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ON TWO STAGGERED, PARALLEL LOOP ANTENNAS

by

Ahmed S. Abulkassem and David C. Chang

1. Introduction

Loop antennas have long been considered as one of the basic antenna
forms for probing, transmitting, as well as receiving radio signals. As
a result of these many uses, the radiation characteristics of a single,
thin-wire, circular loop antenna have been investigated extensively in
the past, at low frequency, as a magnctic dipole [1-5], as well as at
frequency high enough to produce resonances and antiresonances [6—10].
However, because of the complex geomctry, mutual coupling of arrays
consisting of parallel loop elements has seldom been analyzed, except
in the case of coaxial loops. To the best of our knowledge, the work by
Bhattacharya et al. [10] appears to be the first which treated the problem
of two staggered loop antennas. However, the accuracy of their solutign
is somewhat in question because they ignored the off-diagonal terms in the
mutual coupling matrices. Thus the purpose of this paper is to assess the
error in their solution as well as to provide a computational scheme for
the general case of two parallel, staggered loop antennas. A thorough
understanding of such a problem is important, not only to the synthesis of
antenna arrays consisting of circular loops, but also in understanding the
performance of a single loop, both horizontal and vertical over a highly
conducting earth via the concept of images. As mentioned in [10], the
staggered configuration may also improve the tracking resolution in direction

finding.



2. Formulation of the Integral Equations

Consider two thin-wire, circular loops of radii b and a wire radius a
arranged parallel to each other in a staggered manner as shown'in Fig. 1.
The two loop planes gre separated by a distance z, and their axes are
separated by a distance Py The loops are respectively driven by slice
voltagegenerators of amplitudes V1 and V2 located on the loops at

angles wsl and wsZ with respect to the x-axis. The suppressed time

factor is exp(-iwt) and the condition,

a <<, ps Zg and  a’ <<b? _ (1)

where A 1is the wavelength in air, is assumed. On the surface of the

antennas we require the total tangential E-field, E n(tpn), n=1,2 to

v

satisfy the boundary condition that

Epn = "V SO0 /B 1wy <m (2)

m=1,2 where 6(¢) is the Dirac delta function. Furthermore, because
thin-wire approximation in (1), the proximity effect around the wire
inherited in the geometry of the two loops is negligible so that the current
on each loop can be considered uniform around the wire. To formulate the
required integral equations, use is made of the magnetic vector potential A
due to an element of current of strength Im(wé)bdwél on one of the two
loops. The electric field dE provided by such an element of current is

given in function of A as:

- C - 2~
dE = - TU—)IJ?O_ [V (V'A) + kOA] (3)
where . 4
C = uobl(w;n)dwm/47r . (4)



Fig. 1 Two staggered loop antennas



The total E-field contribution of all current elements of a loop is then
obtained by integrating ¥' over the cntire loop. To take the source
singularity properly into account, the self-field of a loop is obtained

from a current I(w') distrubuted uniformly on the surface of the loop,

even though the secondary field is obtained approximately from a line current
located along the axis éf the secondary loop. According to King [6] the

primary vector potential Rp is then given by:

P

p - - - - -
A= G Wy -by) [aw.m- ada + (aw,may)ay] (5)
where ; ' X T eikoR(wm-¢$)
G (lpm "lpm) = o1 ] koR(lpm_wr;)) d(b | (6)
' 2 2(%""’1;1 ) 2 ¢ %
R(lbm -wm) = [4b"sin ——/ * 4a sin(ij] (7)

on loop m = 1,2. The ¢-angle variation is around the thin wire of the

loop. Similarly we obtain the expression for the secondary vector potential.
R =6 0@y - a)d, + Gy, - 4 )ay] (8)
SRR A A |

where L v
1koR (wm,wn)

s ' ' |
S ,¥) = o /K RO, 00) (9
where

Rﬁpmﬂpé) = [zg + (yo + b sin Vo -b sin w&)z + (xo +b cos w; -b cos \pm)z]i

(10)

on loop m due to a current element on loopn. The geometry of the problem
as projected in the plane perpendicular to the axes of the two loops is
shown in Fig. 2 for clarity. To find the expression for the tangential

component of the electric field on the two loops, one needs only to
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Fig. 2 Projection of the two staggered loops onto the horizontal
plane perpendicular to their axes



evaluate éw. [V(V-A) + kzﬂ] . Now since V-A = -V'.A the differential
field at V¥ ‘bn loop m due to a current element Im(w')bdw' on loop m

and a current element In(w')bddf on loop n can be written as:

