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Abstract
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Classical Analysis of High Harmonic Generation

by Benjamin Kurt Miller

When bound electrons are exposed to high intensity, near-infrared light they radiate
at integer multiples of the driving field’s frequency. The emitted light can reach into
the extreme ultraviolet and soft x-ray region of the electromagnetic spectrum. Since
the emitted frequencies are high and confined to integer multiples of the driving field’s
frequency, this process is called High Harmonic Generation.

The accepted semi-classical model for this process, given a linearly polarized driving
field, was developed by P. B. Corkum. It is called the "Three Step Model" and it
divides High Harmonic Generation by three major events: ionization, acceleration, and
recombination. The model was expanded to ω− 2ω non-linear field mixing by Milosevic
et al. but the new model requires a long tunnel exit with a non-zero exit velocity. The
values of momentum and time are saddle points for the quasi-classical action at the time
of ionization and recombination. These saddle points could be used for calculating the
spectrum of HHG, they are connected with critical times in the Three Step Model; and,
in this thesis, they are used to determine potential electron trajectories.

In this thesis I calculated saddle points, electric fields, quiver radii: α, ponderomotive
energies: Up, and electron trajectories for a selection of driving fields. I varied the
ratio of intensities in ω− 2ω field mixing, and calculated maximum classically predicted
harmonics for each combination.
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Chapter 1

Introduction

When bound electrons are exposed to high intensity, near-infrared light they radiate
at integer multiples of the driving field’s frequency. The emitted light can reach into
the extreme ultraviolet and soft x-ray region of the electromagnetic spectrum. Since
the emitted frequencies are high and confined to integer multiples of the driving field’s
frequency, this process is called High Harmonic Generation (HHG). Semi-classical models
for HHG were a new topic of theoretical interest in the 1990s and early 2000s. The
first triumph of semi-classical trajectories was demonstrated by Corkum in 1993. He
applied the Three Step Model which provided a semi-classical explanation for the cutoff
frequency and an intuitive explanation for the laser light’s effect on HHG [1]. The
concept was extended to more complicated polarizations of light by Milosevic in 2000.
Milosevic introduced a long tunnel exit for polarizations involving ω − 2ω field mixing.
This new technique allowed for electron trajectories that return to the nucleus of the
parent ion, a necessary quality for a trajectory to lead to high harmonics [2].

The focus of the research for this thesis was to calculate electron trajectories for a variety
of polarizations. Interest in these trajectories was renewed because experimentalists
want to generate high harmonics using non-linear polarizations. Insight into the semi-
classical picture might be useful for creating better experiments. There are also a few
open questions of theoretical interest: Is it possible to draw any conclusions about the
nature of a harmonic from the shape of the trajectory? Can we connect the probability
of a trajectory to any semi-classical parameters in the calculation? At what length does
the tunnel exit become improbable enough that it is ignorable?

This chapter is designed as an introduction and review of the necessary components to
understand the research. The topics covered include a short review of electromagnetic
radiation, an introduction to strong field effects, and an overview of the interest in
High-Order Harmonic Generation.
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Introduction 2

Before getting to the effects of the strong field we review the properties of electromagnetic
radiation related to this thesis.

1.1 Review of Electromagnetic Radiation

Electromagnetic radiation (EMR) is a form of energy that is released in certain electro-
magnetic processes. The processes that are most relevant to this thesis include the time
varying electric dipole moment and electron transitions between atomic energy levels.
EMR interacts differently depending on the frequency of its oscillations, or put a differ-
ent way, the energy of the constituent photons. EMR is a highly prevalent phenomenon,
for example, an important type of EMR is visible light! [3]. EMR and light will be used
interchangeably in this thesis. When referring to a particular frequency band of light,
the name of the frequency band will be mentioned explicitly.

EMR can be treated both classically and quantum mechanically. Both descriptions are
necessary for modeling HHG, so both will be used throughout the thesis. Classically,
EMR consists of electromagnetic waves which propagate at the speed of light through a
vacuum. These waves have a frequency and wavelength that determines their behavior.
Quantum mechanically, EMR consists of photons which are massless particles that carry
energy, momentum, and angular momentum. Each photon has a quantum of energy
associated to it based on its frequency.

1.1.1 Wave-particle Duality

In the previous section EMR was treated in two different ways: classically and quantum
mechanically. This property is explained by light’s wave-particle duality. The discovery
of light’s dual nature is amongst the most important achievements of physics [4].

The experimental evidence of light acting like a wave was available before confirmation of
its particle nature. Light interferes with itself, diffracts, and polarizes. These processes
are characteristic behaviors of waves, not particles. However, other processes, including
the photoelectric effect, could not be explained using just a wave theory of light. The
modern theory of light includes both of these representations of light because light is
both a wave and a particle [5].

Polarization and quanta of light, photons, are discussed explicitly below because they
are relevant to the research presented in this thesis.
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1.1.2 Polarization

Transverse waves in three dimensions must be polarized because they can oscillate in
more than one direction. The polarization determines the orientation of the oscillation in
space. The polarization direction of EMR is defined by the direction of oscillation of the
electric field. Any polarization in three dimensions can be created by linear combinations
of two orthogonal electric field vectors. Consider Fig. 1.1 for polarizations generated by
orthogonal electric field vectors, and Fig. 1.2 for a more detailed description of circular
polarization.

Figure 1.1: Polarization examples.
The non-linear polarizations are a su-
perposition of out of phase orthogonal

linear electric fields [5].

Figure 1.2: Circular polarization re-
quire the orthogonal electric fields to
be 90◦ out of phase. The figure clar-
ifies the handedness for this polariza-

tion [5].

An example of an elliptically polarized electric field vector is:

E(t) = 1
i

[
E0√
1 + ε2

(ê1 − iεê2)eiωt
]

+ c.c. (1.1)

where ε (−1 ≤ ε ≤ 1) and E0 are the ellipticity and the electric field vector amplitude,
respectively, and ê1 and ê2 are two orthogonal real unit vectors. |ε| ≥ 0 implies an
elliptical field with the limit |ε| = 1 meaning circular and |ε| = 0 meaning linear. "c.c."
denotes adding the complex conjugate. It is simple to write the electric field for ω− 2ω
field mixing by using the superposition of another elliptical polarization with angular
frequency 2ω. The general equation for electric field polarization used in this thesis is
bichromatic (ω − 2ω) and circularly polarized. Starting with the general equation for
two color field mixing for elliptical polarizations
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E(t) = 1
2i

[
E1√
1 + ε21

(ê1 − iε1ê2)eiωt

+ E2√
1 + ε22

(ê1 − iε2ê2)e2iωt
]

+ c.c. (1.2)

and limiting ε1 = ε2 = 1 or ε1 = ε2 = −1 we define two corotating or two counter-
rotating circularly polarized fields. The net polarization can be significantly altered by
varying the intensity ratio of the source. When considering a particular intensity ratio,
the net polarization will be shown by means of a parametric plot of the electric field
vector in time.

