
(following forecaster adjustments for factors such as rate of flux
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emergence) as the eruption forecast for a particular active region
(Crown, 2012). Recent statistical methods extend this approach
by using historical flaring rates, together with a Poisson process
hypothesis, to develop more complicated models. For example,
Gallagher et al. (2002) use the McIntosh classification to
determine the probabilities of C-, M-, or X-class flares and
Wheatland (2004) use a power law distribution of the flare
magnitudes to determine an empirical eruption probability.
However, these methods have not seen much use in operational
forecasting, primarily because they do not show greater
predictive capability than the historical forecasts that use
look-up tables.

Recognizing that the magnetic reconnection that triggers
eruptions takes place in the upper atmosphere (corona) of the
sun, attempts have been made to model the coronal magnetic
field using the measured photospheric field as a boundary condi-
tion. The simplest method to extrapolate the surface field into the
corona assumes zero current, so that the field potential is a solu-
tion to the Laplace equation (Wang & Sheeley Jr., 1992; Barnes
et al., 2005; Barnes & Leka, 2006). However, potential fields
cannot store energy – they are lowest energy states – and thus
cannot model the build-up of energy leading to a CME. Other
strategies include nonlinear force-free field (NLFFF) extrapola-
tions (Priest & Démoulin, 1995; Demoulin et al., 1996; Aulanier
et al., 2005; Wiegelmann & Sakurai, 2012), which are known to
correlate well with the sites of X-ray flare emission from erup-
tions. NLFFF models are presently the most promising avenue
of coronal magnetic field and eruption modeling (Schrijver
et al., 2008), but they have a large number of free parameters that
require extensive manual tuning. Note that the photospheric
boundary conditions are not sufficient to uniquely determine
the solution (Schrijver et al., 2006; Metcalf et al., 2008; DeRosa
et al., 2009), and hence the utility of these modeled 3D structures
for forecasting appears to be limited at present.

An alternate approach models the connectivity between
opposite polarity magnetic patches in the photosphere to
identify significant structures such as “nulls” and “separatrix
surfaces.” For example, Barnes et al. (2005) develop a
“Magnetic Charge Topology” (MCT) metric that is used to
characterize eruption potential. Longcope (2005) reviews the
application of topology to inferred field line connections and
(Tarr & Longcope, 2012; Tarr et al., 2013) apply these methods
to analyze the eruption potential of active regions. While these
methods are sophisticated and the structures that they extract are
meaningful in the context of solar eruptions, their computational
complexity limits their operational application.1

It is important to note that the use of the term “topology” in
the methods described in the previous paragraph refers to the
study of the shape and/or connectivity of 3D field lines above
the photosphere (e.g., Longcope, 2005). This contrasts with
the more general, mathematical definition of the term, which
refers to the shape and connectivity of sets of any dimension –

of which field lines are one instance. Ideas and techniques from
this broader field of topology can be used to address many other
important and potentially meaningful properties of solar data.
Mathematically, topology distinguishes sets that cannot be trans-
formed into one another by continuous maps with continuous

inverses (homeomorphisms). Though this can obscure much of
what is commonly meant by structure, its roughness can also
be a virtue in that it will eliminate distinctions that could be
due to unimportant distortions, e.g. those due to projection of
the sun’s spherical surface onto a 2D magnetogram. Computa-
tional topology, also known as topological data analysis
(TDA), operationalizes this highly abstract framework for use
with real-world data, which may be noisy and poorly sampled.
Though computing the abstract topology from this type of data
is not feasible, an aspect of shape that can be computed relatively
straightforwardly is homology. In homology, shapes are distin-
guished according to their pieces, holes, voids, etc. This calcula-
tion can be reduced to linear algebra, essentially the calculation
of the dimensions of the ranges and null spaces of certain
matrices (Kaczynski et al., 2004). TDA has been used in many
applications, including coverage of sensor networks (de Silva
and Ghrist, 2007), structures in natural images (Ghrist, 2008),
neural spike train data (Singh et al., 2008), and even the large-
scale structure of the universe (Xu et al., 2019).

To compute the topology of a collection of points that
samples an object requires an interpolation scheme to “fill in”
the gaps between the points. The theory of persistent homology
leverages interpolation to compute a shape as a function of
scale. The result is encoded in a plot called a persistence dia-
gram, which can be further processed to yield useful features.
For example, such a diagram naturally captures how the struc-
tures in a magnetogram change as flux emerges into an active
region during the evolution towards a flaring state. By contrast,
computational geometry – widely used in computer graphics
and computer-aided design – addresses the problem of extract-
ing purely geometric information (line segments, polyhedra,
etc.) from a data set. The spatial relationship of the positive
and negative polarities in an active region, for example – and
particularly their positioning relative to strong “neutral lines”
in the photospheric field configuration – are known to be impor-
tant indicators of flaring (e.g., Schrijver, 2007), and computa-
tional geometry can easily capture these properties in formal
ways. We will demonstrate in Section 2 that a combination of
topological and geometric analyses can extract meaningful
information from a series of magnetogram examples.

In the past decade, the large increase in magnetogram data
afforded by space missions and advances in data access have
shifted the forefront of flare-prediction research from empirical
modeling methods to “data analytic” approaches such as
machine learning. Camporeale (2019) summarizes the state of
the art in machine learning approaches to space weather appli-
cations. In ML-based prediction applications, characteristic
“features” of the photospheric magnetic field, sometimes com-
bined with features seen in simultaneous extreme ultraviolet
(EUV) images of the solar corona, are used in a statistical sense
to “train” a computational model to predict the probability of an
eruption within a given time period (usually 24 h). One example
is a support vector machine (SVM) architecture to perform a
binary classification of magnetograms as flaring or non-flaring
(Yuan et al., 2010; Yang et al., 2013; Bobra & Couvidat,
2015; Boucheron et al., 2015; Nishizuka et al., 2017). Nishizuka
et al. (2017) have also applied decision trees and clustering to
the same task. Neural networks, which go beyond simple binary
classification by learning complex nonlinear relationships
among their inputs, have also been used to great advantage
by Nishizuka et al. (2018). A variety of other ML algorithms,

1 Note that Barnes and Leka have gone on to apply their MCT
metric to a potentially operational flare prediction algorithm called
DAFFS.
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such as Bayesian networks (Yu et al., 2010), radial basis model
networks (Colak & Qahwaji, 2009), logistic regression (Yuan
et al., 2010), LASSO regression (Campi et al., 2019), and
random forests or ERTs (Nishizuka et al., 2017; Campi et al.,
2019) have also been implemented for solar flare prediction
with some degree of success. Nishizuka et al. (2017) and Jonas
et al. (2018) include Solar Dynamics Observatory (SDO)
Atmospheric Imaging Assembly and EUV image charac-
teristics in addition to magnetogram data in a fully connected
neural network architecture. Benvenuto et al. (2018) use Fuzzy
C-Means – an unsupervised machine learning method – in com-
bination with some of the mentioned supervised methods for
solar flare prediction. Approaches such as Guerra et al. (2018)
and Kontogiannis et al. (2018), while not machine-learning
approaches themselves, provide statistical tools for evaluating
the engineered features in terms of their potential advantage
in machine learning models. Finally, while most of the above
methods focus on developing ML models using engineered fea-
tures, recent methods have employed a convolutional neural
network (CNN) approach which automatically extracts features
from raw magnetogram data that are important to predicting
flares (Huang et al., 2018; Park et al., 2018; Zheng et al., 2019).

