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 In wildlife communities, the diversity of both host species and pathogens can affect 

disease and transmission dynamics. However, the various mechanisms leading to these 

biodiversity effects occur at strikingly different spatial scales. For my dissertation, I used 

empirical and theoretical tools to understand how pathogen and host diversity affect transmission 

at multiple scales. First, I conducted a series of laboratory experiments using a genus of viruses, 

Ranavirus, which can cause devastating die-offs in amphibian populations. I asked how multiple 

virus types might interact to affect individual-level probabilities of infection and, subsequently, 

population-level transmission dynamics. I found that co-exposure to two Ranavirus species 

substantially increased the probability of an amphibian larva becoming infected, as well as the 

average viral load among individuals. Concordantly, the presence of multiple Ranavirus species 

led to larger epidemics in experimental populations, as well as an increased probability of 

mortality. This research illustrates that Ranavirus coinfection could strongly mediate epidemic 

dynamics in natural amphibian populations. In the next part of my dissertation, I created an 

epidemiological model in which a single pathogen circulates through a vertebrate host 

community. I found that the relationship between host species richness and pathogen 

transmission could be positive, negative, or non-monotonic depending on how the host’s total 

community density scales with host richness and the type of pathogen transmission assumed. 
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These results highlight that host community composition influences transmission in complex 

ways, suggesting that observing a consistent effect of host diversity in natural systems is 

unlikely. Finally, scaling up and using a metacommunity framework, I developed a statistical 

method to explore how symbiont (including pathogen) communities are structured across space. 

I then applied this method to a large scale, longitudinal data set of amphibian symbiont 

communities and discovered that the structure of these communities changes through time and is 

predominantly influenced by temporal changes in host community composition. Overall, my 

research illustrates that transmission dynamics are influenced by factors at multiple spatial scales 

and that integrating across scales is important for understanding how, where, and when 

biodiversity will affect disease dynamics. 
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INTRODUCTION 

Wildlife disease is considered a major economic, public health and conservation concern 

(Daszak 2000, Smith et al. 2006, McCallum 2012). Understanding how pathogens, hosts and 

environmental context interact to affect disease outcomes and pathogen transmission is an 

imperative goal and is central to the field of disease ecology (Hudson et al. 2002, Ostfeld et al. 

2008). Advances in theoretical modeling and empirical research on host-pathogen interactions 

have enhanced our ability to explain and, in some instances, successfully manage diseases in 

both human and wildlife systems (Anderson et al. 1992, Dieckmann et al. 2002, Joseph et al. 

2013a). However, while studying single pathogens in single host species has resulted in 

fundamental insights about epidemiology, evidence is building that community interactions 

among multiple host and pathogen species can significantly alter expectations of disease 

outcome and pathogen spread (Rigaud et al. 2010, Tompkins et al. 2010).  

 One critical finding of disease ecology is that the diversity and structure of host 

communities can mediate multi-host pathogen transmission and disease severity (Ostfeld and 

Keesing 2012, Johnson et al. 2013). Emerging field and laboratory data have demonstrated 

support for the dilution effect, where high plant and wildlife diversity reduces disease severity or 

pathogen spread in a variety of multi-host pathogen systems (Ostfeld and Keesing 2000, 2012, 

Keesing et al. 2006, 2010, Johnson et al. 2013b). However, predicting the generality of host 

diversity-disease relationships in natural systems is difficult. Given the complexity of host-

pathogen interactions in a wildlife community context, some researchers have suggested that the 

dilution effect should not be as general as has been proposed based on current evidence 

(Randolph and Dobson 2012, Wood and Lafferty 2012). Furthermore, very few studies have 
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considered how the interactions within parasite communities that are embedded in host 

communities might further alter disease dynamics.  

 In natural systems, infection of individual hosts with multiple strains and species of 

pathogens, known as coinfection, seems to be the rule, rather than the exception (Cox 2001, 

Telfer et al. 2010, Rigaud et al. 2010, Balmer and Tanner 2011). Recently, it has been proposed 

that incorporating how multiple pathogens interact within and among hosts is essential to our 

understanding and management of disease in humans and wildlife (Lafferty 2010, Fenton and 

Perkins 2010). For example, independent of host community diversity, coinfection can alter 

expectations of host mortality, pathogen transmission, and even pathogen evolution, often in 

ways that are context- and system-dependent (Jolles et al. 2008a, Johnson and Hoverman 2012b, 

Alizon et al. 2013). However it is unclear whether pathogen diversity should scale with disease 

in the same ways as host diversity, and under which conditions pathogen or host diversity are 

better predictors of disease patterns.  

 Understanding how pathogen diversity and host diversity affect disease and transmission 

patterns deals with questions of scale. Pathogen diversity affects dynamics within hosts, but 

effects can scale up to the host community-scale. Similarly, host diversity affects transmission at 

the local community level, but through host dispersal, could affect dynamics at the 

metacommunity scale. In my dissertation, I use theoretical modeling and a variety of empirical 

tools to explore this important issue of scale. I have organized my chapters in a way that reflects 

a spatial hierarchy of questions: from effects of pathogen diversity within individual host 

individuals and within a host population, to the effects of multi-host species composition on 

pathogen transmission within local communities, to a series of chapters on exploring the effects 

of host composition on symbiont metacommunity structure across space and time.  
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In Chapter 1 I use controlled laboratory experiments with a tractable amphibian-virus 

system to understand the consequences of viral diversity (via co-exposures) on disease and 

transmission dynamics in amphibian host individuals and in host populations. In Chapter 2, 

scaling up to the local host community level, I use multi-species epidemiological modeling and 

simulation to study, in a generalized framework, how specific aspects of host community 

composition affect pathogen transmission. In Chapter 3, I conceptually address the ecological 

and evolutionary significance of embedding symbionts – including parasitic, mutualistic and 

commensal organisms – and hosts in a metacommunity framework. Then, in Chapter 4 I 

introduce a novel statistical method that integrates multi-species occupancy modeling in the 

analysis of metacommunity structure. This method corrects for detection error, which is 

particularly problematic in studies of symbionts. Finally, in Chapter 5, I utilize these developed 

methods to analyze a large data set of amphibian symbionts collected over 4 years. I explore how 

host community composition and exogenous environmental covariates influence symbiont 

metacommunity structure across space and time.  
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CHAPTER 1 

CO-EXPOSURE TO AMBYSTOMA TIGRINUM VIRUS (ATV) FACILITATES GREATER 
INFECTIVITY AND REPLICATION OF FROG VIRUS 3 (FV3) IN LARVAL FROGS 

 

1.1 Abstract 
 

Coinfection – the simultaneous infection of a host with multiple pathogen types – is a 

pervasive natural phenomenon, yet only recently have researchers started to document how it 

affects disease and transmission dynamics across a variety of systems. In this study, we use two 

experiments to understand how the individual, host-scale effects of coinfection can scale up to 

affect population-scale transmission dynamics. Specifically, we co-expose larval frogs to two 

species of Ranavirus, a globally distributed genus of viruses that can cause serious disease and 

local population die-offs of amphibians, reptiles, and fish. In our first experiment, we expose 

individual Rana aurora larvae to Ambystoma tigrinum virus (ATV), wild-type Frog virus 3 

(FV3), or a unique strain of Frog virus 3 isolated from a ranaculture facility in Georgia, USA, 

(R-FV3), either in isolation or in pairwise co-exposures. With the aid of viral DNA sequencing, 

we found that co-exposure to ATV substantially enhanced the infectivity of FV3 and R-FV3, 

resulting in almost twice as many infected individuals. Co-exposure also increased the average 

viral loads of FV3-infected larvae. However this same effect was not seen when larvae were co-

exposed to the two strains of FV3, suggesting an important effect of viral species identity. In a 

follow-up experiment, we asked how co-occurrence of ATV and FV3 affects transmission and 

average viral load in replicate populations of Pseudacris triseriata. Although ATV failed to 

establish in most replicate populations, exposure to ATV resulted in a large epidemic and 

generally more variable epidemics of FV3. Additionally, individuals in populations co-exposed 

to both viruses suffered a higher probability of mortality if they became infected. We 
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hypothesize that these effects of co-exposure are due to immune trade-offs in the face of two 

unique viruses infecting the host, and emphasize the potentially important role of co-exposure 

and coinfection by multiple pathogens, even in cases where secondary infections fail to establish. 

Given the capacity for Ranavirus species to cause epidemics and die-offs in amphibians, these 

findings have important implications for both natural and commercially maintained populations.  

 

1.2 Introduction 

 Although wildlife disease is now considered a major conservation concern, the disease 

dynamics of many animal-pathogen systems remain under-studied (Daszak 2000, Smith et al. 

2006, Thompson et al. 2010, McCallum 2012). Most ecological studies of disease have 

historically focused on single host - single pathogen systems, which ignores the reality of natural 

disease dynamics in many systems (Tompkins et al. 2010). For instance, the simultaneous 

infection of a single host with a diverse array of pathogen species and strains (i.e. coinfection) is 

probably the norm in both human and wildlife systems, rather than an exception to the rule 

(Petney and Andrews 1998, Pedersen and Fenton 2006, Telfer et al. 2010, Balmer and Tanner 

2011, Knowles et al. 2013, Griffiths et al. 2014, Nunn et al. 2014). Thus, understanding the 

consequences of coinfection is an important step forward in the fields of disease ecology and 

epidemiology (Rigaud et al. 2010).  

 Coinfection is capable of mediating both the outcome of disease and large-scale disease 

distribution patterns. Various studies show that infection with multiple pathogen types can result 

in competitive dynamics within hosts that affect pathogen replication and infectivity (de Roode 

et al. 2005, Telfer et al. 2010, Johnson and Hoverman 2012a, Johnson et al. 2013a, Nunn et al. 

2014) and even pathogen evolution (Choisy and de Roode 2010, Alizon et al. 2011, 2013). 
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However, fewer studies have attempted to link these individual host-level effects to population-

level processes, asking how coinfection can alter epidemiological patterns of transmission and 

occurrence. For instance, experiments in wild buffalo populations show that coinfection with 

nematodes strongly influences large-scale patterns of bacterial tuberculosis infection (Jolles et al. 

2008a, Ezenwa et al. 2010). In order to understand how coinfection might broadly affect disease 

and transmission dynamics, more studies are needed to integrate across processes at different 

spatial scales (Lafferty 2010, Rigaud et al. 2010).  

Viruses of the genus Ranavirus provide a tractable and relevant model system for 

exploring the dynamics of coinfection at both the within-host and population-level scales for 

several reasons. First, ranaviruses infect amphibian communities globally and can cause up to 

100% die-off events, constituting a real threat to wild and commercially maintained amphibian 

populations (Gray et al. 2009b, Lesbarrères et al. 2012). Thus, understanding how coinfection 

might influence the spread and severity of disease caused by these pathogens is of great concern. 

Second, this genus of virus is genetically and ecologically diverse, suggesting that interactions 

among ranaviral species and strains could affect transmission patterns. The two type species of 

the genus – Ambystoma tigrinum virus (ATV) and Frog virus 3 (FV3) – can be differentiated 

based on genomic characteristics and their predominant associations with salamanders and frogs, 

respectively (Chinchar et al. 2009, 2011). Furthermore, many unique strains of both ATV and 

FV3 differ in key epidemiological traits, such as virulence (Brunner and Collins 2009, Hoverman 

et al. 2010). Finally, both ATV and FV3 can be highly prevalent across the landscape, and their 

spatial distributions are broad and likely overlap (Gray et al. 2007, Ridenhour and Storfer 2008, 

Greer et al. 2009, Brunner et al. 2011, Hoverman et al. 2012), suggesting a high potential for 

coinfection and possible interactions both within and among hosts. Thus far, however, no study 
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has considered the role of multiple Ranavirus species or strains in mediating disease or 

epidemics in this system.  

  While ATV has high infectivity in salamanders (Picco et al. 2007, Brunner and Collins 

2009), there is mixed evidence that strains of ATV are able to infect frog larvae (Jancovich et al. 

2001, Schock et al. 2008). For example, of the three frog species experimentally exposed to ATV 

by Schock et al. (2008), all three species showed susceptibility to ATV infection, and a small 

proportion of individuals died of ATV-induced disease. However, Jancovich et al. (2001) 

exposed two anuran species to ATV – including a different population of one species also 

studied by Schock et al. (2008) – and found no signs of infection using both PCR and cell culture 

isolation. Together, these data suggest that ATV infections in frogs are possible, though the 

probability of infection likely varies among anuran species and populations and possibly among 

viral strains. Contrastingly, FV3 infectivity, while varying among species, is consistently high 

and often leads to mortality in both frog and salamander larvae (Brunner et al. 2005, Picco et al. 

2007, Schock et al. 2008, Hoverman et al. 2010, 2011). Given that viral species and strains can 

cross such host taxanomic boundaries, coinfection is likely a common and important mediator of 

transmission dynamics in this system.  

 Theory suggests that the impact of coinfection on transmission dynamics can ultimately 

depend on its effects on disease and pathogen replication at the host-level scale (Pedersen and 

Fenton 2006, Jolles et al. 2008b, Mideo et al. 2008, Ezenwa and Jolles 2011a). For instance, if 

coinfection enhances disease and consequently leads to more rapid host death, then transmission 

of either coinfecting pathogen could be hindered, leading to smaller epidemics due to 

coinfection. However, if coinfection facilitates the invasion and within-host replication of 

pathogens, for example, via immune trade-offs, transmission could be enhanced, leading to 
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larger epidemics (Ezenwa et al. 2010, Ezenwa and Jolles 2011b). Understanding how coinfection 

will ultimately affect transmission thus requires multi-scale experiments that determine how 

effects at the host-level scale up to affect transmission at the population-level.  

  In this article, we report the results of two experiments conducted to determine the 

effects of co-exposure to ATV and FV3 in larval amphibians. In the first experiment, we 

assessed the individual-level effects of co-exposure by exposing individual Rana aurora tadpoles 

to pairwise combinations of ATV, FV3, and a novel strain of FV3 isolated from a ranaculture 

facility in Georgia, R-FV3 (Miller and Rajeev 2007, Hoverman et al. 2010). However, to also 

account for potential influences of dosage, we included single pathogen treatments with single 

and double dose exposures. Our design thus allowed us to determine the effects of co-exposure 

to two species and to two strains of Ranavirus. We monitored mortality daily and assessed 

ranaviral prevalence and viral load for each treatment using quantitative polymerase chain 

reaction. In a follow-up experiment, we asked whether the occurrence of ATV and FV3 in 

microcosm populations of Psuedacris triseriata tadpoles affected population-level 

epidemiological statistics, again assessing mortality, prevalence, and viral load in each 

microcosm population. For both experiments, we used Sanger sequencing to verify the identity 

of the dominant virus infecting each individual, which allowed us to narrow down the possible 

mechanisms leading to an effect of co-exposure.  

  

1.3 Materials and Methods 

1.3.1 Viruses and culturing  

Aliquots of ATV (Regina ranavirus (RRV) #11800) and FV3 (#061405) were generously 

provided by Gregory Chinchar. The RRV strain of ATV was originally isolated in 1997 from 
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Ambystoma tigrinum in Regina, Saskatchewan, Canada (Bollinger et al. 1999), and the FV3 

strain is also a wild-type strain isolated from Rana pipiens populations of the Midwestern United 

States in the 1960’s (Granoff et al. 1965). An aliquot of the R-FV3 strain of FV3, isolated from a 

ranaculture facility in Georgia in 2006, was generously provided by Matthew Gray and Debra 

Miller (GenBank accession no. EF101698; Miller and Rajeev 2007). These viruses were 

passaged through immortalized fathead minnow cells fed with Eagle’s minimum essential 

medium (MEM) with Hank’s salts, containing 5% fetal calf serum. Titer of the resulting viral 

stocks was determined by plaque assays using serial dilutions of the stock, resulting in titers 

represented in plaque forming units (PFU). It is important to note that we were unable to obtain 

an accurate titer of the R-FV3 stock before the start of the first experiment, which likely explains 

the observed lower-than-expected infectivity.  

 

1.3.2 Experiment 1: Individual-level 

This experiment was designed to assess the individual-level effects of co-exposure to 

ATV and FV3. Egg masses of Rana aurora were field collected from wetlands in Oregon in the 

late spring of 2012 and shipped to the University of Colorado at Boulder, where all experiments 

took place. Egg masses were first washed with sterile deionized water to remove any possible 

residual virions and then placed into plastic containers for rearing. R. aurora larvae were reared 

at 20°C with a 12:12 hour day:night photoperiod and fed ground TetraMin® fish flakes (Tetra) 

ad libitum until reaching Gosner stage 30 (Gosner 1960). At this time, larvae were randomly 

placed into individual, covered plastic containers (with drilled air holes) filled with 1L of carbon-

filtered, UV-sterilized water and allowed to acclimatize for 24h. A subset of 15 larvae were 

humanely euthanized by immersion in an overdose of 1% buffered MS-222 solution and tested 
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for infection to verify that none of the larvae harbored latent infections prior to experimentation 

(see quantitative PCR methods below). None of these individuals tested positive for ranaviruses.  

Twenty-five larvae were assigned to each of 10 experimental treatment groups: the 

pairwise combinations of the three viruses (i.e. a single dose of each of two viruses; n=3 

treatments), a single and double dose exposure for each virus (n=6 treatments), and a tenth sham 

control treatment consisting of exposure to a 60µL aliquot of virus-free MEM. On 22 May 2012, 

a single dose (~1x106 PFU) or double dose (~2x106 PFU) of the respective virus or viruses was 

added to each larva’s container via sterile pipette tip. Thus, larvae were passively exposed to 

each virus inoculate, which likely better mimics field conditions relative to injection-based 

methods. 

  After virus was added to each container, individuals were fed ad libitum every other day 

for the extent of the experiment. 100% sterile water changes occurred every 4 days post-

exposure to ensure adequate water quality for the larvae. Every measure to avoid cross 

contamination between containers was used. Standard protocols involved sterilizing dip nets with 

a 10% bleach solution for 10 minutes, followed by rinsing with sterile water to remove any 

residual bleach. Container and experimental room surfaces were cleaned with a 2% solution of 

Nolvasan between each container’s water changes, allowed to sit for 10 minutes, and then rinsed 

with sterile water.    

 The experiment ran for 21d and mortality of larvae was monitored daily. If an individual 

died, the individual was extracted from its container, rinsed thoroughly with de-ionized water to 

remove any non-infecting virions that may have adhered to the individual’s skin, and then the 

entire individual was placed into a microcentrifuge tube and stored at -20°C for later processing. 

After 21d, all surviving larvae were humanely euthanized by immersion in an overdose of 1% 
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buffered MS-222 solution. These individuals were then washed thoroughly with de-ionized 

water, placed into individual microcentrifuge tubes, and stored at -20°C for later processing. 

 

1.3.2 Experiment 2: Population-level.  

This follow-up experiment was designed to understand how co-occurrence of ATV and 

FV3 in a larval amphibian population could alter population-level disease and transmission 

metrics, which remains relatively rare in coinfection research. Because the first, individual-level 

experiment showed qualitatively similar effects of co-exposure in the ATV+FV3 and ATV+R-

FV3 treatments (see Results below), only ATV and FV3 were used for this experiment. In spring 

of 2013, we collected egg masses of Psuedacris triseriata from local sites in Colorado, washed 

them with sterile deionized water to remove any possible residual virions, and reared them in 

plastic containers at 20°C with a 12:12 hour day:night photoperiod. Hatching larvae were fed 

ground TetraMin® fish flakes (Tetra) ad libitum until reaching Gosner stage 30 (Gosner 1960). 

 The overall design of the experiment was to establish replicate populations of 10 

uninfected larvae and then introduce 2 previously virus-exposed larvae each population in order 

to track the spread of virus and determine if co-occurrence of ATV and FV3 alters the rate of 

spread and overall epidemic size. We believe that this method of adding infected individuals 

better mimics natural transmission mechanisms than experimental injection or passive exposure 

to a large quantity of stock-produced virus.  

We randomly assigned a subset of the larvae to the pre-exposed group, which were first 

anesthetized via immersion in a 1% buffered MS-222 solution. Then these larvae were housed in 

three batches: FV3-exposure, ATV-exposure, and sham-exposure. Larvae were housed in 

covered plastic tubs (with drilled air holes) at densities no greater than 1 larva/L water. On 20 
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June 2013, larvae were passively batch-exposed to a dosage of 5x106 PFU/L water of the 

respective virus or a sham exposure with an equivalent volume of virus-free MEM and were held 

in these containers for 4d to initiate infection.  

 Uninfected experimental populations were established on 20 June 2013 by randomly 

placing 10 unexposed larvae in 15L covered plastic tubs (with drilled air holes) filled with 12L 

carbon-filtered, UV-sterilized water. After the 4d batch-exposure, on 24 June 2013, each 

uninfected population received one of the following combination of exposed larvae: (1) two 

sham-exposed larvae, (2) two FV3-exposed larvae, (3) two ATV-exposed larvae, or (4) one FV3-

exposed larvae and one ATV-exposed larvae. Thus each microcosm population contained 12 

total P. triseriata larvae (10 sentinels and 2 exposed) for a total density of 1 larva/L water. Each 

of the four treatments was established with 6 replicate populations.  

We had 4 virus treatments (two single-virus exposures, one two-virus exposure, and one 

sham exposure), two sampling time points (4dpe and 21dpe), and 3 replicate populations at each 

time point, for a total of 24 microcosm populations of 12 larvae each. After 4dpe a random 3 

replicates of each treatment was destructively sampled in order to establish an early epidemic 

time-point for comparison to late-stage epidemics. Larvae were extracted from each tub, 

individually, and humanely euthanized by immersion in an overdose of 1% buffered MS-222 

solution. As above, euthanized larvae were rinsed, placed into individual microcentrifuge tubes, 

and stored at -20°C for later processing. Starting at 5dpe, 80% water changes were implemented 

every 4 days for each remaining replicate population. Mortality was continually monitored, and 

any deceased individuals were extracted from tubs, rinsed, and stored, as above. At 21dpe, the 

remaining replicate populations were destructively sampled.  
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1.3.4 Tissue processing and DNA extraction 

Individually stored tadpole carcasses were allowed to thaw to room temperature. 500µL 

of sterile MEM was added to each carcass, and whole carcasses were then manually 

homogenized using a motorized homogenizer. This tissue homogenate was then centrifuged at 

3000g for 1min. A 500µL aliquot of the resulting supernatant solution was placed into a new 

sterile microcentrifuge tube to be used for DNA extraction. Qiagen™ DNeasy Blood and Tissue 

extraction kits and standard protocols were used to extract 250µL of buffered DNA suspension 

from each supernatant aliquot. DNA samples were stored at -20°C for later processing. 