1.1.3 Quanta of Light: Photons

Photons are elementary particles that have zero rest mass and carry the energy, mo-
mentum, and angular momentum of light. The important concept for this thesis is the
quantized energy of a photon. The energy of a photon is directly related to its frequency,
given by E = ~ω, where ω is the angular frequency of the photon and ~ is the reduced
Planck’s constant. Notice, if photon A has twice the energy of photon B, then photon A
is twice the frequency of photon B. That means that photon A is the second harmonic
of photon B. This concept will return while covering the quantum description of HHG.

1.1.4 Extreme Ultraviolet and Soft X-Ray Attosecond Pulses

An exciting effect from high-order harmonic generation is the generation of extreme
ultraviolet (XUV) and soft x-ray pulses on the order of attosecond duration. (1 as
= 10−18 s). The high frequency spectral region from linear polarization driven HHG
forms a comb of harmonics with similar intensities which also exhibit a smooth spectral
phase distribution. This kind of frequency distribution is ideal for synthesis of ultrashort
pulses. If one selects for the highest harmonics, the radiation takes the form of a train
of ultrashort XUV pulses, with typical durations of hundreds of attoseconds which are
generated regularly at every half of the driving field’s period [6]. High-order harmonic
methods for ultrashort pulse generation do not achieve the Fourier limit (i.e. a band of
frequencies with constant relative phase) because these attosecond pulses exhibit chirped
behavior called the "atto-chirp." An explanation for the cause of the atto-chirp in linear
polarization driven HHG is provided using the Three Step Model in Sec. 2.4. These
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attosecond pulses have proven useful for the time resolution of ultrafast (attosecond)
dynamics [7].

1.2 Strong Field Effects

The study of intense light begins with the invention of the laser in 1960. Lasers differ
from other light sources because they produce coherent light. Coherent light from a
laser can be tightly focused and can reach intensities that are impossible using other
light sources. The laser can be tuned to a particular frequency so that it produces
monochromatic light which is made up of a very narrow band of frequencies. Lasers are
the source required for generating high intensity light beams that drive HHG and other
strong field effects.

These processes require non-linear strong field ionization, thus they occur when ~ω0 <

|E0|. Where |E0|, also known as the ionization potential, is the magnitude of the en-
ergy required to extract the most energetic bound electron from the system. ω0 is the
frequency of the incident radiation. Non-linear ionization requires multiple photon in-
teractions because several photons must be absorbed before the bound electron’s energy
is higher than the ionization potential. Multiphoton processes are justified by the energy
time uncertainty principle, δωδt ≥ ~, which allow the system to pass through virtual
states for δt given an energy uncertainty of δω [7].

Intense laser fields have introduced several effects that are not predicted by perturba-
tion theory. These effects are referred to as "Strong Field Effects" because they were
discovered with the advent of very intense fields in laboratory settings. The different
effects include: Above Threshold Ionization (ATI), Double Ionization, and HHG. ATI
and Double Ionization will only be covered briefly, but references will be provided to
learn more about the subjects.

Above Threshold Ionization occurs when an electron absorbs many more photons than
necessary for ionization so the electron is ionized with high kinetic energy. Above Thresh-
old Ionization was first reported by Pierre Agostini et al. in 1979 [8].

Double Ionization can be sequential or non-sequential. Sequential double ionization
occurs when one electron is ionized, then another after it. In non-sequential double
ionization both electrons leave the system at the same time. In rare gas atoms, non-
sequential double ionization was observed by L’Huillier et al [9].

The final effect is HHG which will be covered in greater detail in Chapter 2. These
processes require understanding strong field ionization which is explained below.
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1.2.1 Tunneling Ionization

We consider an electron in the ground state of a hydrogen atom. The electron is strongly
bound by the Coulomb potential. When the potential well interacts with a strong linearly
polarized electric field from a laser, the net potential is tilted allowing the electron to
tunnel out into the continuum. (Fig. 1.3). The tunneling must occur before the electric
field has a chance to change direction again. We introduce the Keldysh adiabaticity
parameter γ to determine whether tunneling ionization is possible.

γ = ω0 =
√
|E0|
2Up

(1.3)

Where Up is the ponderomotive energy given by Up = e2 〈A2(t)
〉
/2m, and |E0|, also

known as the ionization potential, is the magnitude of the energy required to extract
the most energetic bound electron from the system. When γ < 1 the approximate
tunneling time is considered to be much less than a period of the driving field. For
fields that fulfill this condition, we can approximate the electric field as constant during
tunneling [7].

Figure 1.3: a. Electron in its bound state. b. System exposed to strong field, electron
tunneling is possible [7].

1.2.2 Multiphoton Ionization

Multiphoton ionization (MPI) dominates when γ >> 1, meaning the ionization potential
is greater than the ponderomotive energy, which happens for relatively high frequencies
or weak fields. Two sets of multiphoton interactions are shown in Fig. 1.4 and Fig. 1.5,
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Figure 1.4: Two low frequency pho-
tons interact with an electron excit-
ing it to a higher energy bound state.
Notice the electron passes through a

virtual state.

Figure 1.5: Many low frequency
photons interact with an electron to

ionize it.

recall multiphoton interactions are justified by virtual states. If the number of photons
multiplied by the energy of each photon is greater than the ionization potential the
electron is freed. Given a low intensity field, electrons enter the continuum with the
minimum number of photons required to free the electron. As a result, the electrons
leave with a very low amount of kinetic energy– less than the energy of a single photon.
These conditions are known as the perturbative regime. If the field becomes intense
enough, this model breaks down because electrons are ionized with many more photons
than the minimum required. When the fields are intense strong field effects become
significant such as ATI and HHG. The first experiments on multiphoton ionization were
performed in 1977 by Lompre et al [10].



Chapter 2

High-Order Harmonic Generation

When matter interacts with very intense light the non-linear response can not be ex-
plained using perturbation theory. The electrons in the exposed sample radiate at the
driving field’s frequency and also at frequencies that are not contained within the driving
field. If the sample is exposed for many cycles, interference leads to radiation at integer
multiples of the driving field’s frequency. These emissions are known as harmonics and
the most energetic harmonics can extend as far as the soft x-ray regime. The process is
called High Harmonic Generation (HHG). HHG produces high photon energies and the
wide range of frequencies. Observe this behavior in the HHG spectrum given a linearly
polarized driving field in Fig. 2.1. The spectrum is a plot that characterizes radiation
and shows intensity versus frequency. For HHG, we expect to find a perturbative region
with a negative slope for lower frequencies, a plateau where all harmonics are odd and
generated with similar intensities, and a sharp cut-off where harmonic generation stops.