The sophisticated methods described in the previous para-
graph represent the state-of-the-art in ML-based solar eruption
prediction. However, they predominately use physics-based
features, and a careful, quantitative comparison study shows that
none of them are significantly more skilled, and indeed are typi-
cally less skilled, than current human-in-the-loop methods
employed at operational forecasting offices (Leka et al.,
2019a, 2019b; Barnes et al., 2016). Our goal is to improve upon
these results using ideas and algorithms from computational
topology and computational geometry to quantify the complex-
ity in magnetograms and/or sunspot images. In this study, we
analyze magnetogram images using different flux thresholds –
sub- or super-level sets, in mathematical parlance – and extract
structural signatures that, we conjecture, can be effectively
leveraged as elements in a feature vector for machine-learning
methods. As evidence in favor of that conjecture, we use
high-fidelity vector magnetic field data from the Helioseismic
and Magnetic Imager (HMI) instrument (Scherrer et al., 2011)
on the NASA Solar Dynamics Observatory satellite (Pesnell
et al., 2011) and show that adding shape-based signatures to
existing feature vectors improves the 24-h prediction accuracy
of a neural-net based method.

This is, to our knowledge, the first time that systematic
quantitative measures of the shape of 2D magnetic struc-
tures in the photosphere – based on their topology and their
geometry – have been developed for the purposes of flare pre-
diction, and tested carefully in the context of a machine-learning
method. In a sense, our approach is a mathematical systemiza-
tion of the current ad hoc McIntosh or Hale classification sys-
tems. Though it employs topology, it is very different from
the work described above that analyzes the magnetic field-line
structure. We focus on the shapes of two-dimensional sets,
restricting our analysis to the photospheric magnetic field struc-
tures. Our goal is to extract formal shape characterizations that
can be leveraged by ML methods to improve flare prediction.
We are not attempting to model the coronal magnetic field or
determine field line connections between neighboring opposite
polarity structures. Our approach differs from existing
work on geometric (Schrijver, 2007; McAteer et al., 2010)

and topological (Knyazeva et al., 2011; Makarenko et al.,
2014) analysis of magnetogram features in that the goal is to
derive features that improve ML-based methods for flare predic-
tion rather than to discover any one physical property that is
more or less predictive of flaring. We believe that this approach
has merit since current operational flare prediction methods –

the McIntosh and/or Hale classification systems used by human
experts – are fundamentally based on active-region shape and
geometry. In addition, Tarr & Longcope (2012) state that
“topological changes” can be shown to precede flaring activity
in a typical sunspot active region, suggesting that active region
shape, and its evolution, have a fundamental, meaningful
connection to the physics of magnetic eruptions.

The following section goes into more depth on how to for-
mulate and deploy computational topology and geometry in the
context of HMI magnetograms. Section 3 presents a study of
how features extracted from magnetograms using those techni-
ques can improve the prediction accuracy of a specific machine-
learning method for flare prediction. We conclude in Section 4.

2 Capturing the shapes of active regions

Figure 1 shows a series of line-of-sight magnetograms of an
active region before and during an eruptive period. In panel (a),
the active region is newly emerged and is concentrated into a
relatively compact and simple configuration.2 Such initial emer-
gence configurations store little free energy and are rarely asso-
ciated with eruptions. However, as more magnetic flux emerges
and this active region evolves under the influence of the plasma
flows in the photosphere, it is stretched, rotated, and sheared
into the complex shape shown in panel (b). While in this com-
plex configuration, the active region produced a strong flare that
had major impacts on Earth-based radio reception. The further
development shown in panel (c), later in this sunspot’s series
of flaring events, is characterized by intense “polarity mixing,”
with positive and negative field in close proximity in highly
sheared and stretched shapes.

Topological data analysis (TDA) (Kaczynski et al., 2004;
Ghrist, 2008; Zomorodian, 2012) is exactly the right foundation
for extracting and codifying the spatial richness of these images.
Topology is the fundamental mathematics of shape: two sets are
topologically equivalent if they are homeomorphic3; thus, as is
often said, topology does not distinguish between a doughnut
and a coffee cup. Unfortunately it is not practical to compute
the topology of a set even if one has a complete description
of it, let alone when one only has a finite number of samples.
Topological data analysis was developed to address these chal-
lenges. It formally quantifies the shape of a data set according
the so-called Betti numbers: the number of components (b0),
holes (b1), voids (b2), etc., in the data. Note that every topolo-
gical space has a unique set of Betti numbers, but these do not
completely classify the topology; for example, they would not
capture the twist of a Möbius strip.

2 We note that since this longitudinal flux density measurement is
taken close to the eastern limb of the Sun, the polarities do not
appear to fully balance. This is a well-known effect of strong, often
non-radial, fields in emerging active regions observed near the limb.
3 That is, they can be mapped to one another by a bi-continuous
bijection.
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Of course, a finite collection of points does not really have a
“shape.” TDA handles this by defining a scale parameter, for
example, creating a manifold from a set of disconnected points
by enlarging each point into a ball, as sketched in Figure 2. This
leads to the notion of e-connectedness: a pair of points is treated
as connected if they are within a distance e of each other. A set
of points connected by a graph with edges of length no more
than e is called an e component. Of course, when e = 0, each
point (black dot in the figure) is a component. Conversely,
the entire manifold is viewed as connected, from the standpoint
of TDA, if the balls have a sufficiently large radius, as for the
value e4 in the figure. The procedure of varying scale is familiar
from the calculation of fractal dimension: one views dimension
as reflecting the scale-dependent growth of the number of data
points in a ball. However, TDA does not attempt to compute
shape in the limit e ? 0, as one would for fractal dimension;
rather it views the change in shape at finite values e as reflecting
macroscopic properties of the data (Robins et al., 1998, 2000).

