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ABSTRACT

Fight-boundary grammars, b grammars for short, form the basic com-
ponent of coordinaled pair systems, cp systems for short, which in turn
correspond very closely to (are another formulation of) push-down automata (a
rb grammar is like a right-linear grammar except that one does not distinguish
between terminal and nonterminal symbols - still the rewriting is applied to the
last symbol of a string only and erasing rules are allowed). A cp system is a pair
of grammars the first of which is right-linear and the second right-boundary.
This pair of grammars works (rewrites) in a coordinated (synchronized) fashion;
the right-linear component models the input and and the finite control of a

push-down automaton while the rb component models the push-down store.

Adjusting consecutive words of a derivation § in a rb grammar & under each
other (letter-by-letter), for each positive integer n one gets {a "column’ word
which is) a record of the use of the n-th memory cell during 6. Collecting all
such records for all "successful” derivations ¢ one gets the n-full record
language of G denoted FR,(G). If one takes from the full record of the use of
the n-th cell (during &) only these observations {letters) which correspond to
the moments when the n-th memory cell is rewritten (is "active) then one gets
the active record of the use of the n-th cell (during &). Collecting all such
records (for all successful &) one gets the nm-active language of G, denoted

ACT(3).
In a previous paper we have proved that, for each rb system G and for each

n, ACT,(G) is regular and moreover for each set [ of positive integers

UAC‘Tn(G} is regular. In the present paper we prove that, for each rb system

nel

G and each n, FR,(G) is regular but | FR,(G) does not have to be regular for
5 / s

nef

arbitrary sets / of positive integers.



INTRODUCTION.

The theory of ects systems provides a common framework for a variety of
grammar and machine models studied in the literature {see [R]). Within this
approach various models are represented as tuples of basic components all of
which are rewriting systems that work together in a coordinated {(synchronized)
manner. One of such very basic building blocks are righé-boundary grammars,
b grammars for short (a right-boundary grammar is like a right-linear gram-
mar except that one does not distinguish between terminal and nonterminal
symbols - still the rewriting is applied to the last symbol of a string only and

erasing rules are allowed).

In particular rb grammars form the basic component of coordinated pair
systems, cp systems for short. A cp system consists of a pair of grammars the
first of which is right-linear (rl for short) and the second right-boundary. A
rewriting in a cp system consists of a pair of rewritings: one in the rl component
and one in the rb component - in this way one gets coordinated (or synchron-
ized) rewriting in both components. It is easily seen that cp systems correspond
very closely to {are another formulation of) push-down automata: the rl com-
ponent models, the input and the finite state control while the rb component

models the infinite push-down store.

Since rb grammars play such prominent role in the theory of grammars
and machines they should be thoroughly investigated. First of all we notice that
rb grammars form a special case of Buchi canonical regular systems (see [B])
which were a subject of intense investigation in the "early days” of automata
theory (see, e.g., [S1] and [G]). More recently rb grammars were investigated in
connection with their use in cp systems, see, e.g., [ER] and [EHR]. In particular
in [EHR] we have initiated the investigation into the use of memory in rb gram-

mars. The main idea presented in [EHR] is as follows.



A rb grammar G may be viewed as a processor operating on a data struc-
ture which is a one-way infinite array of (memory) cells - the processing (of a
special type) takes place at the right end of the nonempty prefix of the array.
So observing during a derivation § a fixed (say n-th) cell of the array yields the
n-th record of 6. Depending on what is recorded one gets different kinds of n-th
records. If a note is made of the contents of the n-th cell each time this cell is
being processed (rewritten) then one gets (a word that is) the active record of
the cell (during 8). If we collect together all active records of the n-th cell dur-
ing all successful derivations of G then we get the n-active language of G
denoted ACT, (G) {a derivation is successful if it leads from the axiom of G to the
empty word).

It is proved in [EHR] that for each rb grammar G and each positive integer

n, ACT,(G) is regular. Moreover this regularity is so "strong" that the union

UACT,,(G), where [ is an arbitrary (!) subset of positive integers, is also regu-
nel

lar.

In the present paper we consider a different way of recording the use of a
memory cell during a computation. We simply record during each step of a
derivation ¢ the contents of the n-th cell {(where if at a given step a cell to the
left of the n-th cell is processed, then we insert the special " 8" symbol symboliz-
ing the idle state of the given cell). In this way we get the full record of the n-th
cell and the collection of all such full records of the n-th cell during all success-

ful derivations in G forms the n-full record language of G denoted FE,(G).

In this paper we prove that, as in the case of active records, FR,(G) is regu-

lar for each n, but wuniike in the case of active records, infinite unions

L) FE,(G) do not have to be regular (even if / is taken to be the set of all posi-

n &’

tive integers). Using the representation theorem for cp systems (through rb



grammars) we transfer the above mentioned two results to the level of cp sys-

termns (and hence push-down automata).

The conclusion from the results from the present paper and from [EHR] is
that the evaluation of the memory behavior {memory use) in rb grammars and
push-down automata may differ quite considerably depending on the "observa-

tion method”.



0. PRELIMINARIES

We assume the reader to be familiar with basic formal language theory (see,
e.g., [H] or [S2]). Perhaps the following notational matters deserve some atten-

tion.

For aset Z, #Z denotes its cardinality. If Vis a finite set of integers we use

max V and min V to denote the maximal and minimal element of ¥ respectively.