This thesis focuses on the microscopic scale description– just one atom is assumed to be
exposed to intense light. Modeling the system with Strong Field Approximation (SFA)
determines information about the energy spectrum of the harmonics released. This
quantum mechanical calculation reveals interesting information, but one cannot glean
much physical intuition in this model. The content of this thesis is a search for physical
intuition about these systems by means of semi-classical analysis.

High Harmonic Generation produces coherent light in high frequency regions of electro-
magnetic spectrum higher than any laser currently available. Calculating and explaining
High Harmonic Generation requires quantum mechanics. We can learn about the dipole
and the HHG spectrum by performing quantum mechanical calculations. Semi-classical
calculations reveal information about trajectories and provide physical intuition.

8
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In this chapter we will provide a brief description of the important features of HHG
then motivate the study of HHG, particularly non-linear polarizations. We will present
two different models of HHG: the quantum multiphoton absorption model and the semi-
classical tunneling ionization model known as the Three Step Model. The two approaches
presented below can be thought of as two sides to the same coin. Both explanations
describe the same process, but one might be better suited to understand HHG depending
on the situation.

2.1 Important Features of HHG

The HHG spectrum generated by a linearly polarized driving field has the important fea-
tures presented in Fig. 2.1. At low harmonic frequencies, perturbative effects dominate
and the intensity has a negative slope. The non-perturbative plateau region follows. In
the spectrum, only odd harmonics are generated for systems with inversion symmetry
such as atoms. This occurs because harmonics appear in bursts when the driving field
is approaching a zero crossing, so the bursts occur at twice the driving field’s frequency.
These bursts can be modeled by a Dirac delta comb which has a Fourier transform of
only odd harmonic frequencies [11]. ωmax marks the cut-off frequency, which can be
determined using Eqn. 2.1 first explained semi-classically for linear polarizations by
Corkum in 1993 [1].

~ωmax = |E0|+ 3.17Up (2.1)

E0 is the depth of the energy well binding the electron, also known as the Ionization
Potential. Up is the ponderomotive energy which is the time averaged energy of an
electron exposed to the driving field alone. Up = e2 〈A2(t)

〉
/2m. |e| = e is the absolute

value of the charge of the electron, A(t) is the vector potential, and m is the mass of
the electron. Most examples studied in this thesis are generated by 800 nm driving
fields at 1014 W

cm2 . This light is in the near infrared and can be reliably generated by the
Titanium-Sapphire Laser at high intensity. The intensity is kept below 1015 W

cm2 because
relativistic effects and the effect of the magnetic field on the electron’s motion play a
significant role above such intensities.
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Figure 2.1: Model spectrum for HHG given a linearly polarized driving field. The
perturbative regime includes lower harmonics and has a negative slope. The non-
perturbative plateau and cut-off harmonics are odd. The harmonics sharply decrease

in intensity after the cut-off [7].
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2.2 Motivation for HHG

High-Order High Harmonic Generation helped extend coherent radiation to higher fre-
quencies than ever before; however, there are other interesting and useful properties
of HHG. To help motivate a particularly important application of HHG, generation of
attosecond pulses, let’s turn our attention to a question from the former governor of
California, Leland Stanford.

Figure 2.2: Eadweard Muybridge pho-
tographed a horse in motion to answer Stan-

ford’s riddle [12].

Stanford wanted to know if, at any point
during its gallop, a horse had all of its feet
in the air. The answer to this question
cannot be determined with certainty us-
ing only the human eye. Stanford needed
the help of something that could take mul-
tiple pictures in the time it took a horse
to complete one period of its gallop. A
photographer, Eadweard Muybridge, had
just what he needed. Muybridge arranged
for many threads to be setup along a race-
track and each thread was connected to a
camera which took a picture when the thread was pulled or broken. The horse ran along
the track and each picture was snapped during a different section of the horse’s gallop.
In this way Muybridge solved the mystery by time resolving the horse’s motion.

Attosecond pulses (atto- = 10−18), generated by HHG, are similar to the cameras in
this example. The only way to time resolve processes that happen very quickly is by
taking many "pictures" during the process. Attosecond pulses provide a "camera" on the
timescale required to image electron dynamics. Attosecond pulse generation is made
possible by HHG because of the wide plateau and the phase locking characteristics of
the harmonics. The plateau offers a wide selection of frequencies in frequency space.
Taking a Fourier Transform translates into a narrow time band: an attosecond pulse.
Creating a short pulse requires coherence in the frequencies selected. Luckily HHG
provides phase locking of the harmonics [7].

The experimental interest in HHG is shifting towards high intensity elliptically polarized
pulses. An example of such interest is described in Ref [13]. Circularly Polarized X-
Rays can be used to determine some magnetic properties of a material. This process
involves looking at the difference in absorption spectra from two exposures to circularly
polarized x-ray radiation. In each exposure, the direction of polarization changes from
left to right circularly polarized, or vice-versa. By comparing the absorption spectra
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we can learn about the the magnetic material’s spin or magnetic moment. Another
property of circularly polarized high harmonics are their ability to detect and analyze
chiral molecules. If we compare two absorption spectra with differently rotating circular
polarizations and notice a difference in absorption the molecules are chiral. An overview
of chirality can be found in Ref. [14] and more information about these techniques can
be found in Ref. [15].

2.3 Quantum Description of High Harmonic Generation

The quantum picture of HHG relies on multiphoton ionization and assumes that many
low energy photons are absorbed by a ground state electron, then all of that energy is
released as a high energy photon (See Fig. 2.3). Since photons can only be absorbed by
an electron in integer multiples, the high energy photon is always an integer multiple
of low energy photons. The integer relation is the reason each high energy photon is
called a high harmonic. Quantum High Harmonic Generation occurs in the strong field

Figure 2.3: N photons of frequency ω are absorbed by an electron in its ground state.
One photon of frequency Nω is emitted as a high harmonic.

because many more photons are absorbed than necessary to send the electron to the
continuum. Characterizing the behavior of the system requires calculating the time
dependent electric dipole moment of the electron in the field. This process is presented
for linear polarizations by M. Lewenstein et al. in Ref. [16] and for elliptical polarizations
by D. B. Milosevic et al. in Ref. [2].
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Qualitatively, the first step is to take the inner product of the time dependent wave-
function of the whole system with the electric dipole operator acting on the same wave-
function. The evolution of the wavefunction in the presence of the intense electric field
is far too complicated to make this calculation, so we have to approximate it using the
Strong Field Approximation (SFA). In this approximation, the wavefunction is divided
into three contributing factors related to the following states of the process: the bound
electron siting in the ground state before interaction, the electron oscillating in the
continuum under the influence of the laser field alone after it has been freed, and the
electron bound in the ground state again after the interaction. When the electron is in
the continuum under the influence of the laser field the Coulomb potential is neglected.