More generally, the connections give rise to a simplicial
complex, called a Rips4 complex; this is essentially a list of
these connections and groups of connections. Connections
between pairs of points give edges (red lines in Fig. 2) that
correspond to 1-simplices. When there is a cycle with three
vertices – i.e. three e-balls pairwise overlap – the associated
triangle (green) is filled in; this is a 2-simplex, etc. The shape

of the complex, and the Betti numbers that describe it, vary with
the scale parameter: when e = 0, b0 is equal to the number of
points in the data set and the Rips complex also contains no
higher-dimensional simplices so b1 = 0. As e grows, nearby
points are successively joined, causing components to grow
and holes to form. For example for e = e2 in the figure there
are three components and one hole, so b = (b0, b1) = (3, 1),
but as e reaches e3, two triangles have formed to fill in the hole
and b1 becomes 0. Every hole eventually vanishes as the com-
plex gets filled in, and so for large enough e there is a single
component with no holes, i.e. b = (1, 0).

All of this information about the spatial scales of the
topological features in a data set can be captured in a plot
called a persistence diagram (Edelsbrunner et al., 2000). Most
e-components, for example, have birth and death parameter
values – where they appear and disappear, respectively,
from the construction. A b0-persistence diagram has a point at
(ebirth, edeath) for each component. Such a diagram is shown in
Figure 3 for the series of magnetograms in Figure 1. Compo-
nents that still exist at the upper end of the calculation interval
– here e = 5 pixels – are represented by triangles in the figure.
When multiple components have the same ebirth and edeath
values, the color of the icon in Figure 3 indicates the number
of components with that lifespan. One can also plot persistence
diagrams for the other Betti numbers; the large hole to the right
of center in Figure 2d, for instance, would give a point near
(e4, e5) on a b1-persistence diagram, where e5 is the ball radius

Fig. 2. Computational topology: sketch of a data set (the black points) enlarged into balls of diameter e, for four values of e. The resulting
connections, shown as lines (red) and triangles (green) form what is called a Rips complex.

4 An alternative, related complex is the �Cech complex.

Fig. 1. A series of HMI magnetograms of sunspot #AR 12673, which produced multiple large eruptions as it crossed the disk of the Sun in
September 2017: (a) at 0000 UT on 9/1, (b) at 0900 UT on 9/5, roughly 24 hours before this sunspot produced an X-class solar flare, and (c) at
1000 UT on 9/7, around the time of an M-class flare.
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that causes all of the e-balls around it to overlap, while the short-
lived hole in panel (b) would be close to the diagonal near e2.
This rich representation of information about the underlying
shape that is sampled by a set of data points can, we conjecture,
be effectively leveraged by ML-based flare-prediction methods.
In the case of the magnetograms in Figure 1, we have prelimin-
ary evidence for this conjecture: the b0-persistence diagrams in
Figure 3 reveal a change in the topology of active region AR
#12673 more than 24 h before the X-class flare that took place
at 0910 UT on 6 September 2017. To the eye, the change in the
overall number of points on these diagrams is quite obvious;
more important is the number and location of the points that
lie far from the diagonal: i.e. those that persist for wide ranges
of the scale parameter e. The rich, multi-scale nature of the
information captured in a persistence diagram, and the subjec-
tive nature of some of the associated definitions – viz., the
notion of “far” from the diagonal – makes it a challenge to
develop effective formal metrics for describing that structure.
This challenge is a current focus in the TDA research commu-
nity; see Section 3.2. A full treatment of the associated solutions
is beyond the scope of this paper.

While the pre-flare change in topology is encouraging,
there is another issue here: the threshold used in these calcula-
tions to choose which pixels in the magnetogram to treat as
points in the complex. Thresholding data into categories
involves an awkward choice: rarely is there a crisp boundary
between “low” and “high.” (Indeed, this is a large part of the
drive to use machine learning in data science.) While the radial
magnetic field strength in an HMI magnetogram ranges up to
about 5000 Gauss, there is no clear notion of what constitutes
a good threshold value for defining coronal footpoint bound-
aries. Moreover, any threshold should be relatively insensitive
to the instrumental noise threshold (on the order of 10 G) and
the small-scale, background field (on the order of 100 G).

The proof-of-concept persistence diagrams in Figure 3 were
constructed from thresholded images containing only pixels
with magnetic field intensity greater than 200 G; i.e. a super-
level set of the intensity. Instead of some arbitrary choice, it
would be preferable to view the threshold itself as a parameter

to vary, thereby obtaining a sequence of super-level sets. An
elegant alternative is to simply use the threshold value, rather
than the spatial scale, as the persistence parameter. To eliminate
the spatial scale parameter e of the Rips complex that is appro-
priate for arbitrary point clouds like that shown in Figure 2,
we note that magnetograms are pixed-based data. The simplest
construction of a complex in this case uses a cubical complex.
Here, one simply treats two pixels as connected if they share
an edge or a vertex and each represents a flux level that is below
the chosen threshold (i.e., sub-level thresholding). Figure 4
shows a schematic of such a construction; Figure 5a–c shows
cubical complexes constructed for three threshold values for
AR #12673. Note how the holes in Figure 5a–c form and then
fill in as the threshold changes. This gives a different view on
persistent homology and a second kind of persistence diagram:
one with the threshold value, rather than the connectedness
scale, on the x and y axes, as shown in Figure 5d. This persis-
tence diagram is far more detailed than the ones in Figure 3
because it captures structures at a range of thresholds, and
thus is more affected by the complexity of the structure of this
active region. The patterns in this plot – the large number of
short-lived holes near the diagonal and the long-lived holes

Fig. 3. b0 persistence diagrams in a temporal sequence of magnetograms of active region #12673, constructed from the set of points (pixels)
with positive magnetic field intensities greater than 200 Gauss. The co-ordinates of each point (x, y) on a persistence diagram represent the birth
and death times of a b0 feature. Note that all the features lie above the x = y line in the diagrams since a feature cannot die before it is born. In
terms of number of connected components at various scales, these diagrams reveal a clear change in the topology of the field structure around
the X2.2-class flare that took place at 0910 UT on 6 September 2017.

Fig. 4. In a cubical complex, above-threshold pixels are treated as
connected iff they are neighbors. This example has four connected
components, outlined in red, and one hole, outlined in blue – i.e. b0 = 4
and b1 = 1.
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further above and to the left – are an accurate formal representa-
tion of that complexity.5

Persistence diagrams are powerful tools, but topology alone
is not a complete tool for characterizing the shape of structures
in a magnetogram. Simply identifying the number of high-flux
regions, for instance, says nothing about their sizes or proximi-
ties. A pair of converging high-flux regions looks the same,
from the standpoint of topology until they actually touch6 –

and topology cannot measure quantitative features like the total
magnetic flux in such a region. In order to capture these impor-
tant, and potentially predictive, properties so that they can be
used by ML algorithms, we extract geometric information as
well by computing the sizes of the high-flux regions and the
distances between them, summing up the flux inside them,
finding their centroids, and the like. Computational geometry
algorithms (Forrest, 1971; Preparata & Shamos, 1985) are
widely used for these kinds of calculations across many fields
of science and engineering, including astronomy – e.g. shape
reconstruction for asteroids (Devogele et al., 2015) and galaxy
distribution analysis (Bhavsar & Lauer, 1996).