For a word z, |z| denotes its length and, if 1<k < |z|, then z (k) denotes
the k-th letter of z. If x is nonempty, then we use last{z) to denote z{|z|). A

denotes the empty word.
A letler to letter homomeorphism is called a coding.

A contezxt-free grammar, abbreviated cf grammar, is specified in the form

G=(Z, P, S, A), where ¥ is its alphabet, P its set of productions, § €% its
ki3
axiom and A its terminal alphabet. For z,y € 9" we write = ';;; y if z directly

derives ¥ using .

A might-tinear grammar, abbreviated vl grommor, is a context-free grammar

G = (3, P, S,A) which has its productions in the set (E—A)xA" ((T—A) AL,
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1. RIGHI'~BOWGRAMMARS : BASIC NOTIONS AND RESULTS

In this section we introduce basic notions concerning right-boundary gram-
mars. Moreover we will formalize two ways of describing the use of memory by

derivations in these grammars.

Definition 1.1. A might-boundary grammar, abbreviated b grammar, is a
triple G = (Z, P, w), where
¥ is an alphabet,
P cIxT is a finite set of productions, and

@€ Y is the ariom of G. =

For arb grammar G = (I, P,w) we use mazr {G) to denote

max}|w| |4 > w € Pi.
Definition 1.2. Let G = (X, P, ») be arb grammar.

(1) let z,y €% andletm=A->weP. x directly derives y in G (using m),

"
written z =G>y (z :Z:w,!) ifz =24 andy = zw for some z € =

* £
Let :?, be the reflexive and transitive closure of ? If = =G-? Yy, then we say

that z derives yin G
(2) A derivation (in G)is a sequence 8 = (zg, %,, ..., Tn), m =0, of words from
L* such that, for every 1<=i=n, 2, :G;v z;. We say that d deriwes z, from z,

E
and denocte it by ¢ : zg ::G;» L.

For 0<i<n, z; is called the i~th line of § and is denoted by 6(i). = is called

the length of § and is denoted by g (§).

*.
(3y A derivationé : w ?« Ais called successful.

(4) Let 6, =(6,{0),6,€1), ..., 6,{m)) and & = {62(0), 62(1), ..., 6(n)) be two



derivations in G such that §,(m) = 65(0). The compasition of &, and 6,, denoted

8; ® 8z, is the derivation (6,(0), 8,(1), ..., 8:(m), 62(1), ..., 6a(n)). =

Definition 1.3. Let G be a rb grammar and let § be a derivation in & with

g

n =1lg{6). The sequence {my, ..., m,) of productions such that 6(i—1) ‘——G:> §(1)
for every 1 <1 <n is called the contral sequence of § and is denoted by cont{8);

ifn = 0, then cont (8) is the empty sequence. =

Remark 1.1. (1) The control sequence of a derivation is well-defined : if z

' b
directly derives ¥, then there exists a unique production m such that = :G—> Y.

* *
(2) Note that if 6, :u = and §z: v => w are two derivations in a rb gram-

mar G, then lg (8, ® d;) = lg(6,) + lg(65) and

cont (8, ® d3) = cont (8;) cont(l,). =

In order to simplify our notation we will omit the inscription "G" whenever

*
& is understood from the context. Thus we will use == and = rather than

*
:—z‘% and =G;> respectively.

A derivation ¢ consists of lines - if we write these lines under each other
(adjusted letter-by-letter) then we will get a "column’ of all first letters {in all
lines of §), a column of all second letters, etc. Bach such column is a record of
the "use" of the given memory cell during §; L.e., the first column records the
use of the flrst memory cell, the second column records the use of the second
memory cell, etc. Here we see a rb grammar as a processor of the data struc-
ture consisting of a one-way {potentially infinite) array of cells, where the pro-
cessing {of a specific kind) takes place at the right end of the (nonempty prefix

of the) array. So the "column point of view' represents the record of the use
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(the behavior) oﬁga;particular cell during a particular derivation. If we now sin-
gle out from a given column word only these letters which correspond to the
moments (within the derivation) when the cell is active {its contents is being
rewritten) then we get the "active” record of the use of the given cell. This leads

us to the following deflnition.

Definition 1.4. Let G = (I, P,w) be a rb grammar and let n € N*.
(1) Let 6 be a derivation in G and let & = Ig(§). Aline (i) of § with [8{i)| =n
is called an n—active line of 4.

The n-active record of §, denoted act, (4) is the word

*

#n(6(0))9n(d8(1)) - ga(d6(k—1)), where @,:Z -IZUIA is the mapping
defined by
uw(n), |ul =n,
on(u) = A , otherwise.

() The mn-active language of G denoted ACT,(G), is the language

*®
tact, (8) | 6: w :‘Gvn’\_i. u

If, for a given derivation ¢ and for a given n € N¥, we take the "full” {rather
than only active) column description (where if a given line §{(7) of a derivation ¢
is shorter than n, then we insert the § symbol symbolizing the idle state of the

given cell), then we get the n-full record of §. This is formalized as follows.
Definition 1.5. Let G =(Z, P, ») be a rb grammar, and let § be a symbol

not in . Let N € N*.