 

1.3.5 Quantitative PCR amplification of viral DNA 

The viral load of each DNA extract (in viral copy number equivalents) was evaluated 

using quantitative polymerase chain reaction (qPCR), estimated by comparison to a dilution 

series of standard DNA. We created a synthetic double-stranded DNA standard by synthesizing a 

250bp fragment of the major capsid protein (MCP) gene (gBlocks® Gene Fragments; Integrated 

DNA Technologies™), which is conserved among Ranavirus species (e.g. ~97% sequence 

similarity between ATV and FV3 strains). We used a 10-fold dilution series from 2x108 gene 

copies down to 2x101 gene copies of standard DNA. Standards and samples were run in 

duplicate.  

The qPCR protocol amplifies a ~70bp region of the MCP, allowing the protocol to 

identify many Ranavirus species; however, consequently, the protocol cannot distinguish 

between species (Forson and Storfer 2006, Picco et al. 2007). To test each sample, a 2.5µL 

volume of sample DNA was added to a reaction volume of 17.5µL containing the following 

reagents: 10µL TaqMan® 2X Universal PCR Master Mix (No AmpErase UNG), 0.06µL forward 
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primer (for a final concentration of 0.1µM; 5’ ACA CCA CCG CCC AAA AGT AC 3’), 0.18µL 

reverse primer (for a final concentration of 0.1µM; 5’ CCG TTC ATG ATG CGG ATA ATG 

3’), 0.05µL fluorescent TaqMan® probe (with a starting concentration of 100pmol/µL; 5’ FAM-

CCT CAT CGT TCT GGC CAT CAA CCA C-TAM 3’), and 7.21µL molecular grade water 

(Forson and Storfer 2006, Picco et al. 2007). All custom primers and probes were ordered 

through Life Technologies™. Samples were run in 96-well plates on an Applied Biosciences® 

machine for 40 cycles: 95°C denaturing (20s), 54°C annealing (20s), and 72°C extension (30s).  

Two positive ATV and FV3 controls and two negative controls were run on each plate.  

 After qPCR analysis, the starting sample DNA concentrations of all virus-positive 

samples was estimated using a Quant-iT™ PicoGreen® dsDNA Assay Kit (Life 

Technologies™). Thus, all viral loads were standardized to viral copy number per ng of sample 

DNA. We also quantified the DNA concentration of a random subset of non-infected samples in 

order to verify that viral detection was not dependent on a high concentration of initial sample 

DNA.   

 

1.3.6 Viral DNA sequencing of infected samples 

We attempted to sequence a small region of the viral genome from all infected samples in 

order to verify the identity of the infecting virus (or the most dominant infecting virus in each 

sample). This sequencing should help narrow down the mechanisms driving the effects of co-

exposure. We amplified a ~350bp fragment of the MCP gene using a hemi-nested PCR protocol 

(Kattenbelt et al. 2000). The amplicon from each infected sample, along with a custom 

sequencing primer (5’ ACT ATG CCA CCT CCA TC 3’), was sent to Quintara Biosciences™ 

for Sanger sequencing. We also amplified and sequenced the same MCP gene fragment from the 
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three ranaviral strains used in the study (ATV, FV3, and R-FV3). We compared the sequencing 

data from each infected sample that of the original viral strains.  

 

1.3.7 Statistical Analyses: Experiment 1 

All statistical analyses were conducted in the open-source software, R (R Core 

Development Team 2013). From the first experiment, we had three types of data for each of the 

10 viral exposure treatments: survival, proportion of individuals becoming infected, and average 

viral load per larva. Our overall strategy to compare these metrics consisted of determining if 

single- and double-dose treatments differed for the single-virus exposures, and then comparing 

the double-dose single-virus treatments to the three co-exposure treatments and the control. In 

order to compare survival rates among single- and double-dose single-virus treatments, we 

conducted a survival analysis (Mantel-Haenszel test), using the ‘survival’ package, with dosage 

as the predictor variable. Because we found no difference in the survival rate between dosages 

(𝜒!! = 2.6; P=0.11), we then compared the double-dose single-virus treatments to the co-

exposure treatments and control again using the Mantel-Haenszel test. A Cox proportional 

hazards model yielded the same qualitative results.  

 We used bias-reduced logistic regression in the ‘brglm’ package (Firth 1993) to test the 

effect of virus species/strain on the proportion of individuals becoming infected in each 

treatment. First we compared single- and double-dose single-virus treatments by modeling 

infection prevalence predicted by virus identity (with three levels: ATV, FV3, R-FV3) and 

dosage. Because dosage did not have an overall effect in the single-virus treatments (z = -0.83, 

P=0.41), we then compared the control, double-dose single-virus, and co-exposure treatments. 

For this comparison, we had a fixed effect for each virus type, including all two-way 
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interactions. Significant interactions would be indicative of non-additive effects of co-exposure.  

 Finally, to compare viral loads among treatments, we first constructed a linear model 

predicting the natural log-transformed average viral copy number per ng DNA for each 

individual (averaged over the duplicate qPCR runs) by dosage. We ran a separate analysis with 

viral load explained by the day that an individual died, using only the individuals that died. 

Neither day of death nor dosage correlated with viral load (t = 0.26, P = 0.80; t = -1.95, P = 0.07, 

respectively), so we then ran a similar model comparing double-dose single virus treatments to 

the co-exposures. We excluded controls from this analysis as none became infected. We ran a 

model explaining viral load with an interaction between treatment and an additional fixed 

binomial variable for whether individuals died or not. Again, we ran a separate model with viral 

load explained by treatment and the day that an individual died, using only the individuals that 

died. We then ran Tukey’s Honest Significant Differences test to compare viral loads pairwise by 

treatment.  

 

1.3.8 Statistical Analyses: Experiment 2 

Similarly to the first experiment, the second experiment had three response variables: 

survival rate, infection prevalence, and average viral load. However, this time, the response 

variables were population-specific, with 3 replicate populations per time-point (4dpe and 21dpe) 

per treatment (FV3, ATV, FV3+ATV, Control).  

In order to compare survival among treatments we used a Cox proportional hazards 

model with replicate population as a random effect (i.e. frailty). Because no control individuals 

died, only 4 total individuals died in the ATV-only treatment replicates, and no individuals died 

in any of the 4dpe replicates, we only compared the 21dpe FV3-only and FV3+ATV treatment 
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replicates to test for an effect of co-exposure.  

 We compared infection prevalence between the FV3 and FV3+ATV treatments by 

creating a generalized linear mixed effects model with prevalence explained by treatment, time 

(as a factor level variable), and their interaction. Replicate population was added as a random 

intercept term. In order to compare the strength of the random effect between treatments (i.e. the 

variability among replicate populations), we created two intercept models, one for the FV3-only 

treatment and one for the FV3+ATV treatment, with prevalence explained only by the random 

intercept.  

 We similarly compared the viral load between the FV3 and FV3+ATV treatments by 

creating a linear mixed effects model with viral load (transformed as in the first experiment) 

explained by a treatment by time interaction, a fixed effect for day of death, and a fixed effect for 

whether the individual died or not. Again, replicate population was added as a random intercept 

term. For all linear models, we performed model simplification by dropping insignificant terms 

and comparing models with log likelihood ratio tests and AIC values.  

 

1.4 Results 

1.4.1 Experiment 1 

While no individuals became infected in the ATV single-virus exposure treatments, co-

exposure to ATV and FV3 or RFV3 caused a synergistic effect, significantly enhancing overall 

infectivity compared to single-virus exposures (Figure 1.1). This effect was supported by a 

significant negative interaction between FV3 and R-FV3 (z = -3.29, P = 0.001). This interaction 

was due to the fact that the FV3 + R-FV3 co-exposure did not cause a similar synergistic effect 

as the ATV co-exposures (Figure 1.1). Specifically, removing the effect of R-FV3 led to a 
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significantly higher estimated effect of FV3 (with R-FV3: 1.56; without R-FV3: 5.23) and vice 

versa. In other words, we saw that co-exposure to two Ranavirus species, but not to two strains 

of the same Ranavirus species, caused significant increases in the probability of an individual 

host ultimately becoming infected.  

 

Figure 1.1. Proportion of individuals infected in the double-dose single-virus and co-exposure 
groups of experiment 1. Error bars represent 95% binomial confidence intervals.  

 

 Co-exposure to ATV and FV3 also increased average viral load in infected individuals 

(treatment effect: F4,54 = 5.78, P < 0.001; Figure 1.2). Although we did not see an increase in 

load in individuals in the ATV + R-FV3 co-exposure treatment, this was likely due to an 

inability to obtain an accurate viral stock titer for R-FV3, leading to under-dosing. This error 

most likely also explains the unexpectedly low infectivity of R-FV3 single- and double-dose 

treatments compared to wild-type FV3 (Hoverman et al. 2010). As expected, we also found that 
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individuals that died during the experiment had, on average, higher viral loads compared to 

surviving individuals (F1,54 = 7.94, P = 0.007; Figure 1.3). Among hosts that died, however, there 

was not a correlation between the day on which an individual died, and their viral load (F1,14 = 

0.27, P = 0.61).  

 
Figure 1.2. Boxplots of viral copy number per treatment group. The box represents the inter-
quartile range (IQR; between first and third quartiles), and the center line marks the median 
value. The whiskers extends from the box to the highest or lowest value that is within 1.5 x IQR. 
Data beyond the end of the whiskers are outliers and plotted as points. Letters distinguish 
significantly different means based on Tukey’s Honest Significant Difference test of pairwise 
differences. 
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Figure 1.3. Boxplots (as in Figure 1.2) of viral load for infected R. aurora that survived until the 
end of the experiment (Alive) or that died due to infection (Died). 

 
 

We were able to successfully sequence viral DNA from all but three individuals with low 

viral load. Sequencing results revealed that all infected individuals were dominantly infected by 

the FV3-like strains (FV3 and R-FV3) were indistinguishable based on this sequencing method). 

This result shows that, while ATV was not able to competitively dominate any infections, co-

exposure to ATV nonetheless enhanced the infectivity and replication of FV3 compared to the 

single-exposure treatments. Interestingly, four sequences from the R-FV3 single-virus exposures 

and the ATV + R-FV3 exposures showed 100% sequence identity to one another, but did not 

perfectly match the sequences of the three viruses used in this experiment. We searched for 

similar sequences on GenBank® via BLAST, revealing a 100% match to an isolate of FV3 

discovered in lungless salamanders of the Great Smokey National Park, TN (Gray et al. 2009a). 

The source of this contamination – whether two viruses were co-cultured from the ranaculture 

facility, or whether the original R-FV3 stock was contaminated post-culturing – is unclear. We 

do not believe this contamination affected our results.  
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No individuals from the control treatment were infected during the experiment, although 

survival did not differ between any double-dose, co-exposure, and control treatments (𝜒!! = 6.2; 

P=0.40; Figure 1.4). 

 

Figure 1.4. Survival curves for all treatments in experiment 1. 

1.4.2 Experiment 2  

No individuals in the control replicate populations of P. triseriata, and only three 
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and FV3+ATV treatment in the analysis comparing infection prevalence. Treatment and time 

post-exposure interacted significantly to drive prevalence (z = 2.54, P = 0.01); for the FV3-only 

treatment, the proportion of infected individuals increased more substantially over time 

compared to the FV3+ATV treatment (Figure 1.5).  

 

Figure 1.5. Proportion of infected individuals between time points and treatments in experiment 
2. Time point are distinguished by color, as depicted in the legend. Large, bold circles represent 
the mean prevalence, and error bars represent one standard error of this mean. Smaller and more 
opaque circles represent the prevalence of the replicate larval populations. Note that all 3 
replicates of the FV3-only treatment at 21dpe had the same prevalence. 
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1.10 respectively). This was driven, first, by the fact that all three replicates at 21dpe in the FV3-

only treatment had the same proportion of individuals infected (8/12). Secondly, in one of the 

FV3+ATV treatments at 4dpe, 9/12 individuals were infected, which was a substantially larger 

proportion compared to all other 4dpe replicates, and the highest prevalence in the experiment 

overall.   

 In our model for viral load, we only included the data from FV3-only and FV3+ATV 

replicates. The simplest model explaining viral load among the replicate populations included 

only time-point, showing that viral load increased over time but was not significantly influenced 

by whether an individual died or by treatment (AIC=305.83, t4.4 = 3.88, P = 0.015; Figure 1.6). 

However, the model that included a marginally significant effect of whether an individual died 

and a significant effect of treatment was nearly indistinguishable based on AIC (AIC=308.20; 

Death: t53 = 1.93, P = 0.059; Treatment: t53 = -2.06, P = 0.044). In this more complex model, 

individuals that died had larger loads, and the FV3+ATV replicate individuals had on average 

smaller loads.  
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Figure 1.6. Viral copy number across time points and treatments in experiment 2.  Time points 
are distinguished by color, as depicted in the legend. Large, closed circles represent the mean 
viral load, and error bars represent one standard error of the mean. Smaller closed circles 
represent the viral load of infected individuals that survived until the end of the experiment (or 
until destructive sampling in the case of 4dpe replicates). Open triangles represent infected 
individuals that died prior to the end of the experiment. A jitter is added to the data for ease of 
interpretation. Notice the most heavily infected individual from the FV3+ATV treatment at 4dpe.  
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individuals, except for 8 individuals with particularly low viral load. Of the three individuals that 

tested positive for infection in the ATV-only treatments, two DNA samples amplified and 

sequenced. The sequence data from these two individuals matched that of ATV, showing that P. 
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infection prevalence (9/12 in the FV3+ATV, 4dpe treatment), as well as the individual with the 

largest load of the entire experiment. 

 When we modeled the death of individuals by viral load and treatment, we found that 

individuals had a higher probability of death with higher viral loads (z = 2.0, P= 0.039; Figure 

1.6) and if they were co-exposed to FV3+ATV (z = 2.1, P= 0.039; Figure 1.6). No individuals 

from the control treatments, and only four individuals from the ATV-only treatment replicated 

died during the experiment. Of these four individuals, one tested positive for Ranavirus, but 

unfortunately the viral DNA did not successfully sequence, due to low viral load. A total of 12 

and 14 individuals died in the FV3+ATV and FV3-only treatment replicates, respectively. We 

found no significant difference between the survival in the FV3-only and FV3+ATV treatments 

(𝜒!! = 0.16, P=0.68), although there was significant variation among replicates (𝜒!.!"! = 5.3 

P=0.038).  

 

1.5 Discussion 

 This study aimed to identify the experimental effects of co-exposure to multiple 

ranaviruses at the scale of both individual hosts and amphibian host populations. For individual 

hosts, we discovered that co-exposure to ATV and FV3 increased both the infectivity and within-

host viral proliferation of FV3. However, this same effect did not hold for co-exposure to two 

strains of the same viral species (FV3 and R-FV3), indicating that species identity, but not strain 

identity is important for predicting the outcome of co-exposure in this system. We then 

conducted a follow-up experiment at the scale of host populations to understand how these 

individual-level effects would scale up to affect transmission dynamics. We found limited 

evidence that, when ATV co-occurs with FV3, co-exposure leads to higher infection prevalence 
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in the population, as well as more variable epidemic sizes and more variable infection loads 

among replicate populations. Finally, we found that the probability of death was higher in co-

exposure treatments compared to FV3-only treatments. By conducting experiments at both the 

individual- and population-level scales, we are able to better support that the co-occurrence of 

Ranavirus species has the potential to alter epidemic dynamics in natural amphibian populations 

and suggest mechanisms for this effect. 

 Consistent with previous research, ATV was not able to infect larval frogs very 

effectively in isolation (Jancovich et al. 2001, Schock et al. 2008). In only 4 individuals did we 

see successful infection, either in R. aurora or P. triseriata. Importantly, however, co-exposure 

of ATV and FV3 nonetheless synergistically increased the host’s probability of infection. Co-

exposure also led to an increase in the average viral load of infected individuals. In our 

individual-level study, Sanger sequencing revealed that ATV did not dominate any viral 

infections in the co-exposure treatments. This implies that ATV somehow facilitates the invasion 

and subsequent proliferation of FV3 within co-exposed larvae. In the second experiment, 

although ATV only established in one replicate population, this resulted the largest epidemic and 

an individual with the highest overall viral load, even after only 4dpe. Additionally, in this 

population-scale experiment, we saw that the probability of mortality given infection was 

significantly higher for individuals in the co-exposure treatments. 92% of co-exposure infected 

individuals died, while only 50% of FV3-only infected individuals died by the end of the 

experiment. Thus, it seems that both of our experiments support an effect of co-exposure on viral 

infectivity, viral replication, and potentially, mortality.  

One hypothesis for a co-exposure-mediated increased infectivity and viral replication in 

this system is that infection with ATV and FV3 leads to non-overlapping immune responses in 
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the amphibian larvae. For instance, if the host generates unique adaptive responses to ATV and 

FV3, then this could lead to a trade-off that decreases the efficacy of the host’s response to FV3, 

facilitating invasion. In our first experiment, this hypothesis seems supported by the fact that co-

exposure to two strains of the same viral species (FV3 and R-FV3) did not lead to similar effects, 

which could be due to an overlapping immune response (i.e. cross immunity) resulting from the 

DNA sequence similarity of these viral strains. 

While there is ample evidence for intraspecific interactions multi-strain infections (Read 

and Taylor 2001, Mideo et al. 2008, Alizon et al. 2009, 2013), fewer studies have documented 

the possible immune trade-offs imposed by multi-strain infections (Balmer and Tanner 2011). 

However, in areas of Senegal with low malaria transmission and consequently low levels of 

acquired anti-malarial immunity, a larger proportion of cases of clinical malaria are associated 

with multiple-genotype Plasmodium falciparum infections compared to asymptomatic cases 

(Zwetyenga et al. 1998). Thus, multi-strain infections might pose complex immune challenges 

that lead to a net decrease in the efficacy of the host’s immune response. In the Ranavirus 

system, along with complex innate immune responses, it is known that Xenopus laevis adults 

produce long-lasting anti-FV3 IgY antibodies, and preliminary evidence show similar, though 

less effective innate and adaptive responses in the larval life stage (Chinchar et al. 2011, Chen 

and Robert 2011). It is unknown, however if exposure to ATV elicits overlapping innate and 

adaptive responses with FV3. If the antigens presented by ATV are different enough from FV3, 

it is possible that the hosts attempt to mount two distinct adaptive responses, decreasing the 

overall response to FV3 and facilitating invasion and viral proliferation. It will be important for 

future studies to determine the degree of antibody specificity between ATV and FV3.  

With the data from our experiments, we cannot rule out another hypotheses that would 
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lead to the observed effect of co-exposure. It is possible that if ATV and FV3 coinfect the same 

host cells, recombination occurs, producing a novel, more infectious virus. Genomic evidence 

from multiple Ranavirus species suggests high recombination frequency and shows that these 

viruses are prone to host-shifts due to gene acquisition and subsequent adaptation (Jancovich et 

al. 2003, 2010, Abrams et al. 2013). In fact, recombination has been employed to explain the 

collinearity and the one inversion between the ATV and FV3 genomes (Eaton et al. 2007). While 

recombination between ATV and FV3 could occur, it is not immediately evident why such a 

recombination event would enhance infectivity and viral replication. This is a prime area of 

future research.  

In our second experiment, we also found that the variance in prevalence among replicate 

populations was substantially larger for the FV3+ATV treatment. This is likely driven by two 

factors. First, at 4dpe, we saw the replicate population with the largest prevalence overall, driven 

by the establishment of ATV. Secondly, at 21pde, the FV3-only treatment had no variability in 

prevalence; each replicate had 8/12 individuals infected. Contrastingly, there was lower overall 

prevalence and more variability among replicates at 21dpe in the FV3+ATV treatment. This is 

likely due to an effect of dosage rather than an effect of co-exposure. Because ATV did not 

establish in the FV3+ATV treatment in any of the 21dpe replicate populations, essentially these 

populations were only exposed to one infectious individual, whereas in the FV3-only treatments, 

populations were exposed to two infectious individuals. It is likely that this higher dosage in the 

FV3-only treatments led to a consistent epidemic peak prevalence (~67%), whereas the lower 

dosage in FV3+ATV treatment led to more variability in the epidemic peak.  

Somewhat surprisingly, we did not see an effect of co-exposure on survival rates in our 

experiments. Although surprising, this is likely a factor of the longevity of our experiment rather 
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than a true absence of effect. We ran our experiments for 21d, which in previous studies, has 

been long enough to see 20-100% mortality due to FV3 infection in other species of frogs and 

due to ATV in salamanders (Brunner et al. 2005, Hoverman et al. 2010). It is likely that, because 

co-exposure led to higher viral loads, more individuals would die due to infection if we carried 

out the experiments for a longer time period.  

We suspect that the effect of co-exposure was not as strong in the second experiment 

because of the difference in viral delivery and dosage. Specifically, ATV was only able to 

establish in one replicate population (as evidenced by our sequencing methods). This is probably 

due to the low probability with which our pre-exposed P. triseriata individuals ultimately 

became infected with ATV. In the first experiment, each co-exposed individual was passively 

exposed to ~1x106 PFU of ATV, whereas in the second experiment, uninfected sentinels could 

only become exposed to ATV if the pre-exposed individuals became infectious. Thus, it is likely 

that if we had passively exposed the replicate populations to ATV in a way similar to our first 

experiment, a larger effect would be seen. Future studies could reveal such a dosage effect by 

exploring how the ratio and overall dosage of FV3:ATV influences the likelihood of co-exposure 

effects at the individual and population scales. The differences in effects between the two 

experiments could also be due to differences in the effect of co-exposure among amphibian 

species. It is known that variability in FV3 infectivity among amphibian species has phylogenetic 

and ecological correlates (Hoverman et al. 2010, 2011). It will be important to determine if ATV 

+ FV3 co-exposure affects certain species more greatly than others.  