Our approach to distilling informative, discriminating fea-
tures for each active region out of solar magnetogram data
builds on all of these foundations. Any or all of the topological

and geometric properties described in this section might be
meaningful predictors of flaring. Moreover, it is not only the
topology and geometry of the positive and negative regions of
the field that are indicative, but also their topological and
geometric relationships to one another; so we also explore com-
posite features, as described in the following section.

3 Results

As demonstration of the utility of shape-based features in
machine-learning methods for solar flare prediction, we chose
to work with an artificial neural network (ANN) (Haykin,
1998), a machine-learning approach to fitting a repertoire of
nonlinear functions to the data. ANNs, also known as multilayer
perceptron architectures, are both flexible and powerful; they
can generally model more complex nonlinear functions than
regression networks like SVMs or decision trees. An ANN is
built by stacking together layers of nonlinear elements, known
as neurons, with weighted interconnections between consecu-
tive layers. The input layer takes the magnetogram features
and feeds them into the stack. A layer-by-layer, feed-forward
propagation of activations finally results in a prediction at the
output layer – in this case, a binary value that classifies the
magnetogram as a precursor to a flare (or not), i.e. whether that
magnetogram is followed by an eruption above the X-ray class
of M-flares within the next 24 h. This classification of magne-
tograms is equivalent to the M1.0+/0/24 event designation in
Leka et al. (2019a).

Fig. 5. Cubical complexes for AR #12673 at three example threshold values and the full associated b1 persistence diagram for a range of
positive magnetic field thresholds.

5 Some persistence diagram analysis techniques discount or discard
points near the diagonal, as they are more sensitive to noise and
pixelation of the data.
6 From the standpoint of computational topology, the definition of
touch depends on the scale parameter e.
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The features used in this study were derived from a set of
HMI SHARP region magnetograms, described in Section 3.1.
We preprocessed each using the techniques described in the
previous section to extract a suite of geometry- and topology-
based features. These feature sets, described in Section 3.2, were
tested both as the sole input vectors to a many-layered
fully-connected deep neural network system and in combination
with the physics-based feature vectors used in current ML
models.

The design of a ANN requires setting various parameters,
including the number of layers and the number of neurons in
the “hidden layers” between the input and the output layers;
these details are discussed in Appendix A. The process of train-
ing the ANN involves tuning the weights in the layer intercon-
nections so that the ANN generates the correct labels for the
data, given values for all of the input features. To implement
this, we divided the data into a training set and a testing set;
see Section 3.3. The training data were used by standard optimi-
zation algorithms to tune the weights. We repeated this using
various combinations of the feature sets and evaluated the
resulting prediction accuracy using the True Skill Score on
the testing set; results are reported in Section 3.4.

3.1 Data

The Helioseismic and Magnetic Imager (HMI) instrument
on the NASA Solar Dynamics Observatory satellite views the
entire solar disk at a nominal data cadence of 12 min, and
has captured every active region on the Earth-facing side of
the Sun since its launch in 2010. The HMI dataset contains
Space Weather HMI Active Region Patches (SHARPs) that pro-
vide cut-out regions around each of these active regions, each
with vector magnetic field and other derived quantities calcu-
lated for all pixels in the region (Bobra et al., 2014) as it rotates
across the Earth-facing hemisphere of the Sun. For this study,
we used only Br, the radial field component, of SHARPs images
along with the associated metadata taken by the HMI instrument
between January 2010 and December 2016. The Br component
image data is available in the JSOC hmi.sharp_cea_720s

dataset, where the magnetic field vector B is remapped to a
Lambert Cylindrical Equal-Area (CEA) projection, and decom-
posed into the components Br, Bh and B/. This segment of the
SHARPs dataset contains about 2.6 million data records, each
approximately 2 MB in size, totaling 5 TB of data. These active
regions are known to have produced around 1250 M1.0+ flares
within 24 h of the image time – see, for example, Table 1 in
Schrijver (2016). We downsampled the Br dataset to a one-hour
cadence (i.e., taking every 5th magnetogram), then used the the
NOAA Geostationary Operational Environment Satellite
(GOES) X-ray Spectrometer (XRS) flare catalog7 to label each
one as to whether or not the associated active region produced
anM1.0+ flare in the 24 h following the time of the sample. Next,
we discarded all the magnetogram images that contained invalid
pixel data (NaN values). The resulting data set included 3691
active regions, of which 141 produced at least one M1.0+
flare as they crossed the Sun’s disk and 3550 did not. This
corresponded to 438,539 total magnetograms, of which 5538
and 432,821 respectively, were labeled asflaring and non-flaring.

A large positive/negative imbalance like this is a major
challenge for any machine-learning algorithm, as described
further below.

3.2 Features

Values for a number of physics-based features, like the
total unsigned flux in the active regions and the vertical current
helicity, are included in the image metadata for all SHARPs
data products; see Table 1 for a full list of these quanti-
ties and jsoc.stanford.edu/doc/data/hmi/sharp/
sharp.htm or Bobra et al. (2014) for details about these
values and the associated calculations. This feature set – the
standard in ML-based flare prediction work – is the base case
for our comparison experiments.

Our procedure for computing geometry- and topology-based
features from each magnetogram was as follows. To remove
“topological” noise, we first filtered out pixels whose magnetic
flux magnitude was below 200 G, then aggregated the resulting
pixels into clusters. We computed the number and area of these
clusters, then discarded all clusters whose area was less than
10% of the area of the maximum cluster. We performed these
operations separately for the positive (>200 G) and negative
(<�200 G) fields. We then computed an interaction factor
(IF) between all positive/negative pairs; this quantity is defined
a manner similar to the so-called Ising Energy used by Florios
et al. (2018) (first introduced in Ahmed et al., 2010):

IF ¼ Bpos � Bneg

r2min

where Bpos and Bneg are the sums of the flux over the respec-
tive components and rmin is the smallest distance between
them.8 We then chose the pair with the highest IF value and
derived a number of secondary features from that “Most
Interacting Pair” (MIP). These features are listed in Table 2.
For magnetogram images with only one sign of polarity, we
assigned all features involving the missing polarity a default
value of 0, including those that contain the distance terms
between opposite polarities.