(1) Let & be a derivation in & and let k& = {g(8). The n-full recerd of 6 denoted

Fre(8), is the word ¥, (6(0)¥n(8(1)) - Yn(d(k—1)) where %, : £ > D% is

the mapping defined by



(n), |ul=n,
Yn (u) = ['; , otherwise.

(2) The n-full record language of G, denoted FR,(G), equals
-
Fra0) | 80 => A =

Remark 1.2. (1) In defining the n-active record and the n-full record of a

derivation § we do not consider the last line of 6. Therefore:

* ®
(2) If8,: v =>v and 6z :v = w are derivations in a given rb grammar G,

then act, (8, ® §5) = act, (8,)act,(6,) and fr, (6, ®683) = fro(8,)fr(62). =

Example 1.1. Let G = ({4,5,C.D}, P, AC) be the rb grammar with
P={A-BC, B>\ C-DC, C->A\D-AL

For each pair k£,l € N there exists a derivation & ; of the form
(AC, ADC, AD®C, ..., AD*C, AD*, ..., AD, A, BC, BDC, ..., BD'C, BD', ..., BD, B, A).

Obviously fr {6, ;) = ARFTRRR*2,

*
Since each derivation d6:AC = A is of the above form we have

FR(G) = (AAY(BB)*.
Consider § = dg3. Then
fra(8) = CDRSCDES,
Frs(8) = $3CD°87C3*,
fra(s) = $°C8' and
fra(8) = $*2 for each n = 9.
It is easily seen that ACT((G) = {AB}, ACT,{G) = {CD,C}? and

ACT,(G) = {CD,C,A}® for each n = 3. »

Active records of rb grammars were investigated in [EHR] where the follow-

ing result has been proved.
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Propositionw.l.lgj?Let G be arb grammar and let 7/ C N*. Then
U ACT,(G) is %Feéular language. ®
n €l o

Hence not only each n-active language of a rb grammar is regular but also
arbitrary (infinite) unions of these languages are regular - this is strong regular-
ity indeed!!

In the rest of this paper we will investigate n-full record languages of rb
grammars and it will turn out that these languages do not have this strong regu-

larity property.
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2. ARESULT ON SEQUENCES OF NUMBERS

In this section we prove a combinatorial result concerning sequences of
integers having subsequences satisfying certain conditions. This result will form

the technical basis in the proof of the main result in the next section.

We begin by defining subsequences (of sequences of integers) that will be of

interest in this paper.

Definition 2.1. Let {(z,, z,, ..., Zp), » = 1, be a sequence of nonnegative

integers. A subsequence <x‘~'1 . Ty

ig s e .’r,;k), k = 1, where

1=, <ip< -+ <1 =n iscalled nice if, for each 1 <[ <k and each

L EFEh, 52 z;,. A nice subsequence is called constant if all its elements are

the same (thus Ty, = &y, = - o= g';ik)_ ]

The following sequence of lemmas will lead us to the main result of this sec-
tion.

Lemma 2.1. Let o =(z,,zz,....,2,),n =1, be a sequence of nonnegative
integers. Letp = #f{z; | 1<i<nlandletk > 1.
If n = kP, then o has a constant nice subsequence of length k.

Proof. The lemma is obvious if ¥ = 1. 3So we assume that k& is fixed and
greater than 1 and we will prove the lemma by induction on p, the number of

different values in the sequence.
Basis. If p = I, then the sequence itself is nice and constant.

Induction step. Let p 22 and assume that the lemma is proved for
sequences that have up to p—1 different values. We will show that the lemma

holds for the sequence ¢ with p different values.

Consider the subsequence (x:j1 CEi xj‘) of minimal elements of o. Since this

subsequence is nice and constant ¢ satisfies our lemma if [ = k.



So assurne that £ <% and consid,efthe (at most k) subsequences

go={z{, ..., rf},‘i}' o = (le,,_l R 3:\12_1) R T (:z:J-lH v s Tr )
Fach of these sequences has at rx;st p—1 different values, therefore by our
induction hypothesis there exists a constant nice subsequence of gy, 1 <1 <1,
and so a constant nice subsequence of ¢ {(of length k) whenever o; contains at
least kP! elements.

If each ¢; contains less than kP! elements, then the length of o is at most
(I+1)(kP71=1) + L <k (kP7'=1) + &k = kP. Hence if n > kP then one of the subse-
quences o; has at least kP! elements, so it has a constant nice subsequence of
length &.

This proves the lemma. =

Lemma 2.2. Let 0 ={(z,, 25, ..., 2,),n =1, be a sequence of nonnegative
integers and let d € N* be such that z;,,—z; <d forall1<i <n. Letk, m « N*
be such that m =z, and let 7 = max{z; | 1 <1 <= n]l.

Ifr >m + (k-1)d, then there exists a nice subsequence {zi,, ...,z ) of ¢ such
that z; >m.

Proof.

Let 0,4, 7 and m be as specified in the statement of the lemma and
assume that 7 >m + {(k—-1)-d.

We construct a nice subsequence <xi1 , T

g v o :c,;p) inductively as follows.

Let £ be the index of a maximal element of o, thus z; = , and we choose 1, as

the minimal index such that x; = m for eachi, <{ = ¢£.