This approximation is a step towards calculating the electric dipole moment, but another
approximation must be made. In order to calculate the electric dipole moment using
SFA, the quasi-classical action must be calculated.

S(q, ti, tf ) =
∫ ∞
tf

(E0 + n~ω)dt+ 1
2m

∫ tf

ti

dt[~q + eA(t)]2 +
∫ ti

−∞
dtE0 (2.2)

Where E0 is the ground state energy, n is the harmonic number, ω is the frequency
of the driving field, ~q is the canonical momentum, |e| = e the absoulte value of the
charge of the electron, A(t) is the vector potential. To approximate the integral we use
the complex Saddle Point Method (SPM). SPM is also called the Method of Steepest
Descent. Essentially, the integral can be calculated by summing over its saddle points,
shifting the complexity from solving the integral to finding the saddle points. Searching
for these saddle points was a significant portion of this project and will be covered in
detail in Sec. 3.2.1. Learn more about SPM in Ref. [17, 18].

2.4 Semi-Classical Description of High Harmonic Genera-
tion

The Three Step Model, introduced by Corkum for linear polarizations in Ref. [1], is a
semi-classical formulation of HHG that predicts the cut-off frequency, chirped behavior
of the generated harmonics, and trajectories associated with the electron’s path after
entering the continuum. Milosevic et al. expanded the model to include ω − 2ω field
mixing for elliptical polarizations. Milosevic’s model differs from Corkum’s model be-
cause a harmonic emitted electron enters the continuum away from the origin, at a point
called the "tunnel exit," then follows a trajectory back to the origin.

The Three Step Model, or Simpleman’s Model, divides HHG into a series of steps. At
first the electron is bound to a parent atom by the Coulomb potential. Then a strong
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Figure 2.4: Three step model of HHG. This semi-classical model explained the cut-off
and chirp of HHG. [19]

electric field is introduced by the laser. Since the field is strong it can distort the potential
well allowing tunnel ionization. The electron enters the continuum at the origin with no
velocity, but it is accelerated by the strong field. The Coulomb potential is not a short
range potential, but it is assumed that the electron has enough energy that it won’t
be trapped by the well, and the Coulomb potential is neglected. The electron traces a
path in space called a trajectory. After the electron is tunnel ionized, the electron is
accelerated by the field and might cross the origin again and return to the nucleus. If
this happens, the trajectory is called "closed" and the trajectory leads to high harmonic
emission. When the electron returns to the nucleus with a non-zero kinetic energy,
the electron’s energy drops down to the ground state, releasing the energy as a high
harmonic photon. This step is known as "recombination." Fig. 2.5 shows trajectories
related to the cut-off, or max harmonic, drawn as the blue trajectory. In Fig. 2.5b C.
Hernandez Garcia plotted the recollision kinetic energy of the particles as a function of
the recollision (green points) and ionization time (red points). The maximum recollision
energy takes the well-known value, 3.17Up, for the trajectory represented in blue. We
notice that there are two possible electron trajectories that result in the same kinetic
energy at recollision which means there are two possible paths for the generation of
the same harmonics. We name each of these trajectories as a short and long trajectory
according to whether the excursion time is greater or less than 0.63 of the driving field’s
period. In Fig. 2.5b we observe that the short trajectory contributions emit less energetic
harmonics first followed by more energetic ones, thus imprinting a positive chirp in the
harmonic radiation. This behavior is reversed for the long trajectories, which imprint a
negative chirp [7].
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Figure 2.5: a) Sample of electronic trajectories in a monochromatic laser field of λ0 =
800 nm and peak intensity 1.57×1014 W

cm2 . The grey-dashed line represents the electric
field in arbitrary units, whereas the green line, the nucleus position. Three pairs of
short and long trajectories are represented for energies at recollision of 3.0Up (purple),
2.5Up (dark pink) and 1.5Up (light pink), whereas the most energetic trajectory, raising
3.17Up at recollision, is represented in blue. The vertical axis represents the distance
from the nucleus. b) Returning kinetic energy of the particles at the instant of the first
recollision in a. The green points represent the recollision time, whereas the red points
the ionization time. The blue arrow shows the excursion time for the most energetic

trajectory, 0.63T, where T is the laser period. -C. Hernandez Garcia [7]

Generalizing the Three Step Model to ω − 2ω field mixing for elliptical polarizations
requires the introduction of the tunnel exit. Otherwise the process is essentially the
same. When an electron enters the continuum in Milosevic’s model it can appear away
from the origin and with a non-zero velocity. These properties are necessary for any
trajectory to be closed. We will turn our attention to the mathematics and theoretical
methods for using these models to characterize HHG.



Chapter 3

Predicting HHG Semi-Classically

Calculating properties of High Harmonic Generation using the Three Step Model has
some distinct advantages over calculations using quantum models. Semi-classical meth-
ods usually require less calculation time and they can be done on a home computer,
rather than a supercomputer. Most of all, the Three Step Model reveals information
we’re interested in, i.e. trajectories, that direct interpretation of the time dependent
electric dipole model cannot predict. We will first investigate linearly polarized driving
fields because there is more published data regarding them and because they are easier
to understand. After that, we focus on HHG driven by circularly polarized ω − 2ω field
mixing. Both the linear case and the field mixing case are divided into a methods section
where we explain how we arrived at our data, and a results section where the data will
be presented.

Although the constants will often be included in the equations, it is important to note
that these calculations were made using atomic units.

~ = m = e = 1 (3.1)

3.1 The Linearly Polarized Driving Field Case

The semi-classical model of HHG is driven by intense coherent EMR behaving like a
wave with a certain polarization. The simplest polarization to consider is the case of
linear polarization– where the electric field vector of the driving electromagnetic wave
points along an axis. Since everything happens in one dimension it is easy to imagine
the electron tracing its path as it is accelerated in one direction for some time then
turned around to recombine with the nucleus at a later time. The trajectories from

16



Predicting HHG Semi-Classically 17

linear polarization can be calculated numerically or analytically. We present numerical
methods for calculating these trajectories and energies.