To compute topological features from these data, we
constructed cubical complexes for each magnetogram across
the range of magnetic flux magnitude thresholds between
263.15 G and 5000 G divided into ten equally spaced magnetic
flux values (both 263.15 G and 5000 G inclusive): {263.16 G,
789.47 G, 1315.79 G, . . . 5000 G}.9 This range covers all rele-
vant flux levels from quiet Sun network to sunspot umbral
cores. We repeated this operation separately for the positive
and negative fields, yielding a total of 10 + 10 = 20 cubical
complexes. We then used those complexes to construct b1
persistence diagrams, like that in Figure 5d, that capture the

7 www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/
solar-flares/x-rays/goes/xrs/

8 Florios et al. (2018) compute Ising Energy by aggregating over all
pairs of individual monopoles across the two polarity regions:
�P

ij
SiSj
d2ij

(Si = �1 for positive/negative pairs). On the other hand, IF
is computed using the summed fluxes over the two polarity regions
and the smallest distance between them.
9 The specific threshold values come from dividing the interval
[�5000 G, 5000 G] into 20 equally spaced flux values, since we are
performing the analysis for positive and negative magnetic fluxes as
explained further.
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threshold values at which each hole in that field is born and dies.
Finally, we transformed these 2D diagrams to vectors that can
be more-effectively leveraged by machine-learning methods,
one vector each for the positive and the negative magnetic flux
values.

In the past few years, there has been a growing literature
on the problem of featurizing persistence diagrams. There are
two classes of approaches: finite-dimensional embeddings or
kernel-based methods. Persistence landscapes (Bubenik, 2015),
persistence images (Adams et al., 2017) and persistence silhou-
ettes (Chazal et al., 2014) are some examples of the first
approach that fit template functions to the diagrams. Kernel-
based methods (Bubenik, 2015; Reininghaus et al., 2015;
Kusano et al., 2016; Carrière et al., 2017; Le & Yamada,
2018) use generalized scalar products that transform the
diagrams implicitly into infinite-dimensional Hilbert Spaces.
While these methods are useful in defining meaningful relation-
ships between two persistence diagrams, their inherent compres-
sion can lead to a loss of information. To address this, Carrière
et al. (2019) propose a layer for neural network architectures that

encodes most of these vector representations using a set of
generalized point-wise transformation functions. Here, we
chose a very simple version of the first class of approaches,
counting the number of “live” holes at each value of the
threshold flux. Since we have 10 cubical complexes for each
polarity of the field, this produces two vectors with ten entries
each. We concatenate these together to create a single vector
of length 20 – the topology-based features for our study. Table 3
summarizes the three basic feature sets of interest evaluated in
this study.

Table 1. SHARPs magnetic field features: values for these 19 features, as well as estimates of the errors in those calculations, are provided for
each magnetogram in the SHARPs database.

Acronym Description Units

LAT_FWT Latitude of the flux-weighted center of active pixels degrees
LAT_FWT Latitude of the flux-weighted center of active pixels degrees
AREA_ACR Line-of-sight field active pixel area micro hemispheres
USFLUX Total unsigned flux Mx
MEANGAM Mean inclination angle, gamma degrees
MEANGBT Mean value of the total field gradient G/Mm
MEANGBZ Mean value of the vertical field gradient G/Mm
MEANGBH Mean value of the horizontal field gradient G/Mm
MEANJZD Mean vertical current density mA/m2

TOTUSJZ Total unsigned vertical current A
MEANALP Total twist parameter, alpha 1/Mm
MEANJZH Mean current helicity G2/m
TOTUSJH Total unsigned current helicity G2/m
ABSNJZH Absolute value of the net current helicity G2/m
SAVNCPP Sum of the absolute value of the net currents per polarity A
MEANPOT Mean photospheric excess magnetic energy density ergs/cm3

TOTPOT Total photospheric magnetic energy density ergs/cm3

MEANSHR Mean shear angle (measured using Btotal) degrees
SHRGT45 Percentage of pixels with a mean shear angle greater than 45� percent

Abbreviations: Mx: Maxwells, G: Gauss, Mm: megameters, A: Amperes.

Table 2. Geometry-based features: 16 total for each magnetogram. All distances were measured in terms of pixels for SDO HMI magnetogram
images with a pixel resolution of one arcsecond (1 arcsecond = 725 km).

Name Units # of features

Total number of positive (negative) clusters integer 2
Size of largest positive (negative) clusters arcseconds 2
Interaction factor of MIP G2/arcseconds2 1
COM distance between positive and negative elements of MIP arcseconds 1
Smallest distance between elements of MIP arcseconds 1
COM distance to smallest distance ratio arcseconds 1
Total magnetic flux of each element of MIP G 2
Size of each element of MIP arcseconds2 2
Total magnetic flux per unit area of each element of MIP G/arcseconds2 2
Total magnetic flux of largest elements in the magnetogram G 2

Table 3. The three basic feature sets evaluated in this study. The
performance of a combination of some of these feature sets is also
studied, as described in Section 3.4.

Feature set Number of features

SHARPs (baseline) 19
Geometry-based 16
Topology-based 20
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3.3 Training

We followed standard procedures to train and evaluate the
ANN model, beginning by splitting the dataset into training
and testing sets. During the training phase, the output labels pro-
duced by the ANN, working from the features derived from
each magnetogram in the training set, were compared with
the true labels for that magnetogram. The difference was then
propagated backwards through the network to update the
weights of the interconnections between the layers. Via multiple
passes through the entire dataset (“epochs”), the weights were
updated until the ANN learned a set of weights that sufficiently
fit the data. Once the training phase was completed, the weights
of the model were frozen permanently and the ANN could be
used to make predictions on the testing data. Details and
citations for all of the steps in this process can be found in
Appendix A.

The normal approach to splitting the data into training and
testing sets – random shuffling – is not appropriate in this appli-
cation. Instead, we split the magnetogram images dataset into
training and testing sets based on their SHARPs IDs. That is,
we randomly chose 70% of the SHARPs regions and placed
all feature vectors extracted from the associated magnetograms
in the training set. The feature vectors extracted from magneto-
grams from the remaining 30% made up the testing set. This
ensured that the features used in evaluating the ANN did not
have any similar counterparts that were used by the model dur-
ing the training phase, thereby avoiding artificial boosting of
prediction scores. We repeated this random shuffling procedure
with 10 different random seeds to generate statistical results
across 10 different training/testing sets.

3.4 Evaluation and discussion

To study the utility of geometry- and topology-based
features in solar-flare prediction with the ANN described in
the previous sections, we performed a number of experiments.
After 50 training epochs in each, we computed the True Skill
Statistic (Woodcock, 1976) (also known as the Hanssen-Kuiper
skill score) on the testing set, which is widely used in solar-flare
prediction studies:

TSS ¼ TP

TPþ FN
� FP

FPþ TN

where TP and FP (true and false positives) are, respectively,
the images that are classified correctly and incorrectly as flar-
ing. Similarly TN and FN are the images classified correctly
and incorrectly as non-flaring. Note that �1 � TSS � 1
and TSS = �1 only when TP = TN = 0, so that every predic-
tion is wrong; and TSS = 1 only when FP = FN = 0, so that
every prediction is correct. The skill score reflects an accuracy
relative to a reference forecast that is designed such that both
random forecasts and unskilled forecasts (always predict
majority class) have a score of 0. When TSS = 0 the predic-
tion no better than chance in the sense that the “hit rate” is
the same as the “false alarm rate.”