Hence i; = min{t | z; > m for each 7 <[ < ¢{ and, for s = 1, we set
igep = min{i | iy <71 <t andx; =z, foreacht <[ < f}

The construction terminates when-

$1 | ig <i=t andx =z for eacht <[ <¢] = @ (or, equivalently, when iy = ).
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We observe that z; = n}m%:::; | i <L < t]. This is seen as follows. Let z,
be a minimal element,qi_l? th;a set {z, | i <l <t} and assume that Ty, > Ty
Then obvicusly iy < g <\;S+1, because z; > z; for eachig,; =l <t. Butz = T,
for each lg<! <, because I, = min{z, | i <1 <¢}. This contradicts the
= min{z; | i <1< £

minimality of 4, ,. Thus z,

Hence, informally speaking, z; ,, is the first minimal element of (xixﬂ o Ty,
The sequence (z,;l s e xiq) constructed as above is obviously a nice subse-

quence of 0. In order to prove the lemma we still have to show that g = k.

This follows from the following observations.

Claim 1. (a) T, <m +d,

(b) =, —xz,<dfori<s <gq.

Procef of Claim 1.
(a) This is clear if i; = 1. Qtherwise (for i, > 1) T, <z +d<m +d, because
z g =m.
(b) Assume that zy,,~% >d. This implies that z; < z;_+ d < z;_,,, which con-

tradicts the minimality of z; , in (%41, ..., Z¢). ®

Thus m +(k-1)d<r=z, =z <m +d +(g—1)d =m +qd. Conse-
q

quently ¢ > k-1, and so ¢ = k. This proves the lemma. =

We are ready now to prove the main result of this section.

Theorem 2.3. Let ¢ = (x,. 2y, .., z,), n=> 1, be a sequence of nonnegative
integers and let m ,d € N* be such that m =z, and =z, —2; <d for al
1=4<n. Let £ € N*.

It n=km 109 then there exists a nice subsequence (mi ..., m,) of ¢ such

i
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that either this sequexnce is constant or z;, > m..

Proof. Let a,ﬁa"’" and m be as in the statement of the lemma. Define
r=max{z; | 1<i<n]andp = #iz | 1<i<n]
If » >m + (k—1)-d, then, according to Lemma 2.2, ¢ has a nice subsequence

{x,;l .y Ty ) such that T, > m.
On the other hand, if 7 <m + (k—1)d, then n =k™**-U¢ implies that

n = kP (becauser > p).

Thus in this case Lemma 2.1 implies that ¢ has a constant nice subsequence of

length k. =
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3. THE LENGTH OF DERIVATIONS IN RB GRAMMARS

For a rb grammar-& -anci two words u, v over its alphabet the (uw,v)-
spectrum is the set of all lengths of all derivations in @ leading from » tov. In
this section we will prove that the (u,v)-spectrum is ultimately periodic for all
pairs (u,v). This result certainly says something about the nature of derivations
in rb grammars. Moreover it will be an essential tool in proving the properties of

full record languages in the next section.

We begin by formally defilning spectra.

Definition 3.1. Let G = (%, P,w) be a rb grammar. For two words u, v € ot

the (u,v)-spectrum (in G), denoted spec(u,v), is defined by

®

specelu,u) = {g(d) | 6:u ?'ug u

As usual we will omit the index Gwhenever & is clear from the context.

To prove our result on spectra we need the following lemma.

Lemma 3.1. Let G = (I, P, w) be a rb grammar and let u, v € ¥ . There
exist constants ng, 99 € N satisfying:
if n€spec(u,v) with n =ng then {n +c¢,k | k € N} Cspec(u,v) for some

¢, €ENwithl=<c, <qg,
Prool.

The main idea of this proof (although expressed in combinatorial terms) is

rather classical: one "pumps” certain subderivations in a given derivation.

Let G=(Z, P, w) be arb grammar and letu, v € £".

f-(!c9~1)-do

Set ng = kg ° , where kg = #L+1, mg = max{|ul,|v]|] and

do = mazr{G)—1.
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Furthermore set.gg = g + Yoo dg, where

* *

7o = maxf min{lg (§).16: 4 => A} | A€ T and 4 => A},

* &

Note that this implies that if z = A, then there exists a derivation § : 2 => A
with Ig () < yo' |z .
We will show that the lemma holds for the above choice of ng and gg.

Take n € spec(u,v) with n = n, (If no such n exists, then our lemma trivially

E
holds.) Let 6:u = be an arbitrary derivation such that Ig(6) = n; thus

u = 6(0) and v = 6{n).

L 18(0)], ..., |8(ng)|) of the lengths of

Consider now the sequence ¢ = (|§(0)
the first ng+1 successive lines in §. Since obviously |8§(i+1)] — |6(1)| < dg for

klkg—1)-dy

all 0<1i=<ng and since ng> kg ° , where mg= |6(0)|, by Theorem 2.3

there exists a nice subsequence 7= ([8(i})], ..., | 6(%,)|) of ¢ such that either
16()1 = - = [8(iky)| or [6(i)] > me

This subsequence contains kg = #2+1 elements, thus there exist two indices
ey, iz, ..., Gy, s <f, such that last(6(s)) = last (6(¢)).

&

We consider separately two cases.

(&) [6(s)] = 5(t)].
We can split § into three subderivations 6; = (6(0), ..., 6(s)), 82 = (6(s), ..., 6{¢t))
and 63 = (6(£), ... 6(n)).