3.1.1 Methods for the Linearly Polarized Case

The goal for these calculations is to determine the emitted harmonic energy and the
trajectory for the electron emitting that harmonic.

The driving field considered in these calculations is sinusoidal and at constant intensity.
Consider a driving field of E(t) = E1 sin(ωt)x̂ where E1 is the electric field maximum
amplitude, and ω is the field’s angular frequency. A free electron exposed to such a field
moves according to the equations

ẍ(t) = −eE1
m

sin(ωt) (3.2)

ẋ(t) = eE1
mω

[cos(ωt)− cos(ωt0)] (3.3)

x(t) = eE1
mω2 [sin(ωt)− sin(ωt0)− ω(t− t0) cos(ωt0)] (3.4)

where t0 is the ionization time. We calculated electron trajectories by computer simu-
lation. First we generated a grid of electron ionization times for the first field cycle and
programmed the electrons to follow a path as in Eqn. 3.4. Any electrons that returned
to x(t > t0) = 0 were considered HHG candidates. The time of the zero crossing is
called the recombination time and is noted as tf where x(tf ) = 0. The energy of an
emitted harmonic is calculated using ẋ(tf ) and Eharmonic = |E0|+ 1

2mẋ(tf )2. With these
calculations we know the energies and trajectories of each HHG candidate.

3.1.2 Results for the Linearly Polarized Case

We compared our simulation data to the data from C. Hernandez Garcia [7]. We had
agreement with the shape of the trajectories, the travel time for the highest harmonic, the
cutoff, and the maximum energy. We simulated a system exposed to intense 800 nm light
with linear polarization following the Three Step Model of HHG. We organized our plot
of the energies of harmonic photons emitted from the system similarly to the method used
for plotting kinetic energy at time of recollision in Fig. 2.5b. We plotted the harmonic
order, n, of the emitted HHG photon in Fig. 3.1, which includes information about
the kinetic energy at the time of recombination as well as the ionization potential |E0|,
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versus the time of ionization (red dots) or recombination (green dots). We calculated n
by means of Eqn. 3.5.

n = (|E0|+
1
2mv(tf )2)/(~ω) (3.5)

In this case, we considered |E0| of a hydrogen atom in atomic units which corresponds
to |E0| = 13.6eV . Our plot agrees qualitatively and quantitatively with Fig. 2.5b
including the positive and negative chirp corresponding to long and short trajectories, the
excursion time for each electron, and the kinetic energy values at the time of recollision.
Now that we have succeeded in reproducing the published results for the linear case we
can move on to ω − 2ω field mixing.

Figure 3.1: The energy values of harmonic photons are generated by the interaction
of an electron in a driving field of 800 nm light with linear polarization. The energy
of the harmonic photon emitted at recombination is plotted on the vertical axis with
the green points representing recollision time and the red points representing ionization
time. There is one-to-one correspondence for red and green dots meaning that every
ionization dot has a recombination dot associated to it. We considered the ionization

potential for Hydrogen, |E0| = 13.6eV .

3.2 The Circular ω − 2ω Field Mixing Case

The Three Step Model was quite successful for explaining the behavior of HHG given
linear polarization of the driving field. When the polarization becomes non-linear things
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get more complicated. In the case of ω−2ω field mixing, there are no closed trajectories
when the electron has a tunnel exit at the origin with no initial velocity. We have to
allow non-origin tunnel exits with non-zero initial velocity to find closed trajectories.
The previous method of simulating the field acting on a freed electron becomes too time
intensive. In two dimensions, there are 4 initial parameters (x, y, ẋ, ẏ) that must be
varied before we can start simulating the electron’s motion. Luckily, Milosevic et al. [2]
suggests some alternative methods for finding trajectories and harmonics given ω − 2ω
field mixing.

The methods and data presented in this section represents the bulk of the research done
on this project. The process of generating these trajectories was a long one that had at
least one significant "dead end" along the way. For brevity, we won’t explain the "dead
end" methods but it is worth mentioning that the methods and results presented below
represent the successful part of the search for electron trajectories.

3.2.1 Methods for Circular ω − 2ω Field Mixing

First we introduce some important definitions which will be used throughout this section.

τ = tf − ti (3.6)

A(t) = −
∫ t

E(t′)dt′ (3.7)

α(t) = e

m

∫ t

A(t′)dt′ (3.8)

A(t) is known as the vector potential, α(t) is known as the quiver motion or quiver
radius, and m is the mass of the electron. The quiver radius is the position vector of
an electron accelerated by the laser field with initial conditions such that its average
position is zero. These definitions hinge on the ω− 2ω field mixing driving field we had
introduced already, but is written again for reference.

E(t) = 1
2i

[
E1√
1 + ε21

(ê1 − iε1ê2)eiωt

+ E2√
1 + ε22

(ê1 − iε2ê2)e2iωt
]

+ c.c. (3.9)

This electric field represents ω−2ω field mixing for fields with ellipticities ε1 and ε2. We
consider counter-rotating and corotating circularly polarized fields which are defined
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by ε1 = ε2 = 1 or ε1 = ε2 = −1 respectively. The intensity Ij is related to the
amplitude of the electric field Ej by Ij = E2

j in atomic units. (Ij = 1
2ε0cE

2
j in SI units.)

The ponderomotive energy for the entire field is defined by Up = e2 〈A2(t)
〉
/2m =

e2E2
1/(4mω2) + e2E2

2/(16mω2) = Up1 + Up2.

What follows is a brief explanation of Milosevic’s et al. method from Ref. [2] to calculate
electron trajectories. Recall from Sec. 2.3 we can calculate the dipole moment with the
Strong Field Approximation (SFA). This process is explained in Ref. [2, 7]. Doing so
yields the quasi-classical action Eqn. 2.2. As advertised, this integral can be calculated
by the Saddle Point Method (SPM) which yields a system of equations 3.10 - 3.12.
Solutions of this system are the saddle points necessary for calculating the quasi-classical
action integral. These saddle points are directly connected with the electron trajectories.

m

τ
[α(tf − τ)−α(tf ) = ~q (3.10)

1
2m [~q + eA(tf − τ)]2 = E0 (3.11)

1
2m [~q + eA(tf )]2 = n~ω + E0 (3.12)

Each equation in the system can be connected with certain conditions necessary for
HHG, resulting from consiervation of energy and momentum. Eqn. 3.10 requires the
electron to return to the origin, Eqn .3.11 sets the initial kinetic energy of the electron
in the laser field to its energy in the atomic ground state, and Eqn. 3.12 sets the final
energy of the electron equal to the energy contributions from the field plus the initial
energy. Because the ground state energy of the electron is negative, solutions to this
system must be complex valued. Equation 3.10 can be substituted into 3.11 and 3.12,
then we have two complex equations and two complex unknowns: τ and tf . Solutions
to this system must be found numerically and finding them is not an easy process.
Iterative methods require a good guess to converge and Milosevic et al. suggests a way
to proceed. From their calculations Im[tf ] ≈ 0 while Im[τ ] < 0 [2]. We follow this
methods and approximate Im[tf ] = 0 to calculate trajectories.