‘. 1 . 2
dE, = Awdp (kzbzcos Ww-y') + 2 )G W-p' I _@")
Yy S o gy’ /™ A
| (11)
+(k2b2 N )G YT (' L
o cos@W-¢ ) - W . (l[)"d) ) n(ll) ) J
where
6 =G (¥ -¥); and G = G (Y ,v) (12)

We now invoke the boundary condition Ew = -Vma(w—ws)/b,on the surface of
‘ ‘m

the two loops to obtain the following integral equations

2 .
L < Qe L7 =t V80 (13)
n=1 >0 m
for
-m<yYp s, m=1,2
where 2
U = [kibz cos (Y-y') + %;51 sz(w—w') (14)
for m = n and
2.2 ' 32 S 1
Q. = [k b™ cos(@-¥') - §$§@Tﬂ G (W-v") (15)

form# n < > denotes the integration over the entire loop

] . . . -
-T < YLT; EO = 120m ohms is the characteristic impedance of free space.
We note that since the two loops are parallel toeach other, it is no longer

necessary to distinguish wl’ wi from wz, wé .



3. Solution of the Integral Equations Using Fourier Series

In order to solve the two simultaneous integral equations in (13) the

. .
current Im(w ) is expanded in Fourier series as

© iq'-v_) :
e =1 1™e S m=1,2 (16)
q=-c
where . T
m WM o -iqy'
I e = L (W)e dy (17)

Similarly, the expansion of Green's function Gmn is given by

Gmn(‘P"P') - z KI: eip(d)"" ) (18)
P .
for m = n, and
. s ipp iqy'
G (W,¥') = g ; Kol € © (19)
for m # n; and where
™ ) .
KE i, E%_J JPW-Y") Gﬁm(w-w')dw' 20)
~T .
and
m . m » 1
) = 5%-J &P ay 5%-J WG vy’ (21)
- -

We note from the definition of Gmn as given in (12) and (8) that the

following relationship holds.

KD m = CDEV @ (22)

S s .
So that one need not compute (qu)21, once (qu)12 is known, the
substitution of (16), (18) and (19) into the integral equations (13)

yields, after some manipulations,



Jab 1D GIPUs1) z Z (as 1 (2) 1 (pb+abs2)

12 -
p P P Pq q
' (23)
- 2 "
0
LY @3y 1Meily+absy) |y P {(2ip0-¥s2)
pPq " pq2l I p PP
E— VS (h-v ) (24)
where ag and a;q are the moment functions of the primary field compo-
nent and the Secondary field component respectively. They are given by:
2.2
k™b
P _ P P 0 _ 2.p
ap = (Kp+1 + Kp—l) 3 P Kp (25)
and ‘ .
s s s kibz s
a. = (K + K —_— 4 K (26
2pq = Kpri,q1 " Kpor,qe) 2 P4 Ppq (26)
S s s s s
where K  and a are understood as K and (a 5 a
rq ot ( pq)12 ' (kpq)12 ( pq)21

are also given by 26)with their corrcsponding (Ks ) related to (Ks )
, Pa" 5 PqQ 12
through equation (22).

Multiplying both sides of the above set of equations in (23) and (24)

"ip (‘P 'wsm) ,

by e m=1,2 and integrating over y, from -m to +7 , both

sides of the two equations we obtain after some easy manipulations.

Z[a 1&1)6 o (a;q)12 Ifz)ei(prI *Ws2)y - g V) /g,

(27)
s (1) i(asy + pbs2)
a I'V’e sl s2) 4 gP = iV
g[( pa'21 T-q p 'q pq] 2/
for p=1,2, ... and q = 1,2, .
where qu is the Kronecker delta, i.e. qu =1 forp=9q and § =0
‘ Pq



otherwise. Each of the above equations in (27) is an infinite system of

Iél)and 1(2) can now

linear equations. Expressions for the model currents
be obtained by truncation of the two sets of equations followed by an

inversion of the related matrices.
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4, Results and Discussion

It is clear from (27) that before the model currents are obtained
it is necessary to compute the moment functions ag ahd a;q through (25)
and (26) respectively after computing Kgl and K;q . Following the work

by Wu [8,11], Kg are computed according to the following expression:
= k) (K (p2) 1_(pD) + c, - (1/2)Q}

where -1
Y -2 ) (2m'+1) + 2n(4p)
p m'=0
2kgb

(@]
1)

2
1}

. [sz(x) -.isz(X)]dX

where Qp is the Lommel-Weber function defined as

2,00 = %-J sin(X sin 8- po)do ,
(o]

and JP is the Bessel function of order p. I (x) and K (x) are
modified Bessel functions of the first kind and the second kind respectlvely,
and of order zero, and where Y = 0.577216 is the Euler's constant and
a and b are the radius of the wire and the loop respectively. For more
detail the reader is referred to the original work of Wu [8] or the review
article by King [6].