All lines of d; are at least as long as §(s) {(because T is a nice subsequence)
thus they all have a common prefix z of length |§(s)|—1: rewritings take place
at positions greater than or equal to |§(s)].

On the other hand [6(t)] = [6(s)| and tast(6(¢)) = last (6(s)). This implies that
8{s) = &(t). Consequently 8, can be repeated within ¢ any number of times

without influencing the cother lines of the derivation.
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Hence if we set ¢, = Ig (dzjz t—s, then for any k& € N there exists a deriva-

tion 6%) : :*@ v of lengthn + k-ch. Note that c, €ng < qq.

(B) [6(s)| < [8(t)].

In this case 7 is obviously not a constant subsequence, thus the condition
|6(1,)] > mg for T holds. Hence |6(s)| = |8{(i;)| > mo= |v].

Since all lines between 8(s) and 6(¢t) are at least as long as 6(s) they all
have a common prefix x of length |§{s)|—1.

Moreover 6{s) and 6(¢) have the same last letter so we may write
6(s) = zA, 5(t) = zzA wherez,2 €%, A € £ with |z| = |v| and |z| = 1.

In general, in a single derivation step, the length of a line may decrease by
at most one. Since [8(f)] > |z| = |d{(n)| = |v]| there exists a line &(p),
t <p =n such that |6(p)| = |z]|.

If we assume that p is chosen to be minimal, then 8{p) = z because in that case
all lines of § between §(¢f) and 6(p) are longer than §(p).

In the same way we find a line 6(p,) = zz with £ <p, <p.

Now we split § into five parts as follows:
6, ={8(0), ..., 6(s) =zA), S2=(6(s), ... 6(t) = zzd), d3=(6(t),....8(p,) =zz),
6, =(6{py), ..., 8(p) =) and 65 = (6(p), ..., 8(n)).

This may be depicted as follows.

Figure L

We malke the following observations concerning 2 and 4.
(1) Using a derivation &z with cont(dz) = cont(dz) we derive 24 from 4. Then
ig(6y) =lg(6s) =t—s =ng hence |2z4] < |A| +dglg(6s) =1+ dgng or

equivalently |z | < dgng.
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{2) Using a derivationzéi; with cont (85) = cont{8s) we derive A from A.
(3) Using a derivatiq(g%i with cont (6,) = cont(8,) we derive A from z.

ez
*

Let u: 2 = A be such that all other derivations of A from z are at least as
long as w. Then lg{u) <9l 2z| < vyngd.

Set ¢, = Ig(8z) + Ig(u); it is clear that ¢, = qq.

Figure 2.

It is obvious that for each k& € N* there exists a derivation 8(k) of the form
(w, ..., zA, ..., z2A, ..., zz?A, ..., z2®A, ., z2®, . zz, -,z ..., v} such that

cont(6%)) = cont (8,) cont (d5)-cont®1{(8;) cont (8) cont® L (w) cont (8,) cont (S5).

Figure 3.

Thus lg(6%)) = 1g(8) + (k—1)-(Ig(Ss) + Ilg(w)) =mng + (k—1)c, € spec{u,v)
for each & € N*.

This proves the lemma. #

The above lemma implies directly the main result of this section.

Theorem 3.2. Let G = (I, P, w) be a rb grammar and let uw, v € 2*. Then

spec {w,v) is an ultimately periodic set.

Proof.

Let w €3 and let g, ¢g be constants satisfying the statement of Lemma
4.2. Let @ be a common multiple of the numbers 1,2, ..., 9, Thus, if
n € spec{u,A) . with n = ng, then

in +ckikeNiCin +epk | £ €N] Cspec{u,A) for some ¢, €N with
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Let I =fn | n Es;pec (u,A) and n < ngl and P = {n | n € spec{u,A), n =ng
and n—¢ £ spec(u é\}%
Then [ and P;re finite sets (elements of P are all different modulo @) and
consequently spec(u,A)=JUin +k-¢ |ne€P and k € N} is an ultimately

pericdic set. ®
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4. REGULARITY OF FULL RECORDiI_ANGUAG}ES.

-

We are ready now~~~b®—us€§f something about the nature of full record
languages. It will turn ocut that
(1) es in the case of active records, FR,(G) is regular for each n € N,
(2) unlike in the case of active records an arbitrary union of FR, (G) languages

de not have to be regular.

To simplify the notation throughout the section we will consider an arbi-
trary but fixed rb grammar G = (%, P, w).

Letu,v €L andn € N*. We distinguish a set of special derivations.
G luv)=§6:u rt}*u | for each 0 <1 <Ig{(8), |6(1)| > nl.

The corresponding set of full records is denoted by

FRG(uw) = {fr(8) | 6§ € Gy(u,v)l.

In order to prove that, for each n € N¥, FR,(G) is regular we will first prove

that the above set of full descriptions is regular.
Lemma 4.1. Letu,v € %" and let n € N*. Then FRG, (w,v) is regular.

Proof.

First we observe that if |v| <m, then G,(%,v) contains only derivations of
length 1. For assume that § € G,{u,v) with & = Iig(8). Then
|6(k—1)] = |6(k)|+1 = |v]|+1 < n+1 which contradicts the condition
[6(k~1)] =2n+1fork—1>0.

Thus in this case G,(u,v) is at most a singleton and FRG,(w,v) is obviously
regular.