Before continuing we remark on imaginary time values: We cannot confidently cite a
single factor that causes tf to be real and ti to be complex. A possible explanation
might be: A tunnel exit occurs at t = ti = tf − τ , but there is no "tunnel entrance" at
tf because we do not consider tunneling for this stage. At tf the electron emits energy
and does not travel. Since tunneling implies a non-zero outgoing probability current,
then the ionization time is allowed to be complex to accommodate tunneling. Another
consideration is the lack of a time operator in quantum mechanics. Consequently, Time
is not an observable quantity, but rather something that must be measured by a "clock."



Predicting HHG Semi-Classically 21

Having an imaginary time value at ionization doesn’t correspond to the event happen-
ing at an "imaginary time" rather it serves as a parameter in our calculation. In this
thesis, imaginary time is used as one of the tools to find closed trajectories. For further
discussion on the topic of complex time values related to tunneling refer to Ref. [2, 20].

Armed with the assumption that Im[tf ] = 0 we can start finding trajectories. By doing
a few substitutions from our system above we arrive at just one equation:

1
2m{

m

τ
[α(tf − τ)−α(tf )] + eA(tf − τ)}2 = E0 (3.13)

We can solve this equation by fixing tf and solving for complex τ . We use the iterative
Newton’s method for finding τ . First we create a grid of one hundred tf values equally
spaced between time of 1.05 field cycles and 1.7 field cycles. Then we create a grid
of guesses for τ on a square in the complex plane with the bottom left corner at zero
and with side length of one field cycle. We apply the fixed tf and the guesses for τ
to the Newton’s method package contained in the library of python, SciPy, allowing
250 iterations for convergence. Any duplicates of fixed tf and iterated τ are removed.
We consider trajectories with excursion times less than one period of the driving field,
because those are more likely to be physical. i.e. Re[τ ] ≤ 2π

ω .

We use the solutions of Eqn. 3.13: fixed tf and iterated τ , to determine the trajectories
and harmonics. Not every set of tf and τ generates harmonic trajectories. Harmonics
are limited to nω, n = 0, 1, 2, ... therefore we have to remove the sets of tf and τ that do
not emit a harmonic at recombination. We do this by calculating the energy of emitted
photons and limiting them to harmonics of the driving field like in Eqn. 3.14.

n~ω = |E0|+
m

2 {Re[v(tf )]2 − Im[v(tf )]2} (3.14)

mv(tf ) = m

τ
[α(tf − τ)−α(tf )] + eA(tf ) (3.15)

Since we are using numerical methods and working on a grid it’s possible that we won’t
find harmonic trajectories with n as an integer only. We expand our search to include
trajectories where n is almost an integer, i.e. n = 1 ± 0.01, 2 ± 0.01, 3 ± 0.01... Taking
the real part of the position yields this formulation for the trajectory:

rn(t′) ≡ Re[r(t′)− r(tf − τ)] = ~
m

(t′ − tf ) Re[q(tf − τ, tf )] + α(t′)−α(tf ) (3.16)

We repeat these calculations and analysis for corotating and counter-rotating fields of
different intensity ratios. We present here results for two counter-rotating fields and one
corotating field in depth by plotting the associated electric field, trajectories, and α(t)
in sections 3.2.2.1 and 3.2.2.2. Furthermore, we vary the intensity ratio and consider
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sets of fields with constant total intensity or constant total Up. Within these sets we
plot the predicted cut-off as a function of the intensity ratio in section 3.2.2.3.

3.2.2 Results for Circular ω − 2ω Field Mixing

We present two counter-rotating fields and a corotating field. The data is presented
in Figs. 3.2-3.13 in this order: 3D parametric plot of the electric field with time as a
geometric axis, trajectories for this field, parametric plot of the electric field with a dot
marking the value of E(tf ) for each trajectory, and a parametric plot of α(t) with a
dot marking the value of α(tf ) for each trajectory. The dots are the same color as the
trajectory they are associated with, and the harmonic value of the emitted photon is
written next to the dot. Afterward, in Figs. 3.14 and 3.15, we present plots showing the
maximum harmonic versus intensity ratios for sets of counter-rotating fields. This is a
semi-classical method to maximize the cut-off for field mixing.

With finding physical intuition in mind we can ask more specific questions: When during
the field cycle does HHG occur? What does an improbable HHG trajectory look like?
These questions are explored within the relevant subsection.

To identify the intensity ratio we define a new set of parameters: I1 = (i/6)Itotal and
I2 = (j/6)Itotal such that the total intensity I1 + I2 = Itotal is constant. The next
examples have circularly polarized fields with total intensity I = Itotal = 1014 W

cm2

3.2.2.1 Circular Counter-Rotating Fields

Counter-rotating fields offer the most promise for HHG with ω−2ω field mixing. The case
of equal intensity counter-rotating ω − 2ω fields have been investigated experimentally
in Ref. [21] and found that the electric field with i/6 + j/6 = 3/6 + 3/6 does generate
harmonics. For the case of counter-rotating fields we investigate the question, when
during the field cycle does HHG occur? By plotting the recombination time on
the parametric electric field plot we know when the trajectories end and when harmonics
are emitted; however, the data does not show a clear region of either the electric field
plot or the quiver motion plot where recombination was concentrated. (See Fig. 3.4 and
Fig. 3.8 for electric field plots and 3.5 and Fig. 3.9 for the quiver motion plots.) The
harmonic energy level doesn’t seem to be correlated to the recombination time, either.
What does a typical HHG trajectory look like? The quiver radius is defined for an
electron placed in the field with no initial momentum. Trajectories with small momenta
at the tunnel exit, ti, are likely have a path that looks similar to α(t). Consider the
trajectory plots Fig. 3.3 and Fig. 3.7 to note the trajectories that look like the quiver
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motion. A trajectory with small momentum at ti implies the field requires more time
to accelerate the electron and return it to the nucleus; therefore, trajectories that are
similar to α(t) have longer excursion times. Milosevic et al. [2] suggest that a long
excursion time implies that the associated trajectory is unlikely. This statement could
be understood by considering the electron as a wave packet which exhibits dispersion
properties. The longer time the electron spends in the continuum corresponds to less
chance of recombination since the particle isn’t localized. If we accept that longer
excursion times mean less probability then the more a trajectory looks like α(t), the less
likely it is to cause HHG. To confirm or disprove this hypothesis we would need to do a
full calculation of the electric dipole moment. We plan to calculate this quantity in the
future and connect it to the trajectories.
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The partial intensities for the next set are i/6+j/6 = 3/6+3/6, which implies 3/6∗I = I1,
3/6 ∗ I = I2.