Our results illustrate that in natural amphibian populations, co-occurrence of ATV and 

FV3 could substantially alter epidemic cycles. Specifically, if ATV can establish in the 

population, co-exposure with FV3 could result in more infected individuals and subsequently 



 30 

higher mortality rates in the long run. This effect seems particularly relevant for wetlands in 

which salamanders and frogs co-occur. If ATV is present and infects the local salamanders and 

FV3 establishes in the anuran populations, spillover of ATV from the salamanders could enhance 

FV3 epidemics in the frogs. Also, because FV3 is adept at infecting salamanders as well (Schock 

et al. 2008), it is likely that such a scenario would increase infection prevalence and intensity in 

the urodele population. Thus, our results illustrate the need to consider co-exposure and co-

infection in the amphibian-Ranavirus system and emphasize the need for field data on ATV and 

FV3 co-occurrence at both the wetland- and host individual-levels. 
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CHAPTER 2 
 

THE SCALING OF HOST DENSITY AND RICHNESS CAN CHANGE THE DIRECTION, 
SHAPE, AND DETECTIBILITY OF DIVERSITY-DISEASE RELATIONSHIPS1 

 
 

2.1 Abstract 

Pathogen transmission responds differently to host richness and abundance, two unique 

components of host diversity. However, the heated debate around whether biodiversity generally 

increases or decreases disease has not considered the relationships between host richness and 

abundance that may exist in natural systems. Here we use a multi-species model to study how the 

scaling of total host community abundance with species richness mediates diversity-disease 

relationships. For pathogens with density-dependent transmission, non-monotonic trends emerge 

between pathogen transmission and host richness when host community abundance saturates 

with richness. Further, host species identity drives high variability in pathogen transmission in 

depauperate communities, but this effect diminishes as host richness accumulates. Using 

simulation we show that high variability in low richness communities and the non-monotonic 

relationship observed with host community saturation may reduce the detectability of trends in 

empirical data. Our study emphasizes that understanding the patterns and predictability of host 

community composition and pathogen transmission mode will be crucial for predicting where 

and when specific diversity-disease relationships should occur in natural systems. 

 

2.2 Introduction 

Emerging field and laboratory data lend support to the dilution effect, where high plant 

and wildlife diversity often reduces disease severity or pathogen spread in a variety of multi-host 

                                                
1 Published as: Mihaljevic, JR, MB Joseph, SA Orlofske and SH Paull. (2014). The scaling of host density and 
richness can change the direction, shape, and detectability of diversity-disease relationships. PLoS ONE 9(5): 
e97812. 
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pathogen systems (Ostfeld and Keesing 2000, 2012, Keesing et al. 2006, 2010, Johnson et al. 

2013b). Although multiple mechanisms should lead to a dilution effect, many others could 

underlie the opposing pattern, termed the amplification effect (Keesing et al. 2006). To date, 

predicting the generality of diversity-disease patterns in natural systems has proven difficult, and 

given the complexity of host-pathogen interactions, some have suggested that the dilution effect 

may be less common than previously expected (Randolph and Dobson 2012, Wood and Lafferty 

2012). 

The specific mechanisms driving diversity-disease patterns have been debated 

extensively in the literature, particularly because various ecological and epidemiological 

properties of host communities can influence the spread of pathogens. For example, both host 

richness and host abundance (or density) are expected to affect diversity-disease trends (Dobson 

2004). A dilution effect is expected if species rich communities have more host species that are 

resistant to infection, demonstrating a role of richness per se in limiting disease. For instance, 

Johnson et al. (Johnson et al. 2008) experimentally controlled host abundance, finding a direct 

effect of larval amphibian richness on reducing trematode infection in American toad (Bufo 

americanus) larvae. However, a dilution effect can also be seen if the abundance of a species that 

strongly contributes to pathogen reproduction and transmission (i.e. a highly competent focal 

host) negatively correlates with host richness. Notably, Mitchell and colleagues (Mitchell et al. 

2002) found that, of 11 foliar fungal pathogens of plants, roughly half showed a dilution effect 

due to reduced focal host abundance, rather than a richness effect.  

Given that both host richness and host abundance affect pathogen transmission, the 

relationship between richness and total community abundance should affect how pathogen 

transmission scales with host richness. Theoretical exploration of this topic has considered two 
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species accumulation types: (1) additive, where total community abundance scales linearly with 

richness, and (2) compensatory, where total community abundance is invariant to species 

richness (Dobson 2004, Rudolf and Antonovics 2005). These extreme scenarios generate unique 

null expectations of how transmission should scale with diversity (Rudolf and Antonovics 2005). 

However, a more realistic expectation might be that community abundance saturates with 

increasing richness. For example, saturation of total community biomass and percent cover has 

been documented in various plant systems (Tilman et al. 1996, 2001, Guo et al. 2006). Despite 

these observations, the effects of saturating host abundance on pathogen transmission have not 

been explored theoretically or empirically.  

Saturating host abundance could lead to the intermediate result between completely 

additive and completely compensatory richness-abundance relationships, that being a non-

monotonic trend between richness and pathogen transmission. Recently, researchers have 

resorted to reductio ad absurdum reasoning to argue that non-monotonic trends between species 

richness and disease risk must occur in disease systems with observed dilution effects (Wood and 

Lafferty 2012, Lafferty and Wood 2013). Specifically, if zero host species were present at a site, 

there would be no disease, so that adding any number of susceptible hosts species would initially 

increase disease. Then, as richness increases, an inflection point (i.e. dilution effect) may be 

observed (Wood and Lafferty 2012, Lafferty and Wood 2013). However a quantitative 

exploration of potential non-monotonic diversity-disease trends grounded in community 

ecological theory relevant to many disease systems is still lacking. 

Here, we build upon previous models to explore how varying the empirical relationship 

between total host community abundance and host richness affects community-level disease 

patterns. First, we consider the effects of additive, compensatory and saturating host abundance 
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on pathogen transmission in simulated multi-host communities under both density- and 

frequency-dependent transmission scenarios. We predict that a more realistic saturating 

abundance-richness relationship will reveal more complex patterns, including non-monotonic 

relationships between host richness and pathogen transmission. Using simulation, we also 

investigate the effect of various abundance-richness relationships on the detectability of 

diversity-disease patterns. We find that non-monotonic relationships between host richness and 

pathogen transmission can occur under certain conditions, but that high variability could lead to 

low detectability of such trends. 

 

2.3 Methods 

The mathematical model used here is a multi-species extension of the classic susceptible-

infected-recovered (SIR) epidemiological model (e.g. Dobson 2004): 

dSi
dt = biNi − diSi − Si βij I j

j=1,n
∑  , 

dIi
dt = Si βij I j

j=1,n
∑ − di +αi +σ i( ) Ii  , 

dRi
dt =σ iIi − diRi  .      

We assume that all host individuals are susceptible, infectious or recovered (immune for life), 

designated with S, I and R, respectively. All other parameters are defined in Table 2.1, and 

below we describe how values for each parameter are assigned to different host species.  
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Table 2.1. Parameter assignment and definitions for creating the species pool and 
epidemiological model.  
 

Parameter Value Definition Biological Explanation 
Construcing Global Species Pool (Preston's Law)   

Pi 1 - 8 Preston's rank  The rank for each species, which corresponds 
to the assigned abundance 

    z 0.1 Constant derived from field 
data 

Scales the difference in abundance from one 
rank to the next, with the modal rank as 
reference 

    M 3 Modal rank  The mode of the distribution of abundances 
among all species in the sample community 

    Yo 10 Number of species present 
in the modal rank.  

Species richness in the modal abundance rank 

    z 0.1 Constant derived from field 
data 

Scales the difference in abundance from one 
rank to the next, with the modal rank as 
reference 

    Ki 2 - 256 Abundance at each rank, 
assigned on a log2 scale 

The abundance at carrying capacity of a 
particular species in the community  

    s 1 - 10 Number of species in each 
rank 

The outcome of Preston's law, which 
determines how many species have a given 
equilibrial abundance 

Assigning species traits     
wi log(wi)=a-

blog(Pi) 
Species specific weight Weight is determined by rank-abundance, so 

that more abundant species are smaller 
    a 2 Constant Scales the relationship between species 

abundance and body weight 
    b 1 Constant Scales the relationship with species 

abundance and body weight 
    R0i 0 - 2 Intraspecific reproductive 

number of the pathogen for 
each host species 

Determined by a truncated gamma 
distribution, such that most species are poor 
hosts (R0i<1). More abundant, and therefore 
smaller, species are assigned higher R0i values 

    k 0.3 Constant Determines the scale of the gamma 
distribution from which R0i  is drawn 

    ψ 3 Constant Determines the shape of the gamma 
distribution from which R0i  is drawn 

Epidemiological model     
bi 0.6wi

-0.27 Birth rate Species birth rate determined by allometric 
scaling with body size 

    di bi Death rate Species death rate assumed to be equal to 
birth rate 

    αi (m-1)di Pathogen induced mortality Decrease in mean lifespan due to infection, 
proportional to death rate. Scales with body 
size so that larger species have lower 
pathogen induced mortality 
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m 1.5 Constant  Determines the proportionality between 
species death rate and pathogen induced 
mortality rate 

    σi εdi Recovery rate Species ability to recover from, and become 
immune to, infection  

    ε 10 Constant Determines the proportionality between life 
span and recovery  

    βii R0i (di+αi+σi)/Ki Per capita, intraspecific 
tranmission rate under 
density-dependent 
transmission 

The ability of an infected individual in the 
community to contact and successfully 
transmit the pathogen to another individual of 
the same species under the assumption of 
density-dependent transmission 

        βij cij(βii+βjj/2) Interspecific transmission 
rate 

The ability of an infected individual of one 
species in the community to contact and 
successfully transmit the pathogen to another 
individual of a different species  

    cij 0.05                                  Constant Scaling parameter controlling the amount of 
intra- and interspecific transmission among 
species in the community 

 

2.3.1 Constructing a global host species pool  

 In many multi-host pathogen systems, host species vary in ecological and 

epidemiological traits relevant to pathogen transmission. For example, in the Lyme disease 

system, mammal hosts ranging from mice to raccoons to deer can all become infected with the 

bacterial pathogen and spread this pathogen to tick vectors. To summarize a very complex 

system, each host species varies in its population dynamics and in its ability to acquire and 

transmit the pathogen to ticks; therefore, the community composition of hosts is very important 

for determining overall pathogen transmission, and subsequently, disease risk (LoGiudice et al. 

2003). In our model, we attempt to construct a global host species pool that captures the 

ecological and epidemiological variability seen in generalist pathogen systems. Thus, we draw 

heavily upon established trends in community ecology and allometric scaling laws to assign host 

species plausible parameter values. We derived our epidemiological model and allometric 

scaling laws from Dobson (Dobson 2004), and integrated Roche et al.’s (Roche et al. 2012, 
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2013) methods of generating realistic communities using Preston’s law. In contrast to previous 

models, this work focuses primarily on assessing the consequences of more realistic host 

richness-abundance scaling on diversity-disease relationships. 

We assembled a global pool of vertebrate host species following Preston’s law of 

abundance distributions. This law generates a lognormal distribution of species’ abundances, 

where most species are rare and only a few species are abundant, a pattern observed in many 

natural communities (Preston 1948, Roche et al. 2012). Preston’s law is given by: 

s P( ) =Y0e
− zP−M( )2 , 

where z is a constant, s is the number of species that are present in the Pth rank from the modal 

rank, M, and Y0 is the number of species that are present in the modal rank (Figure 2.1; Table 

2.1). This creates a Gaussian-type curve that dictates how many species have certain population 

sizes (Figure 2.1A). Thus, species were assigned equilibrium abundances, Ki, according to their 

given rank. For all analyses, our global pool consisted of the same 49 host species.   

Figure 2.1. Conceptual diagram of assembling the global host community, species traits, and 
local communities. A, Preston’s octaves of abundances and resulting rank-abundance of the 49 
host species used in our model. B, Schematic of our methods for choosing 1000 local 
communities. Species in local communities were chosen at random. 
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Each species’ weight, wi, was obtained from a scaling relationship (Table 2.1). We 

assume body size scales exponentially with abundance, so that the most common species were 

the smallest. Birth rates, bi, were derived from allometric scaling, so that larger species 

reproduce less frequently (Leo and Dobson 1996, Roche et al. 2012). We additionally assumed 

that death rates, di, were equal to birth rates, a common assumption of populations at 

equilibrium. Pathogen induced mortality, αi, was assumed to be a proportional decrease in mean 

lifespan due to infection (Dobson 2004). This means that larger species, which have lower 

background mortality rates, also have lower death rates due to infection. Recovery rates, σi, were 

assumed to scale with death rates, so that larger species have slower recovery rates compared to 

smaller species (Table 2.1).  

Intraspecific R0, R0i, values describe the pathogen’s growth rate in each host species’ 

population, by taking into account intraspecific transmission and the average duration of 

infection:  

R0i =
βiiKi

αi +σ i + di( )
 

in the case of density-dependent transmission. Similar to Roche et al.’s (Roche et al. 

2012) treatment of ‘susceptibility’, we drew realistic species-specific R0i values from a right-

skewed truncated gamma distribution, ranging from zero to two, where an R0i ≥ 1 means the 

pathogen can invade that species’ population. This gamma distribution resulted in most R0i 

values being close to or less than 1, so that the pathogen could not invade most host species’ 

populations in isolation, but a few host species could sustain (small) epizootics. For example, 

white-footed mice are very competent hosts for the pathogen that causes Lyme disease, but most 

other mammal hosts (e.g. squirrels) are much less competent (LoGiudice et al. 2003). 
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Additionally, many bird species can harbor West Nile Virus, but only a few of these species are 

responsible for passing infections on to mosquito vectors (Kilpatrick et al. 2006).  

We derived intraspecific transmission rates βii corresponding to intraspecific R0 values 

for each species (Table 2.1). Host competence in our model is thus defined as the probability of 

transmission given a contact between a susceptible and infectious individual, regardless of 

species identity, which is proportional to βii and R0i. We further assumed that R0i was negatively 

correlated with body size and positively correlated with abundance. Therefore, the smallest, most 

abundant host species were the most competent hosts [e.g. 18,21]. This pattern might be 

expected if pathogens have selective pressure to adapt to more common species, and/or if larger 

host species (which in our model have lower population sizes) have selective pressures to invest 

more heavily in pathogen defense strategies in order to survive to reproductive age. For example, 

in the Lyme disease and West Nile systems, host body size correlates negatively with host 

competence (Huang et al. 2013). Furthermore, there is evidence that more ‘fast-lived’ and 

abundant amphibian species experience higher infection intensities and more severe pathology 

from trematode parasites (Johnson et al. 2012, 2013b). A recent review of the literature suggests 

that there is evidence that life history traits, such as body size and abundance, are correlated with 

host competency; however, the strength of these correlations are often unclear, and this 

variability across more disease systems needs to be further assessed (Joseph et al. 2013b).  

Finally, interspecific transmission rates, βij, were calculated as the pair-wise average of 

intraspecific transmission rates of species, i and j. The strength of interspecific transmission was 

controlled by a scaling parameter, cij, in the form: 

βij = cij
βii +β jj

2
!

"
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Because intraspecific transmission rates, βii, vary across host species, there is some inherent 
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heterogeneity in interspecific transmission in our global communities, which is scaled with the cij 

term.   

 

2.3.2 Simulating local communities 

We considered three different conditions governing the relationship between species 

richness and community abundance, as well as density-dependent and frequency-dependent 

transmission for each of the three conditions. The first condition, termed the “additive” method, 

assumes species abundances in simulated communities are equal to their abundance in the global 

pool, which leads to a positive linear relationship between species richness and community 

abundance. The second condition, termed the “compensatory” method, fixes community 

abundance regardless of species richness, but the abundance of all species is proportional to their 

relative abundance in the global pool. In other words, if a species is common, its abundance is 

adjusted to still be common with respect to the other species in the community. These first two 

conditions correspond to completely additive and compensatory abundance assumptions, 

respectively, investigated by Rudolf and Antonovics (Rudolf and Antonovics 2005), but 

generalized to the N species case. Importantly, the “compensatory” method is also analogous to 

experimental designs that vary host richness but fix total density of hosts to isolate the effect of 

richness. The third assumption, termed the “saturating” method, imposes a curvilinear 

relationship between community abundance and species richness. Because of a lack of empirical 

data informing the nature of such a relationship in vertebrate communities, we use two different 

curvilinear relationships: asymptotic and logistic curves (Appendix).  

To investigate the relationship between community composition and pathogen 

transmission, we iteratively simulated local communities by drawing random subsets of species 
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from the global pool (Figure 2.1B). Species richness in each local community thus ranged from 2 

to 49 species. We simulated 1000 local communities for each set of conditions described above.  

Under each scenario described above, we calculated community R0, a measure of 

potential pathogen transmission in a naïve local host community (Dobson 2004, Allen et al. 

2012). This metric is analogous to the population-level R0 but is extended to incorporate 

interspecific transmission. When community R0 ≥ 1, the pathogen can invade and persist in the 

host community. Values above 1 correspond to larger epizootic sizes, as community R0 also 

correlates with maximal infection prevalence in the community. We also calculated the 

coefficient of variation of community R0 for each value of host richness in order to assess how 

the variability of pathogen transmission changes across the range of host richness. 

Community R0 is calculated as the dominant eigenvalue (spectral radius) of the N x N 

matrix (G) that incorporates the rate of transmission between species and the average duration of 

infection for an individual of the species transmitting the infection, based on the SIR model:  

G =

βii pii
αi +σ i + di( )


β ji pji

αi +σ i + di( )
  

βij pij
α j +σ j + dj( )


β jj pjj

α j +σ j + dj( )

!

"

#
#
#
#
#
#
#

$
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&
&
&
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 Here the 𝑝 terms vary whether transmission is frequency or density-dependent. For 

density-dependent transmission, 𝑝 is equal to abundance of the infecting species (rows) at the 

disease-free equilibrium, 𝐾!. For frequency-dependent transmission, 𝑝 is equal to the relative 

abundance of the infecting species at equilibrium, a proxy for the relative proportion of 

interspecific contacts (i.e. Ki Kii

N
∑ ) (Dobson 2004, Allen et al. 2012).  
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Thus, community R0 is essentially determined by each species’ host competence, 

abundance, and the strength of interspecific transmission. In order to verify that our assumptions 

about how life-history traits relate to host competence (e.g. positive relationship between 

abundance and intraspecific R0) did not strongly affect our results, we also created a ‘null’ 

model. For this model, we randomized all life-history traits to eliminate associations with 

intraspecific R0, R0i. We then derived intraspecific transmission rates βii to match R0i for each 

species and used this community in the simulations described above.  

 

2.3.3 Simulating the effects of sample size on detecting diversity-disease patterns 

 In empirical field studies, researchers are limited by sample size and sample breadth (i.e. 

the number of sites that are available to sample, and the range of host richness observed). To 

investigate how abundance-richness patterns affect the detectability of diversity-disease 

relationships with variable sampling effort, we simulated sets of independent communities 

ranging from sets of 5 communities to sets of 45 communities and calculated community R0 for 

each community in each set. For each simulated set of communities (i.e. sets with different 

sample sizes) we built a general additive model (GAM) of community R0 predicted by host 

species richness using a cubic regression spline with shrinkage, using the ‘mcgv’ package in R 

(Wood 2011, Team 2013). This modeling approach allows for the detection of curvilinear 

(including non-monotonic) trends in the data. Due to low sample size in the smaller community 

sets, we limited the maximal number of knots on the spline to three (Keele 2008). We replicated 

this method 20 times for each value of sample size, totaling 820 simulations for each scenario 

(below). 

 We conducted the GAM on simulations from three different scenarios (treatments): (1) 



 43 

the “additive” method of simulating abundance-richness relationships under density-dependent 

transmission, (2) the “additive” method under frequency-dependent transmission, and (3) a 

“saturating” abundance-richness relationship under density-dependent transmission. We limited 

this analysis to only three treatments – as opposed to all of the scenarios explored above – for 

statistical tractability. We used logistic regression to determine how sample size and treatment 

affected the detectability of significant relationships between community R0 and host species 

richness. All simulations and statistical analyses were conducted in R (R Core Team 2013). 

 

2.4 Results 

We found that a saturating abundance-richness relationship with density-dependent 

transmission led to a clear non-monotonic trend in which there was an initial increase in 

community R0 (i.e. an amplification effect), followed by a decrease in community R0 at a higher 

range of richness values (i.e. a dilution effect; Figure 2.2C-D). The degree to which the pattern 

was non-monotonic was influenced by the community abundance-richness relationship assumed; 

nonetheless, the non-monotonic pattern seemed general over a range of values for these 

assumptions (Appendix). This pattern persisted under our null model, with random associations 

between host competence and abundance (Appendix), demonstrating that our results are not 

sensitive to this assumption.  
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Figure 2.2. The relationship between community R0 and host species richness for six example 
scenarios. Panels A-D show results from simulations based on the four different assumptions of 
the underlying relationship between host community abundance and richness (depicted as inset 
Figures) with density-dependent transmission. Panels E and F are two examples with frequency-
dependent transmission. Boxplots summarize the findings of 1000 simulations for each panel. 
LOESS smoothers with 95% confidence bands were added for visual interpretation of average 
trends. Not all iterations of frequency-dependent transmission are shown because they show the 
same qualitative trends. (Parameters used to generate these data: Y0=10, z=0.10, M=3, a=2, b=1, 
m=1.5, ε=10, k=0.3, ψ=3, cij=0.05). 