So we may assume that |v | >n Let A = v{n)and let v = zz with |z| = n.

Let 6 € Gy(u,v) with k& = lg{(6) > 1. Since |6(1)] >n for every 1 <1 <k we can

L -
write 6(¢) = zw; with w; = z. But then
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Fra(6) =u(n)a*t, u":ﬁu] >n, and fr,(6) = $A* L, if |u| <n.

Thus FRG,;@&'U) = g{Al | L €spec(w,z) for some w €% such that
uw=>zw], where ¢ equals u(n) if || =n and & otherwise. This language is reg-

ular because by Theorem 3.2 spec(u,v) is an ultimately periodic set.

This completes the proof of Lemma 4.1. =

Now we are ready to prove the regularity of FR,{G).
Theorem 4.2. FR,(G) is a regular language for every n € N*.

Proof.

L]

Let 6 : w = A and let (6(i)), ..., 6(%;)) be the subsequence consisting of all
lines §(i) with 0 < i <Ig(d)and |8(i)] = n.
Then ¢ is composed of £ + 1 derivations &, = (6(3,.), ..., 6(i.)) 7 =0, 1, .., ¢
(where we set ig = 0 and 4g4; = [g(8)), such that fr,{(8) = fra(dg) - fra(6,).
From the construction of the sequence {(&{(i), ..., 6(3;)) it follows that
6, € G {6(1.), 6(ip4y)) forr =0, 1, ..., £.

Consider now the finite automaton A,, defined as follows.
The set of states of A, equals the set Z=™ of all nonempty words of length at
most n over ¥ together with w and A, which are the initial and the final state of
A, respectively.
For each pair z, y € Z=", A, has an edge from z to y labelled by a special sym-
bol [z.y].
Furthermore there are edges from @ to = labelled by [w, z ] for each
z € 257 J{A} and edges from y to A labelled by [y, A] for each
y € (L5 (AU}
Note that « has outgo‘ing edges only (except when |w| =7n) and A has incoming

edges only.
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Let m be the reguﬁr substitution from the set @ of labels of A, into the set
(TUSYH * deﬁned,«,@%@ﬁdws:
[z, y]) = FRQ,L(J:,Q) for each z € ™ J{w! and each y € Z™ (J§AL.

Then from the above considerations it easily follows that FRE, (G) = m(A, ).

FE,(G) is regular because it is a regular substitution of a regular language.

Consequently the theorem holds. =

We end this section by demonstrating that, unlike in the case of active

records, an arbitrary union of FR, () languages does not have to be regular. As

a matter of fact we exhibit a rb grammar & for which U FR,(G) is not regu-
n eN*

lar.

o

Theorem 4.3. There exists a rb grammar & such that L/J FR,(G) is not

n=1
regular.
Prool.

Let G = ({4,F}, P, A) be the rb grammar such that
P =4 BA AN B - AL

All derivations from A to A are of the form
8. = (A, BA, B*A, ..., B*A, B®, Bk~ B, A)
for some k € N; then obviously lg(d;) =2k+1 and |6.(i)] =k +1 for each
11 <2k+1.
Thus fr,(6;) = 8% for each n > k +1.
For alln <k +1 we have fr,(8,) = " 1ARk+i7) gn-1

oo

Consequently U FRn{G)ﬁﬁ'*Aﬁ'* = (8" A8 | n € Ni.

n=1

Since { 8" A8™ | n € N} is not regular and the class of regular languages is closed
g g guag



under intersections, X" ) FR,(G) is not regular. =

Remark 4.1. (1) If (for the rb grammar from the proof of the previous

theorem) we consider arbitrary unions U FR,(G) for M C N*, then we can get
neld

even nonrecursive languages (by taking # nonrecursive):

U FR(G)NS"48" = {fra(6) [n € Mok =n-1) = (5°745™ [ n € i),

nei

3

(2) In general, given a rb grammar G, U FR,{G) does not hava to be even

n=1

context-free. An example of such a situation is the rb grammar given in Exam-
ple 1.1. We have then frn{(d,,) € 8 €8 €8 ifand only if n = k+2 = 1 +2.

Since friip(fpe) = 8% CE*F1CE* ! we have

| FR.(G)N B CS C8™ = (87 C8% 108 | k < N3

n=1

which is not a context-free language. Thus, because the class of context-free

languages is closed under intersections with regular languages, L//’ FR(G) is

n=1

not context-free. =



5. COORDINATED PAIR SYSTEMS AND RB GRAMMARS

Right boundary grammars form»«a—vé;;y basic building block in the general
theory of grammars and automata presented in [R]. In particular, within this
theory a push-down automaton is seen as a pair of "'cooperating grammars”, the
first one rl {modelling the input and the finite state control) and the other one
rb (modelling the infinite push-down store); such a pair is called a coordinated

pair system.

In this section we will "transfer” our results concerning the {active and full
records of the) use of memory in rb grammars to the level of cp systems (where
the work of the rb component is coordinated by the right linear component). In
this way investigating the use of memory in rb grammears is being used for learn-

ing about the use of memory in push-down automata.
We begin by recalling the notion of a coordinated pair system.