Figure 3.2: 3D Parametric Electric Field for counter-rotating i/6 + j/6 = 3/6 + 3/6.
Time, in field cycles, is plotted into the page. The magnitude of the electric field in
the x and y directions is plotted on the plane parallel to the page in atomic units.

(Multiplied by 500 for scale.)

Figure 3.3: Trajectories given a driving field like 3.2 with i/6 + j/6 = 3/6 + 3/6. The
axes are in atomic units of length. The electrons all tunnel exit away from the origin
then follow a colored trajectory towards the origin where they emit a high harmonic

photon. The emitted photon’s harmonic order is shown in the legend.
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Figure 3.4: Parametric Electric Field for counter-rotating i/6 + j/6 = 3/6 + 3/6.
The axes are in units of atomic electric field. Notice the dots are associated to the

recombination times for each trajectory in 3.3

Figure 3.5: Parametric α(t) for counter-rotating i/6 + j/6 = 3/6 + 3/6. The axes are
in atomic units of length. This is the quiver motion plotted in time. Notice the dots

are associated to the recombination times for each trajectory in 3.3
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The partial intensities for the next set are i/6+j/6 = 1/6+5/6, which implies 1/6∗I = I1,
5/6 ∗ I = I2.

Figure 3.6: 3D Parametric Electric Field for counter-rotating i/6 + j/6 = 1/6 + 5/6.
Time, in field cycles, is plotted into the page. The magnitude of the electric field in
the x and y directions is plotted on the plane parallel to the page in atomic units.

(Multiplied by 500 for scale.)

Figure 3.7: Trajectories given a driving field like 3.6 with i/6 + j/6 = 1/6 + 5/6. The
axes are in atomic units of length. The electrons all tunnel exit away from the origin
then follow a colored trajectory towards the origin where they emit a high harmonic

photon. The emitted photon’s harmonic order is shown in the legend.
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Figure 3.8: Parametric Electric Field for counter-rotating i/6 + j/6 = 1/6 + 5/6.
The axes are in units of atomic electric field. Notice the dots are associated to the

recombination times for each trajectory in 3.7

Figure 3.9: Parametric α(t) for counter-rotating i/6 + j/6 = 1/6 + 5/6. The axes are
in atomic units of length. This is the quiver motion plotted in time. Notice the dots

are associated to the recombination times for each trajectory in 3.7
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3.2.2.2 Circular Corotating Fields

Corotating fields with i/6 + j/6 = 3/6 + 3/6 were investigated experimentally in Ref.
[21] and it was concluded they do not produce high harmonics. Although the other
field combinations were not tested directly in this experiment, it seems likely that no
corotating field will generate harmonics. With that in mind we as the question, when
during the field cycle does HHG occur? Despite the evidence against HHG in this
context, let us consider that our trajectories are possible harmonics, in this case there
is some amount of grouping in the quiver motion and electric field in the smaller loop,
which can be seen in Fig. 3.13 and Fig. 3.12. If we consider Fig. 3.10 we notice that the
electric field traces out the small loop for a significant amount of the period, so an evenly
distributed set of data points would appear concentrated in the smaller loop as well. Let
us now ask the question What does a typical HHG trajectory look like? If we
consider the trajectories in Fig. 3.11 we notice they require very long tunnel exits to
form closed trajectories, and if harmonics are not generated with this system then such
long tunnel exits are not very likely. We can support the argument against long distance
tunnel exits by considering tunneling through any barrier. The wavefunction within a
long classically forbidden region must be exponentially decaying, so the probability of
finding the electron tunneling decreases exponentially with distance from the nucleus.
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The partial intensities for the next set are i/6+j/6 = 1/6+5/6, which implies 1/6∗I = I1,
5/6 ∗ I = I2.

Figure 3.10: 3D Parametric Electric Field for corotating i/6+j/6 = 1/6+5/6. Time,
in field cycles, is plotted into the page. The magnitude of the electric field in the x and
y directions is plotted on the plane parallel to the page in atomic units. (Multiplied by

500 for scale.)

Figure 3.11: Trajectories given a driving field like 3.10 with i/6+j/6 = 1/6+5/6. The
axes are in atomic units of length. The electrons all tunnel exit away from the origin
then follow a colored trajectory towards the origin where they emit a high harmonic

photon. The emitted photon’s harmonic order is shown in the legend.
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Figure 3.12: Parametric Electric Field for corotating i/6+ j/6 = 1/6+5/6. The axes
are in units of atomic electric field. Notice the dots are associated to the recombination

times for each trajectory in 3.11

Figure 3.13: Parametric α(t) for corotating i/6 + j/6 = 1/6 + 5/6. The axes are in
atomic units of length. This is the quiver motion plotted in time. Notice the dots are

associated to the recombination times for each trajectory in 3.11
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3.2.2.3 Semi-classical Cut-Off

In this section we determine the maximum harmonic generated, also known as the cut-
off, given a particular combination of intensities using our classical trajectory analysis.
We only consider counter-rotating fields. We vary the intensity ratio in 31 steps starting
with all of the intensity distributed to the 2ω frequency field then distributing more
intensity to the ω field. We redefine i and j such that i/30 + j/30 implies i/30 ∗ I = I1

and j/30 ∗ I = I2 with I1 + I2 = Itotal = I constant. Milosevic et al. present a cut-off
law for fields with equal intensity distribution.

nmax~ω = 1√
2

3.17Up + 1.2|E0| (3.17)

We only expect agreement for one point on the plot, but the cut-off law is plotted anyway
to see how well it models other intensity distributions. For each set of field components
we find the trajectory which leads to the highest harmonic. The results are plotted in
Figs. 3.14 and 3.15.

Figure 3.14: The counter-rotating fields are held at a constant intensity of 1014 W
cm2 .