On the other hand, K;q are computed directly from (21) by numerically
performing the double integration. A double Gaussian-Legendre quadrature

is adopted so that (21) was transformed into a double summation of the form

N N

K> =

-ipy  -iqp
W, -¥g)e @e B,

(x, B are integers).
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where N depends on the order of quadrature used. Aa’ A are weighting

B

functions and wa and wB are the roots of the corresponding Legendre
polynomial. A computer program is developed to compute the moment functions

in arrays [qu]mn’ m=1,2; n=1,2. Here‘[Z]11 and [Z]22 are diagonal
P

self-impedance matrices with the nonzero elements given by pr = ap in

25); [Z]12 and [Z]21 are mutual impedénce matrices with each element

qu given by (26). The column vectors [I and [Iq]Z resulting from

q]l
the inversion of the system of matrices in (27) are then used in (16) to
obtain the current distributions on the loops. In addition, the input

admittance of one of the two loops is simply given by

() 1
Y. = M7 = )y2 5 m=1,2 (29)
in, A \Y
m moy=y p m

We note at this stage that in the result given by Bhattacharyya, et al.,
[10] the off-diagonal terms in [Z]12 and [Z]21 which represent the mutual
coupling of the th.Fourier component on one loop to the qEE.component
on the other are totally ignored. ‘

In order to check the validity of our results, a comparison is made
between normalized power radiation (i.e. feal part of yin) of two electri-
cally small coplanar loops, driven in phase, and two parrallel horizontal
magnetic dipoles as obtained by Vogler and NoBle [12] using the EMF method.
The agreement, in this case, is shown in Table I, to be well within 0.1%
even for reasonably large loops of radius kob = 0.1.

To study the effect of proximity on resonant loops, current distribu-
tion.of two coplanar loops of radius kob = 1 and wire radius koa = 0.0156

or equivalently Q=2&n (2mb/a) = 12, are shown in Fig. 3 and Fig. 4, for

two different heights d/A = 0.17 and d/A = 0.50.
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The voltage sources V1 and V, are set at ws = -m/2 and ws =1m/2

1 2

respectively for the case of Fig. 3 and at ws = wS' = 0 for the case of
1 2
Fig. 4. 1In each case, the proximity effect causes a decrease in current

2

amplitude. A slight shift in the patterﬂ is observed when the excitation
is at ¢S1= ¢§2= 0. As expected, currentfdistribution is symmetrical about
Y = /2 1in the case of Fig. 3.

The input admittance variation about its free space value is investi-

gated as a function of loop separation for four different cases as shown

in Figs.5-8. The normalized distanced 2d is defined as the separation

between the centers of the two loops with.respect to free space wavelength.

The first case is when the loops are coaxial; the second and third cases
are for two staggered loops with inclination angle 6 =76° and 27°
respectively. The fourth case is that of two coplanar loops (6 = 0°).
For the case when the excitations are loéated at wsly= -T/2 and wsz =m/2
Figs. 5 and 6 show that generally the coupling between the two loops
decreases as the inclination angle 6 decreases from a coaxial arraﬁge—
ment (6 = 90°) to a coplanar one. The same behavior is shown in Fig. 7
and 8 when excitations are located at ws =y = 0°, We notice in this

s
1 2
case that the variation of G and B about their free space values is

somewhat less pronounced. The curves with subscript Gh(e = 0°) in Fig. 7

and Bh(e = 0°) in Fig. 8 represcnt respectively the change in G and B in
the case when the off diagonal terms were ignored [10]. The discrepancy

between this case the the coplanar case is obviously very noticeable.

13
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Fig. 3 Current distribution on loop 1 for d/A =-0.17 and d/A = 0.50
with sources located at wsl= -m/2 and w52= m/2
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Fig. 4 Current distribution on loop 1 for d/A = 0.17 and d/A = 0.50
with sources located at ¢51= w52= 0 :
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Fig. 5 Change in input conductance as a function of loop separation;
sources are located at Peq= -m/2 and b= /2
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Fig. 6 Change in input susceptance for the two loops in Fig. 5
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Fig. 7 Change in input conductance as function of loop separation;
sources are located at wsl = 11)52 =0
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Fig. 8 Change in input susceptance for the two loops in Fig. 7
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