We performed suites of ten different training/testing
experiments with different combinations of these three feature
sets. The baseline experiment used the corpus of the 19
SHARPs features of Table 1. The mean TSS score for this
was 0.68 with the range of [0.57, 0.76]. This is in line with other

machine-learning based flare-prediction methods (Leka et al.,
2019a), indicating that our neural net is a useful test case for this
comparison study.

Training and validating the same ANN with the 16 geome-
try-based features listed in Table 2 yielded a mean TSS value of
0.67 with a range of [0.54, 0.72], suggesting that these geome-
try-based features, surprisingly, do only slightly worse than the
SHARPs features, which were constructed by solar physics
experts to be their best characterizations of an active region
for the purpose of eruption prediction. A TSS of 0.67 is also
in line with the current ad hoc prediction methods that employ
human experts, qualitative classifications, and historical lookup
tables (Leka et al., 2019a). It is encouraging that abstract
geometric features, captured automatically by an algorithm,
allow a machine-learning method to match that score.

To determine how the geometry-based features worked in
conjunction with the SHARPs features, we repeated these
experiments using both the SHARPs metadata features and the
geometry-based features (again on the same data sets), which
raised the mean TSS score to 0.72, with a range of [0.60,
0.79]. That is, there is a synergy between these two feature sets:
the combination works better than either one alone, indicating
that when physical properties of the magnetic field are augmen-
ted with geometric properties of the active region, the predictive
potential of a given magnetogram increases. The box-and-
whisker plots in panel (a) of Figure 6 provide a graphical
comparison of the TSS scores reported in this paragraph and
the previous one.

We then trained and tested the ANN using our topology-
based features, alone and in combination with the SHARPs fea-
tures. The results are summarized in Figure 6b. Topological fea-
tures alone yielded a mean TSS of 0.72 with a range of [0.65,
0.79]. This is a clear improvement over the performance of
the ANN with only the baseline SHARPs features. In combina-
tion with the SHARPs features, the topological features
improved the mean TSS score to 0.73 with a range of [0.67,
0.80]. Comparing the two panels of Figure 6, one can observe
that this was also a slight improvement over the SHARPs-geo-
metry combination.

While the above analysis describes the aggregate TSS com-
parison, it is useful to understand how the developed feature sets
(geometry-based, topology-based and their combination feature
set counterparts with SHARPs features) perform with respect to
the SHARPs-only baseline in each of the ten training/testing
splits. The boxplots in Figure 7 show the improvement in
TSS scores for the geometry-based, topology-based and the
combination feature sets with respect to the baseline TSS. This
improvement is determined by subtracting the SHARPs-only
TSS score for each generated training/testing data split from
the TSS score of the developed feature set using the same train-
ing/testing split. For the developed feature sets, the mean
improvement of the TSS over the baseline is in line with the
above analysis. The geometry-based mean TSS deteriorates
by 0.01 while the SHARPs-geometry combination show a mean
TSS improvement of 0.04. The topology-based features and the
SHARPs-topology combination show a mean TSS improve-
ment of 0.03 and 0.05 respectively.

The results of these experiments confirm our intuition that
abstract measures of the shapes of magnetogram structures
can be indicative of eruption potential. This is additionally
satisfying since the historical method of assessing the eruptive
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potential of an active region relies on human forecasters
essentially analyzing “complexity of shape” in a qualitative
manner. Our results demonstrate that computational geometry
and computational topology have captured this in a quantitative
and repeatable algorithm. This not only points the way forward
to a more robust set of features for machine-learning based
eruption prediction architectures. It may even lead to new and
more-effective way to classify sunspot active regions.

In this section, we have relied on TSS as a sole metric for
comparing the performance of the model for different feature
sets. An extension of this analysis to other metrics is described

in Appendix B. The scores for these alternative metrics,
presented in Tables B.1 and B.2, indicate that their trends across
the different feature sets are similar to the TSS trends discussed
above. Additionally, Appendix C describes the predictive power
of individual features from the different feature sets using the
Fisher score – a univariate feature ranking method. As shown
in Figure C.1a and b, 9 of the geometry-based features make
it to the top 15 highest ranking features when ranking SHARPs
and geometry-based features, whereas 6 of the top 15 features
belong to the topology feature set in the SHARPs-topology
ranking experiment.

Fig. 7. Box-and-whisker plots of the TSS score improvements for the developed feature sets over the baseline (SHARPs-only) feature set,
reported for ten different training/testing splits generated from the same dataset. The green solid and dotted lines indicate the median and the
mean of the TSS score improvements, respectively, for each plot. In plots (a) and (b), the label “SHARPs_Geom” denotes a combined feature
set of SHARPs and geometry-based features, while “SHARPs_Top” denotes a combined feature set of SHARPs and topology-based features
respectively.

Fig. 6. Box-and-whisker plots of the TSS scores for different feature sets used across the geometry and topology experiments, reported for ten
different training/testing splits generated from the same dataset. The green solid and dotted lines indicate the median and the mean of the TSS
scores, respectively, for each plot. In plots (a) and (b), the label “SHARPs_Geom” denotes a combined feature set of SHARPs and geometry-
based features, while “SHARPs_Top” denotes a combined feature set of SHARPs and topology-based features respectively.
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4 Conclusions

We have shown that abstract spatial properties of magneto-
grams can be useful in machine-learning methods for solar-flare
prediction. We extract these properties from magnetograms
using computational geometry and computational topology
techniques, producing feature vectors that compete well with
the traditional physics-based SHARPs features for the purposes
of machine learning methods for flare prediction. A neural
net trained on a large corpus of active regions from HMI,
preprocessed using these techniques, classifies magnetograms
as flare precursors with a slightly higher True Skill Statistic
score than the same model using traditional SHARPs features –
the educated assessment by human experts as to the best infor-
mation with which to characterize an active region. Combining
shape- and physics-based features further improved the TSS
scores, indicating a synergy between the two types of informa-
tion. Following acceptance of this article, we have recently
become aware of further work by the Pulkovo group that has
utilized some topological data analysis techniques in a support
vector regression model for time-to-flare prediction, trained on
a SHARPs data set comprised only of flaring regions – a limita-
tion that is problematic in machine learning, where one wants a
training set that includes both positive (flaring) and negative
(non-flaring) instances (Knyazeva et al., 2017). Perhaps for this
reason, Knyazeva et al. (2017) found that the topological fea-
tures did not – in contrast to our findings – allow the SVM to
outperform the SHARPs features.