At the far left, all the intensity is distributed to the 2ω frequency field. As i increases,
the intensity of the ω field increases and the intensity of the 2ω field decreases. Notice
no harmonics are generated when i = 0 and i = 30 because the net field is circularly

polarized at those ratios.
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We can repeat the process but this time using a constant total ponderomotive energy.
Recall Up = e2E2

1/(4mω2) + e2E2
2/(16mω2) = Up1 + Up2. Redefine i and j such that

i/30 + j/30 implies i/30 ∗Up = Up1 and j/30 ∗Up = Up2 while holding Up constant. We
plot Milosevic’s cut-off law, but we only expect agreement on a single point of the graph
where the intensity is equally distributed to the fields.

Figure 3.15: The counter-rotating fields are held at a constant Up = 0.22 atomic
units of energy. The intensities range from 4× 1014− 1× 1014 W

cm2 starting at i = 0 and
approaching i = 30. At the far left, all the ponderomotive energy is distributed to the
2ω frequency field. As i increases, the ponderomotive energy of the ω field increases and
the ponderomotive energy of the 2ω field decreases. Notice no harmonics are generated

when i = 0 and i = 30 because the net field is circularly polarized at those ratios.

In the constant intensity plot, Fig. 3.14, we see relatively good agreement in the region
where the intensity is equally distributed between the fields; however, in the region with
high ω intensity our calculations drop off. In the constant ponderomotive energy plot,
Fig. 3.15, there is very close agreement with equal distribution of ponderomotive energy.
In the intense 2ω region we predict much higher harmonics, in contrast to the intense ω
region where we predict lower harmonics. In general, we found the harmonic cut-off in
good agreement with predictions by Milosevic’s law.
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Conclusion

We presented a comprehensive overview of the process of HHG, starting by introducing
some background information like polarization, quantum and classical perspectives on
light, and an introduction to the strong field. Next, we covered quantum and semi-
classical descriptions of HHG for linear driving fields, then we expanded them to the
ω−2ω field mixing case. We presented the methods used to generate the trajectories and
other relevant plots for linear polarization and circularly polarized ω − 2ω field mixing.
Finally, we included a maximum harmonic versus intensity ratio plot for maximizing the
cut-off using semi-classical predictions.

Our goal was to extend and support our physical intuition for the process of HHG given
ω − 2ω field mixing. This research represents the foundation of that search. Extending
physical intuition is not a precisely defined concept, but by generalizing what we have
learned from our results we can explain what happens to HHG electrons in the presence
of intense fields. We characterized the driving electric field with a parametric plot with
time on a geometric axis to clarify the time evolution of the field. We noted the value
of the electric field at the recombination time on the electric field plot so we could see
trends of when recombination occurred during the field cycle. We repeated the process
with the quiver radius, α(t). We noticed from these parametric plots that the bottom
left half of the cycle does not generally contain recombination events using our search
parameters.

Each of these recombination events has a harmonic and trajectory associated to it, which
we found by means of the saddle points for the quasi-classical action. The technique
allows us to calculate closed trajectories for arbitrary intensity distributions of mixed
elliptically polarized ω − 2ω fields. We qualitatively characterized the probability of a
particular trajectory based on its similarity to the quiver radius, noting that a trajectory
similar to quiver radius is unlikely to contribute to the overall spectrum. The highest

33
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harmonics we calculated conformed to the prediction from Milosevic’s cut-off Eqn. 3.17
in regions of nearly equal intensity distribution between the ω and 2ω fields. At first,
we expected our method to find harmonics higher than are probable, which means that
the cut-off would be reported to be higher; however, searching for the lowest value of
imaginary tunneling time selects for relatively probable trajectories. It is possible to find
approximate trajectories by simulation if one randomly guesses initial parameters and
allows the system to evolve in time; a similar technique to what we used for the linear
case. Our method is superior because it selects for trajectories that obey conservation
laws and are thus more likely.

We succeeded in characterizing the difference in trajectories from the corotating and
counter-rotating cases. We noted the incredibly long tunnel exit required for the coro-
tating case, which does not lead to HHG, compared with the counter-rotating case which
has probable closed trajectories. It is important to note that paths of these sets of tra-
jectories are unintuitive and none of them are similar to published linear trajectories.
The search for these trajectories was non-trivial and will be useful in the future to
experimentalists and theorists alike.

We successfully used classical methods to analyze High Harmonic Generation with a
focus on ω − 2ω field mixing. The code used to find these trajectories is adaptable
and can prove useful in further pursuits. The method of searching for saddle points is
not limited to ω − 2ω field mixing and can be extended to driving fields of arbitrary
frequency ratios as well as pulsed driving fields. The flexibility of this method allows us
to use this code to support ongoing experiments at the Joint Institute for Laboratory
Astrophysics (JILA). Although the project was studied and motivated in the context of
HHG, this method could be used for studying other strong field effects such as Above
Threshold Ionization and Double Ionization since these processes can be described by
an electron accelerated in a strong driving field.

4.1 Further Research

There are two primary steps moving forward. Determine how probable a particular
trajectory is, and find the rest of the trajectories. Determining the probability for a
trajectory could be achieved by calculating the spectrum in combination with Amosov-
Delone-Krainov theory (ADK) [7]. ADK helps us determine the ionization rate for a
certain electric field value. The spectrum contains information about the length of the
plateau, the amplitude of the harmonics present, and at which frequency the cut-off lies.
The spectrum would help to determine the probability of a particular trajectory. This
is important in ω− 2ω field mixing because we allow a tunnel exit away from the origin.
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For example, a particular trajectory might yield a high harmonic, but the trajectory
requires a very long range tunnel exit. Our intuition tells us that tunneling such a long
distance is unlikely, so this trajectory wouldn’t contribute to the harmonic spectrum.
However, the only way of knowing whether a trajectory contributes is by knowing the
spectrum itself. If the harmonic isn’t present in the spectrum then that trajectory is
unlikely, or even impossible. The usefulness of knowing the spectrum is exemplified by
the corotating case. Circularly polarized corotating ω − 2ω fields with equal intensity
distributions do not generate any harmonics [21]. Though they were not presented, we
found trajectories for this case of field mixing. If we hadn’t known the spectrum we
could only assume that the trajectories were unlikely because they required incredibly
long tunnel exit length. The spectrum would allow us to determine the accuracy of the
plots for the cut-off versus the intensity ratio. (Figs. 3.15 and 3.14) We could compare
our semi-classical predictions to the accurate cut-off determined by the spectrum.

When it comes to finding trajectories, we determined that the search should be expanded.
In the expanded search we should generate a grid of taus ranging from zero to the period
of the driving field, then search over two periods for tf . Rather than searching for tau
in a box in the complex plane, we should include imaginary values that are higher than
the length of one period of the driving field. Learning about what happens in these
cases should give us a broader look at the possible trajectories, including the higher
harmonics.
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