 

As expected, with density-dependent transmission and a linear relationship between 

community abundance and richness (i.e. the “additive” method), community R0 monotonically 

increased with host richness (Figure 2.2A). Also as expected, when community density was kept 

constant across the full range of host richness (i.e. the “compensatory” method), there was a 
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marked decrease in community R0 as richness increased (Figure 2.2B). This effect was 

exaggerated under our null model scenario, because in this case some typically rare species were 

randomly assigned high host competence (Appendix). Finally, under frequency-dependent 

transmission, community R0 decreased as richness increased regardless of the relationship 

between community abundance and host richness assumed (e.g. Figure 2.2E-F). We also found 

that the coefficient of variation in community R0 decreased markedly with increasing host 

richness irrespective of the community abundance-richness relationship and the mode of 

transmission (Figure 2.3). 

Figure 2.3. The coefficient of variation of community R0 at each value of richness for the 
simulated communities shown in Figure 2. The underlying relationships between community 
abundance and richness are shown as inset Figures. Parameters are as in Figure 2. 
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 The high variability in our simulations, as well as the saturating abundance-richness 

pattern affected the probability of finding a significant relationship between community R0 and 

richness with increasing sample size (Figure 2.4). Across all three treatments – (1) “additive” 

with density-dependent transmission, (2) “additive” with frequency-dependent transmission, and 

(3) “saturating” abundance-richness relationship with density-dependent transmission – the 

probability of finding a significant relationship increased markedly with sample size (z=18.37, 

P<0.0001; Figure 2.4). Furthermore, we were overall less likely to find significant relationships 

between community R0 and richness in the case of a saturating abundance-richness relationship, 

compared to the two additive cases (additive, density-dependent: z=10.56, P<0.0001; additive, 

frequency-dependent: z=4.37, P<0.0001; Figure 2.4). The main effects of sample size and 

treatment explained much of the variation in finding significant trends (pseudo-R2=0.38). We 

included an interaction between treatment and sample size in the initial model, but this term was 

insignificant and was dropped from the final model. 

Figure 2.4. Results of GAM to test the effect of community abundance-richness relationships and 
pathogen transmission mode on community R0-richness relationships across a range of sample 
sizes. A-C, Proportion of simulations where the GAM was significant versus sample size, for the 
three treatments: A, “additive” method with density-dependent transmission; B, “additive” 
method with frequency-dependent transmission; and C, “saturating” method with density-
dependent transmission. The horizontal dashed lines in A-C show the total proportion of 
significant cases across all sample sizes (i.e. out of 820 simulations) for each of the three 
treatments. Parameters of generated local communities follow those specified in Figure 2. 
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2.5 Discussion 

 Evaluating the generality of diversity-disease relationships in nature is a difficult task due 

to the complexity of host-parasite interactions, challenges involved in achieving replication, and 

extrinsic environmental factors influencing pathogen transmission (Rigaud et al. 2010, Tompkins 

et al. 2010, Randolph and Dobson 2012). Using a multi-host species epidemiological model, we 

found that the relationship between total host community abundance and host richness can 

mediate how pathogen transmission scales with host richness. Particularly, saturating host 

abundance-richness relationships can lead to situations in which the community R0 of a pathogen 

with density-dependent transmission increases over low ranges of host richness but decreases 

over higher ranges. Moreover, across all abundance-richness patterns and the two pathogen 

transmission modes explored in this study, the variation observed in community R0 was much 

higher in low richness communities compared to speciose communities. We also found that 

community density saturation may reduce the detectability of statistically significant diversity-

disease relationships.  

 Here we demonstrate that understanding the ecology of fundamental host community 

dynamics can improve predictions about when and where to expect the dilution effect to occur.  

Our model results support previous predictions that generalist pathogens with density-dependent 

transmission are likely to increase in prevalence when species additions are additive and decline 

when they are compensatory (Dobson 2004, Rudolf and Antonovics 2005). We find that 

frequency-dependent transmission disease dynamics did not respond to abundance-richness 

relationships, because transmission is independent of host density. By contrast, for the case of 

saturating community abundance-richness relationships with density-dependent transmission, we 

found an amplification effect for the portion of the curve where host communities accumulate 
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species abundance additively. Then, as more speciose communities start to saturate and transition 

to compensatory species additions, we observe a dilution effect. 

 An important assumption in our model is that host competence was strongly, positively 

correlated with species abundances. While this assumption is pervasive in the diversity-disease 

literature, the few studies explicitly testing for such a relationship show mixed results (Joseph et 

al. 2013b). A recent modeling study showed that variability in the strength of the relationship 

between host competence and extirpation risk (assumed to be correlated with life-history traits 

such as abundance) can lead to mixed dilution and amplification effects when communities are 

completely subtractively or substitutively disassembled (Joseph et al. 2013b). Using a 

complementary null model, our results show that regardless of the assumed relationship between 

host competence and species abundance (or other life-history traits), a saturating relationship 

between total community abundance and species richness can result in non-monotonic diversity-

disease trends with density-dependent transmission. This observation of non-monotonic 

diversity-disease trends with saturating abundance-richness relationships is general because of 

how species abundances accumulate with species richness. At low richness, we are seeing 

dynamics driven by additive abundance-richness relationships, which then transition to being 

driven by compensatory relationships as the community saturates. This general pattern persists 

under the null model due to the strong influence that density has on community R0 (via contact 

rates), independent of the relationships among demographic parameters that result from 

allometry, life history trade-offs, or pathogen adaptation. Therefore, we propose that as long as 

abundance saturates with richness, and density-dependent transmission occurs, a non-monotonic 

diversity-disease trend is likely. 

A saturating abundance pattern is more likely in vertebrate communities when resources 
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are abundant with a low number of species, but competitive interactions become more 

pronounced as species richness increases. For example, using three different theoretical models, 

Lehman and Tilman (Lehman and Tilman 2000) found that a saturating relationship between 

total community biomass and richness emerges due to competitive interactions among species. 

Other abundance-richness relationships not explored in this study could emerge due to particular 

community dynamics that vary with host richness or are tied to particularly influential species. 

For instance, predators may influence disease dynamics more strongly than competitors in 

certain systems, and therefore the shape of richness-abundance relationships may depend on the 

richness of communities that predators tend to occupy. Additionally, the presence of ecosystem 

engineers or keystone species may affect the shape of abundance-richness relationship in ways 

specific to particular study-systems. It will be important for future ecological and disease studies 

to determine how total host abundance scales with richness as communities both assemble and 

disassemble, and the predictability of these trends across disease systems, in order to evaluate 

how often curvilinear or non-monotonic community R0-richness patterns might occur in nature.  

Our model findings also emphasize that the range of host richness values observed in a 

field study could be important for determining the specific diversity-disease relationship that is 

detected. For example, Guo et al. (Guo et al. 2006) showed that non-monotonic relationships 

between biomass production and grassland plant richness exist, but only when a wide enough 

range of richness is sampled. In our model, if the host community size is smaller than that 

required for the community to begin saturating (e.g., if host community < 20 species in Figure 

2.2D), an amplification effect would be the logical expected outcome of diversity loss, but this 

expectation would change if more speciose communities were sampled. It should be noted, 

however, that in our model, the threshold of 20 species before a dilution effect is a product of the 
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model structure and assumptions. Identifying possible saturation thresholds in natural 

communities is an important consideration when generating null expectations for how diversity 

loss contributes to disease risk for pathogens with density-dependent transmission. Future field 

and laboratory studies could assess these expectations by manipulating host abundance-richness 

patterns and observe if non-monotonic relationships can arise across a wide range of host 

richness. 

This model also supports the idea that, in some instances, host species identity can be 

more important for driving diversity-disease relationships than richness per se (LoGiudice et al. 

2008, Randolph and Dobson 2012). We found that regardless of the abundance-richness 

relationship and transmission mode assumed, the variability in community R0 declined markedly 

with increasing host richness. We can attribute this pattern to a sampling effect that emerged due 

to the fact that the number of unique communities that could be assembled at low values of 

richness exceeded those at higher values of richness. This means that, by chance, combinations 

of species with very high competence or very low competence could be present at low values of 

richness, suggesting that species identity plays an important role in low-richness communities. 

This emergent property conforms to various biological traits that show similar declines in 

variability with increasing richness due to statistical sampling effects, termed the ‘variance 

reduction effect’ (Huston 1997). Mitchell and colleagues (Mitchell et al. 2002) found a similar 

pattern of decreasing variability in fungal pathogen load in plant communities with increasing 

richness, which they also attribute to stochastic species dominance at low host richness. 

Therefore, it could be the case that host species identity is more important for determining 

pathogen transmission in communities of low richness, compared to more speciose communities. 

This could be especially true in cases where host species with high pathogen competence tend to 
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occupy species poor communities more frequently than species with low pathogen competence 

(Johnson et al. 2013b). 

Saturating abundance-richness relationships could also obscure diversity-disease patterns 

in the field due to sampling issues. For example, we found that the non-monotonic community 

R0-richness pattern produced by a saturation scenario translated into finding fewer significant 

regressions across a range of sample sizes, even when using general additive models that can 

detect such curvilinearity (Figure 2.3). Additionally, the high degree of variation observed in the 

“additive” case with frequency-dependent transmission resulted in many non-significant 

regressions, even though the general pattern between community R0 and host richness was 

clearly negative (Figure 2.2E). Furthermore, the power to detect diversity-disease relationships 

would be lower in real studies where metrics of disease or host diversity are estimated, rather 

than known exactly (as in the case with our model and community R0).  

 Our findings also have implications for the experimental design of studies that are 

investigating diversity-disease relationships. In our simulations, when the total abundance of the 

host community was kept constant (i.e. completely compensatory additions), a dilution effect is 

invariably seen, as long as interspecific transmission rates are low (Figure 2.2B). This scenario is 

analogous to experiments that fix host density or abundance to isolate the effects of host 

richness. This pattern occurs because as richness increases, each species’ density declines, 

resulting in less within-species transmission. If interspecific transmission is low, then these 

epizootics do not readily spill over, causing smaller community-wide epizootics. Researchers 

should measure interspecific transmission rates before designing an experiment that attempts to 

isolate the effects of host richness on disease trends, especially in systems of generalist 

pathogens with density-dependent transmission. Experimental designs should also, in as much as 
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possible, incorporate host abundance and species composition data from the field to more 

accurately represent natural transmission dynamics in the lab.  

Conclusion  

Evidence from field, experimental and theoretical studies increasingly suggests that the 

details of host community composition, and not just species richness per se, are important for 

driving diversity-disease patterns. Previous research has shown that total host richness and the 

abundance of hosts can moderate disease patterns, and that host species identity can be a more 

important predictor of disease risk than host richness. Here we have demonstrated that an often-

overlooked metric of host community composition – the scaling of total host community 

abundance with host richness – may drive previously unpredicted non-monotonic richness-

pathogen transmission relationships. These non-linear trends, as well as generally high 

variability in pathogen transmission in depauperate host communities, tend to hinder pattern-

detection with low sample sizes.  

Our model adds to a growing body of work that suggests that finding generalizable 

diversity-disease patterns in the field across host-pathogen systems may be more difficult than 

previously appreciated. However, in our model, high variability in pathogen transmission is often 

driven by the random nature of local community composition. More data are needed to 

understand how communities assemble and disassemble in terms of host richness, host 

abundance and host competence. For instance, it has been proposed that depauperate 

communities may be primarily inhabited by highly abundant, competent host species (Keesing et 

al. 2010, Johnson et al. 2013b). Joseph et al. (Joseph et al. 2013b) suggest that it is reasonable to 

expect that on average more competent hosts occupy species poor communities due to host life 

history traits and pathogen evolution, but that even slight variability around competence-
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extirpation risk relationships can cause mixed disease dilution and amplification throughout 

community disassembly. Bringing community ecologists and disease ecologists together in order 

to better understand the predictability of host community composition and host competence - as 

well as their relative contributions to diversity-disease trends - would greatly aid in building 

more informative models of when and where diversity should affect disease.  
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CHAPTER 3 
 

LINKING METACOMMUNITY THEORY AND SYMBIONT EVOLUTIONARY 
ECOLOGY2 

 
 

3.1 Abstract 

Processes that occur both within and between hosts can influence the ecological and 

evolutionary dynamics of symbionts, a broad term that includes parasitic and disease-causing 

organisms. Metacommunity theory can integrate these local and regional scale dynamics to 

explore symbiont community composition patterns across space. In this article I emphasize that 

symbionts should be incorporated into the metacommunity concept. I highlight the utility of 

metacommunity theory by discussing practical and general benefits that emerge from 

considering symbionts in a metacommunity framework. Specifically, investigating the local and 

regional drivers of symbiont community and metacommunity structure will lead to a more 

holistic understanding of symbiont ecology and evolution and could reveal novel insights into 

the roles of symbiont communities in mediating host health.  

 

3.2 Expanding symbiont community ecology 

The study of symbionts and symbiont communities, whether these are commensal, 

mutualistic, or parasitic organisms, is vital to our understanding of general host-symbiont 

dynamics as well as clinical and epidemiological patterns. Exploring the community-level 

ecological interactions of symbionts and their hosts has substantially added to our knowledge of 

host-symbiont relationships (Pedersen and Fenton 2006, Graham 2008, Ezenwa et al. 2010, 

Telfer et al. 2010) as well as symbiont evolution (Mideo et al. 2008, Mideo 2009, Alizon et al. 

                                                
2 Published as: Mihaljevic, JR. (2012) Linking metacommunity theory and symbiont evolutionary ecology. Trends 
in Ecology & Evolution 27:323–329. 
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2011). Furthermore, symbiont communities themselves have contributed to the fields of ecology 

and biogeography, for example, by testing theoretical predictions such as distance decay of 

similarity and niche breadth-range size relationships (Poulin et al. 2011). However, there is an 

extensive body of other ecological theory that can be applied to and tested with symbiont 

communities, which will enhance our understanding of host-symbiont interactions, including 

disease dynamics, and of the structuring of ecological communities in general. Here I advocate 

the utility of metacommunity theory (Leibold et al. 2004, Holyoak et al. 2005; Figure 1)  

The ultimate aim of metacommunity theory is to evaluate patterns of and mechanisms 

contributing to species diversity across space. Specifically, this theory asks how dispersal of 

organisms between communities alters local dynamics and subsequently influences community 

structure both locally and regionally (Box 3.1; Figure 3.1). Furthermore, the emerging ‘evolving 

metacommunity’ concept explores how genetic variation is distributed across space and how 

gene flow can influence species interactions and community composition via (mal)adaptation 

(Urban and Skelly 2006, Urban et al. 2008, Urban 2011). The metacommunity concept has been 

integral to our understanding of large-scale trends in community structure and biodiversity 

(Ricklefs 2008, Cavender-Bares et al. 2009, Leibold 2011). The goals of metacommunity theory 

and the predictions that have emerged from this body of work align well with current research on 

symbiont communities and host-symbiont interactions.  
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Figure 3.1. A summary of metacommunity theory. Metacommunity theory can be generally 
divided into two approaches: the (A) mechanism-based and the (B) pattern-based approaches. 
The mechanism-based approach utilizes four modeling paradigms to ask how the regional 
species pool partitions into local habitats and how these local communities vary across space. 
The four paradigms differ mainly in the role of patch heterogeneity and the timing and effect of 
dispersal on local dynamics. The pattern-based approach determines the structures of natural 
metacommunities. Metacommunities (a-c) are cartoon examples of such structures. These 
represent presence/absence matrices that are ordinated via a process such as reciprocal 
averaging. Then other ordination methods and null models are used to associate this structure 
with a variety of potential biotic and abiotic structuring mechanisms.  
 

 

Interspecific interactions among symbionts, as well as their dispersal and transmission, 

all influence the ecological and evolutionary dynamics of symbiont populations and 

communities, often in complex ways. For example, direct and indirect interactions among 

multiple symbionts within an individual host can affect the ways symbionts influence host health 

and can also affect the evolution of symbiont traits, such as the virulence of parasitic symbionts 

(de Roode et al. 2005, Bell et al. 2006, Choisy and de Roode 2010, López-Villavicencio et al. 

2011). These intra-host dynamics are linked with those of larger spatial scales (e.g. inter-host) 

via symbiont dispersal or transmission. Understanding how these ‘local’ and ‘regional’ processes 

interact is at the forefront of symbiont-related research, especially that of parasitic symbionts 
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(Mideo et al. 2008, Alizon et al. 2009, Rigaud et al. 2010). Fortunately, merging local and 

regional scale dynamics is the motivation behind metacommunity theory.  

Despite the conceptual similarities with free-living species’ metacommunities, the 

consideration of symbiont metacommunities and their relevance to host health, to symbiont eco-

evolution and to the study of ecological communities has not been addressed in depth. Here, I 

emphasize that considering the metacommunity dynamics of symbionts will reveal a suite of 

novel and highly relevant questions pertaining to the structuring of ecological communities and 

to the influence of symbiont communities on host health and functioning. I explain how 

symbiont metacommunities fit well within the conceptual framework of the standard free-living 

organism metacommunity, even though clear differences exist. These differences, however, 

could actually serve to broaden the scope and test the assumptions of metacommunity theory. I 

then outline the novelty of metacommunity theory compared to other methods of studying 

symbiont dynamics and discuss various practical and general applications that stem from linking 

these two fields. 

 

3.3 Defining a (symbiont) metacommunity 

Briefly, a metacommunity consists of multiple local communities of interacting species 

that are connected by the dispersal of at least one of those species. Local communities can be 

limited to competing ‘guilds’ of species or can consist of more complex trophic webs. The 

important aspect here is that dispersal of species among localities changes local community 

dynamics, leading to community structures that deviate from those expected when considering 

closed communities. This allows researchers to study community dynamics at larger - and more 

realistic - spatial scales than previously considered in community ecology (Ricklefs 2008). 
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Although the spatial delineation of ‘local’ communities is stringent in theoretical studies, the 

principles derived from metacommunity theory have been successfully applied to natural 

communities that lack definitive boundaries (e.g. grasslands, forests; (Holyoak et al. 2005)).  

‘Local’ symbiont communities can be designated at various spatial scales, and, thus, 

multiple metacommunities can emerge depending on the spatial scale under consideration and 

the specific questions being addressed (Box 3.2, Figure 3.2). While I believe that each spatial 

scale is worth considering and can lead to novel research initiatives, for clarity, here I will 

consider the implications of studying symbiont metacommunities in which a local community 

consists of the suite of symbionts that inhabit a single host individual (e.g. Figure 3.2b). In this 

way, the local scale is clearly spatially delineated as a single host in which symbiont population 

dynamics unfold. Emigration from a host is achieved by the release of infective or dormant 

symbiont life stages. This numerically changes the demographic parameters of resident symbiont 

populations within the host, and thus, potentially changes the community interactions among 

symbionts. Colonization of a new host occurs via dispersal or transmission of symbionts and the 

subsequent initiation of population dynamics in that new host, which, as above, can affect the 

local community dynamics.  
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Figure 3.2. Representations of symbiont metacommunities at various spatial scales. (a) Various 
host compartments (e.g. organs) house different suites of local symbiont communities that are 
connected by dispersal of symbionts (represented by arrows). (b) Host individuals serve as local 
communities or patches for symbionts. Here, patches are connected by dispersal or transmission 
of symbionts from host to host (represented by arrows). (c) Host sub-populations serve as 
patches for symbionts, where the suite of symbionts within a host subpopulation constitutes the 
local symbiont community. In this scenario, patches are connected by the migration of hosts 
from one sub-population to another, which augments the local suite of symbionts. Different 
colored dots represent symbiont individuals and species.  
 

 
 

There are two clear distinctions between symbiont metacommunities, as defined above, 

and those of free-living organisms. First, for symbionts, the local habitat patch (host) is not 

necessarily static in space; however, this is not an insurmountable challenge. For example the 

metapopulation framework - a single species perspective that follows the same spatial 

assumptions as the metacommunity framework - has long been advocated as useful for 

understanding parasite infection dynamics (Grenfell and Harwood 1997, Thrall and Burdon 

1997). The disease metapopulation framework has been implemented across spatial scales to 

explain parasite infection patterns in cases where parasites infect multiple host tissues (i.e. intra-

host metapopulations (Frost et al. 2001)), hosts are considered patches (G. R. Hess et al. 2002), 

or parasites are dispersed among host sub-populations via host migration (Hess 1994, McCallum 

and Dobson 2002). Furthermore, the theory of island biogeography (MacArthur and Wilson 

1967), developed with respect to static islands, has been fruitfully applied to explain prevalence 

  
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patterns of parasites when mobile hosts are considered “islands” (Kuris and Blaustein 1980, 

Reperant 2010).  

The success of metapopulation and island biogeography theory in studying parasites 

makes sense because symbiont population dynamics unfold within a host whether or not the host 

is mobile. Thus, if hosts were to be considered closed communities, their movement would be 

irrelevant. The movement of hosts, however, can clearly affect the dispersal and colonization 

rates of symbionts, especially in the case where direct host-to-host transmission occurs.  

Host movement is a unique feature of symbiont metacommunities that can be integrated 

into metacommunity theory and lead to interesting research questions. First, the timescale and 

relative role of dispersal in structuring metacommunities varies depending on the theoretical 

paradigm considered, and, thus, symbiont metacommunities could be analyzed to determine 

which paradigm is most relevant (Box 3.1). Second, understanding the role of environmental 

heterogeneity in structuring communities across space is a principal focus of metacommunity 

theory (Box 3.1). The rate of host movement could then be used as a type of patch heterogeneity, 

in which symbionts in a more vagile host have distinct demographic rates compared to those 

residing in less vagile hosts. Finally, while most theoretical models that have formed the 

foundation of metacommunity theory consider the spatial distribution of patches implicitly, 

newer methods explicitly model this distribution (e.g. (Pillai et al. 2011)). Thus, a variety of host 

structures could be simulated in which these ‘patches’ are more or less connected, representing 

the relative contact rate of hosts.   