The power of these highly abstract classifications of
structure may be surprising, particularly in view of the fact that
magnetograms are just the boundary conditions of the full fields
whose complicated dynamics are what produce eruptions. Even
so, active region shape has fundamental, meaningful connec-
tions to the physics leading up to an eruption. As an active
region emerges, becoming progressively larger and more com-
plex, the shapes of the opposite polarity structures on a magne-
togram capture the evolution of the photospheric field. Flares
occur when that field forces a rearrangement of the fields in
the corona, where magnetic reconnection occurs. Shape is what
human forecasters use in their classifications, and topology can
codify structural complexity in a formal and yet practical
manner that makes it ideally suited for capturing this richness.
In current operational practice, an expert examines sunspot
images and/or magnetograms, classifies a sunspot active region
according to taxonomies developed empirically, and then uses
look-up tables of historical probabilities to say whether or not
it will erupt within a future time period. In a sense, our approach
systematizes this “human-in-the-loop” forecasting approach by
applying the mathematical concepts of topology to address the
shape and connectivity of sets derived from the structure of
the photospheric magnetic field.

In a future paper we plan to validate our results using a
number of variants of our neural network architecture. In addi-
tion, our results can be given a firmer statistical basis by using
more training and testing partitions of the HMI data, different
initial conditions for the network weights, and different numbers
of training epochs. Finally, neural networks are only one type of
machine-learning model: we will obviously need to compare
with other methods, like SVMs, decision trees, and convolu-
tional neural networks (CNNs), before making broader claims

about the general utility of shape-based features in machine
learning.

There are also a number of data issues that require more
attention. Firstly, in our current approach, we simply discard
themagnetograms containing invalid pixel data. Addressing such
pixel-level anomalies in the data – e.g. by smoothing –would be a
good next step here. This will help prevent loss of any potentially
interesting samples and allow us to work with larger datasets.
It will also be important to address the appropriate choice of a
temporal resolution: is the selection of every fifth sample
(i.e., hourly resolution) optimal? This could be carried out in a
purely mathematical fashion, via expert analysis of persistence
diagrams, but it would also be useful to evaluate the effects of dif-
ferent temporal cadences on the TSS of the neural-net model.

Another important issue is to address is temporal evolution:
all current ML-based flare prediction methods, including those
reported in this paper, use only single snapshots of the field.
The dynamics of the structure of an active region – the progres-
sion through time of the shapes and their relationships – could
be captured using topological approaches that track those
structures through time and space, such as the CROCKER plots
of Topaz et al. (2015).

Last but not least: the geometric and topological feature sets
used here are only a first cut; extending them to capture different
aspects of the shape of an active region could improve the results.
For example, computational geometry can extract the curvatures
of the boundaries of the different polarity regions. In terms of
topology, the possibilities include higher-dimensional Betti num-
bers, alternative complex constructions, and different ways of
featurizing persistence diagrams. These could give us new tools
to address the structural complexity of active regions that are
potentially evolving towards an eruption.
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Appendix A

Artificial neural network: design and implementation

To evaluate the different feature sets, we designed a stan-
dard feedforward neural network using PyTorch (Paszke
et al., 2019) with six densely connected layers. The input layer
size is variable depending on the size of the feature set; the out-
put layer contains two neurons corresponding to the two
classes – flaring and non-flaring. The four intermediate layers
contain 12, 24, 16 and 8 neurons respectively, when counting
from the direction of the input to the output layer. To prevent
over-fitting, a Ridge Regression regularization with a penalty

factor of 0.01 is used at each layer that limits the L2 sum of
all the weights. For the study reported here, we designed the
neural network in a trial-and-error process that balanced com-
plexity of representation against training and testing time. In
future work, we play to formalize this approach of fine-tuning
the model hyperparameters (learning rates, regularization para-
meters, loss weights, etc.) using a separate validation and a test-
ing set (as opposed to only using a testing set). The validation
set can be used for determining the optimal hyperparameter
values, with the testing set used for a final evaluation of the
model. The layout of the network is shown in Figure A.1; the
network parameters are summarized in Table A.1.

We used the standard back-propagation algorithm built into
PyTorch to train the weights of the ANN, which are initialized
using the Glorot uniform initializer (Glorot & Bengio, 2010) at
the beginning of the training process. Since our problem is a
two category classification one, we chose a weighted binary
cross-entropy function to measure the training loss between
the model output and the true target that is propagated back-
wards to update the network weights. Over a training instance
for N data samples over C classes (here C = 2), this loss function
is given by,

L ¼
XN

i¼ 1

XC

c¼ 1

wcy
0
ic log pðyicÞ; ðA:1Þ

where p(yic) represents the target prediction probability for
class c of the ith data point, whose real target value is y

0
ic.

The loss function class weights wc in this formula determine
the penalty of incorrectly predicting the probability for the

Fig. A.1. Representation of the feed-forward Artificial Neural
Network (ANN) model used in this work. The number of neurons
in the input layer is equal to the size of the feature set being used. The
output layer has two neurons – one each for the flaring and non-
flaring classes.

Table A.1. Parameter settings for the Artificial Neural Network (ANN) model implementation.

Model parameters Settings

Total hidden layers 4
Hidden layer activation function Rectified linear unit
Output layer activation function Softmax
Weight regularization L2 with a penalty of 10�2

Training batch size 64
Loss function Weighted Binary Cross-Entropy (weights: wno�flare = 1, wflare = 100)
Optimization method Adagrad (parameters: learning rate = 5 � 10�4)
Number of Epochs 50
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associated classes c. As demonstrated in Section 3.1, our
dataset is highly unbalanced, with the non-flaring class
over-represented by two orders of magnitude. By choosing
wno�flare:wflare = 1:100, we over-penalize the minority class
(flaring magnetograms) to offset the effect of its size. This
is one of the many ways to mitigate imbalance in training sets,
and has been used in the flare-prediction literature (Bobra &
Couvidat, 2015; Nishizuka et al., 2018). Finally, we use the
Adagrad optimizer (Duchi et al., 2011) to perform the weight
update during the backpropagation phase. An extension of the
Stochastic Gradient Descent algorithm, the Adagrad optimizer
adapts the learning rate to the individual parameters, so that
more sensitive parameters which significantly affect the out-
put are assigned a lower learning rate, whereas less sensitive
parameters are updated with a greater learning rate. (Our
initial choice was the Adam optimizer, Kingma & Ba, 2014,
but we observed jitters in the prediction scores after conver-
gence when using it.) We used the default parameters for
the PyTorch implementation with the learning rate multiplier
set to 5 � 10�4.

All experiments were run on a NVIDIA TITAN V graphics
processing unit (NVIDIA Driver Version 440.31, CUDA
Version 10.2). Across all feature sets, the training time per
epoch was approximately 22 s. For a total of 50 epochs, the
total training time then amounted to approximately 19 min.
The average validation time across all the feature sets was
approximately 13 s.