Definition 5.1. A coordinafed pair system, cp system for short, is triple
G={(G,, Gs, R), where
G, =(Z,,P,,S,.4)isarl grammar,
Gs = (Lo, Pa, Sp) is a rb grammar with Sp € 3 and

R ¢ P X Pg, the set of rewrites of G. ®

Definition 5.2. Let G = (G, Gz, F) be a cp system, where
Gr=(Z, Py, Sy, 0) and Gp = (T, Pz, Sa).

™ T2
(1) Let z,,y, €%, and z,,ys € Z;. Iz, _—Gﬁﬂyl and z, ?yg for a rewrite
1 2

m={(m , me) € K, then we say that (z,, zg) directly computes {y, , yz) in Gusing
™
mand we denote this by (z,, z) = {(y,,ya).
* o *
= denotes the reflexive and transitive closure of = If{x,, z3) = (yy,y2),

then we say that (z,, zg) computes (y,, ya){in G).
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(2) A computation {1@ G)is a sequence p = (x5, Z;, ..., Zp), 7 =0, of elements
from Z; X E; such;g:ﬁ;t Ty :G> z; for each 1 <4 £n. We say that p computes

*

x, from zg and denote this by p : g = zj,.
n is called the length of p and is denoted by lg{p). For 0<1i<mn we use p(i) to
denote z;. If zg = (S, Sz} and z, = (w, A) for some w €A*, then o is called

successful.

*

(3) The language of G denoted L{G), is the set {w € A (S, So) =>{(w, A)]. =

The formal notions describing the use of memory In rb grammars are

extended to cp systems in an obvious way.

Definition 5.3. Let G be a cp system and let n € N*.

(1) Let p = {(p{0), p(1), ..., p(k)) be a computation in G. The n-active record of §,
denoted act,{p), is the word ,{(p(0))en(p(1)) - @nl{p(k—1)), where
@O E;‘ X Z; - Yz UtAL s the mapping defined by

vin),if|lv| =n,

pnl{(u,v)) =
A , otherwise.

(2) The n-acltive language of G, denoted ACT,(G), is the language

fact, (p) | p: (S, S2) = (w, A) for some w € A*L u

Definition 5.4. Let G be a cp system and let n € N*.
(1) Let p = (p(0), p(1), ..., p(k)) be a computation in G. The n-fuil record of g,

denoted fr,(p), is the word ¥, (0{0)) ¥ (p(1)) - - - ¥n(p(k —1)), where

Yp - Zl* X E; = Lz Ut 8] is the mapping defined by
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s
=

3: v(n),ifjlv| =n,
Yn{{uwv)) =
s ) , otherwise.

(2) The n-full record language of &, denoted FR,(G), is the language

§frn(o) | p: (Sy, Sz)=>{w,A) for some w € A‘g‘ "

Since in this paper we are mainly interested in the behavior of the second
component of successful computations in a cp system we introduce the notion of
an internal cp system. A cp system is internal if it has only chain-rules (i.e. of
the form A » B) and A-rules (i.e. of the form 4 -» A) on its first component. If,
for a give cp system G, we erase all terminal symbols in all produétions of the
first component {and in the corresponding rewrites), then we obtain the internal
wersian of G.

Definition 55. lLet G=(G,, Gy, k) be a cp system with
Gi=(Z;,P,., 5. A
(1) Gis called internal if A = 2.

(2) The internal version of G denoted int (), is the cp system G=(G, G, R)

WhEI'e él = (ZI—A’ 151 3 SI 3 ,@) Wlth

P={X->2)| (X »>wZ)cP for some X € I;-A, w A" and Z € (S,-A) LAY

and R={X -2 m) | (x »wZ m)€R for some X €I,—A w cA® and

y € (Li-H Ui, =

Hence int(G) works precisely as G does except that it ignores the "input
aspect” of G. Consequently as far as the use of memory is concerned one can
consider int(G) rather than G.

Lermma 5.1, For each cpj:;yftem G and each n € N¥,

ACT,(G) = ACT, (int(G)) and

FR,{(G) = FR, (int(3)). =



27

We have reduced the considerations concerning (the use of memory in) cp
systems to consig\quations concerning Internal cp systems. [t is possible to
further reduce the problem: rather than to consider internal cp systems it

suffices to consider rb grammars.

The following definitions formalize how to represent (successful computa-
tions in) an internal cp system by (successful derivations in) a suitable rb gram-
mar. Using this notion of representation we will transfer the results on the regu-

larity of the (full) use of memory in rb grammars to {arbitrary) cp systems.

Definition 5.6. Let © %, and % be alphabets and let ¥: 0" - I, and
@ 8" » ¥, be codings. Let (Z,w) € (ZLUEM}XZ; and u € 0",
We say that u (¥, ¢)—represents (Z,w), denoted w[¥,9>(z,w) if the following
holds.
(i) Z=Aifu =Aand Z = ¢¥({last(u)) otherwise.

(iyw =¢(u). =

Definition 5.7. let G =(G,, Gy, K) be an internal cp system with
Gy=(2,P,,S,,0), Go=(Zz,P2,Sg) and let H =(0, @, 7), T€®, be a rb
grammar. Finally let ¥ : 0" - Z; and ¢ : 0" » 22* be codings.

{1) Let p be a computation in & and let § be a derivation in Z. We say that
§ (W, ¢)—represents p, denoted 8[¥,¢>p, if ig(S) =1lg(p) and 8(F)[v.¢>0(7) for
each 0 < 7 < lg(4§).