The second distinction involves the mechanisms that result in patch vacancy. In free-

living organism metacommunities patches become fully or partially vacant and can be 

subsequently recolonized if, for example, residing species go extinct due to demographic 
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stochasticity or strong interspecific interactions. However, when hosts are considered patches for 

symbionts, patches can become vacant and subsequently unavailable to re-colonization if hosts 

die due to parasitism or develop strong resistance to parasitic symbionts. Thus, the number of 

available patches does not remain constant, as is assumed in current implicit-space 

metacommunity models.  

Perhaps the issue above has caused reluctance to use mechanistic metacommunity models 

to study symbionts, especially because epidemiological models already account for such host-

symbiont dynamics. Nevertheless, I feel that, again, this caveat is not intractable. Implicit terms 

could be added to models for patch destruction (e.g. via pathogen virulence or host resistance), 

and then balanced with patch creation (e.g. via host immigration or birth rate) (G. R. Hess et al. 

2002). In fact, host resistance to symbiont infection could be modeled more realistically as 

underlying patch heterogeneity. Then, one could explore how intraspecific variation in these host 

characteristics affects local and regional composition of symbionts (Osnas and Dobson 2011). 

Finally, using explicit space models, host loss could be modeled similarly to habitat destruction 

(Pillai et al. 2011). However, the evolution of parasite virulence and host resistance, a common 

question in epidemiological modeling studies, might be more difficult to address using these 

methods. The evolving metacommunity perspective, described below, might hold more promise 

for these important questions. Below I will highlight the novel features of metacommunity theory 

compared to methods of studying infection dynamics in light of their respective research 

agendas. I will also more fully develop the practical and general utility of linking 

metacommunity theory and symbiont evolutionary ecology.  
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3.4 The utility of considering symbiont metacommunities 

3.4.1 The novelty of metacommunity theory 

Metacommunity theory differs from current methods of studying symbionts, especially 

epidemiological models, in both method and agenda. Epidemiological models deal with 

infectious, parasitic symbionts. These are mechanistic models that follow the numbers or 

densities of infected, susceptible and resistant hosts in a spatially implicit or explicit (e.g. 

network analysis) manner, incorporating the negative effects of the pathogen. Epidemiological 

models ask questions about, for example, the probability of epidemics occurring in the host 

population and the evolution of pathogen traits, such as virulence, in response to within- or 

between-host dynamics. Importantly, recent models are able to integrate within-host infection 

processes and between-host transmission dynamics (Mideo et al. 2008, Day et al. 2011). While 

some studies have considered the evolutionary consequences of multiple pathogen strains or 

species at the within-host level (e.g. (Choisy and de Roode 2010)), few have modeled these 

dynamics while considering both spatial scales (although see (Alizon and van Baalen 2008)).  

Metacommunity models, in a sense, ask more general and larger-scale questions than 

epidemiological models, though they are similar in many ways (Box 3.1). This theory makes 

predictions regarding the roles of local processes and dispersal among localities in partitioning 

regional (γ) diversity into local habitats (α-diversity) and how this local diversity varies across 

space (e.g. β-diversity). Metacommunity models explore general trends, such as how dispersal 

changes the coexistence of competing species or how dispersal and patch heterogeneity affect β-

diversity across the landscape. In other words, metacommunity theory is concerned with the 

structure of communities and how this structure varies across space, in response to various 

mechanisms. Below, I will highlight many specific practical and general applications that stem 
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from considering these types of questions with symbionts.   

 

3.4.2 Practical applications 

Linking metacommunity theory and the study of symbionts has many practical 

applications. In general, understanding the structure of symbiont metacommunities, as well as 

the underlying causes of this structure, could offer new insights into how symbionts affect host 

health. The diversity of symbionts within a host (α-diversity) might have direct effects on, or be 

correlated with, host health and general functioning. Understanding the turnover among 

symbiont communities (β-diversity) is also important, as the effect of symbiont communities on 

their hosts presumably changes as their compositions change (e.g. (Telfer et al. 2010)).  

Incorporating ideas from the ‘evolving metacommunity’ concept is particularly relevant 

to the study of symbiont communities due to the overlap of ecological and evolutionary 

timescales in these systems (De Meester 2011). While the details of this framework will be 

discussed below, the theory could be used to understand or model, for example, the distribution 

of symbiont haplotypes among hosts in response to gradients in host genetic diversity, 

considering the role of host-symbiont genotype interactions in symbiont fitness. Also, this 

framework would be relevant for studying kin selection dynamics in the evolution of parasitic 

symbiont virulence. For example it is important to understand how multiple related strains of 

parasite interact within a host and how these intra-host interactions and inter-host transmission 

dynamics influence the evolution of parasite traits (e.g. (Alizon and Lion 2011)).  

 

3.4.3 General ecological applications 

Linking metacommunity theory and symbiont evolutionary ecology also has implications 
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for understanding the structure of ecological communities in general. For instance, different 

ecological and evolutionary processes might influence the structure of symbiont 

metacommunities compared to those of free-living organisms. As revealed by a large meta-

analysis, most free-living organism metacommunity structures tend to show strong effects of 

species sorting and mass effects, but both local and regional components of assembly are 

necessary to explain the majority of variation (Cottenie 2005). Symbiont metacommunities could 

be compiled and compared to these data in order to determine if symbiont metacommunities are 

structured similarly to those of free-living organisms.  

Research is already attempting to discern the primary drivers of human microbial 

symbiont community composition using metacommunity theory. For example, Lindström and 

Lengenheder (Lindström and Langenheder 2011) recently applied the predictions of mechanistic-

based metacommunity theory to discuss general trends in bacterial community assembly across a 

wide range of systems, including the human body. Additionally, a model-fitting study used 

neutral metacommunity theory to explore how microbial α-diversity of the human lungs and 

digestive tract is structured (Sloan et al. 2006). Neutral metacommunity theory has also been 

used to speculate on the structuring mechanisms of parasitic helminth communities (Poulin 

2004). However, these studies could be deepened and extended to encapsulate the full range of 

metacommunity theory applications (Box 3.1).  

Different structuring mechanisms might act at different spatial scales for symbiont 

metacommunities compared to free-living organisms. Svensson-Coelho and Ricklefs (Svensson-

Coelho and Ricklefs 2011) recently explored how avian host phylogeography relates to 

haemosporidian parasite community structure across the Lesser Antilles. Host genetic diversity 

between islands does not predict β-diversity of these parasites. Furthermore neither mosquito nor 
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bird β-diversity correlated with parasite β-diversity. Here, the spatial extent of the data analysis 

might overreach the scale at which the primary parasite community structuring processes 

function. Hierarchical analysis of the parasite metacommunity structure could reveal the relative 

roles of different structuring processes at different spatial extents (Presley and Willig 2010, 

Presley et al. 2010; Box 3.1).  

Symbiont communities could be used to test metacommunity predictions by using 

pattern-based metacommunity approaches (Box 3.1). De Meester ( 2011) speculates that small 

organisms (e.g. environmental bacteria) might show an even stronger signal of species sorting 

due to their high dispersal capacity and rapid population growth, allowing for the simultaneous 

influence of dispersal and evolution to match organisms to their environmental optimums across 

space (see below). Symbiont dispersal and transmission rates, however, are linked with their 

hosts’ dispersal rates to varying degrees (e.g. (Blasco-Costa et al. 2012)). Thus, symbiont 

metacommunities could be divided into ‘meta-ensembles’ (sensu (López-González et al. 2012b)) 

of high and low dispersing varieties and the respective structures could be used to test the 

assumed role of dispersal in the four predominant metacommunity paradigms.  

 

3.4.4 General evolutionary applications 

The ‘evolving metacommunity’ concept considers how gene flow and local adaptation 

can alter local species interactions and lead to either regional coexistence or monopolization 

(Urban et al. 2008). Consider a simple scenario in which competing species are locally adapted 

but can disperse to patches with different local conditions (Loeuille and Leibold 2008, Urban and 

De Meester 2009). Species A invades an empty patch and becomes locally adapted, preventing 

the establishment of its competitor, Species B. This is an example of local monopolization 
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facilitated by adaptation. However, if local conditions vary between patches, gene flow from 

Species A’s new patch to its source could lead to maladaptation in the source. This could then 

allow Species B to invade Species A’s source patch. The maladaptation of Species A thus 

facilitates regional coexistence with Species B. Similar theory can easily be applied to and tested 

with symbionts, especially considering their rapid population growth rates and short-term 

evolutionary dynamics (e.g. (De Meester 2011)). However, in host-symbiont systems, the 

relative rate of gene flow of hosts versus symbionts is important for symbiont adaptation, 

especially in antagonistic coevolution scenarios (Greischar and Koskella 2007, Hoeksema and 

Forde 2008). Thus, understanding the relation between host population gene flow and symbiont 

gene flow among individual hosts will be essential for predicting and interpreting evolutionary 

symbiont metacommunity patterns.  

Recent conceptual models predict that intermediate levels of gene flow among patches in 

a metacommunity will maximize the adaptation of community and population traits to the local 

environment via species sorting and natural selection (Urban et al. 2008). In other words, 

regional biodiversity might be hindered by too little or too much dispersal, due to 

monopolization or maladaptation. Therefore, understanding the level of symbiont gene flow 

among hosts will be critical to predicting the conditions under which coexistence or 

monopolization will be favored. Future studies could explore how within-host symbiont 

community dynamics interact with variable dispersal or transmission rates to influence among-

host community structural patterns (Box 3.2).  

 

3.5 Conclusion 

Symbiont communities are ripe for a merger with existing and emerging research on 



 67 

metacommunity dynamics. This would simultaneously allow for testing theory and 

understanding the effects of symbionts on host health, whether positive or negative. Utilizing 

symbionts in metacommunity research and applying concepts garnered by metacommunity 

studies to symbiont eco-evolution could aid in our general understanding of spatial ecological 

dynamics, help determine the processes and spatial scales most relevant to the structuring of 

symbiont communities, guide studies related to symbiont trait evolution, and offer a framework 

for exploring the effects of symbiont communities on disease across space. Metacommunity 

ecology is a new and burgeoning field, and incorporating symbionts into its theoretical and 

experimental repertoire is bound to benefit ecologists, evolutionary biologists and medical 

scientists alike.  

 

Box 3.1. Standard applications of metacommunity theory 

 Generally, ecological metacommunity theory has been approached in two ways (Figure 

1). The discussion that follows is not comprehensive but, rather, is meant to introduce readers to 

the various ways metacommunity theory has been used to date.  

 

Mechanism-based Approach 

The mechanism-based approach develops and tests theoretical models that generate 

predictions about how the regional species pool partitions into local habitats, and how 

communities vary across space (Figure 1). Metacommunity models can be separated into four 

paradigms that mainly differ in the role of patch heterogeneity and the timing and effect of 

dispersal on local dynamics (Leibold et al. 2004b, Holyoak et al. 2005) (Figure 1). Most 

metacommunity models consider space implicitly, where species can differ in dispersal rates, but 
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it is assumed that all patches are colonized with equal probability. More recent models, however, 

explore the implications of spatially explicit patch distributions (e.g. (Pillai et al. 2011)). These 

paradigms have been tested using a variety of study systems and procedures (reviewed in (Logue 

et al. 2011)). Data generally show that community composition patterns are best explained by 

integrating multiple paradigms.  

Mechanism-based theory has been used to investigate many real-word issues. Recent 

examples include: examining how habitat destruction alters food web complexity (Pillai et al. 

2011); using patch connectedness to determine the best conservation methods (Economo 2011); 

and evaluating how climate change might alter community compositions (Urban et al. 2011). 

 

Pattern-based Approach 

 The pattern-based approach examines the structure of natural metacommunities and 

evaluates the influence of particular environmental gradients in creating those structures (Figure 

1). This approach relies on ordinations and null models to determine which ‘idealized’ 

metacommunity structures, if any, best fit to the observed data (Leibold and Mikkelson 2002a, 

Presley et al. 2010b). Then, canonical correspondence analysis is used to test what natural biotic 

and abiotic factors might lead to the observed structure (Ter Braak and Prentice 1988, López-

González et al. 2012b).  

 As a cartoon example, metacommunities (a) and (b) in Figure 1 have Clementsian 

structure, in which discrete communities replace each other along a gradient, whereas 

metacommunity (c) has Gleasonian structure, in which each species responds individually to any 

gradient. There are three distinct sub-metacommunities, or compartments, within 

metacommunity (b), each of which has a nested structure. Interestingly, in natural 
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metacommunities, compartments are probably common, and each compartment can have a 

unique structure that responds to different biotic and/or abiotic gradients (Presley and Willig 

2010b, López-González et al. 2012b). Thus, hierarchical analyses can determine which 

mechanisms are important at which spatial scales (Presley et al. 2010b). 

 

Box 3.2. Symbiont metacommunity research topics at multiple spatial scales 

 Here, I propose ecological and evolutionary research topics that emerge from a 

consideration of symbiont metacommunities at various spatial scales (Figure 2). These questions 

are diverse, relevant to the general understanding of ecological communities as well as the 

effects of symbionts on host health. However, this list is surely not exhaustive.   

 

Some important general questions: 

 Which metacommunity processes are most important at the different spatial scales of 

symbiont metacommunities?  

 How might metacommunity processes that occur at different spatial scales interact to 

affect symbiont community composition? 

 Is local and/or regional symbiont community structure (e.g. richness, evenness) or 

metacommunity structure a reliable predictor of disease risk or overall host 

population health?  

 

Intra-host: 

 How does the level of symbiont gene flow between areas within the host (e.g. organs) 

affect the emergence of novel and/or pathogenic varieties?  
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 Is the rate and outcome of symbiont evolution influenced by the resident symbiont 

community composition within different host compartments? 

 Could controlling symbiont dispersal to certain compartments and/or a spatially 

directed use of pro-microorganism treatments combat the intra-host evolution of 

pathogenic strains? 

 

Inter-host (in a host population): 

 How does heterogeneity within a host population (e.g. genetic diversity) influence 

symbiont gene flow among hosts? 

 Does host heterogeneity influence symbiont community composition within and 

among hosts and, therefore, the potential for epidemics?   

 

Inter-host sub-population (in a host metapopulation): 

 How does host dispersal between sub-populations augment local symbiont 

community composition, and what consequences does this have for population-level 

disease risk?  

 Considering the effect on host health, how does symbiont β-diversity across host sub-

populations affect host metapopulation stability? 
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CHAPTER 4 
 

USING MULTI-SPECES OCCUPANCY MODELS TO IMPROVE THE 
CHARACTERIZATION AND UNDERSTANDING OF METACOMMUNITY STRUCTURE 

 
 

4.1 Abstract 

 Two of the most prominent frameworks to develop in ecology over the past decade are 

metacommunity ecology, which seeks to characterize multi-species distributions across space, 

and occupancy modeling, which corrects for imperfect detection in an effort to better understand 

species occurrence patterns Although their goals are complementary, metacommunity theory and 

statistical occupancy modeling methods have developed independently. For instance, the 

elements of metacommunity structure (EMS) framework uses species occurrence data to classify 

metacommunity structure and link it to underlying environmental gradients. While the efficacy 

of this approach relies on the quality of the data, few studies have considered how imperfect 

detection – which is widespread in ecological surveys and the major focus of occupancy 

modeling – affects the outcome. Here we introduce a framework that integrates multi-species 

occupancy models with the current EMS framework – detection error-corrected EMS 

(DECEMS). This method offers two distinct advantages. First, DECEMS reduces bias in 

characterizing metacommunity structure by using repeat surveys and occupancy models to 

disentangle species-specific occupancy and detection probabilities, ultimately bringing 

metacommunity structure classification into a more probabilistic framework. Second, occupancy 

modeling allows estimation of species-specific responses to environmental covariates, which will 

increase our ability to link species-level effects to metacommunity-wide patterns. After 

reviewing the EMS framework, we introduce a simple multi-species occupancy model and show 

how DECEMS can work in practice, highlighting that detection error often causes EMS to assign 
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incorrect structures. To emphasize the broader applicability of this approach, we further illustrate 

that DECEMS can reduce the rate of structure misclassification by more than 20% in some cases, 

even proving useful when detection error rates are quite low (~10%). Integrating occupancy 

models and the EMS framework will lead to more accurate descriptions of metacommunity 

structure and to a greater understanding of the mechanisms by which different structures arise. 

 

4.2 Introduction 

Over the last decade, metacommunity ecology has integrated ecological theory across 

spatial scales in an effort to better understand local and regional community dynamics. In 

particular, metacommunity theory explores how regional processes such as dispersal combine 

with local species interactions to affect species coexistence across scales (Leibold et al. 2004a, 

Holyoak et al. 2005, Chase 2005a). Metacommunity research often seeks to empirically 

characterize multi-species spatial distribution patterns with the ultimate goal of linking these 

patterns to underlying biotic and abiotic gradients or processes. In this effort, the elements of 

metacommunity structure (EMS) framework (Leibold and Mikkelson 2002b, Presley et al. 

2010a) was developed as a set of analytical tools to identify and classify structural patterns in 

community data sets. The EMS framework has been used to better understand metacommunity 

dynamics across a variety of habitats and taxa (Presley and Willig 2010a, López-González et al. 

2012a, Henriques-Silva et al. 2013, Meynard et al. 2013, Richgels et al. 2013, Erős et al. 2014). 

For instance, by associating unique community structures with areas of endemism and historical 

refugia, de la Sancha et al. (2014) showed that the structures of South American Atlantic Forest 

small-mammal communities were most consistent with trends in historical biogeography rather 

than current anthropogenic impacts. However, the value of the EMS framework could be 
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substantially enhanced by synthesizing its foundations of pattern-detection with recent 

advancements in the statistical modeling of species' occupancy. 

The EMS framework uses observed species occurrence data aggregated across 'patches' 

of habitat in a metacommunity (e.g. field sampling sites), which are compiled into a site-by-

species incidence matrix. Three summary statistics (coherence, turnover, and boundary 

clumping) are derived from this matrix to determine which of six core categorical structures the 

metacommunity exhibits (Presley et al. 2010a). Based on the specific structure observed, 

inferences can be made as to how the metacommunity assembles, and further statistical analyses 

help to associate the observed structure with a dominant environmental gradient (e.g. elevation, 

landcover, etc.). However, the efficacy of this pattern-to-process approach depends heavily upon 

the quality of the data (Gotelli and Graves 1996, Ulrich and Gotelli 2013); problems with species 

detection could lead to incomplete incidence matrices and inaccurate assessments of 

metacommunity structure. Fortunately, a decade of advancements in occupancy modeling has led 

to powerful methods to overcome problems such as species detectability (MacKenzie et al. 2002, 

Royle and Dorazio 2008, Dorazio et al. 2010, Burton et al. 2012). 

Occupancy models rely on repeated sampling surveys to distinguish between the 

probability of a species occurring at a site and the probability of a species being detected at a site 

in which it occurs (MacKenzie et al. 2002, Royle and Dorazio 2008). This approach allows for 

an estimation of 'true' occupancy at each sampled site. Multi-species occupancy models also 

estimate species-specific environmental covariate effects on occurrence probability (Dorazio et 

al. 2010, Burton et al. 2012). This means that community-level distribution patterns could be 

associated with species-specific responses to environmental gradients, an important advancement 

that is lacking in the EMS framework. Thus, by providing better estimates of occurrence and by 
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allowing estimation of species-specific covariate effects, occupancy modeling should improve 

our characterization and understanding of metacommunity structure. 

Here, we review current EMS methods and introduce a metacommunity framework that 

integrates multi-species occupancy models, which we term detection error-corrected EMS 

(DECEMS). This method aims to allow for more accurate categorization of structure and the 

estimation of species-specific responses to environmental gradients. To help illustrate the 

efficacy of this approach, we introduce a simulated case study, which shows how detection error 

can bias standard EMS approaches and how DECEMS can effectively overcome this problem. 

We also quantitatively demonstrate that DECEMS can significantly reduce the effect of 

imperfect detection on structure misclassification across a wide range of simulated detection 

error rates. By estimating species-specific covariate effects, DECEMS could also lead to more 

mechanistic understandings of metacommunity structure. We expect that this approach will 

facilitate a more complete understanding of metacommunities by improving metacommunity 

structure inference and by revealing how species-specific responses to environmental gradients 

might scale up to community-level patterns. 

 

4.3 Elements of metacommunity structure 

The EMS paradigm follows a step-wise procedure to determine which of six core 

categorical metacommunity structures are exhibited by a data set of species occurrences 

observed across multiple sites. Although the procedure can determine that no orderly structure 

exists (i.e. random structure), most empirical metacommunities tested thus far exhibit detectable 

structure. Here we provide an overview of these methods and discuss some problems that can 

arise. 
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Species occurrence data (or abundance data) are assembled into a site-by-species matrix 

and this matrix is ordinated, typically using reciprocal averaging. Reciprocal averaging is a type 

of correspondence analysis that uses an algorithm to generate ordination scores based on the 

sites' similarities in species composition and the species' similarities in distribution among sites. 

The original matrix is rearranged (i.e. ordinated) based on the primary ordination axis scores to 

group similar sites and similarly distributed species. This ordinated matrix theoretically 

represents how species assemblages are structured along a dominant environmental axis (i.e. 

gradient). For example, Mexican bat species form discrete assemblages that turnover along a 

humidity gradient (López-González et al. 2012a). Then, from the ordinated matrix, statistics are 

calculated to summarize the three elements of metacommunity structure: coherence, turnover, 

and boundary clumping. These statistics are used to assign one of six core categorical 

metacommunity structures (Figure 4.1, Leibold and Mikkelson 2002, Presley et al. 2010). 

 

Figure 4.1. Flow chart used to determine metacommunity structure. Text in gray boxes 
represents the metric used to estimate the corresponding element of structure (e.g. embedded 
absences are used to determine coherence). NS = non-significant based on simulated null 
matrices. 
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The first metric of metacommunity structure is coherence, which reflects whether the 

majority of species in the metacommunity respond to the same axis of variation, often assumed 

to be an environmental gradient. Coherence is the foundation of structure as without either 

significant positive or negative coherence, the community is said to be randomly structured (i.e. 

species do not structure along a common axis of variation; Figure 4.1). Coherence is estimated 

using the number of embedded absences, which occur in areas of the matrix where a species is 

absent at a site in which it would be expected to occur based on the ordination. The observed 

number of embedded absences is then compared to a null distribution of embedded absences 

generated from ~1000 simulated matrices. 