Appendix B

Alternative evaluation metrics

Here, we report the performance of the various feature sets
using some other standard metrics. Comparing the forecast

against the actual event, we populate the contingency table
values: true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN). Using these four classes, we
compute the five additional metrics for each experiment: Accu-
racy, Precision, Recall, the F-1 Score (F1) and the Heidke Skill
Score (HSS):

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ðB:1Þ

Precision ¼ TP

TPþ FP
ðB:2Þ

Recall ¼ TP

TPþ FN
ðB:3Þ

F1 ¼ 2� Precision� Recall

Precisionþ Recall
ðB:4Þ

HSS ¼ 2ðTP� TN� FP� FNÞ
ðTPþ FNÞðFNþ TNÞ þ ðTPþ FPÞðFPþ TNÞ :

ðB:5Þ

For a detailed explanation of these metrics, refer to Bobra &
Couvidat (2015) (note that the HSS2 variant of the Heidke Skill
Score from Bobra & Couvidat, 2015 is used here). The mean
metric scores and the mean score improvements along with
the standard deviations over the baseline the geometry and
topology experiments are summarized in Tables B.1 and B.2
respectively. The trends for these metrics match the trends in
the TSS scores described in Section 3.

Table B.2. Performance evaluations of the various feature sets for the topology experiments using various metrics. The top three rows report
the mean metric score (with the standard deviation) across ten different training/testing sets, while the bottom two rows report the mean
improvement with the standard deviation of the metric scores with respect to the SHARP feature set.

Feature set Accuracy Precision Recall F-1 score HSS

SHARP 0.89 ± 0.01 0.09 ± 0.01 0.79 ± 0.06 0.15 ± 0.01 0.13 ± 0.01
Topology 0.90 ± 0.01 0.10 ± 0.01 0.81 ± 0.06 0.18 ± 0.02 0.16 ± 0.02
SHARP + Topology 0.90 ± 0.01 0.09 ± 0.01 0.83 ± 0.05 0.17 ± 0.02 0.15 ± 0.02
Topology improvement 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.05 0.02 ± 0.01 0.02 ± 0.01
SHARP + Topology improvement 0.01 ± 0.01 0.01 ± 0.00 0.04 ± 0.04 0.01 ± 0.01 0.02 ± 0.01

Table B.1. Performance evaluations of the various feature sets for the geometry experiments using various metrics. The top three rows report
the mean metric score (with the standard deviation) across ten different training/testing sets, while the bottom two rows report the mean
improvement with the standard deviation of the metric scores with respect to the SHARP feature set.

Feature set Accuracy Precision Recall F-10 score HSS

SHARP 0.89 ± 0.01 0.09 ± 0.01 0.79 ± 0.06 0.15 ± 0.01 0.13 ± 0.01
Geometry 0.88 ± 0.01 0.08 ± 0.01 0.79 ± 0.06 0.14 ± 0.01 0.12 ± 0.01
SHARP + Geometry 0.90 ± 0.01 0.09 ± 0.01 0.82 ± 0.06 0.17 ± 0.01 0.15 ± 0.01
Geometry improvement �0.01 ± 0.00 �0.01 ± 0.00 0.00 ± 0.03 �0.01 ± 0.01 �0.02 ± 0.01
SHARP + Geometry improvement 0.01 ± 0.00 0.01 ± 0.00 0.03 ± 0.02 0.01 ± 0.00 0.01 ± 0.00
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Appendix C

Feature ranking

Evaluating the model performance scores using different
feature sets is one way of determining how effective the engi-
neered features are in providing an accurate model prediction.
An alternative evaluation strategy is to compute the Fisher score
(Gu et al., 2011) individually for each feature, as done in Bobra
& Couvidat (2015). A method of univariate feature ranking, the
Fisher score (or the F-score) determines the ability of the feature
to separate the distributions of the classes in the dataset. For a
dataset with two labels, the F-score of a feature i, as defined
in Bobra & Couvidat (2015), is given by,

F ðiÞ ¼ ð�xþi � �xiÞ2 þ ð�x�i � �xiÞ2

1
nþ�1

Pnþ

k¼1
ðxþk;i � �xiÞ2 þ 1

n��1

Pn�

k¼1
ðx�k;i � �xiÞ2

; ðC:1Þ

where �xi, �xþi and �x�i represent the average feature value over
samples of the full dataset: n+ samples belonging to the
positive class and n� samples belonging to the negative class
respectively. The numerator in the above equation represents
the inter-class distance or separability, while the denominator
computes the intra-class variance. Thus, a feature with a
smaller spread within each of the two classes and a higher
separation between the two class means would generate a
higher F-score.

For all the features in the SHARPs-plus-geometry and
SHARPs-plus-topology combination feature sets from the geo-
metry and the topology experiments, we compute the normalized

F-score scaled with respect to the highest scoring feature.We use
the f_classif functionality in the Python Scikit-Learn package
(Pedregosa et al., 2011) to compute the F-score, and report the
top 15 ranking features. The results are shown in Figure C.1.
In all experiments, the top three ranking features – total
photospheric energy density (TOTPOT), total unsigned flux
(USFLUX) and the total area of the active pixels (AREA_ACR) –
belong to the SHARPs feature set. In the geometry-based experi-
ments (Fig. C.1a), all but one of the top 15 properties belong to
the geometry feature set. The higher-ranking of these pertain to
the magnetic flux: the largest area (max_pos_flux, max_neg_-
flux) and the polarities belonging to the MIP (IF_pos_flux,
IF_neg_flux), followed by the areas of the respective polarities
(geometry features with the “ _area” suffix). In the topology-
based experiments (Fig. C.1b), the feature ranking is more
mixed. Six of the top 15 features belong to the topology feature
set: the number of live holes at the magnetic flux values ±263.16
G (pos_intvl_1, neg_intvl_1), ±789.47 G (pos_intvl_2,
neg_intvl_2) and ±1315.79 G (pos_intvl_3, neg_intvl_3). In
terms of univariate feature ranking, the geometry (nine of the
top 15 features) and topology features (six of the top 15) perform
well individually when compared with SHARPs features.

These scores demonstrate the predictive power of individual
features in terms of their ability to discriminate the flaring and
non-flaring datasets. However, this cannot be directly correlated
with the TSS scores of the different feature sets described
above. The Fisher score is a univariate feature ranking method
and does not take into account the correlation between the dif-
ferent features. We leave this investigation of the correlation
within and between the various feature sets as future work.

Cite this article as: Deshmukh V, Berger TE, Bradley E & Meiss JD. 2020. Leveraging the mathematics of shape for solar magnetic
eruption prediction. J. Space Weather Space Clim. 10, 13.

Fig. C.1. Feature ranking, as determined via the Fisher score method, for the experiments reported in this paper. The x-axis is the normalized
Fisher score and the y-axis is the feature rank. Red identifies features based on topology and geometry; blue indicates SHARPs features. The
features are plotted in descending order of the F-Score value on the x-axis and ascending order of the rank on the y-axis (both axes are inverted).
The topological features described by the formats pos_intvl_n and neg_intvl_n represent the number of holes for the nth magnetic flux
threshold for the positive and negative polarities respectively.
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