(2) G is (y,¢)—represented by H if the following holds.

(i) For each successful computation p in G there exists a successful derivation ¢
in H such that §[¥,¢>p.

(ii) For each successful derivation § in H there exists a successful computation

pin G such that §[¢,p>p. =



Remark 5.1. Tb‘gnotion of the representation we have defined above is
more narrow than Q:]zle one defined in [EHR]. In the preéent paper we are con-
cerned only with éﬁcessfm computations, while in [EHR] we have used the
notion of a representation that was suitable for all, i.e. successful and not suc-
cessful, computations. However the representation we use here suffices for

transferring our results (on the use of memory) from the level of rb grammars

to the level of cp systems. =

From Theorem 5.1 in [EHR] (and its proof) we get the following result.
Proposition 5.2. For every internal cp system G there exist codings ¥ and ¢

and a rb grammar H such that G is {4,¢)-represented by H. =

Now Proposition 1.1, Theorem 4.2 and Theorem 4.3 yield the following
results as their corollaries.

Theorem 5.3. Let & be a cp system. For each n = 1 both ACT,{(G) and
FR,(G) are regular.

Proof.

For ACT,{G) this result was proved in [EHR].
We consider here FR,(G). Let H be arb grammar that (¥,¢)-represents int{G)
for some codings ¥ and ¢. The coding ¢ maps @ (the alphabet of ) into I; (the
alphabet of the second component of G). We extend g to the coding gg mapping
@8] into ZzJ{#] by defining ¢5{4) = ¢(4) for 4 € @ and pg($) = §.

Then it is easily seen that for every n € N* fr,{p) = ¢3(fr,(6)), where pisa
successful derivation in A such that §[¢,¢>p.
Hence, by Lemma 5.1, FE,(G) = FR,(int(G)) = ¢(FR,(H)) and consequently

FR,{G) is regular since FR,(G) is regular and the class of regular languages is

closed under homomorphisms. ®



Theorem 5.4,

(1) For each cp§ys£em G and each [/ < N, U ACT, (@) is regular.

nel

(2) There exists a cp system G such that U FR,(G) is not regular.

neN

Prool.
(1) This is Theorem 5.3 in [EHR].
(2) Every rb grammar H = (I, P, A) with A € ¥ can be transformed in a natural
way into a cp system by "adding’ a (dummy) first component with ocne nontermi-
nal only.

Formally, let H,p =(G;, Gz, B) be the (internal) cp system with
G =S}, P.,S.P), P =S-S5 ,5,»M, G =Hand R = PxP.
One easily verifies that Hg, is (¥, ¢)-represented by H, where ¥ : P 25;* is the
coding that maps each element of Z to S and ¢ : 7% 52" is the identity on s*.
Thus, for n € N*, R, (Hy) = FRE,(H).

If we construct in this way G for the rb grammar & given in the proof of

=3

Theorem 4.3, then L) FR,(Gp) = U FR,(G) , which is not regular. =
n=1 n=1
Remark 5.2. The results concerning rb grammars mentioned in Remark 4.1
carry over to cp systems using the construction described in the proof of
Theorem 5.4.(2). Thus in general, given a rb grammar G, Ll‘;‘ FR{G) does not
n=1

have to be context-free. Moreover if we take arbitrary unions lk/:’ FR,(G) for
n <y

M C N*, then we can get arbitrarily complex languages. *
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DISCUSSION

In this paper’"»we”gave continued the investigation into the use of memory in
rb grammars and cp systems (push-down automata). Together with [EHR] the
present paper leads to certain conclusions.

(1) Local (i.e., involving one, or a finite number of memory cells) observations of
the memory behavior (during successful computations) lead to 'regular
results’: both, ACT,(G) and FR,(G) are regular for each rb grammar G and
each positive integer n..

(2) Global (i.e., involving an infinite number of memory cells) observations of
the memory behavier lead to regular results if one makes active records only
but may yield not regular (even "arbitrarily complex”) results if one makes full

records.

Also, the two papers together have provided deeper insight into the nature
of rb grammars as well as technical tools to deal with them (e.g., the ultimate
periodicity of spectra theorem). We hope that we have also demonstrated that
the cp systems formalism to deal with push-down automata is mathematically
very convenient: we can often shift the burden of work to the investigation of rb
grammars and then use "transfer theorems"” to transfer the results to the level

of cp systems.

Certainly many problems and problem areas concerning the use of memory

in rb grammars and cp systems remain open.
As far as technical problems are concerned it would be interesting to know

how complicated can be the languages of the form L) FR,{(G)evenif / =N. To
ne/f

this aim it would be very-desirable to learn more about the structure of FF,(G)

languages. In [EHR] we have provided a structural characterization of ACT,(G)

5]

languages and this characterization has allowed us to prove that | JACT, (G) i
guag \_/ n\

n e/
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regular for every [/ ;—N’“

It seems nowktigige very natural te consider still different ways of recording
the use of memory—/in rb grammars and cp systems. Are there methods of obser-
vation (ways of recording) that will yield non-regular languages for single

memory cell? Which of them yield "strong regularity’? Are there ''easy transla-

tions" of different sorts of 'record languages” into each other?

These are all very interesting questions which (in our opinion) should be
investigated if we want to understand the way the memory is used in rb gram-

mars and push-down automata.
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