Significantly negative coherence is indicative of a checkerboard pattern, suggesting 

negative pair-wise species associations. However, if a metacommunity exhibits positive 

coherence, two more metrics are calculated to further describe the metacommunity structure: 

turnover and boundary clumping. Turnover represents how species composition changes along 

the theoretical environmental gradient, estimated using the number of species replacements 

observed in the ordinated matrix. Negative turnover (significantly fewer replacements than the 

null) is indicative of nested subsets (i.e. a core local assemblage with species subtractions along 

the gradient), while positive turnover represents more substantial shifting composition (i.e. 

species additions and subtractions to local communities along the gradient). Boundary clumping, 

estimated with Morisita's index, helps to further distinguish structures by determining whether 

distinct clusters of species aggregate along the gradient, or whether there is a more gradual, 

random shift in structure. For instance, with positive turnover, significant clumping would 

indicate Clementsian structure, where discrete species groups turnover along the gradient, 

whereas a lack of clumping would be consistent with Gleasonian structure, where species 
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respond idiosyncratically to the hypothetical gradient. If there is no significant turnover, various 

quasi-structures are assigned to the metacommunity depending on the trend observed in turnover 

and boundary clumping (sensu Presley et al. 2010). 

After the metacommunity structure is characterized, researchers typically seek to 

determine which environmental covariate explains the primary axis of variation in the ordinated 

community. This analysis takes various forms. In most cases, the ordination score of the primary 

axis is extracted for each sampled site. Then univariate correlations are run for each covariate of 

interest against the ordination scores to explore how covariates might be responsible for 

structuring the metacommunity (e.g. Henriques-Silva et al. 2013, Meynard et al. 2013), although 

multivariate models could (and perhaps should) be used here as well. A complementary approach 

involves using canonical correspondence analysis (CCA) to relate the incidence matrix to 

multiple covariates simultaneously (e.g. López-González et al. 2012). Some recent studies 

combine one of these previously discussed analyses with a variance partitioning analysis of the 

incidence matrix to evaluate the relative contribution of classes of covariates, such as 'local' and 

'spatial' or 'abiotic' and 'biotic' (Henriques-Silva et al. 2013, Dallas and Presley 2014). Finally, 

emerging research demonstrates the utility of combining hierarchical cluster analysis with CCA 

to determine which combination of sites represent distinct metacommunity compartments, and 

how environmental covariates might influence the formation of these compartments along a 

gradient (de la Sancha et al. 2014). 

 

4.4 Challenges inherent to the EMS approach 

4.4.1 A problem with detection error 

The EMS approach relies on occurrence data, which often suffer from imperfect 
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detection owing to issues of sampling design and effort, low species’ abundances, and 

idiosyncrasies in species’ ecologies (e.g. cryptic or crepuscular organisms) (MacKenzie et al. 

2002). Detection error can in turn influence the ordination of the community incidence matrix, 

the calculated EMS metrics, and the accuracy of structural inference based on null matrices. If 

species detection is imperfect, for example, the calculated number of embedded absences from 

the ordinated matrix may be overestimated, which could lead to misclassification errors 

(analogous to type II errors), where metacommunity structures are assigned incorrectly. 

Additionally, imperfect detection influences the form of null matrices, as most methods of null 

matrix generation utilize the raw data on row and/or column sums (Gotelli 2000, Ulrich and 

Gotelli 2013). 

 

4.4.2 Inferring structuring mechanisms from covariates 

Leibold and Mikkelson (2002) emphasized that the EMS methods can identify patterns, 

but cannot necessarily elucidate the processes that lead to pattern. For example, 

metacommunities that exhibit Gleasonian and Clementsian structure are hypothesized to be 

structured differently based on species-specific responses to a dominant environmental gradient 

(Clements 1916, Gleason 1926, Gilpin and Diamond 1982). Gleasonian structure is believed to 

arise from idiosyncratic species responses, whereas Clementsian structure arises from groups of 

species that respond similarly to each other but differently from other groups of species in the 

metacommunity. Alternatively, however, Clementsian structure could arise from negative 

associations between species pairs or groups that arise along the gradient (Gilpin and Diamond 

1982). These mechanistic interpretations of structure remain speculative in the EMS paradigm 

given that these methods do not estimate species-specific covariate effects. Rather, EMS 
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methods tend to rely on correlating the ordination scores from a single axis of variation – which 

could be leaving out valuable information about community structure – to environmental 

covariates. 

 

4.5 Linking EMS and multi-species occupancy models 

The occupancy modeling framework can help ameliorate the issues addressed above by: 

(1) disentangling occupancy and detection probabilities of each species, and (2) estimating 

species-specific covariate effects, which can complement the use of ordination scores and will 

allow for empirical tests of hypotheses related to structuring mechanisms. 

Occupancy models were developed to estimate a species' probability of occurring at a site 

while correcting for the fact that species may go undetected in a survey (MacKenzie et al. 2002, 

Royle and Dorazio 2008). These models use data from repeat surveys conducted in a time period 

during which the true occupancy status of a site is assumed to be constant (i.e. the occurring 

species are not transient). This allows one to disentangle detection and occurrence probabilities 

in order to estimate true occupancy at each site and obtain unbiased estimates of a species' 

response to environmental covariates. More recently, these models have been extended to multi-

species and multi-time point (i.e. longitudinal) surveys (Dorazio et al. 2010, Burton et al. 2012). 

These models incorporate species-, site- and time-specific estimates of detection probability, 

occurrence probability, and covariate effects. Additionally, with longitudinal surveys, one can 

estimate probabilities of persistence at a site and colonization of previously unoccupied sites. 

 

4.6 Formulating the multi-species occupancy model 

We use a multi-species occupancy model with multiple surveys at each site over a single 
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time period (e.g. three surveys over a month). More complex models can be designed, but we 

wish to keep our analyses tractable to demonstrate the utility of occupancy models in the EMS 

paradigm with a simple example. 

Let 𝑧!,! represent the true occurrence of species i at site k, where 𝑧!,! = 1 means that 

Species 1 is present at Site 2. These 𝑧!,! values can be compiled into a 'true' metacommunity 

occurrence matrix, 𝐙. True occurrence states arise as Bernoulli random variables with 

probability, 𝜓!,!, the probability of occurrence: 

𝑧!,! ∼ 𝐵𝑒𝑟𝑛(𝜓!,!) 

We assume that the probability of occurrence, 𝜓!,!, is related to a single continuous 

environmental covariate, though any number of covariates could be used in practice: 

𝑙𝑜𝑔𝑖𝑡(𝜓!,!) = 𝛽!! + 𝛽!𝑥!, 

where 𝛽!! is the species-specific intercept, 𝛽! is the effect of covariate x on species i, and 𝑥! is 

the value of covariate x at site k. 

We assume that multiple surveys are conducted at each site and observations are 

compiled into a species-by-site occurrence matrix, 𝐘. For example, if Species 1 is observed in 

two out of three surveys at Site 2, 𝑦!,! = 2. The number of observed occurrences of each species 

out of the total number of re-surveys at each site facilitates estimation of species-specific 

detection probabilities. Let 𝑝! represent the probability of detection of species i. Although 

detection probability can be related to covariates similarly to occurrence probability, for 

simplicity we did not impose any such covariate effects. 

The observed occurrences are thus binomially distributed, influenced by both the 

detection and occurrence probabilities and the number of surveys conducted at each site, 𝐽!: 

𝑦!,! ∼ 𝐵𝑖𝑛𝑜𝑚(𝐽! , 𝑧!,!𝑝!) 
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Here we adopt a Bayesian approach for inference and parameter estimation, utilizing Markov 

chain Monte Carlo (MCMC) sampling in which we iteratively sample from the posterior 

distribution of each true occupancy state, 𝑧!,!. For each draw from the posterior, we then obtain a 

site-by-species incidence matrix 𝐙!"#$, which consists of the elements 𝑧!,!. 

For all of our simulations below, we used the open-source statistical software, R (R Core 

Team 2014). For Bayesian analyses we used the open-source software JAGS (Just Another 

Gibbs Sampler; http://mcmc-jags.sourceforge.net/). For metacommunity analyses, we used the R 

package metacom (Dallas 2014), which relies heavily on the R package vegan (Oksanen et al. 

2013).  

 

4.7 Integrating EMS and occupancy models: A simulated example of DECEMS 

In this section we use a simulated case study to introduce detection error-corrected EMS 

(DECEMS), which integrates occupancy modeling and standard EMS. First, we simulated a 

metacommunity of 12 species and 75 sampled sites, assuming each site was sampled 3 times. In 

order to create a coherent metacommunity, we imposed a dominant environmental covariate to 

which species had variable responses. In this way, the community composition shifts along a 

gradient of the covariate, analogous to say, an elevational gradient. We set 𝛽!! = 𝑙𝑜𝑔𝑖𝑡(0.60) for 

all species, and we assumed that species-specific covariate effects, 𝛽!, follwed a normal 

distribution with mean=0 and standard deviation=1. Site-specific covariate values followed a 

normal distribution with mean=0 and standard deviation=2. To emphasize how detection errors 

can obscure true metacommunity structure, we assumed the species-specific probabilities of 

detection, 𝑙𝑜𝑔𝑖𝑡(𝑝!), followed a normal distribution with mean=𝑙𝑜𝑔𝑖𝑡(0.5) and a standard 

deviation=0.75. This represents a community in which many species are difficult to detect, a 
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scenario under which an occupancy model might be most useful. 

For this simulated metacommunity, we thus had a known occurrence matrix, 𝐙, and an 

observed occurrence matrix, 𝐘, and we used EMS methods to characterize metacommunity 

structure of 𝐙 compared to 𝐘. In this example, the known metacommunity 𝐙 displayed 

Clementsian structure, while the observed metacommunity, 𝐘, displayed random (i.e. no 

discernible) structure based on standard EMS methods (Figure 4.2). Here, detection error 

resulted in more embedded absences and a concomitant rearrangement of species and sites in the 

ordinated matrix. It is worth noting that following standard EMS methods, in this example, the 

only result is that the metacommunity displays random structure, which we know is incorrect. 

Next, we applied the occupancy model to estimate the true occupancy states 𝐙, based on the 

observed data, 𝐘. We used uninformative priors, ran the model with a 1000 iteration adaptive 

phase, followed by a 5000 iteration burn-in period. After the burn-in period, we ran the model 

for 10,000 iterations, thinning the MCMC chains by 10 iterations, for a final sample of 1000 

𝐙!"#$ across 3 MCMC chains. We assessed convergence using the potential scale reduction 

factor, 𝑅 (Gelman 1996). 
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Figure 4.2. The ordinated form of the (a) known occurrence matrix 𝐙, and the (b) corresponding 
observed occurrence matrix 𝐘 with imposed detection error from our simulated example. 
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Figure 4.3. Data on metacommunity structure derived from occupancy model. (a) A heat map 
ordination of the 𝐙!"#$ matrices, based on the average site- and species-specific probability of 
occurrence across the 1000 iterations. These values were then used to ordinate the species and 
sites with detrended correspondence analysis. (b-d) Histograms of the metacommunity metrics 
for each 𝐙!"#$. Bars highlighted in light gray represent 𝐙!"#$ that show non-signficant coherence 
(i.e. random structure). Vertical dashed lines in (b-c) delineate the significance cut-off for the 
metrics' normalized z-scores at 𝛼 = 0.05. (e) Distribution of 1000 𝐙!"#$ metacommunity 
structures estimated by the occupancy model. 
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specific effect estimates allows us to see how species-level responses can scale up to 

metacommunity-wide patterns. For instance, the Clementsian structure observed in 𝐙 is likely 

driven by a few species that have strong responses (either positive or negative) to the dominant 

covariate. This would preclude them from habitats with more extreme covariate values, leading 

to a clumped distribution. The occupancy model shows that, in our example, Species B, E, and K 

have relatively strong responses compared to the rest of the metacommunity members. This 

matches the pattern observed in the metacommunity ordination, showing that indeed these three 

species' responses to the underlying gradient tend to drive the Clementsian pattern. 

 

Figure 4.4. Values of species-specific probabilities of detection, 𝑝!, and species-specific 
covariate effects, 𝛽!, as estimated by the occupancy model. Filled circles mark the medians of the 
posterior distributions of each parameter, while open circles mark the true (simulated) values. 
Thicker and thinner lines represent the 68% and 95% credible intervals of the estimates, 
respectively. 
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overall metacommunity structure. 

4.8 Effect of detection error correction on EMS misclassification rate 

Although an occupancy model was useful in the simulated example above, we wanted to 

quantitatively explore whether occupancy modeling reduces the misclassification rate in 

assigning metacommunity structure across different 𝑝! distributions. In other words, we wanted 

to answer the question of whether occupancy models are useful generally or only when detection 

errors are more extreme. 

To address this question, we simulated 1000 unique metacommunities again using a 

global pool of 12 species and 75 sites surveyed 3 times each. We assumed a dominant 

environmental covariate to which species responded, in order to achieve coherence in most 

cases. In order to simulate different metacommunity structures, we randomly varied the 

distribution of species-specific covariate effects and covariate values (e.g. by varying the 

distribution type – normal or uniform – and variability – standard deviation or range). 

For each simulated metacommunity (𝑛 = 1000) we thus had a known occurrence matrix, 𝐙, and 

an observed occurrence matrix, 𝐘. We used EMS methods to categorize the metacommunity 

structure for each 𝐙 and 𝐘. For each metacommunity, we then used an occupancy model to 

estimate the posterior distribution of 𝐙 by drawing 500 iterations of the posterior estimated 

occurrences, 𝐙!"#$, and determining the metacommunity structure for each 𝐙!"#$. We conducted 

this full simulation three times, fixing the mean probability of detection at three values: 0.9, 0.7, 

or 0.5, with a standard deviation of 0.75 (e.g. 𝑙𝑜𝑔𝑖𝑡(𝑝!) ∼ 𝑁(𝑙𝑜𝑔𝑖𝑡(0.9),0.75).  

To determine whether the occupancy model reduced bias in estimating metacommunity 

structure, we compared the percentage of cases in which the assigned metacommunity structure 

of observed occurrence matrix, 𝐘, deviated from known occurrence matrix, 𝐙 – a point estimate 
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– to the median (and its bootstrapped 95% confidence interval) of the distribution of percentages 

of times that the structure of 𝐙!"#$ matched that of 𝐙. Effectively, this tested whether correcting 

for imperfect detection significantly reduced the misclassification rate of the 1000 simulated 

metacommunities compared to the standard EMS approach. 

For all three values of mean 𝑝!, the occupancy model significantly reduced bias in 

characterizing metacommunity structure (Figure 5). Even when the average species-specific 

detection probability was very high (i.e. mean 𝑝! = 0.9), detection error resulted in 94.7% of 

observed occurrence matrices' (𝐘) structures matching the true occurrence matrices' (𝐙) 

structures, meaning a 5.3% misclassification rate. However, using the occupancy model, the 

median (and 95% CI) of the proportion of posterior occurrence matrix estimates 𝐙!"#$ whose 

structure matched the true 𝐙 structure was 99.8% (99.5% - 99.9%), showing a significant 

improvement and reducing the misclassification rate to < 1% (Figure 4.5a). Furthermore, the 

benefit of using the occupancy model increased as the mean probability of detection in the 

community decreased (Figure 4.5b-c). Specifically, for mean 𝑝! = 0.7, the structure of 𝐘 

matched that of 𝐙 77.5% of the time, while the median for 𝐙!"#$ matching 𝐙 was 93.4% (91.3% - 

95.0%); for mean 𝑝! = 0.5, the structure of 𝐘 matched that of 𝐙 59.3% of the time, while the 

median for 𝐙!"#$ matching 𝐙 was 81.0% (78.4% - 83.4%). 
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Figure 4.5. Determining if an occupancy model reduces bias in assigning metacommunity 
structure. Black vertical lines represent the point estimate of the proportion of 1000 simulations 
for which the observed metacommunity, 𝐘, structure matched the known metacommunity, 𝐙, 
structure. Solid and dashed gray vertical lines represent the median and bootstrapped 95% 
confidence intervals for the proportion of 500 estimated 𝐙!"#$ structures that match the known 
metacommunity, 𝐙, structure. Parameters: (a) mean 𝑝! = 0.9, (b) mean 𝑝! = 0.7, (c) mean 
𝑝! = 0.5. 
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These results indicate that, somewhat surprisingly, incorporating an occupancy model 

increases the accuracy in assigning metacommunity structure, even when there are relatively 

high detection probabilities (~90%) among species. Using this approach could be especially 

important in cases of low average detection, for instance in microbial or symbiont communities 

(e.g. Mihaljevic 2012), in which species might be cryptic due to small size or aggregation 

patterns among hosts (e.g. negative binomial distribution). 

 

4.9 Discussion 

Integrating multi-species occupancy models into the EMS framework can effectively 

reduce bias in assigning metacommunity structure when there is error in species detection, which 

is a ubiquitous problem in occurrence data (MacKenzie et al. 2002). We found that integrating 

occupancy modeling with EMS (i.e. DECEMS) can lead to striking reductions in the rates of 

metacommunity structure misclassification that results from imperfect detection, even when 

detection error was quite low. This is an important improvement that should ensure the best 

possible classification of metacommunity structure from community data sets. Given that an 

occupancy model estimates species-specific covariate effects, this method can also be used to 

better inform how species-level responses can scale up to affect metacommunity-wide patterns of 

occurrence. This helps to address a key gap within EMS by improving our ability to link 

metacommunity patterns to species-level processes.   

Based on these findings, we suggest that metacommunity ecologists will often benefit 

from using occupancy models in their assessment of metacommunity structure and in 

determining the environmental covariates that might lead to structure. This method should prove 

particularly useful in cases where species detection is known to be problematic, although our 
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results show that DECEMS improves EMS performance even for data sets with little detection 

error. Occupancy modeling requires repeat surveys over a time period in which it can be safely 

assumed that community member composition is not changing. This design allows for the 

estimation of species-specific detection probabilities. The design of repeat surveys will depend 

on the biology of the system and the available resources. For instance, a researcher could 

conduct two surveys per week (if appropriate), or multiple observers could conduct independent 

surveys on the same day. Thus collecting data to accommodate an occupancy model does not 

necessarily have to increase effort, and the end result is improved accuracy. 

Future extensions to the occupancy-modeling framework presented here could further 

improve how we assess the influence of environmental covariates on metacommunity structure. 

For instance, Jackson et al. (2012) presented a maximum likelihood method using multi-level 

models – for which occupancy models are a specific example – to determine how environmental 

variation leads to changes in community composition. These authors showed that estimating 

species-specific covariate effects can outperform common methods used to assess the influence 

of environmental covariates, such as canonical correspondence analysis (CCA) and nonmetric 

multidimensional scaling (NMDS). The methods presented by Jackson et al. (2012) could easily 

be integrated into the occupancy-modeling framework with the additional benefit of 

simultaneously estimating (and therefore correcting for) species-specific detection probabilities. 

In this way, the same model could simultaneously estimate metacommunity structure and 

determine the relative influences of environmental drivers. 

Occupancy modeling could also be used in theoretical metacommunity studies to help us 

understand when and where metacommunity structures might arise. Given that an occupancy 

model is able to estimate species-specific covariate effects, one could explore hypotheses about 



 91 

how metacommunity structures arise in a quantitative framework. For instance simulation could 

be used to ask how the distribution of species-specific covariate effects and the distribution of 

covariate values observed among sampled sites affect resulting metacommunity structures. Such 

studies would strengthen the linkages between pattern-based metacommunity studies and 

mechanism-based theory. 

The benefits of correcting for imperfect detection are increasingly appreciated in the 

fields of ecology and biogeography (Royle et al. 2012, Fitzpatrick et al. 2013, Iknayan et al. 

2013, Lahoz-Monfort et al. 2014). Here we have shown that integrating occupancy modeling and 

EMS (i.e. DECEMS) can improve the accuracy of metacommunity structure classification, an 

important step towards understanding where and why certain structures emerge. We propose that 

a continued merger of the fields of occupancy modeling and metacommunity ecology should 

enrich and deepen our study of populations and communities across spatial scales.  
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CHAPTER 5 

SYMBIONT METACOMMUNITIES THROUGH TIME: THE INFLUENCE OF 
ALTERNATIVE HOST COMPOSITION AND ABIOTIC HABITAT CHARACTERISTICS 

ON THE SYMBIONT COMMUNITIES OF METAMORPHIC FROGS 
 
 

5.1 Abstract 
 
 

Understanding the drivers of symbiont community composition across space and time has 

implications not only for testing and building ecological theory, but also for predicting how 

symbiont communities affect host health and overall symbiont transmission. Here we analyze a 

large-scale data set of amphibian symbiont communities surveyed in California wetlands over a 

four-year period. We use newly developed and novel metacommunity tools to characterize how 

symbiont metacommunity structure changes over time. Our statistical methods also allow us to 

identify the environmental drivers of symbiont community composition across space by 

estimating species-specific responses to biotic and abiotic covariates. We found that symbiont 

metacommunity structure is not consistent over time, showing random, nested, and Clementsian 

structures. The dominant drivers of symbiont community composition also changed from year to 

year but typically consisted of characteristics of the symbionts’ intermediate host communities 

and geographic features of the wetlands. Furthermore, within years, symbiont responses to 

environmental gradients were typically not coherent, meaning that many species were affected 

by unique covariates rather than responding to a similar axis of variation. Our results highlight 

that although a symbiont community may aggregate in the same host, species in the community 

can be affected by unique aspects of the environment that influence colonization and subsequent 

transmission among hosts. Thus, predicting symbiont composition in this system, and likely in 
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many others, will require integrating across species-specific responses to various environmental 

gradients, emphasizing the utility of our newly developed methods.  

 

5.2 Introduction 

Evidence from various human and wildlife host-symbiont systems shows that shifts in 

symbiont community composition at various spatial scales can result in concomitant changes to 

host health and symbiont transmission patterns. For instance, re-establishment of a more diverse 

gut microflora via fecal transplantation can cure recurrent Clostridium difficile infections and 

relieve a variety of other ailments in humans (van Nood et al. 2013, Youngster et al. 2014). At 

larger spatial scales, symbiont composition can alter patterns of transmission. For example, the 

transmission of a highly virulent trematode of amphibians is significantly reduced in wetlands 

with more speciose parasite communities, most likely due to stronger intra-host competitive 

dynamics compared to those of wetlands with depauperate parasite communities (Johnson et al. 

2013a). Given these types of patterns, understanding the drivers of symbiont community 

composition is an important goal, one to which the field of community ecology has much to offer 

(Pedersen and Fenton 2006, Mihaljevic 2012). 

Symbiont communities are unique but well suited model systems for exploring general 

ecological patterns, with the applied benefit of informing host health and symbiont transmission 

dynamics (Dove 2006, Poulin 2007, Johnson and Hoverman 2012b, Fierer et al. 2012). For 

instance, understanding how symbiont community composition changes across space in response 

to both host population/community composition and exogenous environmental drivers is relevant 

to both general ecological theory and applied disease ecology (e.g. Morand and Poulin 1998, 

Krasnov and Vinarski 2008, Krasnov et al. 2010, Poulin et al. 2011). Fortunately, the field of 
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metacommunity ecology offers theory and analytical tools that are particularly relevant for 

disentangling the relative influence of various factors affecting species composition across space 

(Leibold et al. 2004b, Holyoak et al. 2005, Chase 2005b).  

Symbiont communities can be considered metacommunities at various spatial scales, 

allowing for the application of metacommunity tools to answer a variety of questions (Mihaljevic 

2012). For instance, Richgels et al. (2013) used the elements of metacommunity structure (EMS) 

framework (Leibold and Mikkelson 2002b, Presley et al. 2010b) to show how snail trematode 

parasite communities shift across California wetlands in response to local (i.e. wetland-level) and 

regional (i.e. among-wetland) habitat characteristics, suggesting that these communities are 

strongly filtered by local environmental attributes. At a larger spatial scale, Dallas and Presley 

(2014) used EMS methods and variance partitioning to determine how host species traits and 

phylogenetic relationships influence the structuring of parasite communities within desert 

rodents. These recent studies highlight the utility of both metacommunity concepts and statistical 

approaches for exploring how symbiont communities are structured across space.  

 In this study, we analyze a large-scale, multi-year data set of Pacific chorus frog 

(Pseudacris regilla) symbionts surveyed across wetlands in the San Francisco Bay Area of 

California. With this unique data set, we ask whether symbiont metacommunity structure 

changes from year to year and whether the factors that influence composition are consistent 

among years. To address these questions, we implement a recently developed method to 

characterize metacommunity structures, detection error-corrected elements of metacommunity 

structure (DECEMS) (Mihaljevic et al. in review). In combination with DECEMS, we use a 

novel statistical routine to investigate the factors driving symbiont compositional change across 

space. By using metacommunity theory and tools, we are able to address basic, yet highly 
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relevant, ecological questions about how symbiont communities structure across space and time. 

Furthermore, the methods we employ should prove informative to the study of metacommunities 

across a variety of taxa and habitats. 

 

5.3 Methods 

5.3.1 Study System 

 We surveyed wetlands across the Bay Area of California during the summers (July-

August) of 2009 -2012 following the sampling design presented in Richgels et al. (2013) and 

Johnson et al. (2013b). These wetlands can harbor up to six amphibian species, five gastropod 

species, and many symbiont species that utilize multiple intermediate and definite host species 

within the wetlands. Here, we focus on the symbiont communities of the Pacific chorus frog, P. 

regilla. 

During the aquatic larval life stage, these amphibians can acquire a variety of trematode 

and protozoan symbionts (Table 5.1), whose affects range from benign to severely pathogenic. 

The trematode species have complex life cycles that require multiple host species to complete 

reproductive and non-reproductive life stages. A typical life cycle of the trematodes found in P. 

regilla consists of a reproductive stage within a definitive host, typically a mammal or bird, 

which deposits trematode eggs into the wetland via feces. The eggs hatch and the next life stage 

infects a gastropod host, in which the trematodes reproduce asexually. A free-swimming life 

stage emerges from the gastropod host and encounters and infects another gastropod, insect, or 

amphibian host within the aquatic environment. These amphibians later metamorphose and are 

eaten by the trematode’s definitive host to complete the life cycle. Typically, these trematodes 
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are more host-specific in the gastropod intermediate host, but are more generalist at later life 

stages. The trematode species tend to associate with different organs within the amphibian host.  

Table 5.1. Classification of symbionts found in the field study. 

 

The two protists that are associated with P. regilla are both located in the intestinal tract. Both 

species are directly transmitted, whereby adult frogs defecate eggs into the wetland that larval 

amphibians ingest.  

 

5.3.2 Field Surveys 

 During field surveys of each wetland, recently metamorphosed P. regilla were collected 

from the wetland perimeter and sent to the University of Colorado at Boulder for necropsy 

examination and identification of symbiont species (Johnson et al. 2013b). Additionally, many 

site-level characteristics were measured and included as covariates of symbiont occupancy 

(Table 5.2). While the details of these methods are laid out in Richgels et al. (2013), in brief, a 

variety of geographical features, including latitude and longitude, elevation, slope, and aspect 

were recorded or later derived from geographic information systems. Local abiotic wetland 

characteristics, such as wetland area, water conductivity, dissolved oxygen, and total dissolved 

solids were also measured. We also surveyed local biotic attributes, such as the percentage of the 

shoreline vegetated, as well as the local community assemblages of amphibians and snails.  

 We derived four separate covariates from the occupancy and abundances of amphibian 

and snail species at the wetlands. For each year, and then again for all years’ data combined, we 

ordinated the occupancy (pres/abs) of the amphibian species and, separately, of the snail species 

Abbreviation Kingdom Phylum Class Order Family Genus Species Lifestage
Alar Animalia Platyhelminthes Trematoda Strigeidida Diplostomatidae Alaria Alaria spp. Trematode mesocercaria
Fib Animalia Platyhelminthes Trematoda Strigeidida Diplostomatidae Fibricola Fibricola spp. Trematode metacercaria
Glob Animalia Platyhelminthes Trematoda Plagiorchiida Cephalogonimidae Cephalogonimus Cephalogonimus spp. Trematode metacercaria
Echi Animalia Platyhelminthes Trematoda Echinostomida Echinostomatidae Echinostoma Echinostoma spp. Trematode metacercaria
Mano Animalia Platyhelminthes Trematoda Plagiorchiida Ochetosomatidae Manodistomum Manodistomum syntomentera Trematode metacercaria
Nyct Protozoa Ciliophora Heterotrichea Heterotrichida Nyctotheridae Nyctotherus Nyctotherus spp. Trophozoite
Opal Chromalveolata Heterokontophyta Opalinea Opalinida Opalinidae Opalina Opalina spp. Trophont
Rib Animalia Platyhelminthes Trematoda Echinostomida Psilostomatidae Ribeiroia Ribeiroia ondatrae Trematode metacercaria
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community data using redundancy analysis (RDA). For each wetland we extracted the primary 

and secondary axes scores: Amph_RA1, Amph_RA2, Snails_RA1, and Snails_RA2. Similarly, 

we used abundance data in a non-metric multi-dimensional scaling (NMDS) analysis, and 

extracted the primary and secondary axes scores for each site: Amph_MDS1, Amph_MDS2, 

Snails_MDS1, and Snails_MDS2.  

Table 5.2. Covariates used in our study and the transformations of the data. 

Covariate Description Transformation
Lat Latitude of the wetland -
Long Longitude of the wetland -
Elev Elevation of the wetland Square root
Slope Slope, calculated from USGS digital elevation data set (30m x 30m) Square root
Aspect Aspect, calculated from USGS digital elevation data set (30m x 30m) -
Hydro Wetland hydroperiod (nominal values: Permanent, Semi-permanent, 

Ephemeral)
-

Forest Percentage of the 1km radius from Lat-Long position that is covered 
in forest (based on 2006 NLCD - natural land cover database - 
imagery)

-

SSG Percentage of the 1km radius from Lat-Long GPS position that is 
covered in shrub scrub grassland (based on 2006 NLCD - natural 
land cover database -  imagery)

-

Area Area of the pond as assessed by GPS Natural log
Veg_s Percentage of the shore which had vegetation -
OpenW Percentage of the pond that is open water Natural log
Cond Conductivity (uS/cm) measured using Yellow Springs Instruments 

556 Multi Probe System
Natural log

TDS Total dissolved solids (g/l) measured using Yellow Springs 
Instruments 556 Multi Probe System

Natural log

DOmg Dissolved oxygen (mg/L) measured using Yellow Springs 
Instruments 556 Multi Probe System

Natural log

Amph_Rich Amphibian species richness at the wetland Square root
Snail_Rich Snail species richness at the wetland -
Amph_MDS1 Primary axis scores of the local amphibian community NMDS 

ordination, based on abundances of amphibian larvae
-

Amph_MDS2 Secondary axis scores of the local amphibian community NMDS 
ordination, based on abundances of amphibian larvae

-

Snails_MDS1 Primary axis scores of the local snail community NMDS ordination, 
based on abundances

-

Snails_MDS2 Secondary axis scores of the local snail community NMDS 
ordination, based on abundances

-

Amph_RA1
Primary axis scores of the local amphibian community RDA 
ordination, based on occupancy of amphibian species

-

Amph_RA2
Secondary axis scores of the local amphibian community RDA 
ordination, based on occupancy of amphibian species

-

Snails_RA1
Primary axis scores of the local amphibian community RDA 
ordination, based on occupancy of snail species

-

Snails_RA2
Secondary axis scores of the local amphibian community RDA 
ordination, based on occupancy of snail species

-
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5.3.3 Detection error-corrected elements of metacommunity structure 

 We consider symbiont metacommunities in which wetlands represent local habitats. We 

restricted the data set to include habitats from which we sampled at least 8 P. regilla. Thus, the 

within-host symbiont communities of these necropsied individuals are integrated to a within-

wetland symbiont community composition (pres/abs occupancy for each symbiont species). In 

order to characterize the structure of these symbiont metacommunities and assess environmental 

covariate effects on symbiont composition, we use a recently developed extension of the 

elements of metacommunity structure framework – detection error-corrected elements of 

metacommunity structure (DECEMS; Mihaljevic et al. in revision). This statistical method relies 

on building a multi-species occupancy model with each species’ probability of wetland-level 

occupancy predicted by a number of environmental covariates. We use the most supported model 

to predict each species’ site-level occupancy and generate estimated metacommunity structures. 

Importantly, the model is able to estimate species-level covariate effects, making it possible to 

attribute metacommunity-wide pattern shifts to species-level effects. 

Here we rely on a novel multi-species occupancy model derived from recent statistical 

advances. Jackson et al. (2012) introduced a hierarchical modeling framework that outperforms 

many standard methods used to identify environmental drivers of species composition, such as 

canonical correspondence analysis (CCA) and nonmetric multidimensional scaling (NMDS). 

This statistical framework uses multilevel modeling to estimate species-level random and fixed 

covariate effects to determine the relative contribution of environmental covariates to changing 

composition across space. Here we propose a simple extension to Jackson and colleague’s work: 

correcting for detection error. Our model is structured as follows: 
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𝑦!   ~  𝐵𝑖𝑛𝑜𝑚 𝑧! ∗ 𝑝!"" ! ,   𝑗!  

𝑧!   ~  𝐵𝑒𝑟𝑛 𝜓!  

𝜓! = 𝑙𝑜𝑔𝑖𝑡!! 𝛼!"" ! + Β!"" ! ∗ 𝑋!"#$ !  

𝛼!"" !   ~  𝑁 𝜇! ,𝜎!"#$%&$'#!  

𝛽!""[!]  ~  𝑁(𝜇! ,𝜎!"#$%! ) 

 Here 𝑦!   is a vector of the number of times each symbiont species is observed at each site 

over 𝑗 surveys (𝑞 = 1,… ,𝑛𝑚, where 𝑛  is the number of species and 𝑚  is the number of sites). In 

this case, sites are wetlands and the number of surveys is the number of necropsied P. regilla.  

𝑝!""[!] represents the species-specific probability of detection when the species is present at the 

site. In practice, this value is the estimated average prevalence of a symbiont within a site (i.e. 

among the local P. regilla population). 𝑧! represents the ‘true’ occurrence of the species, a 

Bernoulli random variable with probability, 𝜓!, the species-specific probability of occurrence at 

a site. Via the logit transformation, 𝜓! is then linearly related to a matrix of covariates, 𝑋!"#$[!], 

with a vector of species-specific slopes, Β!""[!], and species-specific intercepts (i.e. baseline 

occurrences), 𝛼!""[!]. Each intercept, 𝛼!""[!], and each slope, 𝛽!""[!], is distributed normally 

with means, 𝜇! and 𝜇!, and variances, 𝜎!"#$%&$'#!  and 𝜎!"#$%! , respectively. Thus the model is able 

to generate bias-corrected, species-specific estimates of covariate effects by accounting for 

detection error. 

 The objective of our modeling routine is to determine whether symbiont species respond 

coherently to any environmental gradients, in which case we expect community composition to 

shift along such gradients. Concretely, we are interested in identifying covariates with significant 

random effects; in other words 𝜎!"#$!!  for the covariate is significantly greater than zero. This 
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would demonstrate that many symbiont species respond to the covariate, but with variable 

effects. We are also interested in identifying covariates that have significant fixed effects; in 

other words 𝜇! for the covariate differs significantly from zero. This would demonstrate that the 

covariate has significant effects on occurrence that are consistent across many symbiont species.  

 We ran these models using a Bayesian approach to inference and parameter estimation, 

relying on Markov chain Monte Carlo (MCMC) sampling in which we iteratively sample from 

the posterior distribution of each parameter. All models were run in the open-source software 

JAGS (Just Another Gibbs Sampler; http://mcmc-jags.sourceforge.net/) via the open-source 

statistical software, R (R Core Team 2014). We used uninformative priors and ran each model 

with three MCMC chains. Models were run with an initial 80,000 iteration adaptation phase, 

followed by an 80,000 iteration burn-in period, and then 1,500 iterations were stored, thinning by 

50 iterations, for a total of 235,000 iterations per model run. We assessed convergence using the 

potential scale reduction factor, 𝑅 (Gelman 1996).  

We created a model for each year individually, and then a global model for all years’ data 

combined. Within each year (and then again for the global model), we removed any collinear 

covariates and ran the model with all remaining covariates, which we call the full model (Table 

5.3). From the full model run, we estimated the 95% highest density intervals (HDI) of the slope 

parameters’ posterior distributions. In the subsequent model run, which we call the reduced 

model, we only included covariates whose 95% HDI 𝜎!"#$%!  or 𝜇! did not include zero. Based on 

this reduced model, we then conducted model selection using an information theoretic approach. 

Specifically, for each nested model – including a null model that only included the random 

intercepts – we calculated the Watanabe-Akaike information criteria (WAIC). WAIC, which is 

analogous to AIC, has several advantages over other Bayesian-type information criteria, and is 
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the preferred metric for occupancy models (Gelman et al. 2013, Watanabe 2013, Hooten and 

Hobbs 2014). 

Table 5.3. List of collinear covariates in each year and the covariates that we removed, 
accordingly. In 2012, because there was such a high level of collinearity, and so many covariates 
had to be removed, we reported which covariates were included in the full model.  

 

From the most supported model, we compiled posterior estimates of 𝑧! into posterior 

site-by-species matrices, Zpost. We created 500 Zpost for each year, and for each matrix we 

calculated the three elements of metacommunity structure – coherence, turnover, and boundary 

clumping. Based on these metrics, we assigned a categorical metacommunity structure to each 

Zpost. Thus, from the most supported multi-species occupancy model, we are able to generate 

pseudo-posterior estimates of each element of metacommunity and an overall probability 

distribution of metacommunity structure. We generated the elements of metacommunity 

structure using the package ‘metacom’ in R (Dallas 2014). The details of calculating these 

metrics have been reviewed extensively elsewhere (e.g. Leibold and Mikkelson 2002, Presley et 

al. 2010, Mihaljevic et al. in revision).  

2009 2010
Lat - Long - Elev Lat - Long - Elev
Forest - SSG Forest - SSG
Cond - TDS Cond - TDS
Amph_RA1 - Amph_MDS1 Slope - Area
Amph_Rich - Amph_RA2 Snails_RA1 - Snails_MDS1 - Snail_Rich

REMOVED REMOVED
Long, Elev, SSG, TDS, Amph_MDS1, 
Amph_RA2

Long, Elev, SSG, TDS, Slope, Snails_MDS1, 
Snails_RA1

2011 2012
Lat - Long - Elev
Forest - SSG
Cond - TDS
OpenW - Domg
Snails_RA1 - Snails_MDS2 - Snail_Rich
Amph_RA1 - Amph_MDS2

REMOVED INCLUDED

Long, Elev, SSG, TDS, OpenW, Snails_MDS2, 
Snails_RA1, Amph_MDS2

Aspect, Hydro, OpenW, Domg, Amph_Rich, 
Amph_MDS1, Snails_RA2

Lat - Long - Elev - Aspect - Area - TDS - 
Snails_MDS2 - Amph_RA1 - Amph_RA2 - 
Slope - Forest - SSG - Amph_rich - Amph_MDS2 - 
Snails_RA2
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5.4 Results 

5.4.1 Surveys 

From the data set we included a total of 266 surveys of 158 wetlands over 4 years (2009-

2012), with necropsy data from 2887 metamorphic P. regilla (Figure 5.1). Across all wetlands 

and years we commonly encountered 8 symbiont species of P. regilla that occur in the aquatic 

environment, 6 of which were trematodes with complex life cycles and 2 of which were 

intestinal protists that are directly transmitted among amphibians (Table 5.1). Other symbiont 

species were encountered, but these symbionts are acquired in the terrestrial life stage of the 

amphibian. Thus, any metamorphs with these symbionts were not included in the study, as we 

could not be certain that these metamorphs originated at the wetland of interest. Two other 

symbionts were not included in our study because they were observed at less than 8% of 

wetlands within a given year and in less than 6% of all surveys over the 4 year period.  There 

were larvae from up to six amphibian species present at each site: Taricha torosa (rough-skinned 

newt), Ambystoma californiense (California tiger salamander), Lithobates catesbeianus 

(American bullfrog), Anaxyrus boreas (Western toad), Rana draytonii (California red-legged 

frog), and our focal host Pseudacris regilla (Pacific chorus frog). We also encountered up to five 

snail species at each site: Radix spp., Lymnaea spp., Helisoma trivolvis, Gyraulus spp., and 

Physa spp. 
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Figure 5.1. Map of wetland sites sampled in the San Francisco Bay Area of California, USA 
from 2009-2012.  

 

5.4.2 Symbiont composition over time 

In 2009, we detected 6 common symbionts (Alar, Glob, Echi, Mano, Opal, and Rib) 

across 77 wetlands and 964 necropsied P. regilla. From the full covariate model, the reduced 

model included Aspect, Amph_MDS2, Snails_MDS1, Snails_RA1, and Snails_RA2. However, 

the most supported models, based on WAIC selection, contained various combinations of only 

Aspect + Amph_MDS2 + Snails_RA2 + Snails_MDS1 (Table 5.4), with a significant random 

effect of Snails_RA2 (95% HDI 𝜎!"#$%: 0.02 – 1.90). We used the model containing Aspect + 

Amph_MDS2 + Snails_RA2 to generate the 500 Zpost. Approximately 45% of these posterior 

metacommunities exhibited significant nested or quasi-nested structures; however ~50% of the 

matrices were randomly structured (Figure 2a). While Opalina spp. and Echinostoma spp. were 

present at most sites, the other species’ ranges were more restricted. The model estimated that 

2010 

2012 2011 

2009 
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Ribeiroia ondatrae was positively affected by Snails_RA2, Cephalogonimus spp. (Glob) was 

positively affected by Amph_MDS2, and Alaria spp. was negatively affected by Aspect (Figure 

5.3).  

Table 5.4. The top five candidate models and associated WAIC and ΔWAIC values for each year 
and for the combined data set. The WAIC values of the full, reduced, and null models are added 
for reference. Note that in 2012, the null model was included in the top five candidate models.  

 

 

 

 

 

 

 

Model WAIC ΔWAIC Model WAIC ΔWAIC
Aspect + Amph_MDS2 + Snails_RA2 1454.78 - Lat + Snails_MDS2 + Snails_RA2 2195.75 -
Amph_MDS2 + Snails_RA2 1456.36 1.58 Lat + Snails_RA2 2195.98 0.23
Aspect + Amph_MDS2 + Snails_RA2 + Snails_MDS1 1456.44 1.66 Lat 2196.57 0.83
Aspect + Snails_RA2 + Snails_MDS1 1456.60 1.82 Lat + Snails_MDS2 + Snails_RA2 + Amph_RA2 2197.26 1.51
Aspect 1457.33 2.55 Snails_MDS2 + Snails_RA2 + Amph_RA2 2197.47 1.72
FULL 1486.24 31.46 FULL 2224.97 29.23
REDUCED 1459.75 4.97 REDUCED 2205.51 9.77
NULL 1458.63 3.85 NULL 2199.98 4.24

Model WAIC ΔWAIC Model WAIC ΔWAIC
Amph_RA1 + Amph_RA2 1636.45 - Hydro 491.75 -
Amph_RA2 1636.66 0.22 Amph_Rich 492.02 0.28
Aspect + Amph_RA2 1636.74 0.30 NULL 492.32 0.58
Aspect 1636.95 0.51 Hydro + Amph_Rich 492.87 1.12
Aspect + Amph_RA1 + Amph_RA2 1637.41 0.97 Hydro + OpenW 494.05 2.30
FULL 1735.61 99.17 FULL 517.04 25.30
REDUCED 1656.54 20.10 REDUCED 498.77 7.02
NULL 1638.88 2.43 - - -

Model WAIC ΔWAIC
Amph_RA1 + Amph_RA2 6320.57 -
Amph_RA1 + Amph_RA2 + Snails_RA2 + Veg_s 6320.93 0.37
Amph_RA1 + Amph_RA2 + Veg_s 6321.98 1.41
Amph_RA1 + Veg_s 6322.18 1.61
Amph_RA1 + Snails_RA2 + Veg_s 6322.28 1.71
FULL 6338.86 18.30
REDUCED 6328.37 7.80
NULL 6323.25 2.68

All Years

2011 2012

2009 2010
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Figure 5.2. Estimated metacommunity structures for each year. These are ordinated matrices, 
based on each species’ wetland-level the probability of occurrence, as estimated by the most 
supported model. The gray scale within the ordinated matrix corresponds to probability of 
occurrence, as shown in the upper-left legend. To the side of each ordinated matrix is the 
distribution of structures estimated for each of 500 Zpost. Species labels are on the x-axis and 
each wetland is a row on along the y-axis of the ordinated matrices.   

 

 

 

O
pa
l

Ec
hi

Al
ar

M
an
o

Ri
b

G
lo
b

O
pa
l

Ny
ct

Ec
hi

M
an
o

Ri
b

Al
ar

G
lo
b

Ri
b

G
lo
b

Ny
ct

O
pa
l

Ec
hi

Al
ar Fi
b

M
an
o

G
lo
b

Ec
hi

Ri
b

Al
ar

M
an
o

0
25
0

50
0

Nested (37.8%)

Quasi-Nested (7.2%)

Checkerboard (1.6%)

Quasi-Clementsian (0.2%)

Random (53.2%)

0
25
0

50
0

Nested (37.8%)

Quasi-Nested (7.2%)

Checkerboard (1.6%)

Quasi-Clementsian (0.2%)

Random (53.2%)

0
25
0

50
0

Quasi-Nested (56.0%)

Nested (25.6%)

Quasi-Clementsian (9.2%)

Checkerboard (1.6%)

Random (7.6%)

0
25
0

50
0

Quasi-Nested (56.0%)

Nested (25.6%)

Quasi-Clementsian (9.2%)

Checkerboard (1.6%)

Random (7.6%)

0
25
0

50
0

Quasi-Clementsian (67.6%)

Clementsian (1.4%)

Quasi-Gleasonian (11.4%)

Gleasonian (0.4%)

Quasi-Nested (7.2%)

Random (12.0%)

0
25
0

50
0

Quasi-Clementsian (67.6%)

Clementsian (1.4%)

Quasi-Gleasonian (11.4%)

Gleasonian (0.4%)

Quasi-Nested (7.2%)

Random (12.0%)

0
25
0

50
0

Quasi-Nested (1.4%)

Random (98.6%)

0
25
0

50
0

Quasi-Nested (1.4%)

Random (98.6%)

(a) 2009 (b) 2010 

(c) 2011 (d) 2012 

Al
ar

G
lo
b

Ec
hi

Ri
b

M
an
o

0.25

0.50

0.75

1.00
Prob. Occurrence

P
ro

b.
 O

cc
ur

re
nc

e 



 106 

Figure 5.3. Estimates of species-specific covariate effects in 2009. Black dots represent median 
estimates from the posterior probability, while dark horizontal bars represent 68% HDI, and 
lighter horizontal bars represent 95% HDI. Stars mark intervals for which zero is not included in 
the 95% HDI (i.e. significant species-level effects). 
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nested or nested structure with ~80% probability (Figure 5.2b). Opalina spp., Nyctotherus spp., 

and Echinostoma spp. were very common, with the other symbionts distributions nested within 

these ranges. R. ondatrae and Manodistomum syntomentera had positive and negative responses 

to Snails_MDS2, respectively, while Alaria spp. and Nyctotherus spp. both had negative effects 

of Latitude (Figure 5.4).  

 

Figure 5.4. Estimates of species-specific covariate effects in 2010. Figure is laid out as in Figure 
3. 
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that, in contrast to the previous two years, symbiont compositional change was driven by the 

composition of the alternative amphibian host composition across wetlands. Concordantly, the 

symbiont metacommunity structure in this year was noticeably different from the previous two 

years, with the Zpost demonstrating mostly quasi-Clementsian or Clementsian structure (~70%). 

Our most supported model estimated that R. ondatrae and Cephalogonmius spp. respond 

predominantly negatively to the Amph_RA1 axis, while Alaria spp., Fibricola spp., and 

M. syntomentera have negative responses (Figure 5.5). Thus, the symbiont community 

responded coherently to the amphibian host community composition.  

 

Figure 5.5. Estimates of species-specific covariate effects in 2011. Figure is laid out as in Figure 
3. 
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occupancy model included only Aspect, OpenW, Amph_Rich, and Hydro. While the most 

supported models contained Hydro, OpenW and Amph_Rich, these could not be distinguished 

from the null model that included only the random intercept (i.e. species-level baseline 

occurrence probability) (Table 5.4). In support of this result, the metacommunity structure was 

random (98.6%). 

When all the data was pooled, the reduced model included Conductivity, Veg_s, 

Amph_MDS1, Amph_RA1, Amph_RA2, Snail_Rich, and Snails_RA2. However, the best 

models only included combinations of Amph_RA1, Amph_RA2, Snails_RA2 and Veg_s (Table 

5.4), with a significant random effect of Amph_RA1 (95% HDI 𝜎!"#$%: 0.28 – 0.79) and 

Amph_RA2 (95% HDI 𝜎!"#$%: 0.20 – 0.73). The metacommunity structure of the full data set 

showed an even split between quasi-Clementsian and quasi-nested structure (45% and 32%, 

respectively; Figure 5.6). Our model estimated a positive effect of Amph_RA1 on Fibricola spp. 

and M. syntomentera occupancy and a negative effect on R. ondatrae and Cephalogonmius spp. 

(Figure 5.7).  
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Figure 5.6. Symbiont metacommunity structure with all data combined.  
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Figure 5.7. Estimates of species-specific covariate effects for all data combined. Figure is laid 
out as in Figure 3. 
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Figure 5.8. Estimates of species-specific detection probabilities using the combined data set.  
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 We found that the symbiont metacommunity structure alternated between random, quasi-

nested, and quasi-Clementsian among years. Because our modeling methods are able to estimate 

species-specific responses to covariates, we are able to directly link these overall 

metacommunity patterns to species-level effects. In 2009, when metacommunity structure had a 

high probability of being random, our model predicted that different symbiont species were 

responding to different environmental gradients. Our model estimated that Ribeiroia ondatrae 

was positively affected by Snails_RA2, Cephalogonimus spp. (Glob) was positively affected by 

Amph_MDS2, and Alaria spp. was negatively affected by Aspect. Indeed, when a 

metacommunity exhibits random structure, it is supposed that species are not coherently 

responding to a common environmental gradient (Leibold and Mikkelson 2002b, Presley et al. 

2010a). Here our model is able to directly support this supposition. The nested and quasi-nested 

structures observed in some Zpost in 2009 were likely driven by the fact that Echinostoma spp. 

and Opalina spp. were observed (or predicted to occur) at the majority all sites. This makes sense 

because these Echinostomes and have rather broad intermediate host ranges with vagile 

definitive hosts (Roberts et al. 1996). Opalina spp. has a direct transmission route and uses 

amphibians as its only host (and amphibians were present at every surveyed wetland) (Smyth and 

Smyth 1980). The other symbiont species had lower overall prevalence across the study area. 

Thus, the nested patterns observed in some Zpost might statistical artifacts, rather than a true 

demonstration of coherent species responses to a common gradient (Fischer and Lindenmayer 

2002).  

In 2010, the symbiont metacommunity had an ~80% probability of having quasi-nested 

or nested structure, however an ~20% chance of being randomly structured. The dominant 

structure is quasi-nested because although the distributions of R. ondatrae, M. syntomentera, 
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Alaria spp., and Cephalogonimus spp. were nested within those of Opalina spp., Echinostoma 

spp., and Nyctotherus spp., there were many instances were the former 4 species did not occur 

with one another to create a fully nested metacommunity. This is likely due to the fact that these 

species were again responding to unique environmental gradients. Indeed, R. ondatrae and 

M. syntomentera had positive and negative responses to Snails_MDS2, respectively, while 

Alaria spp. and Nyctotherus spp. both had negative effects of Latitude. These divergent coherent 

responses to snail composition and latitude likely drive the ambiguity in structure classification.  

In 2011, the metacommunity showed predominantly quasi-Clementsian structure. 

Clementsian structure demonstrates that species composition shifts along an environmental 

gradient, forming discrete and unique species groups along the gradient (Leibold and Mikkelson 

2002b). The “quasi” nature of the structure is likely due to a relatively small symbiont 

community and many embedded absences (Gotelli 2000, Presley et al. 2010a). This structure 

seems to be driven by a shift from communities that include the common core species – Opalina 

spp., Echinostoma spp., and Nyctotherus spp. – as well as R. ondatrae and Cephalogonmius spp. 

to communities with the core species and Alaria spp., Fibricola spp. Our model estimated that R. 

ondatrae and Cephalogonmius spp. respond predominantly negatively to the Amph_RA1 axis, 

while Alaria spp., Fibricola spp., and M. syntomentera have negative responses. This indicates 

that the Clementsian structure is driven by a coherent response to a gradient of amphibian host 

species composition at the sites. It is likely that in 2012 that our smaller sample size and the 

presence of fewer symbiont species hindered our ability to discern metacommunity structure and 

find a model, other than the null, that best explained community composition. The smaller 

number of wetlands and species leads to a smaller and sparser matrix, which results in less power 

to detect patterns (Gotelli and Graves 1996, Ulrich and Gotelli 2013). 
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Similarly to 2011, when all the data was combined, the metacommunity showed quasi-

Clementsian structure, with two community types distinguished by the presence of the core 

species, R. ondatrae, and Cephalogonmius spp., or the core species, Fibricola spp. and 

M. syntomentera. Indeed our model estimated a positive effect of Amph_RA1 on Fibricola spp. 

and M. syntomentera occupancy and a negative effect on R. ondatrae and Cephalogonmius spp. 

Thus, across the whole data set, a coherent response to the amphibian secondary host community 

composition drives metacommunity structure.  

Overall, across the years, compositional shifts were driven predominantly by local 

differences in snail and amphibian host community compositions. It makes sense that differences 

in local snail host species richness and relative abundances affect community composition. The 

majority of the symbionts are trematodes that use snails as their first intermediate host, however, 

some of the symbionts are much more host-specific at this life-stage than others. For instance, 

while Echinostoma spp. can use four out of the five snail species as intermediate hosts, all of the 

other trematode species must use H. trivolvis (Prudhoe and Bray 1982, Roberts et al. 1996, 

Johnson et al. 2004).Thus, the presence of multiple snail species may result in competitive 

dynamics that alter the abundance of H. trivolvis (Brown 1982), leading to changes in host 

availability that could differentially affect the different symbiont species, depending on their 

ability to compete for snail hosts.   

The local amphibian community composition was also a main driver of symbiont 

community change across space. This effect could be driven by influences of host composition 

on colonization and transmission dynamics in the wetlands. For instance, field surveys have 

shown that the richness of the symbiont community in the wetland correlates with the richness of 

host and non-host (e.g. insects) taxa at the wetland (Johnson et al. 2013a). This is likely an affect 
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of enhanced colonization opportunities, in that wetlands that harbor high biodiversity might 

attract many definitive hosts that deposit trematode eggs. Positive relationships between host 

diversity and symbiont diversity are seen across a wide variety of taxa, including trematodes and 

bird hosts (Hechinger and Lafferty 2005, Pedersen et al. 2005). However, host richness within a 

wetland is also negatively associated with the realized transmission of many of the trematodes 

encountered in this study (Johnson et al. 2013a, 2013b). This is due to the fact that amphibian 

host species differ in their host competence, whereby some hosts can rapidly clear infections, 

while others can become heavily infected. Furthermore, higher symbiont diversity within a 

wetland correlates with decreased R. ondatrae infection in P. regilla, which is likely due to more 

prominent intra-host dynamics with increased symbiont richness (Johnson et al. 2013a).  

 In the first three years of the study, wetland aspect and latitude were also significant 

drivers of symbiont composition. In 2009, although aspect did not have a significant fixed or 

random effect in the model, there seemed to be a trend where many symbiont species responded 

negatively to aspect. This means that occupancy was less probable at wetlands with southerly or 

westerly facing slopes, which tend to receive higher solar radiation and are warmer, drier habitats 

in general. It seems likely that more heat-sheltered, easterly facing wetlands would be more 

hospitable to definitive hosts of many of these trematodes. Also, in these oak chaparral habitats 

adult amphibians tend to aggregate more on easterly facing slopes, which are cooler and have 

more shrub cover (Block and Morrison 1998). In 2010, there was a significant negative effect of 

latitude. In our sampling design latitude is strongly correlated with longitude, which is in turn 

correlated with elevation. Therefore, in general, symbiont species tended to have higher 

probabilities of occurrence at the southeastern, higher elevation wetlands. The southeastern 

wetlands tend to be situated in larger areas of undeveloped land, whereas the northwestern 
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wetlands are bordered by water and are situated in a narrower strip of land (Figure 5.1). Based on 

a simple species-area relationship (Rosenzweig 1995), one might expect that these southeastern 

areas have a higher diversity of vertebrate species , which might lead to overall higher occupancy 

probabilities for the symbionts.  

 

5.6 Conclusion 

 Here we saw that the P. regilla symbiont metacommunity structure across a large region 

of wetlands was inconsistent over a four-year sampling period, at times showing random, nested, 

or Clementsian structures. Local symbiont composition typically responded strongest to spatial 

variation in snail and amphibian host community composition, as well as geographic 

characteristics, namely, latitude and aspect. The apparent lack of metacommunity structure in 

some years was typically a result of non-coherent species-level responses to different 

environmental gradients. Inter-annual variation in metacommunity structure was likely impacted 

by inter-annual variability in the composition of sampled symbionts from year to year, variation 

in sampling breadth across space, and inter-annual changes to local host community 

compositions.  

Our results illustrate two important aspects of this system’s ecology. First, the symbionts 

in this system do not typically respond to the same environmental gradients, which emphasizes 

that predictions about symbiont community composition will have to integrate across the factors 

that influence species-level responses. This result further justifies the use of multi-species 

occupancy modeling in understanding metacommunity dynamics, as these models can integrate 

species-level responses to multiple covariates. Second, our results suggest that, while the local 

aquatic intermediate host composition certainly impacts symbiont occupancy patterns, more fine-
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scale data on definitive host resource use will be necessary to better understand how colonization 

opportunities affect local and regional occupancy patterns.  

It is likely that our results are relevant to other systems of symbionts that include species 

with complex life cycles. These symbionts rely on multiple host species that often utilize vastly 

different environments. Predicting the symbiont composition in any one environment will require 

integrating the effects of symbiont colonization and transmission across environment types. 

Thus, further understanding symbiont community dynamics across space and time will require a 

synthesis of ecological and evolutionary dynamics that occur at multiple spatial scales. An 

emphasis on building analytical tools and methods that link dynamics across scales should be a 

priority in this field.  
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CONCLUSION 

In my first chapter I showed that co-exposure to multiple Ranavirus species, viruses of 

serious conservation concern, can enhance viral infectivity, lead to larger epidemics, and 

increase the hosts’ probability of mortality. By conducting two experiments at the host-scale and 

then at the population-scale, I was better able to demonstrate and understand the mechanisms 

leading to an effect of co-exposure. This research has direct implications for the conservation of 

amphibian populations, globally. In future studies, I would like to conduct immunological assays 

to determine the intra-host mechanisms that result in higher FV3 infectivity when ATV co-

occurs. I also plan to sequence viral DNA from field-collected specimen in our California field 

sites (see Chapter 5) in order to determine if FV3- and ATV-like viruses co-occur in the region. 

Finally, I would like to scale up the system to understand how host biodiversity interacts with 

viral diversity to affect Ranavirus transmission dynamics.  

For Chapter 2, I built a multi-host species epidemiological model to understand how 

pathogen transmission type and host community composition affects how host biodiversity 

influences transmission in local host communities. This model was able to formally test and 

verify mathematical and verbal predictions of diversity-disease relationships, and extend these 

models to generate more specific predictions about where, when, and how host biodiversity 

should affect disease transmission. Importantly, we showed that high variability in biodiversity’s 

effect on transmission could hinder finding generalizable trends (e.g. biodiversity should always 

decrease disease transmission). In future studies, I would like to extend the model to include 

multiple pathogens, which would complement my empirical work. I also plan to put the model 

into a spatial context to look at how host migration among local communities in a 

metacommunity will affect regional transmission dynamics, including local pathogen 
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colonization-extinction dynamics.  

My last three chapters were focused on applying metacommunity theory and analytical 

tools to the study of host-symbiont (including pathogen) interactions. I first reviewed how 

metacommunity theory could help answer many outstanding questions in the field, highlighting 

that symbiont communities constitute metacommunities at multiple spatial scales, and that these 

systems could also be used to test metacommunity theory predictions. I then built upon existing 

metacommunity analytical tools to incorporate the benefits of occupancy modeling, which can 

correct for detection error. Detection error is likely a large issue in sampling symbiont 

communities due to their typically small size and cryptic nature. Finally, I implement my newly 

developed analytical framework to study how amphibian parasite metacommunities are 

structured across four years of sampling. The methods I employed allowed to estimate species-

specific responses to environmental covariates. This approach should be very useful to 

understanding how parasites of particular concern are distributed across the landscape in the 

context of other symbiont community members.  I plan to apply these methods to data sets of 

microbial communities among hosts, in an effort to understand how microbial community 

composition changes in relation to host traits and regional transmission dynamics.  

With this dissertation, I have shown that both pathogen and host biodiversity can affect 

pathogen transmission in complex ways, and that studying these dynamics at multiple spatial 

scales is integral to gain a more complete understanding. Future research would benefit from 

understanding how pathogen and host diversity interact to affect disease severity and pathogen 

transmission. This will require the integration of observation, experimental, and theoretical 

studies that span spatial scales. However, by accomplishing this goal, we will move toward a 

more complete and predictive framework for the study of disease ecology in general.  
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APPENDIX 

Appendix: Chapter 2, Generating the “saturating” method and null model 

A.1 The “saturating” method 

Communities were assembled by the “saturating” method in a way that combined 

additive and compensatory species additions. Our goal was to simulate nearly additive species 

additions at low values of richness and then transition to compensatory additions at higher values 

of richness. To achieve this, species’ abundances were adjusted by a scaling factor, termed Ks, so 

that the total community density, KT, varied with species richness according to a saturating 

function, Kcom(R), where R refers to host species richness. This ensured that species abundances 

were adjusted in proportion to their equilibrial abundances in the global pool. The two saturating 

functions used in the main body text were: 

𝐾!"# = 500− !"##
(!!!)   (A1), 

and: 

𝐾!"# = !""
!!!"!!!.!"(!!!")

   (A2). 

Equation (A1) is a typical asymptotic function, and is similar in form to an empirically derived 

relationship between plant percent cover and species richness (Tilman et al. 1996). Equation 

(A2) represents a logistic growth curve. The scaling factor was then calculated as: 

𝐾! =
𝐾!"#

𝐾!  (S3). 

Ks was multiplied by each species’ equilibrial abundance in the assembled community in order to 

calculate adjusted abundances. However, in order to introduce more variation and additive 

increases in abundance, if KT < Kcom, equilibrial abundances were not adjusted. Therefore, at low 

host richness, species additions were mostly additive but gradually transitioned to completely 

compensatory additions at high richness. This method of saturating communities also 
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corresponds to patterns found in the ecosystem function literature that show a saturating 

relationship between total community biomass and species richness (Lehman and Tilman 1997; 

Tilman et al. 2001; Guo et al. 2006; Figure A.1).  

Figure A.1. An example of the relationship between total community biomass and species 
richness produced by the “saturating” method with 1000 simulated communities. Boxplots 
summarize the data for each value of richness. This example corresponds to the case where the 
saturating relationship is as in equation (A1). A LOESS smoother and 95% confidence bands 
were added for visual interpretation of the average trend. 

 

 Whether the “saturating” method led to strong or weak non-monotonic relationships 

between community R0 and species richness was somewhat sensitive to the exact formulation of 

the saturating function, but that the non-monotonic relationship was general. Specifically, the 

maximal host community abundance (e.g. ~500 in equations S1 and S2) mediated the severity of 

the “hump” shaped relationship. Higher maximal host community abundance, which represents 

weaker compensatory interactions, led to a less pronounced hump, while lower maximal host 

abundance showed the opposite trend (Figure A.2). 
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Figure A.2. Community R0 versus species richness with various saturating functions, all 
assuming density-dependent transmission. A-B, Variations of equation 1 that alter the maximal 
host community abundance to ~300 (A) and ~800 (B). C-D, Variations of equation 2 that alter 
the maximal community abundance to ~300 (C) and ~800 (D). Inset figures represent the 
underlying community abundance-richness relationships. A LOESS smoothing line and 95% 
confidence bands are added only for visual interpretation. Exact equations for Kcom are as 
follows: A, 𝐾!"# = 300− 1800 (𝑅 + 5); B, 𝐾!"# = 800− 5300 (𝑅 + 5); C, 𝐾!"# =

!""
!!!"!!!.!"(!!!")

; D, 𝐾!"# = !""
!!!"!!!.!"(!!!")
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A.2 Null model results 

 For this model, we randomized all life-history traits to eliminate associations with 

intraspecific R0, R0i. We then derived intraspecific transmission rates βii to match R0i for each 

species and used this community to generate our simulation scenarios. We find that the 

assumption that the most abundant species is also the most competent host does not affect our 

qualitative results (Figure A.3). 

 

Figure A.3. Selected results of the ‘null’ model in which there are random associations between 
host competence, abundance, and other life-history traits. A, “additive” abundance-richness 
relationship; B, “fixed” abundance-richness relationship; and C, “saturating” abundance-
richness. All panels were simulated with density-dependent transmission. 

 
 

 

 

